

http://frogteam-security.com/

http://www.crackhackforum.com/

03/2013

03/2013 (12)

4

 team
Editor in Chief: Ewelina Nazarczuk
ewelina.nazarczuk@hakin9.org

Editorial Advisory Board: Webb, Marco Hermans, Gareth
Watters, Peter Harmsen, Dhawal Desai, Sushil Verma,
Bamidele Ajayi

Proofreaders: Jeff Smith, Krzysztof Samborski

Special Thanks to the Beta testers and Proofreaders who
helped us with this issue. Without their assistance there would
not be a Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

DTP: Ireneusz Pogroszewski

Marketing Director: Ewelina Nazarczuk
ewelina.nazarczuk@hakin9.org

Publisher: Hakin9 Media
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or
implied, concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.

DISCLAIMER!
The techniques described in our articles
may only be used in private, local networks.
The editors hold no responsibility for misuse
of the presented techniques or consequent
data loss.

Dear Hakin9 Readers,

Iwould like to introduce a new issue of Hakin9 on Demand.
This time we explore ins and outs of Reverse Engineering.

It is the process of exploration products such as computer
devices or software to analyze how it is working and how it is
made at all, or try to make a new product working in the same
way, but without duplication of the original.

This time you will learn about basics of reverse engineer-
ing. Furthermore you will get knowledge how to use reverse
engineering techniques on your own. You will find out how to
analyze malware, or how to write your own debbuger.

In this issue you will find sections as, Malware Reverse
En-gineering and Reverse it Yourself.

Enjoy your time with Hakin9!

Regards,
Ewelina Nazarczuk

Hakin9 Magazine Junior Product Manager
and Hakin9 Team

ED
iT

O
R

’S
 N

O
TE

mailto:mailto:ewelina.nazarczuk%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:andrzej.kuca%40hakin9.org?subject=
mailto:mailto:ewelina.nazarczuk%40hakin9.org?subject=
http://www.hakin9.org/en

CONTENTS

MALWARE REVERSE ENGINEERING
Malware Reverse Engineering: Zeus
Trojan: Part 1
By Bamidele Ajayi, OCP, MCTS, MCITP EA, CISA,
CISM
Reverse engineering is a vital skill for security profession-
als. Reverse engineering malware to discovering vulner-
abilities in binaries are required in order to properly secure
information Systems from today’s ever evolving threats.

Android Reverse Engineering: An
introductory Guide to Malware Analysis
By Vicente Aguilera Diaz, CISA, CISSP, CSSLP, PCI
ASV, ITIL Foundation, CEH|I, ECSP|I, OPSA,
The Android malware has followed an exponential growth
rate in recent years, in parallel with the degree of penetra-
tion of this system in different markets. Currently, over
90% of the threats to mobile devices have Android as a
main target. This scenario has led to the demand for pro-
fessionals with a very specific knowledge on this plat-
form.

REVERSE IT YOURSELF
Write Your Own Debugger
By Amr Thabet
Do you want to write your own debugger? ... Do you have
a new technology and see the already known products
like OllyDbg or iDA Pro don’t have this technology? … Do
you write plugins in OllyDbg and iDA Pro but you need to
convert it into a separate application? … This article is for
you.in this article, i’m going to teach you how to write a
full functional debugger using the Security Research and
Development Framework (SRDF) …

Reverse Engineering – Shellcodes
Techniques
By Eran Goldstein, CEH, CEI, CISO, Security+, MC-
SA, MCSE Security
The concept of reverse engineering process is well
known, yet in this article we are not about to discuss the
technological principles of reverse engineering but rather
focus on one of the core implementations of reverse engi-
neering in the security arena. Throughout this article we’ll
go over the shellcodes’ concept, the various types and
the understanding of the analysis being performed by a
“shellcode” for a software/program.

06

10

18

30

Deep inside Malicious PDF
By Yehia Mamdouh, Founder and Instructor of
Master Metasploit Courses, CEH, CCNA
in nowadays People share documents all the time and
most of the attacks based on client side attack and tar-
get applications that exist in the user, employee OS, from
one single file the attacker can compromise a large net-
work. PDF is the most sharing file format, due to PDFs
can include active content, passed within the enterprise
and across Networks. in this article we will make Analysis
to catch Malicious PDF files.

How to Reverse Engineer dot NET
Assemblies
By Soufiane Tahiri, InfoSec Institute Contributor and
Computer Security Researcher
The concept of dot NET can be easily compared to the
concept of JAVA and Java Virtual Machine, at least when
talking about compilation. Unlike most of traditional pro-
gramming languages like C/C++, application were devel-
oped using dot NET frameworks are compiled to a Com-
mon intermediate Language (CiL or Microsoft Common
intermediate Language MSiL) – which can be compared to
bytecode when talking about Java programs – instead of
being compiled directly to the native machine executable
code, the Dot Net Common Language Runtime (CLR) will
translate the CiL to the machine code at runtime. This will
definitely increase execution speed but has some advan-
tages since every dot NET program will keep all classes’
names, functions’ names variables and routines’ names
in the compiled program. And this, from a programmer’s
point of view, is such a great thing since we can make
different parts of a program using different programming
languages available and supported by frameworks.

Reversing with Stack-Overflow and
Exploitation
By Bikash Dash, RHCSA, RHCE, CSSA
The prevalence of security holes in program and proto-
cols, the increasing size and complexity of the internet,
and the sensitivity of the information stored throughout
have created a target-rich environment for our next gen-
eration advisory. The criminal element is applying ad-
vance technique to evade the software/tool security. So
the Knowledge of Analysis is necessary. And that pin
point is called “The Art Of Reverse Engineering”

34

38

52

CONTENTS

6 03/2013

M
A

LW
A

R
E

R
EV

ER
SE

 E
N

G
iN

EE
R

iN
G

Malware Reverse
Engineering: Zeus
Trojan – Part1
In today’s highly sophisticated world in Technology, where
Information Systems form the critical back-bone of our everyday
lives, we need to protect them from all sorts of attack vectors.

In today’s highly sophisticated world in Technol-
ogy, where Information Systems form the criti-
cal back-bone of our everyday lives, we need to

protect them from all sorts of attack vectors.
Protecting them from all sorts of attack would re-

quire us understanding the modus operandi with-
out which our efforts would be futile. Understand-
ing the modi operandi of sophisticated attacks such
as malware would require us dissecting malware
codes into bits and pieces with processes such Re-
verse Engineering. In this article readers would be
introduced Reverse Engineering, Malware Analysis,
Understanding attack vectors from reversed codes,
tools and utilities used for reverse engineering.

Introduction
Reverse engineering is a vital skill for security pro-
fessionals. Reverse engineering malware to dis-
covering vulnerabilities in binaries are required in
order to properly secure Information Systems from
today’s ever evolving threats.

Reverse Engineering can be defined as “Per
Wikipedia’s definition: http://en.wikipedia.org/wiki/
Reverse_engineering:Reverse engineering is the
process of discovering the technological principles
of a device, object or system through analysis of its
structure, function and operation. It often involves
taking something (e.g., a mechanical device, elec-
tronic component, biological, chemical or organic
matter or software program) apart and analyzing
its workings in detail to be used in maintenance, or
to try to make a new device or program that does
the same thing without using or simply duplicating
(without understanding) the original. Reverse engi-

neering has its origins in the analysis of hardware
for commercial or military advantage. The purpose
is to deduce design decisions from end products
with little or no additional knowledge about the
procedures involved in the original production.
The same techniques are subsequently being re-
searched for application to legacy software sys-
tems, not for industrial or defense ends, but rather
to replace incorrect, incomplete, or otherwise un-
available documentation.”

Assembly language is a low-level programming
language used to interface with computer hard-
ware. It uses structured commands as substitu-
tions for numbers allowing humans to read the
code easier than looking at binary, though it is eas-
ier to read than binary, assembly language is a dif-
ficult language and comes in handy as a skill set
for effective reverse engineering. For this purpose,
we will delve into the basics of assembly language;

Registers
Register is a small amount of storage available on
processors which provides the fastest access data.
Registers can be categorized on the following basis:

• User-accessible registers – The most common
division of user-accessible registers is into data
registers and address registers.

• Data registers can hold numeric values such
as integer and floating-point values, as well as
characters, small bit arrays and other data. In
some older and low end CPUs, a special data
register, known as the accumulator, is used im-
plicitly for many operations.

http://en.wikipedia.org/wiki/Reverse_engineering:Reverse
http://en.wikipedia.org/wiki/Reverse_engineering:Reverse

www.hakin9.org/en 7

• Address registers hold addresses and are used
by instructions that indirectly access primary
memory. Some processors contain registers that
may only be used to hold an address or only to
hold numeric values (in some cases used as an
index register whose value is added as an off-
set from some address); others allow registers to
hold either kind of quantity. A wide variety of pos-
sible addressing modes, used to specify the ef-
fective address of an operand, exist. The stack
pointer is used to manage the run-time stack.
Rarely, other data stacks are addressed by dedi-
cated address registers, see stack machine.

• Conditional registers hold truth values often
used to determine whether some instruction
should or should not be executed.

• General purpose registers (GPRs) can store both
data and addresses, i.e., they are combined Da-
ta/Address registers and rarely the register file is
unified to include floating point as well.

• Floating point registers (FPRs) store floating
point numbers in many architectures.

• Constant registers hold read-only values such
as zero, one, or pi.

• Vector registers hold data for vector process-
ing done by SIMD instructions (Single Instruc-
tion, Multiple Data).

• Special purpose registers (SPRs) hold program
state; they usually include the program coun-
ter (aka instruction pointer) and status regis-
ter (aka processor status word). The aforemen-
tioned stack pointer is sometimes also included
in this group. Embedded microprocessors can
also have registers corresponding to special-
ized hardware elements.

• Instruction registers store the instruction cur-
rently being executed. In some architectures,
model-specific registers (also called machine-
specific registers) store data and settings relat-
ed to the processor itself. Because their mean-
ings are attached to the design of a specific
processor, they cannot be expected to remain
standard between processor generations.

• Control and status registers – There are three
types: program counter, instruction registers
and program status word (PSW).

Registers related to fetching information from RAM,
a collection of storage registers located on separate
chips from the CPU (unlike most of the above, these
are generally not architectural registers).

Functions
Assembly Language function starts a few lines of
code at the beginning of a function, which prepare

the stack and registers for use within the function.
Similarly, the function conclusion appears at the end
of the function, and restores the stack and registers to
the state they were in before the function was called.

Memory Stacks
There are 3 main sections of memory:

• Stack Section – Where the stack is located,
stores local variables and function arguments.

• Data Section – Where the heap is located,
stores static and dynamic variables.

• Code Section – Where the actual program in-
structions are located.

The stack section starts at the high memory ad-
dresses and grows downwards, towards the low-
er memory addresses; conversely, the data sec-
tion (heap) starts at the lower memory addresses
and grows upwards, towards the high memory ad-
dresses. Therefore, the stack and the heap grow
towards each other as more variables are placed
in each of those sections

Debuggers
Are computers programs used forlocating and fix-
ing or bypassing bugs (errors) in computer pro-
gram code or the engineering of a hardware de-
vice. They also offer functions such as running a
program step by step, stopping at some specified
instructions and tracking values of variables and
also have the ability to modify program state dur-
ing execution. some examples of debuggers are:

• GNU Debugger
• Intel Debugger
• LLDB
• Microsoft Visual Studio Debugger
• Valgrind
• WinDbg

Hex Editors
Hex editors are tools used to view and edit bina-
ry files. A binary file is a file that contains data in
machine-readable form as opposed to a text file
which can be read by a human. Hex editors allow
editing the raw data contents of a file, instead of
other programs which attempt to interpret the data
for you. Since a hex editor is used to edit binary
files, they are sometimes called a binary editor or
a binary file editor.

Disassemblers
Disassemblers are computer programs that trans-
late machine languages into assembly language,

8 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

whilst the opposite for the operation is called an
assembly. The outputs of Disassemblers are in hu-
man readable format. Some examples are:

• IDA
• OllyDbg

Malware is the Swiss-army knife used by cyber-
criminals and any other adversary against corpo-
ration or organizations’ Information Systems.

In these evolving times, detecting and removing
malware artifacts is not enough: it’s vitally impor-
tant to understand how they work and what they
would do/did on your systems when deployed and
understand the context, the motivations and the
goals of a breach.

Malware analysis is accomplished using specific
tools that are categorized as hex editors, disassem-
blers/debuggers, decompiles and monitoring tools.

Disassemblers/debuggers occupy important po-
sition in the list of reverse engineering tools. A dis-
assembler converts binary code into assembly
code. Disassemblers also extract strings, used li-
braries, and imported and exported functions. De-
buggers expand the functionality of disassemblers
by supporting the viewing of the stack, the CPU
registers, and the hex dumping of the program as
it executes. Debuggers allow breakpoints to be set
and the assembly code to be edited at runtime.

Background
Zeus is a malware toolkit that allows a cybercrimi-
nal to build his own Trojan horse for the sole pur-
pose of stealing financial details.

Once Zeus Trojan infects a machine, it remains
idle until the user visits a Web page with a form to
fill out. It allows criminals to add fields to forms at
the browser level. This means that instead of di-
recting the end user to a counterfeit website, the
user would see the legitimate website but might be
asked to fill in an additional blank with specific in-
formation for “security reasons.”

The malware can be customized to gather cre-
dentials from banks in specific geographic areas
and can be distributed in many different ways, in-
cluding email attachments and malicious Web
links. Once infected, a PC can be recruited to be-
come part of a botnet.

Approach
For reverse engineering malware a controlled en-
vironment is suggested to avoid sprawling of mali-
cious content or using a virtual network that is com-
pletely enclosed within the host machine to prevent
communication with the outside world. Tools such

as PE, Disassemblers, Debuggers, etc would also
be required to effectively reverse malwares.

Zeus Crimeware Toolkit
This is a set of programs which is designed to set-
up a botnet over networked infrastructure. It aims
to make machines agents with the mission of steal-
ing financial records. Zeus has the ability to log in-
puts entered user as well as to capture and manip-
ulate data that are displayed on web forms.

Architecture
The structure of Zeus crimeware toolkit is made up
of five components namely;

• A control panel which contains a set of PHP
scripts that are used to monitor the botnet and
collect the stolen information into MySQL data-
base and then display it to the botmaster. It also
allows the botmaster to monitor,control, and man-
age bots that are registered within the botnet.

• Configuration files that are used to customize
the botnet parameters. It involves two files: the
configuration file config.txt that lists the basic
information, and the web injects file webinjects.
txt that identifies the targeted websites and
defines the content injection rules.

• A generated encrypted configuration file con-
fig.bin, which holds an encrypted version of the
configuration parameters of the botnet.

• A generated malware binary file bot.exe, which
is considered as the bot binary file that infects
the victims’ machines.

• A builder program that generate two files: the
encrypted configuration file config.bin and
the malware (actual bot) binary file bot.exe.
On the Command&Control side, the crime-
ware toolkit has an easy way to setup the
Command&Control server through an installa-
tion script that configures the database and the
control panel. The database is used to store re-
lated information about the botnet and any up-
dated reports from the bots. These updates con-
tain stolen information that are gathered by the
bots from the infected machines. The control
panel provides a user friendly interface to dis-
play the content of the database as well as to
communicate with the rest of the botnet using
PHP scripts. The botnet configuration informa-
tion is composed of two parts: a static part and
a dynamic part. In addition, each Zeus instance
keeps a set of targeted URLs that are fed by
the web injects file webinject.txt. Instantly, Zeus
targets these URLs to steal information and to
modify the content of specific web pages

www.hakin9.org/en 9

before they get displayed on the user‘s screen.
The attacker can define rules that are used to
harvest a web form data. When a victim visits a
targeted site, the bot steals the credentials that
are entered by the victim. Afterward, it posts the
encrypted information to a drop location that is
meant to store the bot update reports. This serv-
er decrypts the stolen information and stores it in-
to a database.

Code Analysis
The builder is part of the component in the crime-
ware toolkit which uses the configuration files as
input to obfuscated configuration and the bot bi-
nary file.

The configuration File: It converts the clear text
of the configuration files to a pre-defined format
and encrypts the it with RC4 encryption algorithm
using the configured encryption key.

Zeus Configuration file includes some cam-
mands namely:

• url_loader: Update location of the bot
• url_server: Command and control server location
• AdvancedConfigs: Alternate URL locations for

updated configuration files
• Webfilters: Web filters specify a list of URLs

(with masks) that should be monitored. Any da-
ta sent to these URLs such as online banking
credentials is then sent to the command and
control server. This data is captured on the cli-
ent prior to SSL. In addition, one can specify to
take a screenshot when the left-button of the
mouse is clicked, which is useful in recording
PIN numbers selected on virtual keyboards.

• WebDataFilters: Web data filters specify a list of
URLs (with masks) and also string patterns in
the data that must be matched. Any data sent to
these URLs and match the specified string pat-
terns such as ‘password’ or ‘login’ is then sent
to the command and control server. This data is
also captured on the client prior to SSL.

• WebFakes: Redirect the specified URL to a dif-
ferent URL, which will host a potentially fake
version of the page.

• TANGrabber: The TAN (Transaction Authen-
tication Number) grabber routine is a special-
ized routine that allows you to configure match
patterns to search for transaction numbers in
data posted to online banks. The match pat-
terns include values such as the variable name
and length of the TAN.

• DNSMap: Entries to be added to the HOSTS
file often used to prevent access to security
sites or redirect users to fake Web sites.

• file_webinjects: The name of the configura-
tion file that specifies HTML to inject into online
banking pages, which defeats enhanced secu-
rity implemented by online banks and is used
to gather information not normally requested by
the banks. This functionality is discussed more
in-depth in the section “Web Page Injection”.

Conclusion
The ZEUS trojan captures your keystrokes and im-
plements ‘form grabbing’ (taking the contents of a
form before submission and uploading them to the
attacker) in an effort to steal sensitive information
(passwords, credit cards, social securities, etc.). It
has capabilities to infect Windows and several mo-
bile platforms, though a recent variant based on
ZUES’s leaked source, the Blackhole exploit kit,
can infect Macs as well.

Zeus is predominantly a financial-interest mal-
ware, however if infected, your machine will be re-
cruited into one of the largest botnets ever. The
master could then use your computer (along with
any other infected machines of that bot) to be used
to do any number of nefarious tasks for him (launch-
ing DDOS attacks, sending spam, relays, etc.).

Part 2 (Continued in Next Article)
This would be focused on creating the bot.exe and
using tools like IDA Pro and ollydbg to reverse and
show the inner workings from the binary files.

BAMIDElE AjAyI
Bamidele Ajayi (OCP, MCTS, MCITP EA,
CISA, CISM) is an Enterprise Systems En-
gineer experienced in planning, design-
ing, implementing and administering
LINUX and WINDOWS based systems,
HA cluster Databases and Systems, SAN
and Enterprise Storage Solutions. Inci-

sive and highly dynamic Information Systems Security Per-
sonnel with vast security architecture technical experience
devising, integrating and successfully developing security
solutions across multiple resources, services and products.

References
• http://searchsecurity.techtarget.com/definition/Zeus-Tro-

jan-Zbot
• http://en.wikipedia.org/wiki/Reverse_engineering
• http://en.wikipedia.org/wiki/Zeus_(Trojan_horse)
• https://github.com/Visgean/Zeus
• http://www.ncfta.ca/papers/On_the_Analysis_of_the_

Zeus_Botnet_Crimeware.pdf
• http://en.wikipedia.org/wiki/Processor_register
• http://www.cs.fsu.edu

http://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot
http://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Zeus_(Trojan_horse)
https://github.com/Visgean/Zeus
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
http://en.wikipedia.org/wiki/Processor_register
http://www.cs.fsu.edu/

10 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

Android Reverse
Engineering:
an introductory guide to malware analysis
The Android malware has followed an exponential growth rate
in recent years, in parallel with the degree of penetration of this
system in different markets. Currently, over 90% of the threats to
mobile devices have Android as a main target. This scenario has led
to the demand for professionals with a very specific knowledge on
this platform.

The software reverse engineering, accord-
ing to Chikofsky and Cross [1], refers to the
process of analyzing a system to identify its

components and their interrelationships, and cre-
ate representations of the system in another form
or a higher level of abstraction. Thus, the purpose
of reverse engineering is not to make changes or
to replicate the system under analysis, but to un-
derstand how it was built.

The best way to tackle a problem of reverse engi-
neering is to consider how we would have built the
system in question. Obviously, the success of the
mission depends largely on the level of experience
we have in building similar systems to the analyzed
system. Moreover, knowledge of the right tools we
will help in this process.

In this article we describe tools and techniques
that will allow us, through a reverse engineering
process, identify malware in Android applications.

To execute the process of reverse engineering
over an application, we can use two types of tech-
niques: static analysis and / or dynamic analysis.
Both techniques are complementary, and the use
of both provides a more complete and efficient vi-
sion on the application being discussed. In this ar-
ticle we focus only on static analysis phase, ie, we
will focus on the analysis of the application by ana-
lyzing its source code, and without actually running
the application.

Static analysis of Android application starts from
the moment you have your APK file (Application
PacKage). APK is the extension used to distribute
and install applications for the Android platform.
The APK format is similar to the JAR (Java AR-

chive) format and contains the packaged files re-
quired by the application.

If we unzip an APK file (for example, an APK
corresponding to the application “Iron Man 3
Live Wallpaper” available at Play Store: https://
play.google.com/store/apps/details?id=cellfish.
ironman3wp&hl=en):

$ unzip cellfish.ironman3wp.apk

typically we will find the following resources: Figure 1.
An interesting resource is the “AndroidManifest.

xml” file. In this XML file, all specifications of our ap-
plication are declared, including Activities, Intents,
Hardware, Services, Permissions required by the
application [2], etc. Note that this is a binary XML

Figure 1. Typical Structure of an APK File

https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en
https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en
https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en

www.hakin9.org/en 11

file, so if you want to read easily its contents you
should convert it to a human-readable XML format.

The “AXMLPrinter2.jar” tool performs this task:

$ java –jar AXMLPrinter2.jar AndroidManifest.xml >
AndroidManifest.xml.txt

$ less AndroidManifest.xml.txt

Another important resource that we find in any
APK is the “classes.dex” file. This is a formatted
DEX (Dalvik EXecutable) file containing the byte-
codes that understands the DVM (Dalvik Virtual
Machine). Dalvik is the virtual machine that runs
applications and code written in Java, created
specifically for the Android platform.

Since we want to analyze the source code of the
application, we need to convert the DEX format to
Java source code. To do this we will pass through
an intermediate state. We will convert the DEX
format to the compiled Java code (.class). Many
tools exist for this purpose. One of the most used
is “dex2jar”.

This tool takes as input the APK file and gener-
ates a JAR file as output:

$ /vad/tools/dex2jar/d2j-dex2jar.sh cellfish.
ironman3wp.apk

dex2jar cellfish.ironman3wp.apk -> cellfish.
ironman3wp-dex2jar.jar

Now we only need to decompile the Java classes
to get the source code. To do this, we can use the
“JD-GUI” tool (Figure 3):

$ /vad/tools/jd-gui/jdgui cellfish.ironman3wp-
dex2jar.jar

One of the first observations we draw from de-
compile the Java code in our example, is the fact
that it has been used some code obfuscation tool
that complicates the process of analyzing the ap-
plication. The most common tools are “ProGuard”
[3] and “DexGuard” [4].

Although these tools are commonly used to pro-
vide an additional layer of security and hinder the
reverse engineering process, these applications
can also be used in order to optimize the code and
get a APK of a smaller size (eg, optimizing the by-
tecode eliminating unused instructions, renaming
the class name, fields, and methods using short
meaningless names, etc..).

In our example, we can deduce that the develop-
ers have used “ProGuard” (open source tool) be-
cause we can observe that some of the features
offered by “DexGuard” are not been implemented
in the analyzed code:

• The strings are not encrypted
• The code associated with logging functionality

are not removed
• Does not exist encrypted files in the /assets re-

source
• There are no classes that have been entirety

encrypted

Once we have access to source code, we can try
to better understand how the application is built.
“JD-GUI” allows us to save the entire application
source code in a ZIP file, so you can perform new
operations on this code using other tools. For ex-
ample, to search for key terms on the entire code
using the “grep” utility from the command line.

Figure 2. Contents of an AndroidManifest.xml File

Figure 3. Viewing the Source Code Decompiled with JD-GUI

12 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

Although “JD-GUI” allows us to browse the entire
hierarchy of objects in a comfortable manner, we
generally find applications where there is a large
number of Java classes to analyze, so we need to
rely on other tools to facilitate the understanding of
the code .

Following the aim that defined Chikofsky and
Cross in reverse engineering, which is none other
than that of understanding how the application is
built, there is a tool that will help us greatly in this
regard: “Understand”.

According to the website itself, “Understand” is a
static analysis tool for maintaining, measuring and
analyzing critical or large code bases. Although is
not purely a security tool (do not expect to use it as
a vulnerability scanner), it helps us to understand
the application code, which is our goal (Figure 4).

There are several online tools that have a similar
purpose. For example, “Dexter” gives us detailed
information about the application we want to ana-
lyze. As with any online service, our analysis is ex-
posed to third party who can get to make use of
our work, so we should always keep this in mind.

With the “Dexter” tool, is a simple as registering,
create a project and upload the APK that we want
to analyze. After the analysis, we can view infor-
mation such as the following:

• Package dependency graph
• List of classes
• List of strings used by the application
• Defined permissions and used permissions
• Activities, Services, Broadcast Receivers, Con-

tent Providers
• Statistical data (percentage of obfuscated

packages, use of internal versus external pack-
ages, classes per package, etc.).

Possibly, the power of this tool lies in its ease of
use (all actions are performed through the brows-
er) and navigating the class diagram and applica-
tion objects (Figure 5).

Malware Identification in the Play Store
It’s not a secret that Google’s official store (the Play
Store, which we have received an update in late
April this year), hosts malware. Now, how do we
identify those malicious applications? How do we
know what they are really doing? Let us then how
to answer these questions.

The techniques for introducing malware on a
mobile application can be summarized in the fol-
lowing:

• Exploit any vulnerability in the web server host-
ing the official store (typically, for example, tak-
ing advantage of a XSS vulnerability)

• Enter malware in an application available at
the official store (most users trust it and can
be downloaded by a large number of potential
users)

• Install not malicious applications that at some
point installs malware (eg, include additional
levels with malware into a widespread game)

• Use alternatives to official stores to post appli-
cations containing malware (usually, offering
free applications that are not free in the official
store)

When we talk about to introduce malware into an
application, we can refer to two different scenarios:

• The published application contains code that
exploits a vulnerability in the device, or

• The published application does not exploit any
vulnerability, but contains code that can per-
form malicious actions and, therefore, the us-
er is warned of the permissions required by the
application as a step prior to installation.

In this article we focus on the second case: appli-
cation with malicious code that exploits the user’s
trust.

Figure 4. Understand Showing the UML Class Diagram of the
Application

Figure 5. Initial View of an Application Analysis with Dexter

www.hakin9.org/en 13

How to Identify Malicious Applications on
the Play Store?
A malicious application includes code that per-
forms some action not expected by the user. For
example, if a user downloads from the official
store an application to change the wallpaper of
his device, the user do not expect that this app
can read his emails, can make phone calls or
send SMS messages to premium accounts, for
example.

A tool that allows us to quickly assess the exis-
tence of malicious code is “VirusTotal” [5]. For ex-
ample, if we use the service offered by “VirusTotal”
to analyze the APK of the “Wallpaper & Background
Browser” application of the “Start-App” company,
and available in the Play Store (https://play.google.
com/store/apps/details?id=com.startapp.wallpa-
per.browser), we note that 12 of the 46 supported
antivirus by this service, detect malicious code in
the application. Exactly, the following:

• AhnLab-V3. Result: Android-PUP/Plankton
• AVG. Result: Android/Plankton
• Commtouch. Result: AndroidOS/Plankton.A.gen!

Eldorado
• Comodo. Result: UnclassifiedMalware
• DrWeb. Result: Adware.Startapp.5.origin
• ESET-NOD32. Result: a variant of Android/

Plankton.I
• F-Prot. Result: AndroidOS/Plankton.D
• F-Secure. Result: Application:Android/Counter-

clank
• Fortinet. Result: Android/Plankton.A!tr
• Sophos. Result: Andr/NewyearL-B
• TrendMicro-HouseCall. Result: TROJ_GEN.

F47V0830
• VIPRE. Result: Trojan.AndroidOS.Generic.A

(Figure 6)

Here’s another example. If we search at the Play
Store the “Cool Live Wallpaper” application (https://
play.google.com/store/apps/details?id=com.own-
skin.diy_01zti0rso7rb), developed by “Brankhox”,
we find the following information:

Package

com.ownskin.diy_01zti0rso7rb

Permissions

android.permission.INTERNET
android.permission.READ_PHONE_STATE
android.permission.ACCESS_NETWORK_STATE
android.permission.WRITE_EXTERNAL_STORAGE

android.permission.READ_SMS
android.permission.READ_CONTACTS
com.google.android.gm.permission.READ_GMAIL
android.permission.GET_ACCOUNTS
android.permission.ACCESS_WIFI_STATE

Potential malicious activities

• The application has the ability to read text
messages (SMS or MMS)

• The application has the ability to read mail
from Gmail

• The application has the ability to access user
contacts

The questions we must ask is why and for what
purpose the application need these permissions,
like reading my email or access my contacts? It’s
really so intrusive as it sounds?

We will use some of the tools described above,
to reverse engineer this application and see if it is
using some of the more sensitive permissions that
it requests.

Step 1: Get the APK file of the application
There are multiple ways to obtain an APK:

• Downloading an unofficial APK
• Google: we can use the Google search en-

gine to locate the APK.
• Unofficial repositories: we can find the APK

in several alternative markets [6] or other re-
positories like 4shared.com, apkboys.com,
apkmania.co, aplicacionesapk.com, aptoide.
com, flipkart.asia, etc.

• Downloading an official APK
• Real APK Leecher [7]: This tool allows us to

download the official APK for some applica-
tions.

• SaveAPK [8]: This tool (required to have
previously installed the „OI File Manager”

Figure 6. Result of a VirusTotal Analysis on an APK

https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb

14 03/2013

M
A
LW

A
R

E
R

EV
ER

SE
 E

N
G

iN
EE

R
iN

G

application) available on the Play Store, lets
us generate the APK if we have previously
installed application on the device.

• Astro File Manager [9]: This tool is available
in the Play Store, and we can get the APK if
we have previously installed the application
on the device. When performing a backup
of the application, the APK is stored in the
directory that is defined for backup.

Given the risk involved in dealing with malware,
if we choose the option to download the APK
existing in the Play Store from a previous instal-
lation of the application, we should use prefer-
ably an emulator [10] or a device of our test lab
(Figure 7).

Step 2: Convert the application from the
Dalvik Executable format (.dex) to java
classes (.class)
The idea is to have the application code into a
human-readable format. In this case, we use the
“dex2jar” tool to convert the format Android to the
Java format:

$ /vad/tools/d2j-dex2jar.sh com.ownskin.
diy_01zti0rso7rb.apk

dex2jar com.ownskin.diy_01zti0rso7rb.apk ->
 com.ownskin.diy_01zti0rso7rb-dex2jar.jar

Step 3: Decompile the java code
Using a Java decompiler (like “JD-GUI”), we can
obtain the Java source code from the .class files.

In our case, we will choose a fast track. “JD-GUI”
allows us to save the entire application source
code in a ZIP file. We’ll keep this file as “com.own-
skin.diy_01zti0rso7rb-dex2jar.src.zip”, and unzip it
to perform a manual scan.

We note that there are 353 Java source files:

$ find /vad/lab/Android/com.ownskin.diy_01zti0r
so7rb-dex2jar.src/ -type f | wc -l

353

Step 4: Find malicious code in the application
We can now search in any resource of the appli-
cation to identify strings that may be susceptible
of being used for malicious purposes. For exam-
ple, we have previously identified that this appli-
cation sought permission to read SMS messages. Figure 7. Downloading an APK with APK Real Leecher

listing 1. Finding Malicious Code in the Application

$ cd /vad/lab/Android/com.ownskin.diy_01zti0rso7rb-dex2jar.src/
$ grep -i sms -r *
com/ownskin/diy_01zti0rso7rb/ht.java:import android.telephony.SmsMessage;
com/ownskin/diy_01zti0rso7rb/ht.java: SmsMessage[] arrayOfSmsMessage = new

SmsMessage[arrayOfObject.length];
com/ownskin/diy_01zti0rso7rb/ht.java: arrayOfSmsMessage[0] = SmsMessage.createFromPdu((byte[])

arrayOfObject[0]);
com/ownskin/diy_01zti0rso7rb/ht.java: hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAd-

dress());
com/ownskin/diy_01zti0rso7rb/ht.java: hs.c(this.a, arrayOfSmsMessage[0].getMessageBody());
com/ownskin/diy_01zti0rso7rb/hm.java: if (!”SMS_MMS”.equalsIgnoreCase(this.U))
com/ownskin/diy_01zti0rso7rb/hm.java: a(Uri.parse(“content://sms”));
com/ownskin/diy_01zti0rso7rb/hs.java: Uri localUri = Uri.parse(“content://sms”);
com/ownskin/diy_01zti0rso7rb/hs.java: this.P.l().registerReceiver(this.ac, new

IntentFilter(“android.provider.Telephony.SMS_RECEIVED”));

www.hakin9.org/en 15

Let’s see if the application actually use this per-
mission (Listing 1).

Using the “grep” command, we identified that the
following resources (Java classes) seem to contain
some code that allows read access to the user’s
SMS:

• com/ownskin/diy_01zti0rso7rb/hm.java
• com/ownskin/diy_01zti0rso7rb/hs.java
• com/ownskin/diy_01zti0rso7rb/ht.java

Let’s see the source code detail of these resourc-
es in JD-GUI:

• com/ownskin/diy_01zti0rso7rb/hm.java

…
if (!”SMS_MMS”.equalsIgnoreCase(this.U))
 break label89;
 a(Uri.parse(“content://sms”));
 a(Uri.parse(“content://mms”));
…

• com/ownskin/diy_01zti0rso7rb/hs.java
It creates a „localUri” object of the “Uri” class,
calling the “parse” method to be used in the
query to the Content Provider that allows to ac-
cess to the SMS inbox:

…
public static final Uri a = localUri;
public static final Uri b = Uri.

withAppendedPath(localUri, “inbox”);
…

static
 {
 Uri localUri = Uri.parse(“content://sms”);
 }

and registers a Receiver to be notified of the
received SMS:

…this.P.l().registerReceiver(this.ac,new
IntentFilter(“android.provider.
Telephony.SMS_RECEIVED”));

…• com/ownskin/diy_01zti0rso7rb/ht.java
This class implements a Broadcast Receiver.
This is simply an Android component that al-
lows the registered Receiver to be notified of
events produced in the system or in the appli-
cation itself.

In this case, the implemented Receiver is capa-
ble of receiving input SMS messages. And this
notification occurs before that the internal SMS
management application receive the SMS mes-
sages. This scenario is used by some malware,
for example, to perform some action and then
delete the received message before it is pro-
cessed by the messaging application and be de-
tected by the user.

In this example, when the user receives an SMS,
the application identify its source and read the mes-
sage, as shown in the following code: Listing 2.

As we can see (at this point, we can complete
the process of analysis of the application by a dy-
namic analysis of it), in fact, the application ac-
cesses our SMS messages. However, it’s im-

listing 2. When the User Receives an SMS, the Application Identify its Source and Read the Message

…
public final void onReceive(Context paramContext, Intent paramIntent)
 {
 Object[] arrayOfObject = (Object[])paramIntent.getExtras().get(“pdus”);
 SmsMessage[] arrayOfSmsMessage = new SmsMessage[arrayOfObject.length];
 if (arrayOfObject.length > 0)
 {
 arrayOfSmsMessage[0] = SmsMessage.createFromPdu((byte[])arrayOfObject[0]);
 hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAddress());
 hs.b(this.a, go.a(this.a.P.l(), hs.a(this.a)));
 if ((hs.b(this.a) == null) || (hs.b(this.a).length() == 0))
 hs.b(this.a, hs.a(this.a));
 hs.c(this.a, arrayOfSmsMessage[0].getMessageBody());
 hs.c(this.a);
 }
 }
…

16 03/2013

M
A

LW
A

R
E

R
EV

ER
SE

 E
N

G
iN

EE
R

iN
G

portant to recall that we have accepted that the
application can perform these actions, because
we have accepted the permissions required and
the application has informed to us of this situation
prior to installation.

Similarly, we can verify as any application makes
use of the various permits requested, with particu-
lar attention to those that may affect our privacy or
which may result in a cost to us.

Some people sees no malware in this type of ap-
plications that take advantage of user trust, and
has been the subject of controversy on more than
one occasion. In any case, Google has decided to
remove applications from the Play Store that can
make an abuse of permits that these require to be
confirmed by users who wish to use them. That
does not mean, on the other hand, that there still
exist such applications in Google’s official store
(Table 1).

VICENTE AGuIlERA DIAZ
With over 10 years of professional ex-
perience in the security sector, Vicente
Aguilera Diaz is co-founder of Internet
Security Auditors (a Spanish firm spe-
cializing in security services), OWASP
Spain Chapter Leader, member of the
Technical Advisory Board of the Red-

Seguridad magazine, and member of the Jury of the IT
Security Awards organized by the RedSeguridad maga-
zine.
Vicente has collaborate in several open-source projects,
is a regular speaker at industry conferences and has
published several articles and vulnerabilities in special-
ized media. Vicente has the following certifications: CI-
SA, CISSP, CSSLP, PCI ASV, ITIL Foundation, CEH|I, ECSP|I,
OPSA and OPST.

Table 1. Static Analysis Tools for Android Applications

TOOL DESCRIPTION URL
Dexter Static android application analysis tool https://dexter.bluebox.com/

Androguard Analysis tool (.dex, .apk, .xml, .arsc) https://code.google.com/p/androguard/

smali/baksmali Assembler/disassembler (dex format) https://code.google.com/p/smali/

apktool Decode/rebuild resources https://code.google.com/p/android-apktool/

JD-GUI Java decompiler http://java.decompiler.free.fr/?q=jdgui

Dedexer Disassembler tool for DEX files http://dedexer.sourceforge.net/

AXMLPrinter2.jar Prints XML document from binary XML http://code.google.com/p/android4me/

dex2jar Analysis tool (.dex and .class files) https://code.google.com/p/dex2jar/

apkinspector Analysis functions https://code.google.com/p/apkinspector/

Understand Source code analysis and metrics http://www.scitools.com/

Agnitio Security code review http://sourceforge.net/projects/agnitiotool/

References
[1] “Reverse Engineering and Design Recovery: A Taxonomy”. Elliot J. Chikofsky, James H. Cross. http://win.ua.ac.be/~lore/Rese-

arch/Chikofsky1990-Taxonomy.pdf
[2] “Security features provided by Android” http://developer.android.com/guide/topics/security/permissions.html
[3] ProGuard Tool http://developer.android.com/tools/help/proguard.html
[4] DexGuard Tool http://www.saikoa.com/dexguard
[5] VirusTotal http://www.virustotal.com
[7] Alternative markets to the Play Store http://alternativeto.net/software/android-market/
[8] Real APK Leecher https://code.google.com/p/real-apk-leecher/
[9] SaveAPK https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en
[10] Astro File Manager https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
[11] “Using the Android Emulator” http://developer.android.com/tools/devices/emulator.html

http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/tools/help/proguard.html
http://www.saikoa.com/dexguard
http://www.virustotal.com
http://alternativeto.net/software/android-market/
https://code.google.com/p/real-apk-leecher/
https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en
https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
http://developer.android.com/tools/devices/emulator.html

Exchange Glances - Look At Each Other's
Websites

InterGlance is the only social network where two people that share similar interests can connect and

exchange looks at each other's favorite websites. All you need to do is invite the other person to

"exchange glances" with a simple click of a button!

Connection is based ONLY on the shared interests - there are no friendship requests, no personal

information or private details required!

What’s even better - there are thousands upon thousands of interests out there in the world, all

being explored online by people just like you.

InterGlance has an amazing selection of websites shared by the members, all unique and unusual in

their own way, all waiting to be discovered. Learn more about your personal interests

by searching or let us recommend users that share your interests and passions!

Please LOG IN here OR if you have not yet registered, take a moment to REGISTER HERE and
begin enjoying the experience of Interglance. Joining Interglance is COMPLETELY FREE! All you
need is an email address - and you are in! So don't wait any longer - join Interglance today!

http://www.interglance.com/

18 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF Write your own
Debugger
Do you want to write your own debugger? ... Do you have a new
technology and see the already known products like OllyDbg or IDA
Pro don’t have this technology? … Do you write plugins in OllyDbg
and IDA Pro but you need to convert it into a separate application?
… This article is for you.

In this article, I’m going to teach you how to write
a full functional debugger using the Security Re-
search and Development Framework (SRDF) …

how to disassemble instructions, gather Process In-
formation and work with PE Files … and how to set
breakpoints and work with your debugger.

Why Debugging?
Debugging is usually used to detect application bugs
and traces its execution … and also, it’s used in re-
verse engineering and analyzing application when
you don’t have the source code of this application.

Reverse engineering is used mainly for detecting
vulnerabilities, analyzing malware or cracking appli-
cations. We will not discuss in this article how to use
the debugger for these goals … but we will describe
how to write your debugger using SRDF… and how
you can implement your ideas based on it.

Security Research and Development
Framework
This is a free open source Development Frame-
work created to support writing security tools and
malware analysis tools. And to convert the secu-
rity researches and ideas from the theoretical ap-
proach to the practical implementation.

This development framework created mainly to
support the malware field to create malware anal-
ysis tools and anti-virus tools easily without rein-
venting the wheel and inspire the innovative minds
to write their researches on this field and imple-
ment them using SRDF.

In User-Mode part, SRDF gives you many helpful
tools … and they are:

• Assembler and Disassembler
• x86 Emulator
• Debugger
• PE Analyzer
• Process Analyzer (Loaded DLLs, Memory

Maps … etc)
• MD5, SSDeep and Wildlist Scanner (YARA)
• API Hooker and Process Injection
• Backend Database, XML Serializer
• And many more

In the Kernel-Mode part, it tries to make it easy to
write your own filter device driver (not with WDF
and callbacks) and gives an easy, object oriented
(as much as we can) development framework with
these features:

• Object-oriented and easy to use development
framework

• Easy IRP dispatching mechanism
• SSDT Hooker
• Layered Devices Filtering
• TDI Firewall
• File and Registry Manager
• Kernel Mode easy to use internet sockets
• Filesystem Filter

Still the Kernel-Mode in progress and many fea-
tures will be added in the near future.

Gather Information
About Process
If you decided to debug a running application or
you start an application for debugging. You need

www.hakin9.org/en 19

to gather information about this process that you
want to debug like:

• Allocated Memory Regions inside the process
• The Application place in its memory and the

size of the application in memory
• Loaded DLLs inside the application’s memory
• Read a specific place in memory
• Also, if you need to attach to a process already

running … you will also need to know the Pro-
cess Filename and the commandline of this
application

Begin the Process Analysis
To gather the information about a process in the
memory, you should create an object of cProcess
class given the ProcessId of the process that you
need to analyze.

cProcess myProc(792);

If you only have the process name and don’t have
the process id, you can get the process Id from
the ProcessScanner in SRDF like this:
cProcessScanner ProcScan;
And then get the hash of process names and Ids

from ProcessList field inside the cProcessSan-
ner Class … and this item is an object of cHash
class.

cHash class is a class created to represent a
hash from key and value … the relation between
them are one-to-many … so each key could have
many values.

In our case, the key is the process name and the
value is the process id. You could see more than
one process with the same name running on your
system. To get the first ProcessId for a process
“Explorer.exe” for example … you will do this:

ProcScan.ProcessList[“explorer.exe”]

This will return a cString value includes the Pro-
cessId of the process. To convert it into integer,
you will use atoi() function … like this:

atoi(ProcScan.ProcessList[«explorer.exe»])

Getting Allocated Memory
To get the allocated memory regions, there’s a list
of memory regions named MemoryMap the type of
this Item is cList.

cList is a class created to represent a list of buf-
fers with fixed size or array of a specific struct. It
has a function named GetNumberOfItems and this
function gets the number of items inside the list. In

the following code, we will see how to get the list of
Memory Regions using cList Functions (Listing 1).

The struct MEMORY _ MAP describes a memory re-
gion inside a process … and it’s:

struct MEMORY_MAP
{
 DWORD Address;
 DWORD Size;
 DWORD Protection;
};

In the previous code, we loops on the items of
MemoryMap List and we get every memory re-
gion’s address and size.

Getting the Application Information
To get the application place in memory … you will
simply get the Imagebase and SizeOfImage fields
inside cProcess class like this:

As you see, we get the most important informa-
tion about the process and its place in memory
(Imagebase) and the size of it in memory (SizeO-
fImage).

listing 1. How to Get the List of Memory Regions Using
cList Functions

for(int i=0; i<(int)(myProc->MemoryMap.GetNum-
berOfItems()) ;i++)

{
cout<<”Memory Address “<< ((MEMORY_MAP*)

myProc->MemoryMap.
GetItem(i))->Address;

cout << “ Size: “<<hex<<((MEMORY_MAP*)myProc-
>MemoryMap.GetItem(i))->Size
<<endl;

}

listing 2. cProcess Class

cout<<”Process: “<< myProc->processName<<endl;
cout<<”Process Parent ID: “<< myProc->ParentID

<<endl;
cout<< “Process Command Line: “<< myProc-

>CommandLine << endl;

cout<<”Process PEB:\t”<< myProc->ppeb<<endl;
cout<<”Process ImageBase:\t”<<hex<< myProc-

>ImageBase<<endl;
cout<<”Process SizeOfImageBase:\t”<<dec<<

myProc ->SizeOfImage<<”
bytes”<<endl;

20 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF loaded Dlls and Modules
The loaded Modules is a cList inside cProcess
class with name modulesList and it represents
an array of struct MODULE _ INFO and it’s like this:
Listing 3.

To get the loaded DLLs inside the process, this
code represents how to get the loaded DLLs:
Listing 4.

Read, Write and Execute on the Process
To read a place on the memory of this process,
the cProcess class gives you a function named
Read(…) which allocates a space into your memo-
ry and then reads the specific place in the memory
of this process and copies it into your memory (the
new allocated place in your memory).

DWORD Read(DWORD startAddress,DWORD size)

For writing to the process, you have another func-
tion name Write and it’s like this:

DWORD Write (DWORD startAddressToWrite ,DWORD
buffer ,DWORD sizeToWrite)

This function takes the place that you would to
write in, the buffer in your process that contains the
data you want to write and the size of the buffer.

If the startAddressToWrite is null … Write()
function will allocate a place in memory to write on
and return the pointer to this place.

To only allocate a space inside the process …
you can use Allocate() function to allocate memo-
ry inside the process and it’s like that:

Allocate(DWORD preferedAddress,DWORD size)

You have also the option to execute a code inside
this process by creating a new thread inside the
process or inject a DLL inside the process using
these functions

DWORD DllInject(cString DLLFilename)
DWORD CreateThread (DWORD addressToFunction ,

DWORD addressToParameter)

And these functions return the ThreadId for the
newly created thread.

Debugging an Application
To write a successful debugger, you need to in-
clude these features in your debugger:

1. Could Attach to a running process or open an
EXE file and debug it

2. Could gather the register values and modify
them

3. Could Set Int3 Breakpoints on specific ad-
dresses

4. Could Set Hardware Breakpoints (on Read,
Write or Execute)

5. Could Set Memory Breakpoints (on Read,
Write or Execute on a specific pages in mem-
ory)

6. Could pause the application while running
7. Could handle events like exceptions, loading

or unloading dlls or creating or terminating a
thread.

In this part, we will describe how to do all of these
things easily using SRDF’s Debugger Library.

Open Exe File and Debug … or Attach to a
process
To Open an EXE File and Debug it:

cDebugger* Debugger = new cDebugger(“C:\\upx01.exe”);

Or with command line:

cDebugger* Debugger = new cDebugger(“C:\\upx01.
exe”,”xxxx”);

if the file opened successfully, you will see Is-
Found variable inside cDebugger class set to
TRUE. If any problems happened (file not found

listing 3. “MODULE_INFO”

struct MODULE_INFO
{
 DWORD moduleImageBase;
 DWORD moduleSizeOfImage;
 cString* moduleName;
 cString* modulePath;
};

listing 4. How to Get the Loaded DLLs

for (int i=0 ; i<(int)(myProc->modulesList.
GetNumberOfItems()) ;i++)

{
cout<<”Module “<< ((MODULE_INFO*)myProc-

>modulesList.GetItem(i))-
>moduleName->GetChar();

cout <<” ImageBase: „<<hex<<((MODULE_INFO*)
myProc->modulesList.GetItem(i))-
>moduleImageBase<<endl;

}

www.hakin9.org/en 21

or anything) you will see it equal FALSE. Always
check this field before going further.

If you want to debug a running process … you
will create a cProcess class with the ProcessId you
want and then attach the debugger to it:

cDebugger* Debugger = new cDebugger(myProc);

to begin running the application … you will use
function Run() like this:

Debugger->Run();

Or you can only run one instruction using function
Step() like this:

Debugger->Step();

This function returns one of these outputs (until
now, could be expanded):

1. DBG_STATUS_STEP
2. DBG_STATUS_HARDWARE_BP
3. DBG_STATUS_MEM_BREAKPOINT
4. DBG_STATUS_BREAKPOINT
5. DBG_STATUS_EXITPROCESS
6. DBG_STATUS_ERROR
7. DBG_STATUS_INTERNAL_ERROR

If it returns DBG _ STATUS _ ERROR, you can check
the ExceptionCode Field and the debug _ event
Field to ge more information.

Getting and Modifying the Registers:
To get the registers from the debugger … you have
all the registers inside the cDebugger class like:

• Reg[0 → 7]
• Eip
• EFlags
• DebugStatus → DR7 for Hardware Breakpoints

To update them, you can modify these variables
and then use function UpdateRegisters() after the
modifications to take effect.

Setting Int3 Breakpoint
The main Debuggers’ breakpoint is the instruc-
tion “int3” which converted into byte 0xCC in bina-
ry (or native) form. The debuggers write int3 byte
at the beginning of the instruction that they need
to break into it. After that, when the execution
reaches this instruction, the application stops and
return to the debugger with exception: STATUS _
BREAKPOINT.

To set an Int3 breakpoint, the debugger has a
function named SetBreakpoint(…) like this:

Debugger->SetBreakpoint(0x004064AF);

You can set a UserData For the breakpoint
like this:

DBG_BREAKPOINT* Breakpoint = GetBreakpoint(DWORD
Address);

And the breakpoint struct is like this:

struct DBG_BREAKPOINT
{
 DWORD Address;
 DWORD UserData;
 BYTE OriginalByte;
 BOOL IsActive;
 WORD wReserved;
};

So, you can set a UserData for yourself … like
pointer to another struct or something and set it
for every breakpoint.

When the debugger’s Run() function returns
“DBG_STATUS_BREAKPOINT” you can get the
breakpoint struct DBG _ BREAKPOINT by the Eip and
get the UserData from inside … and manipulate
your information about this breakpoint.

Also, you can get the last breakpoint by us-
ing a Variable in cDebugger Class named
LastBreakpoint like this:

cout << “LastBp: “ << Debugger->LastBreakpoint <<
“\n”;

To Deactivate the breakpoint, you can use func-
tion RemoveBreakpoint(…) like this:

Debugger->RemoveBreakpoint(0x004064AF);

Setting Hardware Breakpoints
Hardware breakpoints are breakpoints based on
debug registers in the CPU. These breakpoints
could stop on accessing or writing to a place in
memory or it could stop on execution on an ad-
dress. And you have only 4 available breakpoints
only. You must remove one if you need to add
more.

These breakpoints don’t modify the binary of the
application to set a breakpoint as they don’t add
int3 byte to the address to stop on it. So they could
be used to set a breakpoint on packed code to
break while unpacked.

22 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF To set a hardware breakpoint to a place in the
memory (for access, write or execute) you can set
it like this:

Debugger->SetHardwareBreakpoint(0x00401000,DBG_BP_
TYPE_WRITE,DBG_BP_SIZE_2);

Debugger->SetHardwareBreakpoint(0x00401000,DBG_BP_
TYPE_CODE,DBG_BP_SIZE_4);

Debugger->SetHardwareBreakpoint(0x00401000,
DBG_BP_TYPE_READWRITE,DBG_BP_SIZE_1);

For code only, use DBG _ BP _ SIZE _ 1 for it. But
the others, you can use size equal to 1 byte, 2
bytes or 4 bytes.

This function returns false if you don’t have a
spare place for you breakpoint. So, you will have to
remove a breakpoint for that.

To remove this breakpoint, you will use the func-
tion RemoveHardwareBreakpoint(…) like this:

Debugger->RemoveHardwareBreakpoint(0x004064AF);

Setting Memory Breakpoints
Memory breakpoints are breakpoints rarely to see.
They are not exactly in OllyDbg or IDA Pro but they
are good breakpoints. It’s similar to OllyBone.

These breakpoints are based on memory pro-
tections. They set read/write place in memory to
read only if you set a breakpoint on write. Or set
a place in memory to no access if you set a read/
write breakpoint and so on.

This type of breakpoints has no limits but it set
a breakpoint on a memory page with size 0x1000
bytes. So, it’s not always accurate. And you have
only the breakpoint on Access and the Breakpoint
on write.

To set a breakpoint you will do like this:

Debugger->SetMemoryBreakpoint(0x00401000,0x2000,
DBG_BP_TYPE_WRITE);

When the Run() function returns DBG _ STATUS _
MEM _ BREAKPOINT so a Memory Breakpoint is
triggered. You can get the accessed memory
place (exactly) using cDebugger class variable:
LastMemoryBreakpoint.

You can also set a UserData like Int3 breakpoints
by using GetMemoryBreakpoint(…) with any pointer
inside the memory that you set the breakpoint on it
(from Address to (Address + Size)). And it returns
a pointer to struct “” which describe the memory
breakpoint and you can add your user data in it
(Listing 5).

You can see the real memory protection inside
and you can set your user data inside the break-
point.

To remove a breakpoint, you can use
RemoveMemoryBreakpoint(Address) to remove the
breakpoint.

Pausing the Application
To pause the application while running, you need
to create another thread before executing Run()
function. This thread will call to Pause() function
to pause the application. This function will call to
SuspendThread to suspend the debugged thread in-
side the debuggee process (The process that you
are debugging).

To resume again, you should call to Resume() and
then call to Run() again.

You can also terminate the debuggee process by
calling Terminate() function. Or, if you need to exit
the debugger and makes the debuggee process
continues, you can use Exit() function to detach
the debugger.

Handle Events
To handle the debugger events (Loading new DLL,
Unload new DLL, Creation of a new Thread and so
on), you have 5 functions to get notified with these
events and they are:

1. DLLLoadedNotifyRoutine
2. DLLUnloadedNotifyRoutine
3. ThreadCreatedNotifyRoutine
4. ThreadExitNotifyRoutine
5. ProcessExitNotifyRoutine

You will need to inherit from cDebugger Class and
override these functions to get notified on them.

To get information about the Event, you can in-
formation from debug _ event variable (see
Figure 1).

listing 5. GetMemoryBreakpoint

struct DBG_MEMORY_BREAKPOINT
{
 DWORD Address;
 DWORD UserData;
 DWORD OldProtection;
 DWORD NewProtection;
 DWORD Size;
 BOOL IsActive;
 CHAR cReserved; //they are writ-

ten for padding
 WORD wReserved;
};

www.hakin9.org/en 23

DOS MZ header

DOS stub

PE header

Section table

Section 1

Section 2

Section ...

Section n

Figure 1. PE File Format

We will go through the PE Headers (EXE Head-
ers) and how you could get information from it and
from cPEFile class in SRDF (the PE Parser).

The EXE File begins with “MZ” characters and
the DOS Header (named MZ Header). This DOS
Header is for a DOS Application at the beginning
of the EXE File.

This DOS Application is created to say “it’s not a
win32 application” if it runs on DOS.

The MZ Header contains an offset (from the
beginning of the File) to the beginning of the PE
Header. The PE Header is the Real header of the
Win32 Application.

PE Header

Signature: PE,0,0

File Header

Optional Header

Data Directory

Figure 2. PE Header

It begins with Signature “PE” and 2 null bytes
and then 2 Headers: File Header and Optional
Header.

To get the PE Header in the Debugger, the cPE-
File class includes the pointer to it (in a Memory
Mapped File of the Process Application File) like
this:

cPEFile* PEFile = new cPEFile(argv[1]);
image_header* PEHeader = PEFile->PEHeader;

The File Header contains the number of section
(will be described) and contains the CPU archi-
tecture and model number that this application
should run into … like Intel x86 32-Bits and so on.

Also, it includes the size of Optional Header (the

Next Header) and includes The Characteristics of
the Application (EXE File or DLL).

The Optional Header contains the Important In-
formation about the PE as you see in the Table 1.

Table 1. The Optional Header Contains the Important
Information about the PE

Field Meanings
AddressOfEntryPoint The Beginning of the Execution

ImageBase The Start of the PE File in Memory
(default)

SectionAlignment Section Alignment in Memory
while mapping

FileAlignment Section Alignment in Harddisk (~
one sector)

MajorSubsystemVersion
MinorSubsystemVersion

The win32 subsystem version

SizeOfImage The Size of the PE File in Memory

SizeOfHeaders Sum of All Header sizes

Subsystem GUI, Console, driver or others

DataDirectory Array of pointers to important
Headers

To get this Information from the cPEFile class in
SRDF … you have the following variables inside
the class: Listing 6.

DataDirectory are an Array of pointers to other
Headers (optional Headers … could be found or
could the pointer be null) and the size of the Header.

It Includes:

• Import Table: importing APIs from DLLs
• Export Table: exporting APIs to another Apps
• Resource Table: for icons, images and others
• Relocables Table: for relocating the PE File

(loading it in a different place … different from
Imagebase)

We include the parser of Import Table … as it in-
cludes an Array of All Imported DLLs and APIs

listing 6. Following Variables Inside the Class

bool FileLoaded;
image_header* PEHeader;
DWORD Magic;
DWORD Subsystem;
DWORD Imagebase;
DWORD SizeOfImage;
DWORD Entrypoint;
DWORD FileAlignment;
DWORD SectionAlignment;
WORD DataDirectories;
short nSections;

24 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF like this: Listing 7. After the Headers, there are the
section headers. The application File is divided in-
to section: section for code, section for data, sec-
tion for resources (images and icons), section for
import table and so on.

Sections are expandable … so you could see
its size in the Harddisk (or the file) is smaller than
what is in the memory (while loaded as a process)
… so the next section place will be different from
the Harddisk and the memory.

The address of the section relative to the begin-
ning of the file in memory while loaded as a pro-
cess is named RVA (Relative virtual address) …
and the address of the section relative to the be-
ginning of the file in the Harddisk is named Offset
or PointerToRawData (Table 2 and Listing 8).

Table 2. The Information that the Section Header Gives

Field Meanings
Name The Section Name

VirtualAddress The RVA address of the section

VirtualSize The size of Section (in Memory)

SizeOfRawData The Size of Section (in Harddisk)

PointerToRawData The pointer to the beginning of file
(Harddisk)

Characteristics Memory Protections (Execute, Read,
Write)

The Real Address is the address to the begin-
ning of this section in the Memory Mapped File. Or
in other word, in the Opened File.

To convert RVA to Offset or Offset to RVA … you
can use these functions:

DWORD RVAToOffset(DWORD RVA);
DWORD OffsetToRVA(DWORD RawOffset);

listing 7. Array of All Imported DLLs and APIs

 cout << PEFile->ImportTable.nDLLs << “\n”;
 for (int i=0;i < PEFile->ImportTable.nDLLs;i++)
 {
 cout << PEFile->ImportTable.DLL[i].DLLName <<

“\n”;
 cout << PEFile->ImportTable.DLL[i].nAPIs <<

“\n”;
 for (int l=0;l<PEFile->ImportTable.DLL[i].

nAPIs;l++)
 {
 cout << PEFile->ImportTable.DLL[i].API[i].

APIName << “\n”;
 cout <<PEFile->ImportTable.DLL[i].API[i].

APIAddressPlace << “\n”;
 }
 }

listing 8. You Can Manipulate the Section in cPEFile
Class Like This

cout << PEFile->nSections << “\n”;
for (int i=0;i< PEFile->nSections;i++)
{
 cout << PEFile->Section[i].SectionName << “\n”;
 cout << PEFile->Section[i].VirtualAddress <<

“\n”;
 cout << PEFile->Section[i].VirtualSize << “\n”;
 cout << PEFile->Section[i].PointerToRawData <<

“\n”;
 cout << PEFile->Section[i].SizeOfRawData <<

“\n”;
 cout << PEFile->Section[i].RealAddr << “\n”;
}

Figure 3. The Disassembler

www.hakin9.org/en 25

The Disassembler
To understand how to work with assemblers and
disassemblers … you should understand the
shape of the instructions and so on.

That’s the x86 instruction Format: Figure 3.

• The Prefixes are reserved bytes used to de-
scribe something in the Instruction like for ex-
ample:
• 0xF0: Lock Prefix … and it’s used for syn-

chronization
• 0xF2/0xF3: Repne/Rep … the repeat instruc-

tion for string operations
• 0x66: Operand Override … for 16 bits oper-

ands like: mov ax,4556
• 0x67: Address Override … used for 16-bits

ModRM … could be ignored
• 0x64: Segment Override For FS … like: mov

eax, FS:[18]
• Opcodes:

• Opcode encodes information about
• operation type,
• operands,
• size of each operand, including the size

of an immediate operand
• Like Add RM/R, Reg (8 bits) → Opcode:

0x00
• Opcode Could be 1 byte,2 or 3 bytes
• Opcode could use the “Reg” in ModRM as

an opcode extenstion … and this named
“Opcode Groups”

• Modrm: Describes the Operands (Destination
and Source). And it describes if the destination
or the source is register, memory address (ex:
dword ptr [eax+ 1000]) or immediate (number).

• SIB: extension for Modrm … used for scaling in
memory address like: dword ptr [eax*4 + ecx +
50]

• Displacement: The value inside the brackets
[] … like dword ptr [eax+0x1000], so the dis-
placement is 0x1000 … and it could be one
byte, 2 bytes or 4 bytes

• Immediate: it’s value of the source or desti-
nation if any of them is a number like (move
ax,1000) … so the immediate is 1000

That’s the x86 instruction Format in brief … you
can find more details in Intel Reference Manual.

To use PokasAsm class in SRDF for assembling
and disassembling … you will create a new class
and use it like this:

The Output: Listing 10.
Also, we add an effective way to retrieve the

instruction information. We created a disassem-
ble function that returns a struct describes the in-

listing 9. Create a New Class and Use It Like This

CPokasAsm* Asm = new CPokasAsm();
DWORD InsLength;
char* buff;
buff = Asm->Assemble(“mov eax,dword ptr [ecx+

00401000h]”,InsLength);
cout << “The Length: “ << InsLength << “\n”;
cout << “Assembling mov eax,dword ptr [ecx+

00401000h]\n\n”;
for (DWORD i = 0;i < InsLength; i++)
{
 cout << (int*)buff[i] << “ “;
}
cout << “\n\n”;
cout << “Disassembling the same Instruction

Again\n\n”;
cout << Asm->Disassemble(buff,InsLength) <<

“ ... and the instruction
length : “ << InsLength <<
“\n\n”;

listing 10. The Output

The Length: 6
Assembling mov eax,dword ptr [ecx+ 00401000h]
FFFFFF8B FFFFFF81 00000000 00000010 00000040

00000000
Disassembling the same Instruction Again
mov eax ,dword ptr [ecx + 401000h] ... and the

instruction length : 6

listing 11. “DISASM_INSTRUCTION”

struct DISASM_INSTRUCTION
{
 hde32sexport hde;
 int entry;
 string* opcode;
 int ndest;
 int nsrc;
 int other;
 struct
 {
 int length;
 int items[3];
 int flags[3];
 } modrm;
 int (*emu_func)(Thread&,DISASM_INSTRUC-

TION*);
 int flags;
};

26 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF struction DISASM _ INSTRUCTION and it looks like:
Listing 11.

The Disassemble Function looks like:

DISASM_INSTRUCTION* Disassemble(char*
Buffer,DISASM_INSTRUCTION* ins);

It takes the Address of the buffer to disassem-
ble and the buffer that the function will return the
struct inside

Let’s explain this structure:

1. hde: it’s a struct created by Hacker Disassem-
bler Engine and describes the opcode … The
important Fields are:

2. len: The length of the instruction
3. opcode: the opcode byte … if the opcode is

2 bytes so see also opcode2
4. Flags: This is the flags and it has some im-

portant flags like F _ MODRM and F _ ERROR _
XXXX (XXXX means anything here)

5. Entry: unused
6. Opcode: the opcode string … with class “string”

not “cString”
7. Other: used for mul to save the imm … other

than that … it’s unused
8. Modrm: it’s a structure describes what’s inside

the RM (if there’s) like “[eax*2 + ecx + 6]” for
example … and it looks like:

9. Length: the number of items inside … like
“[eax+ 2000]” contains 2 items

10. Flags[3]: this describes each item in the
RM and its maximum is 3 … it’s flags is:

11. RM _ REG: the item is a register like “[eax
…”

12. RM _ MUL2: this register is multiplied by 2
13. RM _ MUL4: by 4
14. RM _ MUL8: by 8
15. RM _ DISP: it’s a displacement like

[0x401000 + …
16. RM _ DISP8: comes with RM_DISP … and

it means that the displacement is 8-bits
17. RM _ DISP16: the displacement is 16 bits
18. RM _ DISP32: the displacement is 32-bits
19. RM _ ADDR16: this means that … the mo-

drm is in 16-bits Addressing Mode
20. Items[3]: this gives the value of the item in

the modrm … like if the Item is a register
… so it contains the number of this regis-
ter (ex: ecx → item = 1) and if the item is a
displacement … so it contains the displace-
ment value like 0x401000 and so on.

21. emu _ func: unused
22. Flags: this flags describes the instruction …

some describes the instruction shape, some

describes destination and some describes the
source … let’s see

23. Instruction Shape: there are some flags
describe the instruction like:

24. NO _ SRCDEST: this instruction doesn’t
have source or destination like “nop”

25. SRC _ NOSRC: this instruction has only
destination like “push dest”

26. INS _ UNDEFINED: this instruction is unde-
fined in the disassembler … but you still
can get the length of it from hde.len

27. OP _ FPU: this instruction is an FPU in-
struction

28. FPU _ NULL: means this instruction
doesn’t have any destination or source

29. FPU _ DEST _ ONLY: this means that this in-
struction has only a destination

30. FPU _ SRCDEST: this means that this in-
struction has a source and destination

31. FPU _ BITS32: the FPU instruction is in
32-bits

32. FPU _ BITS16: means that the FPU In-
struction is in 16-bits

33. FPU _ MODRM: means that the instruction
contains the ModRM byte

34. Destination Shape:
35. DEST _ REG: means that the destination is

a register
36. DEST _ RM: means that the destination is

an RM like “dword ptr [xxxx]”
37. DEST _ IMM: the destination is an immedi-

ate (only with enter instruction”
38. DEST _ BITS32: the destination is 32-bits
39. DEST _ BITS16: the destination is 16-bits
40. DEST _ BITS8: the destination is 8-bits
41. FPU _ DEST _ ST: means that the destina-

tion is “ST0” in FPU only instructions
42. FPU _ DEST _ STi: means that the destina-

tion is “STx” like “ST1”
43. FPU _ DEST _ RM: means that the destina-

tion is RM
44. Source Shape: similar to destination …

read the description in Destination flags
above

45. SRC _ REG
46. SRC _ RM
47. SRC _ IMM
48. SRC _ BITS32
49. SRC _ BITS16
50. SRC _ BITS8
51. FPU _ SRC _ ST
52. FPU _ SRC _ STi

53. ndest: this includes the value of the destina-
tion related to its type … if it’s a register … so
it will contains the index of this register if it’s

www.hakin9.org/en 27

an immediate … so it will have the immediate
value if it’s an RM … so it will be null

54. nsrc: this includes the value of the source re-
lated to the type … see the ndest above

That’s simply the disassembler. We discussed
all the items of our debugger. We discussed the
Process Analyzer, the Debugger, the PE Parser
and the Disassembler. We now should put all to-
gether

Put All Together
To write a good debugger and simple also, we de-
cided to create an interactive console application
(like msfconsole in Metasploit) which takes com-
mands like run or bp (to set a breakpoint) and so on.

To create an interactive console application, we
will use cConsoleApp class to create our Console
App. We will inherit a class from it and begin the
modification of its commands (Listing 12).

And the Code: Listing 13.
As you see in the previous code, we implement-

ed 3 functions (virtual functions) and they are:

1. SetCustomSettings: this function is used for
modifying the setting for your application …
like modify the intro for the application, include
a log file, include a registry entry for the appli-
cation or to include a database for the applica-
tion to save data … as you can see, it’s used
to write the intro.

2. Run: this function is called to run the applica-
tion. You should call to StartConsole to begin
the interactive console

3. Exit: this function is called when the user write
“quit” command to the console.

The cConsoleApp implements 2 commands for
you “quit” and “help”. Quit exit the application and
help show the command list with their description.
To add a new command you should call to this
function:

AddCommand(char* Name,char* Description,char*
Format,DWORD nArgs,PCmdFunc CommandFunc)

The command Func is the function which will be
called when the user inputs this command … and
it should be with this format:

void CmdFunc(cConsoleApp* App,int argc,char*
argv[])

it’s similar to the main function added to it the App
class. The argv is the list of the arguments for this

function and the argc is the number of arguments
(always equal to nArgs that you enter in add com-
mands .. could be ignored as it’s reserved).

To use AddCommand … you can use it like this:

AddCommand(“dump”,”Dump a place in memory in
hex”,”dump [address] [size]”,2,&DumpFunc);

listing 12. Use cConsoleApp Class to Create our Console
App

class cDebuggerApp : public cConsoleApp
{
public:
 cDebuggerApp(cString AppName);
 ~cDebuggerApp();
 virtual void SetCustomSettings();
 virtual int Run();
 virtual int Exit();
};

listing 13. The Code

cDebuggerApp::cDebuggerApp(cString AppName) :
cConsoleApp(AppName)

{

}
cDebuggerApp::~cDebuggerApp()
{
 ((cApp*)this)->~cApp();
}

void cDebuggerApp::SetCustomSettings()
{
 //Modify the intro of the application
Intro = “\
 ***********************************\n\
 ** Win32 Debugger **\n\
 ************************************\n”;

}
int cDebuggerApp::Run()
{
 //write your code here for run
StartConsole();
 return 0;
}
int cDebuggerApp::Exit()
{
 //write your code here for exit
 return 0;
}

28 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF The DumpFunc is like that:

void DumpFunc(cConsoleApp* App,int argc,char*
argv[])

{
 ((cDebuggerApp*)App)->Dump(argc,argv);
};

As it calls to Dump function in the cDebuggerApp
class which inherited from cConsoleApp class.

We added these commands for the application:
Listing 14.

For Run Function: Listing 15.
As you can see, we make the application start

the console while the user enters a valid filename,
otherwise, return error and close the application.

We will not describe all commands but com-
mands that are the hard to implement (Listing 16).

This function at the beginning converts the ar-
guments from string (as the user entered) to a
hexadecimal value. And then, it reads in the de-
bugee process the memory that you need to dis-
assemble. As you can see, we added 16 bytes to
be sure that all instructions will be disassembled
correctly even if one of them exceed the limits of
the buffer.

Then, we begin looping on the disassembling
process and increment the address by the length
of each instruction until we reach the limited
size.

The main function will call to some functions to
start the application and run it: Listing 17.

listing 14. AddCommand

AddCommand(“step”,”one Step through code”,”step”,0,&StepFunc);
AddCommand(“run”,”Run the application until the first breakpoint”,”run”,0,&RunFunc);
AddCommand(“regs”,”Show Registers”,”regs”,0,&RegsFunc);
AddCommand(“bp”,”Set an Int3 Breakpoint”,”bp [address]”,1,&BpFunc);
AddCommand(“hardbp”,”Set a Hardware Breakpoint”,”hardbp [address] [size (1,2,4)] [type .. 0 =

access .. 1 = write .. 2 = execute]”,3,&HardbpFunc);
AddCommand(“membp”,”Set Memory Breakpoint”,”membp [address] [size] [type .. 0 = access .. 1 =

write]”,3,&MembpFunc);
AddCommand(“dump”,”Dump a place in memory in hex”,”dump [address] [size]”,2,&DumpFunc);
AddCommand(“disasm”,”Disassemble a place in memory”,”disasm [address] [size]”,2,&DisasmFunc);
AddCommand(“string”,”Print string at a specific address”,”string [address] [max size]”,2,&StringFunc);
AddCommand(“removebp”,”Remove an Int3 Breakpoint”,”removebp [address]”,1,&RemovebpFunc);
AddCommand(“removehardbp”,”Remove a Hardware Breakpoint”,”removehardbp [address]”,1,&RemovehardbpFunc);
AddCommand(“removemembp”,”Remove Memory Breakpoint”,”removemembp [address]”,1,&RemovemembpFunc);

listing 15. For Run Function

int cDebuggerApp::Run()
{

 Debugger = new cDebugger(Request.GetValue(“default”));
 Asm = new CPokasAsm();
 if (Debugger->IsDebugging)
 {
 Debugger->Run();
 Prefix = Debugger->DebuggeeProcess->processName;
 if (Debugger->IsDebugging)StartConsole();
 }
 else
 {
 cout << Intro << “\n\n”;
 cout << “Error: File not Found”;
 }
 return 0;
}

www.hakin9.org/en

Conclusion
In this article we described how to write a debug-
ger using SRDF … and how easy to use SRDF.
And we described how to analyze a PE File and
how disassembling an instruction works.

AMR THABET
I’m a Malware Researcher with 5+
years experience in reversing malware
and researching and I’m now a Mal-
ware Researcher in Q-CERT. I’m the
Author of many open-source tools like
Pokas Emulator and Security Research
and Development Framework (SRDF).

I was a Speaker in Cairo Security Camp 2010 and Uni-
versity of Sydney. I wrote namerous aticles in malware
and programming in Hakin9 Magazine, SecurityKaizen
Magazine and Code Project.

listing 16. Commands H to Implement

void cDebuggerApp::Disassemble(int argc,char*
argv[])

{
 DWORD Address = 0;
 DWORD Size = 0;
 sscanf(argv[0], “%x”, &Address);
 sscanf(argv[1], “%x”, &Size);
 DWORD Buffer = Debugger->DebuggeeProcess-

>Read(Address,Size+16);
 DWORD InsLength = 0;

 for (DWORD InsBuff = Buffer;InsBuff < Buffer+

Size ;InsBuff+=InsLength)
 {
 cout << (int*)Address << “: “ << Asm-

>Disassemble((char*)
InsBuff,InsLength) << “\n”;

 Address+=InsLength;
 }
}

listing 17. Start the Application and Run It

int _tmain(int argc, char* argv[])
{
 cDebuggerApp* Debugger = new
cDebuggerApp(“Win32Debugger”);
 Debugger->SetCustomSettings();
 Debugger->Initialize(argc,argv);
 Debugger->Run();
 return 0;
}

30 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF Reverse Engineering
– Shellcodes Techniques
The concept of reverse engineering process is well known, yet
in this article we are not about to discuss the technological
principles of reverse engineering but rather focus on one of the
core implementations of reverse engineering in the security arena.
Throughout this article we’ll go over the shellcodes’ concept,
the various types and the understanding of the analysis being
performed by a “shellcode” for a software/program.

Shellcode is named as it does since it is usu-
ally starts with a specific shell command.
The shellcode gives the initiator control of

the target machine by using vulnerability on the
aimed system and which was identified in ad-
vance. Shellcode is in fact a certain piece of code
(not too large) which is used as a payload (the part
of a computer virus which performs a malicious ac-
tion) for the purpose of an exploitation of software’s
vulnerabilities.

Shellcode is commonly written in machine code
yet any relevant piece of code which performs the
relevant actions may be identified as a shellcode.
Shellcode’s purpose would mainly be to take con-
trol over a local or remote machine (via network) –
the form the shellcode will run depends mainly on
the initiator of the shellcode and his/hers goals by
executing it.

The Various Shellcodes’ Techniques
When the initiator of the shellcode has no limits
in means of accessing towards the destination
machine for vulnerability’s exploitation it is best
to perform a local shellcode. Local shellcode
is when a higher-privileged process can be ac-
cessed locally and once executed successfully,
will open the access to the target with high privi-
leges. The second option refers to a remote run,
when the initiator of the shellcode is limited as far
as the target where the vulnerable process is run-
ning (in case a machine is located on a local net-
work or intranet) – in this case the shellcode is
remote shellcode as it may provide penetration
to the target machine across the network and in

most cases there is the use of standard TCP/IP
socket connections to allow the access.

Remote shellcodes can be versatile and are
distinguished based on the manner in which the
connection is established: “Reverse shell” or
a “connect-back shellcode” is the remote shell-
code which enables the initiator to open a con-
nection towards the target machine as well as a
connection back to the source machine initiating
the shellcode. Another type of remote shellcode
is when the initiator wishes to bind to a certain
port and based on this unique access, may con-
nect to control the target machine, this is known
as a “bindshell shellcode”.

Another, less common, shellcode’s type is when
a connection which was established (yet not closed
prior to the run of the shellcode) will be utilized to-
wards the vulnerable process and thus the initiator
can re-use this connection to communicate back to
the source – this is known as a “socket-reuse shell-
code” as the socket is re-used by the shellcode.

Due to the fact that “socket-reuse shellcode” re-
quires active connection detection and determina-
tion as to which connection can be re-used out of
(most likely) many open connections is it considered
a bit more difficult to activate such a shellcode, but
nonetheless there is a need for such a shellcode as
firewalls can detect the outgoing connections made
by “connect-back shellcodes” and /or incoming con-
nections made by “bindshell shellcodes”.

For these reasons a “socket-reuse shellcode”
should be used in highly secure systems as it does
not create any new connections and therefore is
harder to detect and block.

http://en.wikipedia.org/wiki/Computer_virus

www.hakin9.org/en 31

A different type of shellcode is the “download
and execute shellcode”. This type of shellcode
directs the target to download a certain execut-
able file outside the target machine itself and to
locate it locally as well as executing it. A vari-
ation of this type of shellcode downloads and
loads a library.

This type of shellcode allows the code to be
smaller than usual as it does not require to spawn
a new process on the target system nor to clean
post execution (as it can be done via the library
loaded into the process).

An additional type of shellcode comes from the
need to run the exploitation in stages, due to the
limited amount of data that one can inject into the
target process in order to execute it usefully and
directly – such a shellcode is called a “staged
shellcode”.

The form in which a staged shellcode may work
would be (for example) to first run a small piece
of shellcode which will trigger a download of an-
other piece of shellcode (most likely larger) and
then loading it to the process’s memory and ex-
ecuting it.

“Egg-hunt shellcode” and “Omelets shellcode”
are the last two types of shellcode which will be
mentioned. “Egg-hunt shellcode” is a form of
“staged shellcode” yet the difference is that in
“Egg-hunt shellcode” one cannot determine where
it will end up on the target process for the stage
in which the second piece of code is downloaded
and executed. When the initiator can only inject a
much smaller sized block of data into the process
the “Omelets shellcode” can be used as it looks
for multiple small blocks of data (eggs) and recom-
bines them into one larger block (the omelet) which
will be subsequently executed.

Introduction to MSFPAylOAD Command
In this part we’ll focus on the msfpayload command.
This command is used to generate and output all
of the various types of shellcode that are available
within Metasploit. This tool is mostly used for the
generation of shellcode for an exploit that is cur-
rently not available within the Metasploit’s frame-
work. Another use for this command is for testing
of the different types of shellcode and options be-
fore finalizing a module.

Although it is not fully visible within it’s “help ban-
ner” (as can be seen in the image below) this tool
has many different options and variables available
but they may not all be fully realized without a prop-
er introduction.

msfpayload -h

Type the following command to show the vast
numbers of different types of shellcodes available
(based on which one can customize a specific ex-
ploit):

msfpayload –l

One can browse the wide list (as seen in the im-
age below) of payloads that are listed and shown
as the output for the msfpayload –l command:
Figure 2.

In this case we chose the “shell_bind_tcp” pay-
load as an example. Prior to the continuum of our
action let us change our working directory to the
Metasploit framework as so:

Figure 3. Listing the Shellcode Options

Figure 2. Msfpayload Payload List

Figure 1. Msfpayload Help Information

32 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF # cd /pentest/exploits/framework

Once a payload was selected (in this case the
shell _ bind _ tcp payload) there are two switch-
es that are used most often when crafting the
payload for the exploit you are creating.

In the example below we have selected a sim-
ple Windows’ bind shellcode (shell _ bind _ tcp).
When we add the command-line argument “O” for
a payload, we receive all of the available relevant
options for that payload:

msfpayload windows/shell_bind_tcp O

As seen in the output below these are results for
“o” argument for this specific payload: Figure 3.

As can be seen from the output, one can config-
ure three different options with this specific pay-
load. Each option’s variables (if required) will come
with a default settings and a short description as to
its use and information:

 EXITFUNC
 Required
 Default setting: process
 LPORT

 Required
 Default setting: 4444
 RHOST
 Not required
 No default setting

Setting these options in msfpayload is very sim-
ple. An example is shown below of changing the
exit technique and listening port of a certain shell
(Figure 4):

./msfpayload windows/shell_bind_tcp EXITFUNC=seh
LPORT=8080 O

Now that all is configured, the only option left is
to specify the output type such as C, Perl, Raw,
etc. For this example ‘C’ was chosen as the shell-
code’s output (Figure 5):

#./msfpayload windows/shell_bind_tcp EXITFUNC=seh
LPORT=8080 C

Now that we have our fully customized shellcode,
it can be used for any exploit. The next phase is
how a shellcode can be generated as a Windows’
executable by using the msfpayload command.

msfpayload provides the functionality to output
the generated payload as a Windows executable.
This is useful to test the generated shellcode ac-
tually provides the expected results, as well as for
sending the executable to the target (via email,
HTTP, or even via a “Download and Execute”
payload).

The main issue with downloading an executable
onto the victim’s system is that it is likely to be cap-
tured by Anti-Virus software installed on the target.

To demonstrate the Windows executable gen-
eration within Metasploit the use of the “windows/
exec” payload is shown below. As such the initial
need is to determine the options that one must pro-
vide for this payload, as was done previously using
the Summary (S) option:

$ msfpayload windows/exec S
 Name: Windows Execute Command
 Version: 5773
 Platform: [“Windows”]
…
 Arch: x86
 Needs Admin: No
 Total size: 113

 Provided by:
 vlad902

Figure 5. Generating the Shellcode Using Msfpayload

Figure 4. Specifying the Shellcode Options Data

 Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CMD yes the command string to execute
 EXITFUNC thread yes Exit technique: seh, thread,

process
 Description:
 Execute an arbitrary command

As can be seen the only option is to specify the
“CMD” option. One simply needs to execute “calc.
exe” so that we can test it on our own systems.

In order to generate a Windows’ executable us-
ing Metasploit one needs to specify the X out-
put option. This will display the executable on the
screen, therefore there is a need to pipe it to a file
which will call pscalc.exe, as shown below:

$ msfpayload windows/exec CMD=calc.exe X > pscalc.exe
 Created by msfpayload (http://www.metasploit.com).
 Payload: windows/exec
 Length: 121
 Options: CMD=calc.exe

Now an executable file in the relevant directo-
ry called “pscalc.exe” is shown. One may confirm
this by using the following command:

$ ls -l pscalc.exe
 -rw-r--r-- 1 Administrator mkpasswd 4637
 Oct 9 08:53 pscalc.exe

As can be seen this file is not set to being an ex-
ecutable, so one will need to set the executable
permissions on it using via the following com-
mand:

$ chmod 755 pscalc.exe

It is now testable by executing the “pscalc.exe”
Windows executable. The following command
should trigger the Windows Calculator to be dis-
played on your system.

$./pscalc.exe

As was mentioned in the beginning of the arti-
cle we have focused on one aspect of the securi-
ty’s field reverse engineering concept – the shell-
codes. This is a very basic “know how” for the use
of “shellcodes” but it should be the first step and
the gates’ open for a further and a much more
in depth search of the versatile use and features
shellcodes can supply.

ERAN GOlDSTEIN
Eran Goldstein is the founder of
Frogteam|Security, a cyber securi-
ty vendor company in USA and Israel.
He is also the creator and developer of
“Total Cyber Security – TCS” product
line. Eran Goldstein is a senior cyber
security expert and a software devel-

oper with over 10 years of experience. He specializes at
penetration testing, reverse engineering, code reviews
and application vulnerability assessments. Eran has a
vast experience in leading and tutoring courses in appli-
cation security, software analysis and secure develop-
ment as EC-Council Instructor (C|EI). For more informa-
tion about Eran and his company you may go to: http://
www.frogteam-security.com.

a d v e r t i s e m e n t

http://www.frogteam-security.com
http://www.frogteam-security.com
http://www.it-securityguard.com/
http://www.it-securityguard.com/

34 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF Deep Inside Malicious
PDF
In now days People share documents all the time and most of the
attacks based on client side attack and target applications that
exist in the user, employee OS, from one single file the attacker
can compromise a large network., PDF is the most sharing file
format, due to PDFs can include active content, passed within the
enterprise and across Networks. in this article we will make Analysis
to catch Malicious PDF files.

When we start to check the PDF files that
exist in our Pc or Lap top we may use an-
tivirus scanner but in this days it seems

not good enough to detect malicious PDF that
counties a shell code because, as attacker mostly
encrypt it’s count -ant to bypass the antivirus scan-
ner and in many times target a zero day vulnerabil-
ity that exit in Adobe Acrobat reader or un updated
version, the Figure 1 show how PDF vulnerabilities
rising every year.

Before we start analyze malicious PDF we go-
ing to have a simple look at PDF structures as to
understand how the shell code work and where it
locate.

PDF components
PDF documents counties four main parts (one-line
header, body, cross-reference table and trailer).

PDF Header
The first line of pdf show the pdf format version
the most important line that give to you the basic
information of the pdf file for example “%PDF-1.4
means that file fourth version.

PDF Body
The body pdf file consist of objects that com-
pose contents of the document, these objects
include fonts, images, annotations, text streams
And user can put invisible objects or elements,
this objects can interactive with pdf features like
animation, security features. The body of the pdf
supports two types of numbers (integers, real
numbers).

The Cross-Reference Table (xref table)
The cross- reference counties links of all objects
and elements that exist on file format, you can use
this feature to see other pages contents (when the
users update the PDF the cross-reference table
gets updated automatically).

The Trailer
The trailer contains links to cross-reference table
and always ends up with %%EOF to identify the end

Figure 1. Vulnerabilities By Year

Figure 2. Setting Metasploit Variables

www.hakin9.org/en 35

of a PDF file the trailer enables a user to navigate
to the next page by clicking on the link provided.

Malicious PDF through Metasploit
Now after we have talking a tour inside PDF file
format and what it contains we will start to install
old version of Adobe Acrobat reader 9.4.6 and 10
through to 10.1.1 that will be vulnerable to Adobe
U3D Memory Corruption Vulnerability.

This exploit are exist in Metasploit framework so
we going to create the malicious PDF and analysis
it in KALI Linux distribution. Start opens the termi-
nal and type msfconsole (Figure 2). As the picture
below, we going to setting some Metasploit vari-
ables to be sure that everything is working fine.

*After choosing the exploit type we going to choose
the payload that will execute during exploitation in
the remote target and open Meterpreter session.

The file has been saved on /root/.msf4/local.
So we going to move the file to Desktop for easi-

er located by typing in the terminal

root@kali :~# cd /root/.msf4/local
root@kali :~# mv msf.pdf /root/Desktop

PDFid
Now we going to use pdfid to see what the pdf con-
tinue of elements and objects and JavaScript and
see if something interesting to analyze (Figure 3).

The PDF has only one page maybe its normal.
There are several JavaScript objects inside… this
is very strange. There is also an OpenAction ob-
ject which will execute this malicious JavaScript

So we going to use peepdf.

Peepdf
Peepdf its python tool very powerful for PDF analy-
sis, the tool provide all necessary components that
security researcher need in PDF analysis without
using many tools to do that, it support encryption,
Object Streams, Shellcode emulation, Javascript
Analysis, and for Malicious PDF it

Shows potential Vulnerabilities, Shows Suspi-
cious Elements, Powerful Interactive Console, PDF
Obfuscation (bypassing AVs), Decoding: hexadeci-
mal – ASCII and HEX search (Figure 4).

Analysis
If we going to start analysis go to the directory of
the PDF file then start with syntax /usr/bin/peepdf
–f msf.pdf.

*choose the LHOST which is our IP address and we can view
through typing ifconfig in new terminal
*finally we type exploit to create the PDF file with configuration we
created before

We use –f option to avoid errors and force the
tool to ignore them (Figure 5).

This the default output but we see some interest-
ing things first one we see is the highlighted one
object 15 continue JavaScript code and we have al-
so one object 4 continue two executing elements (/
AcroForm & /OpenAction) and the last one is /U3D
showing to us Known Vulnerability for now we will
start to explore this objects by getting an interactive
console by typing syntax /usr/bin/peepdf –i msf.
pdf (Figure 6).

Figure 5. /usr/bin/peepdf –f msf.pdf

Figure 4. Peeppdf

Figure 3. PDFid

36 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF

Figure 7. The Tree Commands Shows the Logical Structure of
the File, and Starting Explore Object 4

Figure 6. /usr/bin/peepdf –i msf.pdf

Figure 9. Heap Spraying with Shell Code plus Some Padding
Bytes

Figure 8. JavaScript Code, that Will be Executed when the
PDF File will be Opened

The tree commands shows the logical structure
of the file, and starting explore object 4 (/Acro-
Form) (Figure 7).

As we see in the picture above when we type
object 4 it gave you another objects to explore
for now we didn’t see any impotent information or
seems suspicious except object 2 (XFA array) that
gave us the element <fjdklsaj fodpsaj fopjdsio>
and seems to us not continue something special.

Let’s move to the another object (Open Action)
(Figure 8).

No we can see JavaScript code, that will be ex-
ecuted when the pdf file will be opened.

The other part of the JavaScript code is barely
obfuscated like writing some variables in hex and
in this code we can see a heap spraying with shell
code plus some padding bytes. The attackers typi-
cally use unicode to encode their shell code and
then use the unescape function to translate the
unicode representation to binary content (now we
are sure that defiantly a malicious pdf) (Figure 9).

Defend
We defend our network from that type of malicious
files by providing strong e-mail and web filter, IPS
and by.
Application control: disable JavaScript and Disable
PDF rendering in browsers, Block PDF readers
from accessing file system and Network resourc-
es. Security awareness.

Conclusion
We’ve take a tour pdf file format structure and what
it counties and we’ve seen how to detect a mali-
cious pdf and know where and how can locate sus-
picious objects and showing the JavaScript code,
an finally know how to defend our network.

yEHIA MAMDOuH El GHAly
Certified (CCNA, CEH), Founder and in-
structor of Master Metasploit (Course).
Trained in (Exploiting Web Applica-
tions with Samurai- Application Secu-
rity- Cyber Crime Investigation). I al-
so have 5 years experience in penetra-
tion testing

http://www.eventbrite.com/event/3131958773?ct=t(Q_CERT_Weekly_Newsletter_18_March_20123_18_2012)&gooal=eyJjaWQiOiJiYmZhMTU5ZTUyIiwidGFnIjoiUV9DRVJUX1dlZWtseV9OZXdzbGV0dGVyXzE4X01hcmNoXzIwMTIzXzE4XzIwMTIiLCJ1aWQiOiIzM2E4MTkzZmNlYzY0MzA1Y2JhYjUyZDRmIn0%3D|bWlzbWFpbEBtYnQuZ292LnFh&mc_cid=bbfa159e52&mc_eid=%5BUNIQID%5D

Reverse Engineering, Malware Analysis, Forensic Analysis,
Vulnerability Analysis, Pentest, Hacking,

Exploitation & Bug Hunting... www.itsecurity.ma is

the most advanced blog in MOROCCO

www.itsecurity.ma
security is not complete

without “U”

http://www.itsecurity.ma

38 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF How to Reverse
Engineer dot net
Assemblies
The concept of dot NET can be easily compared to the concept
of JAVA and Java Virtual Machine, at least when talking about
compilation.

Unlike most of traditional programming lan-
guages like C/C++, application were devel-
oped using dot NET frameworks are com-

piled to a Common Intermediate Language (CIL or
Microsoft Common Intermediate Language MSIL)
– which can be compared to bytecode when talk-
ing about Java programs – instead of being com-
piled directly to the native machine executable
code, the Dot Net Common Language Runtime
(CLR) will translate the CIL to the machine code
at runtime. This will definitely increase execution
speed but has some advantages since every dot
NET program will keep all classes’ names, func-
tions’ names variables and routines’ names in the
compiled program. And this, from a programmer’s
point of view, is such a great thing since we can
make different parts of a program using different
programming languages available and supported
by frameworks.

Just like Java and Java Virtual Machine, any
dot NET program firstly compiled (if we can per-
mit saying this) to a IL or MSIL language and is
executed in a runtime environment: Common Lan-
guage Runtime (CLR) then is secondly recompiled
or converted on its execution, to a local native in-
structions like x86 or x86-64… which are set de-
pending on what type of processor is currently
used, thing is done by Just In Time (JIT) compila-
tion used by the CLR.

To recapitulate, the CRL uses a JIT compiler to
compile the IL (or MSIL) code which is stored in a
Portable Executable (our compiled dot NET high
level code) into platform specific code, and then
the native code is executed. This means that dot

NET is never interpreted, and the use of IL and JIT
is to ensure dot NET code is portable.

Basically, every compiled dot NET application is
not more than its Common Intermediate Language
representation which stills has all the pre coded
identifiers just the way they were typed by the pro-
grammer.

Technically, knowing this Common Intermediate
Language will simply lead to identifying high level
language instructions and structure, which means
that from a compiled dot NET program we can re-
constitute back the original dot NET source code,
with even the possibility of choosing to which dot
NET programming language you want this transla-
tion to be made. And this is a pretty annoying thing!

When talking about dot NET applications, we talk
about “reflection” rather than “decompilation”, this
is a technique which lets us discover class infor-
mation or assembly at runtime. This way we can
get all properties, methods, functions… with all pa-
rameters and arguments, we can also get all inter-
faces, structures …

In-depth Sight
Before starting the analysis of our target (not yet
presented) I will clarify and in depth some dot
NET aspects starting by the Common Language
Runtime.

Common Language Runtime is a layer between
dot NET assemblies and the operating system
in which it’s supposed to run; as you know now
(hopefully) every dot NET assembly is “translated”
into a low level intermediate language (Common
Intermediate Language – CIL which was earlier

www.hakin9.org/en 39

called Microsoft Intermediate Language – MSIL)
despite of the high level language in which it was
developed with; and independent of the target plat-
form, this kind of “abstraction” lead to the possibil-
ity of interoperation between different development
languages.

The Common Intermediate Language is based
on a set of specifications guaranteeing the inter-
operation; this set of specifications is known as
the Common Language Specification – CLS as
defined in the Common Language Infrastructure
standard of Ecma International and the Internation-
al Organization for Standardization – ISO (link to
download Partition I is listed in references section).

Dot NET assemblies and modules which are de-
signed to run under the Common Language Run-
time – CLR are composed essentially by Metadata
and Managed Code.

Managed code is the set of instructions that
makes the “core” of the assembly / module func-
tionality, and represents the application’s func-
tions, methods … encoded into the abstract and
standardized form known as MSIL or CIL, and this
is a Microsoft’s nomination to identify the managed
source code running exclusively under CLR.

On the other side, Metadata is a way too ambigu-
ous term, and can be called to simplify things “data
that describes data” and in our context, very sim-
ply, metadata is a system of descriptors concern-
ing the “content” of the assembly, and refers to a
data structure embedded within the low level CIL
and describing the high level structure of the code.

It describes the relationship between classes, their
members, the return types, global items, methods
parameters and so on… To generalize (and always
consider the context of the common language run-
time), metadata describes all items that are de-
clared or referenced in a module.

Basing on this we can say that the two princi-
pal components of a module are metadata and IL
code; the CLR system is subdivided to two major
subsystems which are “loader” and the just-in-time
compiler.

The loader parses the metadata and makes in
memory a kind of layout / pattern representation of
the inner structure of the module, then depending
on the result of this last, the just-in-time compiler
(also called jitter) compiles the Intermediate Lan-
guage code into the native code of the concerned
platform.

The Figure 1 describes how a managed module
is created and executed.

understanding MSIl
Beyond the obvious curiosity factor, understanding
IL and how to manipulate it will just open the doors
of playing around with any dot NET programs and
in our case, figuring out our programs security sys-
tems weakness.

Before going ahead, it’s wise to say that CLR ex-
ecutes the IL code allowing this way making opera-
tions and manipulating data, CRL does not handle
directly the memory, it uses instead a stack, which
is an abstract data structure which works accord-

Figure 1. Compilation and execution of a managed module

40 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF Table 1. Non-exhaustive IL instruction list

IL Instruction Function Byte
representation

And Computes the bitwise AND of two values and pushes the result onto the evaluation stack. 5F

Beq Transfers control to a target instruction if two values are equal. 3B

Beq.s Transfers control to a target instruction (short form) if two values are equal. 2E

Bge Transfers control to a target instruction if the first value is greater than or equal to the second value. 3C

Bge.s Transfers control to a target instruction (short form) if the first value is greater than or equal to
the second value.

2F

Bge.Un Transfers control to a target instruction if the first value is greater than the second value, when
comparing unsigned integer values or unordered float values.

41

Bge.Un.s Transfers control to a target instruction (short form) if the first value is greater than the second
value, when comparing unsigned integer values or unordered float values.

34

Bgt Transfers control to a target instruction if the first value is greater than the second value. 3D

Bgt.s Transfers control to a target instruction (short form) if the first value is greater than the second
value.

30

Bgt.Un Transfers control to a target instruction if the first value is greater than the second value, when
comparing unsigned integer values or unordered float values.

42

Bgt.Un.s Transfers control to a target instruction (short form) if the first value is greater than the second
value, when comparing unsigned integer values or unordered float values.

35

Ble Transfers control to a target instruction if the first value is less than or equal to the second value. 3E

Ble.s Transfers control to a target instruction (short form) if the first value is less than or equal to the
second value.

31

Ble.Un Transfers control to a target instruction if the first value is less than or equal to the second
value, when comparing unsigned integer values or unordered float values.

43

Ble.Un.s Transfers control to a target instruction (short form) if the first value is less than or equal to the
second value, when comparing unsigned integer values or unordered float values.

36

Blt Transfers control to a target instruction if the first value is less than the second value. 3F

Blt.s Transfers control to a target instruction (short form) if the first value is less than the second
value.

32

Blt.Un Transfers control to a target instruction if the first value is less than the second value, when
comparing unsigned integer values or unordered float values.

44

Blt.Un.s Transfers control to a target instruction (short form) if the first value is less than the second
value, when comparing unsigned integer values or unordered float values.

37

Bne.Un Transfers control to a target instruction when two unsigned integer values or unordered float
values are not equal.

40

Bne.Un.s Transfers control to a target instruction (short form) when two unsigned integer values or
unordered float values are not equal.

33

Br Unconditionally transfers control to a target instruction. 38

Brfalse Transfers control to a target instruction if value is false, a null reference (Nothing in Visual
Basic), or zero.

39

Brfalse.s Transfers control to a target instruction if value is false, a null reference, or zero. 2C

Brtrue Transfers control to a target instruction if value is true, not null, or non-zero. 3A

Brtrue.s Transfers control to a target instruction (short form) if value is true, not null, or non-zero. 2D

Br.s Unconditionally transfers control to a target instruction (short form). 2B

Call Calls the method indicated by the passed method descriptor. 28

Clt Compares two values. If the first value is less than the second, the integer value 1 (int32) is
pushed onto the evaluation stack; otherwise 0 (int32) is pushed onto the evaluation stack.

FE 04

Clt.Un Compares the unsigned or unordered values value1 and value2. If value1 is less than value2,
then the integer value 1 (int32) is pushed onto the evaluation stack; otherwise 0 (int32) is
pushed onto the evaluation stack.

FE 03

Jmp Exits current method and jumps to specified method. 27

www.hakin9.org/en 41

Ldarg Loads an argument (referenced by a specified index value) onto the stack. FE 09

Ldarga Load an argument address onto the evaluation stack. FE 0A

Ldarga.s Load an argument address, in short form, onto the evaluation stack. 0F

Ldarg.0 Loads the argument at index 0 onto the evaluation stack. 02

Ldarg.1 Loads the argument at index 1 onto the evaluation stack. 03

Ldarg.2 Loads the argument at index 2 onto the evaluation stack. 04

Ldarg.3 Loads the argument at index 3 onto the evaluation stack. 05

Ldarg.s Loads the argument (referenced by a specified short form index) onto the evaluation stack. 0E

Ldc.I4 Pushes a supplied value of type int32 onto the evaluation stack as an int32. 20

Ldc.I4.0 Pushes the integer value of 0 onto the evaluation stack as an int32. 16

Ldc.I4.1 Pushes the integer value of 1 onto the evaluation stack as an int32. 17

Ldc.I4.M1 Pushes the integer value of -1 onto the evaluation stack as an int32. 15

Ldc.I4.s Pushes the supplied int8 value onto the evaluation stack as an int32, short form. 1F

Ldstr Pushes a new object reference to a string literal stored in the metadata. 72

Leave Exits a protected region of code, unconditionally transferring control to a specific target instruction. DD

Leave.s Exits a protected region of code, unconditionally transferring control to a target instruction
(short form).

DE

Mul Multiplies two values and pushes the result on the evaluation stack. 5A

Mul.Ovf Multiplies two integer values, performs an overflow check, and pushes the result onto the
evaluation stack.

D8

Mul.Ovf.Un Multiplies two unsigned integer values, performs an overflow check, and pushes the result
onto the evaluation stack.

D9

Neg Negates a value and pushes the result onto the evaluation stack. 65

Newobj Creates a new object or a new instance of a value type, pushing an object reference (type O)
onto the evaluation stack.

73

Not Computes the bitwise complement of the integer value on top of the stack and pushes the
result onto the evaluation stack as the same type.

66

Or Compute the bitwise complement of the two integer values on top of the stack and pushes
the result onto the evaluation stack.

60

Pop Removes the value currently on top of the evaluation stack. 26

Rem Divides two values and pushes the remainder onto the evaluation stack. 5D

Rem.Un Divides two unsigned values and pushes the remainder onto the evaluation stack. 5E

Ret Returns from the current method, pushing a return value (if present) from the caller’s
evaluation stack onto the caller’s evaluation stack.

2A

Rethrow Re throws the current exception. FE 1A

Stind.I1 Stores a value of type int8 at a supplied address. 52

Stind.I2 Stores a value of type int16 at a supplied address. 53

Stind.I4 Stores a value of type int32 at a supplied address. 54

Stloc Pops the current value from the top of the
evaluation stack and stores it in a the local variable list at a specified index.

FE 0E

Sub Subtracts one value from another and pushes the result onto the evaluation stack. 59

Sub.Ovf Subtracts one integer value from another, performs an overflow check, and pushes the result
onto the evaluation stack.

DA

Sub.Ovf.Un Subtracts one unsigned integer value from another, performs an overflow check, and pushes
the result onto the evaluation stack.

DB

Switch Implements a jump table. 45

Throw Throws the exception object currently on the evaluation stack. 7A

Xor Computes the bitwise XOR of the top two values on the evaluation stack, pushing the result
onto the evaluation stack.

61

42 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF ing to the “last in first out” basis, we can do two im-
portant things when talking about the stack: push-
ing and pulling data, by pushing data or items into
the stack, any already present items just go further
down in this stack, by pulling data or items from the
stack, all present items move upward toward the
beginning of it. We can handle only the topmost el-
ement of the stack.

Every IL instruction has its specific byte repre-
sentation, I’ll try to introduce you a non exhaustive
list of most important IL instructions, their functions
and the actual bytes representation, and you are
not supposed to learn them but use this list as a
kind of reference: Table 1.

What this Means to a Reverse Engineer?
Nowadays there are plenty of tools that can “reflect”
the source code of a dot NET compiled execut-
able; a good and really widely used one is “Reflec-
tor” with which you can browse classes, decompile
and analyze dot NET programs and components,
it allows browsing and searching CIL instructions,
resources and XML documentation stored in a dot
NET assembly. But this is not the only tool we will
need when reversing dot NET applications and we
will need more than one article to cover all of them.

What Will you learn From this First Article?
This first essay will show you how to deal with Re-
flector to reverse a simple practice oriented crack

Figure 2. Crack Me’s main form

Figure 3.Reflector’s main window

Figure 4. Crack Me loaded on Reflector

Figure 5. You Can Expend the Target by Clicking the “+” Sign

Figure 6. Keep on Developing Tree and See What is Inside of
this Crack Me

Figure 7. We Can See Actual Code Just by Clicking on the
Method’s Name the Way We Get This

www.hakin9.org/en 43

me I did the basic way, so I tried to simulate in this
Crack Me a “real” software protection with disabled
button, disabled feature and license check protec-
tion (Figure 2).

So basically we have to enable the first button
having “Enable Me” caption, by clicking it we will get
the “Save as…” button enabled which will let us sim-
ulate a file saving feature, we will see where the li-
cense check protection is trigged later in this article.

Open up Reflector, at this point we can configure
Reflector via the language’s drop down box in the
main toolbar, and select whatever language you
may be familiar with, I’ll choose Visual Basic but
the decision is up to you of course (Figure 3).

Load this Crack Me up into it (File > Open menu)
and look anything that would be interest us. Tech-
nically, the crack me is analyzed and placed in a
tree structure, we will develop nodes that interest
us: Figure 4.

You can expend the target by clicking the “+”
sign: Figure 5.

Keep on developing tree and see what is inside
of this Crack Me: Figure 6.

Now we can see that our Crack Me is composed
by References, Code and Resources.

• Code: this part contains the interesting things
and everything we will need at this point is in-
side of HiddenNAME _ dotNET _ Reversing (which
is a Namespace)

• References: is similar to “imports”, “includes”
used in other PE files.

• Resources: for now this is irrelevant to us, but
it this is similar to ones in other windows pro-
grams.

By expanding the code node we will see the fol-
lowing tree: Figure 8.

We can already clearly see some interesting
methods with their original names which is great,
we have only one form in this practice so let’s see
what Form1 _ Load(object, EventArgs): void has
to say, we can see actual code just by clicking on
the method’s name the way we get this: Figure 7.

If you have any coding background you can guess
with ease that “this.btnEnableMe.Enabled = false;”
is responsible of disabling the component “btnEn-
ableMe” which is in our case a button. At this point
it’s important to see the IL and the byte represen-
tation of the code we are seeing, let’s switch to IL
view and see: Listing 1. In the code above we can
see some IL instruction worth of being explained
(in the order they appear):

• ldarg.0 Pushes the value 0 to the method onto
the evaluation stack.

• callvirt Calls the method get() associated with
the object btnEnableMe.

• ldc.i4.0 Pushes 0 onto the stack as 32bits integer.
• callvirt Calls the method set() associated with

the object btnEnableMe.

This says that the stack got the value 0 before
calling the method set _ Enabled(bool), 0 is in
general associated to “False” when program-
ming, we will have to change this 0 to 1 in order
to pass “True” as parameter to the method set _
Enabled(bool); the IL instruction that pushes 1
onto the stack is ldc.i4.1.

In a section above we knew that byte representa-
tion is important in order to know the exact location
of the IL instruction to change and by what chang-

Figure 8. Crack Me’s nodes expanded

Table 2. IL reference

IL
Instructio

Function Byte
representation

Ldc.I4.0 Pushes the integer value of 0
onto the evaluation stack as
an int32.

16

Ldc.I4.1 Pushes the integer value of 1
onto the evaluation stack as
an int32.

17

Callvirt Call a method associated with
an object.

6F

Ldarg.0 Load argument 0 onto the stack. 02

44 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF ing it, so by referring to the IL byte representation
reference we have: Table 2.

We have to make a big sequence of bytes to
search the IL instruction we want to change; we
have to translate ldc.i4.0, callvirt, ldarg.0
and callvirt to their respective byte represen-
tation and make a byte search in a hexadecimal
editor.

Referring the list above we get: 166F??026F??, the
“??” means that we do not know neither instance void
[System.Windows.Forms]System.Windows.Forms.
Control::set _ Enabled(bool) (at IL _ 0007) bytes
representation nor bytes representation of
instance class [System.Windows.Forms]System.
Windows.Forms.Label CrackMe2 _ HiddenName _
dotNET _ Reversing.MainForm::get _ LblStat() (at
IL _ 000d).

Things are getting more complicated and we
will use some extra tools, I’m calling ILDasm! This
tool is provided with dot NET Framework SDK,
if you have installed Microsoft Visual Studio, you
can find it in Microsoft Windows SDK folder, in my

listing 1. IL code

.method private
 instance void Form1_Load (
 object sender,
 class [mscorlib]System.EventArgs e
) cil managed

{
 // Method begins at RVA 0x1b44c
 // Code size 29 (0x1d)
 .maxstack 2
 .locals init (
 [0] valuetype [System.Drawing]System.Drawing.Color
)

 IL_0000: ldarg.0
 IL_0001: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_btnEnableMe()
 IL_0006: ldc.i4.0
 IL_0007: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set_

Enabled(bool)
 IL_000c: ldarg.0
 IL_000d: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_LblStat()
 IL_0012: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Dra
ing.Color::get_Red()
 IL_0017: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
ForeColor(valuetype [System.Drawing]System.Drawing.Color)
 IL_001c: ret
} // end of method MainForm::Form1_Load

Figure 9. ILDASM

www.hakin9.org/en 45

system ILDasm is located at C:\Program Files\Mi-
crosoft Visual Studio 8\SDK\v2.0\Bin (Figure 9).

ILDasm can be easily an alternative tool to Re-
flector or ILSpy except the fact of having a bit less

user friendly interface and no high level code trans-
lation feature. Anyway, once located open it and
load our Crack Me into it (File -> Open) and expand
trees as following: Figure 10.

ILDasm does not show byte representation by de-
fault, to show IL corresponding bytes you have to
select View -> Show Bytes: Figure 11. Then double
click on our concerned method (Form1_Load…) to
get the IL code and corresponding bytes: Figure 12.

We have more information about IL instructions
and their Bytes representations now, in order to
use this amount of new information, you have to
know that after “|” the low order byte of the num-
ber is stored in the PE file at the lowest address,
and the high order byte is stored at the highest ad-
dress, this order is called “Little Endian”.

What Does this Mean?
When looking inside Form1 _ Load() method using
ILDasm, we have this:

 IL_0006: /* 16 |
 IL_0007: /* 6F | (0A)000040
 IL_000c: /* 02 |
 IL_000d: /* 6F | (06)000022

These Bytes are stored in the file this way:
166F4000000A026F22000006.

Back to Our Target
This sequence of bytes is quite good for making a
byte search in a hexadecimal editor, in a real sit-
uation study; we may face an annoying problem
which is finding more than one occurrence of our
sequence. In this situation, instead of searching for
bytes sequence we search for (or to better say “go
to”) an offset which can be calculated.

An offset, also called relative address, is used
to get to a specific absolute address. We have to
calculate an offset where the instruction we want
to change is located, referring to Figure 1, ILDasm

Figure 12. ILDasm IL + bytes representations encoded
Form1_Load() methodFigure 11. Show bytes on ILDASM

Figure 10. Target loaded on ILDASM

46 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF and ILSpy indicate the Relative Virtual Address
(RVA) at the line // Method begins at RVA 0x1b44c
and in order to translate this to an offset or file lo-
cation, we have to determinate the layout of our
target to see different sections and different offsets
/ sizes, we can use PEiD or any other PE Tool,
but I prefer to introduce you a tool that comes with
Microsoft Visual C++ to view PE sections called
“dumpbin” (If you do not have it, please referrer to
links on “References” section).

Dumpbin is a command line utility, so via the
command line type “dumpbin -headers target_
name.exe” (Figure 13).

By scrolling down we find interesting information:

SECTION HEADER #1
 .text name
 1C024 virtual size
 2000 virtual address
 1C200 size of raw data
 400 file pointer to raw data
 0 file pointer to relocation table

 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60000020 flags
 Code
 Execute Read

Notice that the method Form1 _ Load() begins at
RVA 0x1b44c (refer to Figure 1) and here the .text
section has a virtual size of 0x1c024 with a virtual
address indicated as 0x2000 so our method must
be within this section, the section containing our
method starts from 0X400 in the main executable
file, using these addresses and sizes we can cal-
culate the offset of our method this way:

(Method RVA – Section Virtual Address) + File
pointer to raw data; all values are in hexadecimal
so using the Windows’s calculator or any other cal-
culator that support hexadecimal operations we
get: (1B44C – 2000) + 400 = 1984C (Figure 14).

So 0x1984C is the offset of the start of our method
in our main executable, using any hexadecimal ed-
itor we can go directly to this location and what we

Figure 13. Dumpbin screenshot

Figure 14. (1B44C – 2000) + 400 = 1984C Figure 16. “Enable Me” button is enabled

Figure 15. Location on a hexadecimal editor

www.hakin9.org/en 47

box when cliquing on “About” button, then we still
have two methods: btn _ EnableMe _ Click () and
checkLicence() which seems to be interesting.

Let’s go inside the method btn _ EnableMe _
Click() and see what it has to tell: Figure 19.

By clicking on the button save, instead of sav-
ing directly, the Crack Me checks the “registra-
tion stat” of the program, this may be a kind of
“extra protection”, which means, the main feature
which is “saving file” is protected against “forced
clicks”;The Crack Me checks if it is correctly reg-
istered before saving even if the “Save as…” but-
ton is enabled when the button “Enable Me” is
clicked, well click on checkRegStat() to see its
content: Figure 20.

Here is clear that there is a Boolean variable
that changes, which is isRegistered and till now
we made no changes regarding this. So if isRe-
istered is false (if (!this.isRegistered)…) the Crack
Me makes a call to the checkLicense() method, we
can see how isRegistered is initialized by clicking
on .ctor() method: Figure 21.
.ctor() is the default constructor where any mem-

ber variables are initialized to their default values.
Let’s go back and see what the method
checkLicense() does exactly: Figure 22.

This is for sure a simple simulation of software “li-
cense check” protection, the Crack Me checks for
the presence of a “lic.dat” file in the same directory
of the application startup path, in other words, the
Crack Me verifies if there is any “lic.dat” file in the
same directory as the main executable file.

want change is few bytes after this offset consider-
ing the method header.

Going back to the sequence of bytes we got a bit
ago 166F4000000A026F22000006 and going to the off-
set calculated before we get: Figure 15.

We want to change ldc.i4.0 which is equal to
16 by ldc.i4.1 which is equal to 17, let’s make this
change and see what it reproduces (before doing
any byte changes think always to make a backup
of the original file) (Figure 16).

And yes our first problem is solved; we still have
“Unregistered Crack Me” caption and still not test-
ed “Save as…” button. Once we click on the button
“Enable Me” we get the second one enabled which
is supposed to be the main program feature. By
giving it a try something bad happened: Figure 17.

Before saving, the program checks for a license,
if not found it disables everything and aborts the
saving process.

Protecting a program depends always on de-
veloper’s way of thinking, there is as mush ways
to protect software as mush ways to break them.
We can nevertheless store protections in “types”
or “kinds” of protections, among this, there is what
we call “license check” protections. Depending on
how developer imagined how the protection must
behave and how the license must be checked, the
protection’s difficulty changes.

Let’s see again inside our target: Figure 18.
The method btn _ EnableMe _ Click _ 1() is trigged

when we press the button “Enable Me” we saw this,
btn _ About _ Click() is for showing the message

Figure 18. Methods shown by Reflector

Figure 17. Lic. Not found error

Figure 22. Method chcekLicense()

Figure 21. ctor() method

Figure 20. Original source code of checkReStat() method

Figure 19. btn_EnableMe_Click() actual code source

48 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF

listing 2. checkLicence() IL code

.method public instance void checkLicence() cil managed
{
 .maxstack 3
 .locals init (
 [0] string str,
 [1] valuetype [System.Drawing]System.Drawing.Color color)
 L_0000: call string [System.Windows.Forms]System.Windows.Forms.Application::get_StartupPath()
 L_0005: ldstr “\\lic.dat”
 L_000a: call string [mscorlib]System.String::Concat(string, string)
 L_000f: stloc.0
 L_0010: ldloc.0
 L_0011: call bool [mscorlib]System.IO.File::Exists(string)
 L_0016: brtrue.s L_006b
 L_0018: ldstr “license file missing. Cannot save file.”
 L_001d: ldc.i4.s 0x10
 L_001f: ldstr “License not found”
 L_0024: call valuetype [Microsoft.VisualBasic]Microsoft.VisualBasic.MsgBoxResult [Microsoft.

VisualBasic]Microsoft.VisualBasic.Interaction::MsgBox(object, valuetype [Micro-
soft.VisualBasic]Microsoft.VisualBasic.MsgBoxStyle, object)

 L_0029: pop
 L_002a: ldarg.0
 L_002b: ldc.i4.0
 L_002c: stfld bool CrackMe2_HidenName_dotNET_Reversing.MainForm::isRegistered
 L_0031: ldarg.0
 L_0032: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_LblStat()
 L_0037: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.

Color::get_Red()
 L_003c: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set_

ForeColor(valuetype [System.Drawing]System.Drawing.Color)
 L_0041: ldarg.0
 L_0042: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_LblStat()
 L_0047: ldstr “Unregistered Crack Me”
 L_004c: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Label::set_

Text(string)
 L_0051: ldarg.0
 L_0052: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_btnEnableMe()
 L_0057: ldc.i4.0
 L_0058: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set_

Enabled(bool)
 L_005d: ldarg.0
 L_005e: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_btnSaveAs()
 L_0063: ldc.i4.0
 L_0064: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set_

Enabled(bool)
 L_0069: br.s L_0092
 L_006b: ldarg.0
 L_006c: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2_

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm/checkLicence()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Application
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Application/get_StartupPath():String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.IO.File/Exists(String):Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a/Microsoft.VisualBasic.Interaction
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a/Microsoft.VisualBasic.Interaction/MsgBox(Object,Microsoft.VisualBasic.MsgBoxStyle,Object):Microsoft.VisualBasic.MsgBoxResult
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Object
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Object
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm

www.hakin9.org/en 49

Well, technically at this point, we can figure out
many solutions to make our program run fully, if we
remove the call to the checkLicense() method, we
will remove the same way the main feature which
is saving, since it is done only once the checking is
done (Figure 2).

If we force the isRegistered variable taking the
value True by changing its initialization (Figure 3),
we will lose the call to checkLicense() method that
itself calls the main feature (“saving”) as its only
called if isRegistered is equal to false as seen here
(refer to Figure 2):

public void checkRegStat()
{
 this.LblStat.ForeColor = Color.Green;
 this.LblStat.Text = «Saving...»;
 if (!this.isRegistered)
 {
 this.checkLicence();
 }
}

We can alter the branch statement (if… else… en-
dif, Figure 4) the way we can save only if the li-
cense file is not found.

We saw how to perform byte patching the “clas-
sical” way using offsets and hexadecimal editor, I’ll
introduce you an easy way which is less technical
and can save us considered time.

We will switch again to Reflector (please refer
to previous parts of this series for further informa-
tion), this tool can be extended using plug-ins, we
will use Reflexil, a Reflector add-In that will allow
us editing and manipulating IL code then saving
the modifications to disk. After downloading Re-

HidenName_dotNET_Reversing.MainForm::get_LblStat()
 L_0071: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.

Color::get_Green()
 L_0076: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set_

ForeColor(valuetype [System.Drawing]System.Drawing.Color)
 L_007b: ldarg.0
 L_007c: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2_

HidenName_dotNET_Reversing.MainForm::get_LblStat()
 L_0081: ldstr “File saved !”
 L_0086: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Label::set_

Text(string)
 L_008b: ldarg.0
 L_008c: ldc.i4.1
 L_008d: stfld bool CrackMe2_HidenName_dotNET_Reversing.MainForm::isRegistered
 L_0092: ret
}

flexil you need to install it; Open Reflector and go
to Tools -> Add-ins (in some versions View -> Add-
ins), a window will appear click on “Add…” and se-
lect “Reflexil.Reflector.dll”; Once you are done you
can see your plug-in added to the Add-ins window
which you can close.

Well basically we want to modify the Crack Me a
way we get “File saved!”, Switch the view to see IL
code representation of this C# code: Listing 2.

I marked interesting instructions that need some
explanations, so basically we have this:

.method public instance void checkLicence() cil
managed

{
 .maxstack 3
//
(...)
 L_0011: call bool [mscorlib]System.

IO.File::Exists(string)
 L_0016: brtrue.s L_006b
 L_0018: ldstr “license file missing.

Cannot save file.”
(...)
 L_0069: br.s L_0092
 L_006b: ldarg.0
(...)
 L_0081: ldstr «File saved !»
(...)
 L_0092: ret
}

By referring to our IL instructions reference we
have: Table 3.

The Crack Me makes a Boolean test regarding
the license file presence (Figure 4), if file found

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm/checkLicence()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.IO.File/Exists(String):Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String

50 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF it returns True, which means brtrue.s will jump to
the line L_006b and the Crack Me will load “File
saved!” string, otherwise it will go to the uncon-
ditional transfer control br.s that will transfer con-
trol to the instruction ret to get out from the whole
method.

Table 3. IL Instructions

IL
Instruction

Function Byte
representation

Call Calls the method indicated
by the passed method
descriptor.

28

Brtrue.s Transfers control to a target
instruction (short form) if
value is true, not null, or
non-zero.

2D

Br.s Unconditionally transfers
control to a target
instruction (short form).

2B

Ret Returns from the current
method, pushing a return
value (if present) from the
caller’s evaluation stack
onto the caller’s evaluation
stack.

2A

Remember, we want our Crack Me to check for
license file absence the way it returns True if file
not found so it loads “File saved!” string. Let’s get
back to reflector, now we have found the section
of code we want to change (Figure 5), here comes
the role of our add-in Reflexil, on the menu go to
Tool -> Reflexil v1.x; This way you can get Reflexil
panel under the source code or IL code shown by
Reflector: Figure 23.

This is the IL code instruction panel of Reflexil
as you can see, there are two ways you can make
changes using this add-in but I’ll introduce for now
only one, we will see how to edit instructions using
IL code.

After analyzing the IL code above we know that
we have to change the “if not found” by “if found”
which means changing brtrue.s (Table 1) by its op-
posite, by returning to the IL code reference we find,
brfalse.s: Branch to target if value is zero (false),

Figure 23. Reflexil add-in panel

Figure 24. Reflexil panel

Figure 25. Editing instruction on Reflexil

Figure 26. Saving changes on Reflexil

www.hakin9.org/en

short form. This said, on Reflexil’s panel; find out
where is the line we want to change: Figure 24.

Right click on the selected line -> Edit…, now you
get a window that looks like: Figure 25.

Remove “brtrue.s” and type the new instruction
“brfalse.s” then click “Update”, you see your modifi-
cation done. To save “physically” this change, right
click on the root of the disassembled Crack Me se-
lect Reflexilv1.x then Save as… (Figure 26).

This way we have a modified copy of our Crack
Me, we have the “Enable Me” button enabled, by
clicking on it we enable “Save as…” button and by
clicking on this last we get our “File Saved!” mes-
sage: Figure 27.

This article is at his end, it takes more time with
more complex algorithms and protections but if you
are able to get the IL code and can read it clearly
you will with no doubt be able to bypass software
protection.

SOuFIANE TAHIRI
Soufiane Tahiri is also an InfoSec Insti-
tute contributor, and computer secu-
rity researcher from Morocco, special-
izing in reverse code engineering and
software security. He is also founder
of www.itsecurity.ma and practiced
reversing for more several years. Dy-
namic and very involved, Soufiane is
ready to catch any serious opportuni-

ty to be part of a workgroup. Contact Soufiane in what-
ever way works for you: Email:soufianetahiri@gmail.
com Twitter: https://twitter.com/i7s3curi7y LinkedIn:
http://ma.linkedin.com/in/soufianetahiri.

Figure 27. All problems are solved!

References
• Reflexi l – http://sourceforge.net/projects/reflexil/
• Dumpbin – ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/

DUMPBIN.EXE
• LINK.exe – ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/

LINK.EXE
• Crack ME #2 – http://www.mediafire.com/?42vml4fl-

c6yj097

http://www.itsecurity.ma/
mailto:soufianetahiri@gmail.com
mailto:soufianetahiri@gmail.com
https://twitter.com/i7s3curi7y
http://ma.linkedin.com/in/soufianetahiri
http://sourceforge.net/projects/reflexil/
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/DUMPBIN.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/DUMPBIN.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/LINK.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/LINK.EXE
http://www.mediafire.com/?42vml4flc6yj097
http://www.mediafire.com/?42vml4flc6yj097
http://wwww.uat.edu

52 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF Reversing with
Stack-Overflow and
Exploitation
The theater of the Information security professional has changed
drastically in rhe world of computing or digital World. So we are
going to find the root.The keynote for secure the business is
complete analysis of internal Business.

The prevalence of security holes in program
and protocols, the increasing size and com-
plexity of the internet, and the sensitivity of

the information stored throughout have created a
target-rich environment for our next generation
advisory. The criminal element is applying ad-
vance technique to evade the software/tool secu-
rity. So the Knowledge of Analysis is necessary.
And that pin point is called “The Art Of Reverse
Engineering”

What is Reverse Engineering
Reverse engineering is the process of taking a
compiled binary and attempting to recreate (or
simply understand) the original way the program
works. A programmer initially writes a program,
usually in a high-level language such as C++ or
Visual Basic (or God forbid, Delphi). Because the
computer does not inherently speak these lan-
guages, the code that the programmer wrote is
assembled into a more machine specific format,
one to which a computer does speak. This code is
called, originally enough, machine language. This
code is not very human friendly, and often times
requires a great deal of brain power to figure out
exactly what the programmer had in mind.

Why Should you Know

• Military or commercial espionage. Learning
about an enemy’s or competitor’s latest re-
search by stealing or capturing a prototype and
dismantling it. It may result in development of
similar product.

• Improve documentation shortcomings. Reverse
engineering can be done when documenta-
tion of a system for its design, production, op-
eration or maintenance have shortcomings and
original designers are not available to improve
it. RE of software can provide the most current
documentation necessary for understanding
the most current state of a software system

• Software Modernization. RE is generally need-
ed in order to understand the ‘as is’ state of ex-
isting or legacy software in order to proper-
ly estimate the effort required to migrate sys-
tem knowledge into a ‘to be’ state. Much of this
may be driven by changing functional, compli-
ance or security requirements.

• Product Security Analysis. To examine how a
product works, what are specifications of its
components, estimate costs and identify poten-
tial patent infringement.

• Bug fixing. To fix (or sometimes to enhance)
legacy software which is no longer supported
by its creators.

• Creation of unlicensed/unapproved duplicates.
• Academic/learning purposes. RE for learning

purposes may be understand the key issues of
an unsuccessful design and subsequently im-
prove the design.

• Competitive technical intelligence. Understand
what your competitor is actually doing, versus
what they say they are doing.

What Should you Know?
The Stack: The stack is a piece of the process
memory, a data structure that works LIFO (Last

@grehack
Journal in Computer Virology
and Hacking Techniques

www.grehack.org

Program committee

Grenoble, France
November 15, 2013

Mario Heiderich (Ruhr U. Bochum, Germany)
Pascal Lafourcade (VERIMAG, France)
Cédric Lauradoux (INRIA, France)
Pascal Malterre (CEA-DAM, France)
Laurent Mounier (VERIMAG, France)
Marie-Laure Potet (VERIMAG, France)
Paul Rascagneres Paul Rascagneres (Malware.Lu, Luxembourg)
Sanjay Rawat (India)
Raphaël Rigo (ANSSI, France)
Nicolas Ruff (EADS Innovation Works, France)
Steven Seeley (Immunity, US)
Fermin J. Serna (Google, US)
Nikita Tarakanov (Russia)

(Intel, Israel) Dan Alloun
(NICT, Japan) Ruo Ando

(Kudelski Sec., Switz.)Jean-Philippe Aumasson
(Google, US) Elie Bursztein

(CEA-DAM, France) Fabrice Desclaux
(UCSB, US) Adam Doupe

(LIG, France) (LIG, France) Fabien Duchène
(Veracode, US) Chris Eng

(Corelan, Belgium) Peter Van Eeckhoutte
(CMU, US) Manuel Egele

(IF-UJF, France) Philippe Elbaz-Vincent
(ESIEA, France) Eric Filiol

(Thailand) The Grugq

2nd International Symposium in Grey-Hat Hacking
Submission deadline: June 30, 2013

Network Exfiltration
Applied Cryptography & Cryptanalysis

Intrusion Detection & Prevention
Security & Privacy in Cloud, P2P

Penetration Testing
Disclosure & Ethics

Digital ForensicsDigital Forensics

Vulnerability Discovery, & Exploitation
Reverse Engineering & Obfuscation
Malware Creation, Analysis & Prevention
Embedded Systems Security
Hardware Vulnerabilities
Web Application Security

http://grehack.org/en/

54 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF in first out). A stack gets allocated by the OS, for
each thread (when the thread is created). When
the thread ends, the stack is cleared as well. The
size of the stack is defined when it gets created
and doesn’t change. Combined with LIFO and the
fact that it does not require complex management
structures/mechanisms to get managed, the stack
is pretty fast, but limited in size.

LIFO means that the most recent placed data (re-
sult of a PUSH instruction) is the first one that will
be removed from the stack again. (by a POP in-
struction).

Each and every software has predefined subrou-
tine or sub function that is called dynamically in the
program, means

When a function/subroutine is entered, a stack
frame is created. This frame keeps the parame-
ters of the parent procedure together and is used
to pass arguments to the subrouting. The current
location of the stack can be accessed via the stack
pointer (ESP), the current base of the function
is contained in the base pointer (EBP) (or frame
pointer).

The CPU’s general purpose registers (Intel, x86)
are:

• EAX: accumulator: used for performing calcu-
lations, and to store return values from function
calls. Basic operations such as add, subtract,
compare use this general-purpose register.

• EBX: base (does not have anything to do with
base pointer). It has no general purpose and
can be used to store data.

• ECX: counter: used for iterations. ECX counts
downward.

• EDX: data: this is an extension of the EAX reg-
ister. It allows for more complex calculations
(multiply, divide) by allowing extra data to be
stored to facilitate those calculations.

• ESP: stack pointer
• EBP: base pointer
• ESI: source index: holds location of input data
• EDI: destination index: points to location of

where result of data operation is stored
• EIP: instruction pointer

So The Espinosa tools are used for complete go
through or analytic of software which are listed
below.

What kinds of tools are used?
There are many different kinds of tools used in
reversing. Many are specific to the types of pro-
tection that must be overcome to reverse a bi-
nary. There are also several that just make the

reverser’s life easier. And then some are what I
consider the ‘staple’ items- the ones you use reg-
ularly. For the most part, the tools fit into a couple
categories:

Disassemblers
Disassemblers attempt to take the machine lan-
guage codes in the binary and display them in
a friendlier format. They also extrapolate data
such as function calls, passed variables and text
strings. This makes the executable look more like
human-readable code as opposed to a bunch of
numbers strung together. There are many disas-
semblers out there, some of them specializing in
certain things (such as binaries written in Del-
phi). Mostly it comes down to the one your most
comfortable with. I invariably find myself working
with IDA.

Debuggers
Debuggers are the bread and butter for reverse
engineers. They first analyze the binary, much like
a disassembler Debuggers then allow the reverser
to step through the code, running one line at a time
and investigating the results. This is invaluable to
discover how a program works. Finally, some de-
buggers allow certain instructions in the code to be
changed and then run again with these changes in
place. Examples of debuggers are Windbg, Immu-
nity Debugger and Ollydbg. I almost uses Immu-
nity debugger and ollydbg.

REAl ATTACK
Before start this we are using the following vulner-
ability which have stack based overflow and we will
reversely analyze that file and will exploit for our
cause.

• Vulnerability item-RM To MP3 Converter
• BOX-Windows xp SP2/SP3 (I m using sp3)
• Tool: Ollydbg, Immunity Debugger
• Backtrack Machine/Machine with metasploit in-

stalled

First of all create a python script with predefined
written data into buffer and create a .m3u file.
Open this file in rm to mp3 converter.so the file/
software will crash due to stack overflow. In the
image I loaded a script with 30,000 bytes of da-
ta into mp3 file which will get crash on the 2nd im-
age or buffer overflow causes. This is the pro-
gram (Figure 1).

#!/usr/bin/python
filename =’30000.m3u’buffer = “\x41” * 30000

www.hakin9.org/en 55

file = open(filename,’w’)
print”Done!”
file.close()

So the below diagram is the crash file of rm to
mp3 (Figure 2).

The Debugger
In order to see the state of the stack (and value
of registers such as the instruction pointer, stack
pointer etc.), we need to hook up a debugger to
the application, so we can see what happens at
the time the application runs (and especially when
it dies).

There are many debuggers available for this
purpose. The two debuggers I use most often are
ollydbg, and Immunity’s Debugger (Figure 3 and
Figure 4).

This GUI shows the same information, but in a
more…errr.. graphical way. In the upper left corner,
you have the CPU view, which shows assembly in-
structions and their opcodes (the window is emp-
ty because EIP currently points at 41414141 and
that’s not a valid address). In the upper right win-
dows, you can see the registers. In the lower left
corner, you see the memory dump of 00446000 in
this case. In the lower right corner, you can see the

contents of the stack (so the contents of memory at
the location where ESP points at).

Anyways, in both cases, we can see that the in-
struction pointer contains 41414141, which is the
hexidecimal representation for AAAA. And The
Position is called “offset” value.

Checking The EIP Position

• From the result we know that the ESP and EIP
register is overwritten.

• We don’t know where the ESP and EIP register
overwritten, so we make the structured string
using pattern_create.rb to know the location
the register overwritten.

Backtrack has the solution like metasploit.so we
will use

root@dimitry-TravelMate-5730:/opt/metasploit3/msf3/
tools# ./pattern_create.rb 30000

we will got a generation and we will again cre-
ate m3u file and run to the rm to mp3 converter to
see the result (Figure 5).

Again Creating a m3u file with the following gen-
eration to check EIP Location and we have to open

Figure 4. Debugger Analysis with Ollydbg

Figure 3. Debugger Analysis with Immunity Debugger

Figure 2. Crash with RM to mp3 Converter

Figure 1. Fuzzer Test with 30,000 Bytes of Data

56 03/2013

R
EV

ER
SE

 iT
 Y

O
U

R
SE

LF in rm to mp3 converter (Figure 6 and Figure 7). So
we will get a value which is nearer between 5792
to 26072.see the picture below. so in that location
EIP Value is written. EIP sits between 25000 and
30000.

For that reason I have taken 30000 byte of data
to see what happens to the data or program. see
the picture below you will understand (Figure 8).

In the above screen I used two command to
check the EIP AND ESP Location and fortunately
I have not get any value for 2nd option and I got
1st value 5792 for command, because I have taken
the beyond bytes of data.

Figure 5. Checking the EIP Position with Msfcreat
Figure 8. Our Buffer Overflow String

Figure 7. Compile with Ollydbg

Figure 6. Compile with Immunity

Finding jMP ESP And Memory location
Before try to exploit we should know the exact
memory location, JMP, ESP Location so that our
exploit will work perfectly.

Ollydbg: go to view-executable modules and
search for Shell 32 modules and

right click on shell32, view JMP ESP Command
and location.

Same procedure will be applied for Immumnity
Debugger. For More Information See the Figure 9

Analysis in Immunity Debugger see Figure 10.
Analysis in Ollydbg.

Figure 10. Locating JMP EsP IN Ollydbg

Figure 9. Locationg JMP EsP In Immunity

www.hakin9.org/en 57

Figure 11. x/86/shikata_ga_nai encoder

Figure 13. Application View and Our Programm Ran (CALAC.
EXE)

Figure 12. Final exploit that we will insert our encoder

Creating Our Own Exolit and let Die The
Application
As we know creating and building exploit there is
great contribution towards Metasploit Built-in Pay-
load generator and encoders. so we will use one of
them for our Development of exploit.

So we will use Encoder: x86/shikata _ ga _ nai
which is a good encoders for generating the pay-
load which can be available in just writing msf-
console-show payloads-use payload(in this case
bind_tcp)-show encoder-generate encoder

And we will use a program namely calculator in
windows machine to boom the application.For That
we have to riun a perl script behind it and open in
rm to mp3 converter (Figure 11).

So we will add the encoder to our final exploit to
run calculator on “rm to mp3 converter” to get buf-
fer overflow.

And Exactly we add the location of memory as
well as EIP ESP Location into exploit of our code
to get into buffer.

Again Create Vulnerable .m3u file and run in “rm
to mp3 converter” to see the calculator and to ana-
lyze in debugger either we have to open in immu-
nity debugger or ollydbg debugger and analyze lo-
cation where EIP AND ESP Overwritten (Figure 12
and Figure 13).

Application Boom to Calculator Application.
You can create the .m3u file and reverse connect

to your shell some tool like nmap.netcat etc…

BIKASH DASH
Bikash Dash over 3 years of experience it security, mal-
ware analysis,Reverse engineering, Firewall security,
Trojan Analysis. PE Auditor, Assembly Programming Cy-
ber crime analyst, threat management, Honeypot anal-
ysis, Speaker.
Current Position:Ethical Hacker At Innnobuzz Knowl-
edge solution
Contact-Bikash Dash
Web: www.whitehatsecurity.in
Email: bikash.nit.12@gmail.com

http://www.whitehatsecurity.in
mailto:mailto:bikash.nit.12%40gmail.com?subject=

Justin Searle will be in Istanbul to
provide 4 days of intensive training

Now.

Duration : 4 Days
Date: 30th of june till 3rd of July

Place : Istanbul, Turkey

http://www.bluekaizen.org/samurai

www.titania.com
T: +44 (0) 1905 888785

evaluate for free at
www.titania.com

What do all these have in common?

They all use Nipper Studio
to audit their firewalls, switches & routers

SME
pricing from

£650
scaling to

enterprise level

Nipper Studio is an award winning configuration auditing tool which
analyses vulnerabilities and security weaknesses. You can use our point
and click interface or automate using scripts. Reports show:

1) Severity of the Threat & Ease of Resolution

2) Configuration Change Tracking & Analysis

3) Potential Solutions including Command Line Fixes to resolve the Issue

Nipper Studio doesn’t produce any network traffic, doesn’t need to
interact directly with devices and can be used in secure environments.

https://www.titania-security.com/

	Cover
	Editor’s Note
	Contents
	Reversing with Stack-Overflow and Exploitation
	Malware Reverse Engineering: Zeus Trojan - Part1
	Android Reverse Engineering: an introductory guide to malware analysis
	Write your own Debugger
	Reverse Engineering - Shellcodes Techniques
	Deep Inside Malicious PDF
	How to Reverse Engineer dot net Assemblies

	Previouse Page:
	Page 6: Off
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:

	Go To Next Page:
	Page 6: Off
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:

	Previouse Page 1:
	Page 7: Off
	Page 9:
	Page 11:
	Page 13:
	Page 15:
	Page 19:
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 29:
	Page 31:
	Page 35:
	Page 39:
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 51:
	Page 55:
	Page 57:

	Go To Next Page 1:
	Page 7: Off
	Page 9:
	Page 11:
	Page 13:
	Page 15:
	Page 19:
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 31:
	Page 35:
	Page 39:
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 49:
	Page 55:
	Page 57:

	uat:
	edu 5: Off

