
2 www.hakin9.org/en hakin9 starter kit 3/2007

Ccrp was designed to be a highly secure
private key encryptor for small files and
messages, and uses bit-move logic as

the primary means of "scrambling" the plain-
text. Ccrp also uses a lookup table instead of
a pseudorandom bit generator, and so to obtain
good security with that method, the perform-
ance of the code is more on the order of a pub-
lic key program than the private key types that
people use for whole-disk encryption.

This article will demonstrate a unique and se-
cure method of encrypting files, where the code
contains clear examples of bit manipulation, fast
sorting, buffer and file manipulation, and some
simple user interface validation. There is little that
the reader will have to know beyond the simplest
level of programming, if the reader is willing to
trace the execution of the code while trying to en-
crypt a very small example file of, say, two bytes.

Ccrp uses two arrays of variable length for
random block size bit moves. The two arrays
might start off like the following:

After sorting by the values in the random
number array:

Note that after sorting, we discard the
lookup table numbers, and use the randomized
sequential array to move the bits from the old

Designing a crypto
attack on the Ccrp
(bit shuffling) cipher
Dale Thorn

A bitdump (after encryption)
of Mary had a little lamb, its
fleece was white as snow, and
everywhere that Mary went the
lamb was sure to go. Note the
variable clustering of 1 and 0
bits. This is what actual random
ciphertext should look like.

positions (sequential array index) to the new
positions (sequential array contents). No math-
ematics or "hash" values are required, since all
bit positions are accounted for with none miss-
ing and no duplicates (more on this below).

Conventional crypto attacks
Conventional attacks range from the physical
(trojan horse, keylogger, RFI monitoring) to the
electronic (differential analysis, brute force, etc.)
to social engineering scams such as the Man In

What you will learn...
• Crypto vulnerabilities and how to address some

of them,
• How to manipulate bits,
• How to generate randomness from a lookup

table, which is similar to playing card decks and
lottery tumblers.

What you should know...
• Have an understanding of the relationship be-

tween bits and bytes,
• Be able to read C language code, on a beginner

level at least.

3

Crypto attack on the Ccrp (bit shuffling) cipher

www.hakin9.org/enhakin9 starter kit 3/2007

The Middle attack for public key sys-
tems. In conventional hosted crypto at-
tacks that I'm aware of, the participants
presumably use any means available
to them to crack the ciphertext, short
of physical spying or interrogation and
torture, to name a couple of methods
that would certainly be disallowed in
a major public contest.

In crypto attacks that I've hosted,
the challengers focused mainly on get-
ting around the serial numbering (see
below) "session key" method I used to
make each encryption unique, rather
than seriously investigate the possibil-
ity of finding a shortcut for decrypting
multiple bit shuffled layers in a single
pass. While I don't blame anyone for
using any legal method to win a crypto
challenge where actual prize money
is offered, the real purpose of hosting
a contest to crack the Ccrp cipher is
to determine whether there is a fatal
weakness in the cipher itself, rather
than an arbitrary implementation detail.

Crypto attack hosting
Some of the best-known Crypto at-
tacks are the Chosen Plaintext Attack
and the Chosen Ciphertext Attack. For
this article, I'll describe some chosen
plaintext attacks I've hosted, and
some suggestions for how to improve
the methods to have a better chance
of success. The primary difference be-
tween plaintext and ciphertext attacks,
from my point of view, is how to cre-
ate the crude equivalent of a "session
key"; in other words, a computerized
modification of the passwords so that
each encryption of several files is done
differently, even though the passwords
entered are the same and the contents
of the files may be identical.

The method I've used for plain-
text attacks is to use the filename to
reiterate the passwords. In a chosen
ciphertext attack, the encryption
server (ex: an ATM machine) would
add a unique serial number to each
transaction/file, and that serial

number or some iteration of it would
modify the encryption, although
the serial number itself would not
be encrypted. That way, the ATM's
decryption process would simply
read the plaintext serial number, and
in conjunction with the ciphertext,
the passwords, and the decryption
code, reproduce the plaintext. In my
plaintext attack hosting, I've chosen
to use the filename rather than add
a unique serial number, for simplic-
ity in testing. In a more formal chal-
lenge, I would switch to the serial
numbering to preclude any tamper-
ing, or to alleviate any suspicions
about the filename method.

Preliminary
considerations
In conventional (XOR) cryptography,
there is little point in running multiple
sessions on a single file (i.e. adding
"layers"), since all layers can be de-
crypted in a single pass by creating
and applying a decryption "mask", at
least in theory. Multi-layer bit shuf-
fled ciphertext cannot be decrypted
in one pass, since there is no XOR
process, and the shuffle pattern is
different for each layer. You could
create a mask after the processing is
complete of course, but there would
be little point in storing that mask
anywhere, unless you created a two-
step mask using another plaintext,
so that you could "decrypt" your ci-
phertext to something like "Mary had
a little lamb..." etc., the usefulness of
which requires no explanation.

The simplest attack on the Ccrp
cipher would be to send the host
'n' number of files, where 'n' equals
the number of bits in the encrypted
contest file. Each of the 'n' files would
have one bit on and all other bits off,
and the on bit would occupy a dif-
ferent position in each file, i.e. zero
through n-1. If there were no filename
or serial number used to modify the
encryption for each file, then when
the host returned the 'n' files to the
attacker, encrypted with the same
passwords as the encrypted contest
file, the attacker could merely look at
where each bit was moved to, and
un-move the bits in the contest file

Table 1. Before Sorting
Index Sequential array

contents
"Random" array filled
from lookup table

0 0 5743
1 1 13496
2 2 17729
3 3 8933
4 4 10150
5 5 14584
6 6 22362
7 7 31955
8 8 2867
9 9 16383

Table 2. After Sorting
Index Sequential array "Random" array
0 8 2867
1 0 5743
2 3 8933
3 4 10150
4 1 13496
5 5 14584
6 9 16383
7 2 17729
8 6 22362
9 7 31955

4 www.hakin9.org/en hakin9 starter kit 3/2007

the same way, producing the secret
plaintext and winning the contest!

At this point in the explanation,
most cryptographers would assume
that the process is weak, hanging as
it were on one little factor, the filena-
me or serial number. But an actual
implementation of the cipher is not
so simple. In one implementation I'm
currently using, the first layer is actu-
ally an XOR layer from a bitstream
created using the same lookup
table as the main algorithm. This
layer serves two purposes - one, to
obfuscate the nature of the plaintext,
should the plaintext have many more
zero than one bits or vice-versa, and
two, to prevent trial rearrangements
of the bits to see if any one pattern
comes close to success.

Again at this point, one is tempted
to ask - why use this cipher at all?
One, because it's based on the ran-
domizing logic that's used in casinos
and lotteries, two, because it doesn't
incorporate math shortcuts that will
allow easy decryption by quantum
computers, and three, because the
code is so simple that any average
technical person can "own" the proc-
ess and understand every aspect of
it. This last point is absolutely vital to
security, as history has shown time
and again when people trust their vital
secrets to erstwhile "trusted" agents.

Preparing the attack
In the current implementation, bits are
moved a maximum distance of 189-
1/2 bytes (1516 bits) per encryption
layer. In a 12-layer encryption, bits
would be moved a maximum distance
of 2274 bytes, although the vast ma-
jority would be reshuffled back and
forth to a final destination not far from
their original positions. Any attempt
to do analysis by shuffling followed
by lexical parsing of the result must
note that sampling just a few bytes at
a time has no possibility of success
unless all layers are decrypted in the
correct sequence prior to sampling.

Taking into account all of the
foregoing, I would not know how to
describe a possible attack on the
Ccrp cipher if the filename/serial
number feature and the first-layer

XOR feature were both implemented
in the encryption. If, however, we can
ignore those features in the follow-
ing text, and put aside the simple
'n' number of files attack described
above, we can examine the algo-
rithm at its core, and if we find that
we can successfully compromise
that, we can then turn our attention
to the implementation features for
further analysis.

Ccrp uses the lookup table
numbers only to sort the sequential
number array, and then the lookup
table numbers are discarded. What
this means is that the bit move-to
positions are based on the relative
size of the lookup table numbers
compared to each other within the
current bit "group" selected by the
code. I would guess that we could
create an array or lattice represent-
ing those relative values for each bit
group, where the group size is the
first lookup table number selected,
and the group members are the next
<size> numbers from the lookup ta-
ble. In real-world terms, this lattice
would be quite large for the 1048576
numbers in the current lookup table,
and exponentially larger for a lookup
table of 1048576 numbers squared,
which is a possible implementation.
The big lattice would not be a prob-
lem for a quantum computer, but
it would be unworkable (I think) on
a conventional computer.

To simplify this analysis, let's
visualize a lookup table of only 32
numbers, similar to the number of
balls in a lottery tumbler, or the 52
cards in a standard deck:

 5 6 17 14 10 26 25 20 15 1 12 21 18 13

27 24 7 30 3 16 29 2 31 9 23 19 28 8 11

 4 0 22

Again for simplicity, the first number
we grab is 5, so the first group size is
5, and the five members of the group
are 6, 17, 14, 10, and 26. The relative
sizes of these numbers are 1, 4, 3,
2, and 5. Therefore, the first "row"
of the lattice would be 1, 4, 3, 2, 5.
To generate the second row, we will
begin with the second number in the
lookup table, and the second row will

then have the values 3, 2, 1, 6, 5, 4.
Note that when the program reaches
the end of the lookup table and re-
quires more values to fill out the bit
group size, it simply wraps around to
the beginning of the table.

I will leave it to the readers to
determine whether a mathematical
shortcut can be substituted for the
lattice just described, but in any case,
it's the key to understanding what
occurs within the Ccrp algorithm. If
that lattice or the equivalent can be
applied to a multi-layer Ccrp cipher-
text in a reasonable time frame, then
the filename/serial number logic will
become irrelevant and perhaps only
the above described first-layer XOR
coding will prevent the failure of the
Ccrp code, or maybe not.

Listing 1 is the DOS-code 'C' lan-
guage listing. Note the typedefs that
are used in the code. Different oper-
ating systems may require resizing
some variables, and if so, you may
have to resize one or more of the
'malloc()' allocations in the 'ifn_cryp'
routine. There is a Windows version
available in Visual Basic, and the VB
code looks nearly identical to the 'C'
code presented in Listing 1.

This program is called from
a DOS (etc.) command line for en-
cryption as follows:

CCRP filename /e passwordno1
passwordno2 passwordno3

Decryption is called as follows:
CCRP filename /d passwordno1

passwordno2 passwordno3 l

About the Author
Dale Thorn is a software engineer by
profession, since 1988. Prior to that he
purchased some early personal com-
puters and learned programming and
database development while working
in a manufacturing environment. The
encryption program described here
evolved from an original design by Dale
for a simple password encryptor. Ccrp
has been vetted on the cypherpunks
forum of the 1990's, and against the
various crypto FAQ's such as the
sci.crypt FAQ's.

The contact with the author: d_t_
h_o_r_n@yahoo.com

5

Crypto attack on the Ccrp (bit shuffling) cipher

www.hakin9.org/enhakin9 starter kit 3/2007

Listing 1. DOS- code ‘C’ language listing

/* CCRP.H */

typedef char C; /* char (strings, null-terminated) */
typedef double D; /* double float (double precision) */
typedef float F; /* float (single precision) */
typedef int I; /* short integer (signed) */
typedef long L; /* long integer (signed) */
typedef unsigned int U; /* short integer (unsigned) */
typedef unsigned char UC; /* unsigned character */
typedef void V; /* void data type */

I bitget(C *cstr, I ibit);

V bitput(C *cstr, I ibit, I iput);

V ifn_cryp(U ibuf, FILE *ebuf, I iopr, L llof, L lrnd);

V ifn_msgs(C *cmsg, I iofs, I irow, I icol, I ibrp, I iext);

V ifn_read(C *cbuf, L lbyt, U ibuf, FILE *ebuf);

V ifn_sort(I *int1, L *lnt2, I *istk, I imax);

V ifn_write(C *cbuf, L lbyt, U ibuf, FILE *ebuf);

U io_vadr(I inop);

V io_vcls(I iclr);

V io_vcsr(I irow, I icol, I icsr);

V io_vdsp(C *cdat, I irow, I icol, I iclr);

L ltable(L lrnd);

union REGS rg; /* DOS registers declaration (video) */
U _far *uvadr = 0; /* video display pointer */

/* CCRP.C */

#include "stdlib.h"

#include "string.h"

#include "stdio.h"

#include "dos.h"

#include "io.h"

#include "ccrp.h"

V main(I argc, C **argv) { /* get user's command-line arguments */

 C cmsg[64]; /* initialize the User message string */

 C cwrd[58] = "!#$%&'()+-.0123456789@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`{}~�";

 C cwrx[58] = " ";

 U ibeg; /* initialize the loop-begin variable */

 U ibuf = 2048; /* set the maximum file buffer length */

 C *cchr; /* initialize a temporary character variable */

 U idot; /* initialize the filename extension separator */

 U idx2; /* initialize a temporary loop variable */

 U iend; /* initialize the loop-ending variable */

 U ilen; /* initialize a temporary length variable */

 U incr; /* initialize the loop-increment variable */

 U indx; /* initialize a temporary loop variable */

 I iopr; /* initialize the operation code */

 U iwrd = strlen(cwrd); /* initialize length of filename chars */

 L llof; /* initialize the file length variable */

 L lrnd; /* initialize the lookup table value */

 FILE *ebuf; /* get next available DOS file handle */

 U _far *uvadr = 0; /* video display pointer */

 I int1[58]; /* allocate filename sort index array */

 L lnt2[58]; /* allocate filename sort lookup array */

 I istk[58]; /* allocate filename sort stack array */

 if (argc == 1) { /* a command line was not supplied */
 strcpy(cmsg, "Usage: CCRP(v4.3) filename [/e /d] [key1 key2 ]");

 ifn_msgs(cmsg, 4, 24, 79, 0, 1); /* display usage message and exit */

 }

 if (argc < 4 || argc > 15) { /* no. of seed keys should be one to 12 */
 ifn_msgs("Invalid number of parameters", 4, 24, 79, 1, 1);

 } /* display error message [above] and exit */

 if (argv[2][0] != '/') { /* slash preceding opcode param missing */

6 www.hakin9.org/en hakin9 starter kit 3/2007

 ifn_msgs("Invalid operation parameter", 4, 24, 79, 1, 1);

 } /* display error message [above] and exit */

 strupr(argv[1]); /* uppercase the target filename */

 strupr(argv[2]); /* uppercase the operation code */

 if (strchr("ED", argv[2][1]) == NULL) { /* invalid opcode parameter */
 ifn_msgs("Invalid operation parameter", 4, 24, 79, 1, 1);

 } /* display error message [above] and exit */

 idot = strcspn(argv[1], "."); /* position of filename extension separator */

 ilen = strlen(argv[1]); /* length of target filename */

 if (idot == 0 || idot > 8 || ilen - idot > 4) { /* filename is bad */
 ifn_msgs("Invalid filename", 4, 24, 79, 1, 1); /* filename is bad */

 } /* display error message [above] and exit */

 if (idot < ilen) { /* filename extension separator found! */
 if (strcspn(argv[1] + idot + 1, ".") < ilen - idot - 1) {
 ifn_msgs("Invalid filename", 4, 24, 79, 1, 1);/* 2nd '.' was found! */

 } /* display error message [above] and exit */

 if (idot == ilen - 1) { /* extension separator at end of filename */
 ilen--; /* decrement length of target filename */

 argv[1][ilen] = '\0'; /* decrement length of target filename */

 }

 }

 ebuf = fopen(argv[1], "rb+"); /* open the selected file */

 llof = filelength(fileno(ebuf)); /* get length of selected file */

 if (ebuf == NULL || llof == -1L || llof == 0) {/* length=0 or call failed */
 fclose(ebuf); /* close the selected file */

 remove(argv[1]); /* kill the zero-length file */

 strcpy(cmsg, argv[1]); /* copy filename to message */

 strcat(cmsg, " not found"); /* add "not found" to message */

 ifn_msgs(cmsg, 4, 24, 79, 1, 1); /* display message and exit */

 }

 iopr = argv[2][1] - 68; /* opcode (1=encrypt, 0=decrypt) */

 if (iopr == 1) { /* this is the encrypt operation */
 ibeg = 3; /* set the loop-begin variable */

 iend = argc; /* set the loop-ending variable */

 incr = 1; /* set the loop-increment variable */

 } else { /* this is the decrypt operation */
 ibeg = argc - 1; /* set the loop-begin variable */

 iend = 2; /* set the loop-ending variable */

 incr = -1; /* set the loop-increment variable */

 }

 for (indx = ibeg; indx != iend; indx += incr) {/* loop thru #of seed keys */
 lrnd = atol(argv[indx]) % (L)1048576; /* get lookup table seed key */

 for (idx2 = 0; idx2 < iwrd; idx2++) { /* loop through array elements */
 int1[idx2] = idx2; /* offsets from current byte offset */

 lrnd = ltable(lrnd); /* get the next lookup table value */

 lnt2[idx2] = lrnd; /* put lookup value to sort array */

 }

 ifn_sort(int1, lnt2, istk, iwrd - 1); /* sort lookup array */

 for (idx2 = 0; idx2 < iwrd; idx2++) { /* loop thru filename chars */
 cwrx[int1[idx2]] = cwrd[idx2];

 } /* shuffle bytes in valid filename chars [above] */

 lrnd = atol(argv[indx]) % (L)1048576; /* get lookup table seed key */

 for (idx2 = 0; idx2 < ilen; idx2++) { /* loop thru filename chars */
 cchr = strchr(cwrx, argv[1][idx2]); /* filename char. position */

 if (cchr == NULL) { /* character not found in filename */
 ifn_msgs("Invalid character in filename", 4, 24, 79, 1, 1);

 } /* display error message [above] and exit */

 lrnd = (lrnd + (cchr - cwrx + 1)) % (L)1048576;/* add value to seed */

 lrnd = ltable(lrnd); /* reiterate value of seed key */

 }

 if (iopr == 1) { /* encrypt operation specified */
 ifn_msgs("Encrypting layer", 4, 24, 79, 0, 0); /* encrypt msg. */

 } else { /* decrypt operation specified */
 ifn_msgs("Decrypting layer", 4, 24, 79, 0, 0); /* decrypt msg. */

 }

 itoa(indx - 2, cmsg, 10); /* convert 'indx' to string */

 ifn_msgs(cmsg, -21, 24, 79, 0, 0); /* show layer number message */

 ifn_cryp(ibuf, ebuf, iopr, llof, lrnd); /* encrypt or decrypt */

7

Crypto attack on the Ccrp (bit shuffling) cipher

www.hakin9.org/enhakin9 starter kit 3/2007

 }

 ifn_msgs("Translation complete", 4, 24, 79, 0, 1);

}

V ifn_cryp(U ibuf, FILE *ebuf, I iopr, L llof, L lrnd) { /* encrypt routine */

 C cmsg[64]; /* initialize the User message string */

 U ibit = 0; /* initialize the bit offset in cbuf */

 I ieof = 0; /* initialize the EOF flag */

 U ilen; /* initialize a temporary length variable */

 U indx; /* initialize the for-next loop counter */

 L lbyt; /* initialize the file pointer variable */

 C *cbuf = (C *)malloc(2048); /* initialize the file buffer */

 C *ctmp = (C *)malloc(2048); /* initialize the temp buffer */

 I *int1 = (I *)malloc(3074); /* allocate the sort index array */

 L *lnt2 = (L *)malloc(6148); /* allocate sort lookup number array */

 I *istk = (I *)malloc(3074); /* allocate the sort stack array */

 for (lbyt = 0; lbyt < llof; lbyt += ibuf) { /* process in ibuf segments */
 if (llof > (L)ibuf) { /* so we don't divide by zero */
 ltoa(lbyt / (llof / 100), cmsg, 10); /* convert pct. to string */

 strcat(cmsg, "%"); /* append '%' symbol to message */

 ifn_msgs(" ", -24, 24, 79, 0, 0); /* erase prev.complete msg. */

 ifn_msgs(cmsg, -24, 24, 79, 0, 0); /* show pct. completed msg. */

 }

 if (lbyt + ibuf >= llof) { /* current file pointer + ibuf spans EOF */
 ibuf = (U)(llof - lbyt); /* reset file buffer length */

 ieof = 1; /* set the EOF flag ON */

 }

 ifn_read(cbuf, lbyt, ibuf, ebuf); /* read data into the file buffer */

 while (1) { /* loop to process bit groups in cbuf */
 lrnd = ltable(lrnd); /* get the next lookup table value */

 ilen = (U)(lrnd / 832 + 256); /* buffer bitlen: 256<=ilen<=1516 */

 if (ibit + ilen > ibuf * 8) { /* curr. bit-pointer+ilen spans cbuf */
 if (ieof) { /* EOF flag is ON */
 ilen = ibuf * 8 - ibit; /* reset bit-length of buffer segment */

 } else { /* EOF flag is OFF; adjust file pointer */
 ifn_write(cbuf, lbyt, ibuf, ebuf); /* write data to the file */

 lbyt -= (ibuf - ibit / 8); /* set lbyt to load from ibit */

 ibit %= 8; /* set ibit to first byte of <new> cbuf */

 break; /* exit loop to reload cbuf from lbyt */
 }

 } /* encrypt or decrypt the current segment [below] */

 for (indx = 0; indx < ilen; indx++) {/* loop through array elements */
 int1[indx] = indx; /* bit offsets from current ibit offset */

 lrnd = ltable(lrnd); /* get the next lookup table value */

 lnt2[indx] = lrnd; /* lookup values for sort function */

 }

 ifn_sort(int1, lnt2, istk, ilen - 1); /* sort lookup array */

 memcpy(ctmp, cbuf, 2048); /* copy data buffer to dest. buffer */

 if (iopr) { /* this is the encrypt operation */
 for (indx = 0; indx < ilen; indx++) { /* loop through bit group */
 bitput(ctmp, indx + ibit, bitget(cbuf, int1[indx] + ibit));

 } /* move bits to "random" positions [above] */

 } else { /* this is the decrypt operation */
 for (indx = 0; indx < ilen; indx++) { /* loop through bit group */
 bitput(ctmp, int1[indx] + ibit, bitget(cbuf, indx + ibit));

 } /* restore bits from "random" positions [above] */

 }

 memcpy(cbuf, ctmp, 2048); /* copy dest. buffer to data buffer */

 ibit += ilen; /* increment ibit to next bit-segment */

 if (ibit == ibuf * 8) { /* loop until ibit == length of cbuf */
 ifn_write(cbuf, lbyt, ibuf, ebuf); /* put current buffer to file */

 ibit = 0; /* set ibit to first byte of <new> cbuf */

 break; /* ibit == length of cbuf; exit loop */
 }

 }

 }

 free(cbuf); /* deallocate the file buffer */

8 www.hakin9.org/en hakin9 starter kit 3/2007

 free(ctmp); /* deallocate the temp buffer */

 free(int1); /* deallocate the sort index array */

 free(lnt2); /* deallocate the sort lookup array */

 free(istk); /* deallocate the sort stack array */

}

I bitget(C *cstr1, I ibit) { /* get a bit-value from a string */

 I ival; /* initialize the bit value */

 switch (ibit % 8) { /* switch on bit# within character */
 case 0: /* bit #0 in target character */
 ival = 1; /* value of bit #0 */

 break;
 case 1: /* bit #1 in target character */
 ival = 2; /* value of bit #1 */

 break;
 case 2: /* bit #2 in target character */
 ival = 4; /* value of bit #2 */

 break;
 case 3: /* bit #3 in target character */
 ival = 8; /* value of bit #3 */

 break;
 case 4: /* bit #4 in target character */
 ival = 16; /* value of bit #4 */

 break;
 case 5: /* bit #5 in target character */
 ival = 32; /* value of bit #5 */

 break;
 case 6: /* bit #6 in target character */
 ival = 64; /* value of bit #6 */

 break;
 case 7: /* bit #7 in target character */
 ival = 128; /* value of bit #7 */

 break;
 default:
 break;
 }

 return ((cstr1[ibit / 8] & ival) != 0);
} /* return the value of the target bit [above] */

V bitput(C *cstr1, I ibit, I iput) { /* put a bit-value to a string */

 I ival; /* initialize the bit value */

 I ipos = ibit / 8; /* position of 8-bit char. in cstr1 */

 switch (ibit % 8) { /* switch on bit# within character */
 case 0: /* bit #0 in target character */
 ival = 1; /* value of bit #0 */

 break;
 case 1: /* bit #1 in target character */
 ival = 2; /* value of bit #1 */

 break;
 case 2: /* bit #2 in target character */
 ival = 4; /* value of bit #2 */

 break;
 case 3: /* bit #3 in target character */
 ival = 8; /* value of bit #3 */

 break;
 case 4: /* bit #4 in target character */
 ival = 16; /* value of bit #4 */

 break;
 case 5: /* bit #5 in target character */
 ival = 32; /* value of bit #5 */

 break;
 case 6: /* bit #6 in target character */
 ival = 64; /* value of bit #6 */

 break;
 case 7: /* bit #7 in target character */
 ival = 128; /* value of bit #7 */

 break;

9

Crypto attack on the Ccrp (bit shuffling) cipher

www.hakin9.org/enhakin9 starter kit 3/2007

 default:
 break;
 }

 if (iput) { /* OK to set the bit ON */
 if (!(cstr1[ipos] & ival)) { /* bit is NOT already ON */
 cstr1[ipos] += ival; /* set bit ON by adding ival */

 }

 } else { /* OK to set the bit OFF */
 if (cstr1[ipos] & ival) { /* bit is NOT already OFF */
 cstr1[ipos] -= ival; /* set bit OFF by subt. ival */

 }

 }

}

V ifn_sort(I *int1, L *lnt2, I *istk, I imax) { /* array Quicksort function */

 I iex1; /* initialize the outer-loop exit flag */

 I iex2; /* initialize the inner-loop exit flag */

 I ilap; /* initialize the low array pointer */

 I ilsp; /* initialize the low stack pointer */

 I irdx = 0; /* initialize the sort radix */

 I itap; /* initialize the top array pointer */

 I itsp; /* initialize the top stack pointer */

 I iva1; /* initialize array value from low stack pointer */

 L lva2; /* initialize array value from low stack pointer */

 istk[0] = 0; /* initialize the low array pointer */

 istk[1] = imax; /* initialize the top array pointer */

 while (irdx >= 0) { /* loop until sort radix < 0 */
 ilsp = istk[irdx + irdx]; /* set the low stack pointer */

 itsp = istk[irdx + irdx + 1]; /* set the top stack pointer */

 irdx--; /* decrement the sort radix */

 iva1 = int1[ilsp]; /* get array value from low stack pointer */

 lva2 = lnt2[ilsp]; /* get array value from low stack pointer */

 ilap = ilsp; /* set the low array pointer */

 itap = itsp + 1; /* set the top array pointer */

 iex1 = 0; /* initialize the outer-loop exit flag */

 while (!iex1) { /* loop to sort within the radix limit */
 itap--; /* decrement the top array pointer */

 if (itap == ilap) { /* top array pointer==low array pointer */
 iex1 = 1; /* set the outer-loop exit flag ON */

 } else if (lva2 > lnt2[itap]) { /* value @low ptr > value @top ptr */
 int1[ilap] = int1[itap]; /* swap low and top array values */

 lnt2[ilap] = lnt2[itap]; /* swap low and top array values */

 iex2 = 0; /* initialize the inner-loop exit flag */

 while (!iex2) { /* loop to compare and swap array values */
 ilap++; /* increment the low array pointer */

 if (itap == ilap) { /* top array pointer==low array pointer */
 iex1 = 1; /* set the outer-loop exit flag ON */

 iex2 = 1; /* set the inner-loop exit flag ON */

 } else if (lva2 < lnt2[ilap]) {/* value@low ptr<value@low ptr */
 int1[itap] = int1[ilap]; /* swap top and low array values */

 lnt2[itap] = lnt2[ilap]; /* swap top and low array values */

 iex2 = 1; /* set the inner-loop exit flag ON */

 }

 }

 }

 }

 int1[ilap] = iva1; /* put array value from low stack pointer */

 lnt2[ilap] = lva2; /* put array value from low stack pointer */

 if (itsp - ilap > 1) { /* low segment-width is > 1 */
 irdx++; /* increment the sort radix */

 istk[irdx + irdx] = ilap + 1; /* reset low array pointer */

 istk[irdx + irdx + 1] = itsp; /* reset top array pointer */

 }

 if (itap - ilsp > 1) { /* top segment-width is > 1 */
 irdx++; /* increment the sort radix */

 istk[irdx + irdx] = ilsp; /* reset low array pointer */

 istk[irdx + irdx + 1] = itap - 1; /* reset top array pointer */

10 www.hakin9.org/en hakin9 starter kit 3/2007

 }

 }

}

V ifn_msgs(C *cmsg, I iofs, I irow, I icol, I ibrp, I iext) {/* display msgs */

 if (iofs >= 0) { /* OK to clear screen */
 io_vcls(7); /* clear the screen */

 }

 io_vdsp(cmsg, 4, abs(iofs), 7); /* display the user message */

 if (ibrp) { /* OK to sound user-alert (beep) */
 printf("\a"); /* sound the user-alert */

 }

 if (iext) { /* OK to exit the program */
 io_vcsr(5, 0, 0); /* relocate the cursor */

 fcloseall(); /* close all open files */

 exit(0); /* return to DOS */

 } else { /* do NOT exit the program */
 io_vcsr(irow, icol, 0); /* 'hide' the cursor */

 }

}

L ltable(L lrnd) { /* get next lookup table no.*/

 L l1; /* initialize temp value #1 */

 L l2; /* initialize temp value #2 */

 L l3; /* initialize temp value #3 */

 L l4; /* initialize temp value #4 */

 l1 = lrnd % 8; /* These 5 lines are an integer-only */

 l2 = (lrnd - l1) % 16; /* equivalent to the floating-point */

 l3 = (lrnd - l1 - l2) % 64; /* operations formerly used in this, */

 l4 = (lrnd - l1 - l2 - l3); /* the 16-bit DOS version of the code */

 return (l1 * 214013 + l2 * 82941 + l3 * 17405 + l4 * 1021 + 2531011) % 1048576;
}

V ifn_read(C *cbuf, L lbyt, U ibuf, FILE *ebuf) { /* read from binary file */

 fseek(ebuf, lbyt, SEEK_SET); /* set the buffer-read pointer */

 fread((V *)cbuf, 1, ibuf, ebuf); /* read data from the binary file */

}

V ifn_write(C *cbuf, L lbyt, U ibuf, FILE *ebuf) { /* write to binary file */

 fseek(ebuf, lbyt, SEEK_SET); /* set the buffer-write pointer */

 fwrite((V *)cbuf, 1, ibuf, ebuf); /* write data to the binary file */

}

U io_vadr(I inop) { /* get video address (color or b/w) */

 rg.h.ah = 15; /* video-address function */

 int86(0x10, &rg, &rg); /* call DOS for video address */

 if (rg.h.al == 7) { /* register A-low is 7 */
 return(0xb000); /* return b/w address */
 } else { /* register A-low is NOT 7 */
 return(0xb800); /* return color address */
 }

}

V io_vcls(I iclr) { /* clear screen function */

 I irow; /* initialize the row number variable */

 C cdat[81]; /* initialize the row data buffer */

 memset(cdat, ' ', 80); /* clear the row data buffer */

 cdat[80] = '\0'; /* terminate the row data buffer */

 for (irow = 0; irow < 25; irow++) { /* loop thru the screen rows */
 io_vdsp(cdat, irow, 0, iclr); /* display each <blank> screen row */

 }

}

V io_vcsr(I irow, I icol, I icsr) { /* set cursor position [and size] */

 rg.h.ah = 2; /* cursor-position function */

 rg.h.bh = 0; /* video page zero */

11

Crypto attack on the Ccrp (bit shuffling) cipher

www.hakin9.org/enhakin9 starter kit 3/2007

A D V E R T I S E M E N T

 rg.h.dh = (C)irow; /* row number */

 rg.h.dl = (C)icol; /* column number */

 int86(0x10, &rg, &rg); /* call DOS to position cursor */

 if (icsr) { /* cursor-size specified */
 rg.h.ah = 1; /* cursor-size function */

 rg.h.ch = (C)(13 - icsr); /* set cursor-begin line */

 rg.h.cl = 12; /* set cursor-end line */

 int86(0x10, &rg, &rg); /* call DOS to set cursor size */

 }

}

V io_vdsp(C *cdat, I irow, I icol, I iclr) { /* display data on screen */

 I ilen = strlen(cdat); /* length of string to be displayed */

 I iptr; /* byte-counter for displayed string */

 U uclr = iclr * 256; /* unsigned attribute high-byte value */

 if (!uvadr) { /* video pointer segment not set */
 FP_SEG(uvadr) = io_vadr(0); /* set video pointer segment */

 }

 FP_OFF(uvadr) = irow * 160 + icol * 2; /* set video pointer offset */

 for (iptr = 0; iptr < ilen; iptr ++) { /* loop thru displayed string */
 uvadr = uclr + (UC)cdat[iptr]; / put data to video memory */

 uvadr++; /* increment video display pointer */

 }

}

