

www.lostpassword.com/kit-forensic.htm

Final CALL FOR CHAPTER PROPOSALS
Proposal Submission Deadline: January 20, 2012

Theory and Practice of Cryptography Solutions for Secure Information Systems
An edited book to be published by IGI Global

Introduction

Information systems (IS) play a central part in all aspects of our world from science, engineering to industry, from business, law, politics to government, from

culture, society to health, from operational support in daily life, and homeland protection to national security. Without proper security precautions, IS are prone

to intolerable side effects such as leakage of operational and confidential data, identity theft and unauthorized access, and possibly modification of private data,

services and systems. Security services are required in order to guarantee information security and privacy protection, such as data confidentiality, data

authentication, anonymity, and entity authentication, non-repudiation of origin and receipt, access control, protection against denial of service, and secure

processing and deletion of data. In summary, dependable and trustworthy security solutions based on strong cryptography are needed.

Objectives of the Book

This book will focus on cryptography and its use for security of IS. It will also serve as a valuable source for information security and associated concerns in IS,

providing the reader state-of-the-art technologies and practices for creating secure IS through cryptographic solutions. Hence, manuscripts will be expected to

cover recent research and advanced development in the use of cryptography in IS. In addition, topics related to cryptography and networks, which are part of

the environments in which secure information systems must operate, will be considered favorably.

Chapter manuscripts will be chosen through peer/expert reviews to achieve high quality and maturity of expression. As such we hope to compile the best

manuscripts to cover the intended sequence of topics. We expect this book to receive high citation in the areas of information security, secure information

systems, applied mathematics, and computer science.

Target Audience

This edited book on cryptography and IS will propose contributions on a wide range of topics on foundations and applications written by a selection of

international experts. We aim to bring about a book covering the theory, practice, and tools of cryptography in producing secure IS. It will introduce

fundamentals briefly but dwell on advanced topics at much greater length. As such it will serve the needs of advanced learners, faculty and graduate students

alike, and should be suitable for practitioners, individual learners, and classroom adoption. The book will also serve as an important reference for developers of

secure IS applications and industry practitioners.

Recommended topics in theory, tools, and applications of cryptographic solutions for information systems include, but are not limited to the following:

• Cryptography • Agent & Multi-agent System Security

• Cryptography and Security • Authentication & Authorization

• Cryptography and Data Protection • Engineering Secure Information Systems

• Cryptography and Privacy • Forensics and Ethical Hacking

• Cryptography and Cryptanalysis • Key Management

• Cryptographic Protocols • Ontology of Cryptographic Solutions

• Cryptographic Solutions • Public-key Crypto Systems

• Copyright protection • Standards, guidelines and certification

Manuscripts in which cryptographic solutions for IS are not the main focus will not be accepted.

Submission Procedure

Researchers and practitioners are invited to submit by January 20, 2012, a 2-3 page chapter proposal clearly explaining the contributions of the chapter and

how it will address a cryptographic solution for IS. Authors of accepted proposals will be notified at the most in three weeks and sent chapter guidelines. Full

chapters of about 20 pages are expected to be submitted by April 27, 2012. All the submitted chapters will be reviewed on a double-blind review basis.

Contributors may also be requested to serve as reviewers for this project.

All proposals must be submitted electronically via the Submission Site (https://cmt.research.microsoft.com/CRYPSIS2012/) by the due date.

Publisher

This book is scheduled to be published by IGI Global (formerly Idea Group Inc.), publisher of the “Information Science Reference” (formerly Idea Group

Reference), “Medical Information Science Reference,” “Business Science Reference,” and “Engineering Science Reference” imprints. For additional information

about the publisher, please visit www.igi-global.com. This book is planned to be released early in late 2013.

Important Dates

January 20, 2012: Final Proposal Submission Deadline Aug 30, 2012: Revised Chapter Submission

April 27, 2012: Full Chapter Submission Sep 30, 2012: Final Acceptance Notification

July 27, 2012: Review Results Returned Oct 15, 2012: Final Chapter Submission

Contact Details

Inquiries may be forwarded by e-mail through the submission site, or directly addressed to the editors:

Atilla ELÇİ (Süleyman Demirel University, Turkey, atilla.elci@gmail.com), Josef PIEPRZYK (Macquarie University, Australia, josef.pieprzyk@mq.edu.au), Alexander
CHEFRANOV (Eastern Mediterranean University, North Cyprus, alexander.chefranov@emu.edu.tr), Mehmet ORGUN (Macquarie University, Australia,

mehmet.orgun@mq.edu.au), Huaxiong WANG (Nanyang Technological University, Singapore, hxwang@ntu.edu.sg), and Rajan SHANKARAN (Macquarie

University, Australia, rajan.shankaran@mq.edu.au).

Dated 2011.11.09

Managing:
Małgorzata Kułaga
malgorzata.kulaga@hakin9.org

Senior Consultant/Publisher:
Paweł Marciniak

Editor in Chief:
Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Art Director:
Marcin Ziółkowski GDStudio

DTP:
Marcin Ziółkowski GDStudio
www.gdstudio.pl

Production Director:
Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director:
Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Proofreadres:
Laszlo Acs, Bob Folden,
Specer Guion Choi, Rebecca Wynn

Betatesters:
Carlos Alberto Ayala, Nick Baronian,
Tyler Hudak, Rahul Malhotra, Michael Munt,
Karol Sitec, Jeffrey Smith, Rebecca Wynn

Publisher: Software Media Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
www.hakin9.org/en

Whilst every effort has been made to ensure
the high quality of the magazine, the editors
make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine
were used only for informative purposes.
All rights to trade marks presented in the
magazine are reserved by the companies
which own them.
To create graphs and diagrams we used
program by Mathematical formulas created
by Design Science MathType™ DISCLAIMER!
The techniques described in our articles may
only be used in private, local networks. The
editors hold no responsibility for misuse of the
presented techniques or consequent data loss.

Hello
everyone!

What’s up? There’s been a lot of ac-
tivity going on here at Hakin9. In
front of your very eyes you have the
latest issue of Hakin9 Extra. Also a

brand new issue is out – Hakin9 Mobile Security.
We’re now, beyond a shadow of a doubt, a weekly
magazine.

But let’s come back to the issue at hand (so to
speak). Wireless security is increasingly impor-
tant for everyday users and businesses alike. Ho-
wever, because it is so easily available and easy
to use, many of use forget that we still should
be careful and to employ at least some securi-
ty measures. This gives plenty opportunities for
hackers to get access to our personal informa-
tion and private files.

I strongly encourage you to read the article by
Rishabh Mehta Fake Access Point with Airsnarf. It
gives a basic introduction to wireless spoofing in
a very understandable way. Domonkos Pal Tomc-
sanyi wrote a really interesting article about
CCMP known plain text attack. The author breaks
down the attack in a series of detailed steps.

Outside the topic of wireless security, you sho-
uld read Managed Code Rootkits, an extremely
fascinating article by Erez Metula, whose book
to the same topic was published by Syngress Pu-
blishing. Also the researchers from VXRL have
prepared a great article: Facebook Forensics.
They have carried out various test activities in
Facebook and identified footprints and what evi-
dence could be extracted from memory, browser
cache and other spaces. I really recommend it to
anybody interested in social network security or
having Facebook account.

That’s all from me, folks.
Have a good reading!

Małgorzata Kułaga
& Hakin9 Team

FINE TECHNOLOGY BOOKS

www.feistyduck.com

Our books are available in paperback and a variety of digital formats: PDF, Mobi, EPUB, and online. No DRM.
The above discount codes will provide you with additional 20% off our current prices. The total discount will be
approximately 45% for purchases of ModSecurity Handbook and 60% for purchases of Apache Security.

60% off
code HAKIN9AS

45% off
code HAKIN9MS

“A book that will provide answers to
security issues you may not have
realized exist.”
 Mike Weber, Beginlinux.com

“All you need to harden your web
presence with ModSecurity is at your
fingertips.”
 Russ McRee, holisticinfosec.org

“The single best Apache security book
in print.”
 Richard Bejtlich, author of

The Tao of Network Security Monitoring
and Extrusion Detection

“Everyone running Apache needs this
book.”

Rich Bowen, author of Apache
Administrator's Handbook and

coauthor of Apache Cookbook

Special Promotion on Selected
Security Titles from Feisty Duck!

https://www.feistyduck.com

Hakin9 EXTRA

8. Creating Rouge Access Poin
 by Chandresh Kwatra, Praful Agarwal
 A big issue a few years back had to do with dial-related fraud in Rus-

sia. Basically, usernames and passwords to dial accounts were being
bought and sold on the black market and the owners of the stolen
credentials were being hit with enormous usage charges. In actua-
lity, this still takes place. With the onset of Public Wi-Fi locations, the
threat of fraud and misuse has also moved to the stealing of wireless
subscription credentials.

14. WPA2-CCMP known plain text attack
 by Domonkos Pal Tomcsanyi
 There hasn’t been much up in the �eld of WiFi security lately because

WPA/WPA2 combined with a strong password is truly secure; even
nowadays when people use GPUs to accelerate password cracking it is

 almost impossible to crack an arbitrary random WPA/WPA2 password
that contains numbers, letters and capitals in a reasonable timeframe.
Or is it though? Is it really impossible? Well it still needs a huge amount
of resources (processing power), but might be possible. But how? And
what is the WPA2-CCMP known plaintext attack about? Let’s dig a little
bit into WPA2, and �gure it out!

18. Wireless Standards And Practices
 by Richard C. Batka
 Wireless networking has fundamentally changed enterprise networking.

End point devices are no longer tethered to cables. The speed and dis-
tance between a wireless networking interface card and access point
is constantly increasing. To really understand wireless you need to take
a closer look at the 802.11 standard. Deep dive into this document and
you will see that standards are de�ned for frame types that wireless
network interface cards and access points use to send data back and
forth as well as manage the wireless link..

22. Managed Code Rootkits
 by Erez Metula
 We all know the story of the Trojan Horse, where the Greeks built

it to enter the city of Troy. It was an unimaginable trick used to
enter Troy after a 10 year siege. In the computer world, hackers use
similar tricks to fool the end-users into running their malware. The
end-users won’t run an application if they knew that it is malicious
software and therefore the attackers use di�erent tricks to fool the
end-users. They use the Trojan horse method, where they attach
their malware with a benign one. Therefore, when the user installs
the benign application it means he will install the malicious one as
well.

30. Short URL
 by Yaser Alosefer
 In�uencing source code is not a new idea. Injecting malicious code

secretly by the compiler or the IDE was introduced a while ago. Using
managed code rootkits (MCRs), we can take this kind of attack a bit
further, by changing the actual meaning of the compiled code after
it was created. As such, no changes occur at the compile-level execu-
table code. The executable stays the same, as opposed to the other
attacks that targeted the compiled executable only containing the
injected code.

34. Facebook Forensics
 by Kelvin Wong, Anthony C.T. Lai,

 Jason C. K. Yeung, W. L. Lee, P. H. Chan
 Facebook is a well-known social networking application and connect

people all over the world. We have carried out various test activities in
Facebook and identi�ed footprints and evidence could be extracted

 from memory, browser cache and other spaces; In addition, we have
tested it with various technology platforms to provide more detailed
and comprehensive forensics analysis.

8

Hakin9 EXTRA

7/2011 (7)

Stealing Wi-Fi Hotspot Subscription Credentials
A big issue a few years back had to do with dial-related fraud in
Russia. Basically, usernames and passwords to dial accounts
were being bought and sold on the black market and the own-
ers of the stolen credentials were being hit with enormous us-
age charges. In actuality, this still takes place. With the onset
of Public Wi-Fi locations, the threat of fraud and misuse has
also moved to the stealing of wireless subscription credentials.

An easy and inexpensive method to steal wireless subscrip-
tion credentials is by Access Point Phishing. As it stands today,
the only real methods a typical end-user has to determine if a
wireless access point is valid is by recognizing the SSID (name
of the wireless network) and ascertaining if the site has the
look and feel of the real public Wi-Fi hotspot login page. Unfor-
tunately for the end-user, both of these can be easily spoofed.
Here’s how it’s done and no, you won’t have to carry a wireless
access point around to do this.

Performing this technique requires two steps:

1. Setting up your computer to look like an actual Access
Point broadcasting the appropriate SSID

2. Having the walled-garden, or login page that your comput-
er will display look like the real login page of the provider
whose signal you are broadcasting

It’s not hard to make your computer broadcast the SSID of your
choice, in an attempt to get a person to connect to you instead
of a valid Wi-Fi hotspot SSID. The problem with the ‘easy way’
is that the potential victim sees that this is an Ad-Hoc network
and most people these days know not to connect to these. So,
we employ the use of Airsnarf by the Schmoo Group to make

this signal look like it’s coming from an Access Point. Essentially,
we will be turning the laptop into an Access Point.

The most difficult part of using Airsnarf and other HostAP
(Host Access Point) reliant programs is finding a card that sup-
ports the HostAP drivers. Airsnarf consists of a number of con-
figurable files that control how it operates.

Where to get Airsnarf
BackTrack (BT) is a live CD based on Slax, hence Slackware,
it is evolved from the widely adopted Whax and Auditor secu-
rity distributions.

Slackware is one of the many Linux distribution, Slax is a linux
live-distro version based on Slackware. BackTrack is a Penetra-
tion Testing oriented live-distro based on Slax.

BT has an intuitive layout, some tools are available in the
menu and invoke automated scripts, most of the analysis tools
are located either in the path or in the /pentest directory. It is
possible to explore wireless tools under /pentest/wireless.

Airsnarf is located at /pentest/wireless/airsnarf-0.2

Using Airsnarf
With Airnsnarf configured with default design settings, it will dis-
play a default login page that looks like the following. To make

FAKE ACCESS POINT
WITH AIRSNARF

Wireless hotspots are everywhere. A mobile user can obtain
connectivity quickly and easily in a wide variety of public locations.
Some of these hotspots are free and some of them require a fee
or subscription. Either way, you will continue to see how being in
a public Wi-Fi hotspot poses the greatest security risk you will find.

CHANDRESH KWATRA, PRAFUL AGARWAL

Figure 1: airsnarf.cfg �le used to con�gure basic Airsnarf functionality

Fake Access Point with Airsnarf

www.hakin9.org/en 9

this attack really work, this login page needs to be modified to
look just like a real Wi-Fi hotspot provider’s login. Depending
upon your HTML skills, you can either get real fancy or just
stick to basics.

Once the user enters their credentials and hits the Login but-
ton, their credentials have been compromised and can be used
by the person with ill-intent. This could be only the beginning,
though. Commonly, users will utilize the same username and
password for many different accounts/websites. Consequently,
the username and password that were just grabbed may en-
able a hacker to access the user’s e-mail, online banking, etc.

This login page will take the username and password that
is entered and will dump them into a file where it can be read.

Figure 2: dhcpd.src �le can used to con�gure the DCHP settings of the access
point created

Figure 3: Airsnarf – A roque AP Login Page

Once Airsnarf is configured and the customer Login page is
created, the attack can be launched. Any airport, coffee shop,
or other public area where people utilize their laptops will work.
To launch the attack, activate Airsnarf by typing the ./airsnarf
command. Below is an example of what you’ll see when the
attack is launched.

Figure 4: Airsnarf being launched and waiting for a connection

An end-user attempting to connect to the hotspot will see the
SSID that was entered into the airsnarf.cfg file and use their
computer to connect to that network. Upon launching their
browser, they will be prompted to enter their username and
password.

Figure 5: Windows Zero Con�g showing the KYRION HotSpot being
broadcast by Airsnarf

Figure 6: Gmail log in page

Preventing Attack
There are basically two things to combating the previous hacks:

1. Taking measures to ensure a hotspot is valid
2. Protecting the machine against browser-based exploits

The following table lists all wireless tools included in BT with a
short description and homepage:

Figure 7: Example of credentials entered into Airsnarf AP Phishing Site and
dumped to a �le

10

Hakin9 EXTRA

7/2011 (7)

Tools Description

AFrag First implementation of the Fragmentation Attack on Linux.

ASLeap This tool is released as a proof-of-concept to demonstrate
weaknesses in the LEAP and PPTP protocols.

Air Crack Aircrack is an 802.11 WEP and WPA-PSK keys cracking program that can recover keys once enough data
packets have been captured. It implements the standard FMS attack along with some optimizations like
KoreK attacks, thus making the attack much faster compared to other WEP cracking tools. In fact,
aircrack is a set of tools for auditing wireless networks.

Air Decap Air Decap decrypts WEP/WPA capture �les. Part of the aircrack suite.

Air Replay Air Replay 802.11 packet injection program. Part of the aircrack suite.

Airmon Airmon Script utility to check a wi� interfaces status and to set the interface in monitor mode.
Part of the aircrack suite.

Airpwn Airpwn requires two 802.11 interfaces in the case where driver can’t inject in monitor mode (lots of chipsets
do nowadays, see HCL:Wireless for a list). It uses a con�g �le with multiple con�g sections to respond to
speci�c data packets with arbitrary content. For example, in the HTML goatse example, we look for any TCP
data Packets starting with “GET” or “POST” and respond with a valid server response including a reference
to the canonical goatse image.

AirSnarf Airsnarf is a simple rogue wireless access point setup utility designed to demonstrate how a rogue AP can
steal usernames and passwords from public wireless hotspots. Airsnarf was developed and released to
demonstrate an inherent vulnerability of public 802.11b hotspots snar�ng usernames and passwords by
confusing users with DNS and HTTP redirects from a competing AP.

Airbase Airbase is the name of a collection of wireless utilites. Included in airbase you will �nd an aircrack re-
implementation, a distributed wep cracker (now with FPGA support), a library to help you craft/parse 802.11
packets, and various other supporting utilities. At the core of airbase is a C++ library called libairware.

Airodump Airodump 802.11 packet capture program. Part of the aircrack suite.
http://www.wirelessdefence.org/Cont ents/Aircrack_airodump.htm

Airoscript Airoscript aircrack-ng based wireless cracking script (must mkdir /home/root to function out of the box)

Airsnort AirSnort is a wireless LAN (WLAN) tool which recovers encryption keys.AirSnort operates by passively
monitoring transmissions, computing the encryption key when enough packets have been gathered.
http://airsnort.shmoo.com

Table 1: All wireless tools included in BT

http://www.pc-fix.cleaner.com

12

Hakin9 EXTRA

7/2011 (7)

The way WPA2 encrypts packets and authenticates clients
could be divided into two parts: master-key generation
and session-key setup (combined with authentication).

The first part isn’t really interesting and pretty simple: both the
client and the AP combine the password, the name of the net-
work and some other value into a string and then they use a spe-
cial function called PBKDF2 (Password Based Key Derivation
Function) to get the master key. In practical terms this means
that they call HMAC-SHA1 4096 times, feeding in the output of
the previous call into the function. This is defined in the stand-
ard, therefore there is no way around it (yet) and it is totally ef-
fective against bruteforce attacks; since generating master keys
is a really resource-hungry process.

So this left us with part number two: session-key setup. How
does that work? In WPA/WPA2 the standard defines a 4-way
handshake authentication. The AP starts the whole process by
generating a random number and sending it to the client. The
client previously generated a random number too, and now it
has the AP’s too so it is able to generate all the keys used for the
session. How many keys? In the case of WPA: four. In WPA2’s
case: three. Two keys for encryption and two/one key(s) for
message integrity checking. The first encryption key is used to
encrypt the authentication packets; the second is used to en-
crypt the actual data frames being transferred. The other two/
one are used the same way but instead of encryption, the com-
municating parties use them to create a cryptographic hash
of each data frame transmitted to protect their integrity. Now
let’s get back to the 4-way handshake: the client has all the

keys, but the AP doesn’t because it doesn’t know the client’s
random number. Naturally the client sends this number to the
AP but now it uses the authentication-integrity key to digitally
sign the packet. This makes it possible for the AP to generate
the session keys too, but in the same step authenticate the cli-
ent (by checking the signature after it created the keys). In the
third packet the AP sends the client the group session key that
is used to encrypt broadcast or multicast packets. Last but not
least, both parties tell each other that they are ready to use the
keys, and the encrypted communication begins.

This process could be attacked via simple passive sniffing. If
the attacker sniffs the first two packets, it will have all the ran-
dom numbers and a digital signature created by using one of
the keys. This means he can take a password (from a wordlist

WPA2-CCMP KNOWN
PLAIN TEXT ATTACK
– a new theory that might change the way we think about WiFi security

There hasn’t been many developments in the field of WiFi security
lately, because WPA/WPA2 (defined in the IEEE 802.11 standard)
combined with a strong password is truly secure; even nowadays
when people use GPUs to accelerate password cracking it is almost
impossible to crack an arbitrary random WPA/WPA2 password that
contains numbers, letters and capitals in a reasonable timeframe.
Or is it? Is it really impossible? Well it still needs a huge amount of
resources (processing power), but if for example, you use Amazon’s
cloud computing platform it might be possible. But how? And what
is the WPA2-CCMP known plaintext attack about? Let’s dig a little bit
into WPA2, and figure it out!

DOMONKOS TOMCSANYI

Figure 1: The PBKDF2 function’s signature

WPA2-CCMP known plain text attack

www.hakin9.org/en 13

or bruteforcing), go through the master-key generation, then
create the session keys, then sign the second packet and lastly
compare the signature with the one in the packet. It is a long and
resource-intense process, but it is a possibility.

Some people might say, “what are the odds that an attack-
er is going to sniff my network exactly in the moment I open
my session and complete the 4-way handshake?” Well that is
a valid question, but the answer is disappointing: management
packages in WiFi are always sent in plaintext, so any attacker
can impersonate your AP, de-authenticate you and while you
are reconnecting capture the 4-way handshake.

A good thing to note is that it is not possible to use a rain-
bowtable to support this kind of attack because the keys (which
are actually SHA1 hashes) are salted (with the name of the
network for example). There are however, so called hash-da-
tabases on the internet for WPA/WPA2 which some people like
to call rainbowtables, however they are not classical rainbowta-
bles, they are just giant databases that have passwords stored
on the left and the corresponding master keys on the right. Of
course these are limited to one specific SSID since the master
key is salted with the SSID and its length. The most popular was
created by a group called The Church of WiFi and it is around
33 GB in size, containing 1 million passwords and the corre-
sponding master keys for the 1000 most used SSIDs gathered
from various websites.

But now let’s get back to the part where you already have the
handshake, and want to crack the password, because that’s
where the WPA2 CCMP known plaintext attack kicks in. It tries

Figure 2: The WPA/WPA2 4-way handshake (source: Wikipedia)
ANonce, SNonce – AP random number and Client random number
MIC – Message Integrity Check, the digital signature
GTK – Group Temporal Key, the multicast encryption key

Figure 3: Simple graph showing how the performance of CCMP known
plaintext attack compares to the classic attack (the performance of PCs
grow from left to right)

13

[GEEKED AT BIRTH]

www.uat.edu > 877.UAT.GEEK

LEARN:
Advancing Computer Science
Artificial Life Programming
Digital Media
Digital Video
Enterprise Software Development
Game Art and Animation
Game Design
Game Programming
Human-Computer Interaction
Network Engineering

[IT’S IN YOUR PULSE]

You can talk the talk.
Can you walk the walk?

 Here’s a chance to prove it.

Network Security
Open Source Technologies
Robotics and Embedded Systems
Serious Games and Simulation
Strategic Technology Development
Technology Forensics
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

Please see www.uat.edu/fastfacts for the latest information about degree
program performance, placement and costs.

www.uat.edu

14

Hakin9 EXTRA

7/2011 (7)

to make the phase after the master-key generation faster by
applying a simple principle: instead of trying to re-create the
signature, we use a different key from the 4/3 session keys (the
data encryption key) and try to decrypt a data packet. Of course
this wouldn’t be any faster at all if we were going for the whole
packet, but the truth is: we only have to do one AES operation.
WPA2 uses AES-CBC as a block-cipher to encrypt packets with
the block size of 16 bytes. As you probably know, CBC mode
means that instead of the data we encrypt the value of a counter
(which is different for every block).

Once you have encrypted the counter, you XOR the encrypt-
ed-counter-value with the data that needs to be encrypted and
voilà, you got your data encrypted via AES-CBC. Of course with-
out the initial counter value and the algorithm used to change it,
the receiver party would not be able to decrypt your message,
so assuming the algorithm is known (consider i++;) the initial
counter value needs to be sent in plain text. This means that
we can extract the counter value used to encrypt the first block
of our captured packet from the packet itself. Now you might
ask, “okay you can do the decryption steps, but without the cor-
rect key you have no chance to distinguish between garbage
and proper data in the output”. Sadly this isn’t true, the flaw we
use relies in the standards: every single packet has the same
initial headers (called LLC/SNAP headers) applied to it before
encryption. This means we always know mostly half of the first
encrypted block (in the case of ARP packets we know more
because of their very well known constant header and length).

 Is it enough to know only half of a block? Actually it is. It is
pretty much impossible (or to be correct: very unlikely) that by
using the wrong key we will get the correct values for the first
8 bytes. Now you have probably figured out what our task is to
carry out the attack: we just need to keep trying to decrypt the
packet we captured from the air and look for this known header
in the plaintext. If we are able to generate a key that decrypts our
packet’s first bytes to the known header, we could be sure that
the key is valid (to make sure we can mount the signature-attack
and try to re-create the signature using the key we just found;
if it matches we could be 100% sure we found the right key).

This still doesn’t sound any faster, right? There is however
one more thing, and it was my friend and partner Lukas Lueg
(author of pyrit, the best WPA/WPA2 cracker software avail-
able currently) who actually found a number of shortcuts in the
session-key generator function which made it possible for us to
decrease the number of operations needed from 12-14 to 6-8,
giving us around a 50% boost in speed. Also the AES-NI instruc-
tion set implemented in newer Intel processors help in speed-
ing up the attack, because once we have a key-candidate, we
need to use AES for actually decrypting the packet. All the above
mentioned hash-dbs can be used with this new attack because
we still need a master-key to start from.

Of course if you look at the big picture you can see that 99% of
the time during cracking is used for generating possible master-
keys from passwords, so we actually cut the remaining 1% in
half. It could still be useful later because of a number of reasons:

1. This attack cannot be patched without creating a new
standard

2. Since it is on a pretty low level (number of instructions), as
hardware gets faster and faster our attack will always be
around 50% faster (see graph)

3. If you are using cloud services like Amazon E2C or some-
thing else you probably need every second you can spare
to make your project cheaper (usually you pay for the

amount of time you used the cloud), so in a cloud-based
cracking situation the CCMP known plaintext attack is a
must-use option. Lukas’s tool, Pyrit, can be used on the
Amazon E2C cloud.

How can you use it?
It is currently supported by pyrit, which does pretty much eve-
rything for you. So here are the steps you need to take if you
would like to try the CCMP-known plain text attack:

When you capture the 4-way handshake make sure you keep
capturing for a little more so your dump contains actual data
packets too. Pyrit is capable of using a WLAN card that is in
monitor mode, but you can also use airodump-ng to capture
the handshake.

After that you need to feed in the pcap file to pyrit. If you give
it the analyze command it will give you an output like this:

You might notice the asterisk (*) next to the handshakes, it
indicates that the CCMP-known plain text attack is possible.

After that you can go ahead as it says on pyrit’s Wikipedia
page (http://pyrit.googlecode.com) and give it the attack com-
mand but add the --aes option. This will enable the attack and
use it to crack the key.

You might also want to check out pyrit’s blog for more infor-
mation about the attack and the status of the project: http://pyrit.
wordpress.com

Of course now you probably want to know if there are any
possible countermeasures against this attack. Sadly as I already
mentioned it before to fix the problem a whole new standard
would have to be created, so there is nothing you can do ex-
cept switching to 802.1x which is by design not vulnerable to
this attack.

ABOUT THE AUTHOR:
Domonkos Pal Tomcsanyi
- have been dealing with WiFi-security since 2006
- co-author of the CCMP-known plaintext attack with Lu-
kas Lueg
- presented at various conferences about wireless security
(Hacktivity 2010 & 2011, HackerHalted Miami, USA)http://
domonkos.tomcsanyi.netdomonkos@tomcsanyi.net

Listing 1: Pyrit analysis

Listing 2: Cracking the key

GEEK 411 | UAT STUDENT LIFE MAGAZINE | 1

THEY SELDOM SMILE AT THE NSA. CAN YOU MAKE THEM GRIN?

Prepare to Defend!
www.uat.edu

877.828.4335

Learn how to synthesize and apply these vital skills and leadership ability to succeed in the fast moving �eld of Network Security.

Program accreditations, af�liations and certi�cations:

UAT has been designated as a Center
for Academic Excellence in Information
Systems Security Education by the US
National Security Agency

One of the most prestigious
Network Security programs

in the country

UAT’s coveted Bachelor of Science degree in
Network Security is a vital national resource

We will teach you the concepts
of security by design, and layered
security to protect against
exploitation of networks and data

CLUSTERGEEK WITH CAUTION!
LEARN, EXPERIENCE AND INNOVATE WITH THE FOLLOWING DEGREE STUDENTS: Advancing Computer Science,
Artificial Life Programming, Digital Media, Digital Video, Enterprise Software Development, Game Art and
Animation, Game Design, Game Programming, Human-Computer Interaction, Open Source Technologies,
Robotics and Embedded Systems, Serious Game and Simulation, Strategic Technology Development, Technology
Product Design, Technology Studies, Virtual Modeling and Design, Web and Social Media Technologies

Bachelor of Science
Network Engineering
Network Security
Technology Forensics

Master of Science
Information Assurance

GEEK 411 AD

SYSTEMS SECURITY FOR THE 21st CENTURY

PLEASE SEE WWW.UAT.EDU/FASTFACTS FOR THE LATEST INFORMATION ABOUT DEGREE PROGRAM PERFORMANCE, PLACEMENT AND COSTS.

www.uat.edu

16

Hakin9 EXTRA

7/2011 (7)

Wireless networking has fundamentally changed en-
terprise networking. End point devices are no longer
tethered to cables. The speed and distance between

a wireless networking interface card and access point is con-
stantly increasing.

To really understand wireless you need to take a closer look
at the 802.11 standard. Deep dive into this document and you
will see that standards are defined for frame types that wireless
network interface cards and access points use to send data
back and forth as well as manage the wireless link..

That’s all well and good but where do you look when things go
wrong? When problems occur on a wireless network you prob-
ably reach for your trusted network analyzer to look at the traf-
fic—What traffic? What exactly are you looking for? What does

it mean when an access point is „not advertising” for example?
In real terms? We will explore that in this article

Generally speaking there are three types of wireless frames:

•	 Management	
•	 Control
•	 Data

There are four types of wireless –management- frames:

•	 Beacons
•	 Probes
•	 Authentication
•	 Association

WIRELESS STANDARDS
& PRACTICES
NETWORK MANAGEMENT FRAMES

Wireless networking has fundamentally changed enterprise
networking. End point devices are no longer tethered to cables. The
speed and distance between a wireless networking interface card
and access point is constantly increasing.

RICHARD BATKA

http://www.alegriphotos.com/LAN_cables-photo-fa1df62c64499c0270eca569117164bb.html

WIRELESS STANDARDS & PRACTICES

www.hakin9.org/en 17

BEACON FRAME
Let’s	talk	about	the	beacon	frame.	A	Beacon	frame	is	a	critical	
key	management	frame	in	802.11	(WLAN)	environments.		Bea-
con frames are important because they advertise wireless net-
work information such as the SSID of an wireless access point.
A	typical	beacon	frame	is	50	bytes	long.	It	 includes	a	source	
and	destination	MAC	address.		In	most	cases	the	beacon	frame	
originates from an access point.
A	beacon	frame	has	the	following	parts	of	information	in	the	

frame body: beacon interval, timestamp, service set identifier
(SSID),	supported	rates	(more	on	this	below),	parameter	sets,	
capability	info,	and	traffic	indication	map	(called	TIM).

FACT
When a wireless interface card receives a beacon frame it’s
receiving a large manifesto of information about the wireless
access point that generated the frame.

DISCUSSION POINT:
TO ADVERTISE THE SSID OR NOT?
Some are in favor of advertising the SSID while others do not
support the practice. The commonly held view is that by allow-
ing beacon frames to propagate throughout your corporate envi-
ronment you open the door to a new attack vector and expanded
the enterprise attack surface. The “advertise/don’t advertise”
debate is almost academic at this point due to the widespread
proliferation of tools such as Kismet.

KISMET
Kismet lets you auto uncloak non-broadcasting access points
that don’t use beacon frames. Say for example that your net-
work	has	access	points	that	are	not	advertising.		No	problem.	

Kismet has the capability to detect if a client is talking to a un-
known/unadvertised access point! It knows the SSID a client is
using is valid because the client is communicating to that ac-
cess point.

Once you know the access point exists you can have Kismet
grab a probe from the client and hold on to it for future use. For
example let’s say at some point in the future you want to set up
a fake access point with the intention of forcing clients to con-
nect to it- Done.

BEACON FRAME STRUCTURE
The beacon frame has three parts:

•	 MAC	header
•	 Frame	Body
•	 Fcs

LAB PART-1: BACKTRACK, AIRMON-NG,
AND WIRESHARK: Setting up a wireless
wpacket sniffing environment.

BACKTRACK
BackTrack	is	a	Linux-based	penetration	testing	toolkit	that	lets	
security consultants perform assessments in a tailored environ-
ment.	.	Are	you	up	to	date	with	the	latest	BackTrak?	BackTrack	
5	(R1)	was	relased	8/18/11.	

Start BackTrack
Bring	up	a	one	of	your	interfaces	by	using	the	following	command:

ifconfig wlan0 up

http://www.alegriphotos.com/Network_router_indicator_lights-photo-3ff831e8d23b3f7620803efe87a574b4.html

18

Hakin9 EXTRA

7/2011 (7)

AIRMON-NG
AirMon-NG	is	a	script	that	comes	with	the	AirCrack-NG	suite	of	
tools. It’s amazing and can serve many purposes however its
primary function is to focus on wireless network interface cards
(client)	rather	than	wireless	access	points.

KEY USE: Wireless fishing attacks
Other examples include:

•	 Quickly	obtain	WPA	Handshake	or	WEP	Keys
•	 Confuse	access	points	and	nearby	clients

The	AirMon-NG	syntax	is:

airmon-ng <start|stop> <interface> [channel]

or airmon-ng <check|check kill>

Start AirMon-NG
Every environment and configuration will be slightly different
however	 in	my	case	I’m	starting	AirMon-NG	on	wireless	 lan	
channel	6.	You	can	start	AirMon-NG	with	the	following	com-
mand:

airmon-ng start wlan0 6

Now	that	your	interface	is	up	and	AirMon-NG	is	engaged,	you	
can	use	a	tool	called	MDK3	to	create	a	beacon	frame	with	a	
custom SSID. In my example I’m creating a SSID with the value
of ‚pluto’. Enter the following command:

MDK3 mon0 -b -c 6 -n pluto

Congratulations.	Your	access	point	now	has	a	SSID=pluto.	You	
can	now	go	and	open	a	another	console	window	in	BackTrack	
and get a list of all ESSID’s. To do that enter the following com-
mand:

ifconfig wlan5 up

iwlist wlan5 scan |grep ESSID

You will see your new SSID.

LAB PART-2:
IMPERSONATE A WIRELESS ACCESS POINT
Let’s first take a look at the full command set by entering the
following	command	in	a	new	BackTrack	window.

airbase-ng --help

This will show you what commands are available to you. Try
this command first. You will only need to specify a channel and
SSID.		Here	is	what	we	are	doing	and	the	associated	values:

•	 Channel=’-c’	value	=	6
•	 ESSID=’-e’	value	=	pluto
•	 Interface=’mon0’	value	=	mon0

Enter the following command:

airbase-ng -c 6 -e pluto mon0

First	thing	AirBase-NG	will	do	is	tell	you	that	it	has	created	a	
tap interface at 0.

FACT
When	AirBase-NG	is	started	it	creates	a	tap	interface.	
A	tap	interface	is	the	interface	that	AirBase-NG	will	use	to	let	

us	see	all	the	data	on	the	network.		However	the	tap	interface	is	
not	started	(raised/up)	by	default.		This	is	a	very	important	fact.	
We will need to bring up this interface.

To raise the tap interface type the following command:

ifconfig at0 up

To see all the options available to you type the following com-
mand:

ifconfig at0

FACT
The	TAP	interface	will	always	show	incoming	packets	after	de-
cryption and any packets sent to the tap interface will go over
the network encrypted.

This is possible when using the „-w” flag.

MTU
Maximum	Transmission	Unit	(MTU)	is	the	maximum	IP	packet	
size that will go out over the network before it gets split into
multiple packets.

FACT
Ethernet_II specification states that the largest packet size is
1500
After	entering	 the	previous	command	Airbase-NG	will	 re-

port back that a access point has been created and that it
has	the	BSSID	of	 the	Network	Interface	Card	(NIC-Example	
1A:0A:1A:11:1A:A1).

TIP
You	can	report	a	different	BSSID	if	you	choose	by	using	„-a”	op-
tion	or	by	using	a	tool	called	MACChanger

MAC CHANGER
Macchanger	is	a	utility	for	manipulating	the	MAC	address	of	net-
work interfaces and it now includes a graphical user interface!
Macchanger	will	let	you	set	the	MAC	randomly,	set	the	MAC	of	
another	vendor,	set	another	MAC	of	the	same	vendor,		set	a	
MAC	of	the	same	kind	(eg:	wireless	card),	and	display	a	vendor	
MAC	list	(today	about	6800	items)	to	choose	from.	
You’re	probably	asking	why	you	would	want	to	do	this.	Here	

are some possible usages:

•	 You’re	in	a	DHCP	network	with	some	kind	of	IP-based	re-
striction

•	 You’ve	got	a	cluster	that	boots	with	BOOTP	and	you	want	
to	have	a	clean	set	of	MACs

•	 You’re	trying	to	debug	MAC	based	routes

LAB PART-3: WireShark
Now	that	the	access	point	is	up	and	running,	you	can	start	Wire-
Shark.		WireShark	can	then	begin	to	monitor	(sniff)	the	network	
and inspect broadcast packets that you capture. I have my ac-
cess	point	set	up	with	a	fake	ssid	of	‚pluto’.		Now	I	can	copy	the	
BSSID.		The	BSSID	will	have	the	following	format	(Example)	
1A:0A:1A:11:1A:A1

WIRELESS STANDARDS & PRACTICES

www.hakin9.org/en 19

Install and start up WireShark.
Once	WireShark	 is	 installed,	select	the	‚Mon0’	 interface.	You	
can select the interface with the pull down menus in WireShark
by doing the following:

Menu > Select Capture > Interfaces > Start capturing packets
on the Mon0 interface.

After 1 min. [Stop] capturing tra�c.

USING FILTERS IN WIRESHARK
After	only	a	min.	you	will	have	a	significant	amount	of	traffic.	
You will have so much traffic in fact that you will want to apply
a filter so you can manage the large volume of data. In the ‚fil-
ter section” at the top of the screen, type in the following filter:

> WLAN.addr == 1A:0A:1A:11:1A:A1

Remember	that	the	goal	is	to	only	see	frames	[to]	and	[from]	the	
BSSID	(access	point).			So	now	you	have	entered	‚WLAN.addr	
==	1A:0A:1A:11:1A:A1’	into	the	search	bar.	Let’s	go	a	bit	further	
and	define	the	filter	some	more-	I	want	to	only	look	at	Beacon	
frames. I can do this by adding two ampersands „&&” and adding
„wlan.fc.type_subtype	==	0x08”.			I	am	now	only	looking	at	Bea-
con	frames	from	that	BSSID.		The	complete	filter	looks	like	this:	

WLAN.addr == 1A:0A:1A:11:1A:A1 && wlan.fc.type_subtype == 0x08”

•	 Open	the	first	captured	frame.	
•	 Expand	that	frame.
•	 Expand	the	IEEE	802.11	Beacon	frame	

You will see:

„Frame Control: = 0x0090 (Normal)” which means that you are
looking at a Beacon frame.

The	destination	address	 is	 	 „Broadcast	 (ff:ff:ff:ff:ff:ff)”	which	
means broadcast.

TIP
When you see ‚ff’ it means it’s being sent out for every host to
hear. Wireshark knows that it’s a wireless management frame.
You now have the ability to use very specific filters. This has
a tremendous advantage in that you are able to quickly parse
large amounts of data quickly.

Take a look at the last section titled:

„IEEE	802.11	wireless	LAN	management	frame”

Expand that section.
Look at the Fixed parameters and Tagged parameters. It’s within
this area that you will notice the „Tagged parameter”. You will
find a critical amount of information, for example.

EXAMPLE #1:

After	expanding	the	Fixed	parameters	section.	You	will	find	„ca-
pability information”. Look inside and you will see things like:

„Privacy: AP/STA cannot support WEP”

This means that privacy is not supported (which means „-w” op-
tion	has	not	been	set)	

Example #2:

„DSSS-OFDM: DSSS-OFDM modulation not allowed”

This	means	that	OFDM	is	not	supported.	

Look at Tagged parameters.
You	will	see	that	the	SSID	is	set	to	„pluto”.	Additionally,	you	can	
see the supported data rates are:
SUPPORTED	DATA	RATES	1.0,	2.0,	5.5,	11.0	and	the	EX-

TENDED	SUPPORTED	RATES	are	6.0,	9.0,	12.0,	18.0,	24.0,	
36.0,	48.0,	54.0.

This is the kind of information you will find inside a beacon
frame. You now know a lot more about the network you are on.
Most	of	you	will	be	looking	at	a	typical	802.11-G	wireless	net-
work. This information is important because it’s what the ac-
cess point advertises to the world all day long.

SUMMARY
This is the first step in gaining control of your wireless network.
Knowing how and what the access point advertises is an impor-
tant first step in planning an overall enterprise wireless strategy,
architecture, and policy. The tools available today are excel-
lent. I advise taking the time to become familiar with as many of
these tools as you can so you can find opportunities to leverage
your understanding in your current environment. Your end user
population will thank you.

Thank you for taking the time to read this article.

RESOURCES

•		BackTrack - Penetration Testing and Security Auditing Linux Di-
stribution. www.bit.ly/rxyyVm

•	MDK5 - MDK3 uses the osdep injection library from the www.air-
crack-ng.org project. www.bit.ly/vWPjCy

•		WireShark - Network protocol analyzer for Unix and Windows.
www.bit.ly/w3cZd2

•		Macchanger - Utility to change reported MAC address. www.bit.
ly/svLRre

•		Hak5 - A great group of people doing excellent technology rese-
arch and security work. www.bit.ly/vJbeXE

•		Kismet - Layer 2 802.11 wireless network detector, sni�er, and
IDS. This tool lets you �nd wireless networks that don’t use be-
acon frames. www.bit.ly/rKILpq

•		Article - „802.11 Beacons Revealed” by Jim Geier. www.bit.ly/
rrK1jT

•		Guidance – Chris Goggans

RICHARD C. BATKA
is a New York City based business & technology exe-
cutive and author. Mr. Batka has worked for global
leaders Microsoft, PricewaterhouseCoopers, Syman-
tec, Verizon, Thomson Reuters and JPMorgan Cha-
se. A graduate of New York University, he can be re-
ached at rbusa1@gmail.com or followed on Twitter

From the researcher who was one of the first to identify and analyze

the infamous industrial control system malware "Stuxnet," comes a

book that takes a new, radical approach to making Industrial control

systems safe from such cyber attacks: design the controls systems

themselves to be "robust."

Ralph Langner started a software and consulting company in the in-

dustrial IT sector. Over the last decade, this same company, Lang-

ner Communications, became a leading European consultancy for

control system security in the private sector. The author received

worldwide recognition as the first researcher to technically, tacti-

cally, and strategically analyze the Stuxnet malware.

www.momentumpress.net
222 E. 46th Street, #203

New York, NY 10017

Just Released!

www.momentumpress.net

 has designed and developed bugScout, a powerful managed service

 for
 source code vulnerability analysis:

• Scalability. bugScout works in a decentralized,
cloud computing environment.

• Parallelized. bugScout is designed to
simultaneously audit multiple source codes
without affecting performance.

• Customizable. bugScout is a multitasking and
multiuser platform providing for rights granularity. multiuser platform providing for rights granularity.
The user interfaces are completely customizable.

• Effectiveness. bugScout automatically
detects over 94% of the vulnerabilities that can
be found within the source code.

• Simplicity. bugScout includes a project,
application and analysis classification system,
incorporates a reports manager and makes
vulnerability management a lot easier.vulnerability management a lot easier.

Easily add security
at the source

In our expert teams in security, hacking and
programming allows us to find solutions to simplify
the development of secure code to our customers.

“Simplicity is the ultimate sophistication”
Leonardo da Vinci

22

Hakin9 EXTRA

7/2011 (7)

Is It Possible to Change the Definition
of a Programming Language?
Changing the definition of a programming language means al-
tering the low-level definition of the language’s syntax and se-
mantics (often seen as the runtime’s API) so that the generated
instructions do not necessarily match the intent of the source
code.

Influencing source code
is not a new idea. Injecting
malicious code secretly by
the compiler or the IDE was
introduced a while ago, as
Ken Thompson describes
in his famous paper, Re-
flections on Trusting Trust
(source: http://cm.bell-
labs.com/who/ken/trust.ht-
ml). The major drawback of
such attacks is the fact that
the attacker must control
the development environ-
ment (such as the compil-
er, IDE, etc.) at the time the
executable was created so
that the backdoor is planted

before (or more precisely, during) compilation. It is not possible
to control executables that were created with a different compiler
or were created before the attacker had control over the system.

Using managed code rootkits (MCRs), we can take this kind
of attack a bit further, by changing the actual meaning of the
compiled code after it was created. As such, no changes occur
at the compile-level executable code. The executable stays the
same, as opposed to the other attacks that targeted the com-
piled executable only containing the injected code.

When dealing with managed code the high-level code is com-
piled to an intermediate language (IL) software-based abstract
instruction set and is using the runtime class libraries as the
foundation for accessing system functionality. Managed code
implementation is easier to subvert since it is using an IL im-
plemented in software, and therefore the IL meaning can be
changed to do things other than what it was expected to do.
Since managed code depends on the runtime to operate (i.e., it
cannot execute without the presence of the runtime, as opposed
to compiled unmanaged code), changing the managed code
runtime implementation means changing the behavior of all the
applications using it. Although an application contains code that
is supposed to do something, if the runtime is changed, it will
eventually do what the runtime is set to do and not what the ap-
plication intended it to do. A modified runtime means the same
application can behave differently on different machines; it all
depends on what the runtime says it should do. It is influenc-
ing the compiled executables without the need to modify the
executable binary code.

When dealing with managed code the high-level code is com-
piled to an intermediate language (IL) software-based abstract
instruction set and is using the runtime class libraries as the
foundation for accessing system functionality. Managed code
implementation is easier to subvert since it is using an IL im-
plemented in software, and therefore the IL meaning can be
changed to do things other than what it was expected to do.
Since managed code depends on the runtime to operate (i.e., it
cannot execute without the presence of the runtime, as opposed
to compiled unmanaged code), changing the managed code
runtime implementation means changing the behavior of all the
applications using it. Although an application contains code that
is supposed to do something, if the runtime is changed, it will
eventually do what the runtime is set to do and not what the ap-
plication intended it to do. A modified runtime means the same

MANAGED CODE
ROOTKITS

This article provides an introduction to the concept of Managed
Code Rootkits (MCR) – application level rootkits implemented at
VM runtime level, as described in the book Managed Code Rootkits,
authored by Erez Metula, by Syngress Publishing.

EREZ METULA

Figure 1: Managed Code Rootkits by Erez
Metula

Managed Code Rootkits

www.hakin9.org/en 23

application can behave differently on different machines; it all
depends on what the runtime says it should do. It is influenc-
ing the compiled executables without the need to modify the
executable binary code.

Modifying the language by altering the runtime can help an
attacker to plant malware running as part of the runtime itself,
controlling all the applications and having access to the virtual
machine’s (VM’s) internal mechanisms. Many types of malware
can be planted inside the runtime as an integral part of the runt-
ime. These include backdoors that can add additional logic to
sensitive methods, viruses that spread their code and infect the
application space, and rootkits that lie to the application about
the system state or about the rootkits’ presence. Since the runt-
ime high-level language does not necessarily do what the code
says, we cannot trust the computation it is supposed to perform.

Interestingly, techniques exist that enable us to modify runt-
ime behavior to implement these kinds of problems. In the next
few subsections, we will discuss the following techniques:
•	 Attacking	the	runtime	class	libraries
•	 Attacking	the	Just	in	Time	(JIT)	compiler
•	 Abusing	runtime	instrumentation	features
•	 As	you	read	through	the	subsections,	keep	the	following	

modification	requirements	in	mind:
•	 The	effect	should	be	persistent.

–	 The	modification	should	be	persistent	across	system	
reboot and shutdown. It should become part of the
runtime and should always be active.1

•	 The	effect	should	be	fast	enough.
– The time it takes to execute code at the runtime level

should be relatively equal to the time it takes to execute
it at the application level.

•	 Influence	should	be	at	the	machine-wide	level.
–	 Behavior	should	be	reflected	on	all	the	applications	us-

ing the runtime, from a single control point.
•	 The	modification	should	allow	you	to	perform	complex	op-

erations.
– These include operations such as direct access to in-

ternal methods/state, runtime code replacement, and
constant value redeclaration, among others.

•	 The	modification	should	be	evasive	from	the	application	
level.
–	 The	modification	should	be	able	to	lie	to	applications	in	

case they ask for information that might reveal its pres-
ence.

We will discuss these techniques in the following sections.

Remember, as with other kinds of rootkits, you’ll prob-
ably need administrator-level privileges to implement most
of the techniques described in this chapter.

Rootkits are not the means of gaining admin privileges,
but rather the means of extending the effect of a success-
ful attack after gaining these privileges.

In this article, we’ll focus on runtime binary modification, which
is one of many possible techniques to demonstrate this concept,
though any other technique will do.

Changing a specific method’s internal IL code implementa-
tion means that each time it is called, the modified code will
be executed instead of the original method code. The runtime
will use the IL code declared in the runtime method to generate
machine-specific	code	using	the	JIT	compiler.

Class library modification is the method we’ve chosen to dem-

onstrate how the framework can be modified. Although we could
have chosen any of the other methods, we went with this one
because its simplicity will enable us to concentrate on the details
of what we want to modify instead of the details of the modifi-
cation steps.

Case Study: The .NET Runtime
We will demonstrate the required steps with a simple and in-
tuitive example: We will modify the internal implementation of
the WriteLine(string s) method so that every time it is called the
string value of parameter ‘s’ will be printed twice to the display.
This little demo will serve as a Proof of Concept (PoC) for runt-
ime modification in which we’ll be modifying a specific internal
method according to our needs. Printing every string twice is
very intuitive and visible, so we’ll be assured that our modifi-
cation is working and can be replaced with code that can do
whatever we want—if we can change WriteLine we can change
basically everything else.

Here are the tools we’ll use to perform the preceding steps:

•	 Process	Monitor,	to	locate	which	DLLs	are	used	and	their	
location in the GAC

•	 Reflector,	to	analyze	the	DLL	code
•	 Ilasm.exe,	 to	 assemble	 the	 IL	 bytecode	 instructions	 to	

a DLL binary
•	 Ildasm.exe,	to	disassemble	the	DLL	binary	to	IL	bytecode	

instructions
•	 Text	editor,	to	modify	the	MSIL	code
•	 NGEN,	to	revert	back	from	a	native	image

To invoke the WriteLine method, use an invoker executable that
calls Console.WriteLine to print the traditional Hello World string
used in many programming books as the first program demon-
strated (C#):

Listing 1: Console.WriteLine prints the Hello World string.

Now	that	we	have	the	HelloWorld.exe	invoker	executable	we’ll	
start	analyzing	it	and	the	framework	DLL	it	is	using.

Modifying the IL Code
Getting the IL code from a given DLL is very simple:

ILDASM /OUT=mscorlib.dll.il /NOBAR /LINENUM /SOURCE mscorlib.dll

Now	 that	we	 have	 the	 disassembled	 code	 in	mscorlib.dll.il	
(which is actually a text file containing IL code that is easy to
work with), let’s load it into a text editor. The file starts with exter-
nal	DLL	declarations	followed	by	some	initializations,	a	couple	
of resource declarations, and right after that the actual code of
the classes contained in this assembly. Each class is declared
using the .class attribute, which contains the class methods de-
clared with a .method attribute. The methods contain the actual
IL code of that class.
Now	let’s	find	the	WriteLine	method	in	mscorlib.dll.il.
Our task is to make the WriteLine method print every string

24

Hakin9 EXTRA

7/2011 (7)

twice (for each call to the WriteLine method), so we need to
double the current IL code of that method.

Unless this file is currently open by way of some other pro-
cess (and therefore is locked for changes), the copy operation
should succeed—the original DLL should be overwritten with
our own DLL

For some strange reason, although we replaced the original
DLL with our own version and placed it in the correct location
inside the GAC, it seems that our DLL is not in effect at all, and
that the framework is still using the original version, even though
we overwrote it!
How	come	our	DLL	is	ignored?	NGEN	is	to	blame..	
The framework is still using the native image of the older,

original DLL and does not use our code.
We need to disable the native image from loading by using

the	NGEN	uninstall	command:

ngen uninstall mscorlib

We also must remove the native version of this DLL, by clearing
the content of the specific DLL native image directory:

rd /s /q c:\WINDOWS\assembly\NativeImages_v2.0.50727_32\mscorlib

Now	let’s	try	running	our	invoker	HelloWorld.exe	again	and	see	
if our version is used

Listing 2: Printing every string twice.

The three new lines of code in this block are the same as the
original block of code from earlier. This block should do the
same thing as the first block: It will print the string received as
input and, as a result, will print the same string twice.

The rest of the disassembled file is untouched at this stage. All
we changed was the IL code contained in the WriteLine method.

Reassembling the Code
The next step is to generate a new, “genuine” DLL out of the
modified MSIL code:

ILASM /DEBUG /DLL /QUIET /OUTPUT=mscorlib.dll mscorlib.dll.il

Deployment
If everything went fine, we should now have a modified mscor-
lib.dll	file,	which	is	going	to	replace	the	original	DLL.	Now	we	
want to deploy it back into the framework installation files so
that every application operating on top of the runtime will use
it. This gives us a way to control the application by setting
a “trap” inside a method, hooking into it, and waiting for the ap-
plication to use it.

Since our modified DLL has a different signature than the
original one, the framework will probably fail to load it.

There must be a way to get around this, and since we’re
taking advantage of our administrator-level privileges on the
system	there’s	nothing	that	can	stop	us.	No	mechanism	resid-
ing on the same machine the attacker has control of can re-
ally withstand attacks against its own mechanisms. So, it’s not
a question of “if,” but “how.”

At first glance, it seems like we have roughly two options for
bypassing the DLL integrity check mechanism. We can either
disable this mechanism by patching the DLL containing the sig-
nature mechanism code, or find the keys used to sign/verify the
DLL and replace them. We probably need to attack the strong
name PKI-like infrastructure used to sign the DLL, and create
our own chain of trust by re-signing the DLL so that signature
verification will succeed. Since we don’t have the original private
key Microsoft used to sign the DLL, we need to generate a fake
private/public key pair and re-sign the whole framework’s DLLs.

Surprisingly, while doing research for this book the authors
found that the signatures are not checked, but rather that the
framework “believes” the directory name in which the DLL is
located (containing the public key token value) and treats it as
the DLL signature (i.e., it relies on the signature mentioned in
the directory filename).

In other words, the signature of the DLL itself is irrelevant. All
that matters is the directory in which it is located.

So, knowing that our original mscorlib.dll file has a public key
token	of	b77a5c561934e089,	and	that	it	is	a	.NET	Version	2.0	
assembly	located	in	GAC_32,	it	leads	us	to	the	C:\WINDOWS\
assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089	di-
rectory as the place to copy the DLL (the same place it was be-
fore). When other executables/DLLs try to load this DLL, they
will refer to its public key token and load this DLL from there.
Therefore, our next step is to just overwrite the original mscorlib.
dll with our own modified version:

Figure 2: HelloWorld.exe Displaying Two Hello World! Strings

Success! We’ve managed to change the framework runtime and
provide our own implementation for one of its internal methods.
As you can see, our modified mscorlib.dll was loaded, and the
newer version of WriteLine was used, printing the string twice.

Case Study: The Java Runtime
Now	that	you	understand	the	general	steps	of	runtime	modi-
fication,	let’s	look	at	the	steps	for	modifying	the	Java	runtime.

Our goal will be to implement behavior similar to what we did
when manipulating the runtime to print every string twice, but
this	time	we’ll	be	doing	that	on	the	Java	runtime.
We’ll	use	the	following	simple	invoker	Java	application,	saved	

as HelloWorld.java:

Listing 3: Printing every string twice on the Java runtime.

Our target for this simple manipulation is the println method,
contained in the System.out namespace.
The	question	is,	which	JAR	directory,	and	where	it	is	located?
Using a file monitoring tool (such as ProcMon) reveals that

it	is	a	file	called	jr.rt,	located	on	the	target	machine	at	e:\Java\
jdk.1.6.0_14\jre\bin\rt.jar	
So,	now	that	we	know	where	the	JAR	directory	is,	let’s	extract	

the PrintStream.class file from it.

jar xf rt.jar java/io/PrintStream.class

Now	let’s	disassemble	it	(using	the	Jasper	disassembler):

Managed Code Rootkits

www.hakin9.org/en 25

Java –jar jasper.jar PrintStream.class

As a result, we now hold the disassembled bytecode in the
PrintStream.j file.

After locating the println method, we can take an approach
similar to what we took for the mscorlib WriteLine method by
doubling the code responsible for printing (marked in bold) so
that we have two identical code blocks:

•	 Fixating	encryption	keys
•	 Snooping	on	user	activity
•	 Reverse	shells
•	 Content	upload/download
•	 Sending	data	to	the	attacker’s	machine
•	 Disable	secure	defaults
•	 Create	DoS	attacks
•	 Spread	malware
•	 Etc.

Let’s see some examples.

Attack Scenario: Manipulating the Logic of Au-
thentication Mechanisms
An attacker can control an application’s logins if the attacker
can hook into a runtime method that is responsible for providing
authentication services to the application. If the attacker tweaks
the logic of such a method, the attacker can tweak the applica-
tion’s login as well. This is a great place to plant login backdoors

Say the condition that allowed the attacker to get into an ac-
count provided a “magic value” as a password that acts like
a master key that enables the attacker to open any account

Let’s implement this kind of logic in a runtime-wide login meth-
od, called by applications receiving “login services” from the
method.	We’ll	use	.NET’s	Authenticate	method	which	provides	
services	to	ASP.NET	Web	applications	as	an	example	of	a	login	
mechanism we’ll manipulate.

Let’s inject into the boolean local variable 0 and set its value
to be equal to the password parameter (argument 1) and the
MagicValue string, while maintaining the existing logic. We can
do this by adding the following code (shown in bold) to the be-
ginning of this method:

Listing 4: After locating the println method we double the code responsible
for printing.

Now	that	we	have	the	modified	code,	let’s	assemble	it	back	to	
Java	bytecode.	Using	the	Jasmin	assembler,	we’ll	create	a	new	
PrintStream.class from the modified PrintStream.j file:

Java –jar jasmin.jar PrintStream.j

Now	we	need	to	overwrite	the	older	version	of	that	class	stored	
inside rt.jar.

jar uf rt.jar java/io/PrintStream.class

At this point, we should have a modified version of the rt.jar
runtime binary, ready to be deployed.

All that is left to do now is to overwrite the older version; a
simple copy command will do the trick:

copy rt.jar E:\Java\jdk1.6.0_14\jre\lib\rt.jar

Unlike	with	the	.NET	runtime,	we	don’t	have	to	deal	with	any	
cached	images	for	the	Java	runtime.	Now	that	the	file	had	been	
replaced, let’s run the same invoker application to test the effect
of our modification

As you can see, we got two printings, instead of only one.
This PoC means we have established one way (out of many)

to	modify	the	Java	runtime.

Manipulating the Runtime According
to Our Needs
Manipulating the runtime implementation can lead to some
very interesting behavior in terms of higher-level applications.
Whether the attacker’s mission is to manipulate the application
execution flow, to perform additional tasks, or to use the appli-
cation as a tool to execute code on the end user’s behalf, the
specific implementation details usually depend on what the code
does and where it is embedded in the runtime implementation,
as we’ll discuss in this chapter. Since the attacker can custom-
ize	the	runtime	the	way	he	likes,	the	attacker	can	“reshape”	the	
low-level layers and make the code do things not intended by
the application.

•	 Some	examples	given	in	the	book:
•	 Authentication	backdoors

Listing 5: NET’s Authenticate method which provides services to
ASP.NET Web applications.

After deploying the modified binary into the runtime, we can
access any user account by supplying MagicValue as the pass-
word.

We can take it into another direction – say we want to send
the victim’s credentials to the attacker’s machine. All we need
to do is to inject this code instead:

Listing 6: Sending the victim’s credentials to the attacker’s machine.

26

Hakin9 EXTRA

7/2011 (7)

Now	everything	the	victim	enters	in	any	login	page	using	any	
application, will be sent to the attacker as can be illustrated in
this diagram:

Using a similar technique, while targeting the Android Dalvik
VM allowed the attacker to hide that file and completely elimi-
nate it from the application level. When any android applica-
tion (no matter which!) calls the runtimes listFiles method to get
a list of files in a given directory, the MCR will hide it from the
application as can be seen:

Figure 3: Everything victim enters in any login page using any application is
sent to the attacker.

Attack Scenario: Eliminating the Existence
of a Specific File
Most runtimes provide the application with the ability to com-
municate with the underlying OS file system, to do things such
as list all the files in a given directory, get information on a spe-
cific file, or perform file operations (copy, delete, rename, etc.).
They often have methods that query the OS file system and are
responsible for retrieving a list of files from a given directory, by
returning an array of objects or filenames representing each file.
Those kinds of methods are natural targets for logic manipula-
tion—for instance, when hiding the existence of specific files by
omitting them from the list, an operation often used by rootkits.
Those methods can also be used to create false information
about nonexistent files, or to redirect the content of other files.
A modification to the method’s logic can achieve that.
Now	suppose	we	want	to	hide	a	file	called	HideMe!.exe.	All	

we need to do is to inject the following code into the relevant
runtime method which is responsible to provide the list to the
upper level application (GetFiles, in this case):

Listing 7: Hiding a �le HideMe!.exe

The	preceding	code	simply	pushes	the	array	(local	variable	2)	
and the filename, invokes locateFileName to get its index, and
uses it afterward to invoke another call to RemoveFromArray,
while casting back the array to its original class type. That’s all
that needs to happen to completely eliminate this file.

The interesting thing is that locateFileName and Remove
FromArray are also methods that were injected by us! We ex-
tended the runtime with our own malware API.

For example, say we have the file “SecretFile.txt” on an an-
droid machine as can be seen here:

Figure 4: SecretFile.txt �le on an Android machine.

Figure 5: SecretFile.txt �le hidden by the MCR.

Attack Scenario: DNS Manipulation
A simple manipulation of the getByName class that enables the
attacker to selectively forge the IP address of VictimMachine to
that of AttackerMachine can be implemented as follows:
Listing 8: Manipulation of the getByName class enables the attacker to
forge the IP address of VictimMachine to that of AttackerMachine.

From now on, every application that tries to connect to Victim-
Machine will be connected to AttackerMachine instead..

What Is ReFrameworker?
ReFrameworker, formerly known as .net-sploit, is a general-pur-
pose framework modifier that is used to reconstruct framework
runtimes by creating modified versions from the original imple-
mentation provided by the framework vendor. ReFrameworker
(see Figure 6) performs the required steps of runtime manipula-
tion by tampering with the binaries containing the framework’s
classes, in order to produce modified binaries that can replace
the original ones.

Managed Code Rootkits

www.hakin9.org/en 27

The main purpose of ReFrameworker is to perform the time-
consuming steps of framework runtime modification by acting
on “modification rules” as instructed by the user. The user tells
it what code should be injected and where, and ReFrameworker
does the rest. Its objective is to let the user concentrate on the
main target: the details of the modification itself, rather than how
to perform the modification. This way, all the user has to do is to
provide ReFrameworker with the code to be injected (payloads,
methods, classes, etc.), and set the modification rule that tells
ReFrameworker exactly what to do.

The ReFrameworker tool along with its source code can be
downloaded from www.appsec-labs.com/Managed_Code_
Rootkits.

Summary
In this article we discussed the MCR concept - application-
level rootkits hidden inside the managed code environment
libraries or runtime components, and their target is the man-
aged code runtime (the VM) that provides services to upper-
level applications. An MCR changes how the VM behaves so
that all the applications depending on the VM (i.e., those that
receive services from it) inherit the modified behavior. It does
this by modifying the language upon which the runtime’s ap-
plication	 is	based,	 inflicting	the	customized	behavior	on	the	
application by accessing the runtime’s internal mechanisms
through hooks into methods or by tampering with internal state
maintained by the runtime.

Using MCR enables the attacker to make a compiled applica-
tion to behave differently than what its code states, by injecting
new code or modifying the runtime’s code, by that breaking the
trust between the application code and the runtime.

This article was just a very short version, an introduction to
this concept. For more information about this topic, including
more	than	a	dozen	additional	attack	vectors,	other	runtimes	
(such as Android’s Dalvik), automatic modification using the Re-
Frameworker tool – go get the book: Managed Code Rootkits,
authored	by	Erez	Metula,	by	Syngress	publishing.

http://www.amazon.com/Managed-Code-Rootkits-Hooking-
Environments/dp/1597495743/ref=sr_1_1?ie=UTF8&s=books
&qid=1275638178&sr=1-1

EREZ METULA
is a world renowned application secu-
rity expert, spending most of his time
�nding software vulnerabilities and
teaching developers how they sho-
uld avoid them. Erez has an extensive
hands-on experience performing secu-
rity assessments, code reviews and se-
cure development trainings for worl-
dwide organizations, and had pre-
viously talked at international securi-
ty conferences such as BlackHat, Def-

con, OWASP, RSA, SOURCE, CanSecWest and more. His latest research on Ma-
naged Code Rootkits, presented at major conferences throughout the world,
was published recently as a book by Syngress publishing. He is the founder of
AppSec Labs, where he works as an independent consultant focusing on ad-
vanced application security topics

Figure 6: ReFrameworker

GEEK 411 | UAT STUDENT LIFE MAGAZINE | 1

THEY SELDOM SMILE AT THE NSA. CAN YOU MAKE THEM GRIN?

Prepare to Defend!
www.uat.edu

877.828.4335

Learn how to synthesize and apply these vital skills and leadership ability to succeed in the fast moving �eld of Network Security.

Program accreditations, af�liations and certi�cations:

UAT has been designated as a Center
for Academic Excellence in Information
Systems Security Education by the US
National Security Agency

One of the most prestigious
Network Security programs

in the country

UAT’s coveted Bachelor of Science degree in
Network Security is a vital national resource

We will teach you the concepts
of security by design, and layered
security to protect against
exploitation of networks and data

CLUSTERGEEK WITH CAUTION!
LEARN, EXPERIENCE AND INNOVATE WITH THE FOLLOWING DEGREE STUDENTS: Advancing Computer Science,
Artificial Life Programming, Digital Media, Digital Video, Enterprise Software Development, Game Art and
Animation, Game Design, Game Programming, Human-Computer Interaction, Open Source Technologies,
Robotics and Embedded Systems, Serious Game and Simulation, Strategic Technology Development, Technology
Product Design, Technology Studies, Virtual Modeling and Design, Web and Social Media Technologies

Bachelor of Science
Network Engineering
Network Security
Technology Forensics

Master of Science
Information Assurance

GEEK 411 AD

SYSTEMS SECURITY FOR THE 21st CENTURY

PLEASE SEE WWW.UAT.EDU/FASTFACTS FOR THE LATEST INFORMATION ABOUT DEGREE PROGRAM PERFORMANCE, PLACEMENT AND COSTS.

www.uat.edu

WHAT IS A GOOD FUZZING TOOL?
Fuzz testing is the most efficient method for discovering both known and unknown vulnerabilities in software. It is
based on sending anomalous (invalid or unexpected) data to the test target - the same method that is used by hack-
ers and security researchers when they look for weaknesses to exploit. There are no false positives, if the anomalous
data causes abnormal reaction such as a crash in the target software, then you have found a critical security flaw.

In this article, we will highlight the most important requirements in a fuzzing tool and also look at the most common
mistakes people make with fuzzing.

NEW PLATFORM RELEASE!
NEW HIGHLIGHTS!
• Improved user interface
• Scalable test cases
• Infinite text execution
• Interoperability improvements
• Enhanced reporting

Documented test cases: When a bug is found, it needs to be
documented for your internal developers or for vulnerability
management towards third party developers. When there are
billions of test cases, automated documentation is the only possi-
ble solution.

Remediation: All found issues must be reproduced in order to fix
them. Network recording (PCAP) and automated reproduction
packages help you in delivering the exact test setup to the develop-
ers so that they can start developing a fix to the found issues.

MOST COMMON MISTAKES IN
FUZZING
Not maintaining proprietary test scripts: Proprietary tests
scripts are not rewritten even though the communication interfaces
change or the fuzzing platform becomes outdated and unsupported.

Ticking off the fuzzing check-box: If the requirement for testers
is to do fuzzing, they almost always choose the quick and dirty
solution. This is almost always random fuzzing. Test requirements
should focus on coverage metrics to ensure that testing aims to
find most flaws in software.

Using hardware test beds: Appliance based fuzzing tools
become outdated really fast, and the speed requirements for the
hardware increases each year. Software-based fuzzers are scalable
in performance, and can easily travel with you where testing is
needed, and are not locked to a physical test lab.

Unprepared for cloud: A fixed location for fuzz-testing makes it
hard for people to collaborate and scale the tests. Be prepared for
virtual setups, where you can easily copy the setup to your
colleagues, or upload it to cloud setups.

PROPERTIES OF A GOOD
FUZZING TOOL
There are abundance of fuzzing tools available. How to distin-
guish a good fuzzer, what are the qualities that a fuzzing tool
should have?

Model-based test suites: Random fuzzing will certainly give you
some results, but to really target the areas that are most at risk, the
test cases need to be based on actual protocol models. This results
in huge improvement in test coverage and reduction in test execu-
tion time.

Easy to use: Most fuzzers are built for security experts, but in QA
you cannot expect that all testers understand what buffer
overflows are. Fuzzing tool must come with all the security know-
how built-in, so that testers only need the domain expertise from
the target system to execute tests.

Automated: Creating fuzz test cases manually is a time-consuming
and difficult task. A good fuzzer will create test cases automatically.
Automation is also critical when integrating fuzzing into regression
testing and bug reporting frameworks.

Test coverage: Better test coverage means more discovered
vulnerabilities. Fuzzer coverage must be measurable in two
aspects: specification coverage and anomaly coverage.

Scalable: Time is almost always an issue when it comes to testing.
User must also have control on the fuzzing parameters such as test
coverage. In QA you rarely have much time for testing, and therefore
need to run tests fast. Sometimes you can use more time in testing,
and can select other test completion criteria.

Visit http://www.codenomicon.com/hakin9
to participate in the raffle!

http://www.codenomicon.com/hakin9

7/2011 (7)30

Hakin9 EXTRA

The end-users won’t run an application if they knew that
it is malicious software and therefore the attackers use
different tricks to fool the end-users. They use the Trojan

horse method, where they attach their malware with a benign
one. Therefore, when the user installs the benign application it
means he will install the malicious one as well. In the internet
and web world, the method of attacking the visitors is by the
web browser. The attack method is unnoticeable as the attacker
sends the malicious web page to the visitor and then the mali-
cious web page will check the vulnerabilities of the web browser,
its plugins or OS and exploit them. This attack is called a drive-
by download attack. Polychronakis et al. [1] defined the drive-
by-download attack as ‘a malicious web page exploiting vulner-
ability in a web browser, media player or other client software to
install and run malware on the unsuspecting visitor’s computer’.

Most Twitter users have enjoyed the benefits of shorted URLs,
as they save more space, which is useful because Twitter only
allows 140 characters, and they track the visitors, retweets and
mentions. The shortened URL services have many advantages
for the users, such as:

1. Reduces the URL size.
2. Tracks the number of visitors.
3. Provides analysis tools for the URL visitors, such as the lo-

cation, or from which web page they found your link.
4. The ability to choose your preferred short URL, such as a

rename of ‘http://bit.ly/njOiHr’ to ‘http://bit.ly/Yaser’ in case
the describable name is available.

However, despite all these advantages, the short URLs expose
threats to the users as they hide the original link from the visitors
and only provide short URLs from known shortened services,
which might trick the users into clicking on the link provided.

The level of web security has been increased recently by the
visitors as most of them will not visit URLs which include strange
characters, such as ‘cd../../’. Therefore, recently hackers have
been using shortened URLs to trick the users into visiting their
malicious websites. The basic idea of the shortened URL ser-
vice is shown in Fig. 1 and it simply converts the long URL into
a short one and therefore reduces the URL size on social net-
works such as Twitter as well as tracks the visitors. An example
of a short URL is that instead of sending ‘http://www.hacker.com/
exploit.php?go=attack’ the attacker will shorten it and send it to
the victims via email or social networks as ‘http://bit.ly/njOiHr’.

Most users will visit the shortened URL without the concern of
their system being attacked despite the inability to easily extract
the long URLs from the short ones. There are available websites
which allow the user to enter a shortened URL from a specific
shortened service, and in turn, will show the long one. These
online tools don’t support all the shortened URLs and therefore
the user still needs an ultimate solution to extract the long URL
from the shorted one without visiting it. In this article, I am going
to describe the creation of a tool that is able to extract the long
URL from any shortened service and then check it automati-
cally to make sure it is safe for the visitors. To do the first part
of the tool we need to extract the long URL from any shortened
service, and in order to do it, we need to understand how the
shortened URL service works. As mentioned earlier, the short-
ened service provides an easy way to shorted the long URLs
and track the visitors. In order to do that, they need to generate
a unique and short identification for the URLs; for example, the
shorted link ‘http://bit.ly/njOiHr’. The ID of this link is ‘njOiHr’, and
this identification is generated when the long URL is entered,
and therefore when anyone accesses it, then it will count the
visit and redirect the visitor to the original link. There are two
ways to redirect visitors to the new links via HTTP: HTTP redi-

SHORT URL
We all know the story of the Trojan Horse, where the Greeks built it
to enter the city of Troy. It was an unimaginable trick used to enter
Troy after a 10 year siege. In the computer world, hackers use similar
tricks to fool the end-users into running their malware.

YASER ALOSEFER

Figure 1: The basic idea of the shortened URL service

Short URL

www.hakin9.org/en 31

the HTTP. The php script is shown in below and illustrated
in Figure 2.

The result of running the above script is that the long URL is
extracted from the short one. After successfully extracting the
long URL, we need to validate the link automatically to help the
end-user make the decision to visit the short URL or not. There
are many methods that we can use to identify the malicious
URLs. In general, there is the traditional and dynamic methods.
The tradition method compares the current URL against the
known malicious lists and flags any matching ones. The blacklist
is one of the easiest and fastest ways to determine a malicious
URL; however, they cannot identify malicious URLs not included
on the lists. There are many publicly available blacklists such as
http://www.malware.com.br/ which provide lists so you can use
them in your application.

The php script below shows a simple method to extract the
long URL and then compare it against the blacklist called “mal-
ware.txt” and the print malicious next to the URL in case it
matches any links on the list.

Furthermore, the blacklist method cannot identify unknown
URLs and therefore many security researchers suggest the use
of the other features to identify the malicious URLs. I suggest
that to build the ultimate tool to identify the malicious URLs then
we need to consider a layer system. That means, we will start
by checking against the blacklist, and in case we don’t identi-
fied it, then we are going to conduct a more complex checking
system and so on, until the URL is identified as malicious or
benign. The other layers of checking the URL are shown in Fig
4 and described in the following points:

1. The URL structure: the URL might include malicious chars
such as ‘cat /etc/passwd’, or it may be possible to count
the number of dots and algorithmically build a classifica-
tion system that learns what malicious URLs look like and
then classify the input URL from its knowledge base.

2. Domain name features: collect the interesting data about
a specific domain name, such as WHOIS info, geographic
location, IP address or DNS record. This information can
help us a lot to identify a suspicious URL as some mali-

Figure 2: How the redirect analyzer works

Listing 1: extract the long URL from the shorted one
<?PHP

$Short_URL = “http://bit.ly/njOiHr”;

$Short = curl_init($Short_URL);

curl_setopt($Short, CURLOPT_FOLLOWLOCATION, TRUE);

curl_setopt($Short, CURLOPT_NOBODY, TRUE);

curl_exec($Short);

$Long_URL = curl_getinfo($Short, CURLINFO_EFFECTIVE_URL);

echo “The short URL: $Short_URL”;

echo “
The long URL : $Long_URL”;

?>

Listing 2: extract the long URL and compare it against a blacklist
<?php

$Short_URL = “http://bit.ly/njOiHr”;

$Short = curl_init($Short_URL);

curl_setopt($Short, CURLOPT_FOLLOWLOCATION, TRUE);

curl_setopt($Short, CURLOPT_NOBODY, TRUE);

curl_exec($Short);

$Long_URL = curl_getinfo($Short, CURLINFO_EFFECTIVE_URL);

echo “The short URL: $Short_URL”;

echo “
The long URL : $Long_URL”;

// extract the domain from the long url

preg_match(“/^(http:\/\/)?([^\/]+)/i”, $Long_URL, $matches);

$host = $matches[2];

preg_match(“/[^\.\/]+\.[^\.\/]+$/”, $host, $matches);

$domain = $matches[0];

echo “
Domain name: $domain”;

// the below function can improve to stop ones it finds

 the matched domain to increase the performance

 and speed of the tool.

$file = fopen(“malware.txt”, “r”);

while(!feof($file)) {

$line = fgets($file);

if ($line == $domain){

echo “
Malicious URL”;

}

}

fclose($file);

?>

Figure 3: extract the long URL from bit.ly shorten service.

rect 301 and HTTP redirect 302. The main difference between
the two types is that HTTP redirect 301 redirects the visitors
to the new links permanently, and therefore the search engine
credits the visitor count to the final link, whereas HTTP redirect
302 credits the short URL. Once the visitor visits the short link,
the server returns the HTTP redirect code and the destination
link. To create a tool that is possible to extract the long URL from
any short link, we will request the short URL and then get the
direct URL from the HTTP response. Therefore, we can extract
the links without visiting the actual web page.

The following is a simple script based on cRUL which is
able to get the short link and then retrieve the target link from

7/2011 (7)32

Hakin9 EXTRA

cious websites share the same ip address but a different
domain name, or identifying the location of a server can
reveal a malicious zone that a number of malicious web-
sites share. Furthermore, there are available map locations
which show the malicious activities that can help to identi-
fy the locations of victims and attackers such as:
• https://alliance.mwcollect.org/public/attacker-world-map
• http://www.team-cymru.org/Monitoring/Malevolence/

maps.html
• http://www.hackerwatch.org/map/

I have built a tool that is able to receive a short URL and extract
the long URL first, and then it attempts to identify the suspicious
URLs. The scripts will first attempt to determine the malicious
URLs by comparing them against known malicious URLs, which
is the first layer that we can use. In case the input URL doesn’t
match any malicious URLs in the blacklist, then we can conduct
another layer of scanning where it finds the specific known mali-
cious commands on the URL to identify suspicious URLs. The
script is shown below.

We can improve our final script a lot and here are some sug-
gestions to improve the level of checking:
1. Collect the domain name info and use clustering or clas-

sification algorithms by checking the current data against
previously seen malicious URLs as well as the current ma-
licious activities as mentioned earlier.

2. Scan the URLs by using the online scanning services such
as using the API service from VirusTotal and WOT.

In conclusion, the short URLs are very useful, especially for
Twitter and other social networks where you have a specific
number of chars, and in case you would like to track the visi-
tors. However, the end-users need to be aware of the dangers
of short URLs, as discussed in this article. We have developed
a tool that is able to identify the malicious and suspicious URLs
from a short one. So, the end-users need to enter the short URL
manually to extract the URLs, as well as identify any suspicious
and malicious URLs. To improve the tool and make it easy for
web and social network users to use, we can develop simple
web browser extensions that use our tool to input the web page
links and return the status of the short URL requested in an icon
format or text. There is a simple and powerful extension frame-
work which you can build scripts for Firefox and Chrome brows-
ers, called Greasemonkey. The basic idea behind the extension
is to host our online tool in a web server and then the extension
will get all the short links on the web page and then send them
to the tool to validate them. In return, the extension will mark the
malicious URLs in a red colour or insert a red icon next to the
short URL. This subject is interesting and can be improved a lot
to increase the detection accuracy by providing more checking
layers to the existing ones.

YASER ALOSEFER
Yaser is a security researcher focusing on Honeypot and Internet security.
He is studying Cardi� University university in the UK, and from Saudi Arabia.
http://twitter.com/alosefer

Figure 4: The URL checking layers

Listing 1: The complete script which extract the long URL and check it
against our layers system
<?php

$Short_URL = “http://j.mp/rn1s7S”;

$Short = curl_init($Short_URL);

curl_setopt($Short, CURLOPT_FOLLOWLOCATION, TRUE);

curl_setopt($Short, CURLOPT_NOBODY, TRUE);

curl_exec($Short);

$Long_URL = curl_getinfo($Short, CURLINFO_EFFECTIVE_URL);

echo “The short URL: $Short_URL”;

echo “
The long URL : $Long_URL”;

// extract the domain from the long url

preg_match(“/^(http:\/\/)?([^\/]+)/i”, $Long_URL, $matches);

$host = $matches[2];

preg_match(“/[^\.\/]+\.[^\.\/]+$/”, $host, $matches);

$domain = $matches[0];

echo “
Domain name: $domain”;

// the below function can improve to stop ones it finds

the matched domain to increase the

performance and speed of the tool.

$file = fopen(“malware.txt”, “r”);

while(!feof($file)) {

$line = fgets($file);

if ($line == $domain){

echo “
Malicious URL”;

}

}

fclose($file);

// we can import different malicious strings from a text file

$malicious_string = “cat/etc/passwd”;

if(strstr($Long_URL,$malicious_string)) {

echo “
Found Malicious string”;

}

?>

Figure 5: the result of running the complete script

http://www.mhprofessional.com/templates/112-computing.php

34

Hakin9 EXTRA

7/2011 (7)

We have carried out various test activities in Facebook
and identified footprints and evidence could be ex-
tracted from memory, browser cache and other spac-

es; In addition, we have tested it with various technology plat-
forms to provide more detailed and comprehensive forensics
analysis.

Methodology
We would like to identify the message format in various func-
tions in Facebook.

Afterwards, we c arry out forensic studies over various activi-
ties in Facebook:

•	 Like	others’	message
•	 Search	friends
•	 Post	message	in	Wall	or	message	posted	by	others
•	 Create	event
•	 Send	group	message
•	 Chatting

Examine the footprints and identify which kind of message could
be found in the following memory areas and different devices:

•	 Volatile	Memory
•	 Browser	Cache	file
•	 VM	image	and	snapshot	files	
•	 Mobile	devices	including	iPhone	and	Android

Finally, we will convey a summary table to show the existence of
those activities footprints in tested devices and memory.

Tools used
We have used the following tools in our research:

Internet Forensic Analytical Tools
Internet Evidence Finder (IEF)
IEF is a software application that can search a hard drive or
files for Internet related artifacts. It is a data recovery tool that
is geared towards digital forensics examiners but is designed
to be straightforward and simple to use.
URL:	http://	www.jadsoftware.com

Facebook Photo Finder
Facebook®	JPG	Finder	(FJF)	is	a	tool	that	searches	a	selected	fold-
er	(and	optionally,	sub-folders)	for	possible	Facebook®	JPG	images.
URL:	http://	www.jadsoftware.com

Cacheback	-	CacheBack®	is	the	leading	forensic	Net	analysis	
tool specializing in browser cache, history and chat discovery.
URL:	http://www.cacheback.ca				

Memory Analytical Tools
Helix - A bootable sound environment to boot any x86 system.
Making	 forensic	 images	of	all	 internal	devices	and	physical	
memory (32 and 64 bit)
URL:	http://www.e-fense.com	

Win32dd	-	MoonSols	Windows	Memory	Toolkit	 is	a	toolkit	for	
memory dump conversion and acquisition on Windows.
URL:	http://www.moonsols.com/windows-memory-toolkit/

FTK	3.0	/	FTK	Imager	-	Forensics	and	Image	Acquisition	Tools
URL:	http://www.accessdata.com

FACEBOOK FORENSICS

Facebook is a well-known social networking application and
connects people all over the world. However, criminals would like
to manipulate this platform to carry out illegal activities like drugs
trading, as computer forensic examiner and crime investigator, we
should understand how we could extract and obtain digital evidence
from suspect’s computer for investigative purpose.

 KELVEN WONG, ANTHONY C. T. LAI, JASON C. K. YEUNG, W. L. LEE, P. H. CHAN

Facebook Forensics

www.hakin9.org/en 35

Mobile Device Forensic Tools
XRY
http://www.msab.com

Oxygen	Forensics	Suite	
http://www.oxygen-forensic.com

Platforms tested
We have carried out the Facebook forensics studies on the fol-
lowing platforms:

•	 Windows	environment
•	 Browsers	(MSIE	and	Google	Chrome)
•	 Virtual	Machine	(VMWare)
•	 iPhone
•	 Android

Facebook Message Format Analysis
The	researchers	were	attempted	to	identify	if	there	is	any	mes-
sage format located in post, message, comment and chat in
memory and cache respectively. In each case, memory acqui-
sition	tool	win32dd	and	cache	acquisition	tool	CacheGrab	are	
pre-installed	in	a	VMware	Fusion	machine	(“VM”)	and	a	snap-
shot was taken before the message format analysis was tak-
ing place.
Some	background	information	is	summarized	as	shown	be-

low:

Testing	account:	 jdis@vxrl.org
Helper	account:	 jason.yeung@yahoo.com

The	testing	account	is	responsible	for	posting,	messaging,	com-
menting and chatting on his own account whereas the helper
account is responsible for replying and chatting with the testing
account.	After	these	activities	were	finished,	win32dd	and	Ca-
cheGrab	were	used	to	dump	the	memory	and	cache	from	the	
VM	respectively.	The	whole	acquisition	process	was	repeated	
twice for consistent concern.

POST
Testing	account	was	used	to	 leave	a	post	message	‘2this	 is	
a	POST	test2’	on	his	own	wall.	The	researchers	could	not	iden-
tify this message on both memory and cache. However, replied
message	‘2good	to	see	you	POST2’	from	the	helper	account	
was	 identified	on	both	memory	and	cache.	Two	occurances	
were identified with this message, which are extracted as below:

Two	styles	were	identified	and	summarized	as	follow:

Figure 1: Replied message “2good to see you POST2” - occurence 1

Figure 2: Replied message “2good to see you POST2” - occurence 2

Table1: Styles identi�ed

MESSAGE
Testing	account	was	used	to	send	a	message	to	the	helper	
with	title	‘2MESSAGE	is	always	good	jy2’	and	body	text	 ‘2do	
you	think	so?2’.	These	message	were	not	 identified	on	both	
memory	and	cache	either.	However,	replied	message	‘2yes	I	
guess	so2’	from	the	helper	account	was	identified	on	memory	
only.	The	researcher	attempted	to	identify	if	there	is	any	logical	
format	but	was	not	successful.	This	message	appeared	to	be	
randomly cached in memory merely, which is demonstrated in
the screenshot below:

Figure 3: The message appears to be randomly cached in memory.

In this case, the researchers could not make any conclusion
regarding to the format on messaging.

COMMENT
The	helper	account	left	a	post	message	‘2a	long	night!2’	on	his	
wall.	The	testing	account	was	then	used	to	make	a	comment	
‘2yes,	it	really	is2’	on	the	post	message.	The	researchers	could	
not	identify	the	post	message	‘2a	long	night!2’	from	the	helper	
account.	However,	replied	message	‘2yes,	it	really	is2’	from	the	
testing account was identified on both memory and cache.

Figure 4: Replied message ‘2yes, it really is2’ from the testing account - occurence 1

36

Hakin9 EXTRA

7/2011 (7)

Two	styles	were	identified	and	summarized	as	follow:

CHAT
Format analysis on chatting is the easiest and most consist-
ent one. All chatting history was identified on both memory and
cache	with	identical	format.	Moreover,	the	chatting	history	was	
well-structured that most commercial tools could easily extract-
ed these messages and embedded it as a feature of its product.
An example, extracted in memory, is shown below:

Common Facebook Activities Forensics

Common Activities
We have found that friend search, comments and reply posted
by friends could be found from browser cache. We have found
the	trace	from	browser	cache	file	with	using	Cacheback	soft-
ware and attached the screenshots as below. We have car-
ried out the forensics of cache file in IE browser version 8 and
Chrome	version	11.0:

We have shown you wall post and reply and the corresponding
footprints found from browser cache file.Figure 5: Replied message ‘2yes, it really is2’ from the testing

account - occurence 2

Table 2: Styles identi�ed

Figure 6: Message extracted in memory

Table 3: Styles identi�ed

Figure 7a: Comment

Figure 7b: Reply, part 1

Figure 7c: Reply, part 2

Facebook Forensics

www.hakin9.org/en 37

We	have	set	up	an	event	 titled	with	“Wave	Party”	and	 invite	
friend	to	join	this	event.	Other	than	that,	we	have	posted	wall	
post and send group message.

We could locate the pictures in the target machine with Face-
book	JPG	finder.	From	the	figure,	we	have	found	that	we	will	
know photo from which facebook profile through the uid value
in the link of image.

Figure 7d: Reply, part 3

Figure 8: Friend search

Figure 9a: Create Event, part1

Figure 9b: Create Event, part 2

Figure 9c: Create Event, part 3

Figure 10: Wall post in event

Figure 11: Sending message to people who joined the events

Figure 12: Photos in Facebook

From the following figures, we could find that chat logs and his-
tory could be retrieved in the browser cache file.

Figure 13a: Chat in Facebook, part 1

Figure 13b: Chat in Facebook, part 2

38

Hakin9 EXTRA

7/2011 (7)

Chat Forensics
Facebook	has	a	built	in	instant	messaging	facility.		The	messag-
es	are	cached	in	small	html	files	with	a	file	name	P_xxxxxxxx.
htm	or	.txt.	and	can	be	found	in	memory	(RAM),	web	cache,	
pagefiles,	unallocated	clusters	and	system	restore	point.		Pos-
sibly, the message header is “text”:” and the footer is }]}. We
have used Internet Evidence Finder software version 4 to ex-
tract messages.

Facebook Forensic in Virtual Environment
The	objective	is	to	check	whether	the	facebook	activities	foot-
prints	could	be	discovered	in	VM	image.

We would like to show various steps to prove that we could
obtain the same evidence as the physical machine under virtual
environment.

Here	are	two	types	of	VM	image	file	could	be	examined:
•	 *.vmdk	–	Virtual	Disk	File
•	 *.vmem	–	Memory	used	for	Virtual	Machine	and	Snapshot	

memory

Figure 14: Physical cache �le of Google Chrome.

Figure 15a: Live Chat Room

Figure 15b: Message extracted with IEF software

Figure 15c: Messages extracted with IEF software

Figure 16a: VM image �les

Firstly,	we	 input	some	testing	messages	 in	Facebook	 in	VM	
environment.

Facebook Forensics

www.hakin9.org/en 39

Secondly,	we	could	mount	 *.vmdk	with	FTK	 Imager	v3	and	
figure out the message we have typed into by taking a string
search	of	“text”.

Facebook Noti�cation E-mail header
We have extracted one of the samples and we could discover
the	IP	address	of	the	user.

Figure 16b: Testing messages

Figure 16c: Search “text”:” pattern

Figure 16d: Successful “text”:” search on snapshot.vmem

From the above testing, we could discover the footprints and
messages	input	in	Facebook	in	VM	environment	successfully.

Finding Facebook User’s IP address
In investigation perspective, we would like to know the facebook
user’s	IP	address.	In	the	past,	we	could	obtain	the	IP	address	
via facebook notification email header but it is no longer valid
right	now.	The	reason	we	still	discussed	about	it	is	because	it	
may be existent in another form of email notification from Fa-
cebook in the future:

Figure 17: Email noti�cation header

It	is	found	that	it	is	encoded	in	Base64	for	the	highlighted	string.	
In	the	past,	the	real	IP	is	showed,	however,	it	is	no	longer	display-
ing	the	real	IP	but	only	127.0.0.1	(MTI3LjAuMC4x	=	127.0.0.1).

With using myiptest.com
We	would	 use	myiptest.com	 to	 obtain	 Facebook	 user’s	 IP	
address.
Firstly,	we	go	to	http://www.myiptest.com,	you	will	see:

•	 Link for person – link that you need to message your
friend.

•	 Redirect URL(optional) – your friend will be Redirect to the
Specified	URL	after	he	clicks	the	Link.

•	 Link for you	–	This	link	is	for	you	to	check	if	your	friend	has	
clicked your link.

Secondly,	we	enter	 the	Redirect	URL	 (whatever	you	want),	
e.g.	LNK.IN	or	TinyURL.
Thirdly,	we	copy	the	link	from	‘Link	for	person’	and	send	it	to	

your friend via message or wall post
Finally,	we	copy	and	save	the	URL	from	‘Link	for	you’.	You	will	

get	your	friends	IP	when	he	or	she	clicks	on	your	link.

Facebook Forensics in Mobile Devices
iPhone	and	Android	are	the	most	popular	smart	phone	and	the	
developers provide a large room to enhance its functionality.
Facebook App is the most adopted application installed in such
mobile	devices,	which	could	be	downloaded	from	‘iTune	Store’	
and	‘Market’	free	of	charge.

40

Hakin9 EXTRA

7/2011 (7)

iPhone
We have used the following software for Facebook forensics
in	iPhone:

We conduct a logical acquisition with the following tools:

•	 XRY	version	5
•	 Oxygen	Forensics	Suite	2011
•	 FTK	version	1.8	demo	version

Testing	Environment:					

•	 iOS	version	4.3	in	iPhone	3GS	(no	jail-break)
•	 File	system:	HFS+
•	 iPhone	Backup	file	in	MS	Windows

Figure 18: Facebook-related �les extracted by Oxygen Forensics Suite 2011
and XRY version 5

Here	are	the	files	in	iPhone	filesystem	to	be	examined:

•	 com.facbook.Facebook.plist	–	Facebook	App	installed	and	
login users

•	 friends.db	–	the	buddys’	list	chating	in	chat	room
•	 dynamic-text.dat	–	keyboard	cache	in	iPhone,	like	a	keylo-

gger
•	 iPhone	backup	file
•	 *.plist	-	Property	List	file	in	Mac	OS.

Figure 19: Plist Editor – Open the com.facebook.facebook.plist �le

Figure 20: SQLite Database Browser - Browse the data in friends.db

Figure 21: WinHex version 15.0 - Search message from dynamic-text.dat

Figure 22: FTK version 1.8 demo version – Search message from iPhone
backup �le in iTune installation folder

Figure 23: Examination of iPhone Backup �le in iTune application
installation folder

Facebook Forensics

www.hakin9.org/en 41

Limitation
We	have	not	carried	out	the	test	for	the	iPhone	which	is	 jail-
broken	and	physical	acquisition	of	iPhone	data.

Android
We have used the following software for Facebook forensics in
Android devices:

•	 Logical	acquisition:	
•	 XRY	version	5
•	 Oxygen	Forensics	Suite	2011
•	 Hoog’s	method	(AndriodForensics.apk)
•	 Debugging/Recovery	mode	(same	as	physical	acquisition/

dd imaging)
•	 YAFFS2IMG	Browser

Testing	Environment:					
•	 Hauwei	device	version	1.6	and	2.1	(no	rooted)
•	 File	system:	YAFFS2

“text\\\”>\\u200e<message>\\u003c

“text”:”<message>”

Noted	that	these	formats	might	be	too	simply	which	could	be	
identified on other applications. Further signature might be able
to conclude that could uniquely identify that the message is
coming from Facebook but not anywhere else. However, it could
also increase the rate of false negative rate.

We have identified legitimate Facebook message format and
most of the message footprints in Facebook in both browser
cache file and memory file.
Moreover,	we	could	identify	Facebook	user	profile	which	is	

used to publish and send out messages with corresponding
timeline. Further investigation is required to verify whether the
genuine account owner is involved in the case.

In addition, footprints of Facebook activities could be matched
and	found	in	VM	snapshot	file.		

Further development on android forensics
Finally, we have used various handy forensics tools to ex-

tract the Facebook messages from various platforms and mo-
bile devices, which are relevant to forensics practitioners and
examiners.

Hopefully, the research findings could be contributed to the
forensics examiner as an valuable reference.

WHO AM I?
VXRL focuses on o�ensive security research, threat and malware analysis,
reverse engineering and forensics studies.
Authors:
Kelvin Wong (a.k.a. Captain), security researcher, VXRL
Kelvin is Facebook forensics project leader. He has got nearly 10 years expe-
rience in computer forensics and investigation at Hong Kong Police Force
and quali�ed as Encase Certi�ed Examiner, CEH and CHFI as well as Profes-
sional Diploma in Computer Forensics in HKUST.
Anthony Lai, Founder and Security Researcher, VXRL
Anthony Lai (aka Dark�oyd) has worked on code audit, penetration test, cri-
me investigation and threat analysis and acted as security consultant in va-
rious MNCs.
Anthony has worked with researchers to convey talks about Chinese mal-
ware and Internet Censorship in Blackhat 2010 and DEFCON 18. Meanwhi-
le, he has worked on APT Clustering research with Taiwanese research fel-
lows and set up Xecure Lab, presenting the research at DEFCON 19, Hack In
Taiwan 2010 & 2011, Open Group Taipei and AVTokyo 2011. His interest falls
on studying exploit, reverse engineering, analyse threat and join CTFs, it wo-
uld be nice to keep going and boost this China-made security wind in mal-
ware analysis and advanced persistent threat areas.
He has found VXRL (Valkyrie-X Security Research Group) in Hong Kong and
keep themselves to connect to and work with various prominent and respec-
table hackers and researchers. (Anthony Lai Twitter:: anthonation / Facebo-
ok: Anthony Lai)
Dr. Leng Lee, security researcher, VXRL
- Experienced application and system developer and focus on security area
including reverse engineering and exploit development. He has certi�ed as
SCJP.
Jason Yeung, security researcher, VXRL
- With around 5-year penetration test experience and a year of incident re-
sponse. Currently, he is now working as a security specialist in a European
MNC. He is CISSP, CCNA, MCSE+S, CISSP and GWAPT holder
Pak-Ho Chan, security researcher, VXRL
He is currently focusing on PCI DSS compliance of credit card data and he is
holder of GCFA, CEH and CCSA.

Figure 24: Android system and data �les opened with YAFFS2IMG browser.

Figure 25: Facebook information in Facebook App (*.db �les) opened with
SQLite Database Browser

Further development
We could discover more information from Android device with
correlated	Gmail	account	for	further	investigation.

Conclusion
We have a few significant findings in our research. In general,
the message on memory and cache could be concluded in two
for message format, as shown below:

[GEEKED AT BIRTH]

www.uat.edu > 877.UAT.GEEK

LEARN:
Advancing Computer Science
Artificial Life Programming
Digital Media
Digital Video
Enterprise Software Development
Game Art and Animation
Game Design
Game Programming
Human-Computer Interaction
Network Engineering

[IT’S IN YOUR PULSE]

You can talk the talk.
Can you walk the walk?

 Here’s a chance to prove it.

Network Security
Open Source Technologies
Robotics and Embedded Systems
Serious Games and Simulation
Strategic Technology Development
Technology Forensics
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

Please see www.uat.edu/fastfacts for the latest information about degree
program performance, placement and costs.

www.uat.edu

Final CALL FOR CHAPTER PROPOSALS
Proposal Submission Deadline: January 20, 2012

Theory and Practice of Cryptography Solutions for Secure Information Systems
An edited book to be published by IGI Global

Introduction

Information systems (IS) play a central part in all aspects of our world from science, engineering to industry, from business, law, politics to government, from

culture, society to health, from operational support in daily life, and homeland protection to national security. Without proper security precautions, IS are prone

to intolerable side effects such as leakage of operational and confidential data, identity theft and unauthorized access, and possibly modification of private data,

services and systems. Security services are required in order to guarantee information security and privacy protection, such as data confidentiality, data

authentication, anonymity, and entity authentication, non-repudiation of origin and receipt, access control, protection against denial of service, and secure

processing and deletion of data. In summary, dependable and trustworthy security solutions based on strong cryptography are needed.

Objectives of the Book

This book will focus on cryptography and its use for security of IS. It will also serve as a valuable source for information security and associated concerns in IS,

providing the reader state-of-the-art technologies and practices for creating secure IS through cryptographic solutions. Hence, manuscripts will be expected to

cover recent research and advanced development in the use of cryptography in IS. In addition, topics related to cryptography and networks, which are part of

the environments in which secure information systems must operate, will be considered favorably.

Chapter manuscripts will be chosen through peer/expert reviews to achieve high quality and maturity of expression. As such we hope to compile the best

manuscripts to cover the intended sequence of topics. We expect this book to receive high citation in the areas of information security, secure information

systems, applied mathematics, and computer science.

Target Audience

This edited book on cryptography and IS will propose contributions on a wide range of topics on foundations and applications written by a selection of

international experts. We aim to bring about a book covering the theory, practice, and tools of cryptography in producing secure IS. It will introduce

fundamentals briefly but dwell on advanced topics at much greater length. As such it will serve the needs of advanced learners, faculty and graduate students

alike, and should be suitable for practitioners, individual learners, and classroom adoption. The book will also serve as an important reference for developers of

secure IS applications and industry practitioners.

Recommended topics in theory, tools, and applications of cryptographic solutions for information systems include, but are not limited to the following:

• Cryptography • Agent & Multi-agent System Security

• Cryptography and Security • Authentication & Authorization

• Cryptography and Data Protection • Engineering Secure Information Systems

• Cryptography and Privacy • Forensics and Ethical Hacking

• Cryptography and Cryptanalysis • Key Management

• Cryptographic Protocols • Ontology of Cryptographic Solutions

• Cryptographic Solutions • Public-key Crypto Systems

• Copyright protection • Standards, guidelines and certification

Manuscripts in which cryptographic solutions for IS are not the main focus will not be accepted.

Submission Procedure

Researchers and practitioners are invited to submit by January 20, 2012, a 2-3 page chapter proposal clearly explaining the contributions of the chapter and

how it will address a cryptographic solution for IS. Authors of accepted proposals will be notified at the most in three weeks and sent chapter guidelines. Full

chapters of about 20 pages are expected to be submitted by April 27, 2012. All the submitted chapters will be reviewed on a double-blind review basis.

Contributors may also be requested to serve as reviewers for this project.

All proposals must be submitted electronically via the Submission Site (https://cmt.research.microsoft.com/CRYPSIS2012/) by the due date.

Publisher

This book is scheduled to be published by IGI Global (formerly Idea Group Inc.), publisher of the “Information Science Reference” (formerly Idea Group

Reference), “Medical Information Science Reference,” “Business Science Reference,” and “Engineering Science Reference” imprints. For additional information

about the publisher, please visit www.igi-global.com. This book is planned to be released early in late 2013.

Important Dates

January 20, 2012: Final Proposal Submission Deadline Aug 30, 2012: Revised Chapter Submission

April 27, 2012: Full Chapter Submission Sep 30, 2012: Final Acceptance Notification

July 27, 2012: Review Results Returned Oct 15, 2012: Final Chapter Submission

Contact Details

Inquiries may be forwarded by e-mail through the submission site, or directly addressed to the editors:

Atilla ELÇİ (Süleyman Demirel University, Turkey, atilla.elci@gmail.com), Josef PIEPRZYK (Macquarie University, Australia, josef.pieprzyk@mq.edu.au), Alexander
CHEFRANOV (Eastern Mediterranean University, North Cyprus, alexander.chefranov@emu.edu.tr), Mehmet ORGUN (Macquarie University, Australia,

mehmet.orgun@mq.edu.au), Huaxiong WANG (Nanyang Technological University, Singapore, hxwang@ntu.edu.sg), and Rajan SHANKARAN (Macquarie

University, Australia, rajan.shankaran@mq.edu.au).

Dated 2011.11.09

