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To protect against a myriad of attacks, 
including malicious injection attacks 
and the exposure of archived data, user 

data, particularly passwords are stored in a 
non-reversible, non clear-text form. Interestingly 
enough, this same thought process and storage 
technique has carried over to the desktop login 
space with desktop OS logins now tied into Active 
Directory and other LDAP based back-ends.

Storing user data such as passwords in plain 
text represents a potential security risk. In the event 
of a breach, crackers gaining data access via 
software flaws (such as improper input validation) 
could gain unauthorized access to a multitude of 
systems. These days the risk is exponentially higher 
than in the past due to developments in Internet/Web 
based single-password and single-sign-on (SSO) 
technologies. This access could lead to malicious 
activity of any arbitrary real user, with the permissions 
of that user. The extent of these actions are limited 
only by your imagination and what access the 
target application has been allowed. To mitigate this 
security risk the industry generally has relied upon 
password data being stored as the output of a one-
way hashing algorithm. Although, given the elevated 
sophistication of modern-day attack techniques 
coupled with the way one-way hash algorithms 
natively work, vanilla flavoured one-way hashing 
algorithms have really outlived their effectiveness. 
The need for randomness, which has come from the 
age old techniques of the Unix world, became critical 
to the industry. The specifics of this have come 
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in the form of salting the one-way hashes to add 
randomness to the stored output. This randomness 
increases the level of work required for a successful 
crack, in the event of a breach.

A one-way hash is a binary computed value of 
fixed length that is normally represented in either 
Base64 or Hexadecimal encoded notation. The 
idea behind using non-reversible hashes is that 
they should unequivocally identify a set of clear 
text data as being valid (through some form of 
comparison). Some experts consider this a digital 
fingerprint of clear text.

A salt is a randomly computed set of data to alter 
the output of any one-way hashing algorithm (in the 
context of this article). These sets of data traditionally 
come in 4 or 8 byte blocks. With regard to the 
randomness aspect of the salt, true randomness in 
computing environments has been argued time and 
time again and is beyond the scope of this article. 
Suffice it to say that most sets of web based code 
that generate random salts do so utilizing pseudo-
random functions. This article does not attack the 
mathematical foundation of randomness as used 
in today's web based computing environments, 
the randomness of the salt value is actually of no 
relevance for the techniques discussed here.

The reason for using a salt in conjunction with 
one-way hashed data should be an obvious one by 
now. Advanced technologies such as PKI, client-
side X509 certificates, and biometric solutions have 
been around for some time now, but the reality 
of the Information Technology (IT) industry is that 

Difficulty

Cracking 
LDAP Salted 
SHA Hashes
In the realm of Web applications, user data is traditionally stored 
in an accessible manner due to the fact that it is needed for all 
future use by any authorized user(s). User data contains login 
credentials where the password (and potentially usernames and 
other attributes) must be stored for future reference.
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simple username/password combinations 
are still the most prevalent authentication 
model, especially in the space of web 
applications and related technologies such 
as SSL based VPNs. A major player in the 
modern-day space of user data storage and 
authentication/authorization services is the 
Lightweight Directory Access Protocol (LDAP).

LDAP is a protocol that can be 
back-ended by numerous different 
technologies, such as XML or traditional 
relational databases. Within the possible 
schemas used by LDAP, implementations 
of certain objectClass structures are 
accepted as industry standards, and they 
come ready to store sensitive user data 
such as passwords. The obvious one is 
inetOrgPerson described in RFC-2798 that 
has an attribute named userPassword . Any 
standards based implementation of the 
LDAP protocol will support this objectclass. 
Software engineers can write code that 
interacts with these attributes and have 
confidence that their code will function in 
a product agnostic fashion based on the 
LDAP servers adherence to standards. The 
userPassword attribute traditionally supports 
password data in one of the following forms:

•  CLEAR – literally clear text data,
•  BASE64 – Base64 encoded 

representation of clear text data,

•  MD5 – using the Message Digest 5 
one-way hash algorithm,

•  SHA – using the one-way Secure 
Hashing Algorithm.

Clear text data is obviously insecure 
and Base64 encoded data is really no 
better. Both of these methods do nothing 
to protect your user data if an attacker 
manages to penetrate your target LDAP 
data source. One-way hashing algorithms 
have come to the rescue to reference 
stored data because they are not reversible. 
Unfortunately they are consistent in the way 
they operate so an attacker could easily 
figure out that some users in your LDAP 
data source all have the same passwords 
based on identical hashes. Listing 1 shows 
you Python code that will generate a SHA1 
hash of some clear text data. You can run 
this Python script numerous times against 
the same clear text data and see that the 
output does not change. This is a concern 
because many entities out there use a 
consistent default password for all new and/
or temporary users within their infrastructure. 
In operations that utilize SHA1 hashes you 
will find code that performs this type of 
action and outputs to an attribute (typically 
userPassword .) 

To make matters tougher for the IT 
security staff, there are online services that 

attempt to identify a collision for hash data 
(numerous MD5 instances are available 
online), brute-force crackers for specific 
hash forms, rainbow crack programs and 
huge rainbow tables that can be pulled 
down with torrent technologies. This is 
pretty disturbing because it becomes 
really difficult to protect sensitive user data 
nowadays. 

So the suggestion of security experts 
is to use a salt along with strong one-way 
hashing algorithms. MD5 and SHA1 have 
both seen successful collisions in security 
research at this point (see hyperlinks provided 
at the end of this article). This does not mean 
that anyone can cause such a situation as it 
requires expert level knowledge and decent 
computing power (even though the BOINC 
based collision projects minimise the need 
for real knowledge). The strong hashing 
algorithms commonly used today are MD5, 
SHA and the SHA2 family of algorithms 
along with random salts, so in the more 
sophisticated LDAP implementations you will 
now run across the following identifiers in the 
data stored in userPassword attributes:

•  SMD5 – salted MD5,
•  SSHA – salted SHA1,
•  SSHA256 – salted SHA256, 
•  SSHA384 – salted SHA384,
•  SSHA512 – salted SHA512.

This usage of a salt means that for every 
user object, a unique hash is used to store 
password data. If two users have the same 
password and a salt is used then normal 
analysis or the human eye could never 
identify this fact, as the stored hashes will 
not visually match. It is important that salt is 
generated with the highest possible level of 
entropy in order to optimise the use of this 
technology. Listing 2 provides you with a 
Python2.5 script that generates salted SHA 
hashes, this particular script encompasses 
the currently common family of SHA2 
hash algorithms. If you run this script 
numerous times with the same clear text 
string you will always get unique outputs in 
the resulting hashes. This output emulates 
what a more sophisticated environment 
would do if they were in an LDAP realm.

The Salt Is Always Available
There is no black magic involved with 
these salted hashing techniques. The 

Listing 1. Simple code to generate unsalted SHA1 hashes of clear-text data

import sys, sha, base64

ctx = sha.new( sys.argv[1] ) 

hash = "\n{SHA}" + base64.b64encode( ctx.digest() )

print hash

Assuming the code above is saved in a file named genSHA.py then a sample run (using the 
clear-text string “test”) would look something like this:

$ python genSHA.py test

{SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=

Figure 1. SSHA Hash structure – A visual depiction of the hash data structure (SHA1 – 4 
byte salt) detailed in the output from the code in Listing 3
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salt part of a salted hash must be made 
available to the code/application(s) that 
interacts with it for proper functionality to 
exist . Otherwise it would be impossible 
for an application to verify data that 
gets submitted to it . When interacting 
with salted hashes in an authentication 
scenario, for instance, an application 
will generally follow these steps (these 
are specific to interaction with open 

standards based LDAP servers but the 
concept applies to other scenarios as 
well) :

•  getSaltedHash (from internal storage 
– LDAP, database, etc)

•  detectHashingAlgorithm 
(analysing the stored salted hash 
makes it possible to determine the 
one-way algorithm used – in LDAP 

there is usually an identif ying prefix 
like {SSHA}; there is also the fact that 
one way hashes output statically 
sized data)

•  extractSalt (by knowing the 
algorithm, the code can then perform 
this action from the stored hash it just 
acquired)

•  getClearTextData (this would be 
data submitted by a user or other 

Listing 2. Simple Python2.5 code to generate salted SHA1 and SHA2 hashes of clear-text data

import hashlib, binascii, sys
from base64 import b64encode
from random import randrange
str = sys.argv[1]

saltsize = int(sys.argv[2])

if saltsize <> 4 and saltsize <> 8:
    print "Lets stick to what is out there, 4 or 8 byte salt 

sizes ...\n\n"

    sys.exit(0)

print "generating simple random salt of %d bytes...\n" % 
saltsize

salt = ''

for n in range(saltsize/2):
  salt += chr(randrange(256))

salt = binascii.hexlify(salt)

print "SHA1"
m = hashlib.sha1()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode( h + salt )

wo = "{SSHA}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA256"
m = hashlib.sha256()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode( h + salt )

wo = "{SSHA256}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA384"
m = hashlib.sha384()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode( h + salt )

wo = "{SSHA384}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA512"
m = hashlib.sha512()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h) 
w = b64encode( h + salt )

wo = "{SSHA512}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
Assuming the code above is saved in a file named genSSHA.py 

then a sample run (using the clear-text 

string “test”) would look something like 

this:

$ python genSSHA.py test 4

generating simple random salt of 4 bytes...

SHA1

In Hex:
98f161a269d8d3b5567749420f8024a27a9844c0

Base64 encoded:

mPFhomnY07VWd0lCD4AkonqYRMBjNTg1

{SSHA}mPFhomnY07VWd0lCD4AkonqYRMBjNTg1

SHA256

In Hex:
a1efb0cc52ed95dca4536d6d21d68044ca742fec269326992f5d9279e7cc

cf48

Base64 encoded:

oe+wzFLtldykU21tIdaARMp0L+wmkyaZL12SeefMz0hjNTg1

{SSHA256}oe+wzFLtldykU21tIdaARMp0L+wmkyaZL12SeefMz0hjNTg1

SHA384

In Hex:
4034f8cedd3b59e44810c113b88c7b04475193aeab6629034994b1c71e8213

392bd5f07d25e1b2d42547150b7679618c

Base64 encoded:

QDT4zt07WeRIEMETuIx7BEdRk66rZikDSZSxxx6CEzkr1fB9JeGy1CVHFQt2eW

GMYzU4NQ==

{SSHA384}QDT4zt07WeRIEMETuIx7BEdRk66rZikDSZSxxx6CEzkr1fB9JeGy1

CVHFQt2eWGMYzU4NQ==

SHA512

In Hex:
ff24c1b3cf119bf449478c1931a645d240b3454213531ee3fd1ebe2d24a15

017c7aacdebdae4d181b6d62696dcb1fb200466

84096bf2ae71bf1fd20409ca3dfb

Base64 encoded:

/yTBs88Rm/RJR4wZMaZF0kCzRUITUx7j/R6+LSShUBfHqs3r2uTRgbbWJpbcsf

sgBGaECWvyrnG/H9IECco9+2M1ODU=

{SSHA512}/yTBs88Rm/RJR4wZMaZF0kCzRUITUx7j/R6+LSShUBfHqs3r2uTRgb

bWJpbcsfsgBGaECWvyrnG/H9IECco9+2M1ODU=

Clearly there is a difference in the byte size of the hashes 

generated and the larger ones represent 

a greater work factor for a successful 

crack. Although they require more 

effort, they are nevertheless crackable 

via collisions as long as the cracker/

attacker knows where the salt is and how 

to extract it.
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application, in an authentication request 
this is the password)

•  combineClearTextDataAndSalt 
(combine the submitted data with the 
recently extracted salt)

•  applyAlgorithm (apply the detected 
hashing algorithm to the result of the 
previous step)

•  compareValues (compare the original 
stored hash from the internal data store 
and the now salted and hashed data 
submitted to your code) 

A snippet of PHP code performing some of 
these actions on salted SHA1 data could 
look something like this:

//strip out {SSHA}

$encrypted = substr($encrypted, 6);

// $hash now has binary data

$hash = base64_decode($encrypted);

// extract salt from binary data

$salt = substr($hash, 20);

if ($hash == mHash(MHASH_SHA1, 

$cleartext . 

$salt)) {

   return true;

}

Even though this article is focused on LDAP 
salted hashes and how they are commonly 
used in the industry, the concepts described 
apply to any similar technique for storage of 
this type of data. Some solutions store all of 
the relevant data in a database table where 
one field stores the salted hash and another 
field stores the related salt value. The point 
that needs to be understood is that the 
salt is somewhere and an attacker will try 
to get at it. If the salt is compromised then 
brute-force and dictionary attacks become 
possible as you will shortly see.

The Structure 
of the Hashed Data
In the case of LDAP salted hashes the 
structure of the final hashed data looks 
something like this (again, this is specific to 
a salted SHA1 hash with a 4 byte salt but 
think about it all in a wider scope):

There is a salt value, it is in binary 
form. This salt consists of 4 bytes of 
purely random binary data represented 
as hexadecimal notation (Base16 as 8 
bytes). The final salted hash is of length 
20 bytes in raw binary form (40 bytes if 
you look at it in hex). The SHA1 algorithm 
ultimately generates a 160 bit hash 
string. At 8 bits per byte that equates 
to 20 bytes. Figure 1 should give you 
a simple and clear visual depiction of 
this. When dealing with data that has 
already been hashed you must obviously 
understand the structure well. The goal is 
to deconstruct this stored data in order 
to get to the salt and some stored data 
that can be used for hash comparison, 
thus the stored hash must be split apart . 
In the case of SHA1 the goal is to split 
up the original hash into 2 distinct byte 
arrays, one for the lef t 20 bytes (0 – 20 
including the null terminator) and one for 
the rest of the data. The lef t 0 – 20 bytes 
will represent the salted binary value that 
we will use for a byte-by-byte data match 
against the new clear text presented for 
verification. The inbound clear text string 
presented for verification will have to 
be salted as well. The rest of the bytes 
(21 – 32) represent the random salt 
which when decoded will show the exact 

Listing 3. A small ruby script illustrating the process of data being put through a one-
way salted hashing algorithm

#!/usr/bin/env ruby

# For illustrative purposes a static clear text string and salt have been used

require 'sha1'

require 'base64'

salt = 'SALT'

pass = 'testing'

conc = pass+salt

sha = Digest::SHA1.digest(conc)

puts "SHA1 Digest"

puts "In Binary: #{sha}"
puts "Length of Binary: #{sha.length}"

puts "\nIn Hex: #{sha.unpack('H*').to_s}"

puts "Length of Hex: #{sha.unpack('H*').to_s.length}"

puts "\nSalt\nIn ASCII: #{salt}"

puts "In Hex: #{salt.unpack('H*')}"

concsalt = sha+salt

puts "\nSHA1 Hash plus salt (RAW): #{concsalt}"

puts "SHA1 Hash plus salt (RAW – Length): #{concsalt.length}"

puts "SHA1 Hash plus salt (Hex): #{concsalt.unpack('H*')}"

puts "SHA1 Hash plus salt (Hex – Length): #{concsalt.unpack('H*').to_s.length}"

hash = "{SSHA}"+Base64.encode64(concsalt).chomp!

puts "\nSalted SHA1 Hash(Base64 Encoded): #{hash}"

A run of this script generates the following output:

$ ruby genSSHA.rb 

SHA1 Digest

In Binary: yP?`x&%u??V?Cf9M
Length of Binary: 20

In Hex: 790250aa1e6078262575a2c6991856ec4366394d
Length of Hex: 40

Salt

In ASCII: SALT
In Hex: 53414c54

SHA1 Hash plus salt (RAW): yP?`x&%u??V?Cf9MSALT

SHA1 Hash plus salt (RAW – Length): 24

SHA1 Hash plus salt (Hex): 790250aa1e6078262575a2c6991856ec4366394d53414c54

SHA1 Hash plus salt (Hex – Length): 48

Salted SHA1 Hash(Base64 Encoded): {SSHA}eQJQqh5geCYldaLGmRhW7ENmOU1TQUxU
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hex characters that make up the once 
randomly generated seed.

Take a look at the Ruby script in Listing 
3, it outputs interesting details along the way 
of the salted SHA1 creation process. It gives 
you a good understanding of what normally 
takes place under the hood in code that 
generates these types of hashes. In a real 
world scenario the resulting hash seen in 
the very last line of the output is what would 
be stored in the LDAP attribute (in Listing 3 
it would be: {SSHA}eQJQqh5geCYldaLGmR
hW7ENmOU1TQUxU). Figure 1 should visually 
reinforce the final salted hash binary data 
structure at hand. 

Cracking the Hash
Based on what you have learnt, you will see 
that everything necessary to crack a salted 
SHA hash from LDAP is readily available. 
There have been tools written to accomplish 
this. John the Ripper, or John as it is 
commonly referred to, has a patch available 
that gives it the ability to crack salted SHA1 
hashes. John is a multi-purpose cracking 
utility and it is very powerful, but it is somewhat 
limited due to the lack of support for the SHA2 
family of algorithms. Our focus for this article 
is a very specific type of hash based on the 
entire SHA family (except for SHA224 since 
it does not seem widely used in the industry) 
topping off at SHA512. SSHA Attack is a tool 
written for this purpose exactly, as it supports 
attacks on salted SHA1, SHA256, SHA384 & 
SHA512 hashes as commonly used in data 
stores accessed via LDAP. 

SSHA Attack is written in C to maximize 
its performance. It uses the authentication 
concept explained earlier for the crack 
attack on a given hash. If you think about it 
simplistically under the hood a crack attack 
of this sort is nothing more than performing 
the same exact action as an authentication 
query when salted hashes are in place. 
This technique does not attack the hashing 
algorithm at all, it merely uses it for the 
purpose of hash comparison, the output of 
these algorithms is what we are attacking.

Technique aside, it is critical to 
understand the structure of the data that 
was explained earlier. Extracting the salt 
from the salted hashes is at the heart of 
the attack process and has a direct impact 
on the success of a hash crack effort. 
Analyse the snippet of code in Listing 4, it 
shows you where SSHA Attack extracts the 

salt from a salted SHA hash based on the 
hash type.

With the salt in hand, SSHA Attack 
applies it to the clear text data. In the 
scenario of an attack with SSHA Attack 
the clear text data would either come from 
the brute-force process or a dictionary file 
specified at run time. These steps are seen 
in the source code as such:

...

//copy requestPW to unsigned array

strcpy(finalRequestPW, requestPW);

//cat the binary salt to binary array

strcat(finalRequestPW, tempSalt);

Listing 4. Snippet from SSHA Attack outlining the salt extraction process from a 
salted hash that has been acquired from an LDAP implementation

// grab salt from temp & cpy to tempSalt

if (strcmp(hashtype, "SHA1") == 0) {
   strcpy(tempSalt, temp + 20);                     

} else if (strcmp(hashtype, "SHA224") == 0) {
   strcpy(tempSalt, temp + 28);

} else if (strcmp(hashtype, "SHA256") == 0) {
   strcpy(tempSalt, temp + 32);

} else if (strcmp(hashtype, "SHA384") == 0) {
   strcpy(tempSalt, temp + 48);

} else if (strcmp(hashtype, "SHA512") == 0) {
   strcpy(tempSalt, temp + 64);

}

At the end of this code snippet the array tempSalt will hold the value for the salt 

from the hash. Notice how the intimate knowledge of the hash 

sizes are used to calculate where the salt extraction starts. 

With this element of data, the crack attacks can commence. It 

should be obvious by now that this salt will be used to generate 

hashes of clear text data based on the cracking methodology you 

chose to use.

Listing 5. C Snippet from SSHA Attack’s GenerateHash function 

...

EVP_MD_CTX_init(&mdctx);

// Initialize the digest

EVP_DigestInit_ex(&mdctx, md, NULL);
// Add the clear text password to the digest

EVP_DigestUpdate(&mdctx,

                  value,

                  (unsigned int) strlen(value));

// If we have a salt, add that to the digest as well

if(salt) {
   EVP_DigestUpdate(&mdctx,

                    salt,

                    (unsigned int) strlen(value));

}

// Create the hash

EVP_DigestFinal_ex(&mdctx,

                    md_value,

                    &md_len);

EVP_MD_CTX_cleanup(&mdctx);

for(i = 0; i < md_len; i++) {

    // copy the hex values into the buffer

    sprintf(&buffer[i*2], „%02x”, md_value[i]);

}

...

Table 1. For size 1

a b c d

Table 2. For size 2

aa ba ca da

ab bb cb db

ac bc cc dc

ad bd cd dd



32 HAKIN9 3/2008

SALTED HASHES

33 HAKIN9 3/2008

// generate a salted SHA hash

GenerateHash(hashtype, finalRequestPW, 

NULL, buffer);

...

The GenerateHash function utilizes the 
OpenSSL libraries on a Linux system to 
generate the appropriate hash. The hashtype 
has already been dynamically established 
and it gets passed in as the first parameter to 
GenerateHash. In the GenerateHash function 
you will find code as seen in Listing 5.

As you can see (Listing 5) the last 
parameter passed in to GenerateHash 
(called buffer) will end up with the salted hash 
binary data after the algorithm has performed 
its one-way magic. This operation takes place 
for each clear text string from either your 
dictionary or the brute-force process. Then 
the final check that queries the 2 elements of 
data that will either establish whether a crack 
is successful or not looks like this:

...

// perform the actual comparison of

// formattedPW and buffer

if(strcmp(formattedPW, buffer) == 0) {

    // passwords matched

    return 1;

}

...

Using SSHA Attack
The link for SSHA Attack can be found in the 
On the 'Net section. Once the tarball has 
been downloaded, untar it in the standard 
fashion. There is a Makefile there for your 
convenience that basically abstracts the 
compilation and linking statements for you. 
The real statement to link the runnable 
program together is as follows: gcc -03 
fucntions.o ssha _ attack.o -lssl -

o ssha _ attack . This requires that you 
have already compiled the 2 files named 
functions.c and ssha _ attack.c into object 
files. The compilation statement looks like: gcc 
-03 -c -o functions.o functions.c. But you 
can just use make on a Linux distro. Once you 
run the make utility with the included Makefile 
you should have an executable program in 
the same directory where you extracted the 
source files. This means that you should be 
able to invoke SSHA Attack with standard dot 
slash notation, ie. ./ssha _ attack from the 
same directory where you ran the make utility.

Running SSHA Attack with the -help 
switch gives you further information on 
the usage. Listing 6 shows the output of 
such an action. Decide on your attack 
methodology, you currently have 2 choices 
of either dictionary or brute-force. 

Listing 6. SSHA Attack's usage statement

Usage: ./ssha_attack -m mode [-d attack_dictionary_file | [-n min] -u max -a alphabet | 

-a 20 -c custom_alphabet] -s SSHA_hash_string

-m  This is the mode for the prog to operate under.  The currently supported modes are 

"dictionary" and "brute-force".  This switch is required.

-d  This option is to be used to engage "dictionary" mode. The dictionary is a regular 

text file containing one entry per line. The data from this 

file is what will be used as the clear text data to which the 

discovered salt will get applied.

-l  The minimum amount of attack characters to begin with.

-u  The maximum amount of attack characters to use. If -l is not used processing will 

start with size 1

-a  The numerical index of the attack alphabet to use:

       1. Numbers only

       2. lowercase hex

       3. UPPERCASE HEX

       4. lowercase alpha characters

       5. UPPERCASE ALPHA characters

       6. lowercase alphanumeric characters

       7. UPPERCASE ALPHANUMERIC characters

       8. lowercase & UPPERCASE ALPHA characters

       9. lowercase & UPPERCASE ALPHAnumeric characters

       10. All printable ASCII characters

       11. lowercase & UPPERCASE ALPHAnumeric characters, as well as: 

           !"?$%^&*()_+-=[]{}'#@~,.<>?/|

       20. Custom alphabet – must be used with -c switch

-c  The custom attack alphabet to use, for example abcABC123!

Take note that this forces a permutation based process so the larger the alphabet the 

longer the process will take. Also, when used with the -a 20 

switch, but not the -u switch, the permutations are all based 

on the size of the alphabet you submit. Using the example from 

above all permutations would be 10 characters in length. This 

can also force an incremental attack when coupled with the -n 

switch

-s  The SSHA hash string that will be attacked.  This must be a Base64 encoded string. 

This switch is required.

Table 3. For size 3

aaa baa caa daa

aba bba cba dba

aca bca cca dca

ada bda cda dda

aab bab cab dab

... ... ... ...

adc bdc cdc ddc

aad bad cad dad

abd bbd cbd dbd

acd bcd ccd dcd

add bdd cdd ddd

ATTACK
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The dictionary attack is self-explanatory, 
you have to also provide the dictionary file 
with the -d switch. The dictionary is basically 
a list of strings (one per line) that will each 
get the salt applied to them and then get 
hashed with the appropriate algorithm.

The brute-force mode is a little more 
complicated as you must tell the program 
what alphabet you want to use. You can 
choose from a pre-constructed set using 
the -a switch or roll your own with the 
-c switch. Rolling your own has proved 
interesting for some Tiger Teams that 
have some inkling of possible characters 
used (based on shoulder surfing or an 
understanding of personal habits/history) 
but know an entire password.

Using a pre-constructed alphabet will 
kick-off the generation of combinations (as in 
the Cartesian Product Algorithm) of the data 
to be used. For instance, using an alphabet of 
abcd and a min – max combination of 1- 4 
will yield the following as the clear text data 
set to use with the already extracted salt: 
Tabele 1, Tabele 2, Tabele 3, Tabele 4.

Using a custom alphabet forces the 
generation of all permutations of the 
data set at hand. For instance using an 
alphabet of abcd the generated clear 
text data set would be as presented in 
Table 5:

To give an example of what a real 
world run would be like let's generate some 
hashes first. For the sake of this example 
here is an output of the Python script that 
generates multiple SHA family hashes. To 
keep things simple I have used a small (4 
characters long) clear text string of T35t . 

Once these hashes are generated we will 
use SSHA Attack against them. In the real 
word we would obviously not know the 
clear text value but this is just an example 
for educational purposes. When analysing 
the work factor for these simple collisions, 
understand that these examples were run 
on a dual-processor (Pentium(R) D 2.8 
GHz) Linux based VMWare image with 
768 MB RAM. During run time an instance 

Table 4. For size 4

aaaa baaa caaa daaa

abaa bbaa cbaa dbaa

acaa bcaa ccaa dcaa

adaa bdaa cdaa ddaa

aaba baba caba daba

... ... ... ...

adcd bdcd cdcd ddcd

aadd badd cadd dadd

abdd bbdd cbdd dbdd

acdd bcdd ccdd dcdd

addd bddd cddd dddd

Table 5. Using the Custom Alphabet 
feature with an alphabet of „abcd”

aaaa bbbb cccc dddd

abcd abdc acbd acdb

adcb adbc bacd badc

bcad bcda bdca bdac

cbad cbda cabd cadb

cdab cdba dbca dbac

dcba dcab dacb dabc

Table 6. Run-time summary for Listing 7

SHA Algorithm Time (in seconds) for collision at 4 bytes

SHA1 22

SHA256 29

SHA385 33

SHA512 35

On the 'Net
•  http://cryptography.hyperlink.cz/MD5_collisions.html,
•  http://www.mscs.dal.ca/~selinger/md5collision/,
•  http://www.stachliu.com.nyud.net:8090/collisions.html,
•  http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html,
•  http://www.rsa.com/rsalabs/node.asp?id=2927,
•  https://www.iaik.at/research/krypto/collision/SHA1Collision_Description.php,
•  http://sourceforge.net/projects/ssha-attack.
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of the Linux utility top showed that the 
memory usage of SSHA Attack program 
never surpassed 0.1% while the CPU usage 

was well over 90%. The following table 
summarizes the run time correlated with 
the hash type/size (Table 6). 

Conclusion
Using random salt elements when storing 
sensitive data is a solid practice and it is a 
wise part of a layered defence architecture 
but it is not a panacea. An attacker can be 
crafty in terms of extracting salt values from 
either embedded methods such as the 
typical LDAP model analysed in this article 
or other storage techniques. The salt needs 
to be available for legitimate use within an 
application and by the same token it is 
available to an attacker, therefore salted 
hashes are susceptible to cracking attacks 
as shown in this article. As tools get more and 
more sophisticated, password and clear-text 
data protection will become more and more 
challenging. There are tools out there to easily 
and quickly crack unsalted one-way hashes. 
Now a new generation of cracking tools are 
appearing and these target the more difficult 
areas of sensitive data. Do not be surprised 
if these tools also start to utilize sophisticated 
programming techniques based on 
distributed computing so as to increase their 
efficiency exponentially. A perfect example 
of this would be the BOINC based project 
to research collisions with unsalted SHA-1 
hashes.

The BOINC Project brings about the 
power of distributed computing to the world. 
This is done in an open source fashion 
through volunteers donating computing 
power for the solving of computationally 
intense and complex problems. You can 
get further details on this project at: http:
//boinc.berkeley.edu/. The communities that 
were intended to utilise such work were 
originally scientific ones, but the computer 
science community has realized the benefits 
of tapping into a grid based computing 
platform for computationally intensive areas 
such as cracking encryption schemes. 
Somewhat relevant to this article is the SHA-1 
Collision Search project, details can found at: 
http://boinc.iaik.tugraz.at/sha1_coll_search/. 
This is only one example and many more 
interesting efforts can be seen at: http:
//distributedcomputing.info/ap-crypto.html

Listing 7. Generating salted hashes, LDAP style, and  then cracking them

python genSSHA_py25.py T35t 4

SHA1

Base64 encoded: XjW3J0gbK+nkHDwCdLsksYxx/50wYmJm

SHA256

Base64 encoded: DP8Qwmb5LP1Br1H3EoJ/F7MXJwY9IPt8w3MiDm9r72QwYmJm

SHA384

Base64 encoded:

Yn19q3hVFGN8xUkfvfbCfZg7cZ6d3wqN2vl99Ezuxjd9M0N4y8s6LN+ihIAxWV2tMGJiZg==

SHA512

Base64 encoded:

G1kSnef8EObDZdmlSHhO911J8TWP5eL0jGCtHbG83NNhpWtV34fv8wuF3gOP/N37+RM0dbr8TP28ZQlkxKr0r

DBiYmY=

We will use these hashes here as an example of using SSHA Attack to try to discover 

collisions, in essence cracking the clear text component 

represented by a salted hash.

./ssha_attack -m brute-force -u 8 -a 9 -s XjW3J0gbK+nkHDwCdLsksYxx/50wYmJm

Hash Algorithm Detected: SHA1

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 22

./ssha_attack -m brute-force -u 8 -a 9 -s DP8Qwmb5LP1Br1H3EoJ/F7MXJwY9IPt8w3MiDm9r72Q

wYmJm

Hash Algorithm Detected: SHA256

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 29

./ssha_attack -m brute-force -u 8 -a 9 -s Yn19q3hVFGN8xUkfvfbCfZg7cZ6d3wqN2vl99Ezuxjd9

M0N4y8s6LN+ihIAxWV2tMGJiZg==

Hash Algorithm Detected: SHA384

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 33

./ssha_attack -m brute-force -u 8 -a 9 -s G1kSnef8EObDZdmlSHhO911J8TWP5eL0jGCtHbG83NNh

pWtV34fv8wuF3gOP/N37+RM0dbr8TP28ZQlkxKr0rDBiYmY=

Hash Algorithm Detected: SHA512

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 35
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