
5 An Advanced Mitigation Bypass for Packet-in-Packet; or,
I’m burning 0day to use the phrase ‘eighth of a nybble’ in print.

by Travis Goodspeed
continuing work begun in collaboration with the Dartmouth Scooby Crew

Howdy y’all,

This short little article is a follow-up to my work on 802.15.4 packet-in-packet attacks, as published at
Usenix WOOT 2011. In this article, I’ll show how to craft PIP exploits that avoid the defense mechanisms
introduced by the fine folks at Carleton University in Ontario.

As you may recall, the simple form of the packet-in-packet attack works by including the symbols that
make up a Layer 1 packet at Layer 7. Normally, the interior bytes of a packet are escaped by the outer
packet’s header, but packet collisions sometimes destroy that header. However, collisions tend to be short
and so leave the interior packet intact. On a busy band like 2.4GHz, this happens often enough that it can
be used reliably to inject packets in a remote network.

At Wireless Days 2012, Biswas and company released a short paper entitled A Lightweight Defence
against the Packet in Packet Attack in ZigBee Networks. Their trick is to use bit-stuffing of a sort to prevent
control information from appearing within the payload. In particular, whenever they see four contiguous 00
symbols, they stuff an extra FF before the next symbol in order to ensure that the Zigbee packet’s preamble
and Start of Frame Delimiter (also called a Sync) are never found back-to-back inside of a transmitted packet.

So if the attacker injects 00 00 00 00 A7 ... as in the original WOOT paper, Biswas’ mitigation would
send 00 00 00 00 FF A7 ... through the air, preventing a packet-in-packet injection. The receiving unit’s
networking stack would then transform this back to the original form, so software at higher layers could be
none-the-wiser.

One simple bypass is to realize that the receiving radio may not in fact need four bytes of preamble. An
upcoming tech report2 from Dartmouth shows that the Telos B does not require more than one preamble
byte, so 00 00 A7 ... would successfully bypass Biswas’ defense.

Another way to bypass this defense is to realize that 802.15.4 symbols are four bits wide, so you can
abuse nybble alignment to sneak past Biswas’ encoder. In this case, the attacker would send something like
F0 00 00 00 0A 7..., allowing for eight nybbles, which are four misaligned bytes, of zeroes to be sent in a
row without tripping the escaping mechanism. When the outer header is lost, the receiver will automatically
re-align the interior packet.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —

But those are just bugs, easily identified and easily patched. Let’s take a look at a full and proper
bypass, one that’s dignified and pretty damned difficult to anticipate. You see, byte boundaries in the
symbol stream are just an accidental abstraction that doesn’t really exist in the deepest physical layers, and
they are not the only abstraction the hardware ignores. By finding and violating these abstractions—while
retaining compatibility with the hardware receiver!—we can perform a packet-in-packet injection without
getting caught by the filter.

You’ll recall that I told you 802.15.4 symbols were nybble-sized. That’s almost true, but strictly speaking,
it’s a comforting lie told to children. The truth is that there’s a lower layer, where each nybble of the message
is sent as 32 ones and zeroes, which are called ‘chips’ to distinguish them from higher-layer bits.

2Fingerprinting IEEE 802.15.4 Devices by Ira Ray Jenkins and the Dartmouth Scooby Crew, TR2014-746

15

The symbols and chip sequences are defined like this in the 802.15.4 standard. As each chip sequence has
a respectably large Hamming distance from the others, an error-correcting symbol matcher on the receiving
end can find the closest match to a symbol that arrives damaged.3 This fix is absolutely transparent—by
design—to all upper layers, starting with the symbol layer where SFD is matched to determine where a
packet starts.

0 −− 11011001110000110101001000101110
1 −− 11101101100111000011010100100010
2 −− 00101110110110011100001101010010
3 −− 00100010111011011001110000110101
4 −− 01010010001011101101100111000011
5 −− 00110101001000101110110110011100
6 −− 11000011010100100010111011011001
7 −− 10011100001101010010001011101101

8 −− 10001100100101100000011101111011
9 −− 10111000110010010110000001110111
A −− 01111011100011001001011000000111
B −− 01110111101110001100100101100000
C −− 00000111011110111000110010010110
D −− 01100000011101111011100011001001
E −− 10010110000001110111101110001100
F −− 11001001011000000111011110111000

That is, the Preamble of an 802.15.4 packet can be written as either 00 00 00 00 or eight repetitions of
the zero symbol 11011001110000110101001000101110. While Biswas wants to escape any sequences of the
interior symbols, he is actually just filtering at the byte level. Filtering at the symbol level would help, but
even that could be bypassed by misaligned symbols.

“What the hell are misaligned symbols!?” you ask. Read on and I’ll show you how to obfuscate a PIP
attack by sending everything off by an eighth of a nybble.

– — — – — — — — – — – — — — – — – — — – — – – — – — — —
I took the above listing, printed it to paper, and cut the rows apart. Sliding the rows around a bit shows

that the symbols form two rings, in which rotating by an eighth of the length causes one symbol to line up
with another. That is, if the timing is off by an eighth of a nybble, a 0 might be confused for a 1 or a 7.
Two eighths shift of a nybble will produce a 2 or a 6, depending upon the direction.
0 11011001110000110101001000101110 / 10001100100101100000011101111011 8
1 11101101100111000011010100100010 / 10111000110010010110000001110111 9
2 00101110110110011100001101010010 / 01111011100011001001011000000111 A
3 00100010111011011001110000110101 / 01110111101110001100100101100000 B
4 01010010001011101101100111000011 / 00000111011110111000110010010110 C
5 00110101001000101110110110011100 / 01100000011101111011100011001001 D
6 11000011010100100010111011011001 / 10010110000001110111101110001100 E
7 10011100001101010010001011101101 / 11001001011000000111011110111000 F

This technique would work for chipwise translations of any shift, but it just so happens that all translations
occur in four-chip chunks because that’s how the 802.15.4 symbol set was designed. Chip sequences this long
are terribly difficult to work with in binary, and the alignment is convenient, so let’s see them as hex. Just
remember that each of these nybbles is really a chip-nybble, which is one-eighth of a symbol-nybble.

0 D9C3522E
1 ED9C3522
2 2ED9C352
3 22ED9C35
4 522ED9C3
5 3522ED9C
6 C3522ED9
7 9C3522ED

8 8C96077B
9 B8C96077
A 7B8C9607
B 77B8C960
C 077B8C96
D 6077B8C9
E 96077B8C
F C96077B8

So now that we’ve got a denser notation, let’s take a look at the packet header sequence that is blocked
by Biswas, namely, the 4-bytes of zeroes. In this notation, the upper line represents 802.15.4 symbols, while
the lower line shows the 802.15.4 chips, both in hex.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

As this sequence is forbidden (i.e., will be matched against by Biswas’ bit stuffing trick) at the upper
layers, we’d like to smuggle it through using misaligned symbols. In this case, we’ll send 1 symbols instead

3Note that Hamming-distance might not be the best metric to match the symbol. Other methods, such as finding the longest
stretch of perfectly-matched chips, will still work for the bypass presented in this article.

16

of 0 symbols, as shown on the lower half of the following diagram. Note how damned close they are to the
upper half. At most one eighth of any symbol is wrong, and within a stretch of repeated symbols, every chip
is correct.

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

1 1 1 1 1 1 1 1
ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

So instead of sending our injection string as 00000000A7, we can move forward or backward one spot in
the ring, sending 11111111B0 or 7777777796 as our packet header and applying the same shift to all the
remaining symbols in the packet.

“But wait!” you might ask, “These symbols aren’t correct! Between 0 and 4 chips of the shifted symbol
fail to match the original.”

The trick here is that the radio receiver must match any incoming chip sequence to some output symbol.
To do this, it takes the most recent 32 chips it received and returns the symbol from the table that has the
least Hamming distance from the received sample.

So when the radio is looking for A7 and sees B0, the error calculation looks a little like this.

BO −− 77B8C960D9C3522E
| | | | | | | | <−−Chips are near ly equal .

A7 −− 7B8C96079C3522ED

For the first symbol, the receiver expects the A symbol as 7B8C9607 but it gets 7B8C960D. Note that
these only differ by the last four chips, and that the Hamming distance between 0111 and 1101 is only two,
so the difference between an A and a misaligned B in this case is only two.

It’s easy to show that the worst off-by-one misalignment would make the Hamming distance differ by at
most four. Comparing this with the distance between the existing symbols, you will see that they are all
much further apart from one other. So we can obfuscate an entire inner packet, letting the receiver and a
bit of radioland magic translate our packet from legal symbols into ones that ought to have been escaped.

Ain’t that nifty?
– — — – — — — — – — – — — — – — – — — – — – – — – — — —

This technique of abusing sub-symbol misalignment to send a corrupted packet-in-packet which is reliably
transformed back into a correct, meaningful packet should be portable to protocols other than 802.15.4.

For example, most Phase Shift Keyed (PSK) protocols can have phase misalignment that causes symbols
to be confused for each other. Frequency Shift Keyed (FSK) protocols can have frequency misalignment
when on neighboring channels, so that sometimes one channel in 2 FSK will see a packet intended for a
neighboring channel, but with all or most of the bits flipped.

One last subject I should touch on is a fancy attempt by Michael Ossmann and Dominic Spill to defend
against packet-in-packet attacks which was presented at Shmoocon 2014 and in a post to the Langsec mailing
list. While they don’t explicitly anticipate the bypass presented in this paper, it’s worth noting that their
example (5,2,2) Isolated Complementary Binary Linear Block Code (ICBLBC) does not seem to be vulnerable
to my advanced bypass technique. Could it be that all such codes are accidentally invulnerable?

Evan Sultanik on the Digital Operatives Blog ported Mike and Dominic’s technique for generating codes
to Microsoft’s Z3 theorem prover and came up with a number of new ICBLBC codes.

With so many to choose from, surely a clever reader could extend Evan’s Z3 code to search just for
those ICBLBC codes which are vulnerable to type confusion with misalignment? I’ll buy a beer for the
first neighbor to demo such a PoC, and another beer for the first neighbor to convincingly extend Mike and
Dominic’s defense to cover misaligned symbols. For inspiration, read about how Barisani and Bianco4 were
able to do packet-in-packet injections by ignoring Layer 1 and injecting at Layer 2.
Cheers from Samland,
—Travis

4Fully Arbitrary 802.3 Packet Injection: Maximizing the Ethernet Attack Surface by Andrea Barisani and Daniele Bianco
at Black Hat 2013

17

