

2 www.hakin9.orgSNORT 3www.hakin9.org SNORT2

 team

Editor in Chief: Amalia Leitner
amalia.leitner@software.com.pl

Executive Editor: Karolina Lesińska
karolina.lesinska@software.com.pl

Editorial Advisory Board: Rebecca Wynn, Michael Munt

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Proofreaders: Barry McClain, Mark Lohman, Graham Hili

Top Betatesters: Rebecca Wynn, Bob Folden, Carlos Ayala, Steve
Hodge, Nick Baronian, Matthew Sabin, Laszlo Acs, Jac van den
Goor, Matthew Dumas, Andy Alvarado

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Łozowicka
ewa.lozowicka@software.com.pl

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director: Karolina Lesińska
karolina.lesinska@hakin9.org

Subscription: Iwona Brzezik
Email: iwona.brzezik@software.com.pl

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,

As you already know Snort is the most widely
deployed IDS/IPS technology worldwide.
Developed by Sourcefire, Snort combines the
benefits of signature, protocol, and anomaly
– based inspection.

In Snort Special Issue Leon Ward, Joel Elser,
Kishin Fatnani, Shivang Bhagat and Rishita
Anubhai provide insight into writing Snort rules
and into deployment of this IDS/IPS.

With the end of the year inevitably
approaching, it’s high time to briefly reflect on
2010 and enter 2011 with new solutions and ideas
for the foreseeable future.

Some of them are provided by KK Mookhey in
“How to get the most out of your IPS?” And annual
Conference on Nagios and OSS Monitoring is to
be looked forward too.

Wishing you wonderful Christmas,
Hakin9 Team

PRACTICAL PROTECTION IT SECURITY MAGAZINE

TOOLS
4 Uptime IT Systems Management Review
by Michael Munt

BASICS
6 Notes of the Network Administrator
by Doug Chick
I recently used SNORT and another program I like EtherApe
to detect a major intrusion on my network. Within minutes
millions of people were on my private fiber network.
Once I isolated the problem I immediately connected my
Internet provider. Like with many ISPs they denied it and
recommended I look at my routing tables. If you are a network
manager then you know in very many cases you must provide
proof to your ISP before they are willing to provide you with
support. In this case I recorded the event showing that there
was hundreds of thousands, perhaps even a million people
was passing traffic on my network. I sent the logs, and a video
of my SNORT and EtherApe displays and emailed them to
the ISP. I then shutdown the two interfaces on my router and
waited for a return call. The call came quickly too.

2 www.hakin9.orgSNORT 3www.hakin9.org SNORT 3

CONTENTS

8 Writing Snort Rules
by Kishin Fatnani
Though Snort can also be used for packet logging, sniffing
or as an IPS, however in this article we will look more into
the concept of rules by which Snort detects interesting traffic
for us, basically the kind of traffic we are looking for, like a
network attack, a policy violation or may be traffic from a
network application or device that you are troubleshooting.

14 Collection and Exploration of Large Data
by Luca Deri
Collecting and exploring monitoring data is becoming
increasingly challenging as networks become larger
and faster. Solutions based on both SQL-databases and
specialized binary formats do not scale well as the amount
of monitoring information increases. In this article I would
like to approach to the problem by using a bitmap database
that allows to implementation of an efficient solution for both
data collection and retrieval. NetFlow and sFlow are the
current standards for building traffic monitoring applications.
Both are based on the concept of a traffic probe (or agent
in the sFlow parlance) that analyses network traffic and
produces statistics, known as flows, which are delivered to a
central data collector. As the number of flows can be pretty
extremely high, both standards use sampling mechanisms
in order to reduce the workload on both of the probe and
collectors.

ADVANCED
18 Improving your custom Snort rules
by Leon Ward
While it is easy to create a custom Snort rule, do you know
if you are actually making a good one or not? This article
introduces some common mistakes I find in custom Snort
rules and the potential implications of those mistakes.
The Snort IPS engine has changed substantially over the
last ten years. Packet processing speed has improved,
IP defragmentation and stream reassembly functions
have evolved, the connection and state tracking engine
has matured, but there is one thing that keeps getting left
behind.Custom rule-sets. With each revision of Snort new
features are added that enhance the detection capability and
aid in packet processing performance of the Snort engine.

24 An Unsupervised IDS False Alarm
Reduction System – SMART
by Gina Tjhai and Maria Papadaki
Signature-based (or rule-based) network IDSs are widely used
in many organisations to detect known attacks (Dubrawsky,
2009). A common misconception about IDSs is that they are
Plug-and-Play devices that can be installed and then allowed
to run autonomously. In reality, this is far from the truth.

30 Content Modifiers: Keep it Specific
by Joel Esler
Without going off the deep-end here and discussing every
single Snort rule keyword, I just wanted to touch on a few
modifiers that people sometimes misunderstand. These
modifiers are not keywords of themselves, but rather they
apply as modifiers to another keyword. That keyword is
content. The content keyword is one of the easiest pieces of
the Snort rules language as all it does is look for a particular
string. The modifiers that I am talking about are: 1. Offset,
2. Depth, 3. Distance, 4. Within, 5. nocase, 6. http_uri 7.
rawbytes.

DEFENSE
34 Deploying Snort as WAF
(Web Application Firewall)
by Shivang Bhagat and Rishita Anubhai
In today’s environment, web applications are becoming a
popular attack point with attack agents. Attack agent can
be a human attacker or an automated worm. It tries to
explore vulnerabilities over HTTP(S) and exploit it for a given
opportunity. The web application landscape is also changing
and more complexities are getting added, it provides
openings for vulnerabilities and possible exploitations.
HTTP traffic is no longer restricted to name-value pairs and
traditional HTML only. It has evolved with Web 2.0 and RIA,
it allows JSON, AMF, XML and various other structures. It
has become a platform for robust and advanced business
application hosting and usage. It is imperative to secure
business applications against all possible attack vectors
and to maintain security of information and access. In this
article we will try to understand Snort from HTTP standpoint
and how we can protect applications for some of the popular
attack vectors like XSS or SQL injections by using it.

40 Are you getting the most out of your IPS?
by K. K Mookhey
Picture this: a multi-billion dollar global telecom giant has
invested millions of dollars into building a state-of-the-art
Security Operations Center. They have a huge display
screen being monitored 24/7 by a team of specialists who
– so we are told – have received extensive training in the
specific technologies used, as well as in the overall incident
management framework. They’ve deployed a high-end
intrusion prevention system (IPS) which feeds into their
Security Incident Management (SIM) system. A review of
the procedures and Service Level Agreement (SLA) of the
SOC team signed with the rest of the business reveals that
they are ready to respond 24/7 and have committed that
within 2 hours of a serious attack they will respond to any
serious attacks. On paper it all looks impressive and too
good to be true.

www.hakin9.org4

TOOLS

SNORT

Today, monitoring and reporting is more complex
than ever, as applications and services span many
environments (cloud, virtual and physical) and

infrastructures (Windows, UNIX, Linux, VMware, etc).
Additionally, IT infrastructure is now global and monitoring
from one tool, instead of many point tools, is essential to
drive down costs while increasing performance.

up.time’s Single pane of Glass dashboard provides a
deep, easy-to-use, affordable and complete IT systems
management and monitoring solution designed for
mid-enterprise companies. Every license in up.time’s
comprehensive, cross platform management and
monitoring suite includes unlimited access to:

• Server Monitoring
• Virtual Server Monitoring
• Cloud Monitoring
• Co-Location Monitoring
• Network Monitoring
• SLA Monitoring & Management
• Virtualization & Consolidation
• Capacity Planning
• Application Monitoring
• Application Transaction Monitoring
• Proactive Outage Avoidance
• IT Process Automation

One of the highly beneficial capabilities of the up.time
suite is access to Service Level Management. Most
departments require SLA’s (Service Level Agreement)
for their equipment and applications. up.time makes
it very easy to define and document agreed SLA’s,
then link them through to the appropriate infrastructure
service. up.time also provides the ability to automate
responses to issues, removing the possibility of human
error while greatly decreasing the Mean-Time-To-
Repair. In fact, up.time goes a step further and lets

administrators proactively automate responses based
on thresholds, allowing up.time to solve problems
before they happen. It’s not just physical, virtual and
cloud based servers that up.time monitors, it also
provides application and application transaction
monitoring across Email, CRM, ERP, Web, and even
custom applications (including any 3rd party commercial
software or in-house developed applications).

In addition to all of the above, up.time is extremely
advance with its reporting. This area is a major asset
of the up.time suite and it is immediately apparent that

up.time IT Systems
Management Review
When it comes to the performance and availability of your
IT infrastructure and applications, deep, and easy-to-use
monitoring is a must.

$395 per Windows Server
$695 per UNIX Server
$695 per ESX Server (no charge per instance or VM)
All-in-One: No additional charges for modules or
applications.

URL: http://www.uptimesoftware.com/

up.time IT Systems Management Review

reporting capabilities. Compared to other tools, up.time
is very refreshing. It’s certainly powerful enough
for large enterprises to monitor over 5,000 servers
and applications globally, and yet it’s affordable for
the small and mid enterprise companies to monitor
between 25 and 500 servers and applications. The help
documentation is included and available through your
browser locally on the server.

up.time uses one of the friendliest licensing models
in the industry, with its per-physical-server licensing
across the board, even in virtual environments. All you
need to do is count the number of physical servers you
want to monitor, and that’s it. Everything is included,
no modules, hidden extras, application charges or
management packs.

There is so much depth to this product that I can’t
comment on it all within the scope of this article. If this
sounds interesting, up.time makes trying it for yourself
incredibly easy. I suggest downloading the trial and
taking it for a test drive. I think you’ll be as impressed
as I was. In fact, this product is so good, I’m starting
to recommend that my clients review their monitoring
needs and consider trialing in up.time.

the reporting has had a good deal of thought and time
spent on it. The reporting is both deep and very easy to
create. Administrators can generate and save reports
in different formats and quickly send (or set automated
daily, weekly or monthly sends) via email to a single
user or an entire group.

When we say up.time is easy to use, we really mean
it. Installation of up.time was a dream, very simple,
straightforward and easy to do. The entire process
only takes a few mouse clicks. If you decide to go
with the VMware appliance option, this is even easier
as it comes as a pre-installed appliance that is can be
imported into any virtual infrastructure.

Managing the monitored environment is achieved
through a web portal which is simple, clean and easy
to read (unlike other monitoring solutions that appear
to have far, far too many menu’s and options). Once
you enter a small amount of information, the ‘My Portal’
home page is displayed. This page provides a summary
list of the current alerts that you have configured
together with saved reports and support links. All the
tutorials are web based and, again, very clean and
concise. The end result is that you are up and running
with this product very quickly.

Everything about the product screams simplicity
and yet it’s extremely deep in its monitoring and MICHAEL MUNT

a d v e r t i s e m e n t

http://www.uptimesoftware.com/

www.hakin9.org6

BASICS

SNORT

Doug Chick printable: Notes of the Network Administrator

www.hakin9.org 7SNORT

They are and have been taking serious steps to
secure their systems, despite little interest or
concern from company or agency managers.

Because of this lack of concern, many network security
managers must take it upon themselves to secure their
networks, but with little or no budget, they must rely or
Open Source software to do it.

One such software I use is SNORT. SNORT is an
open source network intrusion prevention and detection
program (NIDS). This is a must have in any network
managers security toolbox. If you are a Linux fan, then
I’m sure you already know about SNORT, as it comes
preinstalled with such Linux installs as Back/Track 4 and
Knoppix-STD. Note there is also a Windows install.

SNORT, monitors, captures and analysis incoming
packages and scans for a pattern of intrusion. In other
words, it looks for specific packet signatures used by
hackers, and automated hacking programs. Snort can
detect attacks, probes, operating system fingerprinting,
buffer overflows, port scans, and server message block
scans. (In other words; all incoming network traffic.)

I recently used SNORT and another program I like
EtherApe to detect a major intrusion on my network.
Within minutes millions of people were on my private
fiber network. Once I isolated the problem I immediately
connected my Internet provider. Like with many ISPs they
denied it and recommended I look at my routing tables.
If you are a network manager then you know in very
many cases you must provide proof to your ISP before

they are willing to provide you with support. In this case
I recorded the event showing that there was hundreds of
thousands, perhaps even a million people was passing
traffic on my network. I sent the logs, and a video of my
SNORT and EtherApe displays and emailed them to the
ISP. I then shutdown the two interfaces on my router and
waited for a return call. The call came quickly too.

The ISP’s main core router was hacked, and their
routes were re-directed. Two hours later all the ISPs
network engineers were called in. I stopped it on my
end by shutting down the two interfaces it was coming
in from, but it took them two more days to correct it
on their end. I have redundant circuits from another
provider, so I simply used those. The direct impact to
me was minimal. Still, with the flood of hundreds of

Doug Chick printable:

I have computer networking friends that work with various
departments of the government, corporations and private
companies that are very aware of the possible threats to
their computers and networks.

What you will learn…
• overview of IDS
• overview of Snort

What you should know…
• basic knowledge of TCP/IP

Notes of the Network Administrator

Figure 1.

www.hakin9.org6

BASICS

SNORT

Doug Chick printable: Notes of the Network Administrator

www.hakin9.org 7SNORT

1. alert – generate an alert using the selected alert
method, and then log the packet

2. log – log the packet
3. pass – ignore the packet
4. activate – alert and then turn on another dynamic

rule
5. dynamic – remain idle until activated by an activate

rule , then act as a log rule
6. drop – block and log the packet
7. reject – block the packet, log it, and then send a

TCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

8. sdrop – block the packet but do not log it.

If you want to learn more about SNORT, I recommend
you visit there site at: www.snort.org

I know there are other NIDS programs out there,
and I’m sure they are just as good as SNORT, but as a
network administrator/engineer this particular program
has already proven itself to me.

EtherApe: Gorilla Virtual Warfare
As I mentioned before, another program I like is
EtherApe. EtherApe is a graphical network monitor
for UNIX modeled operating systems. It doesn’t have
the same features as SNORT, but what is does do is
gives you a graphical overview, on what is going on in
your network. I run EtherApe on a large screen monitor
above my desk. When trouble comes, I can see an
immediate flash of color that warns me that there is
a possible situation on my network. This seemingly
simple program has called me to action a couple of
times. EtherApe has the ability to filter just the port
number you want to monitor, or by default all of them.
Like the name implies it works on an Ethernet network,
but it also works with FDDI, Token Ring, ISDN, PPP,
and SLIP.

thousands of people directed to my private network
with over twenty offices connected, I am still waiting to
discover any long term damage. Privately one of the
techs from my ISP told me later that they thought the
intrusion came from China.

With the help of SNORT and EtherApe I was
immediately alerted to a flood of unwanted traffic to my
network. To me this reaffirmed the necessity of intrusion
detection programs, and also made me research how
many more types there are.

Types of Intrusion Detection Systems:

Intrusion prevention systems (ISP)
This device, also know as Intrusion Detection and
Prevention Systems are network security appliances
that monitor for malicious activity. This is a stand alone
appliance identifies suspicious activity, isolates and
logs it, and attempts to block.

Host-based intrusion detection systems (HIDS)
Host-based intrusion detection systems are installed on
the computer level and monitor the actual server it is
installed for suspicious activity, where ISPs operate on
the network and analyze packets.

Protocol-based intrusion detection systems (PIDS)
This detection system is generally added in front of
a web server and analyzes the HTTP, (and HTTPS)
protocol stream and or port numbers.

Application protocol-based intrusion detection
systems (APIDS)
APIDS typically are placed between servers and
monitors the application state, or more accurately the
protocols being passed between them. For example a
web server that might call on a database to populate a
webpage field.
 I like SNORT because; one it is free, and two because of
the support and its sheer flexibility. (I know, that is three
things)

SNORT RULES…
Like with any intrusion detection device, SNORT has
Rules.

alert tcp any any -> 192.168.1.0/24 111 \

 (content:”|00 01 86 a5|”; msg:”mountd access”;)

The rules are actions that tells Snort what to do when
it finds a packet that matches the rule criteria. There
are 5 default actions; alert, log, pass, activate, and
dynamic. If you are running Snort inline mode, there
are additional options which include; drop, reject, and
sdrop.

DOUGLAS CHICK
Douglas Chick is a Director of Information Systems for a large
company in the Orlando FL area. Although he introduces
himself as a Network Engineer/Administrator. As with many
computer people, Doug holds an MCSE and CCNA certi�cation.
Doug �rst became known on the Internet in May of 2000 for a
series of articles about Microsoft retiring the NT4 MCSE that
were published on over 30 Internet Magazines. With his humor
and insightful look into the world on computer professionals,
he receives a great deal of attention from other computer
professionals around the world. And is proud to admit that less
that one percent are in response for his many typo’s and mis-
spellings. For more visit: www.TheNetworkAdministrator.com

www.hakin9.org8

BASICS

SNORT

Though the tool can also be used for packet
logging, sniffing or as an IPS, however in this
article we will look more into the concept of rules

by which Snort detects interesting traffic for us, basically
the kind of traffic we are looking for, like a network
attack, a policy violation or may be traffic from a network
application or device that you are troubleshooting. For
instance, if someone is doing XMAS port scan to our
network using nmap with the -sX option, Snort will give
us the following alert message.

[**] [1:2000546:6] ET SCAN NMAP -f -sX [**]

[Classification: Attempted Information Leak] [Priority: 2]

10/15-08:51:46.970325 192.168.0.111:62202 ->

192.168.0.1:132

TCP TTL:53 TOS:0x0 ID:28031 IpLen:20 DgmLen:40

U*PF Seq: 0xD70FB1F3 Ack: 0x0 Win: 0x800 TcpLen:

20 UrgPtr: 0x0

[Xref => http://www.emergingthreats.net/cgi-bin/cvsweb.cgi/

 sigs/SCAN/SCAN_NMAP][Xref => http://

doc.emergingthreats.net/2000546]

If the use of P2P or IM applications is against the corporate
policy, Snort can detect their use on the network and
provide alerts with messages similar to these:

[**] P2P BitTorrent announce request” [**]

or

[**] CHAT Yahoo IM successful logon [**]

To identify and alert on the appropriate events of
interest, the detection engine needs to have rules for
each event. A rule is what tells the engine where and
what to look for in the network traffic and what needs
to be done if detected. Here is a simple rule and the
alert generated when that rule is triggered. Rule:

 alert tcp any any -> 192.168.0.1 40404 (msg:”Access to

 port 40404 on server”; sid:3000001;)

Alert:

[**] [1:3000001:0] Access to port 40404 on server [**]

[Priority: 0]

10/15-14:47:19.676927 192.168.0.111:3022 -> 192.168.0.1:40404

TCP TTL:64 TOS:0x0 ID:6265 IpLen:20 DgmLen:40

A* Seq: 0x9197710 Ack: 0xF5F87F4 Win: 0x200 TcpLen: 20

Looking at this you must have got some idea about
the components of a rule, but we shall go in to further
depth and look at various options that can be used in
the rules. So let us start with the above rule which is a
quite simple one.

A rule is divided into two parts:

• Rule Header – the initial portion before the
parentheses

Writing Snort Rules

Snort, as you would know, is a tool used to detect intrusions
on a network.

What you will learn…
• It will get you started with writing basic Snort rules
• Configuration of Snort is not covered here
• Preprocessors and advance rules are not covered

What you should know…
• Good knowledge about TCP/IP networks
• Packet Analysis
• Using and configuring Snort

Writing Snort Rules

www.hakin9.org 9SNORT

There are some predefined variable names for IPs and
networks which are used in the default ruleset, some
of them include

HOME_NET, EXTERNAL_NET, HTTP_SERVERS

 PORT NO.

If the protocol used is TCP or UDP, there will be
a respective header attached to the packet which
will have 2 port addresses, source and destination.
Again, for the rule to be triggered, the port nos. must
also match. Whether this field will be matched with
the source or destination port will depend on the
direction field. A port number may be a single number
or a range given with the : separating the lower and
upper boundaries e.g. 1:200 for port numbers from 1
to 200.

Just as in IP ADDR, variables can be used to represent
port numbers of services like this:

Variable declaration

portvar TEST_PORT 40404

Using the Variable

alert tcp any any -> $TEST_SERVER $TEST_PORT ...

There are some predefined variable names for ports
which are used in the default ruleset, some of them
include – HTTP _ PORTS, SHELLCODE _ PORTS...

 DIRECTION

This field stands for the direction in which the packet
must be travelling to match this rule. If the direction
given is -> then the IP and port addresses on the left
side of this sign will be matched with the source IP
and port while the right side will be matched with the
destination. In case of the <> sign, the left side address
will be checked in source as well as destination and
if found in one, the right side will be matched with the
other.

Note
The exclamation sign ! can be used to negate the IP
ADDR and PORT NO. fields

Coming back to our previous example,

 alert tcp any any -> 192.168.0.1 40404 (msg:”Access to

 port 40404 on server”; sid:3000001;)

we are telling Snort to alert us if it sees a packet
with any IP and any port number in the source
(being left side of the direction -> field) and the IP

• Rule Options – between the parentheses

The Rule Header
The header tells the engine about which packets to look
into based on the protocol, IP & Port addresses and the
direction in which the packet is travelling. The action to
be taken upon detecting an event is also mentioned in
the header. The following is the rule header format:

Let’s take a look at the first field in the rule header
which is -

 ACTION

This field shows the action that will be taken when a
packet matches the rule. Typically you would see alert
or log here, which are self explanatory, but there are
some more actions like pass to ignore the packet or
activate to invoke another rule which has been idle due
to its dynamic action.

 PROTOCOL

Snort will match the addresses and other options only
if the packet is part of the protocol mentioned here,
which could be ip, icmp, tcp or udp.

 IP ADDR

For the rule to be triggered, the IP address specified
here must match the IP address in the packet. Each
packet has an IP header which has two IP addresses,
source and destination. It will depend on the direction
field whether the IP address given here will be
matched with the source or the destination. This field
can have a specific IP, network address with CIDR
notation, multiple IP addresses enclosed within square
brackets and separated by comma or the word ‘any’ to
ignore the IP address.

We can use variable representing IPs of servers
or networks which makes it easier to manage. The
variable are declared initially with the keyword var and
subsequently the variable name preceded by a dollar
sign can be used in the rules. Variable decalaration

var TEST_SERVER 192.168.0.1

Using the variable

alert tcp any any -> $TEST_SERVER 40404 ...

ACTION PROTOCOL IP ADDR PORT NO.

DIRECTION IP ADDR PORT NO.

ACTION

PROTOCOL

IP ADDR

PORT NO.

DIRECTION

www.hakin9.org10

BASICS

SNORT

address 192.168.0.1 and port number 40404 in
the destination. Now suppose there is a service
running on port 40404 on the server 192.168.0.1
and some client connected to the service and
transmitted and received several messages. If this
communication is captured by Snort, we surely
are going to receive the alert as given above. The
question here is that will Snort alert us while the
connection is being established, after it has been
successfully established, at the first message, or at
all the messages sent and received?? To know that
we need to look at the rule and its description below
it which clearly says that an alert to be generated
whenever any packet is seen to be going to this
service. By this explanation it is very clear that we are
going to receive a lot of alerts as Snort will be looking
at the communication packet by packet and each
packet going towards the server will trigger the alert.
Hence, we are going to get an alert right from when
the client requests connection to the service (SYN
packet), then the acknowledgement from the client
to server, each packet containing data (message) or
acknowledgement from the client to server, the finish
(FIN) and finish acknowledgement packets. For any
packets from the server to the client, there will be
no alert, hence the SYN/ACK will not give an alert,
neither any messages received by the client.

So, does that serve the purpose? Well, it depends
on what was the objective for writing such a rule. If
you are just looking for attempts to connect to the
service or successful connections, then this would
create a lot of noise by giving too many alerts which
are not required. However, it may be useful if you are
trying to debug or troubleshoot a network application
or analyze malware activities like if you want to see
how frequently is the application sending a keep-alive
message while being idle or if you want to check on
the activity of a bot.

To reduce the noise and get a single alert on
connection or when a specific message is being sent,
we need to use the rule options which are enclosed
within the parentheses.

The Rule Options
We have already used a couple of options in our
sample rule but those options did not have any role in
the detection logic. These options are called general or
metadata options which provide information about the
rule or event and do not have affect during detection.
The description of the event which is displayed in
the alert comes from the rule option msg. This option
consists of the keyword msg followed by an argument,
the message itself, separated by a :. Each option is
then followed by a ; to end the option and begin another
if any. Some options do not require an argument hence

they also don’t require the :, however, the ; is still
required.

sid and rev
The other option that we have in our rule is the ‘sid’
option which uniquely identifies Snort rules. Each
rule in Snort has a unique sid which is provided
by the author of the rule. To ensure that it does
not conflict with the sid of the rules included in the
Snort distribution, the sid must be above 1000000.
Other community rules may have their own series
which must be avoided in custom rules. The sid is
often accompanied by the rev option which uniquely
identifies revisions of that rule. So if the rule is
revised, it doesn’t need to have a new sid but it will
have a different rev. These numbers are also shown
in the alert just preceding the alert message.

Testing the rule
Now that we have understood the rule and know what
to expect from it, we need to verify the rule and see if
it really works as our expectation. We can do that by
crafting packets in such a way that when they are sent
over the network monitored by Snort, they should trigger
the rule. There are many tools available on the Internet
which can help with this, some being GUI based while
others command line. My preference is command line
as it gives us more control and flexibility by scripting.
The tools I use are hping and scapy. An explanation on
the usage of these tools is out of scope, however to get
the feel of the simplicity and power of these tools, we’ll
give you an example below. In hping, you can simply use
the following options to trigger our sample rule:

hping -c 1 192.168.0.1 -p 40404

(-c 1 is to send a single packet)

while in scapy, the following command can be run from
the scapy prompt:

 >>> send(IP(dst=”192.168.0.1”)/TCP(dport=40404))

Making the rule more specific
We do not want alerts for each and every packet of the
connection as just the knowledge about the connection
attempt would be good enough. In this case we can add
another option which will make the rule trigger only at
the connection request from the client side. As we know
that a connection request packet has only the SYN bit
set, so we can instruct Snort to look for this bit. The
option for this is flags and it takes the initial letter of the
required flags as the argument like the one here:

 alert tcp any any -> 192.168.0.1 40404 (flags:S; msg:

”Access to port 40404 on server”; sid:3000001;)

Writing Snort Rules

Here we are saying that alert us only if the TCP header in
the packet has the SYN bit exclusively set. This will add
to all the previous criteria of Protocol, IPs and Ports as
specified in the rule header. Now we will not get all the
noise we were getting earlier but there is still a problem
which can give us false negatives i.e. it may not alert us
even if the connection is being requested on the said
service. This is because the first packet in the three-way
handshake in TCP can have an ECN flag set along with
the SYN flag. The two ECN flags were reserved earlier,
hence they are represented by the number 1 and 2 rather
than the initial alphabet. We now need to alter the flags
arguments to account for the possibility of an ECN flag
being set. This can be done by adding the optional flags
preceded by a comma, as given below:

 alert tcp any any -> 192.168.0.1 40404 (flags:S,12; msg:

”Access to port 40404 on server”; sid:3000001;)

The flags option affects the detection, hence it cannot be
called a general or metadata option. The options affecting
detection are payload or non-payload options. As the flags
option refers to the information in the TCP header and not
the payload, hence it is a non-payload option.

Payload Options
Most rules do not just depend on the header fields
to identify an event of interest but they look into the
payload i.e. the data passed in the packets. The
headers are based on standard specifications, hence
Snort can identify each field of a header and lets us
refer to them by keywords (e.g. flags, ttl, id), however,
the payload may have variable data depending on the
application used to generate it. To search for a specific
string in the payload, we can use the rule option content
which lets us specify the data to be searched in ascii
text or in hexadecimal.

Now, we also want to be alerted when the admin user
is logging in to the service, so we first analyze the traffic
using a sniffing tool which could be Snort itself or some
other like tcpdump, or Wireshark. From our analysis we
need to find the pattern for admin login. The following is
the output from tcpdump when the admin login was in
process (see Listing 1).

As we see from the packet capture that there is a
string usr admin which is being used as a command to
login as admin. This string can be used as our pattern
to detect admin login. We can write the following rule to
search the pattern:

As Rootkits started to show up in droves as upcoming

threats we scrutinized anti – rootkit software available

on the market at that time only to find out that there

was very few if any software that covered Rootkit

Detection and Rootkit Removal under Windows.

As a result of this realisation Usec – Unique Security

Software was established.. Initially a project that took

off after the master thesis of our lead developer was

finished, Usec.at evolved into a clock-work Team that,

apart from programs, offers active assistance.

The first program of ours was Radix, which remains

our flagship product to this day. Nemesis Anti-Spyware

was then added to broaden our portfolio. Nemesis

Anti-Spyware combines conventional virus search

technology and generic approaches that guide users

in order to find and fix problems malware might have

caused, but do not limit them.

Our Dialer / Systemshields emerged from the need to

both prevent certain actions to a computer system

like creation of services or modification of autorun

registry keys as well as to limit the effects of drive-

by-downloads we encountered during analysis we did

while testing our products.

It seemed that preventing certain system

modifications would either totally prevent or at least

limit drive-by download effects through browsers.

Usec strives to produce innovative, user – friendly

software that is easy to operate even for those

who are not computer – buffs. Usec also provides

assistance when deeper understanding is inevitable

for the diagnosis or protection of a computer.

Usec.at is located in Austria with supporting

developers in Denmark and the USA.

Authors, Florian Eichelberger and Ludwig Ertl can be

reached at office@usec.at for further information.

a d v e r t i s e m e n t

A small tool that makes a big difference

RADIX PACKAGE

• Complete Rootkit protection.

• Detects/repairs drivers and processes.

• Finds hidden files, processes and streams

USHIELDS PACKAGE

• Protects against Dialer, BHO and Registry at-

tacks.

• Detects suspicious system changes.

• Prevents Drive-by-Malware.

NEMESIS PACKAGE

• Complete Spyware protection and repair tool.

• Works for all major spyware / adware / dialer

http://radix.html/
http://ushields.html/
http://nemesis.html/
http://usec.at/
http://usec.at/

www.hakin9.org12

BASICS

SNORT

alert tcp any any -> 192.168.0.1 40404 (content:”usr admin”;

 msg:”user admin login detected”; sid:3000002; rev:1;)

This rule will trigger whenever the admin login
happens, however there is also a good possibility of it
triggering at other times when this string is not being
used as a command but as some data. This would be
termed as a false positive. While choosing patterns,
we must keep in mind that our pattern is as much as
possible unique to the required event.

Reducing False Positives
We will analyze the packets more closely looking for
more patterns to reduce the possibility of false positives.
Firstly we can add the constant binary data preceding
and following our previous string. Binary data can be
represented in hexadecimal and enclosed within the |
characters.

alert tcp any any -> 192.168.0.1 40404 (content:”|02 01 00

|usr admin|00 01|”; msg:”user admin login detected”;

sid:3000002; rev:2;)

If the binary data was not constant in all the admin
logins, then we need to look at other parameters. Let’s
say the string usr admin always starts after three bytes
of some variable data. We can instruct Snort to skip
the first three bytes of the payload and start matching
the pattern string immediately from there. For this we
need to use two content modifiers – offset and depth.
Content modifiers affect how the content option works
and have to follow the required content option for e.g.
(content: usr admin; nocase;) will look for the string
usr admin but ignore the case, here the nocase is a
content modifier.

alert tcp any any -> 192.168.0.1 40404 (content:”usr admin”;

offset:3; depth:9; msg:”user admin login detected”; sid:

3000002; rev:3;)

KISHIN FATNANI – CISSP, GCIH GOLD, GCFA,
CCSE R70, CEH, LPT
Kishin is the founder of K-Secure (www.ksecure.net), an IT
security training company. He has over 20 years experience
in IT, main focus being security, and conducts many security
trainings including Packet Analysis, Snort Rule Writing,
Ethical Hacking, Forensic Analysis, Web Application Security,
Check Point and more. He has also been a SANS local mentor
for the GIAC certification GCFA and has some contributions to
the development of Check Point courseware and certification
exam.
His contact him at kishinf@ksecure.net
Blog: kishinf.blogspot.com
Facebook: www.facebook.com/ksecure
Twitter: www.twitter.com/ksecure

Listing 1. Only TCP Payload is displayed here

0x0020: 0201 0075 7372 2061 ...usr.a

0x0030: 646d 696e 0001 7565 6a34 3739 6a66 6a76 dmin..uej479jfjv

0x0040: 6e76 6a66 6a65 3433 3334 3500 7065 726d nvjfje43345.perm

0x0050: 3a77 7777 7800 :wwwx.

Listing 2. Only TCP Payload is displayed here

0x0020: 0201 0075 7372 2061 ...usr.a

0x0030: 646d 696e 0001 7565 6a34 3739 6a66 6a76 dmin..uej479jfjv

0x0040: 6e76 6a66 6a65 3433 3334 3500 7065 726d nvjfje43345.perm

0x0050: 3a77 7777 7800 :wwwx.

With this rule, Snort will
skip the first 3 bytes of
the payload and start
searching the string usr
admin within the next
9 bytes. This way the
rule is also optimized
as the search will not be
carried out for the entire
payload.

Relative Content
Matching
To further reduce the
possibility of false
alarms, we can match

additional pattern if the first match is successful. We
have noticed that there is a string perm: which always
comes 24 bytes ahead of the usr admin string (see
Listing 2).

The rule logic to match the second pattern will be
same, however the keywords used here are different as
now the match begins from where the previous match
ended. The content modifiers used for this new pattern
are distance, which is similar to offset, the only difference
being that distance is an offset from the end of previous
match whereas offset starts from the beginning of the
payload, and the other one is within which is similar to
depth but works in conjunction with distance.

alert tcp any any -> 192.168.0.1 40404 (content:”usr admin”;

offset:3; depth:9; content:”perm:”; distance:24; within:

5; msg:”user admin login detected”; sid:3000002; rev:4;)

There are many more ways to enhance the rule,
maybe we can cover them in the next article. If you
have to say anything about this article or have a
wishlist for the next one, you can write to me and I
shall surely consider.

The Challenge of Compliance – K. K. Mookhey

www.hakin9.org 13SNORT

Q. What are the sorts of challenges large
corporations are facing with regards to
compliance?
KK: The challenges are many and this is because the
compliance environment is becoming more complex.
Business operations are becoming dynamic by the
day, regulators are becoming more watchful when it
comes to data security and customers are becoming
more demanding. A very simple way to know you’ve
got a problem is to ask your CISO: How secure are we

as an organization. If you find him hemming-hawing or
giving some vague response, then you really don’t have
a handle on your information security.

Q. How are companies dealing with this
challenging environment?
KK: What enterprises should aim to do is put in place
a framework, which helps critical questions that provide
a clear idea of where the organization stands with
regards to information security. Our firm makes one

such compliance platform called as NX27K (http://
www.niiconsulting.com/products/iso_toolkit.html)
– which helps companies comply with the multiple
information security compliance frameworks and
regulations, such as ISO 27001, PCI DSS, SOX, etc.

Q. What should be the capabilities of such a
platform?
KK: The key feature of such a platform should be
flexibility. And this is the key principle on which NX27K
is built. You can modify what you see and put into your
asset register, or modify your risk assessment formula,
modify the audit trail, the risk register, and almost every
aspect of the platform. It integrates with Sharepoint and
Active Directory. Further, it adapts risk assessment
guidelines such as from NIST and COBIT’s Risk-IT

Q. Where can customers go for more
information?
KK: Customers can email us at products@niiconsu
lting.com or visit us at http://www.niiconsulting.com/
products/iso_toolkit.html for more information on this
product and our other services and products.

The Challenge of
Compliance

Certi�ed Professional Hacker,
13th Dec 2010 to 17th Dec 2010
http://www.iisecurity.in/courses/cphv2.html

Certi�ed Information Security Consultant,
13th Dec 2010 to 30th Dec 2010
http://www.iisecurity.in/courses/cisc.html

Certi�ed Professional Hacker – eLearning
http://iisecurity.in/elearning.html

a
d

v
e

r
t

i
s

e
m

e
n

t

www.hakin9.org14

BASICS

SNORT

Collection and Exploration of Large Data

www.hakin9.org 15SNORT

Collecting and exploring monitoring data is
becoming increasingly challenging as networks
become larger and faster. Solutions based on

both SQL-databases and specialized binary formats do
not scale well as the amount of monitoring information
increases. In this article I would like to approach to
the problem by using a bitmap database that allows
to implementation of an efficient solution for both data
collection and retrieval.

NetFlow and sFlow
NetFlow and sFlow are the current standards for
building traffic monitoring applications. Both are based
on the concept of a traffic probe (or agent in the sFlow
parlance) that analyses network traffic and produces
statistics, known as flows, which are delivered to a
central data collector. As the number of flows can be
pretty extremely high, both standards use sampling
mechanisms in order to reduce the workload on
bothof the probe and collectors. In sFlow the use of
sampling mechanisms is native in the architecture so
that it can be used on agents to effectively reduce the
number of flows delivered to collectors. This has a
drawback in terms of result accuracy while providing
results with quantifiable accuracy. With NetFlow, the
use of sampling (both on packets and flows) leads to
inaccuracy and this means that flows sampling is very
seldom used in NetFlow hence there is no obvious
mechanism for reducing the number of flows records

while preserving accuracy. For these reasons, network
operators usually avoid sampling data hence have to
face with the problem of collecting and analyzing a
large number of flows that is often solved using a flow
collector that stores data on a SQL-based relational
database or on disk in raw format for maximum
collection speed. Both approaches have pros and
cons; in general SQL-based solutions allows users to
write powerful and expressive queries while sacrificing
flow collection speed and query response time,
whereas raw-based solutions are more efficient but
provide limited query facilities.

The motivation is to overcome the limitations of
existing solutions and create a new generation of a
flow collection and storage architecture that exploits
state-of-the-art indexing and querying technologies. In
the following I would like to describe the design and
implementation of nProbe , an open-source probe and
flow collector, that allows flows to be stored on disk
using the FastBit database.

Architecture and Implementation
nProbe is an open-source NetFlow probe that also
supports both NetFlow and sFlow collection and, flow
conversion between version (for instancei.e. convert v5
to v9 flows). It fully supports the NetFlow v9 specification
so giving it has the ability to specify flow templates (i.e. it
supports flexible netflow) that are configured at runtime
when the tool is started (Figure 1).

Collection and
Exploration of Large Data
Why the use of FastBit is a major step ahead when
compared with state of the art relational database tools
based on relational databases.

What you will learn…
• Basics of building traffic monitoring applications
• Data Collection and Exploration

What you should know…
• A basic knowledge of architecture and implementation of

traffic monitoring tools
• A basic knowledge of TCP/IP

www.hakin9.org14

BASICS

SNORT

Collection and Exploration of Large Data

www.hakin9.org 15SNORT

• In order to both overcome the limitations of
relational databases, and avoid raw flow dump due
to limited query facilities, I decided to investigate
the use of column-based databases and in
particular, of FastBit .

Validation and Performance Evaluation
I have used the FastBit library for creating an efficient flow
collection and storage system. This is to demonstrate
that nProbe with FastBit is a mature solution that can
be used on in a production environment. In order to
evaluate the FastBit’s performance, nProbe has been
deployed in two different environments:

Medium ISPs
The average backbone traffic is around 250 Mbit/sec
(about 40K pps). The traffic is mirrored onto a Linux
PC (Linux Fedora Core 8 32 bit, Kernel 2.6.23, Dual
Core Pentium D 3.0 GHz, 1 GB of RAM, two SATA III
disks configured with RAID 1) that runs nProbe in probe
mode. nProbe computes the flows and saves them on
disk using FastBit. In order to reduce the number of
flows, the probe is configured to save flows in NetFlow
v9 bi-directional format with maximum flow duration of
5 minutes. In average the probe generates 36 million
flows/day. Each FastBit partition stores one hour of
traffic. Before deploying nProbe, flows were collected
and stored in a MySQL database.

Large ISPs
nProbe is used in collector mode. It receives flows
from 8 peering routers, with peak flow export of 85 K
flows/sec. The collection server is a fast machine with
8 GB of memory, running Ubuntu Linux 9.10 server
64 bit. Each FastBit partition stores five minutes
of traffic that occupy about 5.8 GB of disk space.
A second server running Ubuntu Linux 9.10 server
64bit and 24 GB of memory is used to query the flow
data. The FfastBbit partitions are saved to a NFS
mount on a local storage server. Before deploying

When used as probe and collector, nProbe
supports flow collection and storage to either raw
files or relational databases such as MySQL and
SQLite. Support of relational databases has always
been controversial as users appreciated the ability to
search flows using a SQL interface, but at the same
time flow dump to database is usually enable only
realistic for small sites. The reason is that enabling
database support could lead to the loss of flows
due to the database overhead. There are multiple
reasons that contribute to this behavior and in
particularincluding:

• Network latency and multi-user database access
for network-based databases.

• Use of SQL that requires flow information to be
converted into text that is then interpreted by the
database, instead of using an API for directly writing
into the database.

• Slow-down caused by table indexes update during
data insertion.

• Poor database performance when searching data
during data insert.

Databases offer mechanisms for partially avoiding
some of the above issues, which includinge:

• Data insert in batch mode instead of doing it in real
time.

• Avoid network communications by using file-based
databases.

• Disable database transactions.
• Use efficient table format optimized for large data

tables.
• Not defining tables indexes therefore avoiding the

overhead of index updates, though usually results
in slower data search time.

Other database limitations include the complexity of
handling large databases containing weeks of data,
and purging old data while still accommodating new
flow records. Many developers partition the database
often creating a table per day that is then dropped
when no longer needed.

The use of file-based databases such as SQLite offer
a few advantages with respect

to networked relational databases, as:

• It is possible to periodically create a new database
(e.g. one database per hour) for storing flows
received during that hour, this is in order to avoid
creating large databases.

• According to some tests performed, the flow insert
throughput is better than networked-databases but
still slower than raw flow dump. Figure 1.

������

���������

������������������������������������

�������

�������������������������

www.hakin9.org16

BASICS

SNORT www.hakin9.org

nProbe, flows were collected using nfdump and each
month the total amount of flow dumps exceeds 4 TB
of disk space. The goal of these two setups is to both
validate nProbe with FastBit on two different setups
and compare the results with the solution previously
used.

FastBit vs Relational Databases
Let´s compare the performance of FastBit with respect
to MySQL (version 5.1.40 64 bit), a popular relational
database. As the host running nProbe is a critical
machine, in order not to interfere with the collection
process, two days worth of traffic was dumped in
FastBit format, and then transfered to a Core2Duo 3.06
GHz Apple iMac running MacOS 10.6.2. Moving FastBit
partitions across machines running different operating
systems and word length (one is 32 the other is 64 bit)
has not required any data conversion. This is a good
feature as over-time collector hosts can be based on
various operating systems and technology; hence flow
archives can be used immediately without any data
conversion is a desirable feature. In order to evaluate
how FastBit partition size affects the search speed,
hourly partitions have been merged into a single daily
partition. In order to compare both approaches, five
queries can be defined:

• Q1: SELECT COUNT(*),SUM(PKTS),SUM(BYTES) FROM NETFLOW
• Q2: SELECT COUNT(*) FROM NETFLOW WHERE L4 _ SRC _

PORT=80 or L4 _ DST _ PORT=80

• Q3: SELECT COUNT(*) FROM NETFLOW GROUP BY IPV4 _ SRC _

ADDR

• Q4: SELECT IPV4 _ SRC _ ADDR,SUM(PKTS),SUM(BYTES) AS s

FROM NETFLOW GROUP BY IPV4 _ SRC _ ADDR ORDER BY s DESC

LIMIT 1,5

• Q5: SELECT IPV4 _ SRC _ ADDR, L4 _ SRC _ PORT, IPV4 _ DST _

ADDR, L4 _ DST _ PORT, PROTOCOL, COUNT(*), SUM(PKTS),

SUM(BYTES) FROM NETFLOW WHERE L4 _ SRC _ PORT=80 or L4 _

DST _ PORT=80 GROUP BY IPV4 _ SRC _ ADDR, L4 _ SRC _ PORT,

IPV4 _ DST _ ADDR, L4 _ DST _ PORT, PROTOCOL

FastBit partitions have been queried using the fbquery
tool with appropriate command line parameters. All
MySQL tests have been performed on the same
machine with no network communications between
client and server. In order to evaluate the influence of
MySQL indexes on queries, the same test has been
repeated with and without indexes.

Data used for testing washave been captured on
Oct 12th and 13th (~68 million flows) and contained
a subset of NetFlow fields (IP source/destination, port
source/destination, protocol, begin/end time). The
table below compares the disk space used by MySQL
and FastBit. In the case of FastBit, indexes have been
computed on all columns.

Merging FastBit partitions does not usually improve
the search speed but instead queries on merged data
requires more memory as FastBit has to load a larger
index in memory. In terms of query performance,
FastBit is far superior compared with MySQL as shown
in Table 2:

• Queries that require access only to indexes take
less than a second, regardless of the query type.

• Queries that require data access are at least an
order of magnitude faster that on MySQL.

• Index creation time on MySQL takes many minutes
and it prevents its use in real life when importing
data in (near-)realtime, and also indexes also take
a significant amount of disk space.

• Indexes on MySQL do not speed up queries,
contrary to FastBit.

• Disk speed is an important factor for accelerating
queries. In fact running the same test twice with
data already cached in memory, significantly
decreases the query speed. The use of RAID 0
has demonstrated that the performance speed has
been improved.

Open Issues and Future Work
Tests on various FastBit configurations have shown
that the disk is an important component that has a
major impact on the whole system. I am planning to
explore the use of solid-state drives in order to see if
the overall performance can benefit from it.performance
increases.

A main limitation of
FastBit is the lack of data
compression as it currently
compresses only indexes but
not data. This is a feature is
planned to add, as it allows
disk space to be saved
hence to reducereducing
the time needed to read the
data.

Table 1. FastBit vs MySQL Disk Usage (results are in GB)

MySQL No/With Indexes 1.9 / 4.2

FastBit
Daily Partition (no/with Indexes) 1.9 / 3.4

Hourly Partition (no/with Indexes) 1.9 / 3.9

Table 2. FastBit vs MySQL Query Speed (results are in seconds)

Query
MySQL Daily Partitions Hourly Partitions

No Index With Indexes No Cache Cached No Cache Cached
Q1 20.8 22.6 12.8 5.86 10 5.6

Q2 23.4 69 0.3 0.29 1.5 0.5

Q3 796 971 17.6 14.6 32.9 12.5

Q4 1033 1341 62 57.2 55.7 48.2

Q5 1754 2257 44.5 28.1 47.3 30.7

www.hakin9.org16

BASICS

SNORT www.hakin9.org

This article is the base for developing interactive data
visualization tools based on FastBit partitions. Thanks
to recent innovations in web 2.0, there are libraries such
as the Google Visualization API that allow separating
data rendering from data source. Currently we are
extending nProbe adding an embedded web server
that can make FastBit queries on the fly and return
query results in JSON format. The idea is to create an
interactive query system that can visualize both tabular
data (e.g. flow information) and graphs (e.g. average
number of flows on port X over the last hour) by
performing FastBit queries. This way the user does not
have to interact with FastBit tools at all, and can focus
on data exploration.

Final Remarks
The use of FastBit is a major step ahead when
compared with state of the art tools based on both
relational databases and raw data dumps. When
searching data on datasets of a few million records
the query time is limited to a few seconds in the worst
case, whereas queries that just use indexes are
completed within a second. The consequence of this
major speed improvement is that it is now possible
to query data in real time and avoid updating costly
counters every second, as using bitmap indexes it
is possible to produce the same information when
necessary. Finally this work paves the way to the
creation of new monitoring tools on large data sets
that can interactively analyze traffic data in near-real
time, contrary to what usually happens with most tools
available today.

Availability
This work is distributed under the GNU GPL license and
is available at the ntop home page http://www.ntop.org/
nProbe.html. The nBox appliance embedded withing
a pre-installed ntop and nProbe software can be
requested at www.wuerth-phoenix.com/nbox.

LUCA DERI, FOUNDER OF NTOP
Luca Deri was born in 1968. Although he was far too young to
remember, the keywords of that year were freedom, equality,
free thinking, revolution. In early 70s many free radio stations
had birth here in Italy because their young creators wanted to
have a way for spreading their thoughts, ideas, emotions and
tell the world that they were alive ‘n kickin’. The Internet today
represents for him what free radio represented in the 70s. He
wrote his PhD on Component-based Architecture for Open,
Independently Extensible Distributed Systems. Luca Deri is
the founder of Ntop.

Collection and Exploration of Large Data

�����������������������������������
�����������������
���������������������������������������
���������������������������
����������������������������
���

� ����������������
���
���

� �������������
��
���������������������������������
��

� ���������������������

���������������������������

�����������������������������
������������������������

����

����

����

������ ����
����������
�������

�������������
�����

��������������

��
��

��
��

��
��

�������
��������
�����������

�������

�������

���
��
�����������

���
�������������������

�
��

��
��

��
�
��

�
��
��

�

������������

���
���
����������������������������

�������

http://www.ntop.org/nBox86.html

www.hakin9.org18

ADVANCED

SNORT

Improving your custom Snort rules

www.hakin9.org 19SNORT

The Snort IPS engine has changed substantially
over the last ten years. Packet processing
speed has improved, IP defragmentation

and stream reassembly functions have evolved, the
connection and state tracking engine has matured,
but there is one thing that keeps getting left behind.
Custom rule-sets.

With each revision of Snort new features are added
that enhance the detection capability and aid in packet
processing performance of the Snort engine. Those
enhancements not only open new avenues for detecting
the latest bad stuff out there, they create an opportunity
to improve the performance of older legacy rules you
may have created many years ago. Unless your rules
make good use of the current Snort language and are
kept up-to-date, what once used to be a good rule could
in fact turn bad.

What is a bad Snort rule anyway?
Because this article focuses on finding and fixing bad
rules, before we look at any of them it would be wise for
me to define what I personally call a bad rule.

• A rule that cannot or will not perform the function
it’s made for. I.e. it won’t catch the attack/event that
the rule tries to find (False negative)

• A rule that catches the wrong stuff (False positive)
• A rule that has little meaning or value to the analyst

(Junk alerts)

• A rule that wastes processing time and effort to
achieve its goal (performance hog)

The first two points in the list (dealing with false
positives and false negatives) will always need to be
addressed on a case-by-case basis, however when it
comes to the last two points there are some important
concepts you can follow that will substantially improve
custom rules regardless of what attack or event they
are designed to catch.

There are many books and online resources available
that discuss the Snort rule language in depth, and a
full introduction is far out of the scope of this article.
However, to enable me to present some common rule
problems, I need to introduce the basic building blocks
of a Snort rule.

A Snort rule is made up of two parts, a rule header and
a rule body. The rule body follows the rule header and is

Improving your custom
Snort rules
While it is easy to create a custom Snort rule, do you know
if you are actually making a good one or not? This article
introduces some common mistakes I find in custom Snort
rules and the potential implications of those mistakes.

What you will learn…
• How to measure the performance of your custom Snort rule-

set, and how to identify the “bad” performers
• How to use Snort’s fast_pattern keyword to your advantage
• How to add more descriptive information to your rules to

improve the analysis process

What you should know…
• The Snort rule language
• A basic knowledge of TCP/IP
• How to install and Perl modules via CPAN on a *NIX operating

system

Listing 1. An example “bad” Snort rule

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 \

 (msg: "0xdeadbeefbadfoo Detected"; \

 flow: established, from_client; \

 content: "0xdeadbeefbadfoo"; \

 rev:1; sid:1000001;)

www.hakin9.org18

ADVANCED

SNORT

Improving your custom Snort rules

www.hakin9.org 19SNORT

Well after the analyst has likely scratched their head
for a moment, and then wondered what on earth
0xdeadbeefbadfoo is, they will probably end up Googling
for 0xdeadbeefbadfoo in an effort to understand what this
alert means to them.

• Is this a serious event?
• Is it somebody else’s problem?
• Should I start panicking?

It is common to have a different group of people
researching and writing rules vs. those will who
deal with the security events they may raise, and if
this isn’t the case for you today it may well be in the
future. At the time of rule creation only the rule writer
really knows what she or he is looking for, and the
implications to the network if the traffic is found. It is
therefore critical for this information to be passed on to
the event analyst within the rule itself. Unless a rule is
correctly explained, how can a writer expect an analyst
to be able to react accordingly?

Let’s expand on my simple 0xdeadbeefbadfoo example
from earlier by providing some more theoretical
scenario information (Listing 2).

Note the addition of three new rule options: A
classification type, an overriding priority qualification,
and a couple of useful references. With these extra
rule options added an analyst dealing with the event
now knows that 0xdeadbeefbadfoo is in fact a low-priority
Trojan, associated with CVE:2010-99999, and a related
to a specific company’s product.

These seemingly minor additions make massive
returns in respect to the security event analysis and
remediation process. Sometimes the simplest changes
provide the greatest value.

Identifying and optimizing slow rules that are
wasting your CPU cycles
So while fixing the analyst information problem is
pretty simple, identifying suboptimal rules in terms of

surrounded by parentheses. The header is pretty easy
to understand as it reads close to natural language.
The rule header consists of an action, a protocol
specification, and the traffic that is to be inspected.

The rule body (shown in Listing 1 in blue) is made
up of a selection of rule options. A rule option consists
of a keyword followed by one or more arguments. For
example in the above rule there is a content keyword,
with an argument of 0xdeadbeefbadfoo.

This rule instructs Snort to look for the text
0xdeadbeefbadfoo in all packets flowing out of the network
to TCP port 80 that are part of an established TCP
session.

Giving rules more meaning to an analyst
The above rule in Listing 1 is a simple example of a bad
rule. Regardless of how much processing load it may
introduce to an IDS engine, or how many alerts it could
generate, just by looking at the rule source we can see
it’s bad. This rule lacks some of the most important
information that could give any value to its existence
and operation – an understanding of what’s happening
on the network, and what it means if it generates an
alert.

When describing or teaching the Snort rule language,
I like to group rule options together to describe them
in three categories based on their function within the
rule.

• Detection Options: Keywords that test for the
presence of specific things in network traffic. This
could be any type of text, binary data, packet
header values, regular expressions, or decoded
application data. These are the keywords that
control if an alert is generated on a packet or not.
Example Snort keywords: content, pcre, ipopts, ttl,
flowbits, flow

• Metadata Options: These are keywords that are
interpreted by the engine for alert organization.
Example Snort Keywords: sid, metadata, rev

• Analyst Options: Keywords that are used by the
rule writer to convey information to an event analyst
who is investigating the event. Example Snort
keywords: msg, classtype, reference, priority

While writing a rule it is important to understand that
any event it generates may need to be understood by
other people. If a security analyst is presented with an
event like the below which was generated from our
previous bad rule, what do they do to respond to the
event?

Oct 7 15:16:30 DMZ1 snort: [1:100001:0] [**]

 0xdeadbeefbadfoo Detected [**] [Priority: 0]{TCP}

 192.168.0.1:25541 -> 192.168.0.2:80

Listing 2. The bad rule, now improved with far more
information to help an analyst

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 \

 (msg: "0xdeadbeefbadfoo Detected"; \

 content: "0xdeadbeefbadfoo"; \

 classtype: trojan-activity; \

 priority: 3; \

 reference: cve,2010-99999; \

 reference: url, http://mycompany.com/myproduct; \

 sid:100001; rev:2;)

www.hakin9.org20

ADVANCED

SNORT

Improving your custom Snort rules

www.hakin9.org 21SNORT

computational overhead is a little more of a technical
process. To make this challenge possible Snort can
kindly provide us feedback of how the system functions
in relation to the current configuration and network
traffic being inspected.

There are a couple of useful configuration lines that
can be added to your snort.conf to provide performance
feedback about how the detection engine is performing.
Today I will focus on the output provided by profile_
rules.

 config profile_rules: print 10, sort total_ticks

Adding this profile _ rules configuration directive to your
snort.conf will enable performance profiling of your
snort rule-set. At exit, Snort will output to STDOUT
a list of the top N (specified here as ten) worst
performing rules categorized by the total time taken
to check packets against them. This data can also be
written to a text file of choice, and many other sort
methods are available. Check the snort manual for full
details.

Note
Snort must be compiled with --enable-perfprofiling to
enable the performance profiling capability.

Before starting to inspect the performance output,
it is vital to understand that all of the data we see is
dependant on two distinct variables:

• The current configuration running (including the
rule-set)

• The network traffic that is inspected by the
detection engine

When testing and tweaking anything as complex as
an IPS rule-set for performance, I find it imperative
to isolate and work on only a single variable at a time.
By focusing my tests on a large sample of network
traffic stored in PCAP files that is representative to
where the sensor operates, I can tweak my rules for
performance against this static data-set. When I think
I have optimally tweaked any rules, I can then move to
test against live traffic.

An example of rule profiling output is shown in Listing
3, and each data column is explained below.

• Num: This column reflects this rule’s position
number in regard to how bad the rule performs.
Here the top (number 1) reflects the rule that is
responsible for consuming the most processing
time (total _ ticks)

• SID, GID, Rev: The Snort ID, Generator ID, and
Revision number of the rule. This is shown to help
us identify the rule in question in our rule-set.

• Checks: The number of times rule options were
checked after the fast_pattern match process (yes,
that bit is bold because it is important).

• Matches: The number of times all rule options
match, therefore traffic matching the rule has been
found.

• Alerts: The number of times the rule generated
an alert. Note that this value can be different from
Matches due to other configuration options such as
alert suppression.

• Microsecs: Total time taken processing this rule
against the network traffic

• Avg/Check: Average time taken to check each
packet against this rule.

• Avg/Match: Average time taken to check each
packet that had all options match (the rule could
have generated an alert)

• Avg/Nonmatch: Average time taken to check each
packet where an event was not generated (amount
of time spent checking a clean packet for bad stuff)

The two values a rule writer has some level of control
over are the number of checks, and how long it took to
perform those checks. Ideally we would like to have low
figures in all columns, but decreasing the Checks count
is the first important part of rule performance tuning. To
be able to tweak our rule to affect this value, we need to
first understand exactly what Checks represents.

Introducing the fast_pattern matcher
When Snort decides what rules need to be evaluated
against a network packet, it goes through two stages
before starting its in-depth testing functions.

Listing 3. Sample Snort rule pro�ling output

Rule Profile Statistics (all rules) total sort

 Num SID GID Rev Checks Matches Alerts Microsecs Avg/Check Avg/Match Avg/Nonmatch

 === === === === ====== ======= ====== ========= ========= ========= ============

 1 112 1 1 208 69 69 187 0.9 2.0 0.3

 2 111 1 1 208 208 208 151 0.7 0.7 0.0

 3 113 1 3 69 69 69 27 0.4 0.4 0.0

www.hakin9.org20

ADVANCED

SNORT

Improving your custom Snort rules

www.hakin9.org 21SNORT

1) Protocol, Port number and service identification
Snort optimizes the rule-set into protocol, port and
service (application protocol) based detection rule-
buckets. Note that service based buckets are only used
when Snort is compiled with –enable-targetbase, and
an attribute table is loaded.

For example, if inbound traffic is destined to arrive
at TCP:80 (HTTP), there isn’t much point in running
it though the rules associated with SMTP (TCP:25).
The packet is assessed against the rules in the TCP:
80 bucket. The same decision is also made related to
source port and service metadata.

Snort also has an extra rule-bucket for the any any
rules. These are the rules that use the value any as both
the source and destination port numbers. All packets
are also checked against the any any rules as well after
being assessed against their particular port / service
based rule bucket.

2) Packet content (fast_pattern check)
After identifying what rule bucket(s) this packet should
be assessed against, a pre-screening content check
known as the fast_pattern match is applied for all rules
in the bucket(s).

For any Snort rule to raise an event all rule-options in
that rule must match.

Applying a fast_pattern check process allows Snort
to quickly test packets for the presence of a static
content string (a single content: value) required
to generate an event. The goal of this test is to
quickly identify all packets that have any possibility
of alerting after all of the rule options are tested. If a
packet doesn’t match the fast_pattern check, there is
absolutely no point in running more computationally
intense checks against it. Because the fast_pattern
match has failed, we know that at least one of the
rule options will not match, and an alert will never be
generated.

Number of Checks
This brings us back to the important Checks value.
The number of checks is the number of times
a rule is assessed after both the protocol/port/

service identification and fast_pattern processes are
complete.

The more irrelevant packets that we can exclude with
these two steps, the lower the number of checks will be,
the more optimal and focused the rule will be, and the
less time will be wasted performing in-depth assessment
of packets that will never generate an event.

Identifying the optimal content check for
fast_pattern
By default Snort selects the string from the longest
content keyword (measured in number of characters)

for use in the fast_pattern test. The design rationale
behind this is simple – the longer a content check, the
more unique it will likely be, therefore less packets
will inadvertently match it. Although this is commonly
the case, there are times when the rule writer will
have a different opinion based on knowledge and
experience.

Looking at the rule in Listing 4, Example.com is the
longest content check (eleven characters), and by
default will be used for the fast_pattern check. The other
content CST-ID-001 is however less likely to be found
in network traffic, especially if your company name just
so happened to be Example.com. It is therefore wise
to tell Snort to use this better value for the fast_pattern
check with the fast_pattern modifier keyword.

content: „CST-ID-001”; nocase; fast_pattern;

Following the fast _ pattern check, each rule option
is then tested in the order that it appears in the rule.
Finally the source and destination IP addresses are
tested to check if they match those defined in the rule
header. Only if every check made is successful is the
rule action (such as alert) taken.

If any of the tests fail to match, no further checks are
made on the packet against that rule, therefore it is
advisable to place quick tests such as flowbits: isset,
early in your rule options.

Automating Snort rule syntax checks
If you have a large in-house or privately shared rule-
set, going back over it and inspecting each rule by
hand can be a long and daunting task. To speed
this process up, I created an automated tool called
DumbPig. DumbPig is a simple syntax checker for
Snort rules; it finds common mistakes made by new
rule writers and suggests fixes for them. I created the
tool a while back to automate my way out of this slow
repetitive job.

Listing 4. A rule with multiple content checks

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(\

 msg: "Potential Data Leak: Honey Token CST-

ID-001 over http"; \

 flow: established, to_server; \

 content: "CST-ID-001"; nocase; \

 content: "Example.com"; nocase; \

 classtype: string-detect ; \

 sid: 1000001; rev: 1;)

www.hakin9.org22

ADVANCED

SNORT

LEON WARD
Leon is a Senior Security Engineer for Source�re based in
the UK. He has been using and abusing Snort and other
network detection technologies for about ten years and hates
referring to himself in the third-person. Thanks go to Alex Kirk
(Source�re VRT) and Dave Venman (Source�re SE) for sanity
checking this document.

DumbPig can be found at http://code.google.com/
p/dumbpig/, it is written in Perl and uses Richard
Harman’s very useful Parse::Snort Perl module to parse
a rule-set.

Listing 5 shows the tool in action. In this example
dumbpig.pl is reading in a rule file called bad.rules, and
has identified two problems with rule sid:1000009.

The first problem shown in Listing 5 is in my
experience very common. A rule-writer has created
a rule for DNS traffic that is commonly found on both
TCP and UDP port 53. Rather than create two rules
(one for TCP and one for UDP), the rule writer has
used the IP protocol in the Snort header, but has also
specified a port number. Because the IP protocol
doesn’t have ports (port numbers are a transport layer
construct), this value is ignored. The end result is that
every packet regardless of port will be checked for this
content. This is very sub-optimal to say the least. The

References:
• http://snort.org
• http://vrt-source�re.blogspot.com/
• http://leonward.wordpress.com/dumbpig/

Listing 5. Dumbpig.pl in action

lward@UbuntuDesktop:~/code/dumbpig$./dumbpig.pl -r bad.rules

DumbPig version 0.2 - leon.ward@sourcefire.com

 __,, (Dumb-pig says)

 ~(oo ---("ur rulz r not so)

 '''' (gud akshuly" *)

2 Problem(s) found with rule on line 5 of bad.rules

alert ip any any -> any 53 (\

 msg:"DNS lookup for foo.com using IP proto with port numbers"; \

 content:"baddomain"; \

 sid:1000009; \

 rev:1; \

)

- IP rule with port number (or var that could be set to a port number). This is BAD and invalid syntax.

 It is likely that this rule head is not functioning as you expect it to.

 The IP protocol doesn't have port numbers.

 If you want to inspect both UDP and TCP traffic on specific ports use two rules, its faster and valid syntax.

- No classification specified - Please add a classtype to add a correct priority rating

Rule source sid: 1

alert ip any any -> any 53 (msg: "DNS lookup for foo.com using IP proto with port numbers"; content:"baddomain";

sid:1; rev:1)

Total: 1 fails over 1 rules (8 lines) in bad.rules

second problem with this rule is that it is missing extra
analyst data that will provide more value to any alerts
raised.

Summary
The Snort rule language is simple to pick up, and in a
similar way to any other language it is easy to fall into
some bad habits. Hopefully this article has introduced
some simple suggestions that will improve any of your
in-house IDP rules in respect to their performance and
usefulness.

Insecure websites in DMZ still pose a risk

www.hakin9.org 23SNORT

Level of Trust
Normally, a website is considered to be a part of the untrusted
outer perimeter of a company network infrastructure. Hence,
system administrators usually put a web server in the DMZ
part of a network and assume the information security risk
from the website to the network is mitigated. However,
several industry security standards have been imposed to
protect the public infrastructure such as webs servers and
name servers in addition to the services directly subjected
to the standard application scope. Why is it so important to
protect your website even if it is not closely connected to
your critical data infrastructure?

Social Impact
Humans are the weakest link in the chain of a company’s
security. The experience gathered during more than
5 years of penetration testing shows that almost no
large-scale companies can resist a social-engineering
attack vector. In companies which have more than 30
employees, a penetration tester or a real intruder can
pretext, deceive, and easily persuade at least 10% of the
available employees to open an attachment or follow a link
to the malicious website containing an exploit pack and a
viral payload. Basic countermeasures include restricting
network access to all websites but whitelisted sites,
which includes your own website, or simply educating
the employees. So, what happens when an intruder gains
access to the website? The following list highlights what
can be done with a web server located in DMZ:

• Inject an exploit pack and payload into the main
page or create malicious pages

• Send spam and scam letters to the company
employees inviting them to visit a malicious page at
the website

• Install a rootkit and sniffer to maintain access and
get all password inputs by system administrators or
website maintainers

• Modify links from legitimate sites to malicious
ones, for instance, to redirect Internet bankin

link to http://ibank.y0urbank.ru instead of http://
ibank.yourbank.com

• Pivot client-side payloads through the web server in
the case of networks with restricted Internet access

This list includes only those risks related to successful
network penetration. In addition, there are business
image risks such as defacing, modifying sensitive public
information (e.g. exchange rates at bank’s website,
payment credentials at some charity company’s
website, phone numbers etc.), or denial of service by
deleting everything and bringing the web server down.

Ways to Protect
There are several methodologies to assess website
security and mitigate risks connected with the website.
One of the most popular is the OWASP Testing Guide
[1], which includes more than 300 checks and addresses
almost all known web vulnerabilities. The PCI Data
Security Standard refers to the top 10 most widespread
vulnerabilities in the software, called the OWASP Top
Ten, and is a basic requirement for any website dealing
with credit card payments. For developers, there is also
a Development Guide [2], the goal of which is to prevent
mistakes affecting security.

To companies willing to protect their websites and
networks, Informzaschita offers the following services:

• Complete website assessment according to
OWASP Testing Guide (300+ checks)

• Express assessment according to OWASP Top Ten
and deployment of Web Application Firewalls for
small businesses or companies falling under PCI
DSS requirements

• Complete PCI PA-DSS assessment for companies
developing payment applications

• Automated security web and network scanning

Insecure Websites in DMZ
Still Pose a Risk

On the ‘Net
[1] OWASP Testing Guide – http://www.owasp.org/index.php/

Category:OWASP_Testing_Project
[2] OWASP Development Guide – http://www.owasp.org/

index.php/Category:OWASP_Guide_Project
[3] Informzaschita JSC (QSA, PA-QSA) – http://www.infosec.ru/en

MARAT VYSHEGORODTSEV,
Information Security Assessment Specialist at Informzaschita
JSC m.vyshegorodtsev@infosec.ru, (+7 495) 980-2345
www.infosec.ru/en

a
d

v
e

r
t

i
s

e
m

e
n

t

http://www.infosec.ru/en/
http://www.infosec.ru/en/

www.hakin9.org24

ADVANCED

SNORT

An Unsupervised IDS False Alarm Reduction System – SMART

www.hakin9.org 25SNORT

The need for alarm reduction
Depending on the quality of their signatures, they can
generate a significant volume of false alarms. Even
when the alarms are genuine, the sheer number that
can be generated with aggressive attacking traffic
(e.g. Denial of Service attacks, vulnerability scans,
malware propagation) can be a problem. This is
especially the case if the IDS has been configured
to generate an alert each time a rule matches.
Tuning is often necessary to address the problems
of superfluous and false alarms. However, if done
recklessly, it can increase the risk of missing attacks.
On another note, when attacks span multiple stages,
it would be useful to have a mechanism of aggregating
and grouping together all alarms relating to the same
activity. This not only enhances detection, but also
the efficiency of analysing and validating alarms.

In order to address the issues above, alarm reduction
systems are needed. Alarm reduction is a process that
analyses the intrusion alerts generated by IDS, filters
the false alarms and then provides a more concise and
high level view of detected incidents.

SMART
(SOM K-Means Alarm Reduction Tool)
SMART is an automated alarm reduction tool,
designed for Snort IDS. It extends the functionality of
Basic Analysis and Security Engine (BASE) (BASE,
2009), a popular front-end for Snort, by providing a
more holistic view of detected alarms. The system
comprises of two stages; the first stage is responsible
for removing superfluous alarms, whilst the second
stage distinguishes true from false alarms, by
observing trends in their occurrence. The idea behind
SMART is not to replace human analysts, but to
inform alarm validation and IDS tuning by identifying
the most relevant candidates (alarms and rules) for
review.

Figure 1 depicts the proposed classification model.
Specifically, it shows that data is collected from IDS
sensors, and stored in a database. The system then
retrieves the data from the database and classifies
them by extracting the attributes from the alerts and
feeding them into the unsupervised SOM-based
clustering system.

An Unsupervised IDS
 False Alarm Reduction System – SMART

Signature-based (or rule-based) network IDSs are widely used
in many organisations to detect known attacks (Dubrawsky,
2009). A common misconception about IDSs is that they are
Plug-and-Play devices that can be installed and then allowed
to run autonomously. In reality, this is far from the truth.

What you will learn…
• The limitations of IDS tuning
• The basic concepts and characteristics of SMART system
• The bene�ts of SMART

What you should know…
• Basics of Intrusion Detection Systems
• Basic syntax of Snort rules

Figure 1. Framework of false alarm classi�cation model

��������������

�����
�����������

�����������
����������

�������

����������

����������

����������

������
�������

�������������

www.hakin9.org24

ADVANCED

SNORT

An Unsupervised IDS False Alarm Reduction System – SMART

www.hakin9.org 25SNORT

number of alerts before being presented to the
administrator.

The underlying architecture of our proposed alarm
classifier that illustrates the four phases of the
classification process is presented in Figure 2.

Evaluating SMART
In order to evaluate the effectiveness of SMART, a
set of experiments has been conducted. The dataset
that was used for the experiments was collected on
a public network (100-150 MB/s) over a period of 40
days, logging all traffic to and from the organisation’s
web server. It contained 99.9% of TCP, and 0.1% of
ICMP traffic. The effectiveness of reducing false alarms
in SMART is compared against conventional tuning
methods.

False alarm rate by tuning
Tuning is a popular technique of reducing false
alarms, and it is based on the adaptation of the IDS
configuration to suit the specific environment where
the IDS is placed (Chapple, 2003). This often involves
modifying preprocessors, removing (or modifying) rules
prone to false alarms, or modifying variables.

The first phase of the experiments involved
running snort in default configuration and validating
the generated alarms to identify the most suitable
candidates for tuning. The following three rules were
the most suitable, as they triggered the most false
alarms:

WEB-IIS view source via translate header
This event is categorised as web application
activity, which targets the Microsoft IIS 5.0 source
disclosure vulnerability (Snort, 2010c). Surprisingly,
this signature alone had accounted for 59% of the
total alerts, in which approximately 1,970 alerts
were generated per day by this event. Although
the signature was created to detect a Microsoft IIS
source disclosure vulnerability exploitation attempt,

The classification process consists of the following
phases:

1. Feature extraction – The system uses several
attributes extracted from the alert database,
which are considered effective to correlate alerts
generated from a single activity. The extracted
data are then normalised since the value of
the data are varied depending upon the type of
attributes used.

2. Alarm aggregation (first stage correlation) – Given a
set of input vectors from the first phase, the system
is trained unsupervised in the second phase to
map the data so that similar vectors are reflected
in their arrangement. The distance between two
input vectors is presented on the map, not by their
absolute dissimilarity (which can be calculated), but
the relative differences of the data properties. The
objective is to group alerts from the same attack
instance into a cluster.

3. Cluster analysis – The result of the classification
is further evaluated to attain a set of attributes
from each cluster created in the previous phase
(i.e. the first stage correlation). Building accurate
and efficient classifiers largely depends upon
the accuracy of the attributes, which are used as
the input data for the classification. Seven alert
attributes (as shown in Table 1) were chosen to
represent the value of each input vector in the next
classification (i.e. second stage correlation). Two
out of the seven attributes, namely the frequency
of alarm signatures and the average time interval
between the alerts each day were computed.
These features are considered to be the most
relevant in terms of influencing the magnitude of
the alert signatures.

4. Alert classification (second stage correlation) –
The final classification is carried out based upon
the attributes extracted in the third phase. The
main objective of this stage is to label the alerts
into true and false alarms, thus reducing the

Table 1 The interpretation and data collection methods of the alarm attributes for second stage correlation

ALERT FEATURES DESCRIPTION
No of alerts Total number of alerts grouped in one cluster

No of signatures Total number of signature type in a cluster

Protocol Type of traffic from event triggering the alerts

Port number The service port number. Indicates if the alarm contains a well-known port number, or unknown service
ports.

Alert priority Criticality of the alerts. There are 3 types of alert priority, namely 1st, 2nd, and 3rd. If multiple signatures are
found in a cluster, the priority value for each signature could be added together.

Time interval Time interval between events* from a particular signature

No of events The number of events1 in which a particular alert signature is triggered within a day

*One event equals to a number of alerts from a single signature, which are triggered by a particular activity.

www.hakin9.org26

ADVANCED

SNORT

An Unsupervised IDS False Alarm Reduction System – SMART

www.hakin9.org 27SNORT

in this case all generated alarms were related to
normal traffic.

When examining the snort rule, it does not seem
proficient enough to detect this type of event. It appears
to be very loosely written, by searching for a particular
string in the packet payload (in this case, Translate: f).
Since the Translate: f is a valid header used in WebDAV
application (WebDAV, 2001), the rule tends to trigger a
vast volume of alarms.

If the rule gets modified to search for the GET
command in the content, it is likely that false alarms
would be reduced. The attack is launched by requesting
a specific resource using HTTP GET command,
followed by Translate: f as the header of HTTP request.
In this case, a tuning can be performed by modifying the
signature rule to:

WEB-IIS view source via translate header – Tuned
signature rule

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(msg:”WEB-IIS view source via translate header”; flow:

to_server,established; content:”GET|20|”; content:

”Translate|3A| F”; distance:0; nocase; reference:arachnids,

305; reference:bugtraq,14764; reference:bugtraq,1578;

 reference:cve,2000-0778; reference:nessus,10491; classtype:

web-application-activity; sid:1042; rev:13;)

Indeed, when snort was run again with the modified
ruleset, this rule had effectively eliminated 95% of the
initial false alarms.

WEB-MISC robots.txt access
Although this event is raised when an attempt has
been made to directly access robots.txt file (Snort,
2010b), it can also be raised due to legitimate
activities from web robots or spiders. A spider is
software that gathers information for search engines
by crawling around the web indexing web pages
and their links. Robots.txt file is created to exclude
some pages from being indexed by web spiders (e.g.
submission pages or enquiry pages). As web indexing
is regular and structurally repetitive, this activity tends
to cause a superfluous amount of alerts. In this study,

approximately 23% of total alerts (approximately 750
alarms per day) were related to this activity, and they
were all false alarms.

In order to modify this rule to exclude normal web
spider activity, the source IP addresses would need
to be examined, in order to verify their authorisation in
accessing the Robots.txt file. This approach, however,
seems to be hardly feasible to deploy. Of course,
identifying all authorised hosts from their source IP
addresses is impractical and dangerous for exploitation.
Specifying such a large number of IP addreses can be
a problem. Also, the mere fact of allowing specific hosts
to access this file could be exploited in order to bypass
detection.

As such, event thresholding was used instead (Beale
and Caswell, 2004). As robots.txt access requests
generate regular and repetitive traffic, a limit type of
threshold command is the most suitable tuning in this
case. Such a threshold configuration would be as
follows:

threshold gen_id 1, sig_id 1852, type limit, track by_src,

count 1, seconds 60

The rule logs the first event every 60 seconds, and
ignores events for the rest of the time interval. The
result showed that approximately 10% of false alarms
had been effectively reduced. This indicates that
tuning can only reduce a very insignificant number of
false alarms from this event.

ICMP L3Retriever Ping
ICMP L3retriever Ping is an event that occurs when
ICMP echo request is made from a host running
L3Retriever scanner (Snort, 2010c). Quite a few alerts
were generated from this event; contributing to 8% of
the total alerts. This figure indicates that approximately
250 alerts were generated by this rule every day.
Surprisingly, there were no malevolent activities
detected following the ICMP traffic. In addition,
normal ICMP requests generated by Windows 2000
and Windows XP are also known to have similar
payloads to the one generated by L3Retriever scanner
(Greenwood, 2007). In view of this issue and given
that no suspicious output detected following these
ICMP requests; these alerts were labelled as false
positives.

The only method that can be deployed to suppress
the number of false positive triggered from this event
is by applying event suppressing or thresholding
command. Instead of using limit type of threshold
command as previous signature, this rule utilised both
type of command to log alerts once per time interval
and ignore additional alerts generated during that
period: Figure 2. Architecture of false alarm classi�er

�������������
����

������
�������������
��������

��������

�������
����������

�����
��������������

�����
�����������

�������
���������������

�����������������

www.hakin9.org26

ADVANCED

SNORT

An Unsupervised IDS False Alarm Reduction System – SMART

www.hakin9.org 27SNORT

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:”ICMP

L3retriever Ping”;icode:0 itype:8; content:”ABCDEFGHIJKLM

NOPQRSTUVWABCDEFGHI”; depth:32; reference:arachnids,311;

 classtype:attempted-recon; threshold: type both, track

by_src, count 3, seconds 60; sid:466; rev:5;)

The threshold is written to detect brisk ICMP echo
requests by logging alerts once per 60 seconds after
seeing 3 occurrences of this event. This experiment
has also proved that the event thresholding can
successfully reduce up to 89% of the false alarms
generated by this activity.

Overall, fine tuning has been effective in reducing
false alarms. However, several limitations exist:

1. The procedure increases the risk of missing
noteworthy incidents – Suppressing the number
of alerts generated can also create a possibility
of ignoring or missing real alerts. For example, a
malicious user can hide his/her action within the
excessive number of alerts generated by using a
spoofed address from web spider agent. In fact,
looking for an overly specific pattern of a particular
attack may effectively reduce the false alarms;
however, this method can highly increase the risk of
missing its range. A skilful attacker can easily alter
and abuse the vulnerability in various ways as an
attempt to evade the IDS.

2. Tuning requires a thorough examination of the
environment by qualified IT personnel and requires

a frequent updating to keep up with the flow of new
vulnerabilities or threats discovered.

False alarm rate by SMART
The following stage of the experiments involved
analysing the snort alerts with SMART. This experiment
presents the results of SMART classification, which is
run every two hours, using only four hours alerts from
the private dataset. This is due to increased memory
requirements of running our unsupervised alarm
reduction system for larger data. So, instead of running
one correlation for the entire data set, SMART runs a
correlation over a particular time period (e.g. every
one or two hours). Figure 3 shows the maps of the
correlations.

The classification reveals that about 78.8% of false
alarms have been identified in the first map (left),
whilst 96% of them have been detected in the second
mappings (right), as shown in Figure 3. Those alarms
located in the upper portion are labelled as true alarms,
whilst the lower portion is for the false alarms. It is
notable that our system has shown promising result
in filtering all hectic and unnecessary alerts triggered
by the IDS. For example, the alerts from WEB-IIS view
source via translate header and WEB-MISC robots.txt
access signatures, which had caused 82% of false
alarms from the entire data.

In addition to the private data set, the system has also
been tested using publicly available data set, DARPA
1999. The experiment also shows promising results,

Figure 3. SMART classi�cation result using private data set

www.hakin9.org28

ADVANCED

SNORT

reducing up to 95% and 99% of false alarms in the
first and second classification respectively. The system
appears effective in filtering the false alarms triggered
by a noisy traffic such as ICMP traffic (ICMP Ping and
Echo Reply) and web-bug alerts, which have formed
the highest number of false alarms.

Overall, SMART has been effective in detecting
false alarms, such as the redundant and noisy alerts
raised by ICMP traffic. In fact, it is also proved that
the system outperforms the traditional tuning method
in filtering the WEB-MISC robots.txt access alerts. In
other words, the issue of subjective rule suffered by
common tuning method can be addressed using the

Acknowledgments
The authors would like to acknowledge the contribution
of Prof Steven Furnell and Dr Nathan Clarke in the work
presented in this paper.

proposed system. More than 90% of false alerts from
WEB-MISC robots.txt access can be identified by
SMART.

Summary
Performing a fine-tuning to reduce false alarms is not
a straightforward task. If not done properly, there is
a possibility that the system might miss real attacks.
SMART is an automated alarm reduction system,
which helps filtering false alarms generated by Snort
IDS. It has advantages over the conventional tuning
method. Unlike tuning, the system does not require
any prior knowledge of the network and protected
systems. In addition, it provides a higher level of
alert information to the administrator by aggregating
alerts from the same attack instance and validates the
accuracy of Snort IDS.

GINA TJHAI
She holds a BSc Computer Science from the University of
Wollongong, Australia (2005), and an MSc in Information
System Security from the University of Plymouth, UK (2006).
She is currently a PhD candidate in the Centre of Security,
Communications & Network Research at University of
Plymouth, UK. Her current research interests include network
intrusion detection and prevention, pattern classi�cation,
neural network and data mining.

MARIA PAPADAKI
Maria Papadaki is a lecturer in Network Security, at University
of Plymouth, UK. Prior to joining academia, she was working
as a Security Analyst for Symantec EMEA Managed Security
Services (MSS), UK. Her postgraduate academic studies
include a PhD in Intrusion Classi�cation and Automated
Response (2004), and an MSc in Integrated Services and
Intelligent Networks Engineering (2000), University of
Plymouth, UK. Her research interests include intrusion
prevention detection and response, network security
monitoring, incident prioritisation, security usability, and
security education. Dr Papadaki is a GIAC Certi�ed Intrusion
Analyst, and is a member of the GIAC Advisory Board, as well
as the British Computer Society. Further details can be found
at www.plymouth.ac.uk/cscan.

References
1. BASE (2009), Basic Analysis and Security Engine (BASE) Project, http://base.secureideas.net/
2. Beale, J. and Caswell (2004), Snort 2.1 Intrusion Detection, 2nd edn, Syngress, United State of America, ISBN 1931836043
3. Chapple, M. (2003), Evaluating and Tuning an Intrusion Detection System, Information Security Magazine, http://searchsecurit

y.techtarget.com/tip/1,289483,sid14 gci918619,00.html
4. Dubrawsky, I. (2009), CompTIA Security+ Certi�cation Study Guide: Exam SYO-201 3E: Exam SYO 201, Study Guide and Prep

Kit, 3rd edn, Syngress, United States of America, ISBN 1597494267
5. Greenwood, B. (2007), Tuning an IDS/IPS From The Ground UP, SANS Institute InfoSec Reading Room, 2007, http://

www.sans.org/reading_room/whitepapers/detection/tuning-ids-ips-ground_1896
6. Snort (2010a), WEB-IIS view source via translate header, http://www.snort.org/search/sid/1042?r=1
7. Snort (2010b), WEB-MISC robots.txt access, http://www.snort.org/search/sid/1852?r=1
8. Snort (2010c), ICMP L3Retriever Ping, http://www.snort.org/search/sid/466?r=1
9. WebDAV (2001), WebDAV Overview, Sambar Server Documentation, http://www.kadushisoft.com/syshelp/webdav.htm

Softline Company, founded in 1993, is a leading international company in the field of

licensing and it provides a full range of IT services: educational, consulting, technical

and legal support, IT-outsourcing.

Softline is a leading supplier of more than 3.000 software vendors. It has

authorization and the highest partner statuses of world vendors: Microsoft

Gold Certified Partner, Symantec Platinum Partner, Citrix Platinum Solution

Advisor, VMware VIP Enterprise Partner, McAfee Elite Solution Provider Partner,

Kaspersky Lab Premier Partner, ESET Premier Partner, Corel Platinum Partner,

Adobe Silver Solution Partner, Autodesk Gold Partner, ABBY Large Reseller and

many others.

Softline actively develops areas, which provide various services on selection

and effective use of software. Softline Information Security Center is one of the

most important competence centers, which builds proper IT security systems

for Russian and foreign companies of any size. A team of certified IT security

professionals helps customers achieve the desired security level, maximum return

on investments and reduce deployment time.

Softline has offices in 66 cities and 20 countries.

For more information about Softline, visit corporate websites

www.softlinegroup.com and www.softline.ru.

a
d

v
e

r
t

i
s

e
m

e
n

t

http://www.softlinegroup.com/
http://www.softline.ru/
http://softline.ru/
http://soft.softline.ru/
http://softline.ru/
http://softline.ru/

www.hakin9.org30

ADVANCED

SNORT

Content modifiers: Keep it Specific

www.hakin9.org 31SNORT

They aren’t difficult, and hopefully after this
explanation and a few examples, I can clear
some of the air around these modifiers.

The modifiers that I am talking about are:

1. Offset
2. Depth
3. Distance
4. Within
5. nocase
6. http_uri
7. rawbytes

These modifiers are not keywords of themselves, but
rather they apply as modifiers to another keyword.
That keyword is content.

The content keyword is one of the easiest pieces
of the Snort rules language as all it does is look for a
particular string. So for instance if I wanted to look for
the word joel within a packet, a simple:

content:”joel”;

would allow me to do that. The interesting part comes
into play when you want to specify where inside of a
particular packet you want the string joel to be looked
for. If you are running just a plain content match with a
simple string, and not specifying where in the packet
to look for that string, your Snort instance will receive

a ton of alerts, and then you, the analyst, are stuck
looking through all of those alerts to try and pick out
the alert that is needed. While a content match for joel
might be pretty unique on most networks, it will occur
a bunch on mine.

Offset
Offset is defined in the Snort manual as:

The offset keyword allows the rule writer to specify
where to start searching for a pattern within a packet.

So, given a certain packet, Offset tells the content
match it’s modifying where to start looking, given an
offset from the beginning of the data payload of the
packet (see Figure 1).

In the above example, if I wanted to find the word GET
(highlighted). I would write:

content:”GET”; offset:0;

Meaning, start at the beginning of the data payload of
the packet (offset:0;) and find the word GET. Now, in
this example, the word GET is at the very beginning of
the packet making the search very easy. However, if I
wanted to match on the word downloads that is found
a bit later in the above screenshot, I could still start my
content match at the beginning of the payload (offset:
0;) but the content match would be more accurate and
less computationally expensive if I were to make the
offset more accurate.

Content modifiers:
Keep it Specific
Without going off the deep-end here and discussing every
single Snort rule keyword, I just wanted to touch on a few
modifiers that people sometimes misunderstand.

What you will learn…
• wrting better Snot rules
• content modi�ers
• how to improve the analysis process

What you should know…
• Good knowledge about TCP/IP networks
• Packet Analysis
• Using and con�guring Snort

www.hakin9.org30

ADVANCED

SNORT

Content modifiers: Keep it Specific

www.hakin9.org 31SNORT

Depth
Depth is defined in the Snort manual as:

The depth keyword allows the rule writer to specify
how far into a packet Snort should search for the
specified pattern.

So, given the above example again:
I want to match on GET but ONLY if it occurs at the

beginning of the packet. Notice when I was describing
offset above I said that offset tells Snort where to start
looking. Not where to stop. If I don’t tell Snort where
to stop using a content match, Snort will search the
entire packet. If I want to tell Snort where to stop
looking for a content match, I have to use something
like depth.

So for the above example, if I want to match on GET
but only at the beginning of the data portion of the
payload:

content:”GET”; depth:3;

Notice some things.

1. I didn’t start with Offset:0;. Remember, if I am
beginning a content search at the beginning of the
data payload of the packet, offset:0; is implied.

2. Depth counts in positive integers. While offset
starts counting at 0 bytes, depth counts in
positive integers, GET is three bytes long, so my
depth is 3.

3. Depth starts counting from the offset point. Not from
the beginning of the packet. While, in the above
GET example, the offset point IS the beginning of
the packet, don’t get confused by this.

4. By telling Snort to only look in the first three bytes,
if Snort is analyzing millions of 1500 byte packets,
only matching on the first three bytes is a significant
CPU saver.

Distance
Distance is defined in the Snort manual as:

The distance keyword allows the rule writer to specify
how far into a packet Snort should ignore before starting
to search for the specified pattern relative to the end of
the previous pattern match.

Distance says to us, okay, relative to the end of the
previous content match, when should I start searching

content:”downloads”; offset:13;

Would tell Snort to start looking for the word
downloads at the 13th byte in the data portion of the
packet. So, what if I chained these two together?

content:”GET”; offset:0; content:”downloads”; offset:13;

In other words, start looking for GET at the beginning
of the data payload of the packet, and start looking for
the word downloads at the 13th byte of the packet.
Now, why would I do this? This example tells Snort,
after the first content match, go back to the beginning
of the packet, move over 13 bytes and then start
looking again for a second content match. There are
several things wrong with this example, -that I did on
purpose.

First off, if you are at the first content match in a
Snort rule, or a content match you want to start at
the beginning of the packet, you don’t have to write
offset:0;. Any content match that doesn’t have a
modifier after it automatically starts at the beginning
of the data payload portion of the packet by default.
Offset:0; is implied for this type of match. Second,
and a:

>Common Misconception<

Some tend to think that if they stack two contents next
to each other, that Snort will look for those contents in
the order they are provided. For example, if I were to
write:

content:”GET”; content:”downloads”;

Some people generally think that in the above
example, that the word downloads will have to occur
after the word GET in the packet. This is wrong. If no
modifiers to contents are specified then the order of
the matches within a given packet (or stream for that
matter) doesn’t matter. downloads could be first, then
GET, and the rule will still fire.

So given the above exampled screenshot, if I wanted
to force the word downloads to occur after the word
GET, I could use a distance modifier, which I will touch
on a bit later.

Figure 1.

www.hakin9.org32

ADVANCED

SNORT

Content modifiers: Keep it Specific

www.hakin9.org 33SNORT

for the second content match? So bringing back my
previous example:

content:”GET”; depth:3; content:”downloads”;

If I were to do this:

content:”GET”; depth:3; content:”downloads”; distance:0;

That by itself would force the content match downloads
to occur after the GET content match. Doesn’t matter
where (distance:0;), just as long as the pattern match
is AFTER the first one. However, if I wanted to be more
specific and more specifically match on the screenshot
that I provided above:

content:”GET”; depth:3; content:”downloads”; distance:10;

This says to the Snort engine, match on GET, in the
first 3 bytes of the data payload of the packet, then
move 10 bytes relative to the end of GET and start
looking for downloads.

Notice I said start looking. Not limited to. Kinda like
putting an offset without a depth there… so we have
within.

Within
Within is described in the Snort manual as:

The within keyword is a content modifier that makes
sure that at most N bytes are between pattern matches
using the content keyword.

Within allows you to specify a range between content
matches, it also allows you to tell a second (relative)
content match where to stop.

So, using the content matches we’ve built already:

content:”GET”; depth:3; content:”downloads”; distance:10;

The only problem here is downloads is being searched
for in the entire packet, except for the first 13 bytes,
essentially. How can we search for downloads only in
that specific spot? Within.

content:”GET”; depth:3; content:”downloads”; distance:

10; within:9;

Match on GET, in the first 3 bytes of the data
payload of the packet, then move 10 bytes relative
to the end of GET and start looking for downloads,
however, downloads must occur wholly within the
next 9 bytes.

Could I say within:10;? Yes, I could, and then
downloads could be found in it’s present position, or
if there was another byte in front of the actual content
match.

Also notice that within, like depth, works in positive
integers (distance starts counting at 1).

nocase
Finally, let me discuss nocase. nocase, or No case,
simply tells Snort to ignore case sensitivity for the
content match specified. nocase doesn’t make the
Snort engine work any harder in the grand scheme of
things, and it’s very handy for being able to make sure
your rules do not get bypassed.

Example?
Let’s say I wanted to match the above screenshot, no
matter what. Well, if I was an attacker, and I came to your
webserver trying to access your downloads directory,
as the rule is written, I could pass my GET string as
lowercase get or mixed case GeT, and depending upon
your webserver, it might accept it, and I have effectively
bypassed your rule.

The easiest thing to do with this type of evasion is to
use a nocase; statement.

content:”GET”; depth:3; nocase; content:”downloads”;

distance:10; within:9; nocase;

So, I want you to notice a few things:

1. We went from very generic to very specific, your
use case will vary.

2. Modifiers to contents come AFTER the content
match and not before, they won’t work, don’t try it.

3. Offset goes with Depth, distance goes with
within. Don’t mix them.

6. http_uri

http_uri is described in the Snort Manual as:
The http_uri keyword is a content modifier that

restricts the search to the NORMALIZED request URI
field.

http_uri, if you are a long time Snort user, is the same
as uricontent. uricontent and http_uri both read from
the output of the http_inspect preprocessor. The http_
inspect preprocessor is responsible for the decoding
and normalization of http traffic within the parameters
specified in the configuration of that preprocessor itself.
Configuration of this preprocessor is just as important
as any other preprocessor, as it can either save you
a lot of time, or it can cause you to have a lot of false
positives.

So, for instance, using the above example again:
If I wrote a rule as above using the keywords and

distances I have already laid out: see Figure 4.

content:”GET”; depth:3; nocase; content:”downloads”;

distance:10; within:9; nocase;

www.hakin9.org32

ADVANCED

SNORT

Content modifiers: Keep it Specific

www.hakin9.org 33SNORT

This effectively looks for the word GET and the word
downloads within the packet, completely skipping
over the word content. However, if I wanted to match
the uri string within the rule, I could write the rule as
such:

content:”/content/downloads”; nocase; http_uri;

Notice two things:

1. I didn’t do a content match for the word GET. GET
will occur in most http traffic and thusly is rather
pointless. Try to avoid matching on GET, POST, etc,
unless there is an absolute need. Say, for instance
to avoid false positives.

2. I don’t have any distance, within, offset, or depth
statements. The http_inspect preprocessor already
knows which portion of the packet is the uri string,
so by using the http_uri keyword, not only does
Snort only have to match on the uri string portion of
the http request, but it also looks for the normalized
version of it.

What do we mean by normalized, you may ask
yourself. Normalized means, out of all the different
types of encoding that http_inspect can decode, or
normalize (as of the writing of this document, the
number of them is 11). Without the http_inspect
preprocessor’s normalization, a rule would have to be
written for every possible permutation of an uri request
string.

Okay, so you take one rule and split it into 11, big
deal right? The biggest advantage of http, and it’s
greatest disadvantage is that for all of the different
versions of http encodings, they can be stacked on top
of each other! HTTP can stack two unicodes on top of
each other and then encode it with UTF-8. That could
theoretically turn the amount of rules you would have to
write to catch every permutation of the above content
match into the billions!

http_uri takes care of all of that for you. For instance,
if you want to look for:

content:”/content/downloads”; nocase; http_uri;

and the malicious user on your network encodes his
uri as:

“%2fcontent%2fdownloads”

Without http_uri as a content modifier, the above
method wouldn’t normalize the unicode %2f into the
ascii / and would be able to bypass the rule you wrote.

So when looking for a particular URL string, use http_
uri as a content modifier. Not only does it limit Snort

on where it has to look, but it makes your rule harder
to bypass. Take a look at http_uri and the other 9 http
specific content modifiers in the Snort manual, test and
use them.

rawbytes
rawbytes is defined in the Snort manual as:

The rawbytes keyword allows rules to look at the raw
packet data, ignoring any decoding that was done by
preprocessors.

This is a rather simple modifier. The purpose of the
rawbytes keyword is to undo anything the preprocessors
may have done to the encoding or decoding of a packet.
If the http_inspect preprocessor was to normalize out
%2f into /. As a rule writer you might want to specifically
search for %2f as a content match, to see if someone
was attempting to bypass any content filtering systems
such as an IPS on the network.

content:”%2fcontent”; rawbytes;

This example would only match on that particular
string, if it occurred on a http_inspect normalized
port. Normally this is not something you’d like to do,
however, the keyword does exist in the off chance that
you’d want to be able to negate any normalization.

Hopefully this helped clear up any confusion
surrounding these keywords. For further information,
please refer to the Snort Users manual. http://
www.snort.org/start/documentation

–––
SNORT® and Sourcefire® are registered trademarks

of Sourcefire, Inc.

JOEL ESLER
Joel Esler is a Senior Security Consultant at Source�re. At
Source�re, Joel travels the world installing and con�guring
customer Source�re and Snort deployments, performing
public speaking engagements, and teaching Source�re and
Snort classes. Having visited over 100 customers, Joel has
con�gured gear in many of the Fortune 50 companies in
several different industries, including Banking, Government,
Travel (Airline and Rail), Manufacturing, and SCADA (Power)
Environments.

www.hakin9.org34

DEFENSE

SNORT

Deploying Snort as WAF (Web Application Firewall)

www.hakin9.org 35SNORT

It tries to explore vulnerabilities over HTTP(S) and
exploit it for a given opportunity. The web application
landscape is also changing and more complexities

are getting added, it provides openings for vulnerabilities
and possible exploitations. HTTP traffic is no longer
restricted to name-value pairs and traditional HTML
only. It has evolved with Web 2.0 and RIA, it allows
JSON, AMF, XML and various other structures. It has
become a platform for robust and advanced business
application hosting and usage. It is imperative to secure
business applications against all possible attack vectors
and to maintain security of information and access. In
this article we will try to understand Snort from HTTP
standpoint and how we can protect applications for
some of the popular attack vectors like XSS or SQL
injections by using it.

Problem Domain
Web applications are having set of different entry points
and these entry points are attacked and vulnerabilities
are discovered by an attacker. It is possible to access
applications using HTTP with many different ways and
entry poin ts to the application can be of different types
as shown in the Figure 1.

These entry points can be mapped to internal execution
of the code and if validations are not in place then it leads
to a potential vulnerability as shown in figure 2.

Examples of vulnerabilities
URL for SQL Injection – http://192.168.100.50/
details.aspx?id=1. In above case id parameter is
vulnerable to SQL injection so it is possible to attack this
parameter and gain access to back end database.

Deploying Snort as WAF
(Web Application Firewall)
In today’s environment, web applications are becoming a
popular attack point with attack agents. Attack agent can be
a human attacker or an automated worm.

What you will learn…
• Securing web applications with Snort

What you should know…
• Basic knowledge of Snort
• The Snort rule language
• A basic knowledge of TCP/IP

Figure 1. Entry points to the web application

��������
��������������������

���������

����

�����������

�����������

������������

�������
�����

����������
��������

���������
���������������

�����������
��������

����

��������������
�����������

����������������
������������

��������������
������������������������������

������������������

����������

www.hakin9.org34

DEFENSE

SNORT

Deploying Snort as WAF (Web Application Firewall)

www.hakin9.org 35SNORT

The tunnel depicted above has been shown to be
created by the proxy HTTP server, SQUID so as to
facilitate modularization of the firewall from the actual
system where the application is hosted. SQUID can be
made to run using the following for configuration:

Path: /etc/squid/squid.conf

http_port 192.168.100.8:80 accel defaultsite=192.168.100.50:80

cache_peer 192.168.100.50 parent 80 0 no-query originserver

name=myAccel

acl our_sites dstdomain 192.168.100.50

http_access allow our_sites

cache_peer_access myAccel allow our_sites

This causes the reverse proxy to be set up because
of which our target system 192.168.100.50 is
communicated via the current system where SNORT
sits – 192.168.100.8 using the port 80 since the
requests here are HTTP requests.

The second scenario is evidently much simpler in
which the web application is itself hosted on the same
system as SNORT. For example when hosted on the
Apache, a tunneling proxy system as described above
may not be required and the SNORT Firewall can be
integrated with the application on the same system.

SNORT
Snort came about primarily as an Open Source Intrusion
Detection System (IDS). The criteria by which SNORT
can successfully flag potential intrusions are signature
matching, protocols and anomalies in regular working of
a network. Rules are the basic requirements for any such
specification of criteria to be done for flagging intrusions.

An added functionality to this has been that of an
Intrusion Prevention System (IPS) which not only informs
about potential intrusions but also prevents them. This
feature comes under SNORT-Inline integrated with
IPTables. IPTables queues the messages in the traffic
through the network that have matching protocol or
other signatures according to rules. After this, SNORT-
Inline fetches these selected queued packets based
on the configuration and Rules files. These are then
processed by actions such as packet dropping after

URL for XSS – http://192.168.100.50/search.aspx?se
arch=%3Cscript%3Ealert(%27hey%27)%3C%2Fscript
%3E&submit=Search. In the above URL where we have
a parameter called search which is vulnerable to XSS,
it’s possible to inject a script tag and make it executable
at browser’s end. Both of the above vulnerabilities are
exposed since input validations are not in place and
malicious content can be injected. Let’s try to see some
solutions to fix this type of vulnerabilities to secure the
application.

Solution to address validation problem
It is possible to resolve some of these vulnerabilities by
following two ways.

a) Long term and permanent fix – if developer fixes the
problem by providing proper input validations then
it’s a permanent fix to the problem.

b) Short term and quick patch – it is possible to
filter http traffic and dropping the requests with
vulnerable payloads, this is not a fix in the source
code but does not allow an attacker to inject
malicious payload into the vulnerable parameters.

Solution (b) can be implemented by Web Application
Firewall (WAF). There are different ways WAFs can
be put in place, it can run as device or implemented
on host. Let’s see how Snort can be used to filter http
traffic and can act as first line of defense for some of
the popular attack vectors.

Solution Deployment Scenario
The deployment for this solution, as expected, requires
SNORT which works in combination with the Linux
operating system. Before we discuss SNORT used as a
Web Application Firewall, Therefore there are two main
alternatives: If the application to be protected is hosted on a
distinct system, we can set up a tunnel to the hosting system
via the Linux system where our customized SNORT-based
Web Application Firewall can be run. This provides a
mechanism of the web application and its security to be
set up across more than one physical system. This can be
depicted as follows for purposes of clarity:

Figure 2. Vulnerable entry point mapped to a bug

��������

��������������
������

�����������
�����
��

��������

���
��������������������
������������������

�������������

������������
��

��������
�������

����������������

www.hakin9.org36

DEFENSE

SNORT

alerting the user. Thus, intrusions here are not just
detected but prevented too.

SNORT-Inline has an HTTP Preprocessor which
essentially inspects HTTP requests and responses. The
preprocessor can be set up to allow SNORT-Inline IPS
for HTTP traffic as follows:

preprocessor http_inspect: global \

 iis_unicode_map unicode.map 1252

preprocessor http_inspect_server: server default \

 profile all ports { 80 8080 8180 } oversize_dir_length 500

This code informs HTTP inspect about the Unicode
mapping to be performed and the files to be used
for the same. Moreover it defines default profiles for
Web Servers to respond on the ports 80, 8080 and
8180 TCO or to alert on size exceeding. Once this is
done the SNORT Web Application Firewall can be
customized by adding rules as required for the target
application to be secured.

Rules
Rules to guide the SNORT Inline IPS to tackle intruders
may be included by setting them up in snor.config and
also by including them as rule files by:

include $RULE_PATH/sql-injection.rules

Add rules in etc/snort/rules as sql-injection.rules

Rules for SQL Injection Attacks
Here, any any -> any any ensures that any traffic through
the network (any source to any destination) is handled by
this particular rule. Furthermore, the msg defines the alert
to be used to flag the success of this rule. Proceeding,
the content fields are required to define the target area
in the web application where this rule must be checked
out. For example, as mentioned above the parameter id=
in the page /details.aspx is the one that is vulnerable to
SQL Injection and hence this area has been defined by
the content fields here. Finally the Perl Compiled Regular
Expressions are used to specify the pattern that must be
matched for this alert. The rule above and those given below
can consequently be used to prevent the SQL Injections
by using the payload for the vulnerable parameter as
escaped characters like % or %25 or SQL commands like
insert, delete, update. The ‘classtype’ identifies the type of
attack addressed by this rule and the sid and rev fields are
unique identifiers for the rule (including the revising and
editing performed on the rules).

Rules for XSS Attacks
For the rules treating XSS below, the significance of
the various parts of the rules remains the same as
that described above while treating the rules for SQL
Injection. The difference here is in the content that

the rule works on and the patterns that are matched
to safeguard against XSS Attacks. At the vulnerable
parameter search here, the packets that are picked out
are ones with <, > and all its escaped or encoded forms
along with other JavaScript event handler function calls
such as mouseover, mousemove, change, etc.

Starting SNORT-Inline
Finally, having set up the rule files, the SNORT IPS is

all set to be started up. This can be done by:

snort -Q -c /etc/snort/snort.conf -l /var/log/snort -v

Where,

• -Q is to enable inline mode
• -c is to set the path for the config file
• -l is to set the path for log file
• -v is to enable the verbose mode

A Demonstration Run
An example run after the integration of all the steps
mentioned above was then done on the target web
application discussed. This successful run (log and
drop) can be reviewed as under:

[**] [1:9000:5] Cross-site scripting attempt [**]

[Classification: Web Application Attack] [Priority: 1]

10/23-18:51:25.793080 192.168.100.8:34591 -> 192.168.100.50:80

TCP TTL:64 TOS:0x0 ID:12085 IpLen:20 DgmLen:657 DF

AP Seq: 0x1CFC03AE Ack: 0x8D3DEF67 Win: 0x6B9 TcpLen: 32

TCP Options (3) => NOP NOP TS: 3725432 90169

Conclusion
Thus in light of the discussion above, SNORT has
emerged as a viable Web Application Firewall. This
application for SNORT essentially involves placing
an SNORT Inline IPS as an individual component for
the Web Application Firewall (SQUID can be used to
configure a Reverse Proxy scenario). This positioning
is done such that all the traffic for communication with
our target application is tunneled via this firewall at all
times. The firewall can then be equipped with the ‘Web
Application Security’ aspects by setting up rule files to
check the traffic for various categories of exploits at
their corresponding vulnerable points.

SHIVANG BHAGAT & RISHITA ANUBHAI
BLUEINFY APPSECLABS
Shivang Bhagat & Rishita Anubhai (Blueinfy AppSecLabs) –
Shivang and Risita are web security researcher and consultant
at Blueinfy. Both are involved in web application pentesting
and development of tools in the area of web security
assessment tools. Both of them have authored a few tools for
AppSecLabs at Blueinfy.

http://www.mobioid.com/

www.hakin9.org38 SNORT

Nagios founder Ethan Galstad speaks at the Conference on Nagios 2011

www.hakin9.org 39SNORT

Following the great interest in 2010, the
successful series of an international
Conference on Nagios and OSS Monitoring will

continue also in 2011. The organization team of Würth
Phoenix spares no efforts to top last year’s agenda
and bring international Nagios and OSS Monitoring
experts to Italy. The father of Nagios, Ethan Galstad,
and ntop founder Luca Deri have already confirmed
their participation. Contacts with other nameable
Open Source Monitoring experts are in progress. The
sessions are intended to go deep into actual business
trends and best practices without missing out the
technical hard facts.

Why should you attend
You´re invited to share experiences and hear some
of the most current OSS developments. Beside the
keynote speeches also a panel discussion will be part of
the agenda to highlight the changing market relevance
of Nagios and other well known OSS projects. Last but
not least you will meet a lot of friendly and like-minded
people there.

Call for papers: Submit your proposal until
the 31st of January 2011
If you’ve got something to share, to tell, to introduce
or to show regarding Open Source Monitoring
please take the time and submit a presentation to
the organization team. You are invited to come up
with a brief abstract of your presentation. You should
also provide some information about yourself,
your experience with Open Source software and
the specific aspects of monitoring solutions based
on Nagios. Just write an E-Mail at info@wuerth-
phoenix.com.

Subscribe as participant
Also in 2011 the attendance at the Conference
including networking lunch will be for free. We welcome
every passionate of Open Source, from sys admins to
developers, from programmers to IT managers and
entrepreneurs. The number of participants is limited.
Just confirm your participation and register already now
at www.wuerth-phoenix.com/nagios.

Nagios founder Ethan
Galstad speaks

The yearly edition of the Conference on Nagios and Open
Source-Monitoring, hosted by Würth Phoenix will take place
in Bolzano/Italy on the 12th of May 2011

at the Conference on Nagios 2011

a
d

v
e

r
t

i
s

e
m

e
n

t

www.hakin9.org38 SNORT

Nagios founder Ethan Galstad speaks at the Conference on Nagios 2011

www.hakin9.org 39SNORT

referred mainly to the strong market position in the
Scandinavian countries. The mix of Open Source
projects and commercial services has long stood
the test. Finally Luca Deri from the University of
Pisa suggested some precious tips for practicing IT
monitoring. He spoke of the application areas of his
worldwide used monitoring program ntop. Insights
from the development community were given by
Michael Medin from Sweden and Reinhard Scheck
from Germany. They provided a review into the
development focus of Nagios and Cacti directing
their speech mainly to advanced users. Speakers of
famous industrial companies, like the Savio ITEMA
Group, talked about choice and implementation
of Open Source solutions in worldwide acting

enterprises.

In addition to the lectures which were followed by
direct feedbacks by the audience, a panel discussion
followed. Experts as well as visitors interchanged
opinions on possibilities and future scenarios of a
stronger cooperation between Open Source Projects
and proprietary producers like Microsoft, HP or IBM.

Watch the interview with Ethan Galstad:
http://www.youtube.com/watch?v=GtvpE3Ug-KQ

Get some impressions of this year´s edition:
http://www.youtube.com/watch?v=9UOveAFH1Ns&f

eature=related

Last year´s edition: A brief look back
In 2010 400 visitors from several countries gathered
together in Bolzano/Italy to closely experience the
new developments and the future directions of
different monitoring solutions.

Renowned international speakers ensured a
many-sided agenda, which was mainly directed to
a broad audience of businessmen and engineers.
Ethan Galstad introduced the developments of his
worldwide established monitoring standard Nagios.
Reliable solutions for more system stability in the
IT business should not engulf massive budgets
for licensing costs. Jan Josephson highlighted
the internationally growing request of Open
Source software solutions in the business area.
The founder of the Swedish service provider op5

a
d

v
e

r
t

i
s

e
m

e
n

t

www.hakin9.org40

DEFENSE

SNORT

Are you getting the most out of your IPS?

www.hakin9.org 41SNORT

They have a huge display screen being monitored
24/7 by a team of specialists who – so we are told
– have received extensive training in the specific

technologies used, as well as in the overall incident
management framework. They’ve deployed a high-end
intrusion prevention system (IPS) which feeds into their
Security Incident Management (SIM) system.

A review of the procedures and Service Level
Agreement (SLA) of the SOC team signed with the rest
of the business reveals that they are ready to respond
24/7 and have committed that within 2 hours of a serious
attack they will respond to any serious attacks.

On paper it all looks impressive and too good to be
true.

Putting it to the test
For starters, we decide to launch an unannounced,
but highly noisy scan on their public IP addresses. But
just to make it a little interesting, we do this over the
weekend. The SLA assures us that the SOC is ready
to respond on a 24/7 basis within 2 hours to all high
criticality events.

When we come in to their office on Monday, we expect
to see a flurry of activity having happened at the SOC.
But to our not-so-great surprise we find that there’s not
even an incident recorded over the weekend. And this
is after we’ve launched Nessus scans with all plugins
selected and making no attempts at IPS evasion or
other forms of stealth.

To give them further benefit of doubt, we also run
internal scans on critical servers and wait to see if this
raises any alarms at the SOC. But nothing seems to
really shake the SOC out of their reverie.

Some tough questions
At this stage, it is pertinent for us to confront the
customer with the ground reality, and begin an in-depth
investigation as to why the SOC is unable to justify its
existence? In spite of the millions of dollars sunk into it in
terms of capital expense, and the monthly expenditure
on a supposedly well-trained team of people, why
are they not reacting to obvious internal and external
intrusion attempts?

The answers that emerge from this audit reveal issues
that exist with a number of companies that deploy
Intrusion Detection and Intrusion Prevention Systems
and build their SOCs, but fail to get the maximum value
out from them.

Problem #1: IPS is not properly tuned
Many organizations think that once the system
integrator (SI) has come in and deployed an IPS, that’s
about it, and everything should work perfectly fine. A
lot of organizations quickly learn that this is not the
case, and discover that their IPS is now just a garbage
collector. It is being swamped with thousands of alerts
per minute and it is simply impossible to make any
sense of what is actually happening on the network.

Are You Getting the Most
out of your IPS?
Picture this: a multi-billion dollar global telecom giant has
invested millions of dollars into building a state-of-the-art
Security Operations Center.

What you will learn…
• why problems with IPS may occur
• how to assess the performance of your IPS
• how to optimize your IPS

What you should know…
• basic knowledge of TCP/IP
• basic knowledge of IPS

www.hakin9.org40

DEFENSE

SNORT

Are you getting the most out of your IPS?

www.hakin9.org 41SNORT

Problem #3: The SIM Implementation/IPS
Upgrade/XYZ Project will solve our problems
This is a typical ostrich-head-in-the-sand approach,
wherein all problems related to the IPS and the capability
of the SOC team to respond are brushed away under
the next new big project that the organization is about to
implement. We have seen numerous instances where a
Security Incident Management (SIM) implementation fails
(and this constitutes enough material for a completely
different article, but here are some of them):

1. The SIM project itself takes so long to implement,
during which time the organization is living with an
open risk of not being able to detect and prevent
attacks on its network

2. The IPS doesn’t integrate with the SIM due to
various reasons, or if it integrates, it ends up
overwhelming the SIM drowning out alerts from
other systems

3. Correlation rules on the SIM don’t get created
properly – thus the SIM is nothing but a glorified log
collector

4. If the IPS it not tuned in the first place, it is simply
going to turn out being a case of Garbage-In-
Garbage-Out with an additional layer of SIM added
on top of it

So whatever is the next big project – it will surely not
miraculously clean up an IPS mess. In fact, a messy
IPS implementation will only result in a messier SIM
implementation!

Problem #4: Weakly con�gured reports
There are some basic questions that an IPS should be
configured to answer in order to show its effectiveness
and prove Return on Investment (ROI):

1. What are the sorts of trends we are seeing in
terms of attacks? For instance, for attacks from the
Internet:
a. Which ports are under attack more than others?
b. Which IP addresses are under attack more than

others?
c. Overall are we facing more attacks or less?

2. Is our blocking capability effective enough, i.e. how
many attacks are being blocked in comparison
to the total number of confirmed attacks being
detected

3. Of the total number of high-criticality attacks, how
many is the SOC team responding to?

4. What is the time duration between attack detection
and response?

The answers to these questions reflect the ROI for an
organization. The lack of accurate answers reflects

When they now seek to tune the IPS the system
integrator is no longer in the picture or the IPS is an
out-dated version or there’s a new on-going project to
implement a SIM, which will solve all these problems,
or some story or the other.

What is important to realize is that the SI should’ve
been asked to not just implement an IPS that works,
but an IPS that works properly. One that has been
fine-tuned to weed out as many false positives as is
practical, where the dashboards have been tuned to
reflect as true a picture of the network as is possible,
and where the reports show the actual trends of attacks
on the network.

Even more importantly, IPS tuning is not a one-time
job – it is a constant effort and the organizational team
should take over this responsibility and expend effort
towards ensuing the IPS is constantly being tuned.

A weakly configured IPS is the #1 reason why a lot
of IPSs continue in monitor-only mode many months or
even years after deployment.

Problem #2: Lack of trained resources
One of the more humorous events happened when
we decided to evaluate the capability of the SOC team
members. The guys in the main shift were well-trained
and certified on the specific IPS, and we came away duly
impressed. On a hunch, we requested to speak with the
SOC team guys in the off-peak hour shifts. During one
such interview, the person we were interviewing admitted
that he wasn’t aware of an IPS or SIM. His job description
according to him was as a NOC team member monitoring
the up-time of the links and escalating calls to engineers
if he saw any problems appearing on the screen. When
we asked him his experience on the IPS, his response
was that he had not been asked to look at the IPS alerts
or been trained on what to do if he saw a series of red-
line alerts cropping up.

This lack of trained resources was further evidenced by
the lack of any responses to our weekend scans. A deeper
investigation into the contract between the company who
had supplied the resources and the Telco revealed that the
off-peak resources needed to be paid much more if the
Telco wanted SOC-level guys. So the Telco had settled
for security incident analysts during normal working hours,
and NOC-level guys for the other shifts.

Therefore, to cut down on the operational expenditure,
the huge capital expenditure on the IPS and the SOC
was actually being wasted.

Very often we find SOC team members do not even
understand the basics of TCP/IP. They are essentially
trained to look out for red/amber/green and react as
per a fixed standard procedure. The very least that a
SOC analyst should know is how attackers operate,
what a reconnaissance phase consists of, how web
applications are compromised, etc.

www.hakin9.org42

DEFENSE

SNORT

that either the IPS is mis-configured or the reporting
capabilities of the IPS have not been fully utilized.

Problem #5:
Not squeezing the maximum out of the IPS
Most IPS’s offer many features which remain
unexplored. Snort is a great example of this. Not only
is Snort highly flexible, but writing your own rules for
Snort is a breeze. Snort also comes with bleeding-
edge rules, which are worthwhile keeping a watch for.
The commercial version of Snort – Sourcefire comes
with a highly impressive (but equally costly) learning
engine, which reduces the number of manual resources
required to monitor and fine-tune the IPS.

A lot of organizations choose to ignore many of the
advance features that their IPS offers, and System
Integrators are happy doing a plain vanilla deployment,
although the marketing team of the same vendor may
have pitched all of the advanced features as Unique
Selling Propositions (USPs)!

Problem #6:
Weak incident management processes
A large number of organizations deploy IDSs and IPSs,
yet do not build strong processes and policies around
the process of incident management. Some of the
critical aspects that get missed out are:

1. What is an incident that requires action to be
taken?

2. What action is to be taken for reacting to different
types of incidents:
a. A virus/worm infection
b. An internal hacking attempt
c. An internal policy violations
d. An external hacking attempt
e. An external port-scanning attempt

3. What is to be done when the investigation into the
incident concludes that it is a false positives?

4. What records are to be maintained during and after
investigation?

5. Who are the owners of various systems (a list of IP
addresses and the corresponding administrators is
either missing or not updated)?

Problem #7:
Weak metrics and measurement of IPS success
The final weakness present in a lot of IPS
implementations is the lack of metrics to measure how
well the IPS has been implemented and whether things
are getting better or getting worse. In the absence of
metrics, there is no way to conclude if the organization’s
capabilities to detect and block attacks is getting better
or not. Some suggested metrics for an IPS and the
associated incident management processes are:

1. The ratio of false positives to total alarms
2. The number of high criticality events responded to
3. The amount of time taken between an alert

appearing on the console and the response being
triggered

4. The number of changes made to the IPS filters or
rules

5. The number of unannounced security scans
detected by the IPS and the monitoring team

Conclusion
At the end of the day, an IPS is a fairly expensive investment
for any organization, not only in terms of hardware and
software, but also in terms of the skilled resources that
need to be deployed to manage and monitor the IPS. Most
system integrators are keen to implement the solution to
show that it works, and not in a way that makes it work
well. Getting the maximum out of a news Rolls Royce in
your garage requires you to not only be trained in driving
one, but also in the mechanics of checking its parameters
regularly and tuning it. It is not just a simple plug-and-play
mechanism. To conclude, the key points that any IPS
implementation should bear in mind are:

1. Tuning the IPS to filter out as many false positives
as possible

2. Ensuring well-trained resources are deployed to
manage and monitor it

3. Not assume that the next big security project will
magically resolve all current IPS issues

4. Ensuring the reports and dashboards are properly
configured

5. Using all the features of the IPS to the maximum,
especially since you’ve paid for them

6. Putting in place strong incident management
procedures around the IPS technology

7. Putting in place an effective metrics framework to
ensure you get the maximum bang for your buck!

K. K MOOKHEY
K K Mookhey is the Founder and Principal Consultant at NII
Consulting. From a startup capital of USD 5000 in 2001, he
has built it into a USD 500,000 practice providing services in IT
Audits, Risk Management, Compliance, and Computer Forensics.
NII has offices in India and the Middle East, and a client list
that includes the United Nations, Saudi Telecom, Dubai Stock
Exchange, Atlas Air, Royal Sun & Alliance, and many others. He
has written numerous articles on information risk management
and these can be accessed at http://www.niiconsulting.com/
innocation/articles.html. He has also presented at conferences
such as Blackhat (Las Vegas 2004), Interop (Las Vegas 2005),
IT Underground (Prague 2005). He is also the author of two
books - one on Linux Security and Auditing, and the other on the
Metasploit Framework by Syngress Publishing. He blogs at http://
www.everydayentrepreneurs.blogspot.com

������������������������������
�������������������������������������
���

����������������������

���
���

��
��

����������������������
�����������������

�����������������

������������������������������
�������������������������������������
���

����������������������

���
���

��
��

����������������������
�����������������

�����������������

������������������������������
�������������������������������������
���

����������������������

���
���

��
��

����������������������
�����������������

�����������������

������������������������������
�������������������������������������
���

����������������������

���
���

��
��

����������������������
�����������������

���
�������������������������������������
���

����������������������

���
���

��
��

����������������������
�����������������

�����������������

http://www.bullguard.com/

	Cover
	Dear Readers,
	CONTENTS
	up.time IT SystemsManagement Review
	Doug Chick printable: Notes of the Network Administrator
	Writing Snort Rules
	Collection andExploration of Large Data
	Improving your customSnort rules
	An Unsupervised IDS False Alarm Reduction System – SMART
	Content modifiers:Keep it Specific
	Deploying Snort as WAF(Web Application Firewall)
	Are You Getting the Mostout of your IPS?

