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Abstract

Security through Network-wide Diversity Assignment
Adam J. O’Donnell
Harish Sethu, Ph.D.

The best efforts of the computer security community have noteliminated software with

hidden attackable vulnerabilities in the world. Code analyzers and hardened operating en-

vironments have reduced software bugs. Improved training has created capable security

administrators who have decreased the population of exploitable systems through atten-

tive patching and network access control. A third approach to combating vulnerabilities

has been proposed which requires the use of diverse softwarepackages to slow or stop

attackers. Literature examining the topic ofsoftware diversitydetails a variety of imple-

mentations, but for both business and technical reasons, the limited number of functionally

equivalent yet distinct software packages makes diversitya less effective strategy than one

may like.

In this dissertation, we make diversity a viable security strategy despite the limited

number of diverse systems. We abstract the software diversity concept to a hypergraph

by considering how techniques for generating diversity interact and present themselves

to attackers. We show that diversity’s utility can be increased through the use of graph

coloring algorithms. We design a series of distributed graph coloring algorithms and test

these on real-world graphs collected from the BGP topology of the IPv6 backbone and

nine months of e-mail traffic. The diversity assignments arequantified through the use of

graph theory-based metrics, such as the monochromatic edgecount and the disconnected

component count, as well as the epidemic threshold, a metricborrowed from epidemiology

research.

Any methodology for increasing the attack tolerance of a network is destined to come



xiv

under attack itself. We examine the tradeoff between the quality of our algorithm’s diver-

sity assignment produced and our algorithm’s attack tolerance. We show that the attack

tolerance of our algorithms can be increased by presenting an attacker with a diversity of

graph coloring algorithms. Based upon our observations, simulations, and analysis we are

left with a confirmation of our thesis: not only is diversity critical for improving the attack

tolerance of a network, but diversity must be applied atall levels of system design including

mechanisms to introduce the diversity itself.
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Chapter 1. A Brief Overview of Computer Security

Basic research is what I’m doing when I don’t know what I’m doing.

Werner von Braun

1.1 Introduction

The connected nature of our modern computer systems has given us unparalleled access

to information and communication resources. The connectednature of our systems has also

given unparalleled access to computer crackers, who, both directly and throughvirusesand

worms, compromise the integrity of our electronic assets. As of the time of the writing of

this document, computer security issues have become a routine and unwelcome event in

every user’s life. While the majority of users are not adept at using computer access con-

trol features to their full capacity [92], attackers rarelyattempt brute force attacks against

advanced access control systems. Instead, they invest timein developing attacks against

potential security issues created by coding and configuration problems [12], referred to

collectively asvulnerabilities.

All software, regardless of authorship, may harbor hidden security related vulnerabili-

ties, and these vulnerabilities will eventually be discovered. Upon the discovery of a vul-

nerable situation in a piece of software, code to attack the vulnerability, known as anex-

ploit, may be created and remain secret for many months as it makes its rounds through the

hacker community1. The instant the exploit is detected by the computer security commu-

nity, it acquires theZero Daymonicker, which reflects the exploits novelty to the software

industry. The appearance of a zero day exploit drives the maintainer of the vulnerable code

to release a patch to the software to correct the issue. Responsibility for final remediating

1An excellent guide on writing software exploits can be foundin [29].
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of the issue returns to the global population of system administrators and users, who must

install the patch to correct the issue. Studies have shown that both thezero dayand the

unpatchedperiod can be unexpectedly long, with the unpatched period lasting years [4].

Furthermore, an individual’s diligence in system maintenance is insufficient for protect-

ing his or her access to data; the volume of unmaintained systems on the Internet places

everyone’s access to data at risk [79].

The current state of computer security dictates that users are either waiting to be at-

tacked by a new exploit for previously unknown vulnerabilities or by an old exploit for an

unpatched vulnerability. This dualism provides two natural avenues for research endeav-

ors and security products. The first course of action deals with the reduction of security

vulnerabilities due to known classes of programming and configuration bugs, while the

second course focuses on the management of large groups of systems with known vulner-

abilities. The fields of vulnerability reduction and mitigation are both vast, and it would be

unwarranted to present a complete survey of both topics in this dissertation. Instead, a brief

summary of the core research directions in both areas is presented below.

1.2 Combating Vulnerabilities Before Discovery

A vast majority of the exploits utilized by computer hackersarise out of programming

flaws created by the application developers. For example, classic buffer overflow vulner-

abilities [20] are created when a programmer writes data to memory addresses located in

the stack without confirming that the data will fit inside the space previously allocated by

the programmer. The overrun of data which flows out of the allocated space can rewrite the

instruction pointer of the calling function; if the overwriting data is carefully chosen, the

stored instruction pointer can be redirected back into the data block which was copied into

the buffer. As soon as the current function exits, the next instruction fetched will be code

which exists on the stack rather than inside the program’s data segment. If the data being
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passed to the program is completely controlled by the same user who owns the targeted

program in memory, then there is no security issue. However,if the program executes at

a higher level of privilege than the user who generates the data accepted by the program,

then the user generating the data can hijack the program and execute instructions as if the

user was at the same privilege level as the program.

These attacks have become so commonly exploited that they are considered to be cliché

in the security community. The removal of the well-known classes of security vulnerabil-

ities, such as buffer overflows, will involve developer education to reduce the number of

new vulnerabilities. Additionally, it will require legacycode to be retrofitted to either re-

duce the exploitability of vulnerabilities or reduce the number of exploit targets. A general

overview of software vulnerabilities, as well as proper coding techniques, can be found

in [83].

Reducing the exploitability of bugs in software is referredto ascode hardening. While

these techniques do not remove the vulnerability completely, they do make the creation

of exploits for particular vulnerabilities significantly more difficult. Hardening methods

have been identified which have been shown to be somewhat effective against stack-based

buffer overflow attacks [19, 23] and pointer manipulation [17]. An extensive analysis of

publicly available hardening schemes for buffer overflow prevention produced by Wilan-

der and Kamkar has shown them to be less than perfect [88] withthe best tool stopping

only 50% of studied vulnerabilities. The figures provided do not include countermeasure

subversion techniques, such as the pointer-overwriting method discussed inPhrack Mag-

azine[11]. A survey of compiler-level buffer overflow techniques, as well as countermea-

sures against them, was published in [2].

Code and kernel modification can completely prevent certainclasses of vulnerabilities.

For example, format string attacks [16] and race condition exploitation [18] can be elimi-

nated from consideration by hackers in their current forms.Other classes of vulnerabilities,

such as the aforementioned buffer overflow issue, can be reduced, but not completely elim-
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inated, through static analysis2. Nevertheless, static checking of both standard code [56]

and type-enhanced code has proven to be an effective method of decreasing the number of

vulnerabilities.

While static checking of code may not be able to catch all memory-related software

vulnerabilities, run-time bounds checking of memory access has also been examined. In

general, this class of techniques works by keeping track of both statically and dynamically

allocated memory and performing bounds checks on all memoryaccess operations to con-

firm they fall inside “safe” memory blocks. Lhee and Chapin [80] proposed the use of a

compiler extension which uses typing hints for the construction of an allocated memory

table, which is then used for bounds checking in memory copy related bounds checking.

Ruwase and Lam [75] pointed out that many out of bounds memoryaccesses are not se-

curity critical, and produced a bounds checking solution which allows for these cases. In

general, all runtime bounds checking techniques availableat the current time incur dramatic

performance penalties.

Rather than attempting to squash all vulnerabilities in a single piece of software, re-

searchers have tried to apply techniques borrowed from the fault tolerance community to

allow software to tolerate attacks. Rinardet al. coined the term “failure oblivious” comput-

ing [73] to describe software which follows standard execution paths in the face of invalid

memory access. Failure oblivious software is implemented using code which performs

continuous checking and validation of memory and control flow, which are both schemes

developed in the fault tolerance field.

2A trivial proof of the impossibility of eliminating all buffer overflows through code analysis was de-
scribed by Larochelle and Evans, where they state that the issue is equivalent to solving the halting problem.
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1.2.1 Fault Tolerance andN-Version Programming

As stated, the security community has been applying decades-old fault tolerance tech-

niques developed for detecting defective systems and code to today’s security problems.

Avižienis first proposed the use ofN-version programming [6], which suggests developing

multiple functionally equivalent software packages from the same specification and then

use a voting algorithm to choose the correct program output.While similar techniques

have been used in hardware fault tolerance before, Avižienis’ work is the first place where

the technique was applied to software. Extensions of this work utilize a control flow mon-

itor to compare the multiple simultaneously executing processes to detect deviations from

standard behavior, rather than using a majority voting system that examines the final output.

The critical assumption made byN-version programming is that software packages de-

veloped from the same specification in a clean-room environment will possess uncorrelated

errors. This assumption has been experimentally explored in [52]. The researchers found

that it is possible to generate a set of diverse software packages from a single specification,

but that the existence of faults in multiple versions of the same software package was not

completely independent as individual programmers often made similar mistakes.

1.3 Combating Vulnerabilities After Discovery

It is not unreasonable to assume that software vulnerabilities, either created by pro-

gramming or configuration flaws, are going to be a permanent fixture in the computing

environment. Mitigation strategies for dealing with vulnerable systems which are in pro-

duction must be considered as well. Ultimately, a software vulnerability can be removed

only through the application of apatch[22], or code change, which removes the code or

configuration flaw. The distributed and decentralized nature of desktop system mainte-

nance places the ultimate responsibility of patch maintenance in the hands of the desktop’s

owners, and facilities have to be provided for both the detection and mitigation of publicly
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active vulnerabilities at the network level.

Detection of software vulnerabilities at the network levelcan be performed through ei-

ther active or passive measurement of the network. The active detection of vulnerabilities,

known in industry as bothvulnerability assessmentandpenetration testing[58], requires a

database of known vulnerable software packages along with aprogram which can test for

the markers associated with the software in the database on each machine on the network.

Passive vulnerability detection works by examining network traffic and performing string

matching against known attack patterns. This role is performed by signature-based Intru-

sion Detection Systems, or IDS, such as Snort [74]. Vulnerability assessments detect issues

which may have existed, and have been exploited, for some time; additionally vulnerabil-

ities detected using signature-based IDSes are only found at the instant of exploitation.

Therefore, both of these technologies are of limited use forvulnerability mitigation.

One of the earliest tools available for network-wide vulnerability mitigation has been

network-edge packet filters, or firewalls [14]. Firewalls, famously described by Cheswick

termed as espousing a “crunchy shell around a soft, chewy center” model of network se-

curity, are only a temporary countermeasure to newly discovered vulnerabilities. These

devices do not prevent software vulnerabilities from beingexploited, but they can be used

to drastically limit the number of locations on the Internetfrom which an attacker can

launch an exploit against the protected hosts, which in turngives the system administrators

time to apply patches when a vulnerability arises.

The vulnerability detection and mitigation principles discussed can be improved through

a variety of means. For example, intrusion detection systems which look for anomalies in

the behavior of network traffic rather than known-bad trafficsignatures are being actively

developed and deployed [25]. Firewall systems can be distributed throughout a network,

rather than being placed at a single choke point, so that the number of nodes which can suc-

cessfully launch an attack against any given protected system is reduced [9]. Additionally, a

blend of intrusion detection and automated mitigation techniques, such as network intrusion
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prevention systems similar to Snort InLine, can be employed[44]. All post-vulnerability

disclosure solutions, however, require an effective infrastructure to alert system adminis-

trators to new problems [57], perceptive security teams whoare able to rapidly act on new

security information, and mostly lazy system attackers.

The window on vulnerability exploitation is slowly being closed from both sides. Im-

proved software quality assurance procedures, developer education, and automated tools

are helping to reduce the number of easily exploitable vulnerabilities present in new soft-

ware. Similarly, network administrators are acting on vulnerability announcements more

quickly than in the past. It is unlikely that the reduction ofvulnerabilities coupled with

rapid mitigation techniques will ever eliminate remote exploitation; the prerogative of vul-

nerability disclosure still falls in the hands of the individual or team who discovers the

issue. Given the impossibility of elimination of all software vulnerabilities before code

release, the security community should expect to see the appearance of zero-day exploita-

tion in the visible future. The persistent gap between reduction techniques and mitigation

techniques discussed opens up another avenue for combatingattacks.

1.4 The Software Diversity Compromise

We can draw two conclusions from the surveys presented in Sections 1.2 and 1.3. The

analysis of vulnerability reduction techniques shows thatall software, even after extensive

examination, may harbor hidden vulnerabilities which haveyet to be discovered. Addi-

tionally, vulnerability detection and mitigation techniques are only truly effective against

vulnerabilities which have been publicly disclosed and patched. Any scheme which does

not attempt to directly reduce vulnerabilities or stop vulnerabilities in the wild may be

useful for combating attacks in this gap.

As pointed out in [47], remote attacks against software are produced to extremely tight

specifications. Unlike most conventionally produced software, whose specification is laid
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out on paper, an installation of a vulnerable piece of software is itself the specification for

an exploit. A network defender is able to implement a large number of software packages

which meet the functional specifications required by the network, but deviate from the

virtual specification created by the vulnerable software package previously targeted by the

attacker. This is the essence of software diversity. By employing adiversity of software

and hardware packagesto serve the various needs of a network, an administrator is able

to reduce the effectiveness of a single system-specific attack against systems under their

control.

The use of diverse software systems to combat deliberate faults on a single system

has existed for some time. For example, Joseph and Avižienis extended theN-Version

Programming concept to defend against computer viruses on asingle system [46]. The

modern view of software diversity is not concerned with generating a large collection of

diverse software packages for simultaneous execution on a single system, but with assuring

that networks, taken as a whole, are comprised of a diversityof systems.

Evidence corroborating the inherent value of heterogeneity in a population can be found

across a variety of fields, including the field of biology and organic systems [32]. The

American farmer, for example, learned of the disastrous consequences of sowing a limited

number of genetic strains and its subsequent vulnerabilityto an infectious agent of limited

capability. In the 1970’s, the U.S. corn crop was destroyed when theBipolaris Maydis

pathogen ate through the genetically similar plantings. This single event destroyed over $1

billion of harvestable corn, or about15% of the crop [42].

Researchers have attempted to leverage the diversity through biology concept by build-

ing systems that directly emulate biological system behavior. The most illustrative example

of this concept was described by George and his coworkers [37], where diverse sets of cel-

lular automata work in concert to perform a computation.

The security community views diversity as being absent in today’s networks, and has

made this sentiment clear in public forums [35, 36, 39, 78]. While the software monocul-
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ture present may have been created by either market forces orby technical constraints,

researchers have been studying methodologies and techniques which can be used to artifi-

cially generate diverse software packages.

1.5 Organization

The rest of the dissertation is organized as follows. In Chapter 2 we explore the meth-

ods of implementing software diversity, as multiple techniques for the artificial generation

of diverse software packages exist. In Section 2.2, we sketch the basic premise of this

dissertation: that the utility of using diverse software packages for slowing attackers can

be increased by a careful assignment of diversity techniques to hosts and nodes on a net-

work. We provide a unifying framework that allows for the abstraction and reasoning

about these software diversity schemes in Chapter 3. Using this framework, we formally

define a new class of problems that deal with choosing the right subset of diverse software

packages and diversity generation techniques, known as thesoftware diversity assignment

problem. Upon examination of our model presented in Chapter4, we have discovered that

the amount of diversity required to slow an attacker can be far less than the number of hosts

on a network, and instead the amount of diversity required isa function of the structure of

the network that is being diversified. We then exploit this discovery for the design of dis-

tributed algorithms for assigning diversity on a network ofsystems. In Chapter 5 we both

confirm that our diversity assignment strategies are effective in combating self-propagating

malware using techniques borrowed from the field of computervirus modeling and sim-

ulation, and we show that the way to guarantee the security ofour diversity assignment

scheme is to introduce a diverse set of diversity assignmentalgorithms.
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Chapter 2. The Software Diversity Compromise

It is time for parents to teach young people early on that in diversity there is
beauty and there is strength.

Maya Angelou

2.1 Generating Diversity

In order to counteract the lack of diversity in the Internet,researchers have focused

on the method of diversifying pre-existing architectures,source code, and binaries in or-

der to artificially generate a diversity of software packages. In general, we can classify

the points at which diversity can be applied into the following categories:Requirements,

Architecture, Implementation, andRealization. While other classification schemes of di-

versity techniques have been presented [26], we are less interested in the managerial aspect

of applying diversity to entire business processes, and more concerned with diversity im-

plementation schemes.

During the Requirementsphase, early design considerations which provide diverse

methods of interacting with networked devices, processinginformation, and interacting

with the user can be factored into the initial requirements document. Schemes which gen-

erate a loose functional equivalence between different binaries would be applied during this

stage [94]. In a similar vein, theArchitectureof the software architecture can be varied to

allow for different data flows and process interaction, while still maintaining a standardized

software interface.

The majority of the diversity schemes present in the literature consider how diversifi-

cation can be applied during theImplementationandRealizationphases of the software

development cycle. TheImplementationphase allows for source code to be modified in an

algorithmic fashion, for the software to be built using different programming languages,
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and for the software to be built by independent teams of developers using the same lan-

guage. As proposed by Forrest, Somayaji, and Ackley, automated techniques which ma-

nipulate source code by reordering source code, adding and removing non-functional code,

or changing the linking order of dynamic libraries can be utilized [34].

Researchers working on preventing reverse engineering of binaries have developed

code obfuscation techniques which can also be used to diversify software packages. A

technique for obfuscating Java source code, which uses similar code reordering techniques

proposed by Forrest, is presented in [15]. A general model ofcode obfuscation was devel-

oped by Wroblewski [90].

After code implementation, the finalRealization, or build and execution, of the soft-

ware can be modified through a wide variety of techniques, including the compiler-driven

randomization techniques [31, 85]. In fact, many of the codereordering techniques which

provide memory randomization functionality can be appliedat runtime after a binary has

been created [10,91].

At the final stage of development, the instruction set used can be diversified without a

wholesale switch of system architectures. Barranteset al. proposed the use of an x86 to

x86 translator to randomize a system binary before being runon a virtualized x86 processor

with an obfuscated instruction set [8]. In related work, Kc,Keromytis, and Prevelakis

suggested the use of XOR encryption of the instruction set atthe processor level to produce

a the same instruction obfuscation effect [48]. Both systems serve the same purpose by

converting maliciously injected code into binary strings which have little meaning for the

processor. Additionally, both techniques are not without practical precedent, as a similar

technique was proposed by Cowanet al. for protecting pointers in memory [17]. Both

forms of artificial instruction set randomization appear tobe broken [77], however, due to

irregularities in the byte size of each opcode present in thex86 platform.

The code reordering and reforming techniques are expanded upon in [15] for the pur-

pose of obfuscating Java code against reverse engineering.Wang and her coauthors [85]
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describe code modification techniques for use in protectinghigh-availability mechanisms

which are currently employed in server systems.

The compile-time techniques discussed are readily available for download, and have

found their way into open source operating system distributions [24]. Address space ran-

domization is implemented in the Linux PaX toolkit [68], andcompile time randomization

of stack offsets has been implemented in GCC [31]. It has beenpointed out that address

space randomization doesn’t work as well as predicted in architectures with smaller address

spaces due to the fact that large portions of the address space are reserved by the operating

system, and are not accessible for user-land memory addressing [76].

2.2 The Case for Assigning Diversity

The attacks discussed against the publicly available diversity generation techniques [76,

77] undermines the assumption that a diverse pool of software can be created at a low cost.

Furthermore, an analysis of POSIX-compliant operating systems showed that faults were

highly correlated across different vendor’s platforms, with the majority of common faults

existing in upper-level functionality, such as C libraries. In general, as we descend from

the high level components of a system through the core and into the original architecture

specifications, software diversity becomes both more expensive to implement, and more

effective against common faults.We are forced to conclude that the cost of generating

a set of truly diverse software packages makes diversity a scarce resource which must

be carefully and consciously allocated in order for it to be maximally effective against

attackers.

For a single host, choosing the optimal set of diversity techniques and diverse soft-

ware packages resolves down to a problem of economics. The benefit side of the equation

consists of creating a system which is different enough fromthe global population of com-

puters that an attack against any one system would be difficult to port to be effective against
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the diversified system. Each of the diverse software packages, source level, and compiler-

driven diversity techniques have a associated cost figure, as they either cost money to pur-

chase, decrease computing speed, or increase the amount of administration time required

for patching and general system maintenance.

The burden of creating a host which is considered to be diversified as compared to all

other hosts on the Internet is massive, but it is not one facedby a network administrator

who has control over a large pool of systems. The network administrator’s diversification

task is not equivalent to solving the single host diversification problem for every machine

on their network. Unlike the single host’s administrator, anetwork administrator is able to

leverage the restrictions placed on an attacker by the network topology in order to reduce

the number of diverse software packages necessary. This is the fundamental thesis of our

work: by taking the topology presented to an attacker into account, an assignment of a

small number of diverse software systems can be formulated which can slow or stop an

attacker in their tracks[63].

While it may be argued that the network topology traversed byan attacker is a complete

graph, and every machine must be made diverse and separate from every other machine on

the network, this statement is not true even for IP-level connectivity. The prevalence of

firewalls and private address spaces prevent any machine from connecting to any other

machine on the Internet. Furthermore, not every attack exploits IP-level connectivity for

propagation. Worms which spread by traversing individual e-mail address books move

through a network topology which is remarkably sparse [28],and client-server file sharing

worms inhabit graphs which are largely bipartite [40].

2.2.1 Examples of Network Diversity Assignments

E-Mail Topologies: Any individual that utilizes e-mail has become a target of self-

propagating code. Vulnerabilities associated with the default configurations of MIME han-
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Figure 2.1: Comparison of network topologies utilizing either a single software package or
a diverse software distribution. The effect of optimally distributing two software packages
on a bipartite network is clear in (a) and (b). Bipartite networks such as these are often
found in client-server file sharing topologies.

dlers [41] have given rise to client-side computer viruses [40]. Errors in the parsing code in

major mail transfer agents have resulted in server-side attacks that are also propagated via

e-mail traffic [55]. Secure diversity can be implemented in the stated situation through the

utilization of interchangeable MIME and e-mail header parsers which are selected by the

application based upon a topology-sensitive algorithm. Replacing one parser library with

another would have no user-discernible impact on the software’s behavior and performance.

Client-Server File Shares: Network-accessible file shares have become a popular tar-

get for platform-dependent worm propagation [43]. In many office environments, the file

shares are partitioned into the client and server groups as shown in Figure 2.1(a), where
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Figure 2.2: An additional comparison of network topologiesutilizing either a single soft-
ware package or a diverse software distribution. A random network topology clearly bene-
fits from a random distribution of three heterogeneous software packages (a) as compared
to a uniform distribution of a single package (b). While the assignment is sub-optimal, the
number of edges which exist between nodes running similar software packages is clearly
reduced.
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communication links between similar systems are represented by a solid line. This parti-

tioning can be enforced using firewalls and ACLs. A worm infection on a client system

would be able to self-propagate to any machine in the file-sharing topology by first attack-

ing a server machine; likewise, a worm infection on a server would have to first attack a

client before propagating further.

The secure diversity principle can be quite effectively applied to such a network with

only two different software packages. All previous communication links between similar

systems are replaced by links between dissimilar computers, represented by the dotted

lines in Figure 2.1(b). By utilizing a second software package for file sharing on the server

systems, it is possible to prevent a client system from propagating a worm that attacks a

vulnerability in the file sharing subsystem.

Sensor Networks:The networking field that would benefit greatly from the secure di-

versity principle is sensor networks [30]. Enforcing a diversity policy in a sensor network

is less of an administrative challenge, since these large networks of relatively simple com-

putational and environmental monitoring nodes are usuallycontrolled by a single entity, be

it a military commander or a building supervisor. Because the hardware is characterized as

being relatively simple, it is not a major technical challenge to recreate their comparatively

small software suite for the purposes of introducing variation between individuals in the

population.

Consider the possibility of a system-wide vulnerability that allows for an attacker to

take over a single networked sensor. A single attack can be used to leap-frog from node

to node across the entire network, as indicated by the bidirectional links in Figure 2.2(a).

Sensor networks can be distributed with multiple operatingsystems in ROM. After being

dropped into the operational location, a node can load up oneof a multiple set of OSes. By

constructing a network that contains a multiplicity of operating systems, a single operating

system-specific attack will not be able to propagate across the entire breadth of the network.

Such a randomized distribution of software packages, as shown in 2.2(b), can reduce the
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number of possible node-to-node movements by an attacker.

2.2.2 Reasoning about Diversity

While the concept of diversity assignment schemes may be philosophically appealing,

currently there is no formal system available for reasoningabout diversity assignments.

In the following chapter, we provide a framework that abstracts both the generation and

attacking of diverse software packages.
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Chapter 3. Generalizing and Assigning Software Diversity

Monocultures, like a field of corn, are susceptible to infections, but
genetically diverse cultures, like a prairie, are extremely robust.

Neal Stephenson

3.1 Introduction

In this chapter, we create a generalized framework for classifying and analyzing diver-

sified software that is driven not by the diversity schemes themselves but by how diversified

software appears to an attacker. Consider the pedagogical example shown in Figure 3.1.

A single system can be diversified by running an operating system variant, such as Linux

or OpenBSD. Any single implementation inside the diversified set can then be diversified

again by running the system on a different base hardware platform, namely either x86

hardware or SPARC hardware. If an attacker has a working exploit against software run-

ning on a Linux x86 system that they wanted to use against an OpenBSD/SPARC system,

the attacker would have to mutate the attack so that it is effective against both a different

operating system and a different platform.

In general, each diversity technique applied to a single system creates a pool of diverse

systems from the originating system. Each system inside that pool can then be diversified

by a separate technique to create additional instances of diverse software. This concept

forms the basis of our diversity model. We consider every possible instance of software

that can be generated by the application of diversity techniques, then place the software

instances into the same set if they appear to an attacker as ifthey are separated by a single

diversity technique. A single piece of software can be in multiple sets, as it can be used as

a seed for multiple different diversity techniques.

The software instances are the vertices of ahypergraph, with the sets of diversified
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Figure 3.1: In the above, a single Apache installation is diversified by the introduction of
different operating systems. One of the instances is further diversified by the introduction
of multiple hardware platforms. An abstraction of the modelis presented in Section 3.2.1.

variants generated by a single diversity technique formingthe hyperedges. Since the hy-

peredges naturally overlap at points where a software package is diversifiable using more

than one technique, we are able to reason about the use of multiple diversity techniques

on a single software package. We can abstract the behavior ofcombining multiple diver-

sity techniques as being a walk across intersecting hyperedges on the hypergraph. To an

attacker, the amount of work that he or she must undertake in order to modify an effective

exploit against one system so that it can compromise anotheris a function of the number

of hyperedges, or diversity techniques, which separate thetwo instances of the software.

In Section 3.2.2, we describe how metrics which derive from attack and defense modeling

can be applied to the hyperedges for purposes of determiningan optimal balance of attack

tolerance and implementation cost. We examine what is effectively a trivial application of

the model by examining the application of diversity techniques to a single system briefly in

Section 3.3.1, and in more depth in Appendix A. The remainderof the dissertation is spent

examining the problem of assigning diverse software packages to networks of systems, as
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described in Section 3.3.2.

3.1.1 Related Work

Our model is generated by examining how diversity appears toan attacker, and can

easily be extended to encompass new diversity techniques and new forms of attacks. The

generation of a diversity hypergraph is not dependent upon taxonomies of previously devel-

oped diversity techniques [50]. The generation of a diversity hypergraph for a real system

may in fact lead to new forms of diversity taxonomies, ones where the effect of diversity

on an attacker is central to the taxonomy. Taxonomies of attack techniques and method-

ologies [54] would potentially be useful for modeling the abilities of an adversary who is

confronted with diversity techniques.

3.2 Defining the Diversification Hypergraph

Definition 1 Let d ∈ D be a single diversity technique in the setD of all diversity tech-

niques. Letu ∈ U be a single binary in the setU of all possible software binaries.

The application of a single diversity technique inD takes a single instance of soft-

ware inU and generates a set of software packages. The software generated by a single

diversity technique is viewed to be interchangeable with one another as defined by the

bounds of the diversity technique. Elements of the set of diversified software packages

can be grouped together into equivalence classes, where anyelement in the class can be

mutated to become another element in the class using a singlediversity technique. For

example, if the diversity technique requires systems to runseparate operating systems, the

set of diverse systems are equivalent under the bounds of operating system diversification.

Definition 2 The elementsd ∈ D form equivalence relationson the setU . Two software

packagesu1, u2 ∈ U are said to beequivalentunder diversification schemed if the only
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difference between the two elements inU results from the application of the diversity tech-

nique described byd.

Definition 3 Each equivalence relation generated by the elements ofD createsequiva-

lence classesover the elements contained inU . We denote the equivalence created by

techniqued between the two elementsu1 andu2 in U asu1 ≡d u2.

We can loosely classify the equivalence classes into several categories. Two software

packages lie in abinary equivalence classif the lowest cost modification required to trans-

form one software package into the next can be done at the binary level. If a vulnerable

software package is diversified via a binary technique, the original attack target will still

exist; the exact memory location of the attack target becomes far harder to find, however,

due to the increased space over which the memory location of the attack target may exist.

An example of a binary-level modification would be the randomization of the layout of a

program and its linked libraries in memory [10,34].

While it is possible to convert one program to another through bitwise adjustments, the

process of doing so may be extremely time consuming. It couldbe far easier do make

the modifications at the source code level and allow the compiler to generate the different

binary. Likewise, if it becomes less costly to convert one binary package to another via

source code modification than recompilation, then the two software packages lie in asource

equivalenceclass created by the diversity technique. Attacks against software packages

which have undergone a source modification technique must bemodified themselves to be

made effective against the newly diversified software packages. The modifications for the

attack code may be as simple as a single modification in the attack binary, but given the

stage of the development cycle at which the diversity technique is introduced, it is likely

that a more advanced algorithm or manipulation scheme wouldhave to be utilized for the

attacker to successfully attack the diversified software package.
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As stated in the introduction, several diversification strategies exist for the algorithmic

modification of source code, such as adding or deleting nonfunctional code, code reorder-

ing, and randomizing memory layouts [34]. More invasive techniques which modify data

and control flow are also feasible [85]. Incidentally, thesecode reordering and reforming

techniques can also be effective against reverse engineering attacks [15].

Two software packages may have extremely differing lineageor development histories

but serve the exact same purpose in a system. If two software packages provide effectively

the same functionality, such as two distinct flavors of UNIX,then the software lies in a

functional equivalence class. Probably the most studied method of generating functionally

equivalent software packages uses theN-Version Programming technique [6,46] discussed

in Section 1.2.1.

The equivalence class generated by any given diversity technique may not be directly

tied to the stage in the development cycle at which the diversity technique was applied. For

example, consider a source code modification technique thatworks by repositioning vari-

able declarations. The effect on the final diversified binaries that result from the technique’s

application can also be generated by directly modifying a compiled binary’s memory struc-

ture [91]. If a system designer uses both the source and binary-level modifications, all

the binaries generated using the diversity techniques would reside in the same equivalence

class. The use of multiple diversity techniques on the same piece of software is described

further in the following section.

3.2.1 Composition of Diversity Techniques

Definition 4 A compositionof diversity techniques is the serial application of the tech-

niques one by one in order of temporal precedence.

Composition increases the amount of work necessary to convert an attack which is

effective against one software package to be effective against another one generated from
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the first via a set of diversity techniques. For example, a binary can be diversified using a

compile-time memory space randomization scheme [91], thenexecuted on a system which

utilizes an encrypted instruction set [48]. Any attacker who wishes to take an attack which

is effective against a single binary and mutate it so that it is effective against a binary

which has undergone diversification using both techniques discussed would have to simul-

taneously de-randomize the memory space and decrypt the instruction set utilized by the

diversified binary. An attacker may not need to manipulate anattack to solve two diversity

techniques at the same time; ifN-version programming is employed in the selection of

the base operating system employed to run the binaries, an attacker can first solve all the

mutations necessary to combat the introduction of the foreign operating system and then

solve the issues associated with the instruction set and memory space manipulations.

Definition 5 The set of all equivalence classes created by the diversity techniques inD

form the hyperedgesE , which along with the elements ofU define thediversification hy-

pergraphH = (U, E).

In order to define properties about interactions between hyperedges, being able to iden-

tify individual hyperedges becomes a necessity. It is easy to see that every hyperedge inE

can be identified by a diversity technique inD and a single binary inU which lies in the hy-

peredge. Consider two hyperedges which are created by the same diversity technique and

containing the same binary. The diversity techniques from each hyperedge would create

two equivalence classes that cover all binaries separated by the single diversity technique.

Since both diversity techniques are identical, they would create equivalence classes which

contained the same set of elements, and thus create the same hyperedge.

Definition 6 The composition of diversity techniques can be formally expressed as a path

of hyperedgesP on the diversification hypergraph, where two edges areadjacentin the

path if and only if their intersection contains at least one element ofU .
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The act of composing multiple diversity techniques can be thought of in terms of the

diversity hypergraphH as moving from one binary inU to another by walking from one

adjacent hyperedge to the next. In Figure 3.1, OS diversification and hardware diversi-

fication is applied to a single Apache web server installation. By composing these two

diversity techniques, the system engineer would force an attacker who is able to directly

exploit Apache on a Windows machine to mutate his attack for both a different operating

system, namely OpenBSD, and a different hardware platform.

Definition 7 Temporal Precedenceis an ordering on all diversity techniques necessitated

by the stage in the design process where the techniques must be applied.

The application of one diversification technique may undo the work of a previously ap-

plied technique. Therefore, two diversity techniques can be composed if and only if they

respecttemporal precedence. A simple but illustrative example of temporal precedence can

be found in the use of both source code modification and compile time automatic variable

location randomization diversity techniques. Both techniques can be utilized to make a

single software package more diverse than its standard, reference compilation. The tem-

poral hierarchy places any source code modification before the address space randomiza-

tion since it is necessary for any source code modification techniques to be applied before

any address space randomization techniques are considered. We deconstruct the temporal

hierarchy into the diversification stages discussed in Section 2.1, namelyRequirements,

Architecture, Implementation, andRealization.

Both composition and precedence requirements can be visualized in Figure 3.2(a). In

the example, software packageu1 belongs to two equivalence classes generated by diversity

techniquesd1 andd2. The diversity techniqued1 encompasses a large number of diversified

software packages, includingu2, which is in turn further diversified by techniqued2. Sim-

ilarly, packageu3 is related tou1 by diversity techniqued2, and is then further diversified

by d1. The diversity techniquesd1 andd2 create hyperedges which form a path fromu1 to



25

d ∈ d3

UniverseU

u2 u4 u5

u3u1

d ∈ d1

d ∈ d2

d ∈ d2

d ∈ d1

Software

(a)

d1 u2

u3 u7

u6

u1 u5u4

u8
d3

d2

d3

d2 d3

d3

(b)

Figure 3.2: Figures (a) and (b) provide abstract views of theinteraction of diversity tech-
niques. Figure (a) graphically shows the generalized view of software diversity described
in Section 3.2, where diverse software instances are set elements, diversification techniques
are equivalence classes, and the composition of multiple diversity techniques forms a path
across equivalence classes. We represent the a simplified view of the diversification hyper-
graphH in (b), where the edges represent individual hyperedges andthe vertices represent
software packages inU which lie at the intersection of two hyperedges.

u4 through bothu2 andu3. Sinced1 andd2 can be applied in any order without violating

temporal precedence, the application ofd2 afterd1 to u1 reaches the same software instance
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as the application ofd1 afterd2. Finally, we show a single instance of the application of

d3 to u4, which is 3 diversification techniques away fromu1. While d3 can be applied to

u1, u2, andu3, the equivalence classes created by such an application areomitted from the

diagram for the sake of clarity.

3.2.2 Attack and Defense Modeling

The utility of dividing diversified software packages into equivalence classes is more

clear when examined through the lens ofattack modeling. The deployment of a wide

variety of commercial-off-the-shelf operating systems toa network may be an effective

method of combating a worm which is designed to attack a single exploit, but is ineffective

against an attacker who is willing to purchase each of the operating systems and invest the

necessary time required to develop a set of custom exploits against each OS. Conversely, a

compile time randomization which alters the structure of a binary for each system would

be an effective method of combating a human being who develops their exploits using a

debugger and a local copy of the software under attack, but would only delay a worm which

uses a search algorithm to determine the memory locations ofthe previously used attack

targets.

The diversity schemes discussed are also not equally effective against all forms of at-

tack. Diversifying the instruction sets utilized by different binaries can combat buffer over-

flow attacks, but the technique is ineffective against a resource exhaustion attack. Pro-

ducing several versions of the software to utilize different network protocols may evade

a denial of service attack yet produce binaries which are vulnerable to a buffer overflow

attack.

Definition 8 Let the types of attacks that would take place be denoted by the setT . We

denote the set of software attacks asA. The mapping of attacks on software packages to

the attack techniques used is defined asτ : A 7→ T .
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For every diversity technique inD there exists a series of hyperedges in which the

vulnerable software package resides. The attack techniqueτ(a) employed by an attack

a ∈ A can be mutated to attack another software package which resides in one of the

vulnerable software package’s equivalence classes. The system designer can then choose

which attacks are the most threatening to system survivability by weighting the range ofτ

to the most critical attack types.

Let M be the set of all implementation metrics which are of interest to the system de-

signer. The implementation metrics can be exhibited in several forms, such as a slowdown

associated with the execution of a binary which underwent modification by a diversity

technique. In a similar fashion, the increase in runtime memory consumption and program

storage size of the diversified binary are also accounted forthis way. M is not limited to

system performance metrics, however, as the total economiccost incurred by the imple-

mentation of diversification techniques can be included in this set.

Definition 9 Thediversification costκ is a function which maps each diversification tech-

nique inD and performance metric inM along with the type of binary which is being

diversified inU to a positive and real multiplicative factor correspondingto the implemen-

tation cost:

κ: D ×M × U 7→ R+

Definition 10 Theeffectiveness probabilityρ is a function which maps each diversification

technique inD and attack technique inτ(A) to a quantity which reflects the ability of a

diversification technique to resist the specified form of attack.

ρ: D × τ(A)× U 7→ [0, 1]

Each diversity technique has two metrics with which it is associated. Thediversification

costκ is a function which quantifies the cost to each system performance metric associated
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with implementing each diversity technique, be it memory consumption, loss of execution

speed, or economic cost of implementation. Theeffectiveness probabilityρ is a function

which quantifies the probability that an attack technique can be modified to compensate

for the diversity introduced by a given technique. The effectiveness probability reflects an

attacker’s ability to mutate an attack against any one binary in the equivalence class to be

effective against any other binary in the equivalence class, and is a function of the attacker’s

skill and the type of attack that is being combated. Metrics of this type have been employed

for describing code obfuscation techniques to combat reverse engineering [15].

The effectiveness probability need not be defined for the entire set of attack techniques,

as indicated by the choice ofτ(A) rather thanT (A). The system designer can choose a

subset of attack techniques which he or she considers to be ofthe greatest threat and model

the effectiveness of each diversity techniques against only the attack techniques of inter-

est. Additionally, it is possible to use an element inu rather than the chain of all diversity

techniques to define the cost and effectiveness of applying asingle diversity technique even

though the effectiveness of a diversity technique may be a function of previously applied

techniques. Each element inu, by its nature, encodes the set of all diversity techniques

which have been previously applied in order to reach that point. The concept of a di-

versity technique’s cost and effectiveness being a function of previously applied diversity

techniques is discussed in the following definition.

Definition 11 The property ofdiversity non-linearitydictates that the cost and effective-

ness of a diversity technique is a function of the previouslyapplied diversity techniques.

The cost and effectiveness of the currently applied diversity technique can beamplifiedor

attenuated, which we term anon-linear composition. If the cost and effectiveness of a di-

versity technique is unaffected by previous diversity techniques, we define the interaction

as being alinear composition.

The effectiveness and cost of applying a diversity technique to a binary is not con-
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stant for all systems. A diversification technique that depends upon linking to functionally

equivalent but different standard libraries may cost more to apply for a closed-source op-

erating system than for an open-source operating system. Address space randomization

techniques become more effective as the address space available on the hardware platform

increases. This property ofnon-linear compositionholds implications for the development

of algorithms for the optimization of diversity, as shown inSection 3.3.

Definition 12 We define anattack relevancefunctionwρ: τ(A) 7→ [0..1] which sets the rel-

ative importance of individual attack threats to the systemdesigner. A similar weighting

function, or thecost relevancewκ: M 7→ [0..1], is provided to balance out the diversifica-

tion cost.

A system engineer can then form anattack modelin which diversity is involved by

choosing an appropriate attacker profile and use historicaldata to generate the effective-

ness probability expected for the diversity techniques against the attacker. Furthermore,

the system engineer can create adefense modelconsisting of the set of attacks which be-

come critical for system defense. A first attempt at generating a survey of diversity tech-

niques which examines their effectiveness against variousclasses of attacks is presented

in [47]. Both of these functions are utilized in the optimization of diversity assignments, as

demonstrated in the following section.

3.3 Hyperpaths and Choosing Diversity

The hypergraph framework presented in Section 3.2 providesa method for determining

when and how to apply diversity techniques to a piece of software on a single server and

for an entire network of systems. For a single piece of software, the system designer is

faced with determining a walk on the hypergraph which provides the greatest distance
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Table 3.1: A list of the symbols and functions used in the system model described in this
chapter.
Notation:
Primitives

U - Set of all binaries
D - Set of all diversity techniques

H = (U, E) - Diversity hypergraph formed
by U andD

A - Set of attack techniques
T - Types of attacks

M - Non-diversity performance
metrics i.e. memory usage,
economic cost

Bounds and Weights
wκ - Weights the relative impor-

tance of different cost metrics
wρ - Weights the relative impor-

tance of resisting different at-
tack forms

κ′ - Bound on the acceptable cost
of diversification

Functions
τ - Mapping from attacks to attack tech-

niques
κ - Cost of implementation of a diver-

sity technique as a function of the
diversity technique, cost metric, and
the software being diversified.

ρ - Probability of an attack against a di-
versified software package as a func-
tion of the diversity technique, the
type of attack, and the software be-
ing diversified.

between two diverse software packages while keeping the project under pre-specified cost

bounds. When faced with a network of systems, the designer must determine a set of

diverse software packages which, when assigned to systems on the network, span the largest

distance in the diversification hypergraph if they are neighbors of each other on the network.

In both general cases, we show that determining optimal solutions to both of these prob-

lems is NP Hard. For all current practical instances of the host-based diversity assignment

problem which can be currently envisioned, however, heuristic methods can be used to de-

termine the optimal choice of diversity techniques. The same is not true for the network

diversity assignment problem, as we see in Chapter 4.
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3.3.1 Host-Centric Diversity Assignments

For a single server, we are interested in maximizing the workload for an attacker who

wants to mutate a commonly available exploit to be effectiveagainst our software installa-

tion. If we consider the hypergraph generated by our available diversity techniques, we can

maximize the attacker workload by finding a path of hyperedges whose total effectiveness

probability is minimized and whose total cost is below the cost bound. In terms of diversity

techniques, we need to determine the subset of techniques which should be applied to a

single host that would maximize the resistance of a host to a known form of attack, given

a maximum acceptable performance hit associated with the subset of diversity techniques

used. Generating an optimal solution to this problem is NP-Hard, due to its equivalence

to the classic bin packing problem [5]. We provide a proof of the problems complexity

along with an adaptation of a classic greedy algorithm for generating feasible solutions to

the problem in Appendix A.

The state-of-the-art in software diversification does not currently necessitate the use of

an NP solver for generating optimal host-level software diversity allocations. Practically,

the costs of diversity techniques fall into several narrow bands, ranging from near zero for

compiler-driven randomization schemes to the large expense associated with the purchase

of multiple hardware platforms or developers to generate diverse code architectures. The

wide disparity in costs associated with each technique makes algorithms for determining

host-based diversity assignments unnecessary. As more diversity schemes are explicitly

characterized by their cost, effectiveness, and temporal precedence, it may become nec-

essary to develop heuristic algorithms for determining optimal diversity in a reasonable

amount of time.
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3.3.2 Network-Centric Diversity Assignments

A far more interesting problem deals with the assignment of diverse software packages

to a network of systems, as first discussed in Section 2.2.1. Unlike host-centric diversity

assignments, a network-centric diversity assignment doesnot necessarily require that every

host is maximally different from every other host on the network. The goal of this particular

diversity assignment is to increase the difficulty of starting from a single host and leapfrog-

ging from one system on the network to the next. In the remainder of this dissertation, we

describe and examine methods of generating network diversity assignments which combat

multiple forms of attackers.
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Chapter 4. Distributed Diversity Assignment Algorithms

Behold, the people is one, and they have all one language; andthis they begin
to do: and now nothing will be restrained from them, which they have

imagined to do. Go to, let us go down, and there confound theirlanguage, that
they may not understand one another’s speech.

The Book of Genesis

4.1 Network-Centric Diversity Assignments

The network-centric diversity problems deal with assigning diverse software systems

to specific hosts on a network topology in order to increase the difficulty associated with

attacking the network. More specifically, we want to determine an assignment of diverse

software packages to combat two different attack models, both presented in Table 4.1. The

first model describes a network administrator who faces an intelligent adversary that is

able to build new attacks, recompile previously designed attacks for new platforms, and

learn from previous experiences. The second model attemptsto encapsulate the behavior

of a computer virus which can rapidly propagate to all neighboring systems which are of

similar design.

When compared to the host-centric diversity problem, the assignment of diverse soft-

ware packages to hosts on a network of systems is far less trivial. The problem requires

the generation of an optimal host-centric diversity assignment for every pair of adjacent

hosts on a defined network topology; as we see later, this problem is NP-Hard for all but

the simplest of network topologies.

Before moving forward, we need to state the network diversity assignment problem in

terms of the formalism provided in Chapter 3. The functionk: V 7→ U maps a software

package to a host on a network. The network topology is represented by the graphG =

(V, E). T ′ ⊆ T is the set of attack techniques which can lead to a host compromise that
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Table 4.1: A comparison of the Intelligent Attacker vs. Diverse Network and Computer
Virus vs. Diverse Network attack and defense models.

Intelligent Attacker Diverse Network
Attack
Model

We assume that an intelligent attacker
holds a set of exploits which are spe-
cific to the target platform and the
launch platform. In their basic form,
the exploits are built to be launched
from the same platform as their target.
The attacker can modify the exploit
to be launched from new platforms as
well as modify the exploit to be effec-
tive against new platforms. Further-
more, the attacker can use a compro-
mised node to attack newly adjacent
nodes.

We assume that a virus can take
over a node and use the node to
further propagate the attack. It
cannot modify its attack to com-
promise targets which are dra-
matically different from the host
system.

Cost of
Attack or
Effective-
ness of
Diversity

If two adjacent systems are running
a similar software package and it is
the first time the attacker is being ex-
posed to the pairing, the probability of
an attack propagating from one host
to another is a function of the number
of diversity techniques used to sepa-
rate the two software packages. If an
attacker has been previously exposed
to the pairing, then compromising the
target node from the source node is of
minimal cost to the attacker.

If two adjacent systems are run-
ning a similar software package,
the probability of an attack prop-
agating from one host to another
is a function of the number of di-
versity techniques used to sepa-
rate the two software packages.

Defense
Model

We want to slow an attacker from
taking over the entire network by
leapfrogging from one compromised
host to the next by presenting the at-
tacker with as many different launch-
platform / target-platform pairings as
possible.

We want to prevent a virus with
a small set of attacks from tak-
ing over the entire network by
leapfrogging from one compro-
mised host to the next.

Compos-
ition

The composition of a set diversity
techniques increases the attack resis-
tance of a software package by the
product of theeffectiveness probabil-
ity metrics of each of the diversity
techniques.

The composition of a set di-
versity techniques increases the
attack resistance of a software
package by the product of the
effectiveness probabilitymetrics
of each of the diversity tech-
niques.
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an attacker can use to further propagate the attack. As defined in Chapter 3, we define the

effectiveness probability of each diversity technique beρ. P ′
max(vs, vt) ⊆ P

′(vs, vt) is the

path of maximum attack similarity, as defined byρ, which connects two applicationsvs

andvt covered by the hypergraphH. Let s be a function which computes the similarity

between two binaries:

s(t) =















1 : k(vs) = k(vt)

∏

d∈P ′
max(vs ,vt) ρ(d, t) : else

The network topology represented by the graphG is by no means a complete graph.

While full connectivity is usually assumed for random scanning Internet worms [13], the

formulation and algorithms presented in this dissertationare general enough to encom-

pass attacks which propagate across non-complete topologies, which are common in the

computing space [51]. This is critical for combating worms that leverage file sharing net-

works [43] or email communication [40,41] for transmission.

We can formally define two versions of the network diversity assignment problem, re-

ferred to as the INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT and

the AUTOMATED ADVERSARY NETWORK DIVERSITY ASSIGNMENT problems. In the

first of the two problems, our goal is to create a diversity assignment where an attacker

who is traversing the network is presented with novel edges on each step in their path. The

second of the two problems relaxes the constraint requiringedge novelty and attempts to

reduce the number of adjacent nodes which run similar software packages.

4.1.1 Slowing Intelligent Attackers

As stated, an optimal solution to the intelligent adversaryproblem would be a diversity

assignment which presents the attacker with novel pairingsof launch platforms and target

platforms when the adversary traverses the network. We mustfirst define two components

of the optimization measure.
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Definition 13 A non-repetitive walk is a walk on a graph which does not traverse any

vertex twice.

Definition 14 An edge color pair is an ordered pair created by the color of the head and

the tail of an edge.

Using these two terms, we can more precisely state the measure of the optimization

problem as follows:

INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT:

• INSTANCE: GraphG = (V, E), a hypergraphH, a setU , and a setT ′ ⊆ T .

• SOLUTION: An instancek: V 7→ U

• MEASURE: The number of unique edge color pairs present on every non-repetitive

walk in G given that∀{vs, vt} ∈ E: k(vs) 6= k(vt)

We show in the following theorem that maximizing the number of unique, ordered color

pairs on every non-repetitive walk inG is NP-Hard for general graphs. This is done through

a reduction to the harmonious coloring problem [53].

Definition 15 A harmonious coloring of a graph is a proper vertex coloring where every

edge color pair present on the graph is unique.

In a harmonious coloring, a proper vertex coloring of a graphis generated and the

endpoint colors of every edge form an unordered pair which colors the edge. The graph is

harmoniously colored if and only if no two edges possess the same unordered color pair.

Theorem 1 TheINTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT opti-

mization problem is NP-Hard.
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Proof: Consider an undirected graphG that contains an Euler tour and a set of colors

in U , where|U | < |V |. ConvertG to a directed graphG′, where every edge inG is a

pair of bidirected edges inG′. If an algorithm can generate a feasible solution for the

INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENT problem onG′, then

the corresponding vertex coloring onG is a harmonious coloring.

While the INTELLIGENT ADVERSARY NETWORK DIVERSITY ASSIGNMENTproblem

is not solvable in P assuming that P6= NP for general graphs, it is solvable in linear time

for trees. We can label a subset of nodes as being critical to the network’s operation, then

generate a derived graph which contains a node that is the union of all the critical nodes.

The node which is generated by union of the critical nodes then becomes the root of a

Breadth First Search (BFS) tree. Each of the nodes located inthe BFS tree are then colored

so that any non-repetitive walk on the tree generates a deBruijn sequence. The resultant

coloring forces all edges on the graph which lead to verticesthat are closer to the root

nodes to be “challenging”, or novel to the attacker.

In Figure 4.1, we present a distributed BFS algorithm for solving the intelligent adver-

sary problem. All nodes are initialized with a random software package. The algorithm

initiates a depth counter at the root nodes, which then transmit the counter to their neigh-

bors. All nodes are instructed to retransmit an incrementeddepth counter upon reception

of a depth which is smaller than their currently held value. The depth value is used as an

index for adeBruijn sequence[38], which a sequence of symbols which do not contain

subsequence repetitions of a fixed-sized. We generate our order 2 deBruijn sequence by

computing an Euler tour on a complete bidirected graph, where the nodes are labeled by

the software packages available to each node.

In Figure 4.2, we compare the BFS-based algorithm to a purelyrandomized assignment

of diverse software packages on a tree. For sparse, connected graphs of small diameter with

a large number of available software packages, the randomized software assignment per-
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# U := [U1, . . . , Uk] is the set of software packages
deBruijnSequence():

sequence := Null
euleredges := Null
for head:= 1, head<= |U | − 1, head++:

for tail :=head+1, tail <= |U |, head++:
if euleredges := Null:

euleredges.append((i,j), (j,i))
else:

circuit := (i,j) (j,i)
Splicecircuit into euleredges

for edgein euleredges:
sequence.append(head(edge))

return sequence

For each node:
if not a parent node:

ParentNode := Null
Depth := Null

else:
Depth := 0
ParentNode := Self
deBruijn := deBruijnSequence()

CurrentColor := Randomly chosen value fromU
Initialize CurrentColor
Sleep for an exponentially distributed random period

and executeEventLoop() on wakeup.

EventLoop():
if not a parent node and a depth update was received while asleep:

if Depth := Null or ReceivedDepth< Depth:
Depth := ReceivedDepth
ParentNode :=Node ID of node which transmitted our new depth

SetCurrentColorto U [deBruijn[Depth%|U | ∗ |U − 1|]]
Initialize CurrentColor

TransmitDepth + 1to neighbors
Transmit my node ID to neighbors
Sleep for an exponentially distributed random period.

Figure 4.1: BFS Based Algorithm for solving a restricted version of the INTELLIGENT

ADVERSARY DIVERSITY ASSIGNMENT PROBLEM
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Figure 4.2: Plot of the number of novel edges vs. the length ofthe traversed path. For small
diameter networks with a large number of colors, or large diameter networks with a small
number of colors, it is unnecessary to use the BFS algorithm.

forms as well as the BFS-based algorithm. The combination ofsoftware set size and small

diameter prevents the set of novel edges from being completely exhausted before a repeated

edge is generated. Similarly, for networks with a large diameter and small software set, the

number of edges eventually exhausts all possible novel edges. Dense graphs will increase

the number of parallel paths an attacker can traverse, thus decreasing the performance of the

randomized algorithm. The BFS-based algorithm will be unaffected, since the shortest path

from any node to the critical nodes is guaranteed to have a correct software assignment.

It is trivial for an attacker to prevent the BFS-based algorithm from performing cor-

rectly. After compromising a single node at the edge of the network, an attacker can force

the compromised node to report itself as being a root node. The neighboring nodes will

accept the new depth update, and correspondingly change their software package. The ad-

versary can continue to push his or her attack forward by compromising nodes and then
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fooling their neighbors to choose a different color. Ratherthan having to traverse a mul-

titude of novel edges, the attacker will be able to take a single edge node, push a desired

coloring onto neighboring nodes, compromise a new neighbor, then repeat the process until

he or she reaches a critical node.

Optimally, we would like to combat any algorithm-driven attack using the principles of

diversity, wherea diversity of algorithms for assigning diversity are used to slow or stop

an attacker. In the following section, we show how this can be done.

4.1.2 Stopping Viruses and Limited-Skill Attackers

The vast majority of intrusions experienced by computer systems are not waged by

intelligent adversaries. More commonly, systems are penetrated either by a virus that

repetitively utilizes a single attack or by an unskilled attacker who applies an unmodified,

pre-written exploit to attack machines of a single system type. We want to define a new

diversity assignment goal, one which reduces the number of times globally that an attacker

can leapfrog from one identical system type to the next, while isolating as many nodes of

the same system type from one another. Therefore, our optimization objectives become:

1. A minimization of the number of neighbors running the samesoftware packages

2. A maximization of the number of disconnected “islands” ofnodes running the same

software packages

These objectives, referred to as the defective edge count and the connected component

count, are not orthogonal. A local reduction in the number ofneighbors running the same

software package globally reduces the number of edges an attacker can use to propagate an

attack. A global increase in the number of disconnected components increases the number

of initial nodes that must be taken by an attacker if he or she wishes to compromise every

node on the network. If there are no neighbors running the same software package, then
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every node is a disconnected “island”. More formally, the problem of combating automated

adversaries using diversity assignments can be stated as follows:

AUTOMATED ADVERSARY NETWORK DIVERSITY ASSIGNMENT:

• INSTANCE: GraphG = (V, E), a hypergraphH, a setU , a setT ′ ⊆ T , and a

similarity functions.

• SOLUTION: An assignment instancek: V 7→ U

• MEASURE: The total probability of effectiveness of attack across all node pairs:

∑

{vs,vt}∈E

s(vs, vt, T
′)

In general, however, this problem is also NP-Hard:

Theorem 2 TheAUTOMATED ADVERSARY NETWORK DIVERSITY ASSIGNMENT opti-

mization problem is NP-Hard.

Proof: Consider an assignment of diverse software package where only one diversity

technique exists. The range ofs is therefore limited to two discrete values,{0, 1}. In order

to minimize the total value ofs across all links in the graph, the number of links which

connect diverse systems must be maximized. Any algorithm which can assign diverse soft-

ware packages to nodes in a network so that the number of edgesbetween diverse software

packages is maximized would also be able to solve MAX -K-CUT. Therefore, any algo-

rithm which can solve the NETWORK DIVERSITY ASSIGNMENT problem in polynomial

time would be able to do the same for MAX -K-CUT.

If we considers to be a discrete function, as described in the above proof, the current

network diversity assignment problem is similar to anotherclassic graph theory problem.

The assignment of the software packages inU to the graphG is what graph theoreticians

would call acoloringof graph G. The assignment of colors in such a way that the number
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of defectiveedges, or communication links that exist between two nodes of the same color,

is minimized is called anoptimum coloring. A perfect coloringis an assignment of the

minimum number of colors necessary to color a graph such thatno two neighboring nodes

share the same color. The minimum number of colors required for a perfect coloring is

denoted byχ(G). When|U | < χ(G), any color assignment will induce at least one edge

where both endpoints are similarly colored. A coloring where such an edge, referred to as

a defective edge, is present is called adefective coloring.

We use the termscolorsandsoftware packagesinterchangeably throughout the rest of

the dissertation.

Determining a minimum number of colors required to achieve aperfect coloring is, in

the general case, an NP-Hard problem [5]. Aside from a handful of special cases, determin-

ing an optimum coloring with a minimum number of defective edges is also NP-Hard [21].

In the remainder of the chapter, we provide a class of algorithms which assigns software

packages to nodes on a communication network in order to limit the total number of nodes

an attacker can compromise using a limited attack toolkit. Our algorithms are based on

examining local information and making local decisions. They work by directly decreasing

the defective edge count and indirectly improving the connected component count. We have

examined these algorithms through analysis and simulationon real-world graphs, as shown

in Sections 4.2 and 4.3.1.

Given the purpose of the software distribution algorithm, it is logical to explore the vul-

nerability of the coloring algorithms themselves from the standpoint of an attacker. Based

upon this reasoning, we have developed a series of attacks against our own algorithms and

explored their effectiveness through simulation. These attacks do not rely upon attacking

implementation flaws in the algorithms, but instead are based on malicious nodes attempt-

ing to deceive well-behaving nodes running the algorithm. The results of this simulation

work are presented in Section 5.2.1.
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In Section 5.2.2, we draw several conclusions from our examination of the simulation

results. Our explorations of the attacks’ effects on the coloring algorithms presented give

rise to the observation thatthere exists a tradeoff between an algorithm’s tolerance toattack

and the quality of the software assignment created by the algorithm. Furthermore, we

show that revisiting the initial thesis on the value of diversity is applicable in the design of

software assignment scheme when an algorithm designer wishes to increase the algorithm’s

tolerance to a directed attack. More precisely stated, we conclude thatdiversity must be

introduced at all levels of the system design, including anyscheme that is used to introduce

diversity itself.

4.1.3 Related Work

Inspiration for the examination of a network from the standpoint of an attacker’s progress

in conquering multiple connected computer systems is drawnfrom attack graph research

[69]. In general, an attack graph is a graph theoretic representation of an attacker’s ability

to attain attack states, represented by nodes, and the techniques used to attain those states,

represented by edges. Much of this research has concentrated on efficient ways of gener-

ating these graphs [3, 45]. Suggestions on how to improve thesecurity of an attack graph

relies upon having absolute knowledge of vulnerabilities on each node.

The similarities between the topological properties of human social relations and the

Internet allow us to examine research originally intended for preventing human epidemics

in the context of computer hackers and viruses [27,28,62,66,67]. It has been shown that in

certain classes of network topologies, any infection, under standard models, would become

an epidemic. Additionally, they state that an epidemic can be stopped by conducting selec-

tive immunization of nodes based on their node degree. High-degree nodes are essential for

the connectivity of the network, and removing even a small fraction of them can quickly

disconnect the graph [1]. While it would be possible to install different software based
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solely upon node degree, unequal protection against an attack would occur. A worm that

would attack the software population’s low-degree nodes would have difficulty in spread-

ing and would not compromise the network. An attack against the software assigned to the

high-degree nodes would be able to rapidly propagate and disconnect the network.

4.2 Distributed Algorithms

As stated previously, we have designed and analyzed a seriesof distributed algorithms

which seek to minimize the number of defective edges presenton a communication graph.

The algorithms are presented in order of increasing complexity of implementation. The

RANDOMIZED COLORING algorithm presented in Section 4.2.1 requires each node to ran-

domly select its color and not change it throughout the duration of the network’s operation.

The second algorithm allows a node, at random intervals, to examine its local neighborhood

and choose a new color for itself if a large number of its neighbors have the same color.

We refer to this algorithm as the COLOR FLIPPING algorithm, and it is presented in Sec-

tion 4.2.2. The next pair of algorithms, referred to as the COLOR SWAPPING algorithms,

allows pairs of nodes, again at random intervals, to swap their colors in order to reduce

the number of defective edges. These are presented in Section 4.2.3. Finally, a pair of

algorithms which combine both color flipping and color swapping strategies are presented

in Section 4.2.4.

Each of these algorithms is presented alongside their implementations in pseudocode.

Functions which are common to each of the algorithms are presented in separate listings.

For example, all of the algorithms presented rely upon each maintaining a set of local

variables, such as the set of colors available, basic tools for querying the status of a neigh-

bor’s coloring, and an event loop. The pseudocode for these components is presented in

Figure 4.3.
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Define|U | as number of available colors
DefineU as set of all available colors
DefineNeighborCountas number of neighbors
DefineNeighborSetas set of all neighbors
DefineCurrentColorfor each node

EventLoop():
if the timer event has occured:

DoRecoloring()
Set new timer event

ContinueEventLoop()

ComputeDefect():
for eachNeighborin NeighborSet:

ColorQuery(Neighbor)
return number of nodes runningCurrentColor

ColorQuery(Neighbor):
QueryNeighborfor its current color and store inNeighborColor
return NeighborColor

SwapImprovementQuery(Neighbor):
QueryNeighborfor its improvement in defective edge count if

NeighborexecutesComputeSwappedDefect(Self)
StoreNeighbor’s response inNeighborDefect
return NeighborDefect

DoSwapQuery(Neighbor, NeighborColor):
InstructNeighborto do a color swap
if Neighbordenies request:

return AbortedSwap
else:

CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

Figure 4.3: Pseudocode for various globally shared functions and variables used by the
distributed coloring algorithms.
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RandomizedColoring():
CurrentColor := a random package fromU
Initialize CurrentColor

Figure 4.4: Pseudocode implementation of the Randomized Coloring algorithm.

4.2.1 Randomized Coloring

The first, and most basic, algorithm discussed is the RANDOMIZED COLORING algo-

rithm, as shown in Figure 4.4. This provides, on average,m/|U | defective edges. Proving

this is a simple exercise: after randomly coloring every node on the graph, select a single

edge. The probability that both endpoints have the same color is 1/|U |. Summing across

all edges, the average number of defective edges ism/|U |. The algorithm requiresO(1)

time to run on each node, and zero communication between the nodes is required. Because

of the lack of inter-node communication, the algorithm can be considered extremely secure

against attack.

The graph coloring provided by the algorithm, however, is sub-optimal. In the worst

case, this algorithm performs poorly. A randomized algorithm may lead to every link

forming a connection between two identical systems. While the probability of this event

occurring is(1/|U |)n−1, the result would have a significant impact on system security.

4.2.2 Color Flipping Algorithms

In the COLOR FLIPPING algorithm shown in 4.5, nodes initialize themselves by ex-

ecuting the randomized coloring presented in Section 4.2.1. After a random delay, each

node performs a local search amongst its immediate neighbors to determine if switching to
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a new color would decrease the number of locally defective edges. Since each node must

now poll its immediate neighbors to discover their current color, the algorithm requires

O(∆(G)) time to poll the neighbors per cycle, where∆(G) is the maximum degree of the

graph. After the data is collected,O(∆(G) + |U |) operations must be done to generate a

census of the local colors and determine the minority color.

If it is discovered that switching to the minority color would decrease the local defect

to belowd(v)/|U |, then the flip is instantiated. It can be easily shown that theCOLOR

FLIPPING algorithm will converge. Each color flip reduces the number of defective edges

by at least1. The number of edges present in the graph ism. The maximum number of

color flips that can therefore be conducted ism. Similar proofs can be found throughout

the literature; Vazirani leaves the proof as an exercise to the reader in [84]. By the time the

algorithm has converged, total number of defective edges isprovably decreased below the

average number of defects in the RANDOMIZED COLORING algorithm:

Theorem 3 The upper bound on the number of defective edges produced byCOLOR FLIP-

PING is no more than the average number of defective edges produced by RANDOMIZED

COLORING.

Proof: At the point of convergence, each node is connected to at most⌊d(v)/|U |⌋

defective edges. The number of defective edge endpoints is
∑

v⌊d(v)/|U |⌋. The number

of defective edges is therefore1/2
∑

v⌊d(v)/|U |⌋. In comparison to the randomized algo-

rithm:
1

2

∑

v

⌊

d(v)

|U |

⌋

≤
1

2

∑

v

d(v)

|U |
=

m

|U |

4.2.3 Color Swapping Algorithms

The following pair of algorithms are extensions of the Kernighan-Lin heuristic [5] for

computing balanced cuts. In both algorithms, each node attempts to reduce its number of
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RespondToColorQuery(Neighbor):
TransmitCurrentColorto Neighbor

ComputeMinorityColor() :
ColorCount[0..|U | − 1] := 0
for eachNeighbor:

ColorCount[ColorQuery(Neighbor)]++
MinorityColor := 0
for i = 1..|U | − 1:

if ColorCount[i] > ColorCount[MinorityColor]:
MinorityColor := i

return {MinorityColor, ColorCount[MinorityColor]}

FindBestFlip():
CurrentDefect:= ComputeDefect()
if CurrentDefect> NeighborCount / ColorCount:
{ProposedColor, NewDefect} := ComputeMinorityColor()
if CurrentDefect - NewDefect> 0:

return {ProposedColor, CurrentDefect-NewDefect}
else:

return NoFlipFound

DoFlip():
{NewColor, DefectImprovement} := FindBestFlip()
if NewColor6= CurrentColor:

Initialize CurrentColor

For each node:
Call RandomizedColoring()
Set a timer event
Answer neighbor queries usingRespondToColorQuery()
RedefineDoRecoloring()asDoFlip()
Start theEventLoop()

Figure 4.5: Pseudocode implementation of the Distributed Color Flipping algorithm.
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ComputeSwappedDefect(SwapPartner):
ColorCount[0..|U | − 1] := 0
for each Neighbor:

if Neighbor = SwapPartner:
ColorCount[CurrentColor]++

else:
ColorCount[ColorQuery(Neighbor)]++

NewDefect :=ComputeDefect()
DefectImprovement := NewDefect - ColorCount[ColorQuery(SwapPartner)]
return

FindBestSwap():
MyDefect:=ComputeDefect()
ExpectedSwapGain:= 0
FoundASwap := FALSE
for each Neighborin NeighborSet:

NeighborColor:= ColorQuery(Neighbor)]
if NeighborColor6= CurrentColor:

MySwapGain:= ComputeSwappedDefect(Neighbor)
NeighborSwapGain:= SwapImprovementQuery(Neighbor)
if AcceptablePartner(MySwapGain, NeighborSwapGain):

ExpectedSwapGain := NeighborSwapGain + MySwapGain
SwapPartner := Neighbor.
SwapPartnerColor := NeighborColor
FoundASwap := TRUE

if FoundASwap = TRUE:
return {SwapPartner, SwapPartnerColor}

else:
return {FALSE, FALSE}

DoSwap():
{SwapPartner, SwapPartnerColor} := FindBestSwap()
if SwapParnter = FALSE:

return FALSE
Result:= DoSwapQuery(SwapPartner, SwapPartnerColor)
return Result

Figure 4.6: Pseudocode that describes support functions used by the distributed color swap-
ping algorithms.
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defective edges by negotiating for a color “swap” between itself and its neighbors. After

collecting the number of defective edges which would be removed from the neighbor node

and itself by conducting a swap from each neighbor, the initiating node executing the al-

gorithm chooses a neighbor which it views to be optimal and proposes a color swap. If

the neighbor agrees to the swap, the initiating node takes the color of the neighbor and the

neighbor takes the color of the initiating node. A collection of supporting functions asso-

ciated with the swap algorithms is presented in Figure 4.6; aseparate block of pseudocode

which contains the communication functions required for the swap operation is presented

in Figure 4.7.

For a swap to take place in the first algorithm, known as MUTUALLY BENEFICIAL

SWAPPING and presented in Figure 4.8, the exchange of colors must reduce the defective

edge count for both nodes involved. The second algorithm, referred to as GREATER GOOD

SWAPPING and presented in Figure 4.9, will incur a swap if the total number of defective

edges between both nodes is reduced by the exchange. The greater number of nodes that

are available for a GREATER GOOD SWAPPING execution means the quality of the solution

associated with the GREATER GOOD SWAPPING algorithm is expected to be better than

that associated with the MUTUALLY BENEFICIAL SWAPPING algorithm. Correspondingly,

the increased number of swap partners increases the vulnerability of the algorithm to attack.

This phenomenon is discussed further in Chapter 5.

4.2.4 Hybrid Algorithms

The final set of algorithms are hybrids of the color swapping and color flipping schemes

presented in Sections 4.2.2 and 4.2.3, respectively. The RANDOMIZED HYBRID algorithm,

shown in Figure 4.10, requires that a node which wishes to change its color to randomly

choose to execute either the GREATER GOOD SWAPPING algorithm or the COLOR FLIP-

PING algorithm. The selection between the GREATER GOOD SWAPPING algorithm and
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SwapImprovementQuery(Neighbor):
QueryNeighborfor its improvement in defective edge count if

NeighborexecutesComputeSwappedDefect(Self)
StoreNeighbor’s response inNeighborDefect
return NeighborDefect

DoSwapQuery(Neighbor, NeighborColor):
InstructNeighborto do a color swap
if Neighbordenies request:

return AbortedSwap
else:

CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

RespondToSwapImprovementQuery(Neighbor):
MyDefect:= ComputeDefect()
NewDefect:= ComputeSwappedDefect(Neighbor)
DefectImprovement := MyDefect - NewDefect
TransmitDefectImprovementto Neighbor

RespondToMutuallyBeneficialSwapRequest(Neighbor, NeighborColor)):
if ComputeSwappedDefect(Neighbor) ≥ 1:

TransmitAcceptedRequestto Neighbor
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

else:
TransmitDeniedRequestto Neighbor
return AbortedSwap

RespondToGreaterGoodSwapRequest(Neighbor, NeighborColor)):
TransmitAcceptedRequestto Neighbor
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

Figure 4.7: Pseudocode that describes swap query and response functions used by the
distributed color swapping algorithms.
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MutuallyBeneficialPartner(MySwapGain, NeighborSwapGain):
if MySwapGain≥ 1 and NeighborSwapGain≥ 1:

return TRUE
else:

return FALSE

For each node:
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwapImprovementQuery(Neighbor)
EnableRespondToMutuallyBeneficialSwapRequest(Neighbor, NeighborColor)
RedefineAcceptablePartner(MySwapGain, NeighborSwapGain) as

MutuallyBeneficialPartner(MySwapGain, NeighborSwapGain)
RedefineDoRecoloring()asDoSwap()
Start theEventLoop()

Figure 4.8: Pseudocode implementation of the Mutually Beneficial Color Swapping algo-
rithm.

the COLOR FLIPPING algorithm does not need to be unbiased; on the contrary, it may be

beneficial from a convergence rate or attack tolerance standpoint for the algorithm to prefer

one coloring scheme over the other. Determining the optimalpoint between conducting a

flip or a swap can possibly be done through the use of game theoretic analysis, as discussed

in Chapter 6.

The BEST CHOICE HYBRID, shown in Figure 4.11 algorithm allows pairs of nodes to

examine the defective edge reduction that is possible by either doing a color swap as a pair

or independently doing a color flip. If each node in a swap can eliminate a greater num-

ber of defective edges by cooperating and performing a swap as compared to individually

performing a flip, a swap is conducted. If either of the two nodes finds it can better serve

itself by conducting an independent color flip, then a swap isnot conducted. If the node
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GreaterGoodPartner(MySwapGain, NeighborSwapGain):
if MySwapGain + NeighborSwapGain≥ 1

return TRUE
else:

return FALSE

For each node:
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwapImprovementQuery(Neighbor)
EnableRespondToGreaterGoodSwapRequest(Neighbor, NeighborColor)
RedefineAcceptablePartner(MySwapGain, NeighborSwapGain) as

GreaterGoodPartner(MySwapGain, NeighborSwapGain)
RedefineDoRecoloring()asDoSwap()
Start theEventLoop()

Figure 4.9: Pseudocode implementation of the Greater Good Color Swapping algorithm.

that initiates the re-coloring attempt finds that a swap is not feasible, it attempts to conduct

an independent color flip.

4.3 Simulation

In order to test our algorithms, it was necessary to acquire atopology that is represen-

tative of the networks that our distributed coloring algorithm would expect to encounter.

As many researchers consider generation of a simulated, representative network topology

to be an open research problem [59,93], we have decided to capture anactualtopology for

our algorithm simulation.

For our simulation experiments, we examine a topology generated by e-mail traffic

inside the ECE Department at Drexel University. We captureda sample of the logs created
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FlipOrSwap():
FlipOrSwapProbability := .5
if UniformRandomNumber[0..1]< FlipOrSwapProbability:

DoFlip()
else:

DoSwap()

For each node:
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwapImprovementQuery(Neighbor)
EnableRespondToGreaterGoodSwapRequest(Neighbor, NeighborColor)
RedefineAcceptablePartner(MySwapGain, NeighborSwapGain) as

GreaterGoodParter(MySwapGain, NeighborSwapGain)
RedefineDoRecoloring()asFlipOrSwap()
Start theEventLoop()

Figure 4.10: Pseudocode implementation of the Randomized Hybrid coloring algorithm.

by e-mails as they passed through theece.drexel.edu server. The raw data consisted

of 1, 038, 939 log entries for each e-mail sent and received by278, 435 unique accounts

handled byece.drexel.edu’ssendmail server from January 13th to September 19th

of 2003. Of the original1, 038, 939 e-mails recorded, there are337, 532 unique{to, from}

e-mail address pairs. This means, strictly according to thelogs, there are337, 532 unique

pairs of individuals using the mail server to communicate.

To reduce the impact of spam on our data set, we preserve thoseedges where, for

each sender and receiver, at least one e-mail is sent from theinitial message receiver to

the initial message sender. This represents a complete communication between the two

e-mail entities. Our data set is then reduced to37, 618 {to, from} address pairs, or18, 809

undirected edges. These edges exist between12, 408 nodes, or unique e-mail ID’s, in14
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BestChoiceSwapResponse(Neighbor, NeighborColor):
{FlipColor, FlipDefectImprovement} := FindBestFlip()
SwapDefect:= ComputeSwappedDefect(Neighbor)
if SwapDefect> FlipDefect:

TransmitAcceptedRequestto Neighbor
CurrentColor := NeighborColor
Initialize CurrentColor
return SwapComplete

else:
TransmitDeniedRequestto Neighbor
return AbortedSwap

DoBestChoiceHybrid():
{FlipColor, FlipDefectImprovement} := FindBestFlip()
{SwapPartner, SwapPartnerColor} := FindBestSwap()
SwapDefect:= ComputeSwappedDefect(Neighbor)
if SwapParnter = TRUEand SwapDefect> FlipDefectImprovement:

Result:= DoSwapQuery(SwapPartner, SwapPartnerColor)
if Result = AbortedSwap:

DoFlip()
else:

DoFlip()

For each node:
Do RandomizedSoftware()
Set a timer event
EnableRespondToSwapImprovementQuery(Neighbor)
EnableBestChoiceSwapResponse(Neighbor, NeighborColor)
RedefineAcceptablePartner(MySwapGain, NeighborSwapGain) as

GreaterGoodPartner(MySwapGain, NeighborSwapGain)
RedefineDoRecoloring()asDoBestChoiceHybrid()
Start theEventLoop()

Figure 4.11: Pseudocode implementation of the Best Choice Hybrid coloring algorithm.
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Figure 4.12: Log-Log Plots of E-Mail Graph Statistics. The properties of the collected data
are statistically similar to many other topologies, including the AS topology seen in BGP
routing.
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separate connected components, where the largest connected component consists of12, 354

nodes and18, 768 undirected edges. Our simulation studies use this largest connected

component.

It is customary in the study of large-scale network topologies to examine the distribution

of node degrees on a log-log plot. Accordingly, we have plotted the degree of each node

versus its rank in a sorted list along with the frequency of degree versus the degree of the

node. These plots, whose distribution is consistent with the work of [28, 62], are shown in

Figures 4.12(a) and 4.12(b), respectively.

4.3.1 Algorithm Simulation

The coloring algorithms presented in Sections 4.2.1, 4.2.2, 4.2.3, and 4.2.4 are pro-

vided with three distinct colors, and are each executed by the 12, 354 nodes at intervals

determined by a Poisson process running at each node. The Poisson rateλ is set to1/n

algorithm executions per cycle for each node in order to normalize the execution rate of

the algorithm by each node with respect to graphs that differin node count, allowing for an

unbiased comparison of the algorithm’s performance acrossvarying networks. By the end

of every100, 000 cycles, each node would have executed its coloring algorithm an average

of 8.09 times.

In accordance with the design goals laid out in Section 2.2, we monitor the number of

defective edges present in the graph, the average number of connected components induced

by each color, and the number of nodes which have been defined as being “vulnerable”. The

first metric is our primary optimization goal and corresponds to the number of edges that

exist in the graph that can be traversed by a node-hopping attack. The second metric in-

dicates the minimum number of separate infections that musttake place for all vulnerable

nodes to be compromised given an attack that is unable to change the color assignment.

Since a separate curve exists for each color, we average the number of connected compo-
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nents across all colors for each algorithm analyzed. The final metric provides a baseline of

the number of vulnerable nodes in the network. In the absenceof an external agent, namely

an attack that is aware of the coloring algorithm, this valueshould be affected only by the

coloring algorithm itself.

Figure 4.13(a) shows the improvement in the number of defective edges as the three

classes of dynamic algorithms converge to their local optimums. The difference in the qual-

ity of the solutions provided at convergence is shown in Figure 4.13(b). In Figure 4.13(c),

a comparison of the number of average connected components for each color is presented.

Figure 4.13(d) shows the evolution of the population of nodes of a single color; these nodes

are later tagged as being vulnerable to attack and, if attacked, become malicious. The up-

ward bias in the number of nodes of the specific color being examined is relatively small

in comparison to the number of nodes on the graph and is an artifact of the simulation run.

Not surprisingly, the number of nodes in the one color being examined is approximately

the same for all three classes of algorithms.

In Figures 4.13(a) through (c), both the MUTUALLY BENEFICIAL SWAPPING and the

GREATER GOOD SWAPPING algorithms provide an improvement as compared to the RAN-

DOMIZED COLORING algorithm. The two swapping algorithms provide a solution which is

inferior to the COLOR FLIPPING algorithm. The marked difference in the quality of the col-

oring solutions observed between the swap-based algorithms and the flip-based algorithm

can be attributed to the availability of colors to any given node. In the swap algorithms, a

node can only change its color to one that is present amongst its neighbors, and then only

if the outcome of the swap is mutually beneficial to the nodes or globally beneficial to the

graph. The flip algorithm places no restrictions upon a node’s potential color choices if

the node is exposed to a large number of monochromatic edges.As a result, the COLOR

FLIPPING algorithm allows for a greater fraction of nodes to change their color assignment

when the distributed algorithm is executed.

It is clear from Figure 4.13(b) that the RANDOMIZED HYBRID and BEST CHOICE
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HYBRID algorithms produce a better coloring than either the swap-based or the flip-based

algorithms alone. The hybrid algorithms generate a better solution by simultaneously draw-

ing on the swap algorithm to eliminate deadlocks that may occur in a neighborhood and the

flip algorithm to provide a wider range of colors that a node can assign itself.



60

0 50 100 150
1000

2000

3000

4000

5000

6000

7000

Cycles (2500 s)

D
ef

ec
tiv

e 
E

dg
e 

C
ou

nt

20 40 60 80 100 120 140
1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Cycles (2500 s)

D
ef

ec
tiv

e 
E

dg
e 

C
ou

nt

(a) (b)

0 50 100 150
2400

2600

2800

3000

3200

3400

3600

3800

4000

Cycles (2500 s)

A
ve

ra
ge

 C
on

ne
ct

ed
 C

om
po

ne
nt

 C
ou

nt

0 50 100 150
4100

4200

4300

4400

4500

4600

4700

4800

Cycles (2500 s)

V
ul

ne
ra

bl
e 

N
od

e 
C

ou
nt

(c) (d)

Figure 4.13: Comparison of coloring algorithms. The quality of the coloring, measured by
both the number of defective edges and the number of disconnected components induced
by the coloring, is maximized through the use of hybrid algorithms.
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Chapter 5. Validating and Attacking Distributed Software Diversity

I think computer viruses should count as life. I think it sayssomething about
human nature that the only form of life we have created so far is purely

destructive. We’ve created life in our own image.

Stephen Hawking

5.1 Validating Network Diversity Assignment Algorithms for Use in Virus Defense

The field of viral propagation modeling has garnered a great deal of attention in recent

years as computer security researchers attempt to find ways of mitigating rapid malcode

propagation. A variety of techniques have been suggested which can delay the spread of

a worm, including rate-limiting network cards [89], targeted immunization of highly con-

nected nodes [67], and a combination of address blacklisting and content filtering [61]. In

complementary work, researchers have been focusing on the software monoculture on the

Internet and its relationship to viral epidemics. The valueof software diversity to computer

security comes from the fact that an attack written for one piece of software rarely works

for a different but functionally equivalent software package. By increasing the number of

diverse software packages present on the network, the research argues, the chances that an

attack will be effective against a randomly selected node will decrease.

The research literature in software diversity suggests that the introduction of different

software packages is an effective method of disrupting the activities of an attacker or a

worm, particularly one which repeatedly utilizes a pre-written and unchanging attack to

compromise machines. However, there have been no quantitative evaluations of the impact

of software diversity on malcode propagation in real network topologies. In this section, we

use a popular metric called theepidemic threshold[87] to measure a network’s resiliency

against malcode propagation and study the steady state prevalence of computer viruses in
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the presence of software diversity. We show, through both modeling and simulation, that

even a simple randomized distribution of diverse software packages can increase the epi-

demic threshold of both real and synthetically generated computer networks. This section

also shows that an algorithm-driven distribution of diverse software packages, as discussed

in Chapter 4 can further increase the epidemic threshold andserve as an effective method

for preventing worm epidemics [64].

5.1.1 Problem Statement

In previous chapters, we showed that the location of diversesoftware packages on a

network is as critical to effectively diversifying a network as the creation of diverse software

packages. We have showed that the introduction of an alternative software package is able

to reduce the number of edges across which a virus can traverse. Additionally, we showed

that using an algorithm-driven diversity distribution is necessary for attempting to minimize

the number of monochromatic edges, i.e., the number of homogeneous pairs of neighbors.

While the number of monochromatic edges is an effective metric as an optimization

goal, it does not directly express the ability of the diversity assignment algorithm to limit

the virulence of a worm. This section, on the other hand, quantifies the quality of a software

diversity assignment by focusing on the effect that networkassignments of diverse software

has upon the propagation of worms. Given a worm whose rate of propagation from an

infected node to each of its vulnerable neighbors isβ and the rate at which infected nodes

are disinfected isδ, we study theepidemic threshold, or the ratio ofβ/δ below which an

infectious agent will burn itself out (i.e., the ratio belowwhich there will be no infected

nodes in the network at steady state).

One of the goals of any virus mitigation technique should be to increase the epidemic

threshold of the network. In this chapter, our goal is to study:

1. The epidemic threshold with a randomized distribution ofdiverse software packages
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to nodes in a real network (an IPv6 BGP topology) as well as a synthetically gener-

ated (an Erdös-Rényi random graph) network topology.

2. The relationship of the above results to the number of different software packages

available to distribute among the nodes.

3. The epidemic threshold on the same networks with a topology-sensitive algorithm-

driven distribution of diverse software packages.

As before, we represent a network of computers by graphG and a set of diverse soft-

ware packages which can be assigned to nodes on the network byC. We consider a con-

tagion which can infect only a single software package inC. Assume that the number of

software packages available inC is greater than or equal to the chromatic number of the

graphχ(G). If the software packages are randomly distributed to the network, then a por-

tion but not all of the nodes will be rendered immune to the infection. However, if a graph

coloring algorithm is used to assign the software inC to the nodes inG, then no edges will

be left to spread the infection, and the infection is guaranteed to die out.

The remainder of this section is organized as follows. Section 5.1.2 describes related

work in the fields of software diversity and viral propagation modeling. A generalized

analysis of the viral propagation models and the impact of diversity upon them is presented

in Section 5.1.3. In Sections 5.1.4 and 5.1.4.1, we extend both the statistically derived

and graph theoretic viral propagation models to incorporate the impact of random as well

as algorithm-driven diversity assignments. We validate these models using simulations of

virus propagation on both synthetic andreal network topologies. The simulations show that

the improvement in the epidemic threshold experienced under an algorithm-driven diversity

assignment algorithm is significantly higher than that predicted by the bounds generated by

our models for real-world graphs.
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5.1.2 Related Work

The research discussed in this chapter is based upon work from two independent but re-

lated fields,software diversityandviral propagation modeling. Software diversity research

focuses on the creation and distribution diverse software packages to limit the exploitabil-

ity of a security vulnerability by a worm, known as thewormabilityof a vulnerability [70].

While software diversity focuses on the interaction between a worm and a system at the

moment of infection, the field of viral propagation researchfocuses on the modeling of

large scale behavior of worms once they are established in the network.

5.1.2.1 Viral Propagation Modeling

All of the models discussed below are based upon the SIS, or Susceptible-Infected-

Susceptible paradigm, where the individual vertices on a graph are either in one of two

states:susceptibleto infection orinfected. A node moves from the susceptible state to the

infected state when an infected neighbor, with the probability β, passes on its contagion.

A node moves from the infected state to the susceptible state, independent of its number

of neighbors, with the disinfection probabilityδ. As discussed before, if the ratioβ/δ is

below the epidemic threshold, the infection will eventually die out.

Kephart and White [49] considered viral propagation on a Erdös-Rényi random graph

in an early contribution to the study of computer virus epidemiology. Their assumptions

regarding the homogeneity of the nodes in the communicationnetwork allowed the authors

to model the behavior of an infectious agent using a first order differential equation. A

steady state solution for the differential equation is found which provides a bound on the

epidemic threshold as a function of the average degree in thegraph. They show that the

ratio of the infection rate to the disinfection rate must be less than the inverse of the average

node degree,〈k〉, in order to prevent an epidemic:
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β

δ
<

1

〈k〉

Pastor-Satorras and Vespignani produced a model which provides insights into the prop-

agation of viruses on graphs with arbitrary degree distributions [65]. Their analysis pro-

vides a bound on the epidemic threshold in terms of the node degree’s first and second

order statistics:

β

δ
<
〈k〉

〈k2〉

The authors leveraged statistical mechanics to determine closed-form expressions of the

second-order statistics of degree distributions for specific classes of graphs. When applied

to synthetic graphs which are statistically similar to realworld networks, the model predicts

that every infection will become an epidemic as the number ofnodes tends to infinity. On

graphs sampled from real-world data, the number of nodes is finite, and while small, the

epidemic threshold is non-zero and can be evaluated numerically.

Y. Wang and others [86] created a discrete time model which isthen converted to vector-

space notation, which encapsulates the infection state of each node on the network. Using

algebraic manipulation, they isolate a system matrix whichdetermines the current infection

state based upon the previous system state using a method similar to solving discrete time

Markov chains. Spectral decomposition bounds the epidemicthreshold of a virus propagat-

ing on the network to the inverse of the largest eigenvalue ofthe graph’s adjacency matrix

A:

β

δ
<

1

max
∀i
{µi(A)}

Each of the different models examined here have seemingly different methods to de-

termine the upper bound on the epidemic threshold. For the Kephart and White model,

the epidemic threshold can be maximized by minimizing the average number of adjacent
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systems which are vulnerable to a worm. The epidemic threshold will be increased in the

Pastor-Satorras and Vespignani model by minimizing the second order statistic while maxi-

mizing the first order statistic. The Wang model’s epidemic threshold can be maximized by

minimizing the largest eigenvalue of the diversified network’s adjacency matrix. We show,

however, through modeling and simulation, that all of thesegoals can be met by reducing

the number of edges across which a virus can traverse in a diversified network.

5.1.3 Viral Propagation and Software Diversity

It is possible to show that, regardless of the underlying viral propagation model, an

assignment of software packages to a graph such that the assignment forms a perfect graph

coloring will force the epidemic threshold to infinity. Consider a perfect coloring, where

there are no edges across which a virus can propagate. The only infected hosts that exist

are those which are initially infected by a virus. Because this set cannot increase, the

disinfection rate of systems will continually decrease thenumber of infected systems until

all systems are uninfected.

As pointed out in Chapter 4, it may not be possible to guarantee that a sufficient num-

ber of software systems will be available to perfectly colorthe network. It would then be

more appropriate to assign the limited amount of diversity so as to limit the number of

monochromatic edges and thus increase the epidemic threshold. To achieve this goal, we

use the COLOR FLIPPING algorithm described in Section 4.2.2. The distributed algorithm

has each node choose an initial software package, or color, and, at random intervals, com-

municate with their immediate neighborhood of nodes to discover their current color. The

node initiating the communication will then switch to the neighborhood’s minority software

package if it finds a majority of its neighbors are running thesame software package.

It is important to note that it is not necessary to examine every variation of the coloring

algorithms discussed in Chapter 4 for their effect on the viral propagation metrics. We
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are interested in showing the trends that a decreasing defective edge count has upon the

studied viral propagation characteristics, which will be provided by any of the distributed

algorithms.

The introduction of a graph coloring algorithm removes someof the assumptions of

randomness that underpin the statistical models discussed, which results in loose bounds

on the epidemic threshold on networks colored using the COLOR FLIPPING algorithm.

Rather than providing only loose bounds, we examine the effect of algorithm-driven color

assignments on the epidemic threshold primarily through the use of simulation.

5.1.4 Statistical Models

We can consider nodes which run software packages which are different from their

neighbor to be relatively immune to attack from their neighbor. Assuming a randomized

distribution of diverse software packages, if there arec software packages available forn

nodes, it is expected thatn − n/c nodes will be relatively immune to then/c vulnerable

nodes.

The effective infection rate, or the rate any given infectednode can infect a neighboring

homogeneous node, becomes:

β ′ = β
1

c

with an epidemic threshold given by:

β

δ
<

c

〈k〉

For a givenβ andδ, the critical number of software packages needed to ensure that a

worm infection does not become an epidemic is:
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Figure 5.1: Plot of the degrees of nodes found in the examinednetworks versus the fre-
quency of the occurrence of the degree. The graph examined in(a) was constructed from
a standard random graph model, and contains266 nodes and7, 448 edges. The graph ex-
amined in (b) was sampled from the IPv6 BGP topology, and contains a similar number of
nodes and edges.
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ccrit =

⌈

β

δ
〈k〉

⌉

A similar analysis can be done for the Pastor-Satorras and Vespignani model, which

shows an increase in the epidemic threshold by a similar factor.

In order to test the utility of diversity assignments for increasing the epidemic thresh-

old, it is necessary to either generate or measure a network topology for simulation study.

Our first network was generated by collecting a list of the BGPpeers present in the IPv6

network by accessing the routing table from IPv6 capable Looking Glass routers. A second

network was created using an Erdös-Rényi random graph generator. Both graphs contain

266 nodes and approximately7, 500 edges. The distribution of the individual node degrees

is shown on a log-log scale in Figure 5.1. While both graphs have similar average degree,

the degree distribution for both graphs is dramatically different. The distribution plot of

the synthetic graph, shown in Figure 5.1(a) corresponds to astandard random graph, while

the distribution of the sampled graph’s topology, shown in Figure 5.1(b), shows the same

self-similar characteristics that have been observed in previous literature [33]. While we

utilized larger networks to study the coloring algorithms in Section 4.1.2, the computa-

tional load associated with executing the viral propagation simulations makes this option

infeasible.

The rest of the simulation studies presented in the section follow a standard methodol-

ogy; a single color is tagged as being vulnerable to infection, and the graph is assigned an

initial coloring. A high percentage of the nodes assigned the vulnerable color are randomly

chosen to be the nodes which initially contain the infection. We experimentally determine

the epidemic threshold by progressively changingβ relative to a fixedδ until a persistent

infection is not seen over numerous simulation runs with both the same initial infection set

and with alternate initial infection sets.

The simulation exercises shown in Figures 5.2(a) and (b) examine the effect that the
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Figure 5.2: Comparison of the effect of the number of colors on the experimentally deter-
mined epidemic threshold. In both (a) and (b), a graph is assigned either one color for ev-
ery node, multiple colors via a randomized algorithm, or multiple colors via the described
COLOR FLIPPING algorithm. It can be seen in both graphs that the epidemic threshold
increases as the diversity-assignment algorithms become progressively more sophisticated.
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number of colors has upon theoretically derived and experimentally-evaluated epidemic

thresholds. For each color, we compute the diversity-awarevariants of the Kephart and

White (KW) model and the Pastor-Satorras and Vespignani (PV) model presented in Sec-

tion 5.1.4 for the random graph and the IPv6 graph, respectively. Additionally, both ran-

domized and algorithm-driven color assignments, based upon the COLOR FLIPPING algo-

rithm presented in Chapter 4, are performed on the graph for each color count examined.

The data shows that the bound on the epidemic threshold of a randomized coloring pro-

vided by the statistical models is below the experimentallydetermined epidemic threshold.

The result allows us to conclude that the epidemic thresholdof a diversified network will be

higher than the epidemic threshold of a homogeneous networkeven if diversity is assigned

randomly. It is noteworthy that the epidemic threshold is significantly increased by allow-

ing an algorithm to assign diverse software packages to nodes on the network; this leads

us to conclude that a planned diversity assignment is a worthwhile undertaking in order to

maximize the epidemic threshold of a network.

5.1.4.1 Graph Theory Derived Models

In a fashion consistent with Wang’s model, we are able to restate the goal of the software

assignment in terms of graph partitions and the subsequent eigenvalues of the subgraphs.

We denote our software assignment asf : V (G) 7→ C, C = {1, 2, ..., c}, whereC is

the set of available software packages. LetGi := G[f−1(i)] : i ∈ C, whereGi are the

subgraphs induced by colori. Defineµmax(Gi) as the maximum eigenvalue of subgraph

Gi’s adjacency matrix. Therefore, we wish to find a software assignmentfopt where:

fopt = arg min
∀f

{

max
i∈C
{µmax(Gi)}

}

which minimizes the maximum eigenvalue across all subgraphs induced by each color.

Loose bounds for general graphs and hard bounds on regular graphs can be determined
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for the largest eigenvalue of the adjacency matrix of a diversified network. Rather than

relying upon the loose bounds, we directly measure the eigenvalue of a network which is

actively undergoing diversification to predict the epidemic threshold.

To examine the impact the number of monochromatic edges has upon the epidemic

threshold, we simulate a homogeneous network of systems, then allow each system to

minimize its number of monochromatic neighbors by executing the COLOR FLIPPING al-

gorithm presented in Section 4.2.2. At each time-step, we compute the epidemic threshold

predicted by the Pastor-Satorras and Vespignani model and Wang’s eigenvalue model. The

Kephart and White model is inappropriate for use with networks using an algorithm-driven

diversity assignment as the application of the algorithm tothe network removes the homo-

geneous degree distribution on the network.

Figures 5.3(a) and (b) show the impact that decreasing the number of monochromatic

edges has upon the statistical, eigenvalue-derived, and experimentally found epidemic

thresholds. It is clear from the simulation studies that reducing the number of monochro-

matic edges in the network is an extremely effective method of increasing the epidemic

threshold. The simulation studies confirm the utility of recomputing the eigenvalue-derived

epidemic threshold with each step of the graph coloring operation is an effective method of

approximating the epidemic threshold. Furthermore, the experiment shows that decreases

in the number of defective edges go hand in hand with increases in the epidemic threshold.

While a wide variety of techniques for mitigating rapid malware propagation have been

analyzed and simulated using standard virus modeling techniques, the contributions of the

software diversity community have not yet been fit into this framework. In this section, we

make the first contributions toward analyzing viral propagation modeling in the presence

of software diversity. We use both models and simulations toshow that on both simulated

and real networks of systems, a naı̈ve, randomized softwarediversity assignment is able to

increase the epidemic threshold. Simulations also show that an algorithm-driven diversity

assignment is able to further increase the epidemic threshold beyond that seen with a ran-
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Figure 5.3: Comparison of the effect of the number of defective edges on the epidemic
threshold. In both (a) and (b), the nodes of the graphs all begin at the same color, and
the COLOR FLIPPING algorithm is executed to find a 3-color assignment which reduces
the number of monochromatic edges. As the number of monochromatic edges decreases,
the experimentally determined epidemic threshold increases beyond what is predicted by
statistical models and by the eigenvalue model.
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domized assignment. These results provide quantitative insight into the impact of software

diversity on the tolerance of a network to viral attack.

5.2 Attacking Network Diversity Assignments

In the previous section, we confirmed through simulation andanalysis that reducing

the number of defective edges directly increases the epidemic threshold of a network. It

is likely that an virus would be interested in affecting the performance of the coloring

algorithm itself, given that the distributed algorithms discussed are being used to decrease

the ability of an attacker from compromising the network.

We propose a set of primitive behaviors exhibited by a malicious node from which any

attack can be created:

Spreading Upon inspection, instead of looking to flip its color, a node that is malicious

will look to subvert a neighboring node that is of its own color.

Misrepresentation A node may falsely report its current color when it is queriedfor its

color by neighboring nodes. Additionally, a node may falsely report its defective

edge reduction to neighboring node wishing to conduct a color swap.

Inertia A node will not change its color regardless of external stimulus.

Each of these attacks are presented in pseudocode format in Figure 5.4. These func-

tions are written in such a way that they can be directly incorporated into the algorithms

presented in Chapter 4.

The first algorithm analyzed is robust against attacks directed toward the algorithm it-

self. The RANDOMIZED COLORING algorithm requires nodes to set their color without

examining their environment. In turn, any network implementing the algorithm is not af-

fected by the last two attacks, and can only be affected by thespreading attack.
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# Spreading Attack:
EventLoop():

if the timer event has occured:
Attack any neighboring node of the same color
Set new timer event

ContinueEventLoop()

# Color Liar Attack
RespondToColorQuery(Neighbor):

Transmit a randomly chosen color fromU−CurrentColorto Neighbor

# Defect Liar Attack
RespondToSwapImprovementQuery(Neighbor):

MyDefect:= ComputeDefect()
NewDefect:= ComputeSwappedDefect(Neighbor)
DefectImprovement := MyDefect - NewDefect
Transmit a large random value toNeighbor

# Swap-contract Breaking Attacks
RespondToSwapRequest(Neighbor, NeighborColor)):

TransmitAcceptedRequestto Neighbor
Do not change the current software package

Figure 5.4: Pseudocode used by an attacker wishing to compromise a network of hosts
running the distributed coloring algorithms presented in Chapter 4.

The COLOR FLIPPING algorithm introduces an inherent security flaw. Any node look-

ing to flip its color must trust that their neighbors will be truthful in reporting their own

color assignment. If a malicious node decides to lie about its own color, it can influence a

querying node’s color choice, but not force a color assignment upon the querying node. For

example, a malicious node can falsely report to a node that its color is the same as a query-

ing node, which would contribute to the querying node’s defect count. If the malicious
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node is fortunate, the defective edge count observed by the querying node would become

greater than⌊d(v)/k⌋. This will cause the querying node to flip to a new color. The goal of

the malicious node is to push the querying node to flip to a specific vulnerable color. If a

flip takes place, the malicious node has no way of being certain the querying node will flip

to a vulnerable color.

Both the MUTUALLY BENEFICIAL SWAPPING and GREATER GOOD SWAPPING algo-

rithms introduce a security flaw due to the inherent trust associated with a color swap. If

a malicious node either proposes or agrees to a swap with a participating neighbor, it can

keep its own color even after the neighbor has completed switching to the new color. The

action would create a defective edge that the malicious nodecan use to propagate an attack.

In the case of the mutually beneficial swap algorithm, a swap would never be acceptable

to a node unless the defective edge count of the node decreases. Even if a malicious node

wants to “push” a vulnerable color onto a node, it would only be able to do this to the

subset of its neighbors which would stand to gain from an honest swap. The GREATER

GOOD SWAPPING algorithm, however, has a larger security vulnerability associated with

it. A malicious node can force a color change onto a neighboring node by claiming an

extremely high defect improvement. To the neighbor, it would appear that the proposed

swap is globally beneficial, regardless of its own increase in the number of defective edges.

Therefore, a single compromised node can spread a chosen color across an entire network,

one node at a time.

There does not exist a single optimal attack that works against both algorithms, how-

ever. If the network implements a swapping algorithm, lyingabout a malicious node’s own

color would lead a querying node to swap to a random, non-vulnerable color. Rather than

increasing the number of nodes that can be attacked in the network, running the optimal

swapping algorithm attack on a network running the color flipping algorithm would actu-

ally decreasethe number of vulnerable nodes. Vulnerable nodes, which were previously

unable to swap their color to one which would induce less defective edges because of a lack
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of potential swapping partners would find nodes with a previously unseen color in their

neighborhood. Therefore, not only would the number of vulnerable nodes decrease, the

number of defective edges present across the network would decrease as well. Likewise,

a network running the color flipping algorithm would not be impacted by the contract-

breaking attack mentioned above. No inter-node contracts are involved in the algorithm,

and correspondingly, there is no opportunity to break a color-changing agreement.

Based upon this analysis, the behavior of the hybrid algorithms discussed in Sec-

tion 4.2.4 under attack can be expected to be a synthesis of the reactions of both the color

swapping and color flipping algorithms to the stated attacks.

5.2.1 Attack Simulation

A second series of experiments is conducted to test each algorithm’s tolerance to attack.

One color is selected and labeled asvulnerable, meaning an attacker can compromise that

color and only that color. It then becomes the goal of the attacker to switch every node in

the network to the vulnerable color. After the coloring algorithms have converged, 1% of

the vulnerable nodes are infected with a worm, which is able to carry out any combination

of the attacks described in Section 5.2.

It is not necessary to recompute the epidemic threshold at each point of the virus’ pro-

gression throughout the network. As we have shown in Section5.1.4.1, the defective edge

count is a sufficient metric for measuring the epidemic threshold of a graph.

Figures 5.5(a), 5.5(b), and 5.5(c) show the effect of malicious nodes on the number of

defective edges present, the average number of connected components for each color, and

the number of vulnerable nodes, respectively. These malicious nodes are introduced to the

network after the distributed algorithm has largely converged. They begin to attack the

network by lying about their color and breaking swapping contracts, but respond honestly

when asked about their own improvement with respect to the number of similarly colored
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neighbors when queried about a proposed color swap.

Figures 5.6(a), 5.6(b), and 5.6(c) show the effect on the metrics studied in Figures 4.13

and 5.5(a)–(c) when nodes that lie about the quality of a proposed swap and break swap-

ping contracts are introduced into the network some time after convergence. It should be

noted that the COLOR FLIPPING algorithm is not vulnerable to this attack, since it does not

propose swaps with neighboring nodes.

Figures 5.7(a), 5.7(b), and 5.7(c) show the effect of completely dishonest nodes upon

the network. This “brute force” attack is not designed to attack any one particular al-

gorithm, nor are the malicious nodes cognizant of the coloring algorithm that is being

executed by their neighbors. Instead, it is designed to examine the effects of completely

uncooperative nodes upon the network.

As stated in Section 5.2, color liars increase the number of defective edges in a network

when the network is executing the COLOR FLIPPING algorithm, but decrease the number

of defective edges present in a network executing the COLOR SWAPPING algorithms. The

introduction of color liars in Figure 5.5(a)–(c) experimentally confirms this analysis. The

behavior of the hybrid algorithms indicates a bias in both algorithms towards the use of the

COLOR FLIPPING strategy as opposed to the COLOR SWAPPING strategy, as evidenced by

the similarity between the number of defective edges experienced by the COLOR FLIPPING,

RANDOMIZED HYBRID, and BEST CHOICE HYBRID algorithms in 5.5(a). Furthermore,

the experiment has shown that even after convergence is achieved, it is possible to disrupt

the color assignment of the graph.

The behavior of a network that is being attacked via defect liars is dramatically differ-

ent, as shown in Figure 5.6(a)–(c). While the network implementing MUTUALLY BEN-

EFICIAL SWAPPING algorithm appears to not be affected by the malicious behavior, the

network utilizing the GREATER GOOD SWAPPING is completely compromised. The two

algorithms, while exceedingly similar, exhibit markedly different tolerance to attack. The

rationale for this phenomenon resides in the relative “voting power” of swapping partners.
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Figure 5.5: Comparison of the impact of nodes that only lie about their color on the dis-
tributed algorithms. The vertical line indicates the time when malicious nodes are added to
the network.
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Figure 5.6: Comparison of the impact of nodes that only lie about their defect improve-
ments on the distributed algorithms. The vertical line indicates the time when malicious
nodes are added to the network.
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Figure 5.7: Comparison of the impact of nodes that only lie about both defect improvements
and their color on the distributed algorithms. The verticalline indicates the time when
malicious nodes are added to the network.
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In the MUTUALLY BENEFICIAL SWAPPING algorithm, both neighbors have equal input

for the swap decision. Regardless of the input of one’s neighbor, a swap will not take place

unless the action can benefit both nodes. After the distributed coloring converges, no node

operating under this algorithm can further improve the quality of its coloring by conduct-

ing a swap. Nodes in networks implementing the GREATER GOOD SWAPPING algorithm,

however canalwaysconduct a swap that the nodebelieveswould increase the quality of

the network’s coloring. Under this algorithm, a swap partner can have an unbounded con-

tribution to the swap decision. A malicious node can use thisto force a coloring upon

any neighboring node with whom a swap is being negotiated. Since the hybrid algorithms

depend upon the swapping algorithm, they are both vulnerable to this form of attack.

In the plots contained in Figures 5.5, 5.6, and 5.7, the performance of the RANDOMIZED

HYBRID and the BEST CHOICE HYBRID algorithms under attack appear to be rather sim-

ilar. As stated in Section 4.2.4, the RANDOMIZED HYBRID algorithm contains a tunable

parameter, however, which forces the algorithm to utilize the COLOR FLIPPING algorithm

at a higher or lower frequency compared to the GREATER GOOD SWAPPING algorithm.

Deriving the optimal balance between the two algorithms forthe purpose of minimizing

the effects of an attack against the algorithm can be accomplished using game theory, but

the equilibrium point would be unique to the topology of the graph. In the formulation,

payoffs experienced by either the network operator or the attacker would be derived from

the rate at which non-vulnerable nodes can be convinced to change to a vulnerable color

because of input from malicious neighbors. The usage rate ofeither the COLOR FLIPPING

or the GREATER GOOD SWAPPING algorithms would be selected to balance out the risk of

executing either of the two algorithms over the long term.
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5.2.2 Analysis of Simulation Results

Two important conclusions can be drawn from the analysis of the coloring algorithms

and their tolerance to a tailored attack. The MUTUALLY BENEFICIAL SWAPPING algo-

rithm converges to the largest number of defective edges of any algorithm which allows

for re-coloring of individual nodes. After convergence, though, attacking this algorithm

has shown to be extremely difficult. A slight modification to the MUTUALLY BENEFICIAL

SWAPPING algorithm was presented in the GREATER GOOD SWAPPING algorithm, which

relaxes the guidelines for an acceptable swap. While this allows for more color swaps to

take place and in turn reduces the number of defective edges in the graph, the algorithm be-

comes far more vulnerable to a directed attack. Algorithms which allow a node to undergo

a local and independent color flip, while extremely effective at reducing the total number

of defective edges, have been shown to be heavily impacted bymalicious nodes which lie

about their color. Given enough time for convergence and a small but finite set of moder-

ately connected nodes, the malicious nodes would likely be able to compromise the entire

network. The only algorithm which is not vulnerable to a directed attack is the randomized

algorithm, which, not coincidentally, provides the worst defective coloring performance.

Based upon these results, we believe thatthere is a fundamental tradeoff between the qual-

ity of the diversity achieved by an algorithm and the algorithm’s tolerance to attacks.

Both of the hybrid algorithms allow for a node to choose between the two coloring

algorithms at each instant of operation. The ability to switch between the two algorithms

removes the attacker’s ability to know which coloring algorithm a targeted node is intend-

ing to execute. In the absence of precise knowledge of the currently running coloring

algorithm, an attacker would have some difficulty crafting an optimal attack. As discussed

in Section 5.2, the most effective attack against the COLOR FLIPPING algorithm would

be the introduction of color liars to the network, and the most effective attack against the

swapping components of both the MUTUALLY BENEFICIAL SWAPPING and the GREATER
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GOOD SWAPPING is the introduction of contract breakers to the network. Fora contract-

breaking node to work correctly, however, it must be completely honest about its color.

Otherwise, the swap partner would swap to a different color from that of the malicious

node, which would halt the proceeding attack. Through similar reasoning it is easy to see

why introducing a set of honest contract breakers would be counterproductive for attacking

all coloring algorithms.

The above rationale is no different from the motivation for security through diversity

itself. The COLOR FLIPPING, MUTUALLY BENEFICIAL SWAPPING and GREATER GOOD

SWAPPING algorithms are vulnerable to attack simply because the samealgorithm is run-

ning on every node, and every node is vulnerable to the same form of attack. Introducing

diversity at the diversity assignment layer would mean an attacker would not be able to

use a single attack strategy to take over the network. The RANDOMIZED HYBRID and

the BEST CHOICE HYBRID algorithms are vulnerable to all forms of misrepresentation

and contract-breaking attacks, but the existence of a mixedcoloring strategy increases the

algorithm’s tolerance to attack. Experimental evidence has shown that both hybrid algo-

rithms fare better when presented with both forms of attack,than the COLOR FLIPPING and

GREATER GOOD SWAPPING algorithms when each are presented with their appropriate at-

tack strategies. The increased tolerance to attack is due tothe lack of knowledge on the part

of the malicious nodes; since the malicious nodes are unaware of which algorithm is being

executed by the targeted nodes, choosing an effective attack becomes a game of chance. It

is based upon this observation that we state thatthe most effective way of achieving attack

tolerance in our algorithms is to reapply the fundamental motivation of this dissertation,

and implement diversity strategies into the algorithms themselves.
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Chapter 6. Conclusion and Future Work

Factum est illud, fieri infectum non potest.

Plautus

6.1 A Summary

Despite the best efforts of the computer security community, software with hidden vul-

nerabilities is still released into the world. Improved lexical analyzers and hardened operat-

ing environments have helped to reduce the exploitability of software. Better education and

experience has created attentive administrators, who in turn have cut down on the risk of a

software vulnerability being used as a worm vector through attentive patching and network

access control. Even with the number of easily exploitable vulnerabilities decreasing and

the window of a disclosure’s value slowly being closed, the two research paths will never

eliminate the possibility of intrusion. It is in the gap between pre-vulnerability prevention

and post-vulnerability mitigation techniques that researchers have proposed presenting at-

tackers with a diversity of systems as a target as opposed to something familiar.

The application of thissoftware diversityparadigm requires the acquisition of diverse

software packages which are relatively immune to common faults. The generation and

management of this diversity is an active research area. Theliterature details a variety of

solutions, including introducing heterogeneous softwareto systems through randomization

of memory structures,N-version programming, and various other techniques. However,

for both business and technical reasons, the limited numberof functionally equivalent yet

distinct software packages makes diversity a less effective strategy than one may like.

In this dissertation, we have provided a general model for software diversity by consid-

ering how techniques for generating diversity combine and present themselves to attackers.
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The model shows that an algorithm for diversity assignment is required in networks of sys-

tems where the heterogeneous software set is small in order to maximize the inherent value

of diversity. The analysis inspired us to provide a series ofalgorithms for increasing the

effectiveness of system-level heterogeneity on a network.Even though the computation of

an optimally diverse software allocation is believed to be intractable, the distributed algo-

rithms presented here reduce the number of links that can be utilized for propagating an

attack. Furthermore, our algorithms effectively cluster the network, which helps to isolate

infected systems from the rest of the topology.

Decreasing the number of edges an attacker can traverse is relatively abstract concept

that does not appear to directly translate into an quantifiable impact on an attacker’s per-

formance. We have successfully been able to link this defective edge count to the positive

impact of our diversity assignment strategies against attackers using both analysis and sim-

ulation techniques borrowed from the field of viral propagation modeling.

Any methodology for increasing the attack tolerance of a network is destined to come

under attack itself. We have shown that there exists a trade-off between the ability of an

algorithm to reduce the number of defective edges present inthe network and the ability of

the algorithm to tolerate a directed attack. The algorithm which exhibits the best worst-case

performance against attack was a hybrid of our basic algorithms, which itself highlights the

principle of security through diversity.

Based upon our observations, simulations, and analysis we are left with a confirmation

of our thesis statement; not only is diversity critical for improving the attack tolerance

of a network, but the inherent value of diversity can be increased through an algorithmic

distribution of diverse systems. Furthermore, these principles must be applied to all levels

of system design, including any scheme which introduces diversity itself.
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6.2 Future Work

Multiple problems have been identified during the course of the research related to net-

work diversity assignments whose solutions fall outside the scope of this dissertation. In the

following sections, we outline the measurement experiments which must be performed in

order to correctly quantify the cost and effectiveness metrics associated with each diversity

and attack technique. We additionally describe the engineering work that one can undertake

to implement a network of diverse systems using largely off-the-shelf technologies.

6.2.1 Measurements and Data Analysis

As stated in the concluding remarks, the metrics and functions associated with the di-

versification hypergraph presented in Chapter 3 are difficult to analytically quantify. A

set of measurement experiments should be conducted in orderto provide estimates for a

number of these metrics.

Consider the following initial experiment. Information onthe global background se-

curity events that are associated with worm traffic can be gathered using network tele-

scopes [60], or routable, unpopulated, and contiguous address spaces which are monitored

by traffic monitoring software. A tool which examines packet-level idiosyncrasies to deter-

mine the traffic source’s operating system can be used to determine the characteristic of a

source of an attack without directly contacting the system.These pieces of software, known

as a passive OS fingerprinters, are freely available for download today [81]. This informa-

tion can be coupled with attack fingerprints culled by a signature-based IDS to determine

source and target operating system pairings. The vast number of both Microsoft-targeted

worms and Microsoft-based attack sources will skew the datacollection towards a single

platform, in turn necessitating a lengthy data collection period. We predict that the end

result of this basic exercise will show an extremely high correlation between the software

running on the source of the attack and the software running on the target of the attack,
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which would be a validation of the assumptions made in Section 4.1.2.

The previously mentioned experimental setup does not differentiate between an attack

attempt made by an intelligent attacker or by an automated worm. It is likely that an intel-

ligent attacker would completely ignore a network telescope-based measurement scheme

due to the lack of responses elicited from any input traffic. Aminimal response to input

traffic can be generated using software which presents itself as a host with several open

ports, but does not respond with anything beyond basic information banners. Niels Provos’

honeyd package currently provides this functionality [71]. Separating out worm traffic

would be challenging, but could possibly be done through statistical means by comparing

attacks against twohoneyd systems, where one system provided banners consistent with

the host fingerprint and the other system did not. Intelligent adversaries would attempt to

attack the application specified by the modified banner, while worms would most likely

continue a standard attack. This measurement experiment isstill an approximation of the

behavior of the adversary. It is impossible to know the adversary’s true nature and capabil-

ities without allowing the attack to be fully carried out.

We can safely allow an adversary to execute an attack againsta machine under our

control using heavily instrumented systems placed in specially administered and monitored

sections of a network. Thesehoneypotshave been used heavily in the past for determining

the relative skill and sociological behaviors of computer hackers [82]. Our experiments

can use an array of honeypots to generate statistically significant measurements on the

rate of infection by worms from a similar source host as compared to intelligent attackers

operating from similar sources.

Using a large sample of honeypots would be a viable method of testing the effective-

ness of each practical diversity technique in the literature. The sample machine’s subnet

can be cut in half with half the machines being diversified andthe remaining half being

stock systems. The mean-time-to-successful-attack figures can then be used to build the

effectiveness function discussed in Chapter 3. Similar experiments can be conducted to
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determine the effectiveness of combinations of multiple diversity techniques.

The amount of time required to conduct these experiments is somewhat unbounded. A

significant number of determined hackers have to approach and compromise the systems

before meaningful statistics can be collected. Nevertheless, such experiments would be

useful for determining not only the true value of software diversity but also the metrics

needed for optimal construction of both host-level and network-level diversity assignments.

6.2.2 Implementation Strategies

The diversity assignment algorithms presented in this dissertation are not purely theo-

retical constructs. They can be implemented using currently available, off-the-shelf hard-

ware and software systems. A prototype network of diverse systems can be built out of

standard commodity hardware running kernel hypervisors and virtual machines similar to

Xen [7] and VirtualPC. The hypervisor can be loaded with several different operating sys-

tems, and each system can then be set up using a standardized configuration assignment

tool such as CFEngine [72]. A diversity of assignment algorithms can then be imple-

mented at the hypervisor level, where the challenge of rapidly switching a host’s “color”

can be solved by allowing the hypervisor to activate and deactivate each of its child virtual

systems depending upon the demands of the assignment algorithm.

As discussed in Section 2.2.1, sensor network technology isa perfect candidate for the

presented diversity assignment schemes. Sensor network nodes are comprised of limited-

capacity processors, transceivers, and sensors. A networkdesigner can heavily specify the

interconnection protocol and sensor packages carried by each node and then job out the

operating system development to a set of unrelated contractors. Each separate operating

system can then be placed in long-term storage on the sensor platform, and a small boot

system can be used to switch between the software. Since power is a restricted commodity

on sensor platforms, each node can carry an array of electronic sensors, with the majority
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of these transducers being deactivated. The assignment scheme can also be used for de-

termining the set of transducers which should be activated at any time. This reapplication

of the diversity assignment paradigm discussed in the dissertation would ultimately reduce

the risk of countermeasures against the sensing hardware.



91

Bibliography

[1] R. Albert, H. Jeong, and A. L. Barabási. Error and AttackTolerance of Complex
Networks.Nature, 406:378–382, July 2000.

[2] S. Alexander. Defeating compiler-level buffer overflowprotection. ;login:,
30(3):59—71, June 2005.

[3] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vul-
nerability analysis. InProceedings of the 9th ACM conference on Computer and
communications security, pages 217–224. ACM Press, 2002.

[4] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnerability: A case
study analysis.IEEE Computer, 33:52–59, December 2000.

[5] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi,
and V. Kann.Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer-Verlag New York, Inc., 1999.
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[46] M. K. Joseph and A. Avižienis. A fault tolerance approach to computer viruses. In
Proceedings of the 1988 IEEE Symposium on Security and Privacy, pages 52–58.
IEEE Computer Society Press, April 1988.

[47] J. E. Just and M. Cornwell. Review and analysis of synthetic diversity for breaking
monocultures. InProceedings of the 2nd Workshop on Rapid Malcode (WORM),
Washington, D.C., October 2004.

[48] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Counteringcode-injection attacks
with instruction-set randomization. InProceedings of the 10th ACM conference on
Computer and communication security, pages 272–280. ACM Press, 2003.

[49] J. O. Kephart and S. R. White. Directed-graph epidemiological models of computer
viruses. InProceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, May 1991.

[50] A. D. Keromytis and V. Prevelakis. Dealing with system monocultures. InNATO
Information Systems Technology (IST) Panel Symposium on Adaptive Defense in Un-
classified Networks, Toulouse, France, April 2004.

[51] D. M. Kienzle and M. C. Elder. Recent worms: a survey and trends. InWORM ’03:
Proceedings of the 2003 ACM workshop on Rapid Malcode, pages 1–10, New York,
NY, USA, 2003. ACM Press.

[52] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption of
independence in multiversion programming.Software Engineering, 12(1):96–109,
1986.

[53] Marek Kubale. Graph Colorings, chapter Harmonious Colorings of Graphs, pages
95–104. American Mathematical Society, 2004.



95

[54] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi. A taxonomy of com-
puter program security flaws, with examples.Computing Surveys, 26(3):211–254,
September 1994.

[55] J. P. Lanza and S. V. Hernan. Advisory CA-2003-07: Remote buffer overflow
in sendmail. Technical report, CERT, 2003. Accessed on August 7th, 2005:
http://www.cert.org/advisories/CA-2003-07.html.

[56] D. Larochelle and D. Evans. Statically detecting likely buffer overflow vulnerabilities.
In Proceedings of the 10th USENIX Security Symposium, Washington D.C., USA,
August 2001. USENIX Association.

[57] R. A. Martin. Managing vulnerabilities in networked systems.Computer, 34(11):32–
38, 2001.

[58] G. McGraw. Testing for security during development: why we should scrap penetrate-
and-patch. IEEE Aerospace and Electronic Systems Magazine, 13(4):13–15, April
1998.

[59] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite: An ap-
proach to universal topology generation. InProceedings of the Ninth International
Symposium in Modeling, Analysis and Simulation of Computerand Telecommunica-
tion Systems (MASCOTS’01), page 346. IEEE Computer Society, 2001.

[60] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Network telescopes: Techni-
cal report. Technical Report tr-2004-04, Cooperative Association for Internet Data
Analysis - CAIDA, 2004.

[61] D. Moore, C. Shannon, G.M. Voelker, and S. Savage. Internet quarantine: Require-
ments for containing self-propagating code. InTwenty-Second Annual Joint Confer-
ence of the IEEE Computer and Communication Societies (INFOCOM), pages 1901–
1910, March – April 2003.

[62] M. E. J. Newman, S. Forrest, and J. Balthrop. Email networks and the spread of
computer viruses.Physical Review E, 66(035101), 2002.

[63] A. J. O’Donnell and H. Sethu. On achieving software diversity for improved net-
work security using distributed coloring algorithms. InProceedings of the 11th ACM
conference on Computer and Communications Security, pages 121–131, Washington,
D.C., October 2004.

[64] A. J. O’Donnell and H. Sethu. Software diversity as a defense against viral prop-
agation: Models and simulations. InSymposium on Measurement, Modeling, and
Simulation of Malware, Monterey, CA, June 2005.

[65] R. Pastor-Satorras and A. Vespignani. Epidemic dynamics and endemic states in
complex networks.Physical Review E, 63(066117), 2001.



96

[66] R. Pastor-Satorras and A. Vespignani. Epidemics and immunization in scale-free
networks. In S. Bornholdt and H. G. Schuster, editors,Handbook of Graphs and
Networks: From the Genome to the Internet, pages 113–132. Wiley-VCH, May 2002.

[67] R. Pastor-Satorras and A. Vespignani. Immunization ofcomplex networks.Physical
Review E, 65(036104), 2002.

[68] PaX Project. Address space layout randomization, Mar 2003. Accessed on August
7th, 2005: http://pax.grsecurity.net/docs/aslr.txt.

[69] C. Phillips and L. Painton Swiler. A graph-based systemfor network-vulnerability
analysis. InProceedings of the 1998 workshop on New security paradigms, pages
71–79. ACM Press, 1998.

[70] A. Powell. Internet worms. Technical Report 00727, NISCC, 2003. Accessed on
August 7th, 2005: http://www.niscc.gov.uk/niscc/docs/re-20030805-00727.pdf.

[71] N. Provos. A virtual honeypot framework. InProceedings of the 13th USENIX Secu-
rity Symposium, pages 1–14, San Diego, CA, August 2004. USENIX Association.

[72] D. Ressman and J. Valdés. Use of cfengine for automated, multi-platform software
and patch distribution. InProceedings of the 14th Systems Administration Conference,
pages 207–218. USENIX Association, December 2000.

[73] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and Jr. W. S. Beebee. Enhanc-
ing server availability and security through failure-oblivious computing. InProceed-
ings of the 6th Symposium on Operating Systems Design and Implementation, pages
303–316. USENIX Association, December 2004.

[74] M. Roesch. Snort: Lightweight intrusion detection fornetworks. InProceedings of
the 13th Systems Administration Conference (LISA), 1999.

[75] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detector. InProceed-
ings of the 11th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, California, USA, 2004.

[76] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effec-
tiveness of address space randomization. InProceedings of the 11th ACM conference
on Computer and Communications Security, pages 298–307, Washington, D.C., Oc-
tober 2004.

[77] N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? The Effectiveness of Instruc-
tion Set Randomization. InProceedings of the 14th USENIX Security Symposium,
Baltimore, MD, 2005.

[78] M. Stamp. Risks of monoculture.Commun. ACM, 47(3):120, 2004.



97

[79] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the Internet in Your Spare Time.
In Proceedings of the 11th USENIX Security Symposium. USENIX Association, Au-
gust 2002.

[80] Kyung suk Lhee and Steve J. Chapin. Type-assisted dynamic buffer overflow detec-
tion. InProceedings of the 11th USENIX Security Symposium, pages 81–88, Berkeley,
CA, USA, August 2002. USENIX Association, USENIX Association.

[81] G. Taleck. Ambiguity resolution via passive os fingerprinting. In G. Vigna,
C. Kruegel, and E. Jonsson, editors,Proceedings of the 6th International Symposium
on Recent Advances in Intrusion Detection, pages 192–206, Pittsburg, PA, September
2003.

[82] The Honeynet Project.Know Your Enemy: Revealing the Security Tools, Tactics, and
Motives of the Blackhat Community. Addison-Wesley, Boston, MA, 2002.

[83] J. Viega and G. McGraw.Building Secure Software: how to avoid security problems
the right way. Addison-Wesley, Boston, 2002.

[84] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlang New York, Inc.,
2001.

[85] C. Wang, J. Davidson, J. Hill, and J. Knight. Protectionof software-based surviv-
ability mechanisms. InProceedings of the International Conferece on Dependable
Systems and Networks, pages 193–202, Goteborg, Sweden, July 2001.

[86] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic spreading in real
networks: An eigenvalue viewpoint. In22nd Symposium on Reliable Distributed
Systems. IEEE Computer Society, October 2003.

[87] Y. Wang and C. Wang. Modeling the effects of timing parameters on virus propaga-
tion. In Proceedings of the 2003 ACM workshop on Rapid Malcode, pages 61–66.
ACM Press, 2003.

[88] J. Wilander and M. Kamkar. A comparison of publically available tools for dynamic
buffer overflow prevention. InProceedings of the 10th Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego, California, USA, 2003.

[89] M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious
mobile code. InProceedings of the 18th Annual Computer Security Applications
Conference, page 61. IEEE Computer Society, 2002.

[90] G. Wroblewski. General method of program code obfuscation. In Proceedings of the
International Conference on Software Engineering Research and Practice (SERP)
2002, Las Vegas, USA, June 2002.

[91] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for security.
In Proceedings of the 22nd International Symposium on Reliable Distributed Systems,
pages 260–269, October 2003.



98

[92] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability and se-
curity: Empirical results. IEEE Security and Privacy, 2(5):25 – 31, September –
October 2004.

[93] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model an
internetwork. InIEEE Infocom, volume 2, pages 594–602, San Francisco, CA, March
1996. IEEE.

[94] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao. Heterogeneous networking: a
new survivability paradigm. InProceedings of the 2001 workshop on New security
paradigms, pages 33–39. ACM Press, 2001.



99

Appendix A. Host-Centric Diversity Assignments

In Chapter 3, we present a series of diversity assignment problems. For a single server,

we are interested in maximizing the workload for an attackerwho wants to mutate a com-

monly available exploit to be effective against our software installation. If we consider

the hypergraph generated by our available diversity techniques, we can maximize the at-

tacker workload by finding a path of hyperedges whose total effectiveness probability is

minimized and whose total cost is below the cost bound. In terms of diversity techniques,

we need to determine the subset of diversity techniques which should be applied to a sin-

gle host that would maximize the resistance of a host to a known form of attack, given

a maximum acceptable performance hit associated with the subset of diversity techniques

used.

For example, consider a system which employs the following three diversity techniques:

hardware diversification, address space randomization, and instruction set randomization.

Address space randomization and instruction set randomization techniques have been char-

acterized for their cost of implementation and effectiveness against attack for both32-bit

and64-bit architectures. The cost of diversifying a pool of hardware to include both32

and64 bit platforms is non-zero, and significant, as compared to the cost of implementing

either of the two previously discussed techniques. In TableA.1, we provide an example

breakdown of these costs.

We define the host-centric diversity assignment system model in Table A.2. The as-

signment problem can be formalized, using the same framework created in Chapter 3, as

follows:

HOST-CENTRIC DIVERSITY ASSIGNMENT:

• INSTANCE: A setD, the functionsρ andκ, a vectorκ′, and the setτ(A) which forms
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Table A.1: A example set of the cost and effectiveness functions associated with multiple
diversity techniques.

Instruction Set Address Space Instruction Set Address Space
Diversity (32-bit) Diversity (32-bit) Diversity (64-bit) Diversity (64-bit)

ρ 1/232 1/215 1/264 1/240

κ >1 1 >1 1

the domain ofρ.

• SOLUTION: A set of diversity schemesDopt whose total performance hit does not

exceed a preset performance deadlineκ′:

∀m ∈M :
∏

d∈Dopt

κ(d, m) ≤ κ′(m)

• MEASURE: The total probability of effectiveness of attack against the host selecting

the optimization schemes:

min
Dopt⊆D

∑

t∈τ(A′)

wρ(t)ρsol(t)

where

ρsol(t) =
∏

d∈Dopt

ρ(d, t)

Theorem 4 TheHOST DIVERSITY ASSIGNMENT optimization problem is NP Hard.

Proof: Given an instance of MAXIMUM KNAPSACK, compute the antilog of the sizes

and profits of each element to be placed in the knapsack. The antilogs of the sizes and

profits of knapsack elements can be used as single cost and attack probabilitiesκ andρ

for a HOST DIVERSITY ASSIGNMENT solver. If an optimal solution for an instance of

HOST DIVERSITY ASSIGNMENT can be determined in polynomial time, then MAXIMUM

KNAPSACK can be solved in similar time. Accordingly, HOST DIVERSITY ASSIGNMENT

exists in the same complexity space as MAXIMUM KNAPSACK.
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Table A.2: An examination of the Intelligent Attacker vs. a Single Host attack and defense
model.

Intelligent Attacker vs. Single Host
Attack Model We assume the attacker possesses an attack technique

effective against a common distribution of the software
which is running on the host. The attacker can mutate
the attack so that it is effective against a variety of di-
versity techniques.

Cost of Attack or
Effectiveness of
Diversity

The cost and effectiveness metrics associated with
each diversity technique provide figures for both the
negative and positive impacts associated with the im-
plementation of diversity on a host or set of hosts.

Defense Model The system engineer may place a high priority on de-
fense against a variety of attack techniques, including
denial of service and buffer overflow remote exploita-
tion. The engineer is also saddled with performance
deadlines which must be met for the system to meet
predefined benchmarks.

Composition All the diversity techniques included are composable
with one another. The composition of a set diversity
techniques increases the attack resistance of a software
package by the product of theeffectiveness probability
metrics of each of the diversity techniques.

Theorem 4 implies that the general form HOST DIVERSITY ASSIGNMENT problem

can be solved using a multiobjective multidimensional version of a MAXIMUM KNAP-

SACK solver and a transformation on the hyperedge weights and costs ρ andκ. The mul-

tiobjective optimization requirement can be converted to asingle objective by using the

attack relevance metricwρ. Likewise, the performance impactsκ and their boundsκ′ can

be converted into a single metric usingwκ which encompasses the economic cost associ-

ated with the diversity technique’s development cost and system performance degradation.

These simplifications allow us to employ a bounded-performance greedy algorithm adapted

from [5] for generating a feasible solution to the problem.



102

Figure A.1 contains the pseudo-code of the greedy knapsack algorithm adapted to the

host diversity assignment problem. We defineρs(d), κs(d) andκ′
s as the single metrics

which encapsulates the diversification effectiveness, diversification cost and the total di-

versification cost limit, respectively. The algorithm attempts to minimize the product of

the effectiveness probabilityρ by maximizing the sum of logs ofρ multiplied by−1 while

keeping the sum of the logs ofκ below the log ofκ′.

As stated in Chapter 3, the costs of diversity techniques fall into several narrow bands

based upon the development stage at which they are implemented. This fact, coupled with

the limited amount of data available on the effectiveness ofdiversity techniques against

all attacks and the cost of non-compiler based diversity techniques all but eliminates the

need for a host-level diversity assignment algorithm at this time. In the future, the explicit

measurement of both cost and effectiveness parameters willnecessitate the use of such an

algorithm, however.
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# Receive input and initialize variables to zero
Input D, ρ, wρ, κ, κ′, wκ, τ(A), M as defined in the problem instance.
Initialize Dfeas ← {}, Dans ← {}
Initialize ρans ← 1, κfeas ← 0

# Weight metrics to single metric case
for m ∈M :

κ′
s ← κ′

s + wκ(m) ∗ κ′(m)
for d ∈ D:

Initialize ρs(d)← 0, κs(d)← 0, κ′
s ← 0

for t ∈ τ(A):
ρs(d)← ρs(d) + wρ(t) ∗ ρ(d, t)

for m ∈M :
κs(d)← κs(d) + wκ(m) ∗ κ(d, m)

# Select only feasible diversity techniques
if ρs(d) > 0 and κs(d) < κ′

s:
rs(d)← − log ρs(d)/ log κs(d)
Dfeas ← Dfeas ∪ d

# Begin greedy algorithm
Sort Dfeas by rs(d) in decreasing order
for d ∈ Dfeas:

if κ′ − κfeas ≥ rs(d):
Dans ← Dans ∪ d
ρans ← ρansρs(d)

# Check to see if a single diversity technique best
# satisfies the constraints, as opposed to a
# collection of diversity techniques
ρmin ← arg min{ρs(d)} as a function ofDfeas

if ρmin ≤ ρans:
Dans ← d

else:
Sort Dans in order of temporal precedence

return Dans

Figure A.1: Pseudocode implementation of the Greedy Host Diversity Assignment algo-
rithm.
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