
Android SMS Malware: Vulnerability and Mitigation

Khodor Hamandi Ali Chehab Imad H. Elhajj Ayman Kayssi
Department of Electrical and Computer Engineering

American University of Beirut
Beirut 1107 2020, Lebanon

{kmh09, chehab, imad.elhajj, ayman}@aub.edu.lb

Abstract— In this paper, we study some messaging design
decisions which resulted in a set of vulnerabilities in the
Android operating system, and we demonstrate how a malware
application can be built to abuse these vulnerabilities. The
application presents itself as a regular SMS messaging
application and uses its basic permissions to send/receive short
messages. Since many operators worldwide provide services
that allow users to transfer credits/units through SMS, the
application abuses this service to transfer credits from users
illegally. The “permission” subsystem, the “broadcast
receiver” subsystem, and the message-sending mechanism
contribute to forming a haven for SMS malware by granting
them absolute control over sending, receiving, and hiding SMS
messages. Accordingly, the malicious application hides any
acknowledgments from the telecom operator that might
appear after a credit transfer transaction. This enables
malware to drain the balance of the attacked user and has the
potential to cause damage to a large number of users as well as
telecom operators. The application was demonstrated on a
local operator and it successfully passed standard screening
procedures that claim to catch malware. A set of possible
solutions are also presented in order to mitigate the risks of
such attacks.

Keywords - Android; Vulnerability; Malware; SMS; credit
transfer; Permission; Broadcast Receiver

I. INTRODUCTION
The digital mobile telecommunication is now in its third

decade and is steadily progressing. The advancement in
telecom has touched all its components including the mobile
stations. These mobile stations are cellphones that were
meant originally to do phone calls over Circuit Switched
(CS) networks and to provide basic text services like the
Short Message Service (SMS). These limited-features
devices evolved to become smartphones with enhanced
capabilities and this led to their wide proliferation across the
globe. In 2011, reports estimated that close to 500 million
smartphones were shipped, which represents an increase of
more than 60% over 2010 and at the same time representing
over 30% of all shipped mobile phones [1, 2]. Among these
smartphones, over 48% were based on the Android operating
system (OS) [3]. Moreover, by 2011, three billion mobile
applications were downloaded [4], while in 2012, 1.5 billion
applications are downloaded each month [5]. Android is, by
design, an open OS; users are able to access its source code
and can use the publicly-available application programming
interfaces (API) to build applications and publish them on
the Android application market [5]. This philosophy has

enriched the Android market with over 675,000 applications
by September 2012 [6], but has opened the door for a large
variety of malware. In fact, eight million new mobile
applications were identified by McAfee as malware between
April and June of 2012 [7]. The report [7] added that the
newly-discovered problems emanated from: SMS-based
malware, mobile botnets, spyware, and destructive Trojans
[8]. Trojan!SMSZombie, an SMS android Trojan, discovered
in July 2012, was able to infect 500,000 phones in China.
Many financial transactions and payments are processed
using SMS in China; the ability to intercept SMS payloads
and to have the privileges to send SMS messages has granted
this Trojan the capability to execute numerous attacks [9]. In
September 2012, a malicious Android game application (or
simply app) was detected and its developers were fined
77,500 USD. This app used SMS in order to make users
subscribe to a non-free service and was estimated to have
collected 397,000 USD [10]. Also in the same month,
FakeInst was discovered. This Trojan masquerades as a basic
text exchange app while secretly subscribing to premium rate
services by sending SMS messages silently. This Trojan was
reported to have stolen 10 billion USD [11].

In this paper, we discuss the main features and
vulnerabilities of the Android OS that allow the development
and infection of SMS malware. In addition, we demonstrate
how Android-based smartphones can be exploited by
deploying a malware that uses the SMS service as its
medium of operation. Typically, this type of malware relies
on vulnerabilities from two parties: the first is telecom-
operator dependent, while the other is Android-specific. For
the former, a good number of mobile operators use SMS text
messaging to transfer units/credits between two mobile users
without requiring any form of validation/authorization
beyond the message being sent from the phone. The
units/credits refer to the user balance or airtime that can be
used to make phone calls, to send/receive SMS messages, or
to access the Internet. For example, a user that wants to
transfer units builds a structure-defined text by entering two
elements: the amount they want to transfer from their
balance and the mobile number of the beneficiary. After
drafting the message, the user sends it to a specific number
and the transaction is completed by the operator through
balance transfer. This can be extended to other potential
financial transactions that are made through SMS as well. As
for the Android-specific vulnerabilities, the problem consists
of two design features relating to the way SMS messages are
sent and received on Android. To demonstrate these
vulnerabilities, we were able to build and test a proof-of-

2013 27th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4952-1/13 $26.00 © 2013 IEEE

DOI 10.1109/WAINA.2013.134

1004

concept malicious mobile app. This malware masquerades as
a normal messaging application while in reality it would be
covertly conducting credit transfers without user knowledge,
while at the same time suppressing any confirmation
messages received from the operator.

Based on a survey we performed, we identified more
than 20 mobile operators that use such a service or a
variation of it for unit/credit transfer between users. These
operators are spread geographically in 28 countries (some
operators have presence in more than one country). As such,
the number of vulnerable users and operators at risk is
significant.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 presents some Android
background relevant to the work done, and section 4 presents
our application design. We detail the application testing and
analysis in sections 5 and 6, respectively. Finally, we present
our proposed solutions in section 7, and we conclude the
paper in section 8.

II. RELATED WORK
Golde was able to find a number of vulnerabilities in

SMS implementations that are used by the majority of the
feature phones on the market despite the closed-source
nature of these phones’ operating systems [12]. He showed
how SMS vulnerabilities can be used to disconnect the phone
from the network, end calls, crash, and reboot. In addition,
Denial-of-Service cases were also seen because of some tests
that made the phone crash before the SMS is acknowledged,
so the network was under the impression that the message
did not get delivered and hence continuously re-transmitted
it. Moreover, he showed how a SIM Data Download (a
management tool used by operators to remotely manage SIM
cards), through which SMS is directly sent to SIM (or
USIM), can be manipulated so the attacked phone will send
SMS from the phone to any number the attacker specifies, a
process through which user units/credits can be drained
slowly. Furthermore, he showed how this last feature can be
used to carry out a Denial-of-Service on a specific mobile
number. Traynor et al. demonstrated how SMS messaging
can be malicious and harmful to the network [13]. Many
mobile operators provide an Internet-based SMS service
through which users can send SMS messages directly from
the web to a mobile phone connected to the operator
network. This service, if exploited, can lead to Denial-of-
Service and thus prevent mobile users from making phone
calls in a targeted city. Mulliner et al. presented a general
framework that can be used specifically with smartphones
for testing and monitoring of SMS messages [14]. Although
many smartphones were investigated in [14], our main
interest is the Android-based ones. In their work, they
introduced a way to inject messages and monitor telephony
by modifying the serial line that the Radio Interface Layer
uses to communicate with the modem.

From a different perspective, the Android permission
system has been under study and proved to be vulnerable to
privilege escalation attacks. Davi et al. presented a method
whereby applications can place phone calls without having
such a privilege [15]. Although they added that this problem

was solved, they showed a proof-of-concept scenario
through which much more harm can be done whereby a
“non-privileged vulnerable application” was used to execute
Tcl commands, which ended up sending some 50 SMS
messages to any number the attacker specified. As a result,
not understanding the difference between different Android
permissions can put users at risk. This was also confirmed in
[16] where an online survey and interviews were conducted
with a group of Android users and the results showed that
only a minority of these users were able to understand the
reason for and the difference between the various
permissions required by applications. For SMS in particular,
it is very important to understand the difference between the
four available permissions: “SEND_SMS”,
“RECEIVE_SMS”, “READ_SMS”, and “WRITE_SMS”.

In [17], 1,260 Android malware samples were captured
and evaluated. The main focus was the mechanisms through
which the malware propagate, the activation procedures, the
permissions required, and the events also known as the
“broadcasted intents” that will be listened to by the malware.
Results have shown that 21 malware families of the 49
captured listen for incoming SMS messages, the second most
used broadcast after boot broadcast. Even more, 45.3% of
the malware samples “tend to subscribe to premium-rate
services with background SMS messages.” In addition, some
were found to do some filtering of SMS messages and even
some were discovered to reply to the received messages.
Furthermore, the antiviruses were not able to demonstrate a
full ability to detect malware beyond a best case detection
rate of only 79.6%.

In addition, the authors of [18] were able to develop a
malware in the form of a native “Linux binary” that can be
stored in an image, for example, and that can be used to
bypass Android permissions. Bypassing a specific
permission allows an intruder to do any operation, including
sending SMS messages.

III. ANDROID BACKGROUND
Android provides developers with a Software Developer

Kit (SDK) that exposes the API needed to build applications.
A comprehensive documentation along with the SDK is
provided on a dedicated website [19]. In what follows, we
will describe selected topics from the SDK that are relevant
to our work.

A. Activities
In Android, an activity is an essential component for an

application. Every application should at least have one
activity, the “main” activity. Usually, an application has
many activities and it can start another activity, where each
activity holds a state (e.g. stopped or paused). An activity is
the component that provides a user with a graphical user
interface (GUI) [19].

B. Services
Services are components in Android that do not provide

any user interface, and usually run in the background
conducting long running operations. Services are started by
other application components, so an activity or a service can

1005

start a service, and a service life is ind
component that started that service [19].

C. Permissions
For security reasons, some subsets of

accessible by an application without acquirin
it. Usually, this permission-granting mu
declared in a “Manifest.xml” file when
application. These permissions can be used
such as filtering in the Android store, notif
installation time only), and guarding these c
malicious use [19].

D. Broadcast Receiver
Broadcast receiver is a mechanism th

Android forwards data to applications. Th
these broadcast receivers is inter-process com
tracking of specific events (e.g. arrival of an
the phone). Applications declare statically
their interest in receiving a certain type of
accordingly the OS will try to deliver th
when available. For the procedure of send
Android uses “Intents” which are data struc
be passed to “sendBroadcast”, for example.
two types of Broadcast Receivers: normal a
normal ones are asynchronous and there is
according to which users registered to a
receive the data. As for the ordered ones, a p
to require from the system to deliver the inf
app in a certain sequence, and as such, some
information before others. This feature allo
capture and possibly modify the carried
reaches lower-priority consumers. In this c
prevent other apps from getting specific dat
received data [19]. For a given broadcast, a
of all the registered apps:

� �� ���� �	� �
� ��� �

where the ai are the apps.
 If the broadcast is normal, the assumption
elements will obtain the exact unmodifi
information. On the other hand, if the broa
there is no guarantee that more than a single
original information. According to our exp
app to ensure that it will obtain an ordered
to be the first application to register to the de
the highest priority. It is worth noting that an
for an intent with any priority it specifies wi
or limitations after being given permission.

E. SMS Manager
The SMS manager, part of the Android

provides developers with the necessary fu
messages. In order to send a text message
getting the right permissions, an app can sen
at any time by a simple function call. The
send SMS messages is “sendTextMessage”

dependent of the

the API are not
ng permission for
ust be statically

developing the
for many reasons
fying the user (at
critical APIs from

hat defines how
he main usage of
mmunication and

n SMS message to
y or dynamically
f information and
e requested data

ding information,
ctures that should
 Android defines
and ordered. The
no defined order
broadcast would

priority can be set
formation to each
e apps will get the
ws developers to

d data before it
case, an app can
ta by aborting the
set is maintained

n is that all the set
ied copy of the
adcast is ordered
e app will get the
periments, for an
broadcast, it has

esired intent with
n app can register
ith no constraints

d telephony stack,
unctions to send

e, and apart from
nd a text message
main function to
[19]. Calling the

send function displays no notifica
sending process is seamless and tran

F. Logcat
Android has a special logging s

OS stores the logs in several circ
events, and main). Developers can b
to get information from the system a
that purpose, a special command (
tool called the Android Debug Brid
from the targeted buffer [19].

IV. APPLICATION

In this section, we describe the p
application. As stated previously, th
to look like a normal SMS applic
required ability to send and receive
many such applications for Android
are popular due to the fact that use
plain SMS application with more
friendly SMS applications. The
applications demonstrates the feasib
a malicious messaging application
by masquerading as a user-friendly S

Malicious code was added to th
specifically target the unit/credit tr
service. For that purpose, the app
single activity and three service c
Figure 1.

Figure 1: The components of

A. Main Activity
The Main Activity component

user interface to read and send SM
phones, SMS messages are inserted
queries to the Content Provider co
this component is the base compon
Listen Service and the Sender Serv
time. On the other hand, the Boot
after the first launch of the main acti

B. Listen Service
This component listens for incom

takes actions according to pre-def
service needs to listen for incomin
registered as a broadcast receiver.

Upon receipt of an SMS mess
component gets notified. Incoming
checked. If the newly received
acknowledgment related to the “ille
the component allows the message

ations on the phone; the
nsparent to mobile users.

system through which the
cular buffers (for radio,
benefit from these buffers
and debug their apps. For
logcat) can be used in a

dge (ADB) to extract data

N DESIGN
proof-of-concept malware
he application is designed
cation that has the basic
e SMS. There are in fact

d users, and many of them
ers can replace the native

sophisticated and user-
e popularity of these

bility and ease with which
can be deployed simply

SMS application.
he application in order to
ransfer through the SMS
lication needs at least a

components as shown in

f the application

has the entire graphical
S messages. On Android

d and read using database
ontent://sms/. In addition,
nent that will launch the
vice, at least for the first
Service runs on its own

ivity.

ming SMS messages and
fined criteria. Since this

ng messages, it has to be

sage from the radio, this
messages are parsed and

d message is not an
egal” unit/credit transfer,
to pass unmodified, or it

1006

can directly insert it in the messaging database. If, on the
other hand, this message is related to the malicious activity,
it will be suppressed and will never reach the database or any
other application. It is important to note that the broadcast
that handles this transaction is an ordered broadcast.
Accordingly, the priority option available for a registered
broadcast receiver makes the suppression very efficient. This
feature might be useful in filtering spam SMS messages, but
based on its proven potential to cause harm, it tends to
introduce a vulnerability in the Android OS. It is worth
noting that the “Listen” service is made a sticky service; it
will rerun, even if the user intentionally terminates it.

C. Sender Service
This component handles the unauthorized sending

process of the SMS application. This service works in a
silent manner. This is guaranteed by conducting a malicious
action, such as a credit transfer, at random widely separated
time instants in order to make the attack non-deterministic
and undetectable by a simple observer of the phone activity
from the operator side. This component will prevent its
messages from being stored in the database; the user will not
be able to track when the transfer was made by looking at the
messaging database. In addition, this service is also sticky,
similar to the Listen Service, and will rerun on its own even
if it is intentionally terminated by the user. Several
refinements can be added to this service to make it stealthier;
for example, it can monitor the activity level of the user and
then execute the malicious transfers during the busiest
periods when the user is actually making phone calls and/or
sending SMS. This will lower the likelihood of the user
noticing the reduction in credit.

D. Boot Service
This component is needed to make the previously-

mentioned services run at the launching of the OS. This is
achieved by registering as broadcast receiver to
BOOT_COMPLETED event.

E. Permissions
The minimum permissions needed to carry out the

malicious activities are the “RECEIVE_SMS” and
“SEND_SMS” which are requested by SMS applications.
The most popular SMS applications surveyed on the Android
market, at the time of writing of this work, additionally use
the “READ_SMS” and the “WRITE_SMS” permissions.
Therefore, the request for these permissions is not unusual
and would not alert the user to the malicious behavior.

V. TESTING
In what follows, we demonstrate how we tested the

application, the types of security checks that were performed,
and the results that were obtained.

A. Implementation
Testing was conducted using two mobile phones. Since

the application needs an Android-based smartphone to run, it
is not a must to use two smartphones. We used a Samsung

Galaxy SII smartphone and a Sony Ericsson K770i feature
phone, as shown in Figure 2.

The application was installed on the “victim” phone, a
Samsung Galaxy SII. The Android OS version pre-installed
on this phone is 2.3.5 (Gingerbread), and the kernel version
is 2.6.35. On the other hand, the Sony Ericsson holds the
SIM card of the attacker which will get all the transferred
credits. The credit transfer operation in the experiment is
done by building a message that has the following format:

�������������� � � � ������

This format is operator specific, and corresponds to one
of the operators where the experiment was conducted. The
message is usually sent to a special dedicated 4-digit number.
Once the message is sent, the credits (Amount in US Dollars)
are removed from the sender balance and added to the
receiver balance. Finally, both sender and receiver get a
message informing them that the credit transfer transaction
was completed. It is worth noting that many operators charge
transaction fees for this transfer. Therefore, we suspect that
most operators would not, for financial purposes, suspend
this service despite all its security concerns.

By design, the victim must not be informed of the
transaction, accordingly the sent and received messages
related to this operation are suppressed. We relied on the
logcat tool to check that the operation was accomplished
correctly. The output from the “main” buffer showed that the
transfer is being carried out. A sample output is shown in
Figure 3. Additional output from the “radio” buffer having
the same timestamp confirmed the operation and a sample is
shown in Figure 4.

At the time of writing this paper, the most downloaded
Android SMS applications have millions of users. If any of
these applications is designed to exploit the SMS credit
transfer, or any other type of financial transactions, it can
cause severe damage in a very short period of time. For
example, the impact of 10 million users of a malware
exploiting less than 1% of its users, could raise around
$100,000 per month, by transferring only $1 per month per
user. Such a small amount has a very low impact on a single
user and hence it has a good chance of going unnoticed.

Figure 2: The two used phones in our test, left: Samsung Galaxy SII, right:

Sony Ericsson K770i [20]

1007

Figure 3: Main buffer showing logs of the receipt and s

Figure 4: Radio buffer showing logs of the sending and

B. Antimalware
In order to check if this malware is de

available service called “Virus Total” was u
provides an online scanning for URLs
including Android application files, using a
antimalware products currently available on
The report that was generated confirms tha
antimalware packages was able to detect t
application is malicious. This is expected sin
tools are signature-based.

C. Android Market (Play Store)
The final test was to check the respons

Market (Play Store). The test goal is to ch
store can detect that the application exe
activities. For that purpose and with a
guarantee that the risk of accidental release o
is minimal, the application was published s
very short period of time; we then quickly
order to make sure that it does not get dow
user.

VI. ANALYSIS
Three Android SMS Trojans were previ

China and the UK. Such malware was es
stolen millions of dollars [9-11]. In previo
demonstrated that at least 28 countries a
different type of SMS attack targeting a pr
mobiles credit transfer, resulting in ste
subscribers if exploited. This leads to que
cause of the attack. As can be remarked
multifaceted and many factors contribute to

The permission system incorporated in A
contributor to the risk. Each SMS applic
granted the permission to send/receive SM
this decision is permanent. In this view, t
work on guaranteeing the safe arrival o
sending of SMS messages. Instead, by usin
system, these functions are delegated to us
applications. Accordingly, it is assumed that
and using an application, the user has given

suppression of SMS

d receiving of SMS

etectable, a freely
used. This service
s and for files,
a set of the major
n the market [21].
at none of the 43
the fact that this
nce most of these

e of the Android
heck whether the
ecutes malicious
modification to

of the application
successfully for a
unpublished it in
wnloaded by any

iously detected in
stimated to have
ous sections, we
are at risk of a
rotocol for inter-
aling credits of

estioning the root
d, this attack is
its feasibility.

Android is a main
cation has to be

MS messages but
the OS does not
or the approved
ng the permission
sers’ downloaded
t by downloading
a level of trust to

this application and is fully aware o
and their implications. Based
vulnerabilities, it can be implied
require a high level of user awaren
knowledge typical users might not a

In addition, as we demonstra
operation is not visible to the mobil
never notified if an SMS is sen
seamlessly once permissions are gra
worth comparing this to other mo
where an SMS cannot be sent with
by taking action such as clicking in a

The other root cause is the h
messages, which is done using
discussed previously, this gives a m
ability to suppress or modify a paylo
installed on the phone or for the user

In fact, our app used the
downloaded SMS applications acqu
minimal, and yet the app was cap
harmful transactions because of th
decisions that eventually led to serio

VII. PROPOSED SO

In this section, we propose
temporary solutions to SMS-based
address the following issues:

• The permissions that give an
control over the time, the dest
of sending and receiving proce

• The unsafe application-depend
• The ability to hide or mod

accomplished through the use

Accordingly, the following are

order to address these vulnerabilities
• The user must always be no

receipt of an SMS message.
• Applications must be preven

receiving of SMS (and pre-em
from receiving messages) by s

• The user must grant explicit p
send transaction, not only
application at installation time

Based on [14], a monitoring s

monitor incoming and outgoing SM
the modem AT commands. For
command means that an SMS mes
sent an application-level notificatio
address the uncontrolled hidden s
SMS, but would not stop them. In
the Android phones be rooted.

As for receiving SMS messages
install a trusted application befo
application is installed, and assignin
highest priority for the broadcast rec
installed and having the highest prio
notification of arrival of SMS m

f the granted permissions
on already-discovered
that these assumptions

ess to potential threats; a
always possess.
ated above, the sending
le subscriber. The user is

nt, and this can happen
anted at install time. It is
obile operating systems,

hout the user intervention
a notification box.

handling of the received
ordered broadcasts. As

malicious application the
oad for other applications
r.
permissions that most

uire, which is considered
pable of performing very
he above Android design
ous vulnerabilities.

OLUTIONS
practical permanent or

d malware. The solutions

n application an absolute
tination, and the decision
esses of SMS messages.
dent sending of SMS.
dify the SMS payloads,
of ordered broadcasts.

recommendations for in
s:
otified/interrupted of the

nted from controlling the
mpting another application
setting its own priority.
permission for every SMS
y permission for the
.

system can be added to
MS messages by filtering
r example, the +CMT
sage has just arrived and
on. This solution would
ending and receiving of
addition, it requires that

s, a solution would be to
ore any SMS message
ng to this trusted app the
ceiver. Being the first app
ority, this app will get the
essages before all other

1008

applications, and will be able to notify the user of the arrival
of SMS messages. This solution should work on all Android
versions. It can be further enhanced by implementing the
logic of the app as middleware that resides between the OS
and all the other applications. This middleware would listen
to all installed and removed applications and then checks for
apps that request a permission to receive SMS messages.
Starting with Android version 4, a feature was added in the
OS to allow an application to send a broadcast to a particular
application. Hence, the middleware gets the permission to
broadcast SMS. Once an SMS is received, the middleware
receives the message first and aborts the broadcast. Then it
sends the SMS message to each of the n Apps, one by one.
This would guarantee that none of the apps can hide, modify,
or monopolize the receipt of SMS messages.

Finally, to mitigate the vulnerability of sending
unauthorized SMS messages, Android can be patched in
order to request user approval at each sending attempt.

VIII. CONCLUSION
In this paper, we studied the Android design features that

led to the widespread proliferation of SMS malware. Our
analysis highlighted three features that contribute to the
vulnerability: the permission system, the broadcast receiver
system and the sending process. The permissions granted to
an app were demonstrated to give the app absolute ability to
perform actions while no further checks are made. As for the
broadcast receiver, the problem is in the ordered types of
broadcasts which allow an app to drop, hide, or modify
payload. The sending process used in Android is a function
call that does not get approval for the sending operation. This
allows apps to send unauthorized SMS messages. These
design decisions, which can lead to vulnerabilities in the
Android OS, were highlighted by presenting the design,
development, and testing of a malicious prototype
application that can be deployed on Android-based
smartphones. This application appears as a regular SMS
application while in the background it is using the SMS-
based credit transfer service to carry out illegal transfers. We
implemented and tested our application on an actual Android
phone and the tests confirmed the objectives. The application
was also checked by antimalware tools that were unable to
detect any infection. In addition, the malicious application
was successfully published on the official Android market.
In summary, such an application would be difficult to detect
and would cause substantial losses. Finally, we presented a
number of possible practical solutions in order to mitigate
the effects of the SMS vulnerabilities.

ACKNOWLEDGEMENT
This research is funded by TELUS Corporation. The

authors would like to acknowledge the help of Mr. Gerard
Touma who conducted the survey on mobile operators.

REFERENCES
[1] IDC. (2012). Smartphone Market Hits All-Time Quarterly High Due

To Seasonal Strength and Wider Variety of Offerings, According to
IDC. [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23299912

[2] Strategy Analytics. (2012). Apple Becomes World's Largest
Smartphone Vendor in Q4 2011. [Online]. Available:
http://www.strategyanalytics.com/default.aspx?mod=pressreleasevie
wer&a0=5170

[3] Canalys. (2012). Smart phones overtake client PCs in 2011. [Online].
Available: http://www.canalys.com/newsroom/smart-phones-
overtake-client-pcs-2011.

[4] Daniel Ionescu. (2011). Google Brags About Android Market Stats.
[Online]. Available:
http://www.pcworld.com/article/225299/google_brags_about_android
_market_stats.html

[5] Android. (2012, Sept). Android, the world’s most popular mobile
platform. [Online]. Available:
http://developer.android.com/about/index.html

[6] Scott Lowe. (2012). Google Play celebrates 25 billion downloads
with 25 cent apps, discounted books, music, and movies. [Online].
Available: http://www.theverge.com/2012/9/26/3409446/google-play-
25-billion-downloads-sale

[7] Jeff Drew. (2012, Sept). Malware growth maintains rapid pace as
mobile threats surge. [Online]. Available:
http://www.journalofaccountancy.com/News/20126400.htm

[8] Hindustan Times (2012, Sept). Android users prime target of
malware: McAfee. [Online]. Available:
http://www.hindustantimes.com/technology/IndustryTrends/Android-
users-prime-target-of-malware-McAfee/SP-Article1-925986.aspx

[9] Jon Russel. (2012). SMS Payment Virus Identified in China, 500,000
Android Device Infected. [Online]. Available:
http://thenextweb.com/asia/2012/08/19/stealth-sms-payment-
malware-identified-chinese-app-stores-500000-android-devices-
infected/

[10] Charlie Osborne. (2012, Sept). SMS malware firm ordered to
compensate victims. [Online]. Availability:
http://www.zdnet.com/sms-malware-firm-ordered-to-compensate-
victims-7000003639/

[11] Sara Yin. (2012, Sept). Will Your Android Device Catch Malware?
Depends on Where You Live. [Online]. Available:
http://securitywatch.pcmag.com/none/302362-will-your-android-
device-catch-malware-depends-on-where-you-live

[12] N. Golde, “SMS Vulnerability on Feature Phones,” Master Thesis,
Berlin Institute of Technology, 2011.

[13] P. Traynor, W. Enck, P. McDaniel, and T. L. Porta, “Exploiting Open
Functionality in SMSCapable Cellular Networks,” in Journal of
Computer Security (JCS), 2008.

[14] C. Mulliner, C. Miller, “Injecting SMS Messages into Smart Phones
for Security Analysis,” in Proceedings of the 3rd USENIX Workshop
on Offensive Technologies (WOOT), 2009.

[15] L. Davi, A. Dmitrienko, A. Sadeghi, M. Winandy, Privilege
escalation attacks on Android. In Information Security, 2011.

[16] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner, (2012,
Feb.) “Android Permissions: User Attention, Comprehension, and
Behavior,” Not published. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-
26.pdf

[17] Y. Zhou, X. Jiang, “Dissecting Android Malware: Characterization
and Evolution,” in the 2012 IEEE Symposium on Security and
Privacy, 2012.

[18] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A.
Camtepe, S. Albayrak, and C. Yildizli, “Smartphone malware
evolution revisited: Android next target?” In Proceedings of the 4th
IEEE International Conference on Malicious and Unwanted Software
(Malware 2009), 2009.

[19] Android Developers, (2012, Sept). Android Developers. [Online].
Available: http://developer.android.com/index.html

[20] GSMArena. (2012). GSMArena.com - GSM phone reviews, news,
opinions, votes, manuals and more. [Online]. Available:
http://www.gsmarena.com

[21] Virus Total. (2012). VirusTotal - Free Online Virus, Malware and
URL Scanner. [Online]. Available: https://www.virustotal.com/

1009

