The Last HOPE Karsten Nohl—Univ. of Virginia

The (Im)possibility of Hardware Obfuscation

Motivation

- Most security systems use cryptography
 - Too many use proprietary ciphers
 - Many are weak, but secret
- We find cipher implementations from silicon
 - Cheap approach, no crypto knowledge required
 - We want to enable you to do the same

"No more weak ciphers. No more paranoia." Sean O'Neil

Motivating example: RFID

RFID tags

- Radio Frequency IDentification
- Tiny computer chips
- Passively Powered

Our Project (Starbug, Henryk Plötz, me)

We reverse-engineered the Mifare crypto and evaluated its security

Reverse-Engineering

Obtaining Chips

- Chemically extract chips:
 - Acetone
 - Fuming nitric acid
- Shortcut: buy blank chips!

Mifare Classic RFID tag

Polishing

- Embed chip in plastic
 - Downside: chip is tilted
- Automated polishing with machine

-or-

Manually with sand paper

"On your kitchen table"

-Starbug

Imaging Chip

- Simple optical microscope
 - 500x magnification
 - Camera 1 Mpixel
 - Costs < \$1000, found in most labs
- Stitching images
 - Panorama software (hugin)
 - Each image ~100x100 μm
- Align different layers

Chip Layers

Cover layer

3 Interconnection layer

Logic layer

Transistor layer

Logic Cells

Chip consists of small cells that perform simple

logic functions

Standard Cell Library

- Logic cells are picked form a library
 - Library contains less than 70 types of gates
 - Detection can be automated through template matching

detect

select

Automated Logic Cell Detection

of each cell type.

Logic Gates – Inverter

Logic Gates – 2NOR

The Silicon Zoo

www.siliconzoo.org

- Collection of logic cells
- Free to everyone for study, comparison, and reverseengineering of silicon chips
- Zoo wants to grow—send your chip images!

- <- back to the Silicon Zoo Home
- -- RFID tag, undisclosed manufacturer, early 90s --

Flip Flop

Flip Flop

Logic Gates Interconnect

Connections across all layers

- Traced 1500 (!) connections manually
 - Tedious, time consuming
 - Error-prone (but errors easily spottable)
 - Tracing completely automated by now

Tracing Connections

Automated Tracing

Countermeasures

- Obfuscated placing and wiring of logic cells
 - May defeat human inspection, but not automated tolls
- Dummy cells
 - Makes reversing harder, but not impossible
- Large chips
 - Huge effort, huge rewards?
- Self-destructive chips?
 - May protect secret keys, not secret algorithms

Result: Mifare Classic's Crypto

Mifare Crypto-1

Mifare Classic Weaknesses

Lessons Learned

- Reverse-Engineering is possible
 - you should try! (I'll help)
 - Easy targets: small chips with proprietary crypto
 - Obfuscation help very little against automated circuit reconstruction
- Obscurity adds security only in the short-run
 - Lack of peer-review hurts later

Questions?

Karsten Nohl nohl@virginia.edu Talk to me about your reverse-engineering ideas!