
www.hakin9.org/enhakin9 6/200750

Attack

Malicious code can be defined as code
that has been developed to perform
various harmful activities on a normal

computer. Examples of such harmful activity
can be actions such as stealing the end users
data or personal information, infecting other ma-
chines on a network or sending spam through
infected machines.

There are several categories of malicious
code which include but are not limited to vi-
ruses, worms, trojan horses and bots. Each of
these categories has differing characteristics
according to their intended purpose. As we
move forward, our aim is to discuss the various
techniques we can use for effectively analyzing
such malicious code.

Types of Malicious Code
Let us discuss the basic definitions of some dif-
ferent types of malicious code:

• Virus: Viruses are simple programs, which
are written to change the way the com-
puter works without the permission of
its user. A virus cannot infect other PCs
on a network until someone executes an
infected file.

• Trojan Horse: In the context of computer
software, a Trojan horse is a program that
unlike a virus, contains or installs a mali-
cious program (sometimes called the pay-
load or 'Trojan') while under the guise of
being something else.

• Worms: A computer worm is a self-rep-
licating computer program. It uses the
network to send copies of itself to other
nodes (computer terminals on the net-
work) and it may do it without any user
intervention.

Analyzing
Malicious Code

Hardik Shah
Anthony L. Williams

Difficulty

Computer networks and the Internet have been plagued
by malicious code and its malevolent effects for long. This article
will give you an introduction into the basic and practical usage
of analyzing malware in a controlled environment.

What you will learn...
• What malicious code is
• Tools and techniques used for malicious code

analysis
• How to analyze the NetSky-P worm

What you should know...
• Elementary binary debugging techniques
• Packet analysis basics
• The Windows environment

Analyzing Malicious Code

51hakin9 6/2007www.hakin9.org/en

• Bots: A bot is a malicious program,
which receives instructions from
its controller and performs opera-
tions according those instructions.
By their nature, bots will replicate
using various techniques like ex-
ploiting remote systems, sending
e-mails using social engineering
and subsequently creating a net-
work of bots which are referred
to as botnets. This network of
compromised computers can be
used to launch Distributed Denial
of Service attacks, install malware
or perform other nefarious activi-
ties. Bots are rising in popularity.

Vulnerabilities
Malicious code such as worms and
bots exploits many vulnerabilities
in the various computer software.

These exploitation can result in
pilfering important data like pass-
words and credit card information
to launching DDoS attacks to threat-
en an entity and extort money. Many
botnet authors even provide their
hijacked networks of compromised
zombie machines for rent to others.

Such software possesses many
serious security related implications
to all computer users. Several organi-
zations have lost millions of dollars
due to the proliferation of such soft-
ware in their networks. For example,
in a northeast manufacturing firm,
malicious code destroyed all the com-
pany programs and code generators.
Subsequently the company lost mil-
lions of dollars, was dislodged from its
position in the industry and eventually
had to lay off 80 workers.

Need for Analysis
Much like the authoring of malicious
code there are a myriad of reasons
for analyzing worms, viruses and
malware. The main reason behind
malware analysis is that there is no
source available for such programs.
The only way to learn such programs
is to analyze them and determine
their inner workings. Another reason
could be that many researchers like
to explore the hidden workings of
a program by examining it using
a disassembler and debugger.

There are two main techniques to
analyze such code:

• dead (static) analysis
• live (dynamic) analysis

We will discuss each of these strate-
gies in the following sections. For this
particular analysis we have chosen
the NetSky-P worm. It’s amongst the
top ten worms reported by SOPHOS
anti virus for May 2007 (http://www.
sophos.com/security/top-10/).

Dead Analysis
Dead (static) analysis is the safest ap-
proach to inspect any malicious binary
file. Using this examination technique
we will never execute the program
but use various disassemblers like
Win32Dasm or IDA Pro to safely inves-
tigate the contents of the binary file.
We will use these tools to analyze
the NetSky-p worm in the following
sections.

Packers and Unpackers
There is a common file format for
executables on the MS Windows

Figure 1. File inspector showing the packer as UPX

Listing 1. Unpacking the file with UPX

C:\Documents and Settings\Hardik Shah\Desktop\upx300w\upx300w>upx -d

malware.exe

 Ultimate Packer for eXecutables
 Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007

UPX 3.00w Markus Oberhumer, Laszlo Molnar & John Reiser Apr 27th 2007

 File size Ratio Format Name

 -------------------- ------ ----------- -----------

 28160 <- 6384 58.18% win32/pe malware.exe

Unpacked 1 file.

Figure 2. E-mail Subject

Attack

52 hakin9 6/2007 www.hakin9.org/en

platform, which is called the PE for-
mat. Each and every executable file
on a MS Windows system is in the
PE file format. Usually the author
of malicious code used various tech-
niques to make it harder to analyze
them using basic techniques.

A common approach for many
malware authors is to use known
as executable packers, which re-
duce the executable size and alter
its contents using specific obfusca-
tion algorithms. In these scenarios
normal disassembly will not be ef-
fective. Among the most commonly
employed file packers are utilities
such as UPX and ASPack.

To determine which file packer
was used we can use a tool called
file insPEctor XL. As indicated by
its namesake it will inspect the file
for common packer signatures from
which it can easily detect the packer

used. It is then necessary to unpack
such files for the analysis phase,
there are various tools which we can
use to unpack the files in a protected
environment. One such tool is PEID
and another is ProcDump. With these
tools we can unpack many of the
common file packers.

Sometimes malware author makes
it more difficult to unpack a particu-
lar file by obfuscating the signature
bytes in the executable, so that the
above-mentioned tools cannot de-
tect the correct packer. To overcome
this problem, tools like ProcDump
have a heuristic analysis feature,
which will provide the packer name
based on the heuristic definition. In
some cases we need to manually
unpack the binary file in question.
Manual unpacking is another inter-
esting topic which due to space limit
we can not discuss here. For the
purpose of this article we will stick
to the various tools mentioned above
for unpacking.

The initial action we will take is to
determine if the file being examined is
indeed packed or not. For this we will
use a tool called file insPEctor XL. As

you can see in Figure 1 this tool re-
ports that the file is packed using Ulti-
mate Packer for Executables (UPX).

UPX is an open source tool that
is freely available for download
from Sourceforge.net. After down-
loading and installing it can by run
from the command line with our
malware filename as an argument
generating the output presented in
Listing 1.

Disassembling
and Identifying String Data
A malicious executable file can
contain various string which pro-
grammer has hardcoded iduring the
development. Such strings can be the
error messages or can be related
to the functioning of the malicious
code. For example, if an executable
file is sending mails then it can con-
tain various strings for the different
subject lines like RE: Here is the
attachment, ++No virus Found++
etc. So after unpacking the file we
need to disassemble it using a tool
such as Win32Dasm or IDA Pro to
analyze the common strings. This
analysis will give us a general idea
about the functionality of the file.
There are various strings, which
we can determine by analyzing.
These strings can contain the body
of e-mails or subject or name of file
attachment, which a worm sends in
an attachment etc.

Now that we have successfully
unpacked the executable we can
proceed with disassembly and per-
form further investigative work. Let

Figure 3. Shows the various strings it includes in outgoing messages

Figure 4. Displays the types of
file extensions which the Netsky-P
worm inserts into the attachments
its sends Figure 5. Shows the file names it uses on the infected system

Analyzing Malicious Code

53hakin9 6/2007www.hakin9.org/en

us perform the static analysis of
this executable using the IDA Pro
disassembler. The first thing we will
look at in the disassembly are the

strings. Strings in an executable can
provide a variety of the information
such as: e-mail subject, message,
registry entries, file extensions

Figure 6. Illustrates some of the registry entries used by the worm

Figure 7. Breakpoint in OllyDebugger

Figure 8. One of the registry entries created by worm

Attack

54 hakin9 6/2007 www.hakin9.org/en

and file names. The example in
Figure 2 shows the e-mail subject,
which NetSky-P worm uses when
it sends the mails from the infected
machine.

Based on the information col-
lected so far it is safe to say that
the Net-Sky-P worm sends e-mails
using various subjects fields, file
names and extensions. In addition to
all this it stores various entries in the
registry so that it can start each time
the infected computer boots.

Live Analysis
In a live (dynamic) analysis scenario
we need to check the overall function-
ality and inner workings of the code
by actually executing it in a control-
led environment. This assists us in
eliminating the false positives associ-
ated with the dead analysis process.
Some malware authors intentionally
include various strings and functions
to prevent the accurate analysis of
their malware (or include code to
detect that it is operating within the

confines of a virtual machine and al-
ter its execution path); such attempts
at obfuscation can be identified in the
live analysis phase.

For this we have setup two test
systems running MS Windows XP
Professional SP2. On the first machine
we installed Ollydbg to allow debug-
ging of the Net-Sky-P worm and the
other system was connected to the
same network so that we can effec-
tively monitor the various activities of
the worm in real time. Then we started
Wireshark on both computers and
RegMon and FileMon on the second
infected system.

It is worthy of note that you must
take precautions when dealing with
malware to keep it quarantined from
your working environment. In our case
we chose an air-gapped network with
no access to our production networks
or the Internet. Many others choose
the popular VMWare suite to conduct
these types of experiments within the
confines of a virtual machine. At the
end of the day it is a personal choice
what environment you will experiment
with, we urge to use a safe one.

After preparing the environment
we started OllyDbg debugger and
loaded the NetSky.exe file. After
that we set the breakpoint on various
strings as shown in Figure 7. We set
a breakpoint on string System\Current
Control Set\Services\WksPatch and
run the OllyDebugger. It stopped on
the above breakpoint. Careful exami-
nation of the strings confirms all the
previous findings which we deter-
mined in the static analysis phase.
Now, we will remove the breakpoints
we initially set and use the animate
over and various other debugging
features (like step in and step out) to
trace through the various Windows
API calls like GetInternetConnection
State() and RegCreateKeyEx(). From
this analysis we can determine that
the worm was also creating various
threads to send e-mails.

Registry Keys
To spread itself a malicious code
needs to be started somehow. It can
be done either by executing the mali-
cious file or by clicking a malicious

Figure 9. Base64 FileMon

Figure 10. Decoded File

Analyzing Malicious Code

55hakin9 6/2007www.hakin9.org/en

web link or from the autorun option
available in the Windows registry.
Modern malware employs various
social engineering techniques. After
the end users execute it the first
time, each time a computer boots,
malware can run through the entires
they have created in the registry.

To examine such behavior we will
be using a tool called RegMon from
Sysinternals. It will display all the
registry entries used by a program.

To inspect the NetSky-P worm we
executed it and then checked the vari-
ous registry access in the RegMon
logs. It was trying to access various
keys as we mentioned previously. One
detail we observed was that the worm
has created a new entry in the reg-
istry via HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\
CurrentVersion\Run as displayed in
Figure 8.

Then we examined the Windows
folder and found two new files: AV-
Bgle.exe and Base64.tmp.

FileMon
Malicious code can modify or copy it-
self using different names in various
locations. It can also download and
execute any other file like backdoors,
etc. from a remote location and place
it in the infected system. In order to
observe it, we can use a tool called
FileMon that is also available from
Sysinternals.

To continue the analysis we re-
booted our infected test system and
started RegMon, FileMon and Wire-
shark again. We checked the FileMon
logs and the point of interest we
found, was that it was continually ac-
cessing a file named Base64.tmp. As
the name suggests, we can venture
a guess that this file was encoded
with the Base64 algorithm. This being
the case we used a base64 decoder
to determine that the identity of our
malicious file was NetSky-P.

Figure 10 shows the decoded file
which was in base64 format. Look-
ing at the contents it is clear that it is
an executable file. It contains the MZ
header which is a standard header
for executable files on Windows
platform.

Packet Capture and Analysis
Most of the malwares in the wild
these days try to infect other ma-
chines over the network or become
part of the botnets and send lots of
spam from infected machines. They

can also send various information
from compromised systems like web
surfing habits of the users, pass-
words, account details, etc. Malware
can also be used to launch DDoS
attacks over the Internet.

Figure 11. Capture e-mail in wireshark

Figure 12. DNS queries

Figure 13. SMTP data

Attack

56 hakin9 6/2007 www.hakin9.org/en

In order to this, we need to use
a packet sniffer like Wireshark which
can capture the network traffic going
through the infected system. Basing
on analysis of that data we can de-
termine a variety of details like if it is
a botnet then what are the control in-
structions, what are the servers from
where it is downloading the files and
what kind of spam it is sending.

Next, we proceeded to save the
decoded file as decoded.exe and
open it with IDA Pro for the investiga-
tion. From our analyst workstation we
noticed that AVBgle.exe was scanning
the index.dat file in the Temporary
Internet Files folder on the infected
system. That is interesting for us
because after that we observed the
worm randomly sending many e-mails
to the e-mail addresses it found in that
directory. This behavior is presented in
the Wireshark packet dump shown in
Figure 11.

A more precise packet analysis is
depicted in Figure 12.

At this juncture we decided to per-
form a packet analysis of the worm.
We noticed that, at first, it was trying
to perform various DNS queries for
external servers such as Yahoo!,
AOL, and Hotmail.

After issuing that traffic it was send-
ing e-mails with the various subject, file
names, as we discussed previously.

Identifying
Replication Algorithms:
Malware does not operate in a vac-
uum, to thrive it needs to spawn in-
stances of the same code, which can
work together under the control of one
master to perform malicious activities.
Hence it continuously tries to infect
(or reinfect as the case may be) the
other machines on the local network
or over the Internet. Malware uses
a variety of techniques to achieve this
objective, three examples are:

• Sending e-mail with an attach-
ment containing malicious code.

• Exploiting the computers Soft-
wares using some known vulner-
abilities or zero day.

• Exploiting the vulnerabilities in
Operating System itself.

To identify the exact replication al-
gorithm in use we need to run the
malicious code in a tightly controlled
environment and trace the code in a
debugger. For this kind of analysis we
will use Ollydbg to identify the replica-
tion algorithm. In some cases it is not
possible to identify the algorithm using
the debugger alone. In these scenarios
we need to combine the use of other
techniques such as packet capturing so
that we can determine if the malware is
using any known or unknown exploit(s)
or other observable behaviors.

From the previous analysis it is
clear that the NetSky-P is a mass
mailing worm which sends the infect-
ed file in e-mail, waiting for unsuspect-
ing end users to open the attachment.
It uses various social engineering
techniques which can confuse novice
users, such as appending a string like
No Virus Found!! to the e-mail con-
tent. If end users are not aware of this
type of deception then it is possible to
infect the machine in question.

Conclusion
Malicious code has always been
a threat to computer end users. In
the modern world with the prolif-
eration of the Internet, malware is
employed extensively to generate
website traffic, generate invalid
links that forward the unsuspecting
to infected web sites, launch DDoS
attacks and to pilfer credentials
and personally identifiable infor-
mation. They now often employ
a variety of techniques like using
0day exploits to enable to the code
to spread more rapidly.

Using these techniques we can
analyze the inner workings of this
malicious code. Acquisition of such
skills and intuition takes time,
patience and dedication. We real-
ize that this analysis is in no way
complete, our intention was to give
a general overview on how to use
various malware analysis tools and
techniques to inspect modern mali-
cious code. l

Tools
• VMWare (Virtualization Software) http://www.vmware.com
• IDA Pro/Freeware (Dissembler) http://www.datarescue.com/
• Ollydbg(Popular Ring 3 Debugger) http://www.ollydbg.de/download.htm
• UPX(Ultimate Packer for Executables) http://upx.sourceforge.net/
• ImpREC(Import Reconstruction for PE files) http://securityxploded.com/

download.php#imprec
• Windows Sysinternals(FileMon,RegMon) http://www.microsoft.com/technet/

sysinternals/default.mspx

About the Authors
Hardik Shah specializes in Network Security, Reverse Engineering and Malicious
Code analysis. He is also interested in Web and Application Security. He can be
reached at hardik05@gmail.com
Anthony L. Williams is the Information Security Architect for IRON::Guard Security,
LLC where he performs Penetration Testing, Vulnerability Assessments, Audits and
Incident Response. He can be reached at awilliams@ironguard.net

On the ’Net
• www.offensivecomputing.net – One of the finest website about malicious code.

You can get various malware and their analysis on this site
• www.viruslist.com – viruses encyclopedia,Information on viruses
• http://vx.netlux.org/ – virus samples, virus sources
• http://hexblog.com/ – IDA Pro blog

