Security through Network-wide Diversity Assignment

A Thesis
Submitted to the Faculty
of
Drexel University
by
Adam J. O’'Donnell
in partial fulfillment of the
requirements for the degree
of
Doctor of Philosophy
September 2005

Drexel University

Office of Research and Graduate Studies
Thesis Approval Form
(For Masters and Doctoral Students)

Hageny Library will bond a copy of this form with each copy of your thesis/dissertation.

This thesis. entitled Security through Network-wide Diversity Assignment

and authored by Adam J. O'Donnell , is hereby accepted and approved.
Signatires:

Eﬁuz . Exaprelitidg CZ!’HH:

Committee Members; |

(© Copyright 2005
Adam J. O’Donnell.

This work is licensed under the terms of the Creative Commons
Attribution-ShareAlike license. The license is availahte
http://creativecomons. org/licenses/by-sal/2.5/.

Dedications

This dissertation is dedicated to my parents, Joseph anddsldior instilling in me the
thirst for knowledge that has led me to this point, and to migv@ophy for providing me

with the love and support | needed to see me through.

Acknowledgments

| have fantasized about writing this page of my dissertattwrmany years. Now that
the time has come | find myself struggling to compose the waish reflect how those
closest to me have guided my work over the years.

The path of research is long, twisting, and poorly lit. Thewould be far more difficult
if it weren't for the many who have previously trodden thehpahd the few who directly
support you on your journey. | owe all of those who have walkkhg my side for these
years my deepest gratitude.

Drexel University has been my home for the past nine yearsmRhe moment | ar-
rived here, members of the faculty and staff of the CollegEmdineering have provided
me with much needed counsel. While some are no longer witlutingersity and a few
are no longer of this world, they all deserve to be mentiorexé hparticularly Bob Quinn,
Allen Rothwarf, Vaughn Adams, Afshin Daryoush, Maja BystrcAthina Petropulu, Har-
ish Sethu, Vassilis Prevelakis, Steven Weber, Bob Koearet,Mun Choi. | additionally
want to thank the entire faculty and staff of the Electricadl &€ omputer Engineering De-
partment, especially Nihat Bilgutay, Kathy Bryant, Sta€sjiazzo, Dolores Watson, and
Tanita Chapelle, for building the learning environment imieth we all share.

It is difficult to separate your image of self from the resbéayou produce while a
graduate student, but the commiseration provided by aplies helps you remember that
you are a person and not just your work. | would like to tharkrgl current and previous
labmates, particularly Madhusudan Hosaagrahara, VatiiiRahan, and Michelle Sipics
for lending an ear and and eye to my work. | would also like snththe members of what
became my defacto surrogate lab in the Computer Sciencetdepd for allowing me to
routinely pick their brains, namely Ali Shokoufandeh, J&ffrahamson, M. Fatih Demirci,

and Trip Denton.

Many a day’s discussions of work turned into a night’s dissewn philosophy and life
in general, which in turn made graduate school a far moreyabje experience. | don'’t
know how | would have made it through without the emotiongdsart provided by these
cathartic evenings. For this, Nick Kirsch and Eric Gallopeoyou an incredible debt.

My education has never been limited to the classroom, andantacts in the security
industry have heavily influenced my work and development@®gessional. In particular,
| would like to thank Ralph Logan for showing me the ropes eflthsiness world, and Tim
Newsham and Jose Nazario for setting an example of how anegrgand an academic can
thrive in industry.

Completing my graduate work would not have been possibleowitfinancial support
from three sources. | would like the ECE Department for ptong the Colehower Fellow-
ship during my critical first year, and the fine people at thédteal Science Foundation for
the Graduate Fellowship Research Progrtrat sponsored the bulk of this dissertation. Fi-
nally, | again extend my gratitude Bob Koerner and the KoeFRaenily for providing both
funding through the Koerner Family Fellowship as well agearguidance.

The final gatekeepers to the PhD are my dissertation comanittbo graciously do-
nated their time for this pursuit. | would like to thank allthiem for their time invested in
reading my work and attending my presentation.

There were a few points during my work that | thought the fir@dlgvas unattainable.
My advisor, Harish Sethu, has helped shape my work and dewveldot as a researcher from
my senior year as an undergraduate to this point. More iraptiyt he never lost faith in
me even when | risked losing faith in myself. Without mincwgrds, | could not have
asked for a better advisor. Thank you for everything.

Finally, without the support and love of my family, none of raglucation would be

tThis material is based upon work supported under a Natioci@n8e Foundation Graduate Research
Fellowship. Any opinions, findings, conclusions or recomutetions expressed in this publication are those
of the author and do not necessarily reflect the views of theNal Science Foundation.

possible. Thank you Mom and Dad for the trips to the librased museums, the books
and magazines, and the nurturing and stimulation you peavidat made it possible to me
to reach this goal.

And last but not least, without you Sophy, completing my ediann would have been

impossible. I love you, and thank you for everything you hdeae for me.

Table of Contents

Vi

Listof Tables X i
Listof Figures e X
ADStract ii Xi
Chapter 1. A Brief Overview of Computer Security 1
1.1 Introduction 1
1.2 Combating Vulnerabilities Before Discovery 2
1.2.1 Fault Tolerance and-Version Programming 5
1.3 Combating Vulnerabilities After Discovery 5
1.4 The Software Diversity Compromise uu. 1
1.5 Organization. e 9
Chapter 2. The Software Diversity Compromise 10
2.1 GeneratingDiversity 10
2.2 The Case for Assigning Diversity 12
2.2.1 Examples of Network Diversity Assignments 13
2.2.2 Reasoning aboutDiversity 0L, 7 1
Chapter 3. Generalizing and Assigning Software Diversity 18
3.1 Introduction 18
3.1.1 RelatedWork 20
3.2 Defining the Diversification Hypergraph 20
3.2.1 Composition of Diversity Techniques 22

3.2.2 Attack and Defense Modeling 26

Vil

3.3 Hyperpaths and Choosing Diversity 29
3.3.1 Host-Centric Diversity Assignments 31
3.3.2 Network-Centric Diversity Assignments 32

Chapter 4. Distributed Diversity Assignment Algorithms 33

4.1 Network-Centric Diversity Assignments 33
4.1.1 Slowing Intelligent Attackers. 35
4.1.2 Stopping Viruses and Limited-Skill Attackers 40
413 RelatedWork 43

4.2 Distributed Algorithms 44
4.2.1 RandomizedColoring, 46
4.2.2 Color Flipping Algorithms 64
4.2.3 Color Swapping Algorithms 47
4.2.4 Hybrid Algorithms 50

4.3 Simulation. 53
4.3.1 Algorithm Simulation 57

Chapter 5. Validating and Attacking Distributed Softwaneddsity 61

5.1 Validating Network Diversity Assignment Algorithmsfdse in Virus De-
fense 61
5.1.1 Problem Statement oL 62
512 RelatedWork 64
5.1.3 \Viral Propagation and Software Diversity 66
5.1.4 StatisticalModels oo 67

5.2 Attacking Network Diversity Assignments 74

5.2.1 Attack Simulation 77

viii

5.2.2 Analysis of SimulationResults L. 83
Chapter 6. Conclusion and Future Work 85
6.1 ASUumMMaAry e e 85
6.2 Future Work e 87
6.2.1 Measurements and Data Analysis 7. 8
6.2.2 Implementation Strategies 89
Bibliography e 19
Appendix A. Host-Centric Diversity Assignments 99
104

3.1

4.1

Al

A2

List of Tables

A list of the symbols and functions used in the system haelscribed in
thischapter. e 30

A comparison of the Intelligent Attacker vs. Diverse Wetk and Com-
puter Virus vs. Diverse Network attack and defense models.. 34

A example set of the cost and effectiveness functionsaated with mul-
tiple diversity techniques. L L oo 100

An examination of the Intelligent Attacker vs. a Singledi attack and
defensemodel. 101

List of Figures

2.1 Comparison of network topologies utilizing either agbnsoftware pack-
age or a diverse software distribution. The effect of opliyndistributing
two software packages on a bipartite network is clear in (a) @). Bi-
partite networks such as these are often found in clienvesdile sharing

topologies.

2.2 An additional comparison of network topologies utiligieither a single
software package or a diverse software distribution. A oamchetwork
topology clearly benefits from a random distribution of thheterogeneous
software packages (a) as compared to a uniform distributfaa single
package (b). While the assignment is sub-optimal, the nurabedges
which exist between nodes running similar software packagelearly

3.1 Inthe above, a single Apache installation is diversifigdhe introduction
of different operating systems. One of the instances ihéurtliversified
by the introduction of multiple hardware platforms. An abstion of the
model is presented in Section3.2.1.

3.2 Figures (a) and (b) provide abstract views of the intevawf diversity
techniques. Figure (a) graphically shows the generalized of software
diversity described in Section 3.2, where diverse softwastances are set
elements, diversification techniques are equivalencesetasand the com-
position of multiple diversity techniques forms a path asrequivalence
classes. We represent the a simplified view of the diversidicahyper-
graph H in (b), where the edges represent individual hyperedgestand
vertices represent software package#/imhich lie at the intersection of

two hyperedges.

4.1 BFS Based Algorithm for solving a restricted versionh&f INTELLIGENT
ADVERSARY DIVERSITY ASSIGNMENTPROBLEM

4.2 Plot of the number of novel edges vs. the length of theetsd path. For
small diameter networks with a large number of colors, agdatiameter
networks with a small number of colors, it is unnecessarysi the BFS
algorithm.

4.3 Pseudocode for various globally shared functions andhlas used by the
distributed coloring algorithms.,

Xi

4.4 Pseudocode implementation of the Randomized Colotgagithm. 46
4.5 Pseudocode implementation of the Distributed Colgdtig algorithm. . . 48

4.6 Pseudocode that describes support functions used ljstnduted color
swapping algorithms. 49

4.7 Pseudocode that describes swap query and responsiefisnesed by the
distributed color swapping algorithms. 51

4.8 Pseudocode implementation of the Mutually BeneficidloC8wapping
algorithm. 52

4.9 Pseudocode implementation of the Greater Good Colopfwag algorithm. 53
4.10 Pseudocode implementation of the Randomized Hybtatiog algorithm. 54
4.11 Pseudocode implementation of the Best Choice Hyblatiog algorithm. 55

4.12 Log-Log Plots of E-Mail Graph Statistics. The propestof the collected
data are statistically similar to many other topologiegjuding the AS
topology seeninBGP routing., 56

4.13 Comparison of coloring algorithms. The quality of tléocing, measured
by both the number of defective edges and the number of diswed
components induced by the coloring, is maximized throughutbe of hy-
brid algorithms. 60

5.1 Plot of the degrees of nodes found in the examined nesmogksus the
frequency of the occurrence of the degree. The graph exanmn@) was
constructed from a standard random graph model, and cer2@modes
and7, 448 edges. The graph examined in (b) was sampled from the IPv6
BGP topology, and contains a similar number of nodes andsedge . . . 68

5.2 Comparison of the effect of the number of colors on thesarpentally
determined epidemic threshold. In both (a) and (b), a grapdssigned
either one color for every node, multiple colors via a ranthau algorithm,
or multiple colors via the describeddCoR FLIPPING algorithm. It can be
seen in both graphs that the epidemic threshold increasibe akversity-
assignment algorithms become progressively more sophist. 70

5.3

5.4

5.5

5.6

5.7

Al

Xil

Comparison of the effect of the number of defective edgehe epidemic
threshold. In both (a) and (b), the nodes of the graphs alhteghe same

color, and the ©LOR FLIPPING algorithm is executed to find a 3-color
assignment which reduces the number of monochromatic edgeshe

number of monochromatic edges decreases, the experityatdtdrmined
epidemic threshold increases beyond what is predictechitigtstal models

and by the eigenvaluemodel. L. 73

Pseudocode used by an attacker wishing to compromidevankeof hosts
running the distributed coloring algorithms presentedla@er 4. 75

Comparison of the impact of nodes that only lie aboutrtbelor on the
distributed algorithms. The vertical line indicates thegiwhen malicious
nodes are added tothenetwork. 79

Comparison of the impact of nodes that only lie aboutrtbefect im-
provements on the distributed algorithms. The vertica imdicates the
time when malicious nodes are added to the network. 80

Comparison of the impact of nodes that only lie about deflect improve-
ments and their color on the distributed algorithms. Theéicarline indi-
cates the time when malicious nodes are added to the network. 81

Pseudocode implementation of the Greedy Host Divesssisignment al-
gorithm. e 103

Xiii

Abstract

Security through Network-wide Diversity Assignment
Adam J. O’'Donnell
Harish Sethu, Ph.D.

The best efforts of the computer security community haveetfiatinated software with
hidden attackable vulnerabilities in the world. Code amatg and hardened operating en-
vironments have reduced software bugs. Improved trainagydneated capable security
administrators who have decreased the population of eaplei systems through atten-
tive patching and network access control. A third approacbombating vulnerabilities
has been proposed which requires the use of diverse sofpveieages to slow or stop
attackers. Literature examining the topicsufftware diversitydetails a variety of imple-
mentations, but for both business and technical reasom$intited number of functionally
equivalent yet distinct software packages makes diveasi®égs effective strategy than one
may like.

In this dissertation, we make diversity a viable securitatsigy despite the limited
number of diverse systems. We abstract the software diyersncept to a hypergraph
by considering how techniques for generating diversitgratt and present themselves
to attackers. We show that diversity’s utility can be inseghthrough the use of graph
coloring algorithms. We design a series of distributed greploring algorithms and test
these on real-world graphs collected from the BGP topoldgthe IPv6 backbone and
nine months of e-mail traffic. The diversity assignmentscarantified through the use of
graph theory-based metrics, such as the monochromaticcege and the disconnected
component count, as well as the epidemic threshold, a nteiriowed from epidemiology
research.

Any methodology for increasing the attack tolerance of avoet is destined to come

Xiv

under attack itself. We examine the tradeoff between thétguwd our algorithm’s diver-
sity assignment produced and our algorithm’s attack takra We show that the attack
tolerance of our algorithms can be increased by presentirgjtacker with a diversity of
graph coloring algorithms. Based upon our observationsjlsitions, and analysis we are
left with a confirmation of our thesis: not only is diversitgtical for improving the attack
tolerance of a network, but diversity must be appliedldevels of system design including

mechanisms to introduce the diversity itself.

Chapter 1. A Brief Overview of Computer Security

Basic research is what I'm doing when | don’t know what I'm raipi

Werner von Braun
1.1 Introduction

The connected nature of our modern computer systems hasugumparalleled access
to information and communication resources. The connewéade of our systems has also
given unparalleled access to computer crackers, who, lattly and througltvirusesand
worms compromise the integrity of our electronic assets. As eftitme of the writing of
this document, computer security issues have become aneoartid unwelcome event in
every user’s life. While the majority of users are not adeéptsing computer access con-
trol features to their full capacity [92], attackers raralyempt brute force attacks against
advanced access control systems. Instead, they invesirtia®veloping attacks against
potential security issues created by coding and configurairoblems [12], referred to
collectively asvulnerabilities

All software, regardless of authorship, may harbor hidd=susty related vulnerabili-
ties, and these vulnerabilities will eventually be disaede Upon the discovery of a vul-
nerable situation in a piece of software, code to attack theerability, known as aex-
ploit, may be created and remain secret for many months as it ntakesinds through the
hacker communityy The instant the exploit is detected by the computer sgcootmmu-
nity, it acquires theZero Daymonicker, which reflects the exploits novelty to the sofevar
industry. The appearance of a zero day exploit drives thataiaier of the vulnerable code

to release a patch to the software to correct the issue. Rsiildy for final remediating

1An excellent guide on writing software exploits can be foim{29].

of the issue returns to the global population of system ahtnators and users, who must
install the patch to correct the issue. Studies have shoamnbibih thezero dayand the
unpatchedoeriod can be unexpectedly long, with the unpatched pe&sting years [4].
Furthermore, an individual's diligence in system maintergis insufficient for protect-
ing his or her access to data; the volume of unmaintaine@sysbn the Internet places

everyone’s access to data at risk [79].

The current state of computer security dictates that ugergither waiting to be at-
tacked by a new exploit for previously unknown vulneral@btor by an old exploit for an
unpatched vulnerability. This dualism provides two natakenues for research endeav-
ors and security products. The first course of action deals thie reduction of security
vulnerabilities due to known classes of programming andigaration bugs, while the
second course focuses on the management of large groupstefrsywith known vulner-
abilities. The fields of vulnerability reduction and mittga are both vast, and it would be
unwarranted to present a complete survey of both topicssrdtesertation. Instead, a brief

summary of the core research directions in both areas iepies below.

1.2 Combating Vulnerabilities Before Discovery

A vast majority of the exploits utilized by computer hackarse out of programming
flaws created by the application developers. For exampdssid buffer overflow vulner-
abilities [20] are created when a programmer writes datagmory addresses located in
the stack without confirming that the data will fit inside thmase previously allocated by
the programmer. The overrun of data which flows out of thecalied space can rewrite the
instruction pointer of the calling function; if the oventinig data is carefully chosen, the
stored instruction pointer can be redirected back into #ta dlock which was copied into
the buffer. As soon as the current function exits, the nestrirction fetched will be code

which exists on the stack rather than inside the prograns sikegment. If the data being

passed to the program is completely controlled by the sarmmewiso owns the targeted
program in memory, then there is no security issue. Howdéivere program executes at
a higher level of privilege than the user who generates tie alacepted by the program,
then the user generating the data can hijack the programxatdite instructions as if the
user was at the same privilege level as the program.

These attacks have become so commonly exploited that teeyasidered to be cliché
in the security community. The removal of the well-knownsslas of security vulnerabil-
ities, such as buffer overflows, will involve developer edtiren to reduce the number of
new vulnerabilities. Additionally, it will require legaayode to be retrofitted to either re-
duce the exploitability of vulnerabilities or reduce thewher of exploit targets. A general
overview of software vulnerabilities, as well as properiogdechniques, can be found
in [83].

Reducing the exploitability of bugs in software is refertecscode hardeningWhile
these techniques do not remove the vulnerability completeey do make the creation
of exploits for particular vulnerabilities significantlyare difficult. Hardening methods
have been identified which have been shown to be somewhatieff@gainst stack-based
buffer overflow attacks [19, 23] and pointer manipulatioi][LAn extensive analysis of
publicly available hardening schemes for buffer overfloevention produced by Wilan-
der and Kamkar has shown them to be less than perfect [88]ththbest tool stopping
only 50% of studied vulnerabilities. The figures provided do not e countermeasure
subversion techniques, such as the pointer-overwritindpatediscussed iRPhrack Mag-
azine[11]. A survey of compiler-level buffer overflow techniqyes well as countermea-
sures against them, was published in [2].

Code and kernel modification can completely prevent cediaisses of vulnerabilities.
For example, format string attacks [16] and race conditiquiatation [18] can be elimi-
nated from consideration by hackers in their current for@ther classes of vulnerabilities,

such as the aforementioned buffer overflow issue, can beeegdbut not completely elim-

inated, through static analydisNevertheless, static checking of both standard code [56]
and type-enhanced code has proven to be an effective metldegi@asing the number of

vulnerabilities.

While static checking of code may not be able to catch all ntgmelated software
vulnerabilities, run-time bounds checking of memory asdess also been examined. In
general, this class of techniques works by keeping traclotif btatically and dynamically
allocated memory and performing bounds checks on all meogss operations to con-
firm they fall inside “safe” memory blocks. Lhee and Chapif][groposed the use of a
compiler extension which uses typing hints for the congioacof an allocated memory
table, which is then used for bounds checking in memory cefsted bounds checking.
Ruwase and Lam [75] pointed out that many out of bounds memorgsses are not se-
curity critical, and produced a bounds checking solutiomcWiallows for these cases. In
general, all runtime bounds checking techniques avaikttilee current time incur dramatic

performance penalties.

Rather than attempting to squash all vulnerabilities innglsi piece of software, re-
searchers have tried to apply technigques borrowed fromaihi¢ tblerance community to
allow software to tolerate attacks. Rinathal. coined the term “failure oblivious” comput-
ing [73] to describe software which follows standard exexupaths in the face of invalid
memory access. Failure oblivious software is implementdgucode which performs
continuous checking and validation of memory and contraV,flwhich are both schemes

developed in the fault tolerance field.

2A trivial proof of the impossibility of eliminating all buér overflows through code analysis was de-
scribed by Larochelle and Evans, where they state that $e is equivalent to solving the halting problem.

1.2.1 Fault Tolerance andN-Version Programming

As stated, the security community has been applying deealdefault tolerance tech-
niques developed for detecting defective systems and aotifay’s security problems.
AviZienis first proposed the use 6f-version programming [6], which suggests developing
multiple functionally equivalent software packages frdme same specification and then
use a voting algorithm to choose the correct program outpihile similar techniques
have been used in hardware fault tolerance before, Aiiarork is the first place where
the technique was applied to software. Extensions of thikwblize a control flow mon-
itor to compare the multiple simultaneously executing peses to detect deviations from

standard behavior, rather than using a majority votingssysghat examines the final output.

The critical assumption made by-version programming is that software packages de-
veloped from the same specification in a clean-room enviesriwill possess uncorrelated
errors. This assumption has been experimentally explorgsl]. The researchers found
that it is possible to generate a set of diverse softwaregggaskfrom a single specification,
but that the existence of faults in multiple versions of tame software package was not

completely independent as individual programmers oftedensamilar mistakes.

1.3 Combating Vulnerabilities After Discovery

It is not unreasonable to assume that software vulneriasilieither created by pro-
gramming or configuration flaws, are going to be a permanenitréxn the computing
environment. Mitigation strategies for dealing with vulalele systems which are in pro-
duction must be considered as well. Ultimately, a softwarnaerability can be removed
only through the application of patch[22], or code change, which removes the code or
configuration flaw. The distributed and decentralized reatfrdesktop system mainte-
nance places the ultimate responsibility of patch mainteaan the hands of the desktop’s

owners, and facilities have to be provided for both the dete@nd mitigation of publicly

active vulnerabilities at the network level.

Detection of software vulnerabilities at the network levah be performed through ei-
ther active or passive measurement of the network. Theead&tection of vulnerabilities,
known in industry as bothulnerability assessmeahdpenetration testingb8], requires a
database of known vulnerable software packages along witbgram which can test for
the markers associated with the software in the databasaatnmeachine on the network.
Passive vulnerability detection works by examining netoaffic and performing string
matching against known attack patterns. This role is peréat by signature-based Intru-
sion Detection Systems, or IDS, such as Snort [74]. Vulrignahssessments detect issues
which may have existed, and have been exploited, for sonmes tehditionally vulnerabil-
ities detected using signature-based IDSes are only fottleanstant of exploitation.
Therefore, both of these technologies are of limited useditmerability mitigation.

One of the earliest tools available for network-wide vuliielity mitigation has been
network-edge packet filters, or firewalls [14]. Firewalsmously described by Cheswick
termed as espousing a “crunchy shell around a soft, chewgrtenodel of network se-
curity, are only a temporary countermeasure to newly disy vulnerabilities. These
devices do not prevent software vulnerabilities from bedrgloited, but they can be used
to drastically limit the number of locations on the Interfietm which an attacker can
launch an exploit against the protected hosts, which ingwes the system administrators
time to apply patches when a vulnerability arises.

The vulnerability detection and mitigation principlesalissed can be improved through
a variety of means. For example, intrusion detection systehich look for anomalies in
the behavior of network traffic rather than known-bad tragfgnatures are being actively
developed and deployed [25]. Firewall systems can be blig&gd throughout a network,
rather than being placed at a single choke point, so thattirdar of nodes which can suc-
cessfully launch an attack against any given protecte@sys reduced [9]. Additionally, a

blend of intrusion detection and automated mitigationméghes, such as network intrusion

prevention systems similar to Snort InLine, can be empldgdg@l All post-vulnerability
disclosure solutions, however, require an effective stfiecture to alert system adminis-
trators to new problems [57], perceptive security teams arecable to rapidly act on new

security information, and mostly lazy system attackers.

The window on vulnerability exploitation is slowly beingosled from both sides. Im-
proved software quality assurance procedures, develahsa&on, and automated tools
are helping to reduce the number of easily exploitable \alpiéities present in new soft-
ware. Similarly, network administrators are acting on vauébility announcements more
quickly than in the past. It is unlikely that the reductionwafinerabilities coupled with
rapid mitigation techniques will ever eliminate remote lexation; the prerogative of vul-
nerability disclosure still falls in the hands of the indlual or team who discovers the
issue. Given the impossibility of elimination of all softwavulnerabilities before code
release, the security community should expect to see theaappce of zero-day exploita-
tion in the visible future. The persistent gap between rédndechniques and mitigation

techniques discussed opens up another avenue for comb#tcgs.

1.4 The Software Diversity Compromise

We can draw two conclusions from the surveys presented itiddecl.2 and 1.3. The
analysis of vulnerability reduction techniques shows tllesoftware, even after extensive
examination, may harbor hidden vulnerabilities which hggeto be discovered. Addi-
tionally, vulnerability detection and mitigation techoig are only truly effective against
vulnerabilities which have been publicly disclosed anctpatl. Any scheme which does
not attempt to directly reduce vulnerabilities or stop \arhbilities in the wild may be

useful for combating attacks in this gap.

As pointed out in [47], remote attacks against software avdyced to extremely tight

specifications. Unlike most conventionally produced safey whose specification is laid

out on paper, an installation of a vulnerable piece of sakvsitselfthe specification for
an exploit. A network defender is able to implement a largenber of software packages
which meet the functional specifications required by thevodt, but deviate from the
virtual specification created by the vulnerable softwarekpge previously targeted by the
attacker. This is the essence of software diversity. By egipy adiversity of software
and hardware package® serve the various needs of a network, an administratdsles a
to reduce the effectiveness of a single system-specifickatigainst systems under their
control.

The use of diverse software systems to combat deliberatts fan a single system
has existed for some time. For example, Joseph and Av&iextended thev-Version
Programming concept to defend against computer virusessingée system [46]. The
modern view of software diversity is not concerned with gatieg a large collection of
diverse software packages for simultaneous execution mgkesystem, but with assuring
that networks, taken as a whole, are comprised of a diveségystems.

Evidence corroborating the inherent value of heteroggine# population can be found
across a variety of fields, including the field of biology armdamic systems [32]. The
American farmer, for example, learned of the disastrouseguences of sowing a limited
number of genetic strains and its subsequent vulnerakbdlign infectious agent of limited
capability. In the 1970’s, the U.S. corn crop was destroy&emwtheBipolaris Maydis
pathogen ate through the genetically similar plantingss $imgle event destroyed over $1
billion of harvestable corn, or abou5% of the crop [42].

Researchers have attempted to leverage the diversityghttaology concept by build-
ing systems that directly emulate biological system bedradihe most illustrative example
of this concept was described by George and his coworkets8iére diverse sets of cel-
lular automata work in concert to perform a computation.

The security community views diversity as being absent days networks, and has

made this sentiment clear in public forums [35, 36, 39, 78hil&/the software monocul-

ture present may have been created by either market forcleg tachnical constraints,
researchers have been studying methodologies and teesniduch can be used to artifi-

cially generate diverse software packages.

1.5 Organization

The rest of the dissertation is organized as follows. In @rap we explore the meth-
ods of implementing software diversity, as multiple tecjuds for the artificial generation
of diverse software packages exist. In Section 2.2, we Bkibie basic premise of this
dissertation: that the utility of using diverse softwarelsges for slowing attackers can
be increased by a careful assignment of diversity techsiuéosts and nodes on a net-
work. We provide a unifying framework that allows for the &hstion and reasoning
about these software diversity schemes in Chapter 3. Ukiagramework, we formally
define a new class of problems that deal with choosing the sigihset of diverse software
packages and diversity generation techniques, known asoth&are diversity assignment
problem. Upon examination of our model presented in Chahtere have discovered that
the amount of diversity required to slow an attacker can bke§s than the number of hosts
on a network, and instead the amount of diversity requiredfisiction of the structure of
the network that is being diversified. We then exploit thiscdivery for the design of dis-
tributed algorithms for assigning diversity on a networksgétems. In Chapter 5 we both
confirm that our diversity assignment strategies are eéfieat combating self-propagating
malware using techniques borrowed from the field of computrels modeling and sim-
ulation, and we show that the way to guarantee the securibuofiversity assignment

scheme is to introduce a diverse set of diversity assignaigotithms.

10

Chapter 2. The Software Diversity Compromise

It is time for parents to teach young people early on thatwedity there is
beauty and there is strength.

Maya Angelou

2.1 Generating Diversity

In order to counteract the lack of diversity in the Internessearchers have focused
on the method of diversifying pre-existing architecturssrce code, and binaries in or-
der to artificially generate a diversity of software paclsagé general, we can classify
the points at which diversity can be applied into the follogvicategoriesRequirements
Architecture ImplementationandRealization While other classification schemes of di-
versity techniques have been presented [26], we are leseatéd in the managerial aspect
of applying diversity to entire business processes, ancgrooncerned with diversity im-
plementation schemes.

During the Requirementgphase, early design considerations which provide diverse
methods of interacting with networked devices, processifigrmation, and interacting
with the user can be factored into the initial requirememisuinent. Schemes which gen-
erate a loose functional equivalence between differertri@a would be applied during this
stage [94]. In a similar vein, th&rchitectureof the software architecture can be varied to
allow for different data flows and process interaction, eisiill maintaining a standardized
software interface.

The majority of the diversity schemes present in the liteatonsider how diversifi-
cation can be applied during theplementatiorand Realizationphases of the software
development cycle. Thienplementatiorphase allows for source code to be modified in an

algorithmic fashion, for the software to be built using diffnt programming languages,

11

and for the software to be built by independent teams of d@esk using the same lan-
guage. As proposed by Forrest, Somayaji, and Ackley, autrtachniques which ma-
nipulate source code by reordering source code, addingeamoving non-functional code,
or changing the linking order of dynamic libraries can béized [34].

Researchers working on preventing reverse engineeringnaiiibs have developed
code obfuscation techniques which can also be used to dwerftware packages. A
technique for obfuscating Java source code, which useasiooide reordering techniques
proposed by Forrest, is presented in [15]. A general modebdé obfuscation was devel-
oped by Wroblewski [90].

After code implementation, the fin&ealization or build and execution, of the soft-
ware can be modified through a wide variety of techniquesudhicg the compiler-driven
randomization techniques [31, 85]. In fact, many of the cabgdering techniques which
provide memory randomization functionality can be appkéduntime after a binary has
been created [10, 91].

At the final stage of development, the instruction set usedbeadiversified without a
wholesale switch of system architectures. Barraptesl. proposed the use of an x86 to
x86 translator to randomize a system binary before beingnuavirtualized x86 processor
with an obfuscated instruction set [8]. In related work, Keromytis, and Prevelakis
suggested the use of XOR encryption of the instruction gbegbrocessor level to produce
a the same instruction obfuscation effect [48]. Both systserve the same purpose by
converting maliciously injected code into binary stringsieh have little meaning for the
processor. Additionally, both techniques are not withaaicpcal precedent, as a similar
technique was proposed by Cowanal. for protecting pointers in memory [17]. Both
forms of artificial instruction set randomization appeab&broken [77], however, due to
irregularities in the byte size of each opcode present ix8teplatform.

The code reordering and reforming techniques are expanoedin [15] for the pur-

pose of obfuscating Java code against reverse engineaffagg and her coauthors [85]

12

describe code modification techniques for use in protedtigg-availability mechanisms

which are currently employed in server systems.

The compile-time techniques discussed are readily avaifao download, and have
found their way into open source operating system distiobst[24]. Address space ran-
domization is implemented in the Linux PaX toolkit [68], acmimpile time randomization
of stack offsets has been implemented in GCC [31]. It has peéred out that address
space randomization doesn’'t work as well as predicted imtactures with smaller address
spaces due to the fact that large portions of the addrese spaceserved by the operating

system, and are not accessible for user-land memory aduyds§].

2.2 The Case for Assigning Diversity

The attacks discussed against the publicly available sityggeneration techniques [76,
77] undermines the assumption that a diverse pool of soétwan be created at a low cost.
Furthermore, an analysis of POSIX-compliant operatingesys showed that faults were
highly correlated across different vendor’s platformsthvihe majority of common faults
existing in upper-level functionality, such as C librarida general, as we descend from
the high level components of a system through the core andhet original architecture
specifications, software diversity becomes both more esiperio implement, and more
effective against common faultd\Ve are forced to conclude that the cost of generating
a set of truly diverse software packages makes diversityaeceaaesource which must
be carefully and consciously allocated in order for it to beximally effective against

attackers.

For a single host, choosing the optimal set of diversity mégpes and diverse soft-
ware packages resolves down to a problem of economics. Tedibside of the equation
consists of creating a system which is different enough file@global population of com-

puters that an attack against any one system would be diffacpbrt to be effective against

13

the diversified system. Each of the diverse software packageirce level, and compiler-
driven diversity techniques have a associated cost figeritey either cost money to pur-
chase, decrease computing speed, or increase the amouwrhifigtration time required

for patching and general system maintenance.

The burden of creating a host which is considered to be dfiedsas compared to all
other hosts on the Internet is massive, but it is not one fhgea network administrator
who has control over a large pool of systems. The network aidtrator’s diversification
task is not equivalent to solving the single host diversiitcaproblem for every machine
on their network. Unlike the single host’s administratonedwork administrator is able to
leverage the restrictions placed on an attacker by the mkti@pology in order to reduce
the number of diverse software packages necessary. Tlie fshdamental thesis of our
work: by taking the topology presented to an attacker into accoantassignment of a
small number of diverse software systems can be formulatéchwean slow or stop an

attacker in their track$63].

While it may be argued that the network topology traversedrbgittacker is a complete
graph, and every machine must be made diverse and separatefery other machine on
the network, this statement is not true even for IP-levelneativity. The prevalence of
firewalls and private address spaces prevent any machinme damnecting to any other
machine on the Internet. Furthermore, not every attackogsplP-level connectivity for
propagation. Worms which spread by traversing individualal address books move
through a network topology which is remarkably sparse [28{ client-server file sharing

worms inhabit graphs which are largely bipartite [40].

2.2.1 Examples of Network Diversity Assignments

E-Mail Topologies: Any individual that utilizes e-mail has become a target df-se

propagating code. Vulnerabilities associated with thadktonfigurations of MIME han-

14

Client A Client B Client C Client D
Software 1 Software 1 Software 1 Software 1
S "/
Server X Server Y
Software 1 Software 1

(@)

Client A Client B Client C
Software 1 Software 1 Software 1
Server X Server Y
Software 2 Software 2

(b)

Figure 2.1: Comparison of network topologies utilizindgheit a single software package or
a diverse software distribution. The effect of optimallgtdbuting two software packages
on a bipartite network is clear in (a) and (b). Bipartite netks such as these are often
found in client-server file sharing topologies.

Client D
Software 1

dlers [41] have given rise to client-side computer virug€s.[Errors in the parsing code in
major mail transfer agents have resulted in server-sidelkdtthat are also propagated via
e-mail traffic [55]. Secure diversity can be implementechia $tated situation through the
utilization of interchangeable MIME and e-mail header pessvhich are selected by the
application based upon a topology-sensitive algorithmpl&zng one parser library with

another would have no user-discernible impact on the softs/behavior and performance.

Client-Server File SharesNetwork-accessible file shares have become a popular tar-
get for platform-dependent worm propagation [43]. In maffice environments, the file

shares are partitioned into the client and server groupf@srsin Figure 2.1(a), where

15

Node A
Software 1

Node B
Software 1
Node C
Software 1

Node J
Software 1

Node H

Node K
Software 1

Node F
Software 1

Node D
Software 1

Node E
Software 1
(a)
Node A
Software 3

Node |
Software 1

Node B
Software 3
Node C
Software 3

Node D
B Software 3

Node J
Software 1
Node H ..
Software 1

Node K ¥
Software 2
" .
Node G N\, Node F
Software 2 Software 1

' L.
Node E o
Software 2
(b)

Figure 2.2: An additional comparison of network topologidiizing either a single soft-
ware package or a diverse software distribution. A randotwaord topology clearly bene-
fits from a random distribution of three heterogeneous softvpackages (a) as compared
to a uniform distribution of a single package (b). While tlssignment is sub-optimal, the
number of edges which exist between nodes running simifavace packages is clearly
reduced.

16

communication links between similar systems are represgdoy a solid line. This parti-
tioning can be enforced using firewalls and ACLs. A worm itifat on a client system
would be able to self-propagate to any machine in the fileispaopology by first attack-
ing a server machine; likewise, a worm infection on a serveuld have to first attack a
client before propagating further.

The secure diversity principle can be quite effectivelyleggpto such a network with
only two different software packages. All previous comnmation links between similar
systems are replaced by links between dissimilar computepsesented by the dotted
lines in Figure 2.1(b). By utilizing a second software pagkéor file sharing on the server
systems, it is possible to prevent a client system from pyapag a worm that attacks a
vulnerability in the file sharing subsystem.

Sensor NetworksThe networking field that would benefit greatly from the secdir
versity principle is sensor networks [30]. Enforcing a dsrgy policy in a sensor network
is less of an administrative challenge, since these lartyeanks of relatively simple com-
putational and environmental monitoring nodes are usuailhrolled by a single entity, be
it a military commander or a building supervisor. Becausettrdware is characterized as
being relatively simple, it is not a major technical chatjerio recreate their comparatively
small software suite for the purposes of introducing varabetween individuals in the
population.

Consider the possibility of a system-wide vulnerabilitattiallows for an attacker to
take over a single networked sensor. A single attack can &e wsleap-frog from node
to node across the entire network, as indicated by the lotitireal links in Figure 2.2(a).
Sensor networks can be distributed with multiple operasiygtems in ROM. After being
dropped into the operational location, a node can load upbaenultiple set of OSes. By
constructing a network that contains a multiplicity of cgtérg systems, a single operating
system-specific attack will not be able to propagate actassntire breadth of the network.

Such a randomized distribution of software packages, asrsim 2.2(b), can reduce the

17

number of possible node-to-node movements by an attacker.

2.2.2 Reasoning about Diversity

While the concept of diversity assignment schemes may Hdegadphically appealing,
currently there is no formal system available for reasor@bgut diversity assignments.
In the following chapter, we provide a framework that abssaoth the generation and

attacking of diverse software packages.

18

Chapter 3. Generalizing and Assigning Software Diversity

Monocultures, like a field of corn, are susceptible to infats$, but
genetically diverse cultures, like a prairie, are extrgmebust.

Neal Stephenson

3.1 Introduction

In this chapter, we create a generalized framework for iflasg and analyzing diver-
sified software that is driven not by the diversity schemestselves but by how diversified
software appears to an attacker. Consider the pedagog@adpe shown in Figure 3.1.
A single system can be diversified by running an operatingegyvariant, such as Linux
or OpenBSD. Any single implementation inside the diverdiBet can then be diversified
again by running the system on a different base hardwaréopiat namely either x86
hardware or SPARC hardware. If an attacker has a workingoéxujainst software run-
ning on a Linux x86 system that they wanted to use against &amB®D/SPARC system,
the attacker would have to mutate the attack so that it ic@ffe against both a different
operating system and a different platform.

In general, each diversity technique applied to a singleesysreates a pool of diverse
systems from the originating system. Each system insideptia can then be diversified
by a separate technique to create additional instances/efsai software. This concept
forms the basis of our diversity model. We consider eversiids instance of software
that can be generated by the application of diversity tephes, then place the software
instances into the same set if they appear to an attackethaeyifire separated by a single
diversity technique. A single piece of software can be intipld sets, as it can be used as
a seed for multiple different diversity techniques.

The software instances are the vertices dfypergraph with the sets of diversified

19

OpenBSD/SPARC

enBSD/x86

Hardware
Diversification

Apache Server

OS Diversification Diversity Setl/

Figure 3.1: In the above, a single Apache installation igiified by the introduction of
different operating systems. One of the instances is fudhersified by the introduction
of multiple hardware platforms. An abstraction of the madgdresented in Section 3.2.1.

variants generated by a single diversity technique forntieghyperedges Since the hy-
peredges naturally overlap at points where a software jgacisadiversifiable using more
than one technique, we are able to reason about the use aplmuliversity techniques
on a single software package. We can abstract the behavamatbining multiple diver-
sity techniques as being a walk across intersecting hygesedn the hypergraph. To an
attacker, the amount of work that he or she must undertakedier o modify an effective
exploit against one system so that it can compromise anatleefunction of the number
of hyperedges, or diversity techniques, which separatévibenstances of the software.
In Section 3.2.2, we describe how metrics which derive frétack and defense modeling
can be applied to the hyperedges for purposes of determamimgptimal balance of attack
tolerance and implementation cost. We examine what istafédg a trivial application of
the model by examining the application of diversity tecluaig|to a single system briefly in
Section 3.3.1, and in more depth in Appendix A. The remaiodéne dissertation is spent

examining the problem of assigning diverse software paekag networks of systems, as

20

described in Section 3.3.2.

3.1.1 Related Work

Our model is generated by examining how diversity appeaentattacker, and can
easily be extended to encompass new diversity techniguesem forms of attacks. The
generation of a diversity hypergraph is not dependent ugamtomies of previously devel-
oped diversity techniques [50]. The generation of a divgisypergraph for a real system
may in fact lead to new forms of diversity taxonomies, onegmglthe effect of diversity
on an attacker is central to the taxonomy. Taxonomies otlatiachniques and method-
ologies [54] would potentially be useful for modeling theliies of an adversary who is

confronted with diversity techniques.

3.2 Defining the Diversification Hypergraph

Definition 1 Letd € D be a single diversity technique in the detof all diversity tech-

niques. Letu € U be a single binary in the sét of all possible software binaries.

The application of a single diversity techniquelintakes a single instance of soft-
ware inU and generates a set of software packages. The softwareaggmhéy a single
diversity technique is viewed to be interchangeable wite another as defined by the
bounds of the diversity technique. Elements of the set oérdified software packages
can be grouped together into equivalence classes, wherelamgnt in the class can be
mutated to become another element in the class using a sihgesity technique. For
example, if the diversity technique requires systems teseparate operating systems, the

set of diverse systems are equivalent under the bounds ddtopgsystem diversification.

Definition 2 The elementd € D form equivalence relationsn the set/. Two software

packages:;,u, € U are said to beequivalentunder diversification schemeif the only

21

difference between the two elementg/iresults from the application of the diversity tech-

nique described by.

Definition 3 Each equivalence relation generated by the elementd® ofeatesequiva-
lence classesver the elements contained ih. We denote the equivalence created by

techniquel between the two elementsandus in U asu, =4 us.

We can loosely classify the equivalence classes into sevat@gories. Two software
packages lie in &inary equivalence clagéthe lowest cost modification required to trans-
form one software package into the next can be done at theybiezel. If a vulnerable
software package is diversified via a binary technique, tigiral attack target will still
exist; the exact memory location of the attack target besofaeharder to find, however,
due to the increased space over which the memory locatidmedcdittack target may exist.
An example of a binary-level modification would be the randmation of the layout of a
program and its linked libraries in memory [10, 34].

While it is possible to convert one program to another thiobigwise adjustments, the
process of doing so may be extremely time consuming. It cobeldar easier do make
the modifications at the source code level and allow the clemf@ generate the different
binary. Likewise, if it becomes less costly to convert onealpy package to another via
source code modification than recompilation, then the tvitowsoe packages lie insource
equivalenceclass created by the diversity technique. Attacks agawfbivare packages
which have undergone a source modification technique musidakfied themselves to be
made effective against the newly diversified software pgekaThe modifications for the
attack code may be as simple as a single modification in taelatiinary, but given the
stage of the development cycle at which the diversity tegpimiis introduced, it is likely
that a more advanced algorithm or manipulation scheme wané to be utilized for the

attacker to successfully attack the diversified softwackage.

22

As stated in the introduction, several diversificationtsfyées exist for the algorithmic
modification of source code, such as adding or deleting mantiional code, code reorder-
ing, and randomizing memory layouts [34]. More invasiventeques which modify data
and control flow are also feasible [85]. Incidentally, thesde reordering and reforming
techniques can also be effective against reverse engigesitacks [15].

Two software packages may have extremely differing lineagevelopment histories
but serve the exact same purpose in a system. If two softveenieages provide effectively
the same functionality, such as two distinct flavors of UNten the software lies in a
functional equivalence clas®robably the most studied method of generating functignal
equivalent software packages usesin®&ersion Programming technique [6,46] discussed
in Section 1.2.1.

The equivalence class generated by any given diversitynitigah may not be directly
tied to the stage in the development cycle at which the diyaiechnique was applied. For
example, consider a source code modification techniquentbiks by repositioning vari-
able declarations. The effect on the final diversified bemthat result from the technique’s
application can also be generated by directly modifyingragited binary’s memory struc-
ture [91]. If a system designer uses both the source andybieael modifications, all
the binaries generated using the diversity techniquesdvaside in the same equivalence
class. The use of multiple diversity techniques on the saewewf software is described

further in the following section.

3.2.1 Composition of Diversity Techniques

Definition 4 A compositionof diversity techniques is the serial application of thehtec

niques one by one in order of temporal precedence.

Composition increases the amount of work necessary to doavettack which is

effective against one software package to be effectivenaganother one generated from

23

the first via a set of diversity techniques. For example, atyican be diversified using a
compile-time memory space randomization scheme [91], éieouted on a system which
utilizes an encrypted instruction set [48]. Any attackeow¥ishes to take an attack which
is effective against a single binary and mutate it so thas iffective against a binary
which has undergone diversification using both techniqissudsed would have to simul-
taneously de-randomize the memory space and decrypt ttradtisn set utilized by the
diversified binary. An attacker may not need to manipulatattack to solve two diversity
techniques at the same time; if-version programming is employed in the selection of
the base operating system employed to run the binariestarkat can first solve all the
mutations necessary to combat the introduction of the goreperating system and then

solve the issues associated with the instruction set andamyespace manipulations.

Definition 5 The set of all equivalence classes created by the diveesityniques inD
form the hyperedges$, which along with the elements bf define thediversification hy-
pergrapht = (U, £).

In order to define properties about interactions betweeetegges, being able to iden-
tify individual hyperedges becomes a necessity. It is easge that every hyperedgedn
can be identified by a diversity technique/inand a single binary ity which lies in the hy-
peredge. Consider two hyperedges which are created by the diaersity technique and
containing the same binary. The diversity techniques frachenyperedge would create
two equivalence classes that cover all binaries separgt#uelsingle diversity technique.
Since both diversity techniques are identical, they woudste equivalence classes which

contained the same set of elements, and thus create the gperedge.

Definition 6 The composition of diversity techniques can be formallyesged as a path
of hyperedge$ on the diversification hypergraph, where two edges adg@centin the

path if and only if their intersection contains at least ohengent ofU.

24

The act of composing multiple diversity techniques can loaigfint of in terms of the
diversity hypergraph{ as moving from one binary ity to another by walking from one
adjacent hyperedge to the next. In Figure 3.1, OS diversificaand hardware diversi-
fication is applied to a single Apache web server instalhati®8y composing these two
diversity techniques, the system engineer would force tatlkar who is able to directly
exploit Apache on a Windows machine to mutate his attack édh a different operating

system, namely OpenBSD, and a different hardware platform.

Definition 7 Temporal Precedengs an ordering on all diversity techniques necessitated

by the stage in the design process where the techniques magplied.

The application of one diversification technique may undoviork of a previously ap-
plied technique. Therefore, two diversity techniques cacdmposed if and only if they
respectemporal precedence simple but illustrative example of temporal precederae c
be found in the use of both source code modification and cenipile automatic variable
location randomization diversity techniques. Both teges can be utilized to make a
single software package more diverse than its standarelerefe compilation. The tem-
poral hierarchy places any source code modification beferetidress space randomiza-
tion since it is necessary for any source code modificationrigues to be applied before
any address space randomization techniques are consid#eedeconstruct the temporal
hierarchy into the diversification stages discussed ini@e@.1, namelyRequirements
Architecture ImplementationandRealization

Both composition and precedence requirements can be iedah Figure 3.2(a). In
the example, software packaggbelongs to two equivalence classes generated by diversity
techniquesl; andd,. The diversity techniqué; encompasses a large number of diversified
software packages, including, which is in turn further diversified by techniqde. Sim-
ilarly, packageus is related tou; by diversity techniquel,, and is then further diversified

by d,. The diversity technique$, andd, create hyperedges which form a path frapto

25

X Software
; d 6 d2 u3 .
Universel

(b)

Figure 3.2: Figures (a) and (b) provide abstract views ofitkeraction of diversity tech-
niques. Figure (a) graphically shows the generalized viesotiware diversity described
in Section 3.2, where diverse software instances are saeels, diversification techniques
are equivalence classes, and the composition of multipkrsity techniques forms a path
across equivalence classes. We represent the a simpliéedofithe diversification hyper-
graphH in (b), where the edges represent individual hyperedgeshendertices represent
software packages iti which lie at the intersection of two hyperedges.

uy through bothu, andus. Sinced; andd, can be applied in any order without violating

temporal precedence, the applicationlgfterd; to v, reaches the same software instance

26

as the application of; afterd,. Finally, we show a single instance of the application of
ds to uy, which is 3 diversification techniques away fram While d3 can be applied to
uq, uz, andus, the equivalence classes created by such an applicatiamateed from the

diagram for the sake of clarity.

3.2.2 Attack and Defense Modeling

The utility of dividing diversified software packages intguévalence classes is more
clear when examined through the lensatfack modeling The deployment of a wide
variety of commercial-off-the-shelf operating systemsataetwork may be an effective
method of combating a worm which is designed to attack asiegploit, but is ineffective
against an attacker who is willing to purchase each of theatipg systems and invest the
necessary time required to develop a set of custom explgéimst each OS. Conversely, a
compile time randomization which alters the structure ofreaty for each system would
be an effective method of combating a human being who desdlwgir exploits using a
debugger and a local copy of the software under attack, butdwamly delay a worm which
uses a search algorithm to determine the memory locatiotisegbreviously used attack
targets.

The diversity schemes discussed are also not equally eHemgainst all forms of at-
tack. Diversifying the instruction sets utilized by diféet binaries can combat buffer over-
flow attacks, but the technique is ineffective against auss® exhaustion attack. Pro-
ducing several versions of the software to utilize différeatwork protocols may evade
a denial of service attack yet produce binaries which araemable to a buffer overflow

attack.

Definition 8 Let the types of attacks that would take place be denotedebget?’. We
denote the set of software attacks.4s The mapping of attacks on software packages to

the attack techniques used is defined-ad — T..

27

For every diversity technique i there exists a series of hyperedges in which the
vulnerable software package resides. The attack technigueemployed by an attack
a € A can be mutated to attack another software package whictiesegn one of the
vulnerable software package’s equivalence classes. T™iersydesigner can then choose
which attacks are the most threatening to system survitsabi} weighting the range of
to the most critical attack types.

Let M be the set of all implementation metrics which are of inteteshe system de-
signer. The implementation metrics can be exhibited inrsg¥erms, such as a slowdown
associated with the execution of a binary which underwendifioation by a diversity
technique. In a similar fashion, the increase in runtime @gonsumption and program
storage size of the diversified binary are also accountethfeiway. M is not limited to
system performance metrics, however, as the total econcosicincurred by the imple-

mentation of diversification techniques can be includedhis set.

Definition 9 Thediversification cosk is a function which maps each diversification tech-
nique in D and performance metric id/ along with the type of binary which is being
diversified inU to a positive and real multiplicative factor corresponditmghe implemen-

tation cost:

kDX MxUwr—— R

Definition 10 Theeffectiveness probability is a function which maps each diversification
technique inD and attack technique im(A) to a quantity which reflects the ability of a

diversification technique to resist the specified form cicktt

p:D x 7(A) x U — [0,1]

Each diversity technigue has two metrics with which it issasated. Theliversification

costx is a function which quantifies the cost to each system pediaoa metric associated

28

with implementing each diversity technique, be it memorgstonption, loss of execution
speed, or economic cost of implementation. Efffectiveness probability is a function
which quantifies the probability that an attack technique lsa modified to compensate
for the diversity introduced by a given technique. The dffeness probability reflects an
attacker’s ability to mutate an attack against any one piimathe equivalence class to be
effective against any other binary in the equivalence ¢cksd is a function of the attacker’s
skill and the type of attack that is being combated. Metridhis type have been employed
for describing code obfuscation techniques to combat sevengineering [15].

The effectiveness probability need not be defined for thizgeeset of attack techniques,
as indicated by the choice e A) rather tharil’(A). The system designer can choose a
subset of attack techniques which he or she considers tothe gfeatest threat and model
the effectiveness of each diversity techniques againgt thiel attack techniques of inter-
est. Additionally, it is possible to use an elementirather than the chain of all diversity
techniques to define the cost and effectiveness of applysimpde diversity technique even
though the effectiveness of a diversity technique may benation of previously applied
techniques. Each elementin by its nature, encodes the set of all diversity techniques
which have been previously applied in order to reach thamtpoirhe concept of a di-
versity technique’s cost and effectiveness being a funatigpreviously applied diversity

techniques is discussed in the following definition.

Definition 11 The property ofiversity non-linearitydictates that the cost and effective-
ness of a diversity technique is a function of the previoagliglied diversity techniques.
The cost and effectiveness of the currently applied dityetschnique can bamplifiedor
attenuatedwhich we term anon-linear compositionlf the cost and effectiveness of a di-
versity technique is unaffected by previous diversitynapkes, we define the interaction

as being dinear composition

The effectiveness and cost of applying a diversity techmitpua binary is not con-

29

stant for all systems. A diversification technique that alseupon linking to functionally

equivalent but different standard libraries may cost moragply for a closed-source op-
erating system than for an open-source operating systendre&sd space randomization
techniques become more effective as the address spacaldeaih the hardware platform
increases. This property abn-linear compositioholds implications for the development

of algorithms for the optimization of diversity, as showrSaction 3.3.

Definition 12 We define amttack relevanc&nctionw,: 7(A) — [0..1] which sets the rel-
ative importance of individual attack threats to the systimigner. A similar weighting
function, or thecost relevancey,: M — [0..1], is provided to balance out the diversifica-

tion cost.

A system engineer can then form attack modein which diversity is involved by
choosing an appropriate attacker profile and use histod@t to generate the effective-
ness probability expected for the diversity techniquesregahe attacker. Furthermore,
the system engineer can creatdedense modealonsisting of the set of attacks which be-
come critical for system defense. A first attempt at genegaai survey of diversity tech-
niques which examines their effectiveness against varmtagses of attacks is presented
in [47]. Both of these functions are utilized in the optintipa of diversity assignments, as

demonstrated in the following section.

3.3 Hyperpaths and Choosing Diversity

The hypergraph framework presented in Section 3.2 proddaesthod for determining
when and how to apply diversity techniques to a piece of so#von a single server and
for an entire network of systems. For a single piece of softwthe system designer is

faced with determining a walk on the hypergraph which presithe greatest distance

30

Table 3.1: A list of the symbols and functions used in theaysinodel described in this

chapter.
Notation:
Primitives Functions
U - Setofall binaries 7 - Mapping from attacks to attack tech-
D - Setof all diversity techniques niques
H = (U,&) - Diversity hypergraph formed: - Cost of implementation of a diver-
by U andD sity technique as a function of the

A - Set of attack techniques diversity technique, cost metric, and

T - Types of attacks the software being diversified.

M - Non-diversity performancep - Probability of an attack against a di-
metrics i.e. memory usage, versified software package as a func-
economic cost tion of the diversity technique, the

type of attack, and the software be-
Bounds and Weights ing diversified.

w, - Weights the relative impor-
tance of different cost metrics

w, - Weights the relative impor-
tance of resisting different at-
tack forms

k' - Bound on the acceptable cost

of diversification

between two diverse software packages while keeping thegironder pre-specified cost
bounds. When faced with a network of systems, the designet determine a set of
diverse software packages which, when assigned to systethe aetwork, span the largest

distance in the diversification hypergraph if they are neaghk of each other on the network.

In both general cases, we show that determining optimatisaksito both of these prob-
lems is NP Hard. For all current practical instances of thethased diversity assignment
problem which can be currently envisioned, however, h&gamsethods can be used to de-
termine the optimal choice of diversity techniques. The es&@mot true for the network

diversity assignment problem, as we see in Chapter 4.

31

3.3.1 Host-Centric Diversity Assignments

For a single server, we are interested in maximizing the iadkfor an attacker who
wants to mutate a commonly available exploit to be effectigainst our software installa-
tion. If we consider the hypergraph generated by our availdiversity techniques, we can
maximize the attacker workload by finding a path of hyperedgeose total effectiveness
probability is minimized and whose total cost is below thstdmund. In terms of diversity
techniques, we need to determine the subset of techniquies whould be applied to a
single host that would maximize the resistance of a host tocavk form of attack, given
a maximum acceptable performance hit associated with theeswf diversity techniques
used. Generating an optimal solution to this problem is NfPdiHdue to its equivalence
to the classic bin packing problem [5]. We provide a prooflad problems complexity
along with an adaptation of a classic greedy algorithm foregating feasible solutions to

the problem in Appendix A.

The state-of-the-art in software diversification does nwtently necessitate the use of
an NP solver for generating optimal host-level softwareediity allocations. Practically,
the costs of diversity techniques fall into several narramnds, ranging from near zero for
compiler-driven randomization schemes to the large expassociated with the purchase
of multiple hardware platforms or developers to generaterde code architectures. The
wide disparity in costs associated with each technique malgorithms for determining
host-based diversity assignments unnecessary. As maeesilivschemes are explicitly
characterized by their cost, effectiveness, and tempaoeaeoence, it may become nec-
essary to develop heuristic algorithms for determiningrogl diversity in a reasonable

amount of time.

32

3.3.2 Network-Centric Diversity Assignments

A far more interesting problem deals with the assignmeniwgrde software packages
to a network of systems, as first discussed in Section 2.2nliké&Jhost-centric diversity
assignments, a network-centric diversity assignment doesecessarily require that every
host is maximally different from every other host on the ragtw The goal of this particular
diversity assignment is to increase the difficulty of stagtirom a single host and leapfrog-
ging from one system on the network to the next. In the renainéithis dissertation, we
describe and examine methods of generating network diyerssignments which combat

multiple forms of attackers.

33

Chapter 4. Distributed Diversity Assignment Algorithms

Behold, the people is one, and they have all one languagehéanthey begin
to do: and now nothing will be restrained from them, whichythave
imagined to do. Go to, let us go down, and there confound theguage, that
they may not understand one another’s speech.

The Book of Genesis

4.1 Network-Centric Diversity Assignments

The network-centric diversity problems deal with assignitiverse software systems
to specific hosts on a network topology in order to increasedifficulty associated with
attacking the network. More specifically, we want to deter@an assignment of diverse
software packages to combat two different attack model, pp@sented in Table 4.1. The
first model describes a network administrator who faces gelligent adversary that is
able to build new attacks, recompile previously designeacks for new platforms, and
learn from previous experiences. The second model attetmgtscapsulate the behavior
of a computer virus which can rapidly propagate to all neayhiy systems which are of
similar design.

When compared to the host-centric diversity problem, tisggasnent of diverse soft-
ware packages to hosts on a network of systems is far lesal trivhe problem requires
the generation of an optimal host-centric diversity assignt for every pair of adjacent
hosts on a defined network topology; as we see later, thidgmols NP-Hard for all but
the simplest of network topologies.

Before moving forward, we need to state the network divemssignment problem in
terms of the formalism provided in Chapter 3. The functio® — U maps a software
package to a host on a network. The network topology is repted by the grapliy =

(V,E). T" C T is the set of attack techniques which can lead to a host canipeothat

34

Table 4.1: A comparison of the Intelligent Attacker vs. Dse Network and Computer
Virus vs. Diverse Network attack and defense models.

Intelligent Attacker

Diverse Network

Attack
Model

Cost of
Attack or
Effective-
ness of
Diversity

Defense
Model

Compos-
ition

We assume that an intelligent attack

aie assume that a virus can take

holds a set of exploits which are speever a node and use the node to

cific to the target platform and th
launch platform. In their basic form

efurther propagate the attack. It
,cannot modify its attack to com-

the exploits are built to be launchegromise targets which are dra-
from the same platform as their targetmatically different from the host

The attacker can modify the expld
to be launched from new platforms

well as modify the exploit to be effec-
tive against new platforms. Further-

more, the attacker can use a comp|

itsystem.
as

ro-

mised node to attack newly adjacent

nodes.

If two adjacent systems are runnindf two adjacent systems are run-

a similar software package and it
the first time the attacker is being e
posed to the pairing, the probability
an attack propagating from one hg
to another is a function of the numb

isiing a similar software package,
Xthe probability of an attack prop-
pfagating from one host to another
gt a function of the number of di-
erersity techniques used to sepa-

of diversity techniques used to separate the two software packages.

rate the two software packages. If

AN

attacker has been previously exposed

to the pairing, then compromising th
target node from the source node is
minimal cost to the attacker.

e
of

We want to slow an attacker fromWe want to prevent a virus with

taking over the entire network b

ya small set of attacks from tak-

leapfrogging from one compromisedng over the entire network by
host to the next by presenting the ateapfrogging from one compro-
tacker with as many different launch-mised host to the next.

platform / target-platform pairings as

possible.

The composition of a set diversit
techniques increases the attack re
tance of a software package by t
product of theeffectiveness probabi
ity metrics of each of the diversit
techniques.

yThe composition of a set di-
sigersity techniques increases the
hattack resistance of a software
-package by the product of the
yeffectiveness probabilityetrics
of each of the diversity tech-
niques.

35

an attacker can use to further propagate the attack. As dafiféhapter 3, we define the
effectiveness probability of each diversity techniqueb®’,,... (vs, v;) C P’(vs, v) is the
path of maximum attack similarity, as defined pbywhich connects two applications
andwv, covered by the hypergraph. Let s be a function which computes the similarity
between two binaries:
R - () = k()
[laepiman (s o) P(d,) = else

The network topology represented by the grdpls by no means a complete graph.
While full connectivity is usually assumed for random sdagrinternet worms [13], the
formulation and algorithms presented in this dissertatiom general enough to encom-
pass attacks which propagate across non-complete topsloghich are common in the
computing space [51]. This is critical for combating worrhattleverage file sharing net-
works [43] or email communication [40, 41] for transmission

We can formally define two versions of the network diversggignment problem, re-
ferred to as theNTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT and
the AUTOMATED ADVERSARY NETWORK DIVERSITY ASSIGNMENT problems. In the
first of the two problems, our goal is to create a diversitygasaent where an attacker
who is traversing the network is presented with novel edgesazh step in their path. The
second of the two problems relaxes the constraint requedyge novelty and attempts to

reduce the number of adjacent nodes which run similar softwackages.

4.1.1 Slowing Intelligent Attackers

As stated, an optimal solution to the intelligent advergaoblem would be a diversity
assignment which presents the attacker with novel paimfdsunch platforms and target
platforms when the adversary traverses the network. We finsistiefine two components

of the optimization measure.

36

Definition 13 A non-repetitive walk is a walk on a graph which does not trageany

vertex twice.

Definition 14 An edge color pair is an ordered pair created by the color & lread and

the tail of an edge.

Using these two terms, we can more precisely state the neea$uhe optimization
problem as follows:

INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT.

e INSTANCE: GraphG = (V, E), a hypergrapti, a setU, and asef” C 7.

e SOLUTION: Aninstancek: V — U

e MEASURE The number of unique edge color pairs present on every epetitive

walk in G given thatv{v,, v;} € E: k(vs) # k(vy)

We show in the following theorem that maximizing the numtaraque, ordered color
pairs on every non-repetitive walk (#is NP-Hard for general graphs. This is done through

a reduction to the harmonious coloring problem [53].

Definition 15 A harmonious coloring of a graph is a proper vertex coloringere every

edge color pair present on the graph is unique.

In a harmonious coloring, a proper vertex coloring of a grégplgenerated and the
endpoint colors of every edge form an unordered pair whidbrsdhe edge. The graph is

harmoniously colored if and only if no two edges possessdiheesunordered color pair.

Theorem 1 TheINTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT opti-

mization problem is NP-Hard.

37

Proof: Consider an undirected graphthat contains an Euler tour and a set of colors
in U, where|U| < |V]. ConvertG to a directed graplé=’, where every edge it is a
pair of bidirected edges in’. If an algorithm can generate a feasible solution for the
INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT problem onG’, then

the corresponding vertex coloring ¢his a harmonious coloring. |

While the INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT problem
is not solvable in P assuming thatA’NP for general graphs, it is solvable in linear time
for trees. We can label a subset of nodes as being criticaketa¢twork’s operation, then
generate a derived graph which contains a node that is tloe wifiall the critical nodes.
The node which is generated by union of the critical nodesa thecomes the root of a
Breadth First Search (BFS) tree. Each of the nodes locatibeé iIBFS tree are then colored
so that any non-repetitive walk on the tree generates a deBequence. The resultant
coloring forces all edges on the graph which lead to vertibas are closer to the root

nodes to be “challenging”, or novel to the attacker.

In Figure 4.1, we present a distributed BFS algorithm fovisg the intelligent adver-
sary problem. All nodes are initialized with a random sofevpackage. The algorithm
initiates a depth counter at the root nodes, which then inérthe counter to their neigh-
bors. All nodes are instructed to retransmit an incremedegdh counter upon reception
of a depth which is smaller than their currently held valube Tepth value is used as an
index for adeBruijn sequencg38], which a sequence of symbols which do not contain
subsequence repetitions of a fixed-sized. We generate dar DdeBruijn sequence by
computing an Euler tour on a complete bidirected graph, e/liee nodes are labeled by

the software packages available to each node.

In Figure 4.2, we compare the BFS-based algorithm to a puaelgomized assignment
of diverse software packages on a tree. For sparse, codrggetehs of small diameter with

a large number of available software packages, the randahsiaftware assignment per-

38

#U = [Uy,..., U is the set of software packages
deBruijnSequence():
sequence = Null
euleredges := Null
for head:= 1, head<= |U| — 1, headt+:
for tail :=head+1, tail <= |U|, head++:
if euleredges := Null
euleredges.append((i,j), (,i))
else
circuit := (i,)) (j,)
Splicecircuit into euleredges
for edgein euleredges
sequence.append(head(edge))
return sequence

For each node:
if not a parent node:
ParentNode := Null
Depth := Null
else
Depth:=0
ParentNode := Self
deBruijn := deBruijnSequence()
CurrentColor := Randomly chosen value from
Initialize CurrentColor
Sleep for an exponentially distributed random period
and execut&ventLoop() on wakeup.

EventLoop():
if not a parent node and a depth update was received while asleep
if Depth := Null or ReceivedDepth: Depth
Depth := ReceivedDepth
ParentNode :=Node ID of node which transmitted our new depth
SetCurrentColorto U[deBruijnfDeptio|U| = |U — 1]]]
Initialize CurrentColor
TransmitDepth + 1to neighbors
Transmit my node ID to neighbors
Sleep for an exponentially distributed random period.

Figure 4.1: BFS Based Algorithm for solving a restrictedsuen of the NTELLIGENT
ADVERSARY DIVERSITY ASSIGNMENT PROBLEM

39

14 T T T T T T T T T

12

10

Novel Edges

0 2 4 6 8 10 12 14 16 18 20
Length of Path Traversed

2 Color Markov Chain —+— 3 Color Optimal Allocation --->---

2 Color Optimal Allocation ---—+--- 4 Color Markov Chain —¥—

3 Color Markov Chain —<— 4 Color Optimal Allocation --->---

Figure 4.2: Plot of the number of novel edges vs. the lengthefraversed path. For small
diameter networks with a large number of colors, or largengdier networks with a small
number of colors, it is unnecessary to use the BFS algorithm.

forms as well as the BFS-based algorithm. The combinaticoftfvare set size and small
diameter prevents the set of novel edges from being contpketbausted before a repeated
edge is generated. Similarly, for networks with a large ditanand small software set, the
number of edges eventually exhausts all possible novelsedgense graphs will increase
the number of parallel paths an attacker can traverse, gursasing the performance of the
randomized algorithm. The BFS-based algorithm will be tewéd, since the shortest path
from any node to the critical nodes is guaranteed to haveradmoftware assignment.

It is trivial for an attacker to prevent the BFS-based aliponi from performing cor-
rectly. After compromising a single node at the edge of thevagk, an attacker can force
the compromised node to report itself as being a root node nEmghboring nodes will
accept the new depth update, and correspondingly changedifitsvare package. The ad-

versary can continue to push his or her attack forward by comfsing nodes and then

40

fooling their neighbors to choose a different color. Ratitemn having to traverse a mul-
titude of novel edges, the attacker will be able to take alsiegge node, push a desired
coloring onto neighboring nodes, compromise a new neigtben repeat the process until
he or she reaches a critical node.

Optimally, we would like to combat any algorithm-drivenaatk using the principles of
diversity, wherea diversity of algorithms for assigning diversity are usedstow or stop

an attacker In the following section, we show how this can be done.

4.1.2 Stopping Viruses and Limited-Skill Attackers

The vast majority of intrusions experienced by computetesys are not waged by
intelligent adversaries. More commonly, systems are pateet either by a virus that
repetitively utilizes a single attack or by an unskillecaakter who applies an unmodified,
pre-written exploit to attack machines of a single systepetyWe want to define a new
diversity assignment goal, one which reduces the numbémestglobally that an attacker
can leapfrog from one identical system type to the next, eMsiblating as many nodes of

the same system type from one another. Therefore, our ggatiran objectives become:

1. A minimization of the number of neighbors running the sawmiware packages

2. A maximization of the number of disconnected “islandshofles running the same

software packages

These objectives, referred to as the defective edge codrnthaconnected component
count, are not orthogonal. A local reduction in the numbemafhbors running the same
software package globally reduces the number of edgesaukattcan use to propagate an
attack. A global increase in the number of disconnected corapts increases the number
of initial nodes that must be taken by an attacker if he or sise®g to compromise every

node on the network. If there are no neighbors running theessoftware package, then

41

every node is a disconnected “island”. More formally, thetjem of combating automated
adversaries using diversity assignments can be statetl@sgo

AUTOMATED ADVERSARY NETWORK DIVERSITY ASSIGNMENT.

e INSTANCE: GraphG = (V, E), a hypergraphH, a setU, a set7” C T, and a

similarity functions.
e SOLUTION: An assignment instande V' — U

e MEASURE The total probability of effectiveness of attack acro$siatle pairs:

Z s(vg, vy, T")

{U37Ut}EE

In general, however, this problem is also NP-Hard:

Theorem 2 The AUTOMATED ADVERSARY NETWORK DIVERSITY ASSIGNMENT opti-

mization problem is NP-Hard.

Proof: Consider an assignment of diverse software package wh&re@oea diversity
technique exists. The range ofs therefore limited to two discrete valud$), 1}. In order
to minimize the total value of across all links in the graph, the number of links which
connect diverse systems must be maximized. Any algorithrawdan assign diverse soft-
ware packages to nodes in a network so that the number of bdgesen diverse software
packages is maximized would also be able to solvexMk-CuT. Therefore, any algo-
rithm which can solve the BTwORK DIVERSITY ASSIGNMENT problem in polynomial

time would be able to do the same foraM-k-CuUT. [|

If we considers to be a discrete function, as described in the above proefctnrent
network diversity assignment problem is similar to anottiassic graph theory problem.
The assignment of the software package#/ito the graph’ is what graph theoreticians

would call acoloring of graph G. The assignment of colors in such a way that the sumb

42

of defectiveedges, or communication links that exist between two notfldseecsame color,

is minimized is called amptimum coloring A perfect coloringis an assignment of the
minimum number of colors necessary to color a graph suchthawvo neighboring nodes
share the same color. The minimum number of colors requivea fperfect coloring is
denoted byy(G). When|U| < x(G), any color assignment will induce at least one edge
where both endpoints are similarly colored. A coloring vhsuch an edge, referred to as

a defective edge, is present is callededective coloring

We use the termeolorsandsoftware packageisiterchangeably throughout the rest of

the dissertation.

Determining a minimum number of colors required to achiepedect coloring is, in
the general case, an NP-Hard problem [5]. Aside from a haofl&pecial cases, determin-

ing an optimum coloring with a minimum number of defectivges is also NP-Hard [21].

In the remainder of the chapter, we provide a class of algmstwhich assigns software
packages to nodes on a communication network in order to tivaitotal number of nodes
an attacker can compromise using a limited attack toolkir &gorithms are based on
examining local information and making local decisionseywork by directly decreasing
the defective edge count and indirectly improving the catedcomponent count. We have
examined these algorithms through analysis and simulatioeal-world graphs, as shown

in Sections 4.2 and 4.3.1.

Given the purpose of the software distribution algorithing logical to explore the vul-
nerability of the coloring algorithms themselves from tkensipoint of an attacker. Based
upon this reasoning, we have developed a series of attaekssagur own algorithms and
explored their effectiveness through simulation. Thetacks do not rely upon attacking
implementation flaws in the algorithms, but instead are dagsemalicious nodes attempt-
ing to deceive well-behaving nodes running the algorithrhe Tesults of this simulation

work are presented in Section 5.2.1.

43

In Section 5.2.2, we draw several conclusions from our eration of the simulation
results. Our explorations of the attacks’ effects on themog algorithms presented give
rise to the observation thttere exists a tradeoff between an algorithm’s tolerancatiack
and the quality of the software assignment created by therilgn. Furthermore, we
show that revisiting the initial thesis on the value of daigris applicable in the design of
software assignment scheme when an algorithm designeesvistincrease the algorithm’s
tolerance to a directed attack. More precisely stated, welade thatdiversity must be
introduced at all levels of the system design, includingseheme that is used to introduce

diversity itself.

4.1.3 Related Work

Inspiration for the examination of a network from the stamidpof an attacker’s progress
in conquering multiple connected computer systems is difa@m attack graph research
[69]. In general, an attack graph is a graph theoretic remtesion of an attacker’s ability
to attain attack states, represented by nodes, and thadaelsrused to attain those states,
represented by edges. Much of this research has concehtmatefficient ways of gener-
ating these graphs [3,45]. Suggestions on how to improvedharity of an attack graph

relies upon having absolute knowledge of vulnerabilitiegach node.

The similarities between the topological properties of harsocial relations and the
Internet allow us to examine research originally intendedfeventing human epidemics
in the context of computer hackers and viruses [27,28, 68,461t has been shown that in
certain classes of network topologies, any infection, ustindard models, would become
an epidemic. Additionally, they state that an epidemic castbpped by conducting selec-
tive immunization of nodes based on their node degree. deagree nodes are essential for
the connectivity of the network, and removing even a smalttion of them can quickly

disconnect the graph [1]. While it would be possible to ilhstdferent software based

44

solely upon node degree, unequal protection against atkattauld occur. A worm that
would attack the software population’s low-degree nodeslevbave difficulty in spread-
ing and would not compromise the network. An attack agahessbftware assigned to the

high-degree nodes would be able to rapidly propagate acdmiect the network.

4.2 Distributed Algorithms

As stated previously, we have designed and analyzed a séestributed algorithms
which seek to minimize the number of defective edges premeatcommunication graph.
The algorithms are presented in order of increasing contglex implementation. The
RANDOMIZED COLORING algorithm presented in Section 4.2.1 requires each nodmto r
domly select its color and not change it throughout the domaif the network’s operation.
The second algorithm allows a node, at random intervalsiaméne its local neighborhood
and choose a new color for itself if a large number of its neak have the same color.
We refer to this algorithm as thedCoR FLIPPING algorithm, and it is presented in Sec-
tion 4.2.2. The next pair of algorithms, referred to as tlte. GR SWAPPING algorithms,
allows pairs of nodes, again at random intervals, to swajp todors in order to reduce
the number of defective edges. These are presented in 8&cf®B. Finally, a pair of
algorithms which combine both color flipping and color swiagpstrategies are presented

in Section 4.2.4.

Each of these algorithms is presented alongside their imgriéations in pseudocode.
Functions which are common to each of the algorithms areepted in separate listings.
For example, all of the algorithms presented rely upon eaamtaining a set of local
variables, such as the set of colors available, basic toolguerying the status of a neigh-
bor’s coloring, and an event loop. The pseudocode for thesgonents is presented in

Figure 4.3.

45

Define|U| as number of available colors
DefineU as set of all available colors
DefineNeighborCountis number of neighbors
DefineNeighborSeas set of all neighbors
DefineCurrentColorfor each node

EventLoop():
if the timer event has occured:
DoRecoloring()
Set new timer event
ContinueEventLoop()

ComputeDefect()
for each Neighborin NeighborSet
ColorQuery(Neighbo)
return number of nodes runningurrentColor

ColorQuery(Neighbo):
QueryNeighborfor its current color and store iNeighborColor
return NeighborColor

SwaplimprovementQuery(Neighbo):
QueryNeighborfor its improvement in defective edge count if
NeighborexecutesComputeSwappedDefectel)
StoreNeighbofs response imlNeighborDefect
return NeighborDefect

DoSwapQuery{Neighbor, NeighborColQr
InstructNeighborto do a color swap
if Neighbordenies request:

return AbortedSwap
else
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

Figure 4.3: Pseudocode for various globally shared funst@nd variables used by the
distributed coloring algorithms.

46

RandomizedColoring(}
CurrentColor :=a random package froii
Initialize CurrentColor

Figure 4.4: Pseudocode implementation of the Randomizéati@g algorithm.

4.2.1 Randomized Coloring

The first, and most basic, algorithm discussed is theiBOMIZED COLORING algo-
rithm, as shown in Figure 4.4. This provides, on averagg[/| defective edges. Proving
this is a simple exercise: after randomly coloring everyenod the graph, select a single
edge. The probability that both endpoints have the same 10 |U|. Summing across
all edges, the average number of defective edges/ié/|. The algorithm require®(1)
time to run on each node, and zero communication betweerotthesris required. Because
of the lack of inter-node communication, the algorithm carcbnsidered extremely secure
against attack.

The graph coloring provided by the algorithm, however, is-sptimal. In the worst
case, this algorithm performs poorly. A randomized al¢onitmay lead to every link
forming a connection between two identical systems. Whikegrobability of this event

occurring is(1/|U])" 1, the result would have a significant impact on system segcurit

4.2.2 Color Flipping Algorithms

In the COLOR FLIPPING algorithm shown in 4.5, nodes initialize themselves by ex-
ecuting the randomized coloring presented in Section 4.&ffer a random delay, each

node performs a local search amongst its immediate neighibaetermine if switching to

a7

a new color would decrease the number of locally defectigesd Since each node must
now poll its immediate neighbors to discover their curresibg the algorithm requires
O(A(G)) time to poll the neighbors per cycle, whet¢) is the maximum degree of the
graph. After the data is collected,(A(G) + |U|) operations must be done to generate a
census of the local colors and determine the minority color.

If it is discovered that switching to the minority color woullecrease the local defect
to belowd(v)/|U], then the flip is instantiated. It can be easily shown thatGbeoRr
FLIPPING algorithm will converge. Each color flip reduces the numtdetedective edges
by at leastl. The number of edges present in the grapmisThe maximum number of
color flips that can therefore be conductedris Similar proofs can be found throughout
the literature; Vazirani leaves the proof as an exercisbdaaader in [84]. By the time the
algorithm has converged, total number of defective edgpsogably decreased below the

average number of defects in thel®oMIZED COLORING algorithm:

Theorem 3 The upper bound on the number of defective edges produdedibyr FLIP-
PING is no more than the average number of defective edges prddiyyd@BANDOMIZED

COLORING.

Proof: At the point of convergence, each node is connected to at naosi/|U| |
defective edges. The number of defective edge endpoits ig(v)/|U||. The number
of defective edges is therefotg2 ", |d(v)/|U|]. In comparison to the randomized algo-

rithm:
dlv) m

1 d(v)J 1

Z A g N
2| <32 -
4.2.3 Color Swapping Algorithms

The following pair of algorithms are extensions of the Kgiran-Lin heuristic [5] for

computing balanced cuts. In both algorithms, each nodenatteto reduce its number of

48

RespondToColorQuery(Neighbo):
TransmitCurrentColorto Neighbor

ComputeMinorityColor() :

ColorCount[0.|U| — 1] :=0

for each Neighbor
ColorCount[ColorQuery(Neighbo)]++

MinorityColor := 0

fori=1.|U|—1:
if ColorCount[i] > ColorCount[MinorityColor};

MinorityColor := i
return {MinorityColor, ColorCount[MinorityColor]

FindBestFlip():

CurrentDefect= ComputeDefect()

if CurrentDefect> NeighborCount / ColorCount
{ProposedColor, NewDefelct= ComputeMinorityColor()
if CurrentDefect - NewDefect O:

return {ProposedColor, CurrentDefect-NewDefect

else

return NoFlipFound

DoFlip():
{NewColor, Defectimprovement= FindBestFlip()
if NewColor# CurrentColor.
Initialize CurrentColor

For each node
Call RandomizedColoring()
Set a timer event
Answer neighbor queries usifRespondToColorQuery()
RedefineDoRecoloring() asDoFlip()
Start theEventLoop()

Figure 4.5: Pseudocode implementation of the DistributeldC-lipping algorithm.

49

ComputeSwappedDefecwapPartner.
ColorCount[0.|U| — 1] :=0
for each Neighbor
if Neighbor = SwapPartner
ColorCount[CurrentColor}+
else
ColorCount[ColorQuery(Neighbo)]++
NewDefect :=ComputeDefect()
Defectimprovement := NewDefect - ColorCoudtflorQuery(SwapPartne)
return

FindBestSwap()
MyDefect:=ComputeDefect()
ExpectedSwapGair 0
FoundASwap := FALSE
for each Neighborin NeighborSet
NeighborColor.= ColorQuery(Neighboj]
if NeighborColor# CurrentColor.
MySwapGain= ComputeSwappedDefect{eighbo)
NeighborSwapGain= SwaplmprovementQuery(Neighbo)
if AcceptablePartner(MySwapGain, NeighborSwapGain
ExpectedSwapGain := NeighborSwapGain + MySwapGain
SwapPartner := Neighbor
SwapPartnerColor := NeighborColor
FoundASwap := TRUE
if FoundASwap = TRUE
return {SwapPartner, SwapPartnerColpr
else
return {FALSE, FALSE

DoSwap()
{SwapPartner, SwapPartnerColpr= FindBestSwap()
if SwapParnter = FALSE
return FALSE
Result= DoSwapQuerySwapPartner, SwapPartnerColor
return Result

Figure 4.6: Pseudocode that describes support functi@ushysthe distributed color swap-
ping algorithms.

50

defective edges by negotiating for a color “swap” betwesalftand its neighbors. After
collecting the number of defective edges which would be resddrom the neighbor node
and itself by conducting a swap from each neighbor, theaitiity node executing the al-
gorithm chooses a neighbor which it views to be optimal arappses a color swap. If
the neighbor agrees to the swap, the initiating node talesdtor of the neighbor and the
neighbor takes the color of the initiating node. A collentmf supporting functions asso-
ciated with the swap algorithms is presented in Figure 4&pmrate block of pseudocode
which contains the communication functions required f@ siwap operation is presented

in Figure 4.7.

For a swap to take place in the first algorithm, known asTMALLY BENEFICIAL
SWAPPING and presented in Figure 4.8, the exchange of colors musteetie defective
edge count for both nodes involved. The second algorithfernexl to as ®EATER GOOD
SWAPPING and presented in Figure 4.9, will incur a swap if the total benof defective
edges between both nodes is reduced by the exchange. Thergrember of nodes that
are available for a GEATER GOOD SWAPPING execution means the quality of the solution
associated with the REATER GOOD SWAPPING algorithm is expected to be better than
that associated with the MruALLY BENEFICIAL SWAPPING algorithm. Correspondingly,
the increased number of swap partners increases the viilitgraf the algorithm to attack.

This phenomenon is discussed further in Chapter 5.

4.2.4 Hybrid Algorithms

The final set of algorithms are hybrids of the color swappimgdj eolor flipping schemes
presented in Sections 4.2.2 and 4.2.3, respectively. BinbRMIZED HYBRID algorithm,
shown in Figure 4.10, requires that a node which wishes tagias color to randomly
choose to execute either theREATER GOOD SWAPPING algorithm or the ©LOR FLIP-

PING algorithm. The selection between th&R EATER GOOD SWAPPING algorithm and

51

SwaplimprovementQuery(Neighbo):
QueryNeighborfor its improvement in defective edge count if
Neighborexecute€ComputeSwappedDefectel)
StoreNeighbors response ilNeighborDefect
return NeighborDefect

DoSwapQuery(Neighbor, NeighborColgr
InstructNeighborto do a color swap
if Neighbordenies request:

return AbortedSwap
else
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

RespondToSwaplmprovementQueryileighbol:
MyDefect= ComputeDefect()
NewDefect= ComputeSwappedDefect{eighbo)
Defectimprovement := MyDefect - NewDefect
TransmitDefectimprovemertb Neighbor

RespondToMutuallyBeneficialSwapRequesNeighbor, NeighborCol9gj:
if ComputeSwappedDefectileighbo) > 1:
TransmitAcceptedRequegi Neighbor
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete
else
TransmitDeniedRequesb Neighbor
return AbortedSwap

RespondToGreaterGoodSwapRequedtleighbor, NeighborColQg):
TransmitAcceptedRequesi Neighbor
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

Figure 4.7: Pseudocode that describes swap query and sssfamctions used by the
distributed color swapping algorithms.

52

MutuallyBeneficialPartner(MySwapGain, NeighborSwapGain
if MySwapGain> 1 and NeighborSwapGaip- 1:
return TRUE
else
return FALSE

For each node
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwaplimprovementQuerylleighbo)
EnableRespondToMutuallyBeneficialSwapRequesieighbor, NeighborColgr
RedefineAcceptablePartner(MySwapGain, NeighborSwapGaias

MutuallyBeneficialPartner(MySwapGain, NeighborSwapGain

RedefineDoRecoloring()asDoSwap()
Start theEventLoop()

Figure 4.8: Pseudocode implementation of the Mutually Beira¢ Color Swapping algo-
rithm.

the GOLOR FLIPPING algorithm does not need to be unbiased; on the contrary,ythea
beneficial from a convergence rate or attack tolerance ptantfor the algorithm to prefer
one coloring scheme over the other. Determining the optpuait between conducting a
flip or a swap can possibly be done through the use of gamedtieanalysis, as discussed
in Chapter 6.

The BeEsT CHOICE HYBRID, shown in Figure 4.11 algorithm allows pairs of nodes to
examine the defective edge reduction that is possible bgeitoing a color swap as a pair
or independently doing a color flip. If each node in a swap demimate a greater num-
ber of defective edges by cooperating and performing a swapmpared to individually
performing a flip, a swap is conducted. If either of the two e®finds it can better serve

itself by conducting an independent color flip, then a swapoisconducted. If the node

53

GreaterGoodPartner(MySwapGain, NeighborSwapGain
if MySwapGain + NeighborSwapGain 1
return TRUE
else
return FALSE

For each node
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwaplimprovementQuerylleighbo)
EnableRespondToGreaterGoodSwapRequestieighbor, NeighborColgr
RedefineAcceptablePartnerMySwapGain, NeighborSwapGaias

GreaterGoodPartner(MySwapGain, NeighborSwapGain

RedefineDoRecoloring()asDoSwap()
Start theEventLoop()

Figure 4.9: Pseudocode implementation of the Greater Gadar Swapping algorithm.

that initiates the re-coloring attempt finds that a swap tde@sible, it attempts to conduct

an independent color flip.

4.3 Simulation

In order to test our algorithms, it was necessary to acquiopalogy that is represen-
tative of the networks that our distributed coloring algfum would expect to encounter.
As many researchers consider generation of a simulatecgsemtative network topology
to be an open research problem [59, 93], we have decided toreagmactualtopology for

our algorithm simulation.

For our simulation experiments, we examine a topology geadrby e-mail traffic

inside the ECE Department at Drexel University. We captaredmple of the logs created

54

FlipOrSwap():
FlipOrSwapProbability := .5
if UniformRandomNumber[0..X} FlipOrSwapProbability
DoFlip()
else
DoSwap()

For each node
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwaplimprovementQuerylleighbo)
EnableRespondToGreaterGoodSwapRequesdtieighbor, NeighborColgr
RedefineAcceptablePartner(MySwapGain, NeighborSwapGaias

GreaterGoodParter(MySwapGain, NeighborSwapGain

RedefineDoRecoloring()asFlipOrSwap()
Start theEventLoop()

Figure 4.10: Pseudocode implementation of the Randomizgxii¢Hcoloring algorithm.

by e-mails as they passed through #oe. dr exel . edu server. The raw data consisted
of 1,038,939 log entries for each e-mail sent and received2B$, 435 unique accounts
handled byece. dr exel . edu'ssendmai | server from January 13th to September 19th
of 2003. Of the original, 038, 939 e-mails recorded, there a387, 532 unique{to, from}
e-mail address pairs. This means, strictly according tddys, there ar@37, 532 unique
pairs of individuals using the mail server to communicate.

To reduce the impact of spam on our data set, we preserve duugss where, for
each sender and receiver, at least one e-mail is sent fronmitteé message receiver to
the initial message sender. This represents a complete ooioation between the two
e-mail entities. Our data set is then reducedt®18 {to, from} address pairs, a8, 809

undirected edges. These edges exist betwieet8 nodes, or unique e-mail ID’s, it

55

BestChoiceSwapResponskgighbor, NeighborColgr
{FlipColor, FlipDefectimprovement= FindBestFlip()
SwapDefect= ComputeSwappedDefect{eighboj)
if SwapDefect- FlipDefect
TransmitAcceptedRequegi Neighbor
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

else
TransmitDeniedRequesb Neighbor
return AbortedSwap

DoBestChoiceHybrid()
{FlipColor, FlipDefectimprovement= FindBestFlip()
{SwapPartner, SwapPartnerColpr= FindBestSwap()
SwapDefect= ComputeSwappedDefect{eighbo)
if SwapParnter = TRUENd SwapDefect- FlipDefectimprovement
Result= DoSwapQuerySwapPartner, SwapPartnerColor
if Result = AbortedSwap
DoFlip()
else
DoFlip()

For each node
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwaplimprovementQuerylleighboj)
EnableBestChoiceSwapResponsigighbor, NeighborColgr
RedefineAcceptablePartner(MySwapGain, NeighborSwapGaias

GreaterGoodPartner(MySwapGain, NeighborSwapGain

RedefineDoRecoloring()asDoBestChoiceHybrid()
Start theEventLoop()

Figure 4.11: Pseudocode implementation of the Best Chojtiéicoloring algorithm.

56

10" T T T T T T T
{]
10° F]
[}
o
(@]
(]
[a)]
10" F]
10° b G
| | i | I]
10° 10" 10° 10° 10"
Rank
(@)
T T T
[
10° |]
[)
@
] []
2
“5’,10 - ° =
(0]
o
kS °
S ,
c L]
S o
: S
“ 0t
o.o“fo
[]
[B] o O coe [
[N 2 [X J
-9 0 Do @0 08 o
10" b RS | GI0.6O SO EFOUNNIINRENS ® -
10° 10" 107 10°
Degree
(b)

Figure 4.12: Log-Log Plots of E-Mail Graph Statistics. Thegerties of the collected data
are statistically similar to many other topologies, inchglthe AS topology seen in BGP
routing.

57

separate connected components, where the largest cotdiceat@onent consists 62, 354
nodes andl8, 768 undirected edges. Our simulation studies use this largestected

component.

Itis customary in the study of large-scale network topasdgo examine the distribution
of node degrees on a log-log plot. Accordingly, we have ptbthe degree of each node
versus its rank in a sorted list along with the frequency afrde versus the degree of the
node. These plots, whose distribution is consistent wighvibrk of [28, 62], are shown in

Figures 4.12(a) and 4.12(b), respectively.

4.3.1 Algorithm Simulation

The coloring algorithms presented in Sections 4.2.1, 4223, and 4.2.4 are pro-
vided with three distinct colors, and are each executed byl 2h354 nodes at intervals
determined by a Poisson process running at each node. TheoRaiate\ is set tol/n
algorithm executions per cycle for each node in order to mdiz@ the execution rate of
the algorithm by each node with respect to graphs that diffande count, allowing for an
unbiased comparison of the algorithm’s performance acrasgng networks. By the end
of every100, 000 cycles, each node would have executed its coloring algaréth average

of 8.09 times.

In accordance with the design goals laid out in Section 2&mmnitor the number of
defective edges present in the graph, the average numbenioécted components induced
by each color, and the number of nodes which have been defirearag “vulnerable”. The
first metric is our primary optimization goal and corresp®tal the number of edges that
exist in the graph that can be traversed by a node-hoppiagkatiThe second metric in-
dicates the minimum number of separate infections that talstplace for all vulnerable
nodes to be compromised given an attack that is unable tayehidn@ color assignment.

Since a separate curve exists for each color, we averageithber of connected compo-

58

nents across all colors for each algorithm analyzed. Thérfie#ric provides a baseline of
the number of vulnerable nodes in the network. In the absefhae external agent, namely
an attack that is aware of the coloring algorithm, this valeuld be affected only by the
coloring algorithm itself.

Figure 4.13(a) shows the improvement in the number of defeetdges as the three
classes of dynamic algorithms converge to their local optis. The difference in the qual-
ity of the solutions provided at convergence is shown in Fegu13(b). In Figure 4.13(c),
a comparison of the number of average connected comporerdadh color is presented.
Figure 4.13(d) shows the evolution of the population of rsoafea single color; these nodes
are later tagged as being vulnerable to attack and, if athdkecome malicious. The up-
ward bias in the number of nodes of the specific color beingnaxed is relatively small
in comparison to the number of nodes on the graph and is dacirif the simulation run.
Not surprisingly, the number of nodes in the one color bexamEned is approximately
the same for all three classes of algorithms.

In Figures 4.13(a) through (c), both theUMUALLY BENEFICIAL SWAPPING and the
GREATER GOOD SWAPPING algorithms provide an improvement as compared to the-R
DOMIZED COLORING algorithm. The two swapping algorithms provide a solutidnich is
inferior to the WLOR FLIPPING algorithm. The marked difference in the quality of the col-
oring solutions observed between the swap-based algarigma the flip-based algorithm
can be attributed to the availability of colors to any giveade. In the swap algorithms, a
node can only change its color to one that is present amasgseighbors, and then only
if the outcome of the swap is mutually beneficial to the nodegiabally beneficial to the
graph. The flip algorithm places no restrictions upon a rogetential color choices if
the node is exposed to a large number of monochromatic edgea.result, the GLOR
FLIPPING algorithm allows for a greater fraction of nodes to changér ttolor assignment
when the distributed algorithm is executed.

It is clear from Figure 4.13(b) that theARDOMIZED HYBRID and BEST CHOICE

59

HYBRID algorithms produce a better coloring than either the swaged or the flip-based
algorithms alone. The hybrid algorithms generate a betlatisn by simultaneously draw-
ing on the swap algorithm to eliminate deadlocks that mayoicca neighborhood and the

flip algorithm to provide a wider range of colors that a node assign itself.

60

— Randomized Coloring -8- Mutually Beneficial Color Swapping -0 Randomized Hybrid
Color Flipping -©- Greater Good Color Swapping -x-- Best Choice Hybrid

7000 ‘ : 20005 o ‘ ‘ ‘ ‘ ‘

x
1900 5 1
\ \

6000 1 1800 1

R S S R AR E=IEECIRE= SRS S EES
I‘lq

A

a1

o

o

o
L

L
w & O o N
S © © © 9
S & & & &

T

x

o

.

Defective Edge Count
w Iy
o o
o o
o o
X ‘/O
=]
Defective Edge Count

\ ~ L N ‘6‘0\ B
2000} W ey] 1200 T o e o000
5 o 1100
Tl *000.06¢
X xx ek e xR R RRRRRA QR 1000 . .

50 100 150 20 40 60 80 100 120 140
Cycles (2500 s) Cycles (2500 s)

1
OOO0

(@) (b)

4000 T T 4800 T T

= o KR XN X K R SR R = 8 0= 0 B
§ 38001 x aee"ﬂOC] 4700} T CCe 000000000009
o Vo o Pl
o x o 00®
= 3600+ , o” 1 - ,
5 . € 4600+ 0 X e e e e e e e e]
c o8 =1
Q ! 4 [s) ?
ga3400r o ° 1 o i
S ko9 8 4500t 7 —
o oy o <@
© 3200 " o 4 z L
2 oy K ‘g
8 r/ p’ 2 44001 ,* ! 7
c L 4 = 1
£ 3000 [g #
O I S !
> 43001 ¥ 7
%2800—,',P , T
o i P
o 90— _ - _
z Zeooi;ylgf_f_gagﬁﬁgéﬁﬁg83&883&8831&8381&&87 420011 1
Ay /y
2400 y - 4100
0 50 100 150 0 50 100 150
Cycles (2500 s) Cycles (2500 s)

() (d)

Figure 4.13: Comparison of coloring algorithms. The qyaditthe coloring, measured by
both the number of defective edges and the number of disctesheomponents induced
by the coloring, is maximized through the use of hybrid alltpons.

61

Chapter 5. Validating and Attacking Distributed Software Diversity

| think computer viruses should count as life. | think it sapsnething about
human nature that the only form of life we have created scsfaurely
destructive. We've created life in our own image.

Stephen Hawking

5.1 Validating Network Diversity Assignment Algorithms for Use in Virus Defense

The field of viral propagation modeling has garnered a great df attention in recent
years as computer security researchers attempt to find waysdtigating rapid malcode
propagation. A variety of techniques have been suggestéthvelan delay the spread of
a worm, including rate-limiting network cards [89], targdtimmunization of highly con-
nected nodes [67], and a combination of address blacldisthd content filtering [61]. In
complementary work, researchers have been focusing oroftvease monoculture on the
Internet and its relationship to viral epidemics. The valtisoftware diversity to computer
security comes from the fact that an attack written for oree@iof software rarely works
for a different but functionally equivalent software pagka By increasing the number of
diverse software packages present on the network, thercbsaaues, the chances that an
attack will be effective against a randomly selected nodkedstcrease.

The research literature in software diversity suggeststtigintroduction of different
software packages is an effective method of disrupting thiaes of an attacker or a
worm, particularly one which repeatedly utilizes a prettgn and unchanging attack to
compromise machines. However, there have been no quamigaaluations of the impact
of software diversity on malcode propagation in real nekiopologies. In this section, we
use a popular metric called tepidemic threshol§B7] to measure a network’s resiliency

against malcode propagation and study the steady statal@nee of computer viruses in

62

the presence of software diversity. We show, through botHetiog and simulation, that
even a simple randomized distribution of diverse softwarekpges can increase the epi-
demic threshold of both real and synthetically generatedprder networks. This section
also shows that an algorithm-driven distribution of dieessftware packages, as discussed
in Chapter 4 can further increase the epidemic thresholdsang as an effective method

for preventing worm epidemics [64].

5.1.1 Problem Statement

In previous chapters, we showed that the location of divecdvare packages on a
network is as critical to effectively diversifying a netwas the creation of diverse software
packages. We have showed that the introduction of an atteersoftware package is able
to reduce the number of edges across which a virus can teavidslitionally, we showed
that using an algorithm-driven diversity distribution eo@ssary for attempting to minimize
the number of monochromatic edges, i.e., the number of hememus pairs of neighbors.

While the number of monochromatic edges is an effective imag an optimization
goal, it does not directly express the ability of the divigraissignment algorithm to limit
the virulence of a worm. This section, on the other hand, tiiesithe quality of a software
diversity assignment by focusing on the effect that netvemdignments of diverse software
has upon the propagation of worms. Given a worm whose rateogfggation from an
infected node to each of its vulnerable neighbors &nd the rate at which infected nodes
are disinfected i9, we study theepidemic thresholdor the ratio of3/§ below which an
infectious agent will burn itself out (i.e., the ratio belavhich there will be no infected
nodes in the network at steady state).

One of the goals of any virus mitigation technique shoulddm¢rease the epidemic

threshold of the network. In this chapter, our goal is to gtud

1. The epidemic threshold with a randomized distributiodigérse software packages

63

to nodes in a real network (an IPv6 BGP topology) as well am¢hgyically gener-

ated (an Erdos-Rényi random graph) network topology.

2. The relationship of the above results to the number o&whfit software packages

available to distribute among the nodes.

3. The epidemic threshold on the same networks with a topedegsitive algorithm-

driven distribution of diverse software packages.

As before, we represent a network of computers by g@@nd a set of diverse soft-
ware packages which can be assigned to nodes on the netwark YWe consider a con-
tagion which can infect only a single software packag€'inAssume that the number of
software packages available dhis greater than or equal to the chromatic number of the
graphx(G). If the software packages are randomly distributed to theork, then a por-
tion but not all of the nodes will be rendered immune to thedtibn. However, if a graph
coloring algorithm is used to assign the softwaré€'ito the nodes ird7, then no edges will

be left to spread the infection, and the infection is guaradto die out.

The remainder of this section is organized as follows. $adhi.1.2 describes related
work in the fields of software diversity and viral propagatimodeling. A generalized
analysis of the viral propagation models and the impactwdrgity upon them is presented
in Section 5.1.3. In Sections 5.1.4 and 5.1.4.1, we extenhl the statistically derived
and graph theoretic viral propagation models to incorgotia¢ impact of random as well
as algorithm-driven diversity assignments. We validags¢émodels using simulations of
virus propagation on both synthetic amal network topologies. The simulations show that
the improvement in the epidemic threshold experiencednardalgorithm-driven diversity
assignment algorithm is significantly higher than that pred by the bounds generated by

our models for real-world graphs.

64

5.1.2 Related Work

The research discussed in this chapter is based upon wankyvo independent but re-
lated fields software diversitygndviral propagation modelingSoftware diversity research
focuses on the creation and distribution diverse softwaokages to limit the exploitabil-
ity of a security vulnerability by a worm, known as thhermability of a vulnerability [70].
While software diversity focuses on the interaction betwaevorm and a system at the
moment of infection, the field of viral propagation reseafotuses on the modeling of

large scale behavior of worms once they are establishe@ingtwork.

5.1.2.1 Viral Propagation Modeling

All of the models discussed below are based upon the SIS, steBtible-Infected-
Susceptible paradigm, where the individual vertices onaplgrare either in one of two
states:susceptibleo infection orinfected A node moves from the susceptible state to the
infected state when an infected neighbor, with the prolighil, passes on its contagion.
A node moves from the infected state to the susceptible,statependent of its number
of neighbors, with the disinfection probability As discussed before, if the ratiyJ is

below the epidemic threshold, the infection will eventyalie out.

Kephart and White [49] considered viral propagation on ad&fBényi random graph
in an early contribution to the study of computer virus epit@ogy. Their assumptions
regarding the homogeneity of the nodes in the communicattwork allowed the authors
to model the behavior of an infectious agent using a first rodiféerential equation. A
steady state solution for the differential equation is fbwhich provides a bound on the
epidemic threshold as a function of the average degree igrdqgh. They show that the
ratio of the infection rate to the disinfection rate mustdmsithan the inverse of the average

node degregk), in order to prevent an epidemic:

65

L
(k)

Pastor-Satorras and Vespignani produced a model whiclida®insights into the prop-

g
g<

agation of viruses on graphs with arbitrary degree distidms [65]. Their analysis pro-
vides a bound on the epidemic threshold in terms of the nodeedds first and second
order statistics:

(k

<—

(k2)

The authors leveraged statistical mechanics to deterrfosea-form expressions of the

SRS

second-order statistics of degree distributions for gpediasses of graphs. When applied
to synthetic graphs which are statistically similar to reatld networks, the model predicts
that every infection will become an epidemic as the numberoafes tends to infinity. On
graphs sampled from real-world data, the number of nodesitg fiand while small, the
epidemic threshold is non-zero and can be evaluated nuafigric

Y. Wang and others [86] created a discrete time model whittfeis converted to vector-
space notation, which encapsulates the infection stataabf Bode on the network. Using
algebraic manipulation, they isolate a system matrix whietermines the current infection
state based upon the previous system state using a methital $ovsolving discrete time
Markov chains. Spectral decomposition bounds the epidémeshold of a virus propagat-
ing on the network to the inverse of the largest eigenvalub®fjraph’s adjacency matrix

A

ot
(i (A))

Each of the different models examined here have seemin{jreint methods to de-

g
5 <

termine the upper bound on the epidemic threshold. For thgh&e and White model,

the epidemic threshold can be maximized by minimizing therage number of adjacent

66

systems which are vulnerable to a worm. The epidemic thidskidl be increased in the
Pastor-Satorras and Vespignani model by minimizing thersorder statistic while maxi-
mizing the first order statistic. The Wang model’s epiderhireshold can be maximized by
minimizing the largest eigenvalue of the diversified netigadjacency matrix. We show,
however, through modeling and simulation, that all of thgsals can be met by reducing

the number of edges across which a virus can traverse in esdigd network.

5.1.3 Viral Propagation and Software Diversity

It is possible to show that, regardless of the underlyinglaropagation model, an
assignment of software packages to a graph such that tiggassit forms a perfect graph
coloring will force the epidemic threshold to infinity. Cader a perfect coloring, where
there are no edges across which a virus can propagate. Thantedted hosts that exist
are those which are initially infected by a virus. Because #et cannot increase, the
disinfection rate of systems will continually decreasernheber of infected systems until

all systems are uninfected.

As pointed out in Chapter 4, it may not be possible to guaratitat a sufficient num-
ber of software systems will be available to perfectly cdalor network. It would then be
more appropriate to assign the limited amount of diversityas to limit the number of
monochromatic edges and thus increase the epidemic thdesfmachieve this goal, we
use the ©LOR FLIPPING algorithm described in Section 4.2.2. The distributed aigm
has each node choose an initial software package, or coldyaarandom intervals, com-
municate with their immediate neighborhood of nodes toalisctheir current color. The
node initiating the communication will then switch to thegtdorhood’s minority software

package if it finds a majority of its neighbors are runningshme software package.

It is important to note that it is not necessary to examingyevariation of the coloring

algorithms discussed in Chapter 4 for their effect on thal\ypropagation metrics. We

67

are interested in showing the trends that a decreasingtoefatige count has upon the
studied viral propagation characteristics, which will beypded by any of the distributed
algorithms.

The introduction of a graph coloring algorithm removes sahé&e assumptions of
randomness that underpin the statistical models discusgadh results in loose bounds
on the epidemic threshold on networks colored using tloe R FLIPPING algorithm.
Rather than providing only loose bounds, we examine thetedfiealgorithm-driven color

assignments on the epidemic threshold primarily throughute of simulation.

5.1.4 Statistical Models

We can consider nodes which run software packages whichitieeedt from their
neighbor to be relatively immune to attack from their neighbAssuming a randomized
distribution of diverse software packages, if there aseftware packages available for
nodes, it is expected that— n/c nodes will be relatively immune to the/c vulnerable
nodes.

The effective infection rate, or the rate any given infegtede can infect a neighboring

homogeneous node, becomes:

with an epidemic threshold given by:

C
< —

(k)

For a givens andJd, the critical number of software packages needed to enbateat

SRS

worm infection does not become an epidemic is:

68

Random Graph

100
(]
o
e
S 10} 0 O 1
& a]
c
! o o
g O o}
v [©0) (ONG©)
©) T
)
1t o Q G0]
10 100
Node Degree
(a)
IPv6 BGP Network
lOO T T T
©)
©)
g O
g O
S 10t .
° |
>
g © O}
v O
(ONO) o ©
O} © oW
1L . NN O O] 36)6 ©)(©) NN (¢ ¢ 11)) A
1 10 100 1000
Node Degree
(b)

Figure 5.1: Plot of the degrees of nodes found in the exammeddorks versus the fre-
guency of the occurrence of the degree. The graph examin@) mas constructed from
a standard random graph model, and contaéitsnodes and’, 448 edges. The graph ex-
amined in (b) was sampled from the IPv6 BGP topology, andainsta similar number of
nodes and edges.

69

A similar analysis can be done for the Pastor-Satorras asg@iyeani model, which
shows an increase in the epidemic threshold by a similanfact

In order to test the utility of diversity assignments forr@asing the epidemic thresh-
old, it is necessary to either generate or measure a netapdtagy for simulation study.
Our first network was generated by collecting a list of the Bigrs present in the IPv6
network by accessing the routing table from IPv6 capableimgpGlass routers. A second
network was created using an Erdds-Rényi random grapérgtr. Both graphs contain
266 nodes and approximatety 500 edges. The distribution of the individual node degrees
is shown on a log-log scale in Figure 5.1. While both graph®samilar average degree,
the degree distribution for both graphs is dramaticallyedént. The distribution plot of
the synthetic graph, shown in Figure 5.1(a) correspondstaralard random graph, while
the distribution of the sampled graph’s topology, showniguFe 5.1(b), shows the same
self-similar characteristics that have been observedenipus literature [33]. While we
utilized larger networks to study the coloring algorithmsSection 4.1.2, the computa-
tional load associated with executing the viral propageasimulations makes this option
infeasible.

The rest of the simulation studies presented in the seatibowf a standard methodol-
ogy; a single color is tagged as being vulnerable to infe¢timd the graph is assigned an
initial coloring. A high percentage of the nodes assignedsiinerable color are randomly
chosen to be the nodes which initially contain the infectddfe experimentally determine
the epidemic threshold by progressively changihiglative to a fixed) until a persistent
infection is not seen over numerous simulation runs witlnlloé same initial infection set

and with alternate initial infection sets.

The simulation exercises shown in Figures 5.2(a) and (bnex@the effect that the

70

Random Graph

06 T T T T T T T T
o
S
<
(%]
<t
=
|_
Q
IS
[}
§=)
o
]
Color Count
Epidemic Threshold Predicted by KW Model —+—
Observed Epidemic Threshold with Randomized Diversity —<—
Observed Epidemic Threshold with Algorithm-Driven Diversity
(a)
IPv6 BGP Network
04 T T T T T T T T
0.35
0.3
o
°
5 025
<t
£
Q 0.2
§
© 015
o
]
0.1
0.05
o

Color Count

Epidemic Threshold Predicted by PV Model —+—
Observed Epidemic Threshold with Randomized Diversity —<—
Observed Epidemic Threshold with Algorithm-Driven Diversity

(b)

Figure 5.2: Comparison of the effect of the number of colorshe experimentally deter-
mined epidemic threshold. In both (a) and (b), a graph igjassi either one color for ev-
ery node, multiple colors via a randomized algorithm, ortiplé colors via the described
CoLOR FLIPPING algorithm. It can be seen in both graphs that the epidemestwid

increases as the diversity-assignment algorithms becoogegssively more sophisticated.

71

number of colors has upon theoretically derived and expentailly-evaluated epidemic
thresholds. For each color, we compute the diversity-awargnts of the Kephart and
White (KW) model and the Pastor-Satorras and Vespignan) (Rdel presented in Sec-
tion 5.1.4 for the random graph and the IPv6 graph, respagtiAdditionally, both ran-
domized and algorithm-driven color assignments, based thmGLOR FLIPPING algo-
rithm presented in Chapter 4, are performed on the graphefdr eolor count examined.
The data shows that the bound on the epidemic threshold ofi@naized coloring pro-
vided by the statistical models is below the experiment@ditermined epidemic threshold.
The result allows us to conclude that the epidemic thresbicdddiversified network will be
higher than the epidemic threshold of a homogeneous netsvank if diversity is assigned
randomly. It is noteworthy that the epidemic threshold gn#icantly increased by allow-
ing an algorithm to assign diverse software packages tosoddéhe network; this leads
us to conclude that a planned diversity assignment is a whitb undertaking in order to

maximize the epidemic threshold of a network.

5.1.4.1 Graph Theory Derived Models

In a fashion consistent with Wang’s model, we are able tateshe goal of the software
assignment in terms of graph partitions and the subseqigamvalues of the subgraphs.
We denote our software assignmentfas V(G) — C,C = {1,2,....,c}, whereC'is
the set of available software packages. Get:= G[f~'(i)] : i« € C, whereG; are the
subgraphs induced by color Define ... (G;) as the maximum eigenvalue of subgraph

G,'s adjacency matrix. Therefore, we wish to find a softwarégassentf,,, where:

fopt = arg II%[H {I?E%X {,uma:v(Gz)}}

which minimizes the maximum eigenvalue across all subgrapduced by each color.

Loose bounds for general graphs and hard bounds on regaljaingican be determined

72

for the largest eigenvalue of the adjacency matrix of a @ifled network. Rather than
relying upon the loose bounds, we directly measure the eajea of a network which is
actively undergoing diversification to predict the epidethireshold.

To examine the impact the number of monochromatic edges pas the epidemic
threshold, we simulate a homogeneous network of systeras, dlow each system to
minimize its number of monochromatic neighbors by exegutite GLOR FLIPPING al-
gorithm presented in Section 4.2.2. At each time-step, weptie the epidemic threshold
predicted by the Pastor-Satorras and Vespignani model amd)¥/eigenvalue model. The
Kephart and White model is inappropriate for use with neksarsing an algorithm-driven
diversity assignment as the application of the algorithrtiheonetwork removes the homo-
geneous degree distribution on the network.

Figures 5.3(a) and (b) show the impact that decreasing theauof monochromatic
edges has upon the statistical, eigenvalue-derived, apdriexentally found epidemic
thresholds. It is clear from the simulation studies thatioéaly the number of monochro-
matic edges in the network is an extremely effective methoareasing the epidemic
threshold. The simulation studies confirm the utility ofeeguting the eigenvalue-derived
epidemic threshold with each step of the graph coloringatper is an effective method of
approximating the epidemic threshold. Furthermore, thEegrment shows that decreases
in the number of defective edges go hand in hand with incesiasthe epidemic threshold.

While a wide variety of techniques for mitigating rapid mahe propagation have been
analyzed and simulated using standard virus modeling tqubs, the contributions of the
software diversity community have not yet been fit into théyiework. In this section, we
make the first contributions toward analyzing viral progagamodeling in the presence
of software diversity. We use both models and simulatiorshtmw that on both simulated
and real networks of systems, a naive, randomized softivegesity assignment is able to
increase the epidemic threshold. Simulations also shotathalgorithm-driven diversity

assignment is able to further increase the epidemic thlgég®yond that seen with a ran-

73

Random Graph

8000 T T T T T T T T 0.1
7000 1009
4 0.08
€ 6000 o
3 4007 ©
< &
g 5000 1006 £
= =
o
£ 000 1005 £
5 3
g 1004 ©
Q3000 w
4 0.03
2000 1 002
1000 1 1 1 1 1 1 1 1 001
0 100 200 300 400 500 600 700 800 900
Time
Defective Edge Count —+—
Epidemic Threshold Observed During Simulation —<—
Epidemic Threshold Predicted by Eigenvalue Model
Epidemic Threshold Predicted by PV Model
(a)
IPv6 BGP Network
8000 T T T T T T T T 0.06
A 4 0.055
7000
4 0.05
‘g‘ 6000 < 0.045 o
3 {004 £
o - g
& 5000 10035 £
v KR o
g 4000 = 0 N sy S B 4 0.03 aé)
g k 4 0025 =T
8 3000 - i
‘A!L 4 0.02
™ 4 0.015
2000 ﬁ"
bic 4 001
1000 L L L £ et S 0.005
0 100 200 300 400 500 600 700 800 900
Time

Defective Edge Count —+—

Epidemic Threshold Observed During Simulation —<—
Epidemic Threshold Predicted by Eigenvalue Model
Epidemic Threshold Predicted by PV Model

(b)

Figure 5.3: Comparison of the effect of the number of defiecidges on the epidemic
threshold. In both (a) and (b), the nodes of the graphs alinbagthe same color, and
the COLOR FLIPPING algorithm is executed to find a 3-color assignment which cedu

the number of monochromatic edges. As the number of monodtio edges decreases,
the experimentally determined epidemic threshold in@gdeyond what is predicted by
statistical models and by the eigenvalue model.

74

domized assignment. These results provide quantitatsighhinto the impact of software

diversity on the tolerance of a network to viral attack.

5.2 Attacking Network Diversity Assignments

In the previous section, we confirmed through simulation analysis that reducing
the number of defective edges directly increases the epidigmeshold of a network. It
is likely that an virus would be interested in affecting therfprmance of the coloring
algorithm itself, given that the distributed algorithmsdissed are being used to decrease
the ability of an attacker from compromising the network.

We propose a set of primitive behaviors exhibited by a malisinode from which any

attack can be created:

Spreading Upon inspection, instead of looking to flip its color, a notattis malicious

will look to subvert a neighboring node that is of its own aolo

Misrepresentation A node may falsely report its current color when it is queriedits
color by neighboring nodes. Additionally, a node may falseport its defective

edge reduction to neighboring node wishing to conduct arcs@p.

Inertia A node will not change its color regardless of external stuau

Each of these attacks are presented in pseudocode formagurefs.4. These func-
tions are written in such a way that they can be directly ipoaated into the algorithms
presented in Chapter 4.

The first algorithm analyzed is robust against attacks thcetoward the algorithm it-
self. The RNDOMIZED COLORING algorithm requires nodes to set their color without
examining their environment. In turn, any network implerngg the algorithm is not af-

fected by the last two attacks, and can only be affected bgpgheading attack.

75

Spreading Attack:
EventLoop():
if the timer event has occured:
Attack any neighboring node of the same color
Set new timer event
ContinueEventLoop()

Color Liar Attack
RespondToColorQuery(Neighbo):
Transmit a randomly chosen color frath—CurrentColorto Neighbor

Defect Liar Attack
RespondToSwaplimprovementQuerylleighbo):
MyDefect= ComputeDefect()
NewDefect= ComputeSwappedDefect{eighbo)
Defectimprovement := MyDefect - NewDefect
Transmit a large random value ieighbor

Swap-contract Breaking Attacks
RespondToSwapRequesieighbor, NeighborColQp:
TransmitAcceptedRequesi Neighbor
Do not change the current software package

Figure 5.4: Pseudocode used by an attacker wishing to comgeca network of hosts
running the distributed coloring algorithms presented naer 4.

The GoLOR FLIPPING algorithm introduces an inherent security flaw. Any nodeioo
ing to flip its color must trust that their neighbors will beittnful in reporting their own
color assignment. If a malicious node decides to lie absuivtn color, it can influence a
guerying node’s color choice, but not force a color assigmrapon the querying node. For
example, a malicious node can falsely report to a node thablbr is the same as a query-

ing node, which would contribute to the querying node’s defount. If the malicious

76

node is fortunate, the defective edge count observed byube/mg node would become
greater thand(v)/k|. This will cause the querying node to flip to a new color. Thelgd
the malicious node is to push the querying node to flip to aipewlnerable color. If a
flip takes place, the malicious node has no way of being cette querying node will flip
to a vulnerable color.

Both the MUTUALLY BENEFICIAL SWAPPING and GREATER GOOD SWAPPING algo-
rithms introduce a security flaw due to the inherent trusb@ssed with a color swap. If
a malicious node either proposes or agrees to a swap withtiaipating neighbor, it can
keep its own color even after the neighbor has completedbinig to the new color. The
action would create a defective edge that the malicious nadeise to propagate an attack.
In the case of the mutually beneficial swap algorithm, a swaplevnever be acceptable
to a node unless the defective edge count of the node desrdagen if a malicious node
wants to “push” a vulnerable color onto a node, it would ong¢ydble to do this to the
subset of its neighbors which would stand to gain from an Bbe@ap. The GEATER
GOOD SWAPPING algorithm, however, has a larger security vulnerabilitycasated with
it. A malicious node can force a color change onto a neiginigoniode by claiming an
extremely high defect improvement. To the neighbor, it wioahpear that the proposed
swap is globally beneficial, regardless of its own increagbe number of defective edges.
Therefore, a single compromised node can spread a chos@aracobss an entire network,
one node at a time.

There does not exist a single optimal attack that works ag&ioth algorithms, how-
ever. If the network implements a swapping algorithm, lyétgut a malicious node’s own
color would lead a querying node to swap to a random, noneralie color. Rather than
increasing the number of nodes that can be attacked in teretrunning the optimal
swapping algorithm attack on a network running the colopfhg algorithm would actu-
ally decreaseghe number of vulnerable nodes. Vulnerable nodes, whicle wesviously

unable to swap their color to one which would induce lessalfeedges because of a lack

77

of potential swapping partners would find nodes with a pnestyp unseen color in their
neighborhood. Therefore, not only would the number of vidbée nodes decrease, the
number of defective edges present across the network weaaickdse as well. Likewise,
a network running the color flipping algorithm would not bepacted by the contract-
breaking attack mentioned above. No inter-node contraet$naolved in the algorithm,

and correspondingly, there is no opportunity to break aredh@anging agreement.

Based upon this analysis, the behavior of the hybrid allgorét discussed in Sec-
tion 4.2.4 under attack can be expected to be a synthesig oé#ttions of both the color

swapping and color flipping algorithms to the stated attacks

5.2.1 Attack Simulation

A second series of experiments is conducted to test eachthlgds tolerance to attack.
One color is selected and labeledvagnerable meaning an attacker can compromise that
color and only that color. It then becomes the goal of thecké&ato switch every node in
the network to the vulnerable color. After the coloring algons have converged, 1% of
the vulnerable nodes are infected with a worm, which is abltry out any combination

of the attacks described in Section 5.2.

It is not necessary to recompute the epidemic thresholdcht gaint of the virus’ pro-
gression throughout the network. As we have shown in Seétibd.1, the defective edge

count is a sufficient metric for measuring the epidemic thoé$of a graph.

Figures 5.5(a), 5.5(b), and 5.5(c) show the effect of malisinodes on the number of
defective edges present, the average number of conneatgaboents for each color, and
the number of vulnerable nodes, respectively. These makanodes are introduced to the
network after the distributed algorithm has largely cogeek They begin to attack the
network by lying about their color and breaking swappingtcacts, but respond honestly

when asked about their own improvement with respect to timelben of similarly colored

78

neighbors when queried about a proposed color swap.

Figures 5.6(a), 5.6(b), and 5.6(c) show the effect on theiosettudied in Figures 4.13
and 5.5(a)—(c) when nodes that lie about the quality of agsegd swap and break swap-
ping contracts are introduced into the network some timer afbnvergence. It should be
noted that the GLOR FLIPPING algorithm is not vulnerable to this attack, since it does not
propose swaps with neighboring nodes.

Figures 5.7(a), 5.7(b), and 5.7(c) show the effect of coteptedishonest nodes upon
the network. This “brute force” attack is not designed t@ektany one particular al-
gorithm, nor are the malicious nodes cognizant of the cotpalgorithm that is being
executed by their neighbors. Instead, it is designed to axathe effects of completely
uncooperative nodes upon the network.

As stated in Section 5.2, color liars increase the numbeef#ative edges in a network
when the network is executing theoCor FLIPPING algorithm, but decrease the number
of defective edges present in a network executing tbe@dR SWAPPING algorithms. The
introduction of color liars in Figure 5.5(a)—(c) experintaly confirms this analysis. The
behavior of the hybrid algorithms indicates a bias in botfoathms towards the use of the
COLOR FLIPPING strategy as opposed to th@GoR SWAPPING strategy, as evidenced by
the similarity between the number of defective edges egpe&d by the GLOR FLIPPING,
RANDOMIZED HYBRID, and B=sT CHOICE HYBRID algorithms in 5.5(a). Furthermore,
the experiment has shown that even after convergence isvahiit is possible to disrupt
the color assignment of the graph.

The behavior of a network that is being attacked via defecs lis dramatically differ-
ent, as shown in Figure 5.6(a)—(c). While the network impating MUTUALLY BEN-
EFICIAL SWAPPING algorithm appears to not be affected by the malicious behnathe
network utilizing the REATER GOOD SWAPPING is completely compromised. The two
algorithms, while exceedingly similar, exhibit markedifferent tolerance to attack. The

rationale for this phenomenon resides in the relative hwgppower” of swapping partners.

79

8000
|
7000} ! ; 0%
_ 1 i 520 ° 5
S 6000}, ; 009 e 1
IS} 3._ -3g88eefeoacolBEoa0
) ! 3«3 h X=X
,5000f | P % 1
° P " Rt
w i I \¢> L
2 4000 PR 1
s = I
g N \‘® ‘ ’,p
7] / i
Q3000 1 T 000 0-00 0-0-0 0-0-0
: |
"
2000 & ! -;:e;]
i s
1000~ %8 % ‘ ‘ ‘
0 200 400 600 800 1000
Cycles (2500 s)
(a)
4000 — ‘ ; :
€ x'é"&kQ
3 i 8\,009-609-6-00-6-00-6-0
O ! - 9
E3s00f s 0y]
% 4 vy
S N
(@] 1 ' [xo
= 3000 N Y XX 1
% i N 69 ‘X\x‘
3 i ' N o O =%
S i 'pEoaec8E8agaanda
8 | pod Sooq
,
® 250 |) |
g ‘
® i
s |
g |
< |
2000 — : :
0 200 400 600 800 1000
Cycles (2500 s)
12000 — ; ; ;
|
10000} \ oo 1
- o0
- :
S 8000 | QX 1
(&} ! 9, %
® | &
3 | x7
Z 6000 | %) 1
o P
I
£ 40008 e - - = = 1
=] I
> R
2000t L |
L %060-0-000000-0000
|
% 200 400 600 800 1000

Cycles (2500 s)

()

—— Randomized Coloring
- Color Flipping
-3 - Mutually Beneficial Color Swapping
=& - Greater Good Color Swapping
0~ Randomized Hybrid
- Best Choice Hybrid

Figure 5.5: Comparison of the impact of nodes that only liewltheir color on the dis-
tributed algorithms. The vertical line indicates the timean malicious nodes are added to
the network.

80

X 10
| 0,9-00—6-00—6-00—0
! g,o'
I
<= 1.57 ! ' 50D
g : :' ,é:@ &5 5’6'
o I ®
° A S
% s
w 1 :) "”
2 0K
2 P ,"l,
a 05hBH R E-E-08-8-08-80 86080
! 1
Voo
P o)
Q*@é}' ““““““““““““““
0
0 200 400 600 800 1000
Cycles (2500 s)
()
4000
E [22
gssoor R
© i | y‘\
S 3000 A
< ; I
2 ' 004 e0 e 08-808-8086800808
g 250 T
8 2000 & Q“Q
° I I \ !
@ i N)
8 R \QS-‘Q,&
g 15001 | N QQ°@QQ
| “® @,
3 1000+ ! Q\ @
(=) ! \
8 ! \
g 500f | 0\&
< |
0 L X) DD O-O-O0-OO-0
0 200 400 600 800 1000
Cycles (2500 s)
(b)
14000 — -
12000} ! 900-600-6-09—6-0
€ | .
5 9
) ! ,
% 100001 ! é’
Z ! ; 588
3 Lo 58
8 8000 L6 S0
(] | 1 & :
E | BER
> "
6000} /g
pad
4 . - - - -
OO(% 200 400 600 800 1000

Cycles (2500 s)

()

—— Randomized Coloring
+ Color Flipping
-3 - Mutually Beneficial Color Swapping
=& - Greater Good Color Swapping
0~ Randomized Hybrid
- Best Choice Hybrid

Figure 5.6: Comparison of the impact of nodes that only lieualtheir defect improve-
ments on the distributed algorithms. The vertical line cadiés the time when malicious
nodes are added to the network.

81

8000 ;
| ,g
| .
7000f ! &8
l ; o-R®
S 6000}, ! T o Gx
[$) 3—_ -Rg) X
%5000% 8-3‘: D'E‘Gﬁ*‘g;éﬂ-E—BD-E—BGE—D
° i u o 7
w f v s
o " S
> 4000 ‘I n @ X
B ! n ;7
(9] ! " i
5 1]) 7
& 3000t L g X
: RVt
n | A
2000f & 19
O K8 00006000000000
% Q,@f
1000 L . . .
0 200 400 600 800 1000
Cycles (2500 s)
(a)
4000 — T T ;
= 58 P06 00000000-0090
3 % n
O [] ! §X
= H)
S 3500} i RS
g] " Q X
g R
§ |1 i v
© 300001 ' 6L =
% i ! : u'@ X x
o ! ' apoeocdfeoegoneo
c !, ~
§ |pe8 o5,
o 25004’ !
Y T
@ i
5 |
S |
< |
2000 — -
0 200 4 00 800 1000
Cycles (2500 s)
12000 ‘ T
|
|
10000} | 5© 00
" | 0000 ko
c . I} _xx=X
3 | D e ™
§ 8000} ; 0%
3 Le X
Z 6000f < Xe
2 1O
© el
E 400013—6—6—9“-&—9=ﬁﬁr=em
B} \
> h
\
20001 1
o
190000000000 00600
0 L) \)
0 200 400 600 800 1000

Cycles (2500 s)

()

—— Randomized Coloring
-+ Color Flipping
-3 - Mutually Beneficial Color Swapping
=& - Greater Good Color Swapping
0~ Randomized Hybrid
- Best Choice Hybrid

Figure 5.7: Comparison of the impact of nodes that only l@eéaboth defectimprovements
and their color on the distributed algorithms. The vertica indicates the time when
malicious nodes are added to the network.

82

In the MUTUALLY BENEFICIAL SWAPPING algorithm, both neighbors have equal input
for the swap decision. Regardless of the input of one’s rmgla swap will not take place
unless the action can benefit both nodes. After the dis&tbabloring converges, no node
operating under this algorithm can further improve the iaf its coloring by conduct-
ing a swap. Nodes in networks implementing theEBTER GOOD SWAPPING algorithm,
however caralwaysconduct a swap that the nottelieveswould increase the quality of
the network’s coloring. Under this algorithm, a swap parten have an unbounded con-
tribution to the swap decision. A malicious node can use tiliforce a coloring upon
any neighboring node with whom a swap is being negotiatatteSihe hybrid algorithms

depend upon the swapping algorithm, they are both vulnetalthis form of attack.

In the plots contained in Figures 5.5, 5.6, and 5.7, the padace of the RNDOMIZED
HYBRID and the EEST CHOICE HYBRID algorithms under attack appear to be rather sim-
ilar. As stated in Section 4.2.4, theARDOMIZED HYBRID algorithm contains a tunable
parameter, however, which forces the algorithm to utiliee @©LOR FLIPPING algorithm
at a higher or lower frequency compared to theEBTER GOOD SWAPPING algorithm.
Deriving the optimal balance between the two algorithmstii@r purpose of minimizing
the effects of an attack against the algorithm can be acdshgul using game theory, but
the equilibrium point would be unique to the topology of thegh. In the formulation,
payoffs experienced by either the network operator or tteclér would be derived from
the rate at which non-vulnerable nodes can be convincedangehto a vulnerable color
because of input from malicious neighbors. The usage ratéludr the ©LOR FLIPPING
or the GREATER GOOD SWAPPING algorithms would be selected to balance out the risk of

executing either of the two algorithms over the long term.

83

5.2.2 Analysis of Simulation Results

Two important conclusions can be drawn from the analysisiefcbloring algorithms
and their tolerance to a tailored attack. Th&/ MIALLY BENEFICIAL SWAPPING algo-
rithm converges to the largest number of defective edgesiypfaggorithm which allows
for re-coloring of individual nodes. After convergenceotigh, attacking this algorithm
has shown to be extremely difficult. A slight modificationb@tMUTUALLY BENEFICIAL
SWAPPING algorithm was presented in theRGATER GOOD SWAPPING algorithm, which
relaxes the guidelines for an acceptable swap. While thesvalfor more color swaps to
take place and in turn reduces the number of defective eddbe graph, the algorithm be-
comes far more vulnerable to a directed attack. Algorithiigiwvallow a node to undergo
a local and independent color flip, while extremely effeetat reducing the total number
of defective edges, have been shown to be heavily impacteddhigious nodes which lie
about their color. Given enough time for convergence andalldmat finite set of moder-
ately connected nodes, the malicious nodes would likelylbe @ compromise the entire
network. The only algorithm which is not vulnerable to a dieal attack is the randomized
algorithm, which, not coincidentally, provides the worsfettive coloring performance.
Based upon these results, we believe thate is a fundamental tradeoff between the qual-

ity of the diversity achieved by an algorithm and the aldumits tolerance to attacks.

Both of the hybrid algorithms allow for a node to choose bemvéhe two coloring
algorithms at each instant of operation. The ability to siwibetween the two algorithms
removes the attacker’s ability to know which coloring aigjon a targeted node is intend-
ing to execute. In the absence of precise knowledge of theemily running coloring
algorithm, an attacker would have some difficulty craftimgogtimal attack. As discussed
in Section 5.2, the most effective attack against tlta @R FLIPPING algorithm would
be the introduction of color liars to the network, and the tedtective attack against the

swapping components of both theUVUALLY BENEFICIAL SWAPPING and the REATER

84

GOooOD SWAPPING is the introduction of contract breakers to the network. &contract-
breaking node to work correctly, however, it must be conghjehonest about its color.
Otherwise, the swap partner would swap to a different calmmfthat of the malicious
node, which would halt the proceeding attack. Through simiéasoning it is easy to see
why introducing a set of honest contract breakers would b@tssproductive for attacking
all coloring algorithms.

The above rationale is no different from the motivation fecwrity through diversity
itself. The GLOR FLIPPING, MUTUALLY BENEFICIAL SWAPPING and GREATER GOOD
SWAPPING algorithms are vulnerable to attack simply because the ségoeithm is run-
ning on every node, and every node is vulnerable to the samedbattack. Introducing
diversity at the diversity assignment layer would mean aacker would not be able to
use a single attack strategy to take over the network. TARD®RMIZED HYBRID and
the BEST CHOICE HYBRID algorithms are vulnerable to all forms of misrepresentatio
and contract-breaking attacks, but the existence of a migéating strategy increases the
algorithm’s tolerance to attack. Experimental evidence $teown that both hybrid algo-
rithms fare better when presented with both forms of atttan the @LOR FLIPPING and
GREATER GOOD SWAPPING algorithms when each are presented with their appropriate a
tack strategies. The increased tolerance to attack is dhe tack of knowledge on the part
of the malicious nodes; since the malicious nodes are umamiarhich algorithm is being
executed by the targeted nodes, choosing an effectivekditmommes a game of chance. It
is based upon this observation that we statetti@most effective way of achieving attack
tolerance in our algorithms is to reapply the fundamentatiwagion of this dissertation,

and implement diversity strategies into the algorithmsrikelves.

85

Chapter 6. Conclusion and Future Work
Factum est illud, fieri infectum non potest.

Plautus

6.1 A Summary

Despite the best efforts of the computer security commusdftware with hidden vul-
nerabilities is still released into the world. Improveditat analyzers and hardened operat-
ing environments have helped to reduce the exploitabifisoftware. Better education and
experience has created attentive administrators, whainhave cut down on the risk of a
software vulnerability being used as a worm vector throutgnéive patching and network
access control. Even with the number of easily exploitableerabilities decreasing and
the window of a disclosure’s value slowly being closed, the tesearch paths will never
eliminate the possibility of intrusion. It is in the gap betn pre-vulnerability prevention
and post-vulnerability mitigation techniques that resbkars have proposed presenting at-
tackers with a diversity of systems as a target as opposemriething familiar.

The application of thisoftware diversityparadigm requires the acquisition of diverse
software packages which are relatively immune to commotisaurhe generation and
management of this diversity is an active research area.lifEnature details a variety of
solutions, including introducing heterogeneous softwaisystems through randomization
of memory structures)V-version programming, and various other techniques. Hewev
for both business and technical reasons, the limited nuwilfeinctionally equivalent yet
distinct software packages makes diversity a less effestirategy than one may like.

In this dissertation, we have provided a general model ftivsoe diversity by consid-

ering how techniques for generating diversity combine aiedgnt themselves to attackers.

86

The model shows that an algorithm for diversity assignmergquired in networks of sys-
tems where the heterogeneous software set is small in ardeatimize the inherent value
of diversity. The analysis inspired us to provide a seriealgbrithms for increasing the
effectiveness of system-level heterogeneity on a netwewvken though the computation of
an optimally diverse software allocation is believed to fiteaictable, the distributed algo-
rithms presented here reduce the number of links that carnilbeed for propagating an

attack. Furthermore, our algorithms effectively cluster hetwork, which helps to isolate

infected systems from the rest of the topology.

Decreasing the number of edges an attacker can traverdatisely abstract concept
that does not appear to directly translate into an quanigfisbpact on an attacker’s per-
formance. We have successfully been able to link this diefeetdge count to the positive
impact of our diversity assignment strategies againstlketa using both analysis and sim-

ulation techniques borrowed from the field of viral propagatmodeling.

Any methodology for increasing the attack tolerance of avoek is destined to come
under attack itself. We have shown that there exists a toffdeetween the ability of an
algorithm to reduce the number of defective edges preseheinetwork and the ability of
the algorithm to tolerate a directed attack. The algorithmcv exhibits the best worst-case
performance against attack was a hybrid of our basic algost which itself highlights the

principle of security through diversity.

Based upon our observations, simulations, and analysisevefawith a confirmation
of our thesis statement; not only is diversity critical fongroving the attack tolerance
of a network, but the inherent value of diversity can be iasegl through an algorithmic
distribution of diverse systems. Furthermore, these pies must be applied to all levels

of system design, including any scheme which introducesrdity itself.

87

6.2 Future Work

Multiple problems have been identified during the courséefresearch related to net-
work diversity assignments whose solutions fall outsidesitope of this dissertation. In the
following sections, we outline the measurement experisesitich must be performed in
order to correctly quantify the cost and effectiveness imeaissociated with each diversity
and attack technique. We additionally describe the engimge/ork that one can undertake

to implement a network of diverse systems using largelytlodfshelf technologies.

6.2.1 Measurements and Data Analysis

As stated in the concluding remarks, the metrics and funstassociated with the di-
versification hypergraph presented in Chapter 3 are difftcubnalytically quantify. A
set of measurement experiments should be conducted in targgovide estimates for a

number of these metrics.

Consider the following initial experiment. Information ¢ime global background se-
curity events that are associated with worm traffic can béegat using network tele-
scopes [60], or routable, unpopulated, and contiguouseaddpaces which are monitored
by traffic monitoring software. A tool which examines paclatel idiosyncrasies to deter-
mine the traffic source’s operating system can be used tordigte the characteristic of a
source of an attack without directly contacting the systéhese pieces of software, known
as a passive OS fingerprinters, are freely available for ttmehtoday [81]. This informa-
tion can be coupled with attack fingerprints culled by a sigreabased IDS to determine
source and target operating system pairings. The vast nuofls®th Microsoft-targeted
worms and Microsoft-based attack sources will skew the dallaction towards a single
platform, in turn necessitating a lengthy data collectienigd. We predict that the end
result of this basic exercise will show an extremely highrelation between the software

running on the source of the attack and the software runnmthe target of the attack,

88

which would be a validation of the assumptions made in Sectit.2.

The previously mentioned experimental setup does notrdiiteate between an attack
attempt made by an intelligent attacker or by an automatedwiti is likely that an intel-
ligent attacker would completely ignore a network telescbpsed measurement scheme
due to the lack of responses elicited from any input trafficmivimal response to input
traffic can be generated using software which presents dseh host with several open
ports, but does not respond with anything beyond basicnimétion banners. Niels Provos’
honeyd package currently provides this functionality [71]. Segteng out worm traffic
would be challenging, but could possibly be done througtissieal means by comparing
attacks against twhoneyd systems, where one system provided banners consistent with
the host fingerprint and the other system did not. Intelligetversaries would attempt to
attack the application specified by the modified banner, ewvibrms would most likely
continue a standard attack. This measurement experimstili isn approximation of the
behavior of the adversary. It is impossible to know the aslwef's true nature and capabil-
ities without allowing the attack to be fully carried out.

We can safely allow an adversary to execute an attack againsichine under our
control using heavily instrumented systems placed in gig@dministered and monitored
sections of a network. Thes®neypotfave been used heavily in the past for determining
the relative skill and sociological behaviors of computackers [82]. Our experiments
can use an array of honeypots to generate statisticallyfisigmt measurements on the
rate of infection by worms from a similar source host as camg&o intelligent attackers
operating from similar sources.

Using a large sample of honeypots would be a viable methodstiing the effective-
ness of each practical diversity technique in the liteeturhe sample machine’s subnet
can be cut in half with half the machines being diversified #reremaining half being
stock systems. The mean-time-to-successful-attack Bgeaa then be used to build the

effectiveness function discussed in Chapter 3. Similaegrpents can be conducted to

89

determine the effectiveness of combinations of multiplediity techniques.

The amount of time required to conduct these experimentsnewhat unbounded. A
significant number of determined hackers have to approagdrcampromise the systems
before meaningful statistics can be collected. Neverfiselsuch experiments would be
useful for determining not only the true value of softwareedsity but also the metrics

needed for optimal construction of both host-level and onétwevel diversity assignments.

6.2.2 Implementation Strategies

The diversity assignment algorithms presented in thisediaBon are not purely theo-
retical constructs. They can be implemented using cuyrenthilable, off-the-shelf hard-
ware and software systems. A prototype network of diversgesys can be built out of
standard commodity hardware running kernel hypervisogsvémual machines similar to
Xen [7] and VirtualPC. The hypervisor can be loaded with sa\different operating sys-
tems, and each system can then be set up using a standardifeglication assignment
tool such as CFEngine [72]. A diversity of assignment alipons can then be imple-
mented at the hypervisor level, where the challenge of hagmitching a host’s “color”
can be solved by allowing the hypervisor to activate and tilesie each of its child virtual

systems depending upon the demands of the assignmentlaihgori

As discussed in Section 2.2.1, sensor network technologyésfect candidate for the
presented diversity assignment schemes. Sensor netwdds rawe comprised of limited-
capacity processors, transceivers, and sensors. A netlegsigner can heavily specify the
interconnection protocol and sensor packages carried ¢ly made and then job out the
operating system development to a set of unrelated contgeacEach separate operating
system can then be placed in long-term storage on the seladform, and a small boot
system can be used to switch between the software. Since paeestricted commodity

on sensor platforms, each node can carry an array of elécsensors, with the majority

90

of these transducers being deactivated. The assignmegrngcban also be used for de-
termining the set of transducers which should be activatedhyatime. This reapplication
of the diversity assignment paradigm discussed in the détgzn would ultimately reduce

the risk of countermeasures against the sensing hardware.

91

Bibliography

[1] R. Albert, H. Jeong, and A. L. Barabasi. Error and Attaikerance of Complex
Networks.Nature 406:378—-382, July 2000.

[2] S. Alexander. Defeating compiler-level buffer overfloprotection. ;login:,
30(3):59—71, June 2005.

[3] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, lglzgsed network vul-
nerability analysis. InProceedings of the 9th ACM conference on Computer and
communications securitpages 217-224. ACM Press, 2002.

[4] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vahability: A case
study analysisIEEE Computer33:52-59, December 2000.

[5] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela. Gambosi, P. Crescenzi,
and V. Kann.Complexity and Approximation: Combinatorial OptimizatiBroblems
and Their Approximability PropertiesSpringer-Verlag New York, Inc., 1999.

[6] A. Avizienis. Fault-tolerance and fault-intoleranc€Eomplementary approaches to
reliable computing. IrfProceedings of the international conference on Reliabfe so
ware pages 458-464, Los Angeles, California, 1975. ACM Press.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, &, R. Neugebauer, |. Pratt,
and A. Warfield. Xen and the art of virtualization. 8OSP '03: Proceedings of the
nineteenth ACM symposium on Operating systems pringipbeges 164-177, New
York, NY, USA, 2003. ACM Press.

[8] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefarmpaind D. D. Zovi. Random-
ized instruction set emulation to disrupt binary code itgecattacks. IrProceedings
of the 10th ACM conference on Computer and communicatiauriggcpages 281—
289. ACM Press, 2003.

[9] S. M. Bellovin. Distributed firewalls;login:, pages 39-47, November 1999.

[10] S.Bhatkar, D. C. DuVarney, and R. Sekar. Address olafisie: An efficient approach
to combat a broad range of memory error exploit®2ioceedings of the 12th USENIX
Security Symposiumages 105-120, Washington D.C., USA, August 2003.

[11] Bulba and Kil3r. Bypassing StackGuard and StackShielBhrack Magazing
0xA(0x38), May 2000.

[12] CERT Coordination Center. Incident and vulnerabilitgnds. Technical report,
CERT, May 2003.

92

[13] Z. Chen, L. Gao, and K. Kwiat. Modeling the spread of aetivorms. InTwenty-
Second Annual Joint Conference of the IEEE Computer and Coieation Societies
(INFOCOM), volume 3, pages 1890-1900, March — April 2003.

[14] W. R. Cheswick, S. M. Bellovin, and A. D. Rubirkirewalls and Internet Security;
Repelling the Wily HackerAddison-Wesley, Reading, MA, 2003.

[15] C. Collberg, C. Thomborson, and D. Low. Breaking abdtoms and unstructuring
data structures. IRroceedings of the IEEE International Conference on Comput
Languagespages 28-38, Chicago, IL, May 1998.

[16] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Harmdormatguard: Auto-
matic protection fronpri nt f format string vulnerabilities. IfProceedings of the
10th USENIX Security Symposiuwvashington D.C., USA, August 2001. USENIX
Association.

[17] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PaimtSY - Protecting pointers
from buffer overflow vulnerabilities. IfProceedings of the 12th USENIX Security
SymposiumUSENIX Association, Aug 2003.

[18] C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartmarac&yuard: Kernel pro-
tection from temporary file race vulnerabilities. Pmoceedings of the 10th USENIX
Security SymposiumVashington D.C., USA, August 2001. USENIX Association.

[19] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. BeattieGrier, P. Wagle, and
Q. Zhang. Stackguard: Automatic detection and preventfdoufier-overflow at-
tacks. InProceedings of the 7th USENIX Security SymposW8&ENIX Association,
January 1998.

[20] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.féBufverflows: Attacks
and defenses for the vulnerability of the decaddg-dundations of Intrusion Tolerant
Systems (OASIS’'03pecember 2003.

[21] L. J. Cowen, W. Goddard, and C. E. Jesurum. Coloring @wéfect. InProceedings
of the eighth annual ACM-SIAM symposium on Discrete algorg pages 548-557.
Society for Industrial and Applied Mathematics, 1997.

[22] J. Dadzie. Understanding software patchiQgeue pages 24—-30, March 2005.

[23] C. Dahn and S. Mancoridis. Using program transfornmatio secure ¢ programs
against buffer overflows. Ih0th Working Conference on Reverse Engineelirges
323-333, November 2003.

[24] T. de Raadt. Exploit mitigation techniques. The AUUG’2004 Annual Conference
September 2004.

[25] D. E. Denning. An intrusion-detection modéEEE Transactions on Software Engi-
neering 13(2):222-232, February 1987.

93

[26] Y. Deswarte, K. Kanoun, and J. C. Laprie. Diversity agdiaccidental and deliberate
faults. InComputer, Security, Dependability and Assurance (CSDA [&ges 171—
181, July 1998.

[27] Z. Dezs6 and A.-L. Barabasi. Halting viruses in sefaée networksPhysical Review
E, 65(055103), 2002.

[28] H. Ebel, L.-l. Mielsch, and S. Bornholdt. Scale-freg@pdtogy of e-mail networks.
Physical Review F56(035103(R)), 2002.

[29] J. Erickson.Hacking: the art of exploitationNo Starch Press, San Francisco, 2003.

[30] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrenting the world with wire-
less sensor networks. Proc. International Conference on Acoustics, Speech, and
Signal ProcessingSalt Lake City, Utah, May 2001.

[31] H. Etoh. GCC extension for protecting applicationsnfrgtack-smashing attacks,
2004. Accessed on August 7th, 2005: http://www.trl.ibrméarojects/security/ssp/.

[32] D. Evans. What biology can (and can’t) teach us abouirsiyc August 2004.

[33] Michalis Faloutsos, Petros Faloutsos, and Christdeutsos. On power-law rela-
tionships of the internet topology. FProceedings of the conference on Applications,
technologies, architectures, and protocols for computenmunicationpages 251—
262. ACM Press, 1999.

[34] S. Forrest, A. Somayaji, and D. Ackley. Building diversomputer systems. In
Proceedings of the 6th Workshop on Hot Topics in Operatirgieys (HotOS-V))
pages 67—72. IEEE Computer Society, 1997.

[35] D. Geer. Monopoly considered harmflEEE Security & Privacy Magaziné (6):14—
16, December 2003.

[36] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeg&8, Quarterman, and
B. Schneier. Cyberinsecurity: The cost of monopoly. Tecalieport, CCIA, 2003.
Accessed on August 7th, 2005: http://www.ccianet.orgépsiicyberinsecurity.pdf.

[37] S. George, D. Evans, and L. Davidson. A biologicallypimed programming model
for self-healing systems. IWOSS '02: Proceedings of the first workshop on Self-
healing system$ages 102-104. ACM Press, 2002.

[38] S.W. Golomb.Shift Register Sequencédolden-Day, Inc., San Francisco, CA, 1967.

[39] G. Goth. Addressing the monoculturdkEEE Security & Privacy Magazine (6):8—
10, December 2003.

[40] A. Gudmundsson and E. Chien. Security response: W&2x@mm.
Technical report, Symantec, 2001. Accessed on August 7tB05:2
http://securityresponse.symantec.com/avcenter/dataiv32.klez.a@mm.html.

94

[41] J. S. Havrilla and S. V. Hernan. Advisory CA-2001-06: t8mnatic execution of
embedded mime types. Technical report, CERT, 2001. AcdesseAugust 7th,
2005: http://www.cert.org/advisories/CA-2001-06.html

[42] T. G. Horsfall. Genetic vulnerability of major cropsNational Academy of Sciences,
1972.

[43] A. Householder and R. Danyliw. Advisory CA-2003-08ctrased activity targeting
windows shares. Technical report, CERT, 2003. Accessed ugugt 7th, 2005:
http://www.cert.org/advisories/CA-2003-08.html.

[44] N.lerace, C. Urrutia, and R. Bassett. Intrusion préxemsystemsUbiquity, 6(19):2—
2, 2005.

[45] S.Jha, O. Sheyner, and J. Wing. Two formal analysedatlagraphs. IfProceedings
of the 15th IEEE Computer Security Foundations Workshod-\&'82), page 49.
IEEE Computer Society, 2002.

[46] M. K. Joseph and A. Avizienis. A fault tolerance appechao computer viruses. In
Proceedings of the 1988 IEEE Symposium on Security and é¢iyeges 52-58.
IEEE Computer Society Press, April 1988.

[47] J. E. Just and M. Cornwell. Review and analysis of sytithdiversity for breaking
monocultures. IrProceedings of the 2nd Workshop on Rapid Malcode (WQRM)
Washington, D.C., October 2004.

[48] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Counteriogde-injection attacks
with instruction-set randomization. Iroceedings of the 10th ACM conference on
Computer and communication securipages 272—-280. ACM Press, 2003.

[49] J. O. Kephart and S. R. White. Directed-graph epideogimal models of computer
viruses. InProceedings of the IEEE Symposium on Security and Prjv@akland,
CA, May 1991.

[50] A. D. Keromytis and V. Prevelakis. Dealing with systenomocultures. INNATO
Information Systems Technology (IST) Panel Symposium apti&d Defense in Un-
classified NetworksToulouse, France, April 2004.

[51] D. M. Kienzle and M. C. Elder. Recent worms: a survey aeads. INWWORM '03:
Proceedings of the 2003 ACM workshop on Rapid Malcpdges 1-10, New York,
NY, USA, 2003. ACM Press.

[52] J. C. Knight and N. G. Leveson. An experimental evaluainf the assumption of
independence in multiversion programmingoftware Engineeringl2(1):96-109,
1986.

[53] Marek Kubale. Graph Colorings chapter Harmonious Colorings of Graphs, pages
95-104. American Mathematical Society, 2004.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

95

C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Chaitaxonomy of com-
puter program security flaws, with example€omputing Survey26(3):211-254,
September 1994.

J. P. Lanza and S. V. Hernan. Advisory CA-2003-07: Remmtffer overflow
in sendmail. Technical report, CERT, 2003. Accessed on Augih, 2005:
http://www.cert.org/advisories/CA-2003-07.html.

D. Larochelle and D. Evans. Statically detecting lkieuffer overflow vulnerabilities.
In Proceedings of the 10th USENIX Security Symposhashington D.C., USA,
August 2001. USENIX Association.

R. A. Martin. Managing vulnerabilities in networkedstgms.Computey 34(11):32—
38, 2001.

G. McGraw. Testing for security during development:ywte should scrap penetrate-
and-patch. IEEE Aerospace and Electronic Systems Magaziré4):13—-15, April
1998.

Alberto Medina, Anukool Lakhina, Ibrahim Matta, andnioByers. Brite: An ap-

proach to universal topology generation. Rroceedings of the Ninth International
Symposium in Modeling, Analysis and Simulation of CompanérTelecommunica-
tion Systems (MASCOTS'Qpage 346. IEEE Computer Society, 2001.

D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Nekwalescopes: Techni-
cal report. Technical Report tr-2004-04, Cooperative Asdmn for Internet Data
Analysis - CAIDA, 2004.

D. Moore, C. Shannon, G.M. Voelker, and S. Savage. taequarantine: Require-
ments for containing self-propagating code.Timenty-Second Annual Joint Confer-
ence of the IEEE Computer and Communication Societies (IDIBR), pages 1901—
1910, March — April 2003.

M. E. J. Newman, S. Forrest, and J. Balthrop. Email néte@nd the spread of
computer virusesPhysical Review F66(035101), 2002.

A. J. O'Donnell and H. Sethu. On achieving software dsity for improved net-
work security using distributed coloring algorithms.Rroceedings of the 11th ACM
conference on Computer and Communications Secydyes 121-131, Washington,
D.C., October 2004.

A. J. O'Donnell and H. Sethu. Software diversity as aethske against viral prop-
agation: Models and simulations. Bymposium on Measurement, Modeling, and
Simulation of MalwareMonterey, CA, June 2005.

R. Pastor-Satorras and A. Vespignani. Epidemic dycamnd endemic states in
complex networksPhysical Review F63(066117), 2001.

96

[66] R. Pastor-Satorras and A. Vespignani. Epidemics anadumnization in scale-free
networks. In S. Bornholdt and H. G. Schuster, editétandbook of Graphs and
Networks: From the Genome to the Interneges 113-132. Wiley-VCH, May 2002.

[67] R. Pastor-Satorras and A. Vespignani. Immunizatiooarhplex networksPhysical
Review E65(036104), 2002.

[68] PaX Project. Address space layout randomization, M&32 Accessed on August
7th, 2005: http://pax.grsecurity.net/docs/aslr.txt.

[69] C. Phillips and L. Painton Swiler. A graph-based systemnetwork-vulnerability
analysis. InProceedings of the 1998 workshop on New security paradigages
71-79. ACM Press, 1998.

[70] A. Powell. Internet worms. Technical Report 00727, Q5 2003. Accessed on
August 7th, 2005: http://www.niscc.gov.uk/niscc/doesz0030805-00727.pdf.

[71] N. Provos. A virtual honeypot framework. Proceedings of the 13th USENIX Secu-
rity Symposiumpages 1-14, San Diego, CA, August 2004. USENIX Association

[72] D. Ressman and J. Valdés. Use of cfengine for automatedti-platform software
and patch distribution. IRroceedings of the 14th Systems Administration Conference
pages 207-218. USENIX Association, December 2000.

[73] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, andM S. Beebee. Enhanc-
ing server availability and security through failure-efidus computing. IrProceed-
ings of the 6th Symposium on Operating Systems Design andnaptation pages
303-316. USENIX Association, December 2004.

[74] M. Roesch. Snort: Lightweight intrusion detection fatworks. InProceedings of
the 13th Systems Administration Conference (L13899.

[75] O.Ruwase and M. S. Lam. A practical dynamic buffer owsvftietector. IfProceed-
ings of the 11th Annual Network and Distributed System $tg®ymposium (NDSS)
San Diego, California, USA, 2004.

[76] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugd,rBoneh. On the effec-
tiveness of address space randomizatiorRrisceedings of the 11th ACM conference
on Computer and Communications Secynggges 298-307, Washington, D.C., Oc-
tober 2004.

[77] N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? Tifeckveness of Instruc-
tion Set Randomization. IRroceedings of the 14th USENIX Security Symposium
Baltimore, MD, 2005.

[78] M. Stamp. Risks of monocultur€ommun. ACM47(3):120, 2004.

97

[79] S. Staniford, V. Paxson, and N. Weaver. How to Own therimt in Your Spare Time.
In Proceedings of the 11th USENIX Security SymposW&ENIX Association, Au-
gust 2002.

[80] Kyung suk Lhee and Steve J. Chapin. Type-assisted dgnamffer overflow detec-
tion. In Proceedings of the 11th USENIX Security Sympognages 81-88, Berkeley,
CA, USA, August 2002. USENIX Association, USENIX Assoctati

[81] G. Taleck. Ambiguity resolution via passive os fingempng. In G. Vigna,
C. Kruegel, and E. Jonsson, editdPspceedings of the 6th International Symposium
on Recent Advances in Intrusion Detectipages 192—206, Pittsburg, PA, September
2003.

[82] The Honeynet Projecknow Your Enemy: Revealing the Security Tools, Tactics, and
Motives of the Blackhat Communitfddison-Wesley, Boston, MA, 2002.

[83] J. Viega and G. McGrawBuilding Secure Software: how to avoid security problems
the right way Addison-Wesley, Boston, 2002.

[84] Vijay V. Vazirani. Approximation Algorithms Springer-Verlang New York, Inc.,
2001.

[85] C. Wang, J. Davidson, J. Hill, and J. Knight. Protectmfrsoftware-based surviv-
ability mechanisms. IProceedings of the International Conferece on Dependable
Systems and Networksages 193—-202, Goteborg, Sweden, July 2001.

[86] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Emig spreading in real
networks: An eigenvalue viewpoint. [B2nd Symposium on Reliable Distributed
SystemdEEE Computer Society, October 2003.

[87] Y. Wang and C. Wang. Modeling the effects of timing paeaens on virus propaga-
tion. In Proceedings of the 2003 ACM workshop on Rapid Malcpages 61—-66.
ACM Press, 2003.

[88] J. Wilander and M. Kamkar. A comparison of publicallyadable tools for dynamic
buffer overflow prevention. IfProceedings of the 10th Annual Network and Dis-
tributed System Security Symposium (NDS8h Diego, California, USA, 2003.

[89] M. M. Williamson. Throttling viruses: Restricting ppagation to defeat malicious
mobile code. InProceedings of the 18th Annual Computer Security Appbcati
Conferencepage 61. IEEE Computer Society, 2002.

[90] G. Wroblewski. General method of program code obfuscatin Proceedings of the
International Conference on Software Engineering Redeard Practice (SERP)
2002 Las Vegas, USA, June 2002.

[91] J. Xu, Z. Kalbarczyk, and R. K. lyer. Transparent rurgirmndomization for security.
In Proceedings of the 22nd International Symposium on ReiBidtributed Systems
pages 260—-269, October 2003.

98

[92] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Passivoremorability and se-
curity: Empirical results. IEEE Security and Privagy2(5):25 — 31, September —
October 2004.

[93] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bh&issiee. How to model an
internetwork. INEEE Infocomvolume 2, pages 594-602, San Francisco, CA, March
1996. IEEE.

[94] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao. Hetemgeous networking: a
new survivability paradigm. IfProceedings of the 2001 workshop on New security
paradigms pages 33—39. ACM Press, 2001.

99

Appendix A. Host-Centric Diversity Assignments

In Chapter 3, we present a series of diversity assignmebtgmtes. For a single server,
we are interested in maximizing the workload for an attaeikeo wants to mutate a com-
monly available exploit to be effective against our sofvarstallation. If we consider
the hypergraph generated by our available diversity teghes, we can maximize the at-
tacker workload by finding a path of hyperedges whose tofat®feness probability is
minimized and whose total cost is below the cost bound. Imsesf diversity techniques,
we need to determine the subset of diversity techniqueshadhould be applied to a sin-
gle host that would maximize the resistance of a host to a knimnm of attack, given
a maximum acceptable performance hit associated with theeswf diversity techniques
used.

For example, consider a system which employs the followingg diversity techniques:
hardware diversification, address space randomizatiahirestruction set randomization.
Address space randomization and instruction set randdionzchniques have been char-
acterized for their cost of implementation and effectismagainst attack for bot2-bit
and 64-bit architectures. The cost of diversifying a pool of haade to include botl32
ando64 bit platforms is non-zero, and significant, as compared éactist of implementing
either of the two previously discussed techniques. In Téble we provide an example
breakdown of these costs.

We define the host-centric diversity assignment system frindeable A.2. The as-
signment problem can be formalized, using the same frameareated in Chapter 3, as
follows:

HOSTCENTRIC DIVERSITY ASSIGNMENT:

e INSTANCE: AsetD, the functiong andx, a vectorx’, and the set(A) which forms

100

Table A.1: A example set of the cost and effectiveness fanstassociated with multiple
diversity techniques.

Instruction Set Address Space Instruction Set Address Space
‘ Diversity (32-bit) Diversity (32-bit) T Diversity (64-bit) Diversity (64-bit)
1/232 1/215 1/264 1/240
>1 1 ‘ >1 1

p
K

the domain of.

e SOLUTION: A set of diversity scheme®),,, whose total performance hit does not
exceed a preset performance deadkhe
vme M: [[r(d,m)<k'(m)
deD[)z)t
e MEASURE The total probability of effectiveness of attack agaihgt host selecting

the optimization schemes:

min > w,(t)psat)
Dopt&D 000

where

psol<t): H p(d,t)

dEDopt

Theorem 4 TheHOST DIVERSITY ASSIGNMENT optimization problem is NP Hard.

Proof: Given an instance of MxIMUM KNAPSACK, compute the antilog of the sizes
and profits of each element to be placed in the knapsack. Tilegmof the sizes and
profits of knapsack elements can be used as single cost auwi gttobabilitiess and p
for a HOST DIVERSITY ASSIGNMENT solver. If an optimal solution for an instance of
HosTDIVERSITY ASSIGNMENT can be determined in polynomial time, themMMmMum
KNAPSACK can be solved in similar time. Accordingly,d$T DIVERSITY ASSIGNMENT

exists in the same complexity space as iW¥MUM KNAPSACK. [|

101

Table A.2: An examination of the Intelligent Attacker vs. ia@e Host attack and defense
model.

Intelligent Attacker vs. Single Host

Attack Model We assume the attacker possesses an attack technique
effective against a common distribution of the software
which is running on the host. The attacker can mutate
the attack so that it is effective against a variety of di-
versity techniques.

Cost of Attack or | The cost and effectiveness metrics associated with
Effectiveness of | each diversity technique provide figures for both the
Diversity negative and positive impacts associated with the im-
plementation of diversity on a host or set of hosts.
Defense Model | The system engineer may place a high priority on de-
fense against a variety of attack techniques, including
denial of service and buffer overflow remote exploita-
tion. The engineer is also saddled with performance
deadlines which must be met for the system to meet
predefined benchmarks.

Composition All the diversity techniques included are composable
with one another. The composition of a set diversity
techniques increases the attack resistance of a software
package by the product of tledfectiveness probability
metrics of each of the diversity techniques.

Theorem 4 implies that the general fornoBIT DIVERSITY ASSIGNMENT problem
can be solved using a multiobjective multidimensional ierof a MAXIMUM KNAP-
SACK solver and a transformation on the hyperedge weights ard g@sd~. The mul-
tiobjective optimization requirement can be converted sngle objective by using the
attack relevance metrie,. Likewise, the performance impactsand their bounds’ can
be converted into a single metric using which encompasses the economic cost associ-
ated with the diversity technique’s development cost arstiessy performance degradation.
These simplifications allow us to employ a bounded-perforreareedy algorithm adapted

from [5] for generating a feasible solution to the problem.

102

Figure A.1 contains the pseudo-code of the greedy knapdgokitam adapted to the
host diversity assignment problem. We definéd), xs(d) andx’, as the single metrics
which encapsulates the diversification effectivenessrdification cost and the total di-
versification cost limit, respectively. The algorithm atigts to minimize the product of
the effectiveness probabilifyby maximizing the sum of logs of multiplied by —1 while
keeping the sum of the logs afbelow the log ofx’'.

As stated in Chapter 3, the costs of diversity techniquésrfad several narrow bands
based upon the development stage at which they are implechehhis fact, coupled with
the limited amount of data available on the effectivenesdiwdrsity techniques against
all attacks and the cost of non-compiler based diversitiriegies all but eliminates the
need for a host-level diversity assignment algorithm &t time. In the future, the explicit
measurement of both cost and effectiveness parametersegiissitate the use of such an

algorithm, however.

103

Receive input and initialize variables to zero

Input D, p,w,, k, k', w,, T(A), M as defined in the problem instance.
Initialize Dyeqs < {}, Dans < {}

Initialize puns < 1, Kfeas < 0

Weight metrics to single metric case
for m € M:
Kl — KL+ wg(m) * £'(m)
for d € D:
Initialize ps(d) < 0, rs(d) < 0, K, «— 0
for t € T7(A):
ps(d) < ps(d) +wy(t) * p(d, 1)
for m € M:
ks(d) — Ks(d) + wi(m) * k(d, m)

Select only feasible diversity techniques
if ps(d) > 0and ks(d) < K.
r5(d) « —log ps(d)/ log ks(d)
Dfeas — Dfeas ud

Begin greedy algorithm
Sort Dy.,s by 75(d) in decreasing order
for d € Dyeqs:
if K" — Kkreas > ry(d):
Dans — Dans U d
Pans <= PansPs(d)

Check to see if a single diversity technique best
satisfies the constraints, as opposed to a
collection of diversity techniques
Pmin < argmin{p,(d)} as a function oD s,
if Pmin S PamS.
Dans — d
else
Sort D, in order of temporal precedence
return Dy,

Figure A.1: Pseudocode implementation of the Greedy Hostlity Assignment algo-
rithm.

104

Vita

Adam J. O’'Donnell was born in Philadelphia at the Hospitahef University of Penn-
sylvania, not far from Drexel University. He graduated fr@rexel Summa Cum Laude
with a BSEE in 2001 and an MSCE in 2004. In a former life, Adarsigieed RF Amplifier
subsystems at Lucent Technologies, where he was awardetra & his work. More
recent times have found him consulting for many members @fcthmputer security in-
dustry. Adam has worked on several books, serving as thaitadteditor and contributor
to “Building Open Source Network Security Tools”, a contting author on “Hacker’s
Challenge”, and co-author of “Hacker’s Challenge 2.

During his time as a graduate student at Drexel, Adam inyatd problems related
to network economics, the topology of the Internet, and aserpsecurity. The work
culminated in several research papers, includmgAchieving Software Diversity for Im-
proved Network Security using Distributed Coloring Algbms which first presented the
ideas described in this dissertation. Adam’s academiarekevas funded primarily by
the National Science Foundation’s Graduate Researchwaip and through a collection
of scholarships and grants, including the Koerner Familjoeship, the Cisco Systems
Information Assurance Scholarship, and the Colehoweptsthip.

Adam is a member of the IEEE, the ACM, the USENIX Associati@amd the Cult of

the Dead Cow.

