
Cooking channels

Simon Castro and Gray World Team

This article has been published in issue 05/2006 of the hakin9 magazine. All rigths reserved.

This file may be distributed for free pending no changes are made to its contents or form.

hakin9 magazine, Wydawnictwo Software, ul. Piaskowa 3, 01-067 Warszawa, en@hakin9.org

www.hakin9.orghakin9 1/200650

Techniques

We all know about HTTP and cookies.
If you ever bought something on the
Internet (or someone did it for you,

you probably used cookies to maintain a logical
session with the remote server. So, how would
it be possible to use cookies as a stealth com-
munication channel?

The cookie theory
Let's review the [RFC_2109] document which
describes various interesting points regarding
the logical sessions creation.

It should be understood that the session
may be terminated by the server (we'll thereaf-
ter use server to speak about the HTTP server
and client to speak about the HTTP client) or
by the client and that sessions should not last
too long (1).

Notice that a client should send cookie(s)
with every request to the server and that the
server may send a cookie to a client even if the
client didn't ask for it (2 and 3).

Also notice that the cookie value is opaque
to the client and thus is also opaque for an host
willing to monitor the sessions (4).

Finally, we suppose that it is not some-
thing suspicious to ask caching services not

to cache the cookies sent by client and server
if the cookie is intended for use by a single
user. (5)

Note that reading (5) the other way means
we may have an opportunity to use these cach-
ing services as a second-level relay to store
and forward data to multiple clients with or with-
out server. We already know this is possible for
any HTTP entity but maybe will it be possible
for the cookies, too.

Thinking about the receipt
A covert channel is a communication channel
that is not designed and/nor intended to ex-

How to cook a covert
channel

Simon Castro and Gray World Team

Difficulty

Before starting to cook your covert channel, you first have to
think about the receipt (recette): decide how your covert channel
will look like, what it will be used for (antipasti or dessert ?) and
finally when you'll have your dinner. Today's menu focuses on
HTTP cookies so let's review the receipt and start to cook.

What you will learn...
• how to prepare a stealth control communication

channel.

What you should know...
• the HTTP protocol,
• you should have basic knowledge about python

programming language.

How to cook a covert channel

hakin9 1/2006www.hakin9.org 51

ist and that can be used to transfer
information in a manner that violates
the existing security policy. [...] Vari-
ous parameters exist to characterize
covert channels: Noise, Bandwidth/
Capacity, Synchronization and Ag-

gregation [...], Latency and Stealthi-
ness [CC]

The receipt of the day will focus on
preparing, step by step, a new control
communication channel (Refer to [CC]
for the difference between control and

data communication channels) which
will be as stealth as possible.

As we cook a stealth commu-
nication channel, we consider that
bandwidth/capacity and latency pa-
rameters are not key factors.

We cook a communication channel
over the HTTP protocol. It means that
the HTTP server needs an HTTP cli-
ent contact before being able to send
any data. As we focus on a control
communication channel, we also have
to restrict the amount of data and the
emission frequency parameters the
HTTP client uses to send and receive
data from the HTTP server.

We won't discuss the active war-
den problem as it would involve him
to alter and keep track of any cookie
he detects (not a so good idea to
change only parts of the cookie...)
and finally we will suppose that
everything but our cookies are seen
as standard to a potential detection
system (Network layers factors and
HTTP protocol behaviour).

Our beta receipt
The information container model the
HTTP client and the HTTP server will
use is as simple as:

Checksum: default size 2 bytes

Command : default size 1 byte

 => is a request or a response

Info : request or response

Padding : default size to 20 bytes

Checksum is a standard computed
checksum over the Command and
Info parameters. Command indi-
cates if the cookie contains a request
or a response. Padding is something
optional which allow to change the
cookie size.

Let's look at what kind of cookie
we may have with a basic client com-
mand that will tell to the server: I am
up, here is my local IP address, my
starting time and my contact delay:

01: I am up (4+4+2 bytes):

 IP address, start time, contact

\x7E\x58 : Checksum

\x01 : Command 01

\x01\x02\x03\x04 : IP - 1.2.3.4

\x07\x5B\xCD\x15 : start time

RFC 2109
• (1) [...] designers paradigm for sessions created by the exchange of cookies has

these key attributes: 1. Each session has a beginning and an end, 2. Each session
is relatively short-lived, 3. Either the user agent or the origin server may terminate
a session,

• (2) To initiate a session, the origin server returns an extra response header to the
client, Set-Cookie. [...] A user agent returns a Cookie request header [...] to the
origin server if it chooses to continue a session. The origin server may ignore it or
use it to determine the current state of the session. It may send back to the client a
Set-Cookie response header with the same or different information, or it may send
no Set-Cookie header at all,

• (3) Servers may return a Set-Cookie response headers with any response. User
agents should send Cookie request headers, subject to other rules detailed below,
with every request. An origin server may include multiple Set-Cookie headers in a
response,

• (4) Set-Cookie Syntax: [...] cookie = NAME "=" VALUE *(";" cookie-av)
[...] NAME=VALUE Required. The name of the state information (cookie) is NAME,
and its value is VALUE. [...] The VALUE is opaque to the user agent and may be
anything the origin server chooses to send, possibly in a server-selected printable
ASCII encoding. Opaque implies that the content is of interest and relevance only
to the origin server. The content may, in fact, be readable by anyone that examines
the Set-Cookie header,

• (5) An origin server must be cognizant of the effect of caching of both the returned
resource and the Set-Cookie header. [...] If the cookie is intended for use by a sin-
gle user, the Set-cookie header should not be cached. A Set-cookie header that is
intended to be shared by multiple users may be cached.

Listing 1. Watching usual cookies

Our cookie is: 582c76b3d761f5741774f9786603e2438853b8b0

and without padding: 582c76b3d761f5741774f97866

Other are (one per line):

a%3A0%3A%6A%7E

RD4hwMCoACkAAHlIYdM

B=cgqeo1l23r2a8&b=3&s=qi

67.161.52.178.1150515143441505

RMID=3ea03bc3443e21f0; RMFL=022FTyfuU1026D

s_vi=[CS]v1|443E1E3D00002C59-A290C75000006B0[CE]

210647688.476418719.1144933410.1144933410.1144933410.1

id=ip.ip.ip.ip-1734349632.2977633:lv=116733416527:ss=114213316627

ID=ad309d77f7453199:TM=1140474596:LM=1141314596:S=OcpTXoHx5MTCUQFl

37692917347247624 bb=41K"KAKt_4KKQtotrKKA1|K"KAKt_4UURtotrKKA1| adv=\

 MC1=V=3&GUID=2b5039af05c385919ecb1181f92bcaa; s_cc=true;\

 s_sq=%5B%5BB%5D%5D;\

 MUID=A259C327D12B8C528ADD1787F3ED94&TUID=1

pdomid=11; TestIfCookieP=ok; TestIfCookie=ok;\

 ASPSESSIONIDSCQSQDTB=KMHHNNICFLFPELFKJFMQPMPB; sasarea=91;\

 vs=252=1225845; pbw=%24b%3D11%3B%24c%1242%3B%14o%1D3;\

 pid=8867356354182511254

MUID=0F1BAEAF00C2765C9052128A0702B37A;MC1=V=3&GUID=\

 2b5039af03dce61903b181f92beaaa; FlightId=; FlightEligible=False{ \

 expires=Mon, 25-Jan-2010 05:jxYf0 GMT; FlightGroupId=213; FlightStatus=

hakin9 1/2006 www.hakin9.org

Techniques

52

\x00\x0A : contact period

 \x42[*7] : 7 bytes of padding

will give a cookie: '7e580101020304075b
cd15000a42424242424242' .

Now that we have a cookie, it
would be a good idea not to send it
in cleartext. If we can have enough
random bytes we can use to XOR the
cookie, we may get something a little
bit less suspicious. So let's suppose
we have a static key and x random
bytes known by client and server,
we then can use a digest function to
get enough pseudo-random bytes to
XOR our cookie before sending it to
the server. Thus, instead of '7e580101
020304075bcd15000a42424242424242', we
will have something like '582c76b3d761
f5741774f9786603e2438853b8b0'.

We now may use cookies to
send and receive data and we have
a way to alter them so that they look
obscure and random. Let's focus on
some command types it would be
interesting to implement.

Client commands:

01: I am up (4+4+2 bytes):

 IP address, start time, contact

Server commands:

01: Change contact period (2 bytes)

 set a new 'contact period'

02 : New rbytes (Max is Size-3)

 add new 'len' + 'random bytes'

03 : Cookie size / Padding (3 bytes)

 'size' 'enable'

With these commands, we basically
can manage our control communica-
tion channel so that it stays online as
long as we need but we may face
another problem: how do we know if
a client or a server got the command
we sent? Let's use a command/
acknowledge mechanism such as
the one described thereafter.

Client commands:

01: I am up (4+4+2 bytes):

 IP address, start time, contact

FE : Same but next contact is

 changed to match the server 01

 command.

FD : Same.

FC : Same but the new cookie

 size is used along with the

 padding activation

Server commands:

01: Change contact period (2 bytes)

 set a new 'contact period'

02 : New rbytes (Max is Size-3)

 add new 'len' + 'random bytes'

03 : Cookie size / Padding (3 bytes)

 'size' 'enable'

FE : not used, no ack for an UP

 client message

Main advantage not using an ac-
knowledgement for the client UP
message is that the client will be
able to send and resend the same
cookie without 1. loosing random

Listing 2. Standard session 1

HTTP GET on A.XXX

=> Reply with a document location to www.A.XXX with :

Set-Cookie: PREF=ID=af4xxab993229877f:TM=1134401:LM=1122401:S=7Ib_Bgu9cf5L;\

 expires=Sun, 23-Jan-2038 19:14:07 GMT; path=/; domain=.A.YYY

HTTP GET on www.A.XXX

=> Reply with :

Set-Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe\

Some HTTP GET on www.A.XXX having:

Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe

Now we close the browser, wait a few seconds and do it again :

HTTP GET on A.XXX having :

Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe

=> Reply with a document location to www.A.XXX without Set-Cookie

HTTP GET on www.A.XXX having:

Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe

etc...

Listing 3. Standard session 2

HTTP GET on B.XXX

=> Reply with a document location to www.B.XXX with

 Set-Cookie: ASPSESSIONIDATRSCS=HAEBGHTVCSXZFJLLLDIAJJMN; path=/

HTTP GET on www.B.XXX without cookie

Listing 4. Running the client part

 $./cook_cl.py -h

 cook_cl.py - v0.1

 Usage:

 ./cook_cl.py [-h|-V]

 ./cook_cl.py [-d server] [-p port] [-u url] [-s sec]

 [-a proxy_ip:proxy_port:user:pass] [-m mimic] [-v]

 Arguments:

 -h help

 -V version

 -v verbose mode

 -d remote server ip or fqdn (default '127.0.0.1')
 -p remote server HTTP port (default '80')
 -u remote server HTTP url (default '/cgi-bin/cook_cgi')
 -s sending delay (seconds) (default '10')
 -a HTTP proxy configuration (ip:port:user:pass)

 -m Mimic browser ('msie' or 'firefox') (default: 'msie')

How to cook a covert channel

hakin9 1/2006www.hakin9.org 53

bytes and 2. as any standard web
client is doing.

Telling about the receipt to
friends
We arbitrary chose to hex-ify our
cookie but you may choose another
algorithm to encode your cookie. Let's
start our favorite MS13 browser and
watch about our cookies (Listing 1):

• name is usually '- _ 1-9a-zA-Z'
and 1 < x < 24 bytes long,

• domain is 50% fqdn and 50%
.fqdn,

• path is 90% '/' (is it ?),
• expiration is usually between

today's year+1 and 2016 or 2038
(?),

• content is sometimes raw ASCII
but often Key=Value (Value =
Raw ASCII).

Cookies are a little bit altered but
who knows, you may recognize
something.

Now, our next step is to study
what's our friends behaviour when
they face a cookie so that we know
when and how we can send and re-
ceive data. Hereunder are described
sessions to famous masked websites.

We conclude that our cooked cli-
ent can send cookies to the server
even if the server didn't send a Set-
Cookie (until 2038?) because the
server may have send this cookie 32
years ago?

We conclude that we have few
(only) practical (not only theoretically
written in the RFC) solutions for the
server to send a cookie so that the
client doesn't have to reply with that
cookie:

• we Set-Cookie with a domain
different from the one in HTTP
URI=> [Standard session 1],

• we Set-Cookie without giving the
domain => [Standard session 2].

It seems that our beta receipt looks
quiet interesting, let's start cooking.

Receipt
Now that we know approximately
what we'll cook, we need to choose

Listing 5. Connecting to the server

$./cook_cgi

How to cook a covert channel - cook_cgi.py - v0.1

Bryan says: Stocked size update to 24 with padding to 0 for client 2. (1)

Bryan says: Welcome in the kitchen, we have 2 client(s) (Wed Apr [...]

 o Remove clients quiet for more than 3600 seconds.

 o Don't double stock idem command: 1

 o Fake cookie for standard clients: None

 o Burn the kitchen

Clients list:

 #2 - Public IP 10.1.1.8 (last conn. time: Wed Apr 26 19:51:27 2006)

 => Local IP 10.1.1.8 (started [...] 19:51:27 2006 / contact: 180 secs)

 => RBYTES_POS: 2 (123:2460/125:2500 bytes:rbytes available) /\

 RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 1

 => Last cookie: 'PREF=db0452e6aeeb5db56c8e2fb09316bb5095b27c9a28586498'\

 / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

 o '47aa01000542424242424242424242424242424242424242' (2)

 o 'e8ab03001800424242424242424242424242424242424242' (3)

 #1 - Public IP 10.1.1.7 (last conn. time: Wed Apr 26 19:50:17 2006)

 => Local IP 10.1.1.7 (started [...] 19:50:17 2006 / contact: 60 secs)

 => RBYTES_POS: 2 (123:2460/125:2500 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 1

 => Last cookie: 'PREF=2d6852e6aeeb52b56c8fe9b01b16bb5095b27c9a28586498'\

 / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

$ _

Listing 6. Sending cooked commands to the client

(1) 19:54:27 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 db0452e6aeeb5db56c8e2fb09316bb5095b27c9a28586498

(2) 19:54:27 - Got 24 bytes cookie (4/16):\

 'G\xaa\x01\x00\x05BBBBBBBBBBBBBBBBBBB'

(3) 19:54:27 - Command Update contact time

(4) 19:54:27 - Updating contact period to 5 secs

(5) 19:54:27 - Got 24 bytes cookie (6/16):\

 '\xe8\xab\x03\x00\x18\x00BBBBBBBBBBBBBBBBBB'

(6) 19:54:27 - Command Update Size

(7) 19:54:27 - Updating cookie size to 24 (padding activation: 0)

(8) 19:54:27 - Sending cookie to ip:80/cgi-bin/cook_cgi (7/7):\

 22984fcc75fc01b0af217350eb

(9) 19:54:27 - Sending cookie to ip:80/cgi-bin/cook_cgi (8/7):\

 14a4087e1e5cf3d5724b522fe6

(10) 19:54:32 - Sending cookie to ip:80/cgi-bin/cook_cgi (9/7):\

 943d58cb1fd5864a98a1a47067

(11) 19:54:38 - Sending cookie to ip:80/cgi-bin/cook_cgi (9/7):\

 943d58cb1fd5864a98a1a47067

hakin9 1/2006 www.hakin9.org

Techniques

54

what kind of Bryan (who always is in
the kitchen as we all know) will help
us to cook some fast food for our
(probable) future new friends.

We chose to use a PYTHON
Bryan so that you and your friends can
taste that meal no matter if you have
a Win32 or a *Nix kitchen. However,

if you read this receipt, you probably
want to taste another meal that would
be cooked in a Win32 C/C++ kitchen and
that no one has heard before because
it's always better not to tell anyone
when you prepare a surprise.

So, our meal is built upon 2 in-
gredients: the client part which is a

standalone python application and
the server part which is a CGI script
you have to upload on a webserver.

The client
The client connects to the web serv-
er and sends a GET request along
with a cookie embedding the I am
up command. If the server response
includes a cookie the client decodes
the cookie and sends back the re-
lated acknowledgement. If the server
doesn't reply to a client cookie, the
client sleeps for x seconds.

As the server may answer with
multiple cookies in a single response,
the client parses all the cookies com-
mands before sending the related
acknowledgement (so that server
and client keep synchronization for
random bytes).

The client sends its HTTP request
with a MS13 or Firefox behavior: both
browsers act the same way at the TCP
level for our CGI (TCP HandShake,
HTTP GET, HTTP REPLY, TCP FIN
HandShake) but do not send the same
HTTP headers when they request the
remote HTTP server.

The server
The CGI server provides two serv-
ices:

• it manages client requests:
cookie decoding, keeping infor-
mation about clients and admin
commands to send...,

• it implements a basic web inter-
face allowing the admin to dis-
play clients information and issue
commands.

When a client sends a GET request,
the CGI checks the cookie and tries
to decode it, it updates the client
information (stores them in a file)
and finally sends the response to the
client along with the commands the
administrator prepared.

When an administrator accesses
the web interface, he may display
clients information and prepare com-
mands that will be sent to the client
during the next contact period.

If the administrator stocks more
than 1 command to send to the client,

Lisitng 7. Client accepted commands

$./cook_cgi

How to cook a covert channel - cook_cgi.py - v0.1

Bryan says: Welcome in the kitchen, we have 2 client(s) (Wed Apr [...]

 o Remove clients quiet for more than 3600 seconds.

 o Don't double stock idem command: 1

 o Fake cookie for standard clients: None

 o Burn the kitchen

Clients list:

 #2 - Public IP 10.1.1.8 (last conn. time: Wed Apr 26 19:54:43 2006)

 => Local IP 10.1.1.8 (started [...] 19:51:27 2006 / contact: 5 secs)

 => RBYTES_POS: 9 (116:2320/125:2500 bytes:rbytes available)\

 / RBYTES_POSI: 7

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 0

 => Last cookie: 'PREF=943d58cb1fd5864a98a1a47067' / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

 #1 - Public IP 10.1.1.7 (last conn. time: Wed Apr 26 19:50:17 2006)

 => Local IP 10.1.1.7 (started [...] 19:50:17 2006 / contact: 60 secs)

 => RBYTES_POS: 2 (123:2460/125:2500 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 1

 => Last cookie: 'PREF=2d6852e6aeeb52b56c8fe9b01b16bb5095b27c9a28586498'\

 / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

$ _

Listing 8. Hazard game for the client #1

./cook_cl.py -d ip -s 10 -v

(1) : 20:02:59 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 96a152e6aeeb52b5726263b02d16bb5095b27c9a28586498

 20:03:09 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 96a152e6aeeb52b5726263b02d16bb5095b27c9a28586498

 20:03:09 - Got 24 bytes (4/16): '5\x80\x02\x00\x10priatnovoapetitaBBB'

 20:03:09 - Command Update Rbytes

(2) : 20:03:09 - Updating rbytes with 'priatnovoapetita'

 20:03:09 - Sending cookie to ip:80/cgi-bin/cook_cgi (6/16):\

 4df16f06ec172a8b8a1bbca7ed2d154944584b2a5b2a31f0

 20:03:19 - Sending cookie to ip:80/cgi-bin/cook_cgi (8/16):\

 7f8db0cc75fc0eb0b1cd3f50e4e3fce0ec63cbaaf742b636

hakin9 1/2006 www.hakin9.org

Techniques

56

each command will become a cookie
and all cookies will be sent in a single
HTTP response to the client.

How does it looks like?
We access the admin interface
http://ip:port/cgi-bin/cook_cgi?pass=
grayworld which tells us that no cli-
ent is currently registered. We run
a client on 10.1.1.7 and stop it:

./cook_cl.py -d ip -v -s 60

19:50:17 - Sending cookie to \

 ip:80/cgi-bin/cook_cgi (2/16): \

 2d6852e6aeeb52b56c8fe9b01b\

 16bb5095b27c9a28586498

^C

We run a second client on 10.1.1.8
and let it running:

./cook_cl.py -d ip -v -s 180

19:51:27 - Sending cookie to \

 ip:80/cgi-bin/cook_cgi (2/16): \

 db0452e6aeeb5db56c8e2fb0931\

 6bb5095b27c9a28586498

Let's look at our admin interface and
stock 2 commands for the 10.1.1.8
client. We'll stock a New contact
period to 5 seconds (2) and disable
the padding (1) and (3) (Connecting
to the server)

Our client is connecting back 180
seconds later (line 1) and sends the
same cookie as previously. The CGI
sends the 2 stocked commands (lines
2 -> 7): the client updates its contact
period to 5 seconds and then disables
the padding. Then it sends back to
the server the two acknowledgement
with two connections (lines 8 and
9). It sleeps for 5 seconds and then
contacts the server with a new I am
up message (line 10). Then it sleeps
again and repeats the I am up each
5 seconds (line 11), sending cooked
commands to the client.

When we check back the admin
interface we notice that the client
10.1.1.8 is updated and that stocked
commands are not registered any-
more (client accepted commands).

Hazard game
Each client connecting for the first
time to the server uses the same
random bytes (line 1, [Hazard
game for the client #1] and [Hazard
game for the client #2]). However,
each time you send new random
bytes to a client (line 2, [Hazard
game for the client #1] and [Hazard
game for the client #2] and then
lines 1/2 [Hazard game for the
server]), they are dedicated to this
client only.

As you may notice on [Hazard
game for the client #1] and [Hazard
game for the client #2], when client
use the same random bytes with
padding enabled, the padding part
of the cookie is exactly the same.
That part will of course be different
as soon as the client will be updated
with new rbytes, but this behaviour
may be suspicious. For this reason,
padding is disabled by default. To
use padding option, the best proc-
ess would be to disable padding, to
set few initialization random bytes
for each client and once a client
connects for the first time, stock the
following commands or send them
one after another (multiple HTTP
requests/responses):

• update contact period to short
delay,

• update cookie size to high value,
• add high new random bytes,
• update cookie size to standard

size and enable padding,
• update contact period to stand-

ard waiting time.

You'll thus have client with dedicated
random bytes and the initialization
cookies will be different as long as
two clients don't start with the same
local ip address at the same time.

Enjoy your meal
Priatnovo apetita: http://gray-world.
net/projects/cooking_channels/. For
sure, having fast food for lunch isn't
so good for health isn't it? Our meal
presents various problems: for ex-
ample, its design implies that every
client has to start with the same ran-
dom bytes (and thus that you cannot

Lisitng 9. Hazard game for the client #2

./cook_cl.py -d ip -s 10 -v

(1) : 20:07:33 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 d55d52e6aeeb5db5726577b02d16bb5095b27c9a28586498

 20:07:43 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 d55d52e6aeeb5db5726577b02d16bb5095b27c9a28586498

 20:07:43 - Got 24 bytes (4/16): 'Q\x08\x02\x00\ndozvidaniaBBBBBBBBB'

 20:07:43 - Command Update Rbytes

(2) : 20:07:43 - Updating rbytes with 'dozvidania'

 20:07:43 - Sending cookie to ip:80/cgi-bin/cook_cgi (6/16):\

 0e0d6f06ec17258b8a1ca8a7ed2d154944584b2a5b2a31f0

 20:07:53 - Sending cookie to ip:80/cgi-bin/cook_cgi (8/16):\

 3c71b0cc75fc01b0b1ca2b50e4e3fce0ec63cbaaf742b636

Listing 10. Hazard game for the server

$./cook_cgi

How to cook a covert channel - cook_cgi.py - v0.1

[...]

Clients list:

 #2 - Public IP 10.1.1.8 (last conn. time: Thu Apr 27 20:07:53 2006)

 => Local IP 10.1.1.8 (started [...] 20:07:03 2006 / contact: 10 secs)

 => RBYTES_POS: 8 (127:2540/135:2700 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] .ookiedozvidania'

[...]

 #1 - Public IP 10.1.1.7 (last conn. time: Thu Apr 27 20:03:19 2006)

 => Local IP 10.1.1.7 (started [...] 20:02:59 2006 / contact: 10 secs)

 => RBYTES_POS: 8 (133:2660/141:2820 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] priatnovoapetita'

[...]

How to cook a covert channel

hakin9 1/2006www.hakin9.org 57

use padding during initialization). It
also means that if one client is com-
promised, then the whole communi-
cation for this client will be cleartext.
A solution would be to secure delete
RBYTES from time to time for every
client.

Another problem lays on the
synchronization. If it is lost for any
reason, then the client is lost. A
solution would be, for example, to
use another cookie (or any HTTP
request field) to re-synchronize
client: the server sends RBYTES_
POS+ x to the client and the client
has to use it for its next I am up
message. If the y next messages
are wrong, then it means the client
is compromised and soon will the
server be investigated too.

Again, another problem lays on
the scheme we use to register the
clients. As they're registered with the
Public IP address, one single client
per public IP address is possible.
Few solutions to this problem may
be implemented, you just have to
find them.

And what about the server? Sup-
pose your server is down, wouldn't
it be fun that the client automatically
registers on a second one ? The cli-
ent may thus use RBYTES_POS[x]
for x servers. Of course, we also
could implement a new command
which would be used to ask the
client to switch to another server. If
you don't want every server to be

compromised when a client is, just
store 4 XOR-ed bytes on the client
side and send the key when you
want to switch.

Another funny idea is that
once you've checked that the cli-
ent can communicate with the
outside world you're done isn't it
? So another command would be
please my dear client, wipe your-
self but <ironic>take care of your
environment</ironic>.

Thus, the suggestion du chef for
tomorrow would be to implement
a safer RBYTES behaviour and to
implement some online behaviour
alteration (so that our client be-
comes more and more useful once
we know it is online). Of course, the
chef would like to suggest you to
cook with unusual spices so that we
get something hot to taste: browser
process injection because people
often don't like eating python and be-
cause piggybacking over legitimate
HTTP transactions would be funky -
at least if you want strangers to taste
your receipt.

Location of cookies
We chose to embeed our Set-Cookie
directive in the HTTP header reply.
Note that we also may use a META
directive such as:

<meta http-equiv="Set-Cookie"

 Content="PREF=42;

 path=/;domain=.gray-world.net">

This doesn't mean a lot for the cur-
rent project, but you'll understand the
trick in the following chapter.

Second level caching
As described in The cookie theory, it is
possible to use caching services as an
intermediate level to store and forward
data to multiple clients and then stop
using remote server. The easiest way
to implement this theory (even if more
complicated schemes exist - follow the
white rabbit) lays on:

• client C1 requests an URI from
server S through proxy P,

• server S replies and response is
cached in P,

• client C2 requests the same URI
from server S through proxy P,

• proxy P replies with the 2. re-
sponse.

Basically, it means that clients C1
and C2 can communicate without
having to reach the remote server for
each message. It does mean some-
thing in the mouse and cat game we
may play versus the detection team:
it means that the detection engine
has to catch traffic between the cli-
ents and their first hop-to-target if it
is a caching service.

So, is it possible to implement
that point with our cookies? Let's
look on the Squid FAQ. The FAQ
(http://www.squid-cache.org/Doc/
FAQ/) states: Thus, Squid-2 does
cache replies with Set-Cookie head-
ers, but it filters out the Set-Cookie
header itself for cache hits. Ok. It
means that if we decide to use Set-
Cookie header directives, we won't be
able to cache our cookies. But does
Squid filters out the Meta equivalent
(refer to location of cookies)? Check
yourself.

As discussed in Enjoy your
meal – PRIATNOVO APETITA, that
behaviour may be interesting if you
decide to ask the client to switch to
another server. You only have to
send the command once for the first
client and then every client going
through the same cache service will
be answered to switch to the second
server. l

About the author
Simon Castro is a member of the Gray World team (http://gray-world.net). This
international research unit is dedicated to computer and network security with a
special interest for NACS bypassing (tunneling, covert channels, network related
steganographic methods). Contact with the authors: simon@gray-world.net or
team@gray-world.net

On the Net
• http://gray-world.net/rfc/rfc2109.txt – [RFC_2109]: RFC 2109 - HTTP State Man-

agement Mechanism – February 1997
• http://gray-world.net/projects/papers/cc.txt – [CC]: Covert channels through the

looking glass v1.0 – October 2005
• http://www.secdev.org/projects/scapy/files/scapy.py – [SCAPY]: Scapy – Interac-

tive packet manipulation tool – v1.0.4.3
• http://www.python.org/ – [PYTHON]: Python

