
26 HAKIN9

ATTACK

3/2008

To protect against a myriad of attacks,
including malicious injection attacks
and the exposure of archived data, user

data, particularly passwords are stored in a
non-reversible, non clear-text form. Interestingly
enough, this same thought process and storage
technique has carried over to the desktop login
space with desktop OS logins now tied into Active
Directory and other LDAP based back-ends.

Storing user data such as passwords in plain
text represents a potential security risk. In the event
of a breach, crackers gaining data access via
software flaws (such as improper input validation)
could gain unauthorized access to a multitude of
systems. These days the risk is exponentially higher
than in the past due to developments in Internet/Web
based single-password and single-sign-on (SSO)
technologies. This access could lead to malicious
activity of any arbitrary real user, with the permissions
of that user. The extent of these actions are limited
only by your imagination and what access the
target application has been allowed. To mitigate this
security risk the industry generally has relied upon
password data being stored as the output of a one-
way hashing algorithm. Although, given the elevated
sophistication of modern-day attack techniques
coupled with the way one-way hash algorithms
natively work, vanilla flavoured one-way hashing
algorithms have really outlived their effectiveness.
The need for randomness, which has come from the
age old techniques of the Unix world, became critical
to the industry. The specifics of this have come

ANDRES ANDREU

WHAT YOU WILL
LEARN...
How LDAP Salted SHA (SSHA)
Hashes are structured,

How to employ modern day
tools to crack LDAP SSHA
hashes,

Why LDAP SSHA hashes should
be treated as if they are clear-
text data.

WHAT YOU SHOULD
KNOW...
Basic knowledge of compiling
C source code in Linux (x-86
based),

Basic scripting in standard
languages (some code and/or
snippets given in Python, Ruby
& PHP),

Basic knowledge of encodings
of binary data,

Concepts of storage techniques
for user password data.

in the form of salting the one-way hashes to add
randomness to the stored output. This randomness
increases the level of work required for a successful
crack, in the event of a breach.

A one-way hash is a binary computed value of
fixed length that is normally represented in either
Base64 or Hexadecimal encoded notation. The
idea behind using non-reversible hashes is that
they should unequivocally identify a set of clear
text data as being valid (through some form of
comparison). Some experts consider this a digital
fingerprint of clear text.

A salt is a randomly computed set of data to alter
the output of any one-way hashing algorithm (in the
context of this article). These sets of data traditionally
come in 4 or 8 byte blocks. With regard to the
randomness aspect of the salt, true randomness in
computing environments has been argued time and
time again and is beyond the scope of this article.
Suffice it to say that most sets of web based code
that generate random salts do so utilizing pseudo-
random functions. This article does not attack the
mathematical foundation of randomness as used
in today's web based computing environments,
the randomness of the salt value is actually of no
relevance for the techniques discussed here.

The reason for using a salt in conjunction with
one-way hashed data should be an obvious one by
now. Advanced technologies such as PKI, client-
side X509 certificates, and biometric solutions have
been around for some time now, but the reality
of the Information Technology (IT) industry is that

Difficulty

Cracking
LDAP Salted
SHA Hashes
In the realm of Web applications, user data is traditionally stored
in an accessible manner due to the fact that it is needed for all
future use by any authorized user(s). User data contains login
credentials where the password (and potentially usernames and
other attributes) must be stored for future reference.

27 HAKIN9

SALTED HASHES

3/2008

simple username/password combinations
are still the most prevalent authentication
model, especially in the space of web
applications and related technologies such
as SSL based VPNs. A major player in the
modern-day space of user data storage and
authentication/authorization services is the
Lightweight Directory Access Protocol (LDAP).

LDAP is a protocol that can be
back-ended by numerous different
technologies, such as XML or traditional
relational databases. Within the possible
schemas used by LDAP, implementations
of certain objectClass structures are
accepted as industry standards, and they
come ready to store sensitive user data
such as passwords. The obvious one is
inetOrgPerson described in RFC-2798 that
has an attribute named userPassword . Any
standards based implementation of the
LDAP protocol will support this objectclass.
Software engineers can write code that
interacts with these attributes and have
confidence that their code will function in
a product agnostic fashion based on the
LDAP servers adherence to standards. The
userPassword attribute traditionally supports
password data in one of the following forms:

• CLEAR – literally clear text data,
• BASE64 – Base64 encoded

representation of clear text data,

• MD5 – using the Message Digest 5
one-way hash algorithm,

• SHA – using the one-way Secure
Hashing Algorithm.

Clear text data is obviously insecure
and Base64 encoded data is really no
better. Both of these methods do nothing
to protect your user data if an attacker
manages to penetrate your target LDAP
data source. One-way hashing algorithms
have come to the rescue to reference
stored data because they are not reversible.
Unfortunately they are consistent in the way
they operate so an attacker could easily
figure out that some users in your LDAP
data source all have the same passwords
based on identical hashes. Listing 1 shows
you Python code that will generate a SHA1
hash of some clear text data. You can run
this Python script numerous times against
the same clear text data and see that the
output does not change. This is a concern
because many entities out there use a
consistent default password for all new and/
or temporary users within their infrastructure.
In operations that utilize SHA1 hashes you
will find code that performs this type of
action and outputs to an attribute (typically
userPassword .)

To make matters tougher for the IT
security staff, there are online services that

attempt to identify a collision for hash data
(numerous MD5 instances are available
online), brute-force crackers for specific
hash forms, rainbow crack programs and
huge rainbow tables that can be pulled
down with torrent technologies. This is
pretty disturbing because it becomes
really difficult to protect sensitive user data
nowadays.

So the suggestion of security experts
is to use a salt along with strong one-way
hashing algorithms. MD5 and SHA1 have
both seen successful collisions in security
research at this point (see hyperlinks provided
at the end of this article). This does not mean
that anyone can cause such a situation as it
requires expert level knowledge and decent
computing power (even though the BOINC
based collision projects minimise the need
for real knowledge). The strong hashing
algorithms commonly used today are MD5,
SHA and the SHA2 family of algorithms
along with random salts, so in the more
sophisticated LDAP implementations you will
now run across the following identifiers in the
data stored in userPassword attributes:

• SMD5 – salted MD5,
• SSHA – salted SHA1,
• SSHA256 – salted SHA256,
• SSHA384 – salted SHA384,
• SSHA512 – salted SHA512.

This usage of a salt means that for every
user object, a unique hash is used to store
password data. If two users have the same
password and a salt is used then normal
analysis or the human eye could never
identify this fact, as the stored hashes will
not visually match. It is important that salt is
generated with the highest possible level of
entropy in order to optimise the use of this
technology. Listing 2 provides you with a
Python2.5 script that generates salted SHA
hashes, this particular script encompasses
the currently common family of SHA2
hash algorithms. If you run this script
numerous times with the same clear text
string you will always get unique outputs in
the resulting hashes. This output emulates
what a more sophisticated environment
would do if they were in an LDAP realm.

The Salt Is Always Available
There is no black magic involved with
these salted hashing techniques. The

Listing 1. Simple code to generate unsalted SHA1 hashes of clear-text data

import sys, sha, base64

ctx = sha.new(sys.argv[1])

hash = "\n{SHA}" + base64.b64encode(ctx.digest())

print hash

Assuming the code above is saved in a file named genSHA.py then a sample run (using the
clear-text string “test”) would look something like this:

$ python genSHA.py test

{SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=

Figure 1. SSHA Hash structure – A visual depiction of the hash data structure (SHA1 – 4
byte salt) detailed in the output from the code in Listing 3

ATTACK

28 HAKIN9 3/2008

salt part of a salted hash must be made
available to the code/application(s) that
interacts with it for proper functionality to
exist . Otherwise it would be impossible
for an application to verify data that
gets submitted to it . When interacting
with salted hashes in an authentication
scenario, for instance, an application
will generally follow these steps (these
are specific to interaction with open

standards based LDAP servers but the
concept applies to other scenarios as
well) :

• getSaltedHash (from internal storage
– LDAP, database, etc)

• detectHashingAlgorithm
(analysing the stored salted hash
makes it possible to determine the
one-way algorithm used – in LDAP

there is usually an identif ying prefix
like {SSHA}; there is also the fact that
one way hashes output statically
sized data)

• extractSalt (by knowing the
algorithm, the code can then perform
this action from the stored hash it just
acquired)

• getClearTextData (this would be
data submitted by a user or other

Listing 2. Simple Python2.5 code to generate salted SHA1 and SHA2 hashes of clear-text data

import hashlib, binascii, sys
from base64 import b64encode
from random import randrange
str = sys.argv[1]

saltsize = int(sys.argv[2])

if saltsize <> 4 and saltsize <> 8:
 print "Lets stick to what is out there, 4 or 8 byte salt

sizes ...\n\n"

 sys.exit(0)

print "generating simple random salt of %d bytes...\n" %
saltsize

salt = ''

for n in range(saltsize/2):
 salt += chr(randrange(256))

salt = binascii.hexlify(salt)

print "SHA1"
m = hashlib.sha1()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA256"
m = hashlib.sha256()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA256}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA384"
m = hashlib.sha384()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA384}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA512"
m = hashlib.sha512()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA512}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
Assuming the code above is saved in a file named genSSHA.py

then a sample run (using the clear-text

string “test”) would look something like

this:

$ python genSSHA.py test 4

generating simple random salt of 4 bytes...

SHA1

In Hex:
98f161a269d8d3b5567749420f8024a27a9844c0

Base64 encoded:

mPFhomnY07VWd0lCD4AkonqYRMBjNTg1

{SSHA}mPFhomnY07VWd0lCD4AkonqYRMBjNTg1

SHA256

In Hex:
a1efb0cc52ed95dca4536d6d21d68044ca742fec269326992f5d9279e7cc

cf48

Base64 encoded:

oe+wzFLtldykU21tIdaARMp0L+wmkyaZL12SeefMz0hjNTg1

{SSHA256}oe+wzFLtldykU21tIdaARMp0L+wmkyaZL12SeefMz0hjNTg1

SHA384

In Hex:
4034f8cedd3b59e44810c113b88c7b04475193aeab6629034994b1c71e8213

392bd5f07d25e1b2d42547150b7679618c

Base64 encoded:

QDT4zt07WeRIEMETuIx7BEdRk66rZikDSZSxxx6CEzkr1fB9JeGy1CVHFQt2eW

GMYzU4NQ==

{SSHA384}QDT4zt07WeRIEMETuIx7BEdRk66rZikDSZSxxx6CEzkr1fB9JeGy1

CVHFQt2eWGMYzU4NQ==

SHA512

In Hex:
ff24c1b3cf119bf449478c1931a645d240b3454213531ee3fd1ebe2d24a15

017c7aacdebdae4d181b6d62696dcb1fb200466

84096bf2ae71bf1fd20409ca3dfb

Base64 encoded:

/yTBs88Rm/RJR4wZMaZF0kCzRUITUx7j/R6+LSShUBfHqs3r2uTRgbbWJpbcsf

sgBGaECWvyrnG/H9IECco9+2M1ODU=

{SSHA512}/yTBs88Rm/RJR4wZMaZF0kCzRUITUx7j/R6+LSShUBfHqs3r2uTRgb

bWJpbcsfsgBGaECWvyrnG/H9IECco9+2M1ODU=

Clearly there is a difference in the byte size of the hashes

generated and the larger ones represent

a greater work factor for a successful

crack. Although they require more

effort, they are nevertheless crackable

via collisions as long as the cracker/

attacker knows where the salt is and how

to extract it.

ATTACK

30 HAKIN9 3/2008

SALTED HASHES

31 HAKIN9 3/2008

application, in an authentication request
this is the password)

• combineClearTextDataAndSalt
(combine the submitted data with the
recently extracted salt)

• applyAlgorithm (apply the detected
hashing algorithm to the result of the
previous step)

• compareValues (compare the original
stored hash from the internal data store
and the now salted and hashed data
submitted to your code)

A snippet of PHP code performing some of
these actions on salted SHA1 data could
look something like this:

//strip out {SSHA}

$encrypted = substr($encrypted, 6);

// $hash now has binary data

$hash = base64_decode($encrypted);

// extract salt from binary data

$salt = substr($hash, 20);

if ($hash == mHash(MHASH_SHA1,

$cleartext .

$salt)) {

 return true;

}

Even though this article is focused on LDAP
salted hashes and how they are commonly
used in the industry, the concepts described
apply to any similar technique for storage of
this type of data. Some solutions store all of
the relevant data in a database table where
one field stores the salted hash and another
field stores the related salt value. The point
that needs to be understood is that the
salt is somewhere and an attacker will try
to get at it. If the salt is compromised then
brute-force and dictionary attacks become
possible as you will shortly see.

The Structure
of the Hashed Data
In the case of LDAP salted hashes the
structure of the final hashed data looks
something like this (again, this is specific to
a salted SHA1 hash with a 4 byte salt but
think about it all in a wider scope):

There is a salt value, it is in binary
form. This salt consists of 4 bytes of
purely random binary data represented
as hexadecimal notation (Base16 as 8
bytes). The final salted hash is of length
20 bytes in raw binary form (40 bytes if
you look at it in hex). The SHA1 algorithm
ultimately generates a 160 bit hash
string. At 8 bits per byte that equates
to 20 bytes. Figure 1 should give you
a simple and clear visual depiction of
this. When dealing with data that has
already been hashed you must obviously
understand the structure well. The goal is
to deconstruct this stored data in order
to get to the salt and some stored data
that can be used for hash comparison,
thus the stored hash must be split apart .
In the case of SHA1 the goal is to split
up the original hash into 2 distinct byte
arrays, one for the lef t 20 bytes (0 – 20
including the null terminator) and one for
the rest of the data. The lef t 0 – 20 bytes
will represent the salted binary value that
we will use for a byte-by-byte data match
against the new clear text presented for
verification. The inbound clear text string
presented for verification will have to
be salted as well. The rest of the bytes
(21 – 32) represent the random salt
which when decoded will show the exact

Listing 3. A small ruby script illustrating the process of data being put through a one-
way salted hashing algorithm

#!/usr/bin/env ruby

For illustrative purposes a static clear text string and salt have been used

require 'sha1'

require 'base64'

salt = 'SALT'

pass = 'testing'

conc = pass+salt

sha = Digest::SHA1.digest(conc)

puts "SHA1 Digest"

puts "In Binary: #{sha}"
puts "Length of Binary: #{sha.length}"

puts "\nIn Hex: #{sha.unpack('H*').to_s}"

puts "Length of Hex: #{sha.unpack('H*').to_s.length}"

puts "\nSalt\nIn ASCII: #{salt}"

puts "In Hex: #{salt.unpack('H*')}"

concsalt = sha+salt

puts "\nSHA1 Hash plus salt (RAW): #{concsalt}"

puts "SHA1 Hash plus salt (RAW – Length): #{concsalt.length}"

puts "SHA1 Hash plus salt (Hex): #{concsalt.unpack('H*')}"

puts "SHA1 Hash plus salt (Hex – Length): #{concsalt.unpack('H*').to_s.length}"

hash = "{SSHA}"+Base64.encode64(concsalt).chomp!

puts "\nSalted SHA1 Hash(Base64 Encoded): #{hash}"

A run of this script generates the following output:

$ ruby genSSHA.rb

SHA1 Digest

In Binary: yP?`x&%u??V?Cf9M
Length of Binary: 20

In Hex: 790250aa1e6078262575a2c6991856ec4366394d
Length of Hex: 40

Salt

In ASCII: SALT
In Hex: 53414c54

SHA1 Hash plus salt (RAW): yP?`x&%u??V?Cf9MSALT

SHA1 Hash plus salt (RAW – Length): 24

SHA1 Hash plus salt (Hex): 790250aa1e6078262575a2c6991856ec4366394d53414c54

SHA1 Hash plus salt (Hex – Length): 48

Salted SHA1 Hash(Base64 Encoded): {SSHA}eQJQqh5geCYldaLGmRhW7ENmOU1TQUxU

ATTACK

30 HAKIN9 3/2008

SALTED HASHES

31 HAKIN9 3/2008

hex characters that make up the once
randomly generated seed.

Take a look at the Ruby script in Listing
3, it outputs interesting details along the way
of the salted SHA1 creation process. It gives
you a good understanding of what normally
takes place under the hood in code that
generates these types of hashes. In a real
world scenario the resulting hash seen in
the very last line of the output is what would
be stored in the LDAP attribute (in Listing 3
it would be: {SSHA}eQJQqh5geCYldaLGmR
hW7ENmOU1TQUxU). Figure 1 should visually
reinforce the final salted hash binary data
structure at hand.

Cracking the Hash
Based on what you have learnt, you will see
that everything necessary to crack a salted
SHA hash from LDAP is readily available.
There have been tools written to accomplish
this. John the Ripper, or John as it is
commonly referred to, has a patch available
that gives it the ability to crack salted SHA1
hashes. John is a multi-purpose cracking
utility and it is very powerful, but it is somewhat
limited due to the lack of support for the SHA2
family of algorithms. Our focus for this article
is a very specific type of hash based on the
entire SHA family (except for SHA224 since
it does not seem widely used in the industry)
topping off at SHA512. SSHA Attack is a tool
written for this purpose exactly, as it supports
attacks on salted SHA1, SHA256, SHA384 &
SHA512 hashes as commonly used in data
stores accessed via LDAP.

SSHA Attack is written in C to maximize
its performance. It uses the authentication
concept explained earlier for the crack
attack on a given hash. If you think about it
simplistically under the hood a crack attack
of this sort is nothing more than performing
the same exact action as an authentication
query when salted hashes are in place.
This technique does not attack the hashing
algorithm at all, it merely uses it for the
purpose of hash comparison, the output of
these algorithms is what we are attacking.

Technique aside, it is critical to
understand the structure of the data that
was explained earlier. Extracting the salt
from the salted hashes is at the heart of
the attack process and has a direct impact
on the success of a hash crack effort.
Analyse the snippet of code in Listing 4, it
shows you where SSHA Attack extracts the

salt from a salted SHA hash based on the
hash type.

With the salt in hand, SSHA Attack
applies it to the clear text data. In the
scenario of an attack with SSHA Attack
the clear text data would either come from
the brute-force process or a dictionary file
specified at run time. These steps are seen
in the source code as such:

...

//copy requestPW to unsigned array

strcpy(finalRequestPW, requestPW);

//cat the binary salt to binary array

strcat(finalRequestPW, tempSalt);

Listing 4. Snippet from SSHA Attack outlining the salt extraction process from a
salted hash that has been acquired from an LDAP implementation

// grab salt from temp & cpy to tempSalt

if (strcmp(hashtype, "SHA1") == 0) {
 strcpy(tempSalt, temp + 20);

} else if (strcmp(hashtype, "SHA224") == 0) {
 strcpy(tempSalt, temp + 28);

} else if (strcmp(hashtype, "SHA256") == 0) {
 strcpy(tempSalt, temp + 32);

} else if (strcmp(hashtype, "SHA384") == 0) {
 strcpy(tempSalt, temp + 48);

} else if (strcmp(hashtype, "SHA512") == 0) {
 strcpy(tempSalt, temp + 64);

}

At the end of this code snippet the array tempSalt will hold the value for the salt

from the hash. Notice how the intimate knowledge of the hash

sizes are used to calculate where the salt extraction starts.

With this element of data, the crack attacks can commence. It

should be obvious by now that this salt will be used to generate

hashes of clear text data based on the cracking methodology you

chose to use.

Listing 5. C Snippet from SSHA Attack’s GenerateHash function

...

EVP_MD_CTX_init(&mdctx);

// Initialize the digest

EVP_DigestInit_ex(&mdctx, md, NULL);
// Add the clear text password to the digest

EVP_DigestUpdate(&mdctx,

 value,

 (unsigned int) strlen(value));

// If we have a salt, add that to the digest as well

if(salt) {
 EVP_DigestUpdate(&mdctx,

 salt,

 (unsigned int) strlen(value));

}

// Create the hash

EVP_DigestFinal_ex(&mdctx,

 md_value,

 &md_len);

EVP_MD_CTX_cleanup(&mdctx);

for(i = 0; i < md_len; i++) {

 // copy the hex values into the buffer

 sprintf(&buffer[i*2], „%02x”, md_value[i]);

}

...

Table 1. For size 1

a b c d

Table 2. For size 2

aa ba ca da

ab bb cb db

ac bc cc dc

ad bd cd dd

32 HAKIN9 3/2008

SALTED HASHES

33 HAKIN9 3/2008

// generate a salted SHA hash

GenerateHash(hashtype, finalRequestPW,

NULL, buffer);

...

The GenerateHash function utilizes the
OpenSSL libraries on a Linux system to
generate the appropriate hash. The hashtype
has already been dynamically established
and it gets passed in as the first parameter to
GenerateHash. In the GenerateHash function
you will find code as seen in Listing 5.

As you can see (Listing 5) the last
parameter passed in to GenerateHash
(called buffer) will end up with the salted hash
binary data after the algorithm has performed
its one-way magic. This operation takes place
for each clear text string from either your
dictionary or the brute-force process. Then
the final check that queries the 2 elements of
data that will either establish whether a crack
is successful or not looks like this:

...

// perform the actual comparison of

// formattedPW and buffer

if(strcmp(formattedPW, buffer) == 0) {

 // passwords matched

 return 1;

}

...

Using SSHA Attack
The link for SSHA Attack can be found in the
On the 'Net section. Once the tarball has
been downloaded, untar it in the standard
fashion. There is a Makefile there for your
convenience that basically abstracts the
compilation and linking statements for you.
The real statement to link the runnable
program together is as follows: gcc -03
fucntions.o ssha _ attack.o -lssl -

o ssha _ attack . This requires that you
have already compiled the 2 files named
functions.c and ssha _ attack.c into object
files. The compilation statement looks like: gcc
-03 -c -o functions.o functions.c. But you
can just use make on a Linux distro. Once you
run the make utility with the included Makefile
you should have an executable program in
the same directory where you extracted the
source files. This means that you should be
able to invoke SSHA Attack with standard dot
slash notation, ie. ./ssha _ attack from the
same directory where you ran the make utility.

Running SSHA Attack with the -help
switch gives you further information on
the usage. Listing 6 shows the output of
such an action. Decide on your attack
methodology, you currently have 2 choices
of either dictionary or brute-force.

Listing 6. SSHA Attack's usage statement

Usage: ./ssha_attack -m mode [-d attack_dictionary_file | [-n min] -u max -a alphabet |

-a 20 -c custom_alphabet] -s SSHA_hash_string

-m This is the mode for the prog to operate under. The currently supported modes are

"dictionary" and "brute-force". This switch is required.

-d This option is to be used to engage "dictionary" mode. The dictionary is a regular

text file containing one entry per line. The data from this

file is what will be used as the clear text data to which the

discovered salt will get applied.

-l The minimum amount of attack characters to begin with.

-u The maximum amount of attack characters to use. If -l is not used processing will

start with size 1

-a The numerical index of the attack alphabet to use:

 1. Numbers only

 2. lowercase hex

 3. UPPERCASE HEX

 4. lowercase alpha characters

 5. UPPERCASE ALPHA characters

 6. lowercase alphanumeric characters

 7. UPPERCASE ALPHANUMERIC characters

 8. lowercase & UPPERCASE ALPHA characters

 9. lowercase & UPPERCASE ALPHAnumeric characters

 10. All printable ASCII characters

 11. lowercase & UPPERCASE ALPHAnumeric characters, as well as:

 !"?$%^&*()_+-=[]{}'#@~,.<>?/|

 20. Custom alphabet – must be used with -c switch

-c The custom attack alphabet to use, for example abcABC123!

Take note that this forces a permutation based process so the larger the alphabet the

longer the process will take. Also, when used with the -a 20

switch, but not the -u switch, the permutations are all based

on the size of the alphabet you submit. Using the example from

above all permutations would be 10 characters in length. This

can also force an incremental attack when coupled with the -n

switch

-s The SSHA hash string that will be attacked. This must be a Base64 encoded string.

This switch is required.

Table 3. For size 3

aaa baa caa daa

aba bba cba dba

aca bca cca dca

ada bda cda dda

aab bab cab dab

...

adc bdc cdc ddc

aad bad cad dad

abd bbd cbd dbd

acd bcd ccd dcd

add bdd cdd ddd

ATTACK

32 HAKIN9 3/2008

SALTED HASHES

33 HAKIN9 3/2008

The dictionary attack is self-explanatory,
you have to also provide the dictionary file
with the -d switch. The dictionary is basically
a list of strings (one per line) that will each
get the salt applied to them and then get
hashed with the appropriate algorithm.

The brute-force mode is a little more
complicated as you must tell the program
what alphabet you want to use. You can
choose from a pre-constructed set using
the -a switch or roll your own with the
-c switch. Rolling your own has proved
interesting for some Tiger Teams that
have some inkling of possible characters
used (based on shoulder surfing or an
understanding of personal habits/history)
but know an entire password.

Using a pre-constructed alphabet will
kick-off the generation of combinations (as in
the Cartesian Product Algorithm) of the data
to be used. For instance, using an alphabet of
abcd and a min – max combination of 1- 4
will yield the following as the clear text data
set to use with the already extracted salt:
Tabele 1, Tabele 2, Tabele 3, Tabele 4.

Using a custom alphabet forces the
generation of all permutations of the
data set at hand. For instance using an
alphabet of abcd the generated clear
text data set would be as presented in
Table 5:

To give an example of what a real
world run would be like let's generate some
hashes first. For the sake of this example
here is an output of the Python script that
generates multiple SHA family hashes. To
keep things simple I have used a small (4
characters long) clear text string of T35t .

Once these hashes are generated we will
use SSHA Attack against them. In the real
word we would obviously not know the
clear text value but this is just an example
for educational purposes. When analysing
the work factor for these simple collisions,
understand that these examples were run
on a dual-processor (Pentium(R) D 2.8
GHz) Linux based VMWare image with
768 MB RAM. During run time an instance

Table 4. For size 4

aaaa baaa caaa daaa

abaa bbaa cbaa dbaa

acaa bcaa ccaa dcaa

adaa bdaa cdaa ddaa

aaba baba caba daba

...

adcd bdcd cdcd ddcd

aadd badd cadd dadd

abdd bbdd cbdd dbdd

acdd bcdd ccdd dcdd

addd bddd cddd dddd

Table 5. Using the Custom Alphabet
feature with an alphabet of „abcd”

aaaa bbbb cccc dddd

abcd abdc acbd acdb

adcb adbc bacd badc

bcad bcda bdca bdac

cbad cbda cabd cadb

cdab cdba dbca dbac

dcba dcab dacb dabc

Table 6. Run-time summary for Listing 7

SHA Algorithm Time (in seconds) for collision at 4 bytes

SHA1 22

SHA256 29

SHA385 33

SHA512 35

On the 'Net
• http://cryptography.hyperlink.cz/MD5_collisions.html,
• http://www.mscs.dal.ca/~selinger/md5collision/,
• http://www.stachliu.com.nyud.net:8090/collisions.html,
• http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html,
• http://www.rsa.com/rsalabs/node.asp?id=2927,
• https://www.iaik.at/research/krypto/collision/SHA1Collision_Description.php,
• http://sourceforge.net/projects/ssha-attack.

ATTACK

34 HAKIN9 3/2008

of the Linux utility top showed that the
memory usage of SSHA Attack program
never surpassed 0.1% while the CPU usage

was well over 90%. The following table
summarizes the run time correlated with
the hash type/size (Table 6).

Conclusion
Using random salt elements when storing
sensitive data is a solid practice and it is a
wise part of a layered defence architecture
but it is not a panacea. An attacker can be
crafty in terms of extracting salt values from
either embedded methods such as the
typical LDAP model analysed in this article
or other storage techniques. The salt needs
to be available for legitimate use within an
application and by the same token it is
available to an attacker, therefore salted
hashes are susceptible to cracking attacks
as shown in this article. As tools get more and
more sophisticated, password and clear-text
data protection will become more and more
challenging. There are tools out there to easily
and quickly crack unsalted one-way hashes.
Now a new generation of cracking tools are
appearing and these target the more difficult
areas of sensitive data. Do not be surprised
if these tools also start to utilize sophisticated
programming techniques based on
distributed computing so as to increase their
efficiency exponentially. A perfect example
of this would be the BOINC based project
to research collisions with unsalted SHA-1
hashes.

The BOINC Project brings about the
power of distributed computing to the world.
This is done in an open source fashion
through volunteers donating computing
power for the solving of computationally
intense and complex problems. You can
get further details on this project at: http:
//boinc.berkeley.edu/. The communities that
were intended to utilise such work were
originally scientific ones, but the computer
science community has realized the benefits
of tapping into a grid based computing
platform for computationally intensive areas
such as cracking encryption schemes.
Somewhat relevant to this article is the SHA-1
Collision Search project, details can found at:
http://boinc.iaik.tugraz.at/sha1_coll_search/.
This is only one example and many more
interesting efforts can be seen at: http:
//distributedcomputing.info/ap-crypto.html

Listing 7. Generating salted hashes, LDAP style, and then cracking them

python genSSHA_py25.py T35t 4

SHA1

Base64 encoded: XjW3J0gbK+nkHDwCdLsksYxx/50wYmJm

SHA256

Base64 encoded: DP8Qwmb5LP1Br1H3EoJ/F7MXJwY9IPt8w3MiDm9r72QwYmJm

SHA384

Base64 encoded:

Yn19q3hVFGN8xUkfvfbCfZg7cZ6d3wqN2vl99Ezuxjd9M0N4y8s6LN+ihIAxWV2tMGJiZg==

SHA512

Base64 encoded:

G1kSnef8EObDZdmlSHhO911J8TWP5eL0jGCtHbG83NNhpWtV34fv8wuF3gOP/N37+RM0dbr8TP28ZQlkxKr0r

DBiYmY=

We will use these hashes here as an example of using SSHA Attack to try to discover

collisions, in essence cracking the clear text component

represented by a salted hash.

./ssha_attack -m brute-force -u 8 -a 9 -s XjW3J0gbK+nkHDwCdLsksYxx/50wYmJm

Hash Algorithm Detected: SHA1

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 22

./ssha_attack -m brute-force -u 8 -a 9 -s DP8Qwmb5LP1Br1H3EoJ/F7MXJwY9IPt8w3MiDm9r72Q

wYmJm

Hash Algorithm Detected: SHA256

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 29

./ssha_attack -m brute-force -u 8 -a 9 -s Yn19q3hVFGN8xUkfvfbCfZg7cZ6d3wqN2vl99Ezuxjd9

M0N4y8s6LN+ihIAxWV2tMGJiZg==

Hash Algorithm Detected: SHA384

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 33

./ssha_attack -m brute-force -u 8 -a 9 -s G1kSnef8EObDZdmlSHhO911J8TWP5eL0jGCtHbG83NNh

pWtV34fv8wuF3gOP/N37+RM0dbr8TP28ZQlkxKr0rDBiYmY=

Hash Algorithm Detected: SHA512

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 35

About the Author
Andres Andreu has been working in the software
engineering/architecture arena for many years now
building global web based solutions for U.S. Government
entities and corporations alike. He is also heavily
involved in the Web applications security and pen testing
space and is the author of the OWASP WSFuzzer and
SSHA Attack programs as well as the book entitled
Professional Pen Testing for Web Applications (ISBN-13:
978-0471789666).

