

http://www.sysmoth.com/

http://www.atola.com

4

THE TOOLS

10/2012

10/2012 (14)

 team
Editor in Chief: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Editorial Advisory Board: John Webb, Marco Hermans,
Visvaprakash, Guillermo Lozano, Elia Pinto, JI PB

Proofreaders: Jeff Smith, Nick Baronian

Special thanks to our Beta testers and Proofreaders who helped
us with this issue. Our magazine would not exist without your
assistance and expertise.

Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Art. Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

DTP: Ireneusz Pogroszewski

Marketing Director: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Publisher: Software Press sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the highest quality
of the magazine, the editors make no warranty, expressed
or implied, concerning the results of the content’s usage.
All trademarks presented in the magazine were used for
informative purposes only.

DISCLAIMER!
The techniques described in our magazine may
be used in private, local networks only. The
editors hold no responsibility for the misuse of the
techniques presented or any data loss.

Dear Readers,
Reverse Engineering is a process of the exploration of a
product (computer program, device) which is conducted
to find out how this product really works and how it was
made. The process is usually applied in order to create
an equivalent of the already existing product or to en-
sure interoperability with other products.

The issue you are reading touches upon the topic of Re-
verse Engineering. We decided to supply you with this
publication in response to your request for the subject to
be covered in this month’s issue of Exploiting Software.

We grouped the articles published in the issue into the-
matic sections. These are called: Tools (the articles by
Jaromir Horejsi, Jacek Adam Piasecki and Shane R.
Spencer), Reaching The Code (Adam Kujawa and Eoin
Ward’s publications) and Reverse It Yourself (in the pa-
pers of Lorenzo Xie and Raheel Ahmad). The latter clos-
es the issue with his review of JScrambler product in the
Hakin9 Extra section.

Seizing the opportunity of publishing this December’s is-
sue of Exploiting Software, we wanted to wish a Merry
Christmas and a Happy New Year to all our readers and
followers. May this special time of the year be peaceful
and cheerful for You and Your Families.

MERRY CHRISTMAS!

Regards,

Krzysztof Samborski
and Hakin9 Team

mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:andrzej.kuca%40hakin9.org?subject=
mailto:mailto:ireneusz.pogroszewski%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
http://www.hakin9.org/en

THE TOOLS
How to Analyze Applications With Olly
Debugger?
BY JARoMIR HoREJSI
When you write your own programs and you would like
to change or modify some of their functions, you simply
open the source code you have, make desired chang-
es, recompile and your work is done. However, you don’t
need to have source code to modify function of a program
– using specialized tools, you can understand a lot from
program binary file, you can add your new functions and
features and you can also modify and alter its behavior.

How to Disassemble and Debug
Executable Programs on Linux,
Windows and Mac OS X?
BY JACEK ADAM PIASECKI
The Interactive Disassembler Professional (IDA Pro) is
an extremely powerful disassembler distributed by Hex-
Rays. Although IDA Pro is not the only disassembler, it
is the disassembler of choice for many malware ana-
lysts, reverse engineers, and vulnerability analysts.

How to use Socat and Wireshark
for Practical SSL Protocol Reverse
Engineering?
BY SHANE R. SPENCER
Secure Socket Layer (SSL) Man-In-the-Middle (MITM)
proxies have two very specific purposes. The first is to
allow a client with one set of keys to communicate with
a service that has a different set of keys without either
side knowing about it. This is typically seen as a MITM
attack but can be used for productive ends as well.

REACHING THE CODE
How to Defeat Code Obfuscation
While Reverse Engineering?
BY ADAM KuJAWA
Have you ever decompiled malware or another appli-
cation and found nothing but a small amount of code
and lots of junk? Have you ever been reading decom-
piled code only to watch it jump into a section that does
not exist? If you have been in either of these situations,
chances are you were dealing with obfuscated code or a
packed binary. Not all is lost however, as getting around
these methods of code protection is not impossible.

How to Identify and Bypass
Anti-reversing Techniques?
BY EoIN WARD
Learn the anti-reversing techniques used by malware
authors to thwart the detection and analysis of their pre-
cious malware. Find out about the premier shareware
debugging tool Ollydbg and how it can help you bypass
these anti-reversing techniques.This article aims to look
at anti-reversing techniques used in the wild. These are
tricks used by malware authors to stop or impede re-
verse engineers from analysing there files.

REVERSE IT YOURSELF
How to Reverse Engineer?
BY LoRENzo XIE
If you are a programmer, software developer, or just
tech savvy, then you should have heard about reverse
engineering and know both its good and evil side. Just
in case, here is a brief introduction for those who don’t
know what it is. In this article, we are going to talk about
RCE, also known as reverse code engineering. Re-
verse code engineering is the process where the code
and function of a program is modified, or may you pre-
fer: reengineered without the original source code.

How to Reverse the Code?
BY RAHEEL AHMAD
Although revealing the secret is always an appealing
topic for any audience, Reverse Engineering is a criti-
cal skill for programmers. Very few information security
professionals, incident response analysts and vulnera-
bility researchers have the ability to reverse binaries ef-
ficiently. You will undoubtedly be at the top of your pro-
fessional field (Infosec Institute).

HAKIN9 EXTRA
JScrambler
Protect Your Code (Review)
BY RAHEEL AHMAD
Modern websites, which use Web 2.0 and AJAX, often
generate HTML and JavaScript code on the fly. This
means that standard static code analysers cannot fully
scan the source code and locate client-side JavaScript
issues, since the source code itself does not yet include
the entire HTML and JavaScript code.

06

46

54

60

66

18

30

36

COnTEnTS

6

THE TOOLS

10/2012

How to Analyze Applications With

Olly Debugger?
When you write your own programs and you would like to change
or modify some of their functions, you simply open the source code
you have, make desired changes, recompile and your work is done.
However, you don’t need to have source code to modify function of
a program – using specialized tools, you can understand a lot from
program binary file, you can add your new functions and features
and you can also modify and alter its behavior.

Process of analyzing computer program’s
structure, functions and operations without
having a source code available is called re-

verse engineering.
In this article I would like to introduce you to

the one of the most important tools for reverse
engineers – Olly debugger. While reading this ar-
ticle, I will introduce Olly debugger, explain the
basic features and functions and ways of using
them, and later we will analyze two programs
(crackmes). “Crackme” is a program that is used
for practicing your reverse engineering skills. As
reverse engineering of commercial applications
may violate some laws, we will stay with crack-
mes during this article. In the first program, we
will use program patching to change its function-
ality, in the second program we will try to reverse
the algorithm behind its password checking
routine.

After reading the article, you should be able to
open a program in Olly debugger and start ana-
lyzing it. If necessary, you should be able to make
your own patch or reverse simple algorithms.

Prerequisites
Before you continue reading this article, make sure
you have Olly debugger downloaded and installed.
When you search (on the Internet) ollydbg, you
quickly discover the project’s main webpage ol-
lydbg.de. From this page, download version 2 of
the debugger, unpack archive and execute ollyd-

bg.exe. You also need two target programs (crack-
mes) – crackme1.zip and crackme2.zip. See at-
tachment for more information. Now you are ready
to follow the rest of this tutorial.

What is Olly Debugger?
Olly Debugger (we will call it OllyDbg) is a 32-bit
debugger for analyzing portable executable (PE)
files for Microsoft Windows. (There are many dif-
ferent types of computer files. PE files are stan-
dard executable .EXE files, DLL libraries, SCR
screensavers, etc... When you open the file in any
editor, you notice two signatures – MZ in the begin-
ning and PE a bit further. At address 0x3C you will
see the offset of PE signature. In our example val-
ue on address 0x3c is 0xB0, therefore on address
0xB0 you will see PE signature). See Figure 1 for
screenshot.

Figure 1. PE file format

www.hakin9.org/en 7

Debugger overview
When you execute ollydbg.exe and drag and drop
any executable file on it (in my case I used crack-
me_01.exe), you will notice four sub-windows –
disassembly (upper left), registers (upper right),
dump (bottom left) and stack (bottom right) (see
Figure 2). We will say a little bit about each of
these sub-windows.

Debugger sub-windows
The Disassembly sub-window shows the disas-
sembly of the program. Each line contains sever-
al columns – memory address, opcodes, opcodes
translated into assembly language, additional in-
formation added by debugger (in case of API calls
you can see parameter values and their types). If
you look at the first line of Figure 2, you will see
00401000 (memory address), 6A 00 (opcode),
PUSH 0 (disassembly of opcode 6A 00, i.e. instruc-
tion which stores number 0 on the stack), Type =
MB_OK|MB_DEFBUTTON1|MB_APPLMODAL
(additional information added by debugger – it
says that this value in Type parameter of Mes-
sageBox Windows function). If you want to know

more about MessgeBox or any other API function,
search in internet for “msdn messagebox.” MSDN
means Microsoft Developer Network.

The Register sub-window contains processor
registers. When a register changes, its color be-
comes red. Below registers (in middle part of sub-
window), you can see processor flags – 1 bit val-
ues which signalize results of previously performed
operations (results of comparison of two numbers,
etc…). In bottom part of sub-window, you can see
Floating Point Unit registers, which are used for
arithmetic operations involving decimal point num-
bers. If you want to know more about registers,
processor instructions, etc., search in internet for
“IA-32 architecture.”

The dump sub-window shows you raw binary
data from addresses you specify. When you right
click into dump sub-window, select Go To -> Ex-
pression (Ctrl+G), you can choose the address
which you want to display binary data from. You
can choose from various forms of data representa-
tion – just right click on dump window and select
one of the options (Hex, Text, Integer, Float or Dis-
assemble).

Figure 2. OllyDbg main window

8

THE TOOLS

10/2012

The stack sub-window shows a block of memory
generally used for storing parameters of functions,
return addresses of function calls, local variables
within functions. Stack is a data structure based
on “Last In First Out” principle. When you push a
value (instruction PUSH) onto the stack, it appears
on the top, when you pop value (instruction POP)
from the stack, the value from the top of the stack is
removed. In Figure 2, first line in stack sub-window
is 0012FFC4 (address), 7C816D4F (value stored
on address), RETURN to kernel32.7C816D4F (ad-
ditional information added by debugger).

That’s all for the description of the four basic sub-
windows. However, if you need to display more in-
formation, you can click on View menu and select
any of those options to display optional sub-win-
dows – see Figure 3.

Executable modules shows list of all modules
loaded in the memory space of the analyzed pro-
gram. It gives basic information as 00400000
(base address), 0004000 (size of image in mem-
ory), 00401000 (address of entry point, where ex-
ecution of module starts), Crackme_01 (name), file

version and path to file. The Threads window enu-
merates all thread in active program. It shows ba-
sic information like identifier, windows title, last er-
ror, entry point, status, priority, etc.

Figure 3. Optional sub-windows

Figure 4. Setting up memory breakpoint

Figure 5. Setting up hardware breakpoint

www.hakin9.org/en 9

To explain the purpose of following optional win-
dows, we should understand what a breakpoint is.
A Breakpoint is a condition set in debugger. When
this condition is met, program stops running and
waits for user action. Three main types of break-
point are: software breakpoint, memory break-
point and hardware breakpoint. In order to have
the same output as in this tutorial, do the following:
Set software breakpoint at address 401021 (click
on line with address 401021 and press F2), set
memory breakpoint at address 40102D (right click
on line 40102D, select Breakpoint-> Memory and
press OK – see Figure 4), and finally set hardware
breakpoint at address 401046 (right click on line
401046, select Breakpoint->Hardware and press
OK – see Figure 5).

After all theses steps, the disassembly window
will look like Figure 6 – lines on which breakpoints
are set, become red.

INT3 breakpoints window shows all addresses
where software breakpoints were set. In our ex-
ample, it shows 00401021 (address), Crackme_01
(module name), Active(status, not disabled now),
disassembly of address the breakpoint was set on,
comment added by debugger.

The Memory breakpoints window enumerates
all memory breakpoints. In our example, it shows
0040102D (address), 0000005 (size of region in
bytes), Crackme_01 (module name), E (type Ex-
ecution), Active (Status, it is not disabled now).

The Hardware breakpoints window enumerates
all hardware breakpoints. In our example, 1 (one
of four slots), Write:1 (type of hardware breakpoint
and number of bytes it is applied for), 00401046
(address where breakpoint was set), Crackme_01
(module name), Active (status, not disabled now).

The Memory map shows all memory regions
loaded to user mode. It displays address, size of
region, owning process, section name, description
of contents, memory type and access rights. In the

case for our Crackme_01 program, it gives us fol-
lowing information: It has 4 memory blocks.

00400000, which is PE header of Crackme_01.exe
(as shown in Figure 1)
00401000, which is .text section of Crackme_01.exe
00402000, which is .rdata section of Crackme_01.exe
00403000, which is .data section of Crackme_01.exe

The first example
If you followed tutorial in the previous sections, you
have Crackme_01.exe loaded in your OllyDbg,
you set three different breakpoints and now you
are ready for your first analysis.

When you press key F9 or Run icon from tool-
bar application Crackme_01.exe starts running.
It continues running until breakpoint is hit or until
user action is expected. In this case, message box
is display and application waits for user to click on
OK button (Figure 7).

After clicking OK, no more messages are be-
ing displayed, however, the debugger stops at ad-

Figure 6. Software, memory and hardware breakpoints

Figure 7. The first message box in crackme_01.exe

Figure 8. The second message box in crackme_01.exe

10

THE TOOLS

10/2012

dress 401021, where we set software breakpoint.
It is just before the second message box will be
displayed. Now, we will press F8 Step Over, tool-
bar icon and another message is displayed
(Figure 8).

After pressing OK, we stop at 401026. If we
press F9 (Run) again, we stop at 40102D, be-
cause we set Memory Breakpoint on Execute at
this address. We can continue either by pressing

F9 once or by pressing F8 for each line of code
until we reach another message box at 401034.
This message box says “NAG NAG Remove Me!”
(Figure 9). As strings displayed in message box
show, our goal is to remove this message box so
that when we run the crackme again, it is not dis-
played anymore.

After pressing OK and F9 (Run) again, the de-
bugger does not stop at 401046, because we set
hardware breakpoint on write, not hardware break-
point on execute. Meanwhile, the application called
ExitProcess and exited (you can see red text “Ter-
minated” in right bottom corner).

Now restart the application by pressing
CTRL+F2 delete all breakpoints because we
do not need them anymore (go to all windows
with breakpoints, select breakpoint, right click and
Remove) and continue stepping through the ap-
plication using F8 (Step Over). When you reach
line 401026, you are at the place where the first
parameter of the message box is pushed on the
stack. As long as we want to remove the message
box, we should remove not only “call Message-
BoxA” instruction, but also all its parameter. Re-
moval will be done by replacing the instructions

Figure 9. The third message box in crackme_01.exe

Figure 10. Dialog for replacing instructions

Figure 11. Replacing with NOP instructions

Figure 12. Replaced PUSHes and CALL

www.hakin9.org/en 11

Figure 13. Copying modifications into new executable

Figure 14. Saving modified executable into new file

12

THE TOOLS

10/2012

by other instructions which do nothing. For such
a purpose, No oPeration instruction (NOP) with
opcode 0x90 is the best candidate. It has only one
byte, therefore it allows us to replace any other
instruction with it, removing the effect of original
function and doing nothing instead.

OllyDbg allows to edit instructions in disassem-
bly by pressing Space key. Dialog as in Figure 10
displays. You only need to overwrite original in-
struction address with “nop” and press “Assemble”
button. After pressing “Assemble” button, original
instruction with size 2 bytes is replaced with two
NOP instructions (red colored lines in Figure 11).

Repeating the same for all PUSH instructions
(belonging to call) and the call instruction itself will
result in following code (Figure 12).

Now, we should save all modifications into a
new file and we are done with this task. Therefore,
select all modified lines with mouse, right click,

select Edit->Copy to Executable. A New window
with the modified exe file will open (Figure 13).
Right click into this newly created window, right
click and select Save File… Enter new file name
(something like crackme_01_patched.exe), click
on Save and patched file is saved. Later, when
you try to run the patched file, only two message
boxes are displayed and instead of the third mes-
sage box, several nop instructions are executed,
therefore nothing happens and no message box
is displayed.

The second example
Our second example will be a slightly more com-
plicated crackme – sf_cme04.exe. First of all, we
run the crackme to see how the application looks
like. Figure 15 shows that we have two text fields,
About link, Exit link. When we try to insert random
text into both fields, nothing happens.

Let’s open the application with OllyDbg and try
to find some information to help us start reversing.
The first step will be to look at string references.
Right click on disassembly window, select “Search
for” -> “All referenced text strings” (Figure 16).

We scroll down the list of text strings and try
to find anything interesting or suspicious. We are
quite lucky, because we can see a lot of strings in
this crackme. The strings are not encrypted or ob-
fuscated so we can see them in their plain forms.
After lengthy scrolling down we notice the fol-
lowing interesting message: “You were success-
ful! Now send me your serial or write a tutorial”
(Figure 17).

Figure 15. The second crackme

Figure 16. Displaying all referenced text stringsFigure 16. Displaying all referenced text strings

www.hakin9.org/en 13

Figure 17. Interesting string

Figure 18. Breakpoint set on function which we expect to display success message

14

THE TOOLS

10/2012

Double click on this line and we will land at ad-
dress 4475E0 in the disassembly window. Scroll
slightly above, procedure which has something to
do with our suspicious string starts at 00447540
with PUSH EBP instruction. Remember this ad-
dress – later we will set a breakpoint here. Run
crackme by pressing F9, enter arbitrary strings

in both text fields (in our case we enter “crack-
me” and “123456” – Figure 19), set breakpoint at
4475E0 (Figure 18). Now we can try to click on
various places of crackme’s window, but nothing
happens. Only when we try to modify the text in
the second text field (for example from “123456” to
“1234567”), debugger breaks at 4475E0.

Then we keep pressing F8 (Step Over) and ob-
serve stack window, register window if we notice
any changes, which are interesting for us. Typi-
cally we are looking for situations where we can
see the data which we inserted into program’s
text boxes. When we reach address 447563
(the address right after call XXXX), we can see
that register EDX contains address of the string
“emkcarc”, which is reverse string of “crack-
me” – contents of the first text field we entered
(Figure 20).

Stepping out further, another interesting address
is 447573. In register EAX, we can see reference

Figure 19. Crackme window with both textboxes filled up

 Figure 20. Text box contents found in register

Figure 21. Magic string

www.hakin9.org/en 15

passed in registers EAX and EDX. You can sim-
ply verify it by keeping the first text box with text
“crackme” and modifying the second text box to
value “754-09”. When you do this, you can expect
to see something like in Figure 23.

Now our work is over. We found the correct
name/serial combination, but unfortunately we
do not yet know what the exact relation between
name and serial number. Is the serial number

to string “754-09.” We don’t know what these num-
bers means, but we can guess that they come out
from procedure 447565 (Figure 21).

A few lines below – at address 447597, register
EAX contains our magic value “754-09”, register
EDX contains string “1234567” (which we entered
to the second text box). Then at 00447597 a pro-
cedure is called and if a zero flag is set during the
call of the procedure, then SETZ BL sets BL reg-
ister to 1 (Figure 22). However, in our case, zero
flag is not set during calling procedure 00447597,
therefore SETZ BL sets register BL to 0.

Further in the code, at address 4475D1, you
can see instruction TEST BL, BL followed by JZ
4475EA (you can see it in Figure 22 too). If BL
equals 0, TEST BL, BL (which corresponds to logi-
cal function BL & BL) sets zero flag to 1 (0 & 0 =
0, result is zero, therefore zero flag = TRUE = 1)
and JZ jumps to 4475EA, therefore no message is
displayed.

The opposite situation occurs when a ze-
ro flag is not set during function call at 447597.
In such case, SETZ BL sets BL register to 1.
Later in the code, TEST BL, BL results in zero
flag = 0, JZ does not jump and message box is
displayed.

From the aforementioned description, we can
expect that instruction CALL at address 447597
is comparison of two strings, which pointers are

Figure 22. Comparison procedure

Figure 23. Correct name/serial combination found

16

THE TOOLS

10/2012

computed from the name? Is the serial number
computed from something else? Is the serial
number constant and hardcoded somewhere in
program? In the text above, we mentioned that
“magic text” “754-09” appeared in the program
soon after calling procedure at address 447565.
Let’s examine this procedure a little bit. First of
all, we need to press F9 to continue running the
application (leave from debugger), we edit text
in the second text box, and we hit breakpoint
at 447540 again. We keep pressing F8 to Step
over until we reach 447565, where we press F7
to Step into the procedure. Now we land at
447470.

Keep pressing F8 Step over again and observe
what happens. In the middle of the procedure, you
will find a loop (Figure 24), which

• measures length of text of the first text box
(004474B1: CALL 0041B798)

• gets pointer to the text of the first text box
(004474B6: MOV EAX,DWORD PTR SS:[EBP-4])

• reads (ESI-1)-th character from the beginning
of the string to EAX (004474B9: MOVZX EAX,BYTE
PTR DS:[ESI+EAX-1])

• reads (ESI-1)-th character from the end of the
string to EDX (004474C4: MOVZX EDX,BYTE PTR
DS:[ESI+EDX-1])

• multiplies EAX by EDX (004474C9: IMUL EDX)
• adds result to temporary variable (004474CB:

ADD DWORD PTR DS:[EBX+1F8],EAX)
• repeats length-1 times

In our example, the following is being computed
for string “crackme”. ASCII code for character ‘c’
is 0x63, for character ‘e’ is 0x65, etc…

(c * e) + (r * m) + (a * k) + (c * c) +
(k * a) + (m * r) + (e * c) =
= (0x63 * 0x65) + (0x72 * 0x6D) + (0x61 *
0x6B) + (0x63 * 0x63) + (0x6B * 0x61) +
(0x6D * 0x72) + (0x65 * 0x63) =
= 0x270F + 0x308A + 0x288B + 0x2649 + 0x288B +
0x308A + 0x270F = 0x12691 = 75409 (in decimal)

Figure 24. Serial computing loop

This is the method of computing serial number
from string supplied by user.

Conclusion
In this article, we learned fundamentals of using
OllyDbg. We took the first simple example and
made our first patch, which prevented application
from showing a message box we did not want to
display. In the second example, we learned how
to locate interesting procedure in the lengthy list-
ing of assembly code and analyzed it in detail. We
found the correct name/serial combination and un-
derstood the way of computing serial number from
user supplied name.

JArOmir HOreJsi
Jaromir is a computer virus re-
searcher and analyst. He specializ-
es in reverse engineering and an-
alyzing malicious PE files under
Windows platform. He is interest-
ed in malware internals – how it is
packed/crypted, how it is installed
into computer, how it protects itself

from being analyzed, etc. He also likes solving interest-
ing crackmes. Except for reverse engineering, his hob-
bies include traveling, exploring new places, flying re-
mote control models and playing board games.

http://www.infosectechnologies.com

18

THE TOOLS

10/2012

iDA Pro
How to Disassemble and Debug executable Programs on

Linux, Windows and mac Os X?
The Interactive Disassembler Professional (IDA Pro) is an extremely
powerful disassembler distributed by Hex-Rays. Although IDA Pro is
not the only disassembler, it is the disassembler of choice for many
malware analysts, reverse engineers, and vulnerability analysts.

The program is published by Hex-Rays (http://
www.hex-rays.com), which provides a free
version for non-commercial uses that is one

version less than the current paid version. It is now
version 5.0.

IDA Pro will disassemble an entire program and
perform tasks such as function discovery, stack
analysis, local variable identification, and much
more. IDA Pro includes extensive code signatures
within its Fast Library Identification and Recogni-
tion Technology (FLIRT), which allows it to recog-
nize and label a disassembled function, especially
library code added by a compiler.

IDA Pro is meant to be interactive, and all as-
pects of its disassembly process can be modified,
manipulated, rearranged, or redefined. One of the
best aspects of IDA Pro is its ability to save your
analysis progress: You can add comments, label
data, and name functions, and then save your
work in an IDA Pro database (known as an idb) to
return to later. IDA Pro also has robust support for
plug-ins, so you can write your own extensions or
leverage the work of others.

Loading an executable
When you load an executable, IDA Pro will try to
recognize the file’s format and processor architec-
ture. Figure 1 displays the first step in loading an
executable into IDA Pro. When loading a file into
IDA Pro (such as a PE file with Intel x86 architec-
ture), the program maps the file into memory as if

it had been loaded by the operating system loader.
To have IDA Pro disassemble the file as a raw bi-
nary, choose the Binary File option in the top box.
This option can prove useful because malware
sometimes appends shellcode, additional data,
encryption parameters, and even additional exe-

Figure 1. Loading a file in IDA Pro

http://www.hex-rays.com
http://www.hex-rays.com

www.hakin9.org/en 19

cutables to legitimate PE files, and this extra data
won’t be loaded into memory when the malware is
run by Windows or loaded into IDA Pro. In addition,
when you are loading a raw binary file containing
shellcode, you should choose to load the file as a
binary file and disassemble it.

PE files are compiled to load at a preferred base
address in memory, and if the Windows loader
can’t load it at its preferred address (because
the address is already taken), the loader will per-
form an operation known as rebasing. This most
often happens with DLLs, since they are often
loaded at locations that differ from their preferred
address. You should know that if you encounter
a DLL loaded into a process different from what
you see in IDA Pro, it could be the result of the
file being rebased. When this occurs, check the
Manual Load checkbox shown in Figure 1, and
you’ll see an input box where you can specify
the new virtual base address in which to load
the file.

By default, IDA Pro does not include the PE
header or the resource sections in its disassem-
bly (places where malware often hides malicious
code). If you specify a manual load, IDA Pro will
ask if you want to load each section, one by one,
including the PE file header, so that these sections
won’t escape analysis.

The iDA Pro interface
After you load a program into IDA Pro, you will see
the disassembly window, as shown in Figure 2.
This will be your primary space for manipulating
and analyzing binaries, and it’s where the assem-
bly code resides.

Disassembly Window modes
You can display the disassembly window in one
of two modes: graph (the default, shown in Figure
2) and text. To switch between modes, press the
spacebar.

Graph mode
In graph mode, IDA Pro excludes certain informa-
tion that we recommend you display, such as line
numbers and operation codes. To change these
options, select Options→General, and then select
Line prefixes and set the Number of opcode Bytes
to 6. Because most instructions contain 6 or fewer
bytes, this setting will allow you to see the memory
locations and opcode values for each instruction in
the code listing (If these settings make everything
scroll off the screen to the right, try setting the In-
struction Indentation to 8).

In graph mode, the color and direction of the ar-
rows help show the program’s flow during analy-
sis. The arrow’s color tells you whether the path is

Figure 2. Graph mode of the IDA Pro disassembly window

20

THE TOOLS

10/2012

based on a particular decision having been made:
red if a conditional jump is not taken, green if the
jump is taken, and blue for an unconditional jump.
The arrow direction shows the program’s flow;
upward arrows typically denote a loop situation.
Highlighting text in graph mode highlights every in-
stance of that text in the disassembly window.

Text mode
The text mode of the disassembly window is a
more traditional view, and you must use it to view
data regions of a binary. Figure 3 displays the text
mode view of a disassembled function. It displays
the memory address (0040105B) and section
name (.text) in which the opcodes (83EC18) will
reside in memory.

The left portion of the text-mode display is known
as the arrows window and shows the program’s
nonlinear flow. Solid lines mark unconditional
jumps, and dashed lines mark conditional jumps.
Arrows facing up indicate a loop. The example in-

cludes the stack layout for the function and a com-
ment (beginning with a semicolon) that was auto-
matically added by IDA Pro.

Useful Windows for Analysis
Several other IDA Pro windows highlight particular
items in an executable. The following are the most
significant for our purposes.

Functions window Lists all functions in the exe-
cutable and shows the length of each. You can sort
by function length and filter for large, complicated
functions that are likely to be interesting, while ex-
cluding tiny functions in the process. This window
also associates flags with each function (F, L, S,
and so on), the most useful of which, L, indicates
library functions. The L flag can save you time dur-
ing analysis, because you can identify and skip
these compiler-generated functions.

Names window Lists every address with a name,
including functions, named code, named data, and
strings.

Figure 3. Text mode of IDA Pro’s disassembly window

www.hakin9.org/en 21

Strings window Shows all strings. By default, this
list shows only ASCII strings longer than five char-
acters. You can change this by right-clicking in the
Strings window and selecting Setup.

Imports window Lists all imports for a file.
Exports window Lists all the exported functions

for a file. This window is useful when you’re ana-
lyzing DLLs.

Structures window Lists the layout of all active
data structures. The window also provides you the
ability to create your own data structures for use as
memory layout templates.

These windows also offer a cross-reference fea-
ture that is particularly useful in locating interesting
code. For example, to find all code locations that
call an imported function, you could use the import
window, doubleclick the imported function of inter-
est, and then use the cross-reference feature to
locate the import call in the code listing.

Listing 1. Navigational links within the disassembly
window

00401075 jnz short loc_40107E
00401077 mov [ebp+var_10], 1
0040107E loc_40107E: ; CODE XREF:

sub_401040+35j
0040107E cmp [ebp+var_C], 0
00401082 jnz short loc_401097
00401084 mov eax, [ebp+var_4]
00401087 mov [esp+18h+var_14], eax
0040108B mov [esp+18h+var_18], offset

aPrintNumberD ; “Print
Number= %d\n”

00401092 call printf
00401097 call sub_4010A0

Figure 4. Navigational buttons

returning to the Default View
The IDA Pro interface is so rich that, after press-
ing a few keys or clicking something, you may find
it impossible to navigate. To return to the default
view, choose Windows→Reset Desktop. Choos-
ing this option won’t undo any labeling or disas-
sembly you’ve done; it will simply restore any win-
dows and GUI elements to their defaults.

a d v e r t i s e m e n t

http://workbooks.com

22

THE TOOLS

10/2012

By the same token, if you’ve modified the win-
dow and you like what you see, you can save the
new view by selecting Windows→Save desktop.

Navigating iDA Pro
As we just noted, IDA Pro can be tricky to navigate.
Many windows are linked to the disassembly win-
dow. For example, double-clicking an entry within
the Imports window or Strings window will take you
directly to that entry.

Using Links and Cross-references
Another way to navigate IDA Pro is to use the links
within the disassembly window, such as the links
shown in Listing 1. Double-clicking any of these
links will display the target location in the disas-
sembly window. The following are the most com-
mon types of links:

• Sub links are links to the start of functions such
as printf and sub_4010A0.

• Loc links are links to jump destinations such as
loc_40107E and loc_401097.

• Offset links are links to an offset in memory.

Cross-references are useful for jumping the dis-
play to the referencing location: 0x401075 in this
example. Because strings are typically referenc-

es, they are also navigational links. For example,
aPrintNumberD can be used to jump the display to
where that string is defined in memory.

exploring Your History
IDA Pro’s forward and back buttons, shown in Fig-
ure 4, make it easy to move through your history,
just as you would move through a history of web
pages in a browser. Each time you navigate to a
new location within the disassembly window, that
location is added to your history.

Navigation Band
The horizontal color band at the base of the tool-
bar is the navigation band, which presents a color-
coded linear view of the loaded binary’s address
space. The colors offer insight into the file contents
at that location in the file as follows:

• Light blue is library code as recognized by
FLIRT.

• Red is compiler-generated code.
• Dark blue is user-written code.

You should perform malware analysis in the dark-
blue region. If you start getting lost in messy
code, the navigational band can help you get
back on track. IDA Pro’s default colors for da-
ta are pink for imports, gray for defined data, and
brown for undefined data.

Jump to Location
To jump to any virtual memory address, simply
press the G key on your keyboard while in the dis-
assembly window. A dialog box appears, asking for
a virtual memory address or named location, such
as sub_401730 or printf.

To jump to a raw file offset, choose Jump→Jump
to File offset. For example, if you’re viewing a PE
file in a hex editor and you see something inter-
esting, such as a string or shellcode, you can use
this feature to get to that raw offset, because when
the file is loaded into IDA Pro, it will be mapped as
though it had been loaded by the OS loader.

searching
Selecting Search from the top menu will display
many options for moving the cursor in the disas-
sembly window:

• Choose Search→Next Code to move the cur-
sor to the next location containing an instruc-
tion you specify.

• Choose Search→Text to search the entire dis-
assembly window for a specific string.Figure 5. Searching example

Listing 2. The disassembly listing

004010E0 push offset aMab ; “$mab”
004010E5 lea ecx, [ebp+var_1C]
004010E8 push ecx
004010E9 call strcmp
004010EE add esp, 8
004010F1 test eax, eax
004010F3 jnz short loc_401104
004010F5 push offset aKeyAccepted ; “Key

Accepted!\n”
004010FA call printf
004010FF add esp, 4
00401102 jmp short loc_401118
00401104 loc_401104 ; CODE XREF: _

main+53j
00401104 push offset aBadKey ; “Bad key\n”
00401109 call printf

www.hakin9.org/en 23

• Choose Search→Sequence of Bytes to per-
form a binary search in the hex view window
for a certain byte order. This option can be
useful when you’re searching for specific data
or opcode combinations.

The following example displays the command-line
analysis of the password.exe binary. This mal-
ware requires a password to continue running,
and you can see that it prints the string Bad key
after we enter an invalid password (test).

C:\>password.exe
Enter password for this Malware: test
Bad key

We then pull this binary into IDA Pro and see how
we can use the search feature and links to unlock
the program. We begin by searching for all occur-
rences of the Bad key string, as shown in Figure 5.
We notice that Bad key is used at 0x401104, so we

jump to that location in the disassembly window by
double-clicking the entry in the search window.

The disassembly listing around the location of
0x401104 is shown next. Looking through the list-
ing, before "Bad key\n", we see a comparison at

Listing 3. Code cross-references

00401000 sub_401000 proc near ; CODE XREF:
_main+3p

00401000 push ebp
00401001 mov ebp, esp
00401003 loc_401003: ; CODE XREF:

sub_401000+19j
00401003 mov eax, 1
00401008 test eax, eax
0040100A jz short loc_40101B
0040100C push offset aLoop ; “Loop\n”
00401011 call printf
00401016 add esp, 4
00401019 jmp short loc_401003

Listing 4. Data cross-references

0040C000 dword_40C000 dd 7F000001h ;
DATA XREF: sub_401020+14r

0040C004 aHostnamePort db ‘<Hostname>
<Port>’,0Ah,0 ; DATA XREF:
sub_401000+3o

Listing 5. Function and stack example

00401020 ; ===== S U B R O U T I N E =====
00401020
00401020 ; Attributes: ebp-based frame
00401020
00401020 function proc near ; CODE XREF:

_main+1Cp

00401020
00401020 var_C = dword ptr -0Ch
00401020 var_8 = dword ptr -8
00401020 var_4 = dword ptr -4
00401020 arg_0 = dword ptr 8
00401020 arg_4 = dword ptr 0Ch
00401020
00401020 push ebp
00401021 mov ebp, esp
00401023 sub esp, 0Ch
00401026 mov [ebp+var_8], 5
0040102D mov [ebp+var_C], 3
00401034 mov eax, [ebp+var_8]
00401037 add eax, 22h
0040103A mov [ebp+arg_0], eax
0040103D cmp [ebp+arg_0], 64h
00401041 jnz short loc_40104B
00401043 mov ecx, [ebp+arg_4]
00401046 mov [ebp+var_4], ecx
00401049 jmp short loc_401050
0040104B loc_40104B: ; CODE XREF:

function+21j
0040104B call sub_401000
00401050 loc_401050: ; CODE XREF:

function+29j
00401050 mov eax, [ebp+arg_4]
00401053 mov esp, ebp
00401055 pop ebp
00401056 retn
00401056 function endp

Figure 6. Xrefs window

24

THE TOOLS

10/2012

0x4010F1, which tests the result of a strcmp. One of
the parameters to the strcmp is the string, and likely
password, $mab (Listing 2). The next example shows
the result of entering the password we discovered,
$mab, and the program prints a different result.

C:\>password.exe
Enter password for this Malware: $mab
Key Accepted!
The malware has been unlocked

This example demonstrates how quickly you can
use the search feature and links to get information
about a binary.

Using Cross-references
A cross-reference, known as an xref in IDA Pro,
can tell you where a function is called or where
a string is used. If you identify a useful function
and want to know the parameters with which it is
called, you can use a cross-reference to navigate
quickly to the location where the parameters are
placed on the stack. Interesting graphs can also be
generated based on cross-references, which are
helpful to performing analysis.

Code Cross-references
Listing 3 shows a code cross-reference that tells us
that this function (sub_401000) is called from inside

the main function at offset 0x3 into the main func-
tion. The code cross-reference for the jump tells us
which jump takes us to this location, which in this
example corresponds to the location marked at
the end. We know this because at offset 0x19 into
sub_401000 is the jmp at memory address 0x401019.

By default, IDA Pro shows only a couple of cross-
references for any given function, even though ma-
ny may occur when a function is called. To view all
the cross-references for a function, click the func-
tion name and press X on your keyboard. The win-
dow that pops up should list all locations where
this function is called. At the bottom of the Xrefs
window in Figure 6, which shows a list of cross-
references for sub_408980, you can see that this
function is called 64 times (“Line 1 of 64”). Double-
click any entry in the Xrefs window to go to the cor-
responding reference in the disassembly window.

Data Cross-References
Data cross-references are used to track the way
data is accessed within a binary. Data referenc-
es can be associated with any byte of data that
is referenced in code via a memory reference, as
shown in Listing 4. For example, you can see the
data cross-reference to the DWORD 0x7F000001. The
corresponding cross-reference tells us that this da-
ta is used in the function located at 0x401020. The
following line shows a data cross-reference for the
string <Hostname> <Port>.

The static analysis of strings can often be used
as a starting point for your analysis. If you see an

Figure 7. Graphing button toolbar

Table 1. Graphing Options

Button Function Description

Creates a flow chart of the current
function

Users will prefer to use the interactive graph mode of the disassembly win-
dow but may use this button at times to see an alternate graph view.

Graphs function calls for the enti-
re program

Use this to gain a quick understanding of the hierarchy of function calls
made within a program, as shown in Figure 8. To dig deeper, use WinGra-
ph32’s zoom feature. You will find that graphs of large statically linked
executables can become so cluttered that the graph is unusable.

Graphs the crossreferences to get to
a currently selected cross-reference

This is useful for seeing how to reach a certain identifier. It’s also useful for
functions, because it can help you see the different paths that a program
can take to reach a particular function.

Graphs the crossreferences from the
currently selected symbol

This is a useful way to see a series of function calls. For example, Figure 9
displays this type of graph for a single function. Notice how sub_4011f0
calls sub_401110, which then calls gethostbyname. This view can quic-
kly tell you what a function does and what the functions do underne-
ath it. This is the easiest way to get a quick overview of the function.

Graphs a userspecified crossrefe-
rence graph

Use this option to build a custom graph. You can specify the graph’s recur-
sive depth, the symbols used, the to or from symbol, and the types of no-
des to exclude from the graph. This is the only way to modify graphs gene-
rated by IDA Pro for display in WinGraph32.

www.hakin9.org/en 25

interesting string, use IDA Pro’s cross-reference
feature to see exactly where and how that string is
used within the code.

Analyzing Functions
One of the most powerful aspects of IDA Pro is its
ability to recognize functions, label them, and break
down the local variables and parameters. Listing 5
shows an example of a function that has been rec-
ognized by IDA Pro. Notice how IDA Pro tells us
that this is an EBP-based stack frame used in the
function, which means the local variables and pa-
rameters will be referenced via the EBP register
throughout the function. IDA Pro has successfully
discovered all local variables and parameters in this
function. It has labeled the local variables with the
prefix var_ and parameters with the prefix arg_, and
named the local variables and parameters with a
suffix corresponding to their offset relative to EBP.
IDA Pro will label only the local variables and pa-
rameters that are used in the code, and there is no
way for you to know automatically if it has found ev-
erything from the original source code. Local vari-
ables will be at a negative offset relative to EBP and
arguments will be at a positive offset. You can see

that IDA Pro has supplied the start of the summary
of the stack view. The first line of this summary tells
us that var_C corresponds to the value -0xCh. This
is IDA Pro’s way of telling us that it has substituted
var_C for -0xC; it has abstracted an instruction. For
example, instead of needing to read the instruction
as mov [ebp-0Ch], 3, we can simply read it as “var_C
is now set to 3” and continue with our analysis. This
abstraction makes reading the disassembly more
efficient.

Sometimes IDA Pro will fail to identify a function.
If this happens, you can create a function by press-
ing P. It may also fail to identify EBP-based stack
frames, and the instructions mov [ebp-0Ch], eax
and push dword ptr [ebp-010h] might appear in-
stead of the convenient labeling. In most cases, you
can fix this by pressing ALT-P, selecting BP Based
Frame, and specifying 4 bytes for Saved Registers.

Using Graphing Options
IDA Pro supports five graphing options, accessible
from the buttons on the toolbar shown in Figure 7.

Figure 8. Cross-reference graph of a program
Figure 9. Cross-reference graph of a single function
(sub_4011F0)

Table 2. Function Operand Manipulation

Without renamed arguments With renamed arguments
004013C8 mov eax, [ebp+arg _ 4]
004013CB push eax
004013CC call _ atoi
004013D1 add esp, 4
004013D4 mov [ebp+var _ 598], ax
004013DB movzx ecx, [ebp+var _ 598]
004013E2 test ecx, ecx
004013E4 jnz short loc _ 4013F8
004013E6 push offset aError
004013EB call printf
004013F0 add esp, 4
004013F3 jmp loc _ 4016FB
004013F8 ; ----------------------
004013F8
004013F8 loc _ 4013F8:
004013F8 movzx edx, [ebp+var _ 598]
004013FF push edx
00401400 call ds:htons

004013C8 mov eax, [ebp+port _ str]
004013CB push eax
004013CC call _ atoi
004013D1 add esp, 4
004013D4 mov [ebp+port], ax
004013DB movzx ecx, [ebp+port]
004013E2 test ecx, ecx
004013E4 jnz short loc _ 4013F8
004013E6 push offset aError
004013EB call printf
004013F0 add esp, 4
004013F3 jmp loc _ 4016FB
004013F8 ; --------------------
004013F8
004013F8 loc _ 4013F8:
004013F8 movzx edx, [ebp+port]
004013FF push edx
00401400 call ds:htons

26

THE TOOLS

10/2012

Four of these graphing options utilize cross-refer-
ences. When you click one of these buttons on the
toolbar, you will be presented with a graph via an
application called WinGraph32. Unlike the graph
view of the disassembly window, these graphs
cannot be manipulated with IDA. (They are often
referred to as legacy graphs.) The options on the
graphing button toolbar are described in Table 1.

enhancing Disassembly
One of IDA Pro’s best features is that it allows you
to modify its disassembly to suit your goals. The
changes that you make can greatly increase the
speed with which you can analyze a binary.

renaming Locations
IDA Pro does a good job of automatically naming
virtual address and stack variables, but you can al-
so modify these names to make them more mean-
ingful. Auto-generated names (also known as
dummy names) such as sub_401000 don’t tell you
much; a function named ReverseBackdoorThread
would be a lot more useful. You should rename
these dummy names to something more meaning-
ful. This will also help ensure that you reverse-en-
gineer a function only once. When renaming dum-
my names, you need to do so in only one place.
IDA Pro will propagate the new name wherever
that item is referenced.

After you’ve renamed a dummy name to some-
thing more meaningful, cross-references will be-
come much easier to parse. For example, if a func-
tion sub_401200 is called many times throughout a

program and you rename it to DNSrequest, it will
be renamed DNSrequest throughout the program.
Imagine how much time this will save you during
analysis, when you can read the meaningful name
instead of needing to reverse the function again or
to remember what sub_401200 does.

Table 2 shows an example of how we might re-
name local variables and arguments. The left col-
umn contains an assembly listing with no argu-
ments renamed, and the right column shows the
listing with the arguments renamed. We can actu-
ally glean some information from the column on
the right. Here, we have renamed arg_4 to port_
str and var_598 to port. You can see that these re-
named elements are much more meaningful than
their dummy names.

Comments
IDA Pro lets you embed comments throughout
your disassembly and adds many comments au-
tomatically.

To add your own comments, place the cursor
on a line of disassembly and press the colon (:)
key on your keyboard to bring up a comment win-
dow. To insert a repeatable comment to be echoed

Figure 10. Function operand manipulation Figure 11. Standard symbolic constant window

Table 3. Code Before and After Standard Symbolic Constants

Before symbolic constants After symbolic constants
mov esi, [esp+1Ch+argv]
mov edx, [esi+4]
mov edi, ds:CreateFileA
push 0 ; hTemplateFile
push 80h ; dwFlagsAndAttributes
push 3 ; dwCreationDisposition
push 0 ; lpSecurityAttributes
push 1 ; dwShareMode
push 80000000h ; dwDesiredAccess
push edx ; lpFileName
call edi ; CreateFileA

mov esi, [esp+1Ch+argv]
mov edx, [esi+4]
mov edi, ds:CreateFileA
push NULL ; hTemplateFile
push FILE _ ATTRIBUTE _ NORMAL ; dwFlagsAndAttributes
push OPEN _ EXISTING ; dwCreationDisposition
push NULL ; lpSecurityAttributes
push FILE _ SHARE _ READ ; dwShareMode
push GENERIC _ READ ; dwDesiredAccess
push edx ; lpFileName
call edi ; CreateFileA

www.hakin9.org/en 27

across the disassembly window whenever there is
a cross-reference to the address in which you add-
ed the comment, press the semicolon (;) key.

Formatting Operands
When disassembling, IDA Pro makes decisions re-
garding how to format operands for each instruc-
tion that it disassembles. Unless there is context,
the data displayed is typically formatted as hex
values. IDA Pro allows you to change this data if
needed to make it more understandable.

Figure 10 shows an example of modifying op-
erands in an instruction, where 62h is compared
to the local variable var_4. If you were to right-
click 62h, you would be presented with options to
change the 62h into 98 in decimal, 142o in octal,
1100010b in binary, or the character b in ASCII –
whatever suits your needs and your situation.

To change whether an operand references mem-
ory or stays as data, press the O key on your key-

board. For example, suppose when you’re ana-
lyzing disassembly with a link to loc_410000, you
trace the link back and see the following instruc-
tions:

mov eax, loc_410000
add ebx, eax
mul ebx

At the assembly level, everything is a number,
but IDA Pro has mislabeled the number 4259840
(0x410000 in hex) as a reference to the address
410000. To correct this mistake, press the O key
to change this address to the number 410000h
and remove the offending cross-reference from
the disassembly window.

Using Named Constants
Malware authors (and programmers in general)
often use named constants such as GENERIC_

Table 4. Manually Disassembling Shellcode in the paycuts.pdf Document

File before pressing C File after pressing C
00008384 db 28h ; (
00008385 db 0FCh ; n
00008386 db 10h
00008387 db 90h ; É
00008388 db 90h ; É
00008389 db 8Bh ; ï
0000838A db 0D8h ; +
0000838B db 83h ; â
0000838C db 0C3h ; +
0000838D db 28h ; (
0000838E db 83h ; â
0000838F db 3
00008390 db 1Bh
00008391 db 8Bh ; ï
00008392 db 1Bh
00008393 db 33h ; 3
00008394 db 0C9h ; +
00008395 db 80h ; Ç
00008396 db 33h ; 3
00008397 db 97h ; ù
00008398 db 43h ; C
00008399 db 41h ; A
0000839A db 81h ; ü
0000839B db 0F9h ; ·
0000839C db 0
0000839D db 7
0000839E db 0
0000839F db 0
000083A0 db 75h ; u
000083A1 db 0F3h ; =
000083A2 db 0C2h ; -
000083A3 db 1Ch
000083A4 db 7Bh ; {
000083A5 db 16h
000083A6 db 7Bh ; {
000083A7 db 8Fh ; Å

00008384 db 28h ; (
00008385 db 0FCh ; n
00008386 db 10h
00008387 nop
00008388 nop
00008389 mov ebx, eax
0000838B add ebx, 28h ; '('
0000838E add dword ptr [ebx], 1Bh
00008391 mov ebx, [ebx]
00008393 xor ecx, ecx
00008395
00008395 loc _ 8395: ; CODE XREF: seg000:000083A0j
00008395 xor byte ptr [ebx], 97h
00008398 inc ebx
00008399 inc ecx
0000839A cmp ecx, 700h
000083A0 jnz short loc _ 8395
000083A2 retn 7B1Ch
000083A2 ; ----------------------------------000083A5 db 16h
000083A6 db 7Bh ; {
000083A7 db 8Fh ; Å

28

THE TOOLS

10/2012

JACek A. PiAseCki
Author is currently a Junior Software Devel-
oper in Ericpol, where he is UMTS systems
software testing, and as a freelancer creat-
ing desktop applications for Windows and
web applications, including the MySQL and
MSSQL database.

Contact the author: japiasecki@autograf.pl

READ in their source code. Named constants pro-
vide an easily remembered name for the program-
mer, but they are implemented as an integer in the
binary. Unfortunately, once the compiler is done
with the source code, it is no longer possible to de-
termine whether the source used a symbolic con-
stant or a literal.

Fortunately, IDA Pro provides a large catalog of
named constants for the Windows API and the C
standard library, and you can use the Use Stan-
dard Symbolic Constant option (shown in Figure
10) on an operand in your disassembly. Figure 11
shows the window that appears when you select
Use Standard Symbolic Constant on the value
0x800000000.

The code snippets in Table 3 show the effect of
applying the standard symbolic constants for a
Windows API call to CreateFileA. Note how much
more meaningful the code is on the right.

Sometimes a particular standard symbolic con-
stant that you want will not appear, and you will
need to load the relevant type library manually. To
do so, select View→Open Subviews→Type Librar-
ies to view the currently loaded libraries. Normal-
ly, mssdk and vc6win will automatically be loaded,
but if not, you can load them manually (as is often
necessary with malware that uses the Native API,
the Windows NT family API). To get the symbolic
constants for the Native API, load ntapi (the Mi-
crosoft Windows NT 4.0 Native API). In the same
vein, when analyzing a Linux binary, you may need
to manually load the gnuunx (GNU C++ UNIX) li-
braries.

redefining Code and Data
When IDA Pro performs its initial disassembly of a
program, bytes are occasionally categorized incor-
rectly; code may be defined as data, data defined
as code, and so on. The most common way to re-
define code in the disassembly window is to press
the U key to undefine functions, code, or data.

When you undefine code, the underlying bytes will
be reformatted as a list of raw bytes.

To define the raw bytes as code, press C. For ex-
ample, Table 4 shows a malicious PDF document
named paycuts.pdf. At offset 0x8387 into the file,
we discover shellcode (defined as raw bytes), so
we press C at that location. This disassembles the
shellcode and allows us to discover that it contains
an XOR decoding loop with 0x97.

Depending on your goals, you can similarly de-
fine raw bytes as data or ASCII strings by pressing
D or A, respectively.

Conclusion
As you’ve seen, IDA Pro’s ability to view disas-
sembly is only one small aspect of its power. IDA
Pro’s true power comes from its interactive abil-
ity, and we’ve discussed ways to use it to mark up
disassembly to help perform analysis. We’ve also
discussed ways to use IDA Pro to browse the as-
sembly code, including navigational browsing, uti-
lizing the power of cross-references, and viewing
graphs, which all speed up the analysis process.

On the Web
http://www.hex-rays.com/idapro/idadownfreeware.htm
– free version of IDA Pro.

mailto:mailto:japiasecki%40autograf.pl?subject=
http://www.ericpol.pl/
http://www.hex-rays.com/idapro/idadownfreeware.htm

MOVE TOMORROW’S BUSINESS
TO THE CLOUD TODAY

YOUR TRUSTED ADVISOR
ON CLOUD COMPUTING

MULTI-VENDOR

ANY DEVICE

HYBRID CLOUD

http://www.clouditeration.com

30

THE TOOLS

10/2012

How to use

socat and Wireshark
for Practical ssL Protocol reverse engineering?

Secure Socket Layer (SSL) Man-In-the-Middle (MITM) proxies have
two very specific purposes. The first is to allow a client with one set
of keys to communicate with a service that has a different set of keys
without either side knowing about it. This is typically seen as a MITM
attack but can be used for productive ends as well. The second is
to view the unencrypted data for security, educational, an reverse
engineering purposes.

For instance, a system administrator could
set up a proxy to allow SSL clients that don’t
support more modern SSL methods or even

SSL at all to get access to services securely. Typi-
cally, this involves having the proxy set up behind
your firewall so that unencrypted content stays
within the confines of your local area.

Being able to analyze the unencrypted data is
very important to security auditors as well. A very
large percentage of developers feel their services
are adequately protected since SSL is being used
between the client and the server. This includes
the idea that if the SSL client is custom closed
source software that the protocol will be unbreak-
able and therefore immune to tampering. If you’re
investing your companies funds using a service
that could easily be subject to tampering then you
may end up with a nasty surprise. Lost funds per-
haps or possibly having your account information
publicly available. This article focuses on using an
SSL MITM proxy to reverse engineer a simple web
service. The purpose of doing so will be to create
your own client that can interact with a database
behind an unpublished API. The software used will
be based on the popular open source software So-
cat as well as the widely recognized Wireshark.
Both are available on most operating systems.

Lets get started!
We will be reverse engineering a LiveJournal client
called LogJam which supports SSL connections

to the LiveJournal API servers. Since this article
is purely educational we don’t mind getting some
experience using the LiveJournal API which al-
ready public and LogJam which is a free and open
source project.

Prerequisites
• Install Socat – Multipurpose relay for bidirec-

tional data transfer: http://www.dest-unreach.
org/socat/

• Install Wireshark – Network traffic analyzer:
http://www.wireshark.org/

• Install OpenSSL – Secure Socket Layer (SSL)
binary and related cryptographic tools: http://
www.openssl.org/

• Install TinyCA – Simple graphical program for
certification authority management: http://ti-
nyca.sm-zone.net/

• Install LogJam – Client for LiveJournal-based
sites: http://andy-shev.github.com/LogJam/

Generating a false ssL certificate
authority (CA) and server certificate
The API domain name for LiveJournal is simply
www.livejournal.com and any SSL compliant client
software will require the server certificate to match
the domain when it initially connects to the SSL
port of the server.

An SSL CA signs SSL certificates and is noth-
ing more than a set of certificates files that can be
used by tools like OpenSSL to sign newly gener-

http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/
http://www.wireshark.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://andy-shev.github.com/LogJam/

www.hakin9.org/en 31

ated certificates via a certificate signature request
(CSR) key that is generated while creating new
server certificates. The client simply needs to trust
the certificate authority public key and subsequent-
ly the client will trust all server certificates signed
by the certificate authority private key.

Generating a certificate authority
Run tinyca2 for the first time and a certificate au-
thority generation screen will appear to get you
started (Figure 1).

It doesn’t matter what you put here if you don’t
plan on keeping this certificate authority information
for very long. The target server at LiveJournal.com
will never see the keys you are generating and they
will stay completely isolated to your testing environ-
ment. Be sure to remember the password since it
will be required for signing keys later on.

Select Export CA from the CA tab and save a
PEM version of the public CA certificate to a new
file of your choosing.

Generating a server certificate
Click on the Requests tab in TinyCA and then the
New button that will help us create a new certificate
signing request and private server key (Figure 2).

The common name must be www.livejournal.
com. The password can be anything and we will
be removing it when we export the key for use.

Under the Requests tab there is now a certifi-
cate named www.livejournal.com that needs to be
signed. Right click and select Sign Request and
then Sign Request Server. Use the default values
to sign the request.

Now there will be a new key under the Key tab
now. Right click on it and select Export Key and
you’ll be presented a new dialog (Figure 3).

As seen in the figure you want to select PEM
(Key) as well as Without Passphase (PEM/
PKCS#12) and Include Certificate (PEM). Doing
so will export a PEM certificate file that contains
a section for the certificate key as well as the cer-
tificate itself. The PEM stanard allows us to store
multiple keys in a single file.

Congratulations, you now have a perfectly val-
id key for https://www.livejournal.com as long as
the web server running the site is under your own
control and uses the server key you’ve generated.
Trusting the key is the tricky part.

Allow logjam to trust the certificate authority
So we have to dig in a bit to understand what SSL
Certificate trust database LogJam will be using.
Most Linux based GTK and console programs rely
on OpenSSL which has it’s own certificate author-
ity database that is very easy to add a new certifi-
cate to.

In Debian/GNU Linux the following will install
your new Yoyodyne CA certificate system wide:
Listing 1.

Now LogJam as well as programs such as wget,
w3m, and most scripting languages will trust all
keys signed by your new CA.

Using socat to proxy the stream and
hijacking your own DNs
Socat is basically a swiss army knife for commu-
nication streams. With it you can proxy between
protocols. This includes becoming an SSL aware
server and proxying streams as an SSL aware cli-
ent to another SSL aware serverFigure 1. TinyCA new certificate authority window

Figure 2. TinyCA new certificate request window Figure 3. TinyCA private key export window

http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com
https://www.livejournal.com

32

THE TOOLS

10/2012

set up your system and start up socat
Since we should aim for transparency we will need
to intercept DNS requests for www.livejournal.com
as well so that our locally operated proxy running
on port 443 on IP 127.0.2.1 is in the loop.

First, we will need to know the original IP of www.
livejournal.com:

spencersr@bigboote:~$ nslookup www.livejournal.com
8.8.8.8

Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
Name: www.livejournal.com
Address: 208.93.0.128

Bingo! Now add the following line to /etc/hosts
near the other IPv4 records:

127.0.2.1 www.livejournal.com

Now lets do a test run by listening on port 443
(HTTPS) and forwarding to port 443 (HTTPS) of
the real www.livejournal.com:

spencersr@bigboote:~$ sudo socat -vvv \ OPENSSL-
LISTEN:443,verify=0,fork,key=www.livejournal.com-
keyem,certificate=www.livejournal.com-key.pem,
cafile=Yoyodyne-cacert.pem \
OPENSSL:208.93.0.128:443,verify=0,fork

Simple enough. Browsing to https://www.livejour-
nal.com with w3m and wget should work sucess-
fully now and a stream of random encrypted infor-
mation will be printed by socat.

Listing 1. Install Yoyodyne CA certificate

spencersr@bigboote:~$ sudo mkdir /usr/share/ca-certificates/custom
spencersr@bigboote:~$ sudo cp Yoyodyne-cacert.pem \ /usr/share/ca-certificates/custom/Yoyodyne-

cacert.crt
spencersr@bigboote:~$ sudo chmod a+rw \
/usr/share/ca-certificates/custom/Yoyodyne-cacert.crt
spencersr@bigboote:~$ sudo dpkg-reconfigure -plow ca-certificates -f readline \ ca-certificates

configuration

 ...
Trust new certificates from certificate authorities? 1
 ...
This package installs common CA (Certificate Authority) certificates in /usr/share/ca-certificates.
Please select the certificate authorities you trust so that their certificates are installed into
/etc/ssl/certs. They will be compiled into a single /etc/ssl/certs/ca-certificates.crt file.
 ...
 1. cacert.org/cacert.org.crt
 2. custom/Yoyodyne-cacert.crt
 3. debconf.org/ca.crt
 ...
 150. mozilla/XRamp_Global_CA_Root.crt
 151. spi-inc.org/spi-ca-2003.crt
 152. spi-inc.org/spi-cacert-2008.crt
 ...
(Enter the items you want to select, separated by spaces.)
 ...
Certificates to activate: 2
 ...
Updating certificates in /etc/ssl/certs... 1 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d....
Adding debian:Yoyodyne-cacert.pem
done.

http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://ww.livejournal.com
https://www.livejournal.com
https://www.livejournal.com

www.hakin9.org/en

Chaining two socat instances together with
an unencrypted session in the middle.
So far so good! Now we need to have socat con-
necting to another socat using standard TCP4 pro-
tocol in order to view the unencrypted data. This
works by having one socat instance listening on port
443 (HTTPS) and then forwarding to another socat
on port 8080 (HTTP) which then forwards on to port
443 (HTTPS) of the real www.livejournal.com.

16th INTERNATIONAL SECURITY AND RFID EXHIBITION
16th INTERNATIONAL FIRE,
EMERGENCY RESCUE EXHIBITION

SMART HOUSES AND BUILDING AUTOMATION EXHIBITION

OCCUPATIONAL SAFETY AND HEALTH EXHIBITION

INFORMATION, DATA AND NETWORK SECURITY EXHIBITION

The Most Comprehensive Exhibition
of the Fastest Growing Sectors of recent years

in the Center of Eurasia

SEPTEMBER 20th - 23rd, 2012
 IFM ISTANBUL EXPO CENTER (IDTM)

THIS EXHIBITION IS ORGANIZED WITH THE PERMISSIONS OF T.O.B.B.
IN ACCORDANCE WITH THE LAW NUMBER 5174.

Listing 2. Socat terminal

> 2012/08/29 00:10:27.527184 length=209
from=0 to=208

POST /interface/flat HTTP/1.1\r
Host: www.livejournal.com\r
Content-Type: application/x-www-form-

urlencoded\r
User-Agent: http://logjam.danga.com; martine@

danga.com\r
Connection: Keep-Alive\r
Content-Length: 23\r
\r
> 2012/08/29 00:10:27.566184 length=23

from=209 to=231
ver=1&mode=getchallenge< 2012/08/29

00:10:29.551570 length=437
from=0 to=436

HTTP/1.1 200 OK\r
Server: GoatProxy 1.0\r
Date: Wed, 29 Aug 2012 08:10:56 GMT\r
Content-Type: text/plain; charset=UTF-8\r
Connection: keep-alive\r
X-AWS-Id: ws25\r
Content-Length: 157\r
Accept-Ranges: bytes\r
X-Varnish: 904353035\r
Age: 0\r
X-VWS-Id: bil1-varn21\r
X-Gateway: bil1-swlb10\r
\r
auth_scheme
c0
challenge
c0:1346227200:656:60:xxxxxx:xxxxxxxxxxxxx
expire_time
1346227916
server_time
1346227856
success
OK

http://www.livejournal.com
http://www.isaffuari.com/

34

THE TOOLS

10/2012

Socat instance one:

spencersr@bigboote:~$ sudo socat -vvv \
OPENSSL-LISTEN:443,verify=0,fork,
key=www.livejournal.com-key.pem,certificate=
www.livejournal.com-key.pem,cafile=Yoyodyne-

cacert.pem \
TCP4:10.1.0.1:8080,fork

Socat instance two:

spencersr@bigboote:~$ sudo socat -vvv \
TCP-LISTEN:8080,fork \
OPENSSL:208.93.0.128:443,verify=0,fork

Load up LogJam and the socat instances will start
printing out the stream to the terminal (Listing 2).

Hurray! You should be dancing at this point.
But wait, I mentioned using Wireshark before

didn’t I?

Using Wireshark to capture and view the
unencrypted stream.
Now it’s time for the easy part. I’m going to as-
sume that you are comfortable capturing packets
in Wireshark and focus mainly on the filtering of

the capture stream.
Since by default Wireshark captures all traffic we

should set up a capture filter that only listens for
packets on port 8080 of host 127.0.2.1 (Figure 4).

Once LogJam is run packet will start streaming in
while Wireshark is recording (Figure 5).

What now?
This articles is about viewing unencrypted data in
an SSL session. Whatever your reverse engineer-
ing goal is SSL is less of an obstacle now.

How can ssL be secure then if this method
is so simple?
SSL and all of the variations of digests and ciphers
contained within it are pretty reliably secure. Some
of the major areas this article focused on was the
ability to fool a client by having the ability to trust a
new certificate.

If you are interested in securing your site or cli-
ent software against this sort of spying I recom-
mend not using an SSL certificate authority key-
ring or trust database that is easily modified by the
user. Including an SSL server certificate in client
software ,encrypted and protected by a hard cod-
ed key somewhere in the binary, and requiring it for
use on SSL connections using a hardened socket
library will dramatically cut down on the looky-loo
factor.

Conclusion
Thanks to how simple it is to add certificate au-
thorities to most browsers, mobile devices, and
custom client software it’s a trivial matter to pull
back the curtain on SSL encrypted streams with
the right tools.

Remember to thank your open source hacker
friends.

Figure 5. Wireshark with captured unencrypted packets

Figure 4. Wireshark lo (loopback) interface capture window
with capture filter

sHANe r. sPeNCer
Shane R. Spencer is based out of
Anchorage Alaska and has over
10 years of system administra-
tion and programming experi-
ence. Many of his projects are Py-
thon based and interface with ex-
ternal services that provide no us-

able API and communicate over HTTPS only.

More Information, Demo Versions,
Videos and Technical Guides -

www.STAFFCOP.com

Who needs StaffCop:

CEO/CTO
Corporate Security Manager
HR Manager
System Administrator

StaffCop will help you:

To locate possible data loss channels and prevent loss
To gain insight into how your employees spend their work time
To increase company and departmentals efficiency

You need StaffCop to:

Gather work time efficiency statistics
Easily control your employees in real-time modeEasily control your employees in real-time mode
Improve discipline and motivation of your employees

Phone: +1-707 -7098405
Skype: staffcop.com
Email: sales@staffcop.com, paul@atompark.com

Main Features of StaffCop:

Screenshot recording
Application monitoring
E-mail monitoring
Web site monitoring
Chats/IM activity recording
USB device monitoringUSB device monitoring
Clipboard monitoring
Social Networks Monitoring
Search Term Tracking
File and Folder tracking
Keystroke recording
System Event Monitoring
Whitelists and BlacklistsWhitelists and Blacklists
PC activities reporting
Stealth installation/monitoring
Strong security
Alert notiications
Remote Install / Uninstall

STAFFCOP
PC monitoring, Corporate Security
and Data Loss Prevention Software

StaffCop Standard allows you to monitor all activities
on company computers and prevent the unauthorized
distribution of sensitive corporate information.

http://www.staffcop.com

36

REACHING THE CODE

10/2012

How to

Defeat Code Obfuscation
While reverse engineering?

Have you ever decompiled malware or another application and
found nothing but a small amount of code and lots of junk? Have
you ever been reading decompiled code only to watch it jump into a
section that does not exist?

If you have been in either of these situations,
chances are you were dealing with obfuscated
code or a packed binary. Not all is lost howev-

er, as getting around these methods of code pro-
tection is not impossible. However, all obfuscat-
ed code must be de-obfuscated before it can run.
Keeping this in mind, it is possible to decrypt, de-
obfuscate and unpack every line of code in every
kind of program, the trick is simply knowing how.

introduction
Obfuscation, or code distortion, is found in binaries
where the programmer wanted to hide the original
code. The programmer might be working for a ma-
jor company that does not want their source code
stolen. The programmer might also be a malware
author who is attempting to make the malware bi-
nary appear legitimate. Either way, it is common
practice in the malware and legitimate software
industries to employ obfuscation techniques. In
this article, you will learn about various methods
involved in breaking open the code and revealing
the chewy center where the legitimate code re-
sides. It will discuss how to deal with packed bi-
naries and how to extract obfuscated data directly
from memory.

Unpacking
Packer algorithms are employed in order to distort
the code of a compiled binary. A packing applica-
tion takes the algorithm, runs the data of the bina-

ry through it, and attaches a decryption routine to
the binary. The resulting file is a distorted version
of the original and, if fed into a disassembler like
IDA Pro, would reveal not much more than the de-
cryption routine. This is useful to prevent novice
reverse engineering of a binary or to hide the mali-
cious functionality from AV software.

Packer identification
The first step in dealing with a packed binary is to
try to find out what kind of packer you are dealing
with. There are numerous ways at doing this; how-
ever, I find that the easiest way is to use a packer
identifier like PEID.

PeiD
A great resource for the malware analyst or re-
verse engineer, PEID references an internal data-

Figure 1. PEID Interface

www.hakin9.org/en 37

base full of different packer signatures in order to
identify what packing algorithm is in use.

To use PEID, simply drag the binary onto the
PEID interface and it will automatically ana-
lyze the file. The depressed section of the inter-
face displays the packing algorithms detected. In
the case of figure 1, the file in question has been
packed with the UPX packer algorithm.

manual identification
If you do not have access to PEID or it does not
recognize the packer employed, you might have
some luck by examining certain features of the
binary, looking for anything that might reveal the
packer. In some cases that is incredibly easy, for
example figure 2 shows the file strings associated
with a UPX packed file.

However, in most cases, it would be more diffi-
cult to determine the type of packer based on just
strings. Additional information may be required for
example, certain bytes of data located in specific
file sections or even entire decryption routines may
be required to identify the packer. In many cases
it might be more trouble than it’s worth and unless
your job is to determine what type of packer is be-
ing used and it is not detected with PEID, then it is

best left unknown and you might not be able to un-
pack it in any easy way.

Custom Packer
While there are plenty of publicly known packers
out there and many of them are used by both legiti-
mate software and malware organizations, it does
not mean they are the only ones used. Cyber-
crime organizations will create their own “custom
packer algorithm” which they can quickly modify in
order to avoid AV detection. They could also imple-
ment anti-reversing and anti-unpacking measures
and stay under the radar for longer periods.

Automated Unpacking
Now that we have identified the packer employed,

we can try to unpack the binary. As is the key to re-
verse engineering anything efficiently, we want to
see if we can skip some of the manual work and
use automated methods. Depending on the pack-
er, there is usually an unpacker application some-
where on the web you can download. There are
also applications that can unpack multiple packing
algorithms; an example of such is QUnpack.

QUnpack
When you want a tool that can unpack multiple
packer types, QUnpack should be in your toolbox.
It can detect packers like PEID can and unpack
using multiple methods. In addition it can restore
import tables, allow custom LUA scripting and an
array of other useful functions. For the purposes of
this article, I will just go into the unpacking feature.
After opening QUnpack, you can just drag and
drop the packed binary onto the interface. Once
QUnpack identifies the binary and the packer, your
first step is to tell QUnpack what is the Original En-

Figure 2. UPX File Strings

Figure 3. QUnpack Interface Figure 4. OEP Finders Listing

38

REACHING THE CODE

10/2012

try Point (OEP) of the binary. If you do not know it,
you can let QUnpack find it for you by clicking the
“>” button next to the OEP input box.

A listing of all available OEP Finder tools will pop
up and all you need to do is select one, see figure
4. In this example, we selected the top one “Gener-
ic OEP Finder by Deroko & Archer.” Which one you
decide to use is up to you. Generally, you want to
use something other than ForceOEP if you can, on-
ly because the output for that finder has a lower ac-
curacy. Each OEP finder might find either the same
OEP as the others or a different one; feel free to ex-
periment with different ones to find the best output for
your needs. The OEP Finder interface has a listing of
all the packed sections located within the file. We se-
lected the OEP button to tell the finder to analyze the
binary and detect the OEP automatically (Figure 5).

Figure 6 shows the OEP Finder asking wheth-
er the section of code it determines might be the
OEP is in fact the OEP. Your knowledge of function
headers in x86 assembly code can help you here
and based upon the address scheme and use of
the “__cdecl” function header, we decide that this
is most likely the correct OEP. If the OEP Finder
provided a possible OEP that we believe is false,
we could select “No” and it would continue to sug-
gest possible OEP locations.

With the OEP located, our next step is to click
on the “Full Unpack” button on the right side of
the QUnpack interface. The unpacker will analyze
the binary and attempt to retrieve the import table.
Keep in mind that this might not happen with other
packers or a binary using a custom packer; lucky
for us though, QUnpack gives us a listing of all the
API functions is was able to retrieve and asks us if
it is correct (Figure 7).

After selecting the “Save” button on the import
interface, QUnpack finishes unpacking the bina-
ry and saves it in the same directory and with the
same file name with the exception of a double un-
derscore appended to the end (Figure 8).

At this point, we have successfully unpacked our
binary using QUnpack and can now test in IDA Pro
whether or not the output binary is the complete
original code or if we need to go back and try to
unpack it with a different combination of options.
Keep in mind that unpacking a binary is most use-
ful when you want to observe the file statically us-
ing something like IDA Pro and I do not recom-
mend running the unpacked binary in OllyDbg.
Rather, navigating to the point in memory where
the unpacked code resides and setting a break-
point will ensure that the binary executes correctly.

manual Unpacking
Automated unpacking is the most efficient way of
revealing the true code of a packed binary. How-

Figure 5. OEP Finder Interface

Figure 6. OEP Finder “Is This OEP” popup

Figure 7. QUnpack Import Table Output

Figure 8. QUnpack unpacked operations output

www.hakin9.org/en 39

ever, there may be some instances when using an
unpacker might not work, in which case you will
need to unpack the binary manually. You might find
yourself in this situation if you are working on a bi-
nary that is packed with a custom algorithm or if
dealing with a modified known packer, resulting in
automated unpacking being ineffective.

In some cases, doing a simple search online
might reveal instructions on how to unpack a cer-
tain type of packer algorithm manually or it might
reveal nothing at all, be sure to check anyway in
case it can save you some time. While the thought
of manual unpacking might seem daunting, keep
in mind that a binary must always unpack its own
code before it can execute its functionality, there-
fore all we need to do is let the binary do the work
for us.

iDA Pro roadmap
Our first step in manually unpacking a binary is to
determine where the unpacking algorithm ends
and where the legitimate code begins. To do this,
we open the packed binary in IDA Pro, it might not
be obvious at first but the entry point function of the
binary should lead you to the unpacking algorithm
(Figure 9).

Once you find that algorithm, all you need to do
is follow the code until you find a JMP or a CALL to

a function or a location that either does not exist or
is nothing but random junk data. This is a good in-
dicator that the location referenced is where the le-
gitimate code will start. Figure 9 shows the instruc-
tion POPA, which POPs all top values off the stack
and stores them in the registers. This instruction is
a sign that the UPX unpacking algorithm is nearly
completed (1) and then the actual JMP call to the
unpacked code (2).

OllyDump
The next step is to open the binary in a debug-
ger like OllyDbg and manually navigating to the
address of the JMP or CALL instruction. Once
there, set a breakpoint and execute the binary, the
debugger should stop on the instruction and you
can follow the instruction to the legitimate code,
Figure 10 shows the unpacked legitimate code
in OllyDbg.

There are usually two types of code you will find
at this point, either the completely unpacked code
or more unpacking algorithms; we will deal with
the additional unpacker code shortly. If you have
found the original code, we now need to be able to
output the newly modified binary code so that we
can view it statically using IDA Pro. To do this we
use a plug-in included with OllyDbg known as “Ol-
lyDump” and it will allow us to dump the entire bi-
nary, unpacked code and all, into a new file.

To use OllyDump, simply find it in the “Plugins”
dropdown menu at the top of the OllyDbg inter-
face. In the OllyDump sub-menu, select “Dump
Debugged Process” (Figure 11).

Figure 9. Unpacking algorithm exit JMP call

Figure 10. Unpacked legitimate code

Figure 11. OllyDump menu navigation

40

REACHING THE CODE

10/2012

The OllyDump interface will pop up and have an
array of different values and options, at this point it
is a good idea to write down the Entry Point (EP),
Modify and Size values because you will most
likely need them later. In addition to taking down
notes, make sure to de-select the “Rebuild Import”
checkbox because we will be using a different tool
to repair the import table for the dumped file (Fig-
ure 12).

Click on “Dump” and OllyDump will ask you
where you want to save the dump file and under
what name, I would keep this somewhere easy to
get to and with a name like “Malware_dumped.
exe.” At this point, we are done with OllyDump and
have an unpacked binary that we can analyze stat-
ically in IDA Pro. However, the import table of the
binary is not present and therefore even though
the code is unpacked, none of the function calls
will be apparent to us. Do not close OllyDbg be-
cause we will still need it.

impreC
To fix the import table issue, we will be using a
tool called “ImpREC” or Import REconstructor. Im-
pREC analyzes a currently running program and
extracts the loaded import table, which we will then
be able to attach to our dumped binary.

To begin, we use the pull down menu at the top
of the ImpREC screen to find the process match-
ing our dumped file. Since OllyDbg keeps all bina-
ries it is currently analyzing loaded in a suspended
state, we can access the process for the binary we
are currently analyzing; Figure 13 shows the pro-
cess listing drop-down.

Once our process is loaded, we can try to let Im-
pREC find the Import Address Table (IAT) on its
own by selecting the “IAT AutoSearch” button on
the bottom left of the screen. This might not work
and if that is the case, we need to pull out our notes
on the EP, Modify and Size values provided by Ol-
lyDump. In Figure 14, we plugged in the modify
value into the original Entry Point (OEP) box and
used the IAT AutoSearch to find an import table.
By clicking the “Get Imports” button, all available
import functions located in the IAT show up in the
center of the screen.

Now that we have found an import table, all that
remains is to fix the binary dump we made earlier.
We do this by selecting the “Fix Dump” button on
the bottom of the screen and point to the dumped
binary from earlier (“malware_dumped.exe”). Im-
pREC will output in the “Log” box whether the op-
eration was successful and if so, we now have a
fully unpacked and import loaded version of our
original binary. From here, you could use the un-
packed binary to statically parse through the code
and determine any obstacles you might come
across (Figure 15).

Figure 12. OllyDump interface

Figure 13. ImpREC interface Figure 14. ImpREC Imports Found for Malware.exe

www.hakin9.org/en 41

Where this might not work
Let us be honest, if every malware used easy
to get around packing and unpacking tech-
niques, we would have no trouble catching them
and analyzing them. Unfortunately, a lot of the
more complex malware out there employs their
own custom packers and even layers upon lay-
ers of packers. Therefore, even after performing
the manual unpacking technique in this article
you may still end up with packed code, in which
case you may need to run through the entire
technique again.

There is no end-all-be-all answer to unpacking
malware or other binaries but that is where the
detective aspect of a reverse engineer comes in.
If you find yourself unable to reach the legitimate
code for whatever reason, attack the problem
from multiple angles, go online and ask for help
or perform the code extraction techniques I will
discuss next.

Obfuscated Code
Packers aside, even after unpacking a binary
there still might be some obfuscated code hid-
den within that is yet to be decrypted or even cre-
ated yet. A lot of malware will split up code sec-
tions when compiling and put them back together,
decrypted, in new memory space to either run as
a new thread, copied to a separate file or inject-
ed into a legitimate process. The techniques re-
quires to extract this code for static code analysis
will not leave you with a neatly organized dumped
binary, instead you will have non-executable files
full of unattributed code that you have to do your
best to decipher out of context or without the abil-
ity to step through the code dynamically using
a debugger.

Finding the code
The first step in obtaining dynamically created,
obfuscated code is to find it. You can accom-
plish this in one of two ways, depending on how
you prefer to do your reversing. The first way in-
volves statically parsing through the code using
IDA Pro; this is an effective method of reversing
unless you come across a call to “WriteProcess-
Memory” that loads dynamically created code into
virtual space. The other method, which is what I
personally prefer, involves stepping through the
code using a debugger, taking multiple snapshots
at every “fork in the road” and using IDA Pro as
a roadmap that we can comment, customize and
use to make sure we are on the right path to find
that hidden code.

iDA Pro roadmap
The IDA Pro roadmap approach works best if you
have two separate virtual machines, one for dy-
namically parsing through the code using a debug-
ger like OllyDbg and the other for keeping your
map up to date using IDA Pro. The purpose of
keeping the two separate is because of the pos-
sibility that your IDA Pro save file might become
corrupted, deleted or otherwise made useless and
therefore forcing you to return to the start.

My personal technique involves creating as
much of a picture as I can before ever executing
the code by renaming functions, commenting in-
teresting chunks of code and creating a predicted
path that I need the binary to follow in order to get
to the more juicy functions.

The benefit of this technique is that you always
know where you are going before you get there

Figure 15. Unpacked binary loaded in IDA Pro Figure 16. Call to WriteProcessMemory found using IDA Pro

42

REACHING THE CODE

10/2012

and the possibility of getting lost in the code by
parsing through with only a debugger is slim to
none. In addition, you can be prepared for the cre-
ation of dynamic memory and keep track of what
variables are being referenced or what data is be-
ing copied. I find that when attempting to extract
previously obfuscated code, this is the best meth-
od to find out where the code resides.

Figure 16 shows this technique in action by dis-
playing a call to WriteProcessMemory found by
referencing the import table for the binary. From
here, the next step would be to rename the function
that calls this API something unique like “CallToW-
riteProcMem.” Then by following cross references,
make our way back to the start of the binary, leav-
ing breadcrumbs along the way in the form of dif-
ferent colored function graphs and comments. In

addition, we also have access to the variable used
as the buffer for the function, which we can trace
back to find out exactly where the obfuscated code
will be loaded locally.

Now that the path is clear, we can navigate our
way to the function call dynamically by using Olly-
Dbg and using our roadmap. Figure 17 shows the
function ready to execute as well as the variables
passed to the function and the location of the buf-
fer code. Our next step is to extract the buffer code
to get a better look at it.

extracting the Code
Finding the location of the obfuscated code is a
big part of this entire process, however we are not
out of the woods just yet. Now we need to extract
that code so that we can analyze it statically using

Figure 17. API Call found in OllyDbg

Figure 18. OllyDbg interface displaying current execution environment

www.hakin9.org/en 43

IDA Pro and figure out exactly what it does. In mal-
ware, code which is hidden in the memory of other
processes, decrypted from a hidden section of the
file or created dynamically after the binary is ex-
ecuted usually holds the most important, powerful
and dangerous functionality. Before we go any fur-
ther in attempting to extract it, we need to answer a
few questions and list out what we know. Figure 18
shows the current execution environment in Olly-
Dbg before WriteProcessMemory executes, each
number corresponds to what kind of data we know
before execution.

• Based on the assembly code we know that the
function is only called once, therefore the data
located in the buffer is the entirety of the obfus-
cated code.

• Based on the current variables pushed onto
the stack, we know the handle of the receiv-
ing process and the address of the buffer that
holds the current data. We also know the size
of the data, information that will be very useful
if we need to extract the data manually.

• Based on the buffer data located at the refer-
enced address, the data might be an execut-
able binary since it has an MZ header.

Using the above information, we can successful-
ly extract the obfuscated code in one of two ways,
using an application to extract the data and ex-
tracting it manually.

Figure 19. LordPE Interface

Figure 20. Dump region interface, obfuscated code location
highlighted

LordPe
Our first method involves the use of a tool known
as LordPE, a very powerful and useful PE editor.
Using it, we can open the current process memory
of our malware and extract the region of memory
that includes the obfuscated code. To begin with,
after opening LordPE we have to scan through the
process listing and find our target “Malware.exe”;
Figure 19 illustrates this.

When we find our process, we right click it and
select the “Dump Region” option. Using the dump
region interface, we scroll through all of the mem-
ory regions belonging to the file and find the one
that correlates to the buffer memory address we
observed previously.

In Figure 20, notice how the memory location
0x3E0000 has the size 0xD000, the same size as
the data passed to WriteProcessMemory. Our next
step is to simply dump the region and load it into
IDA Pro either by itself or as an additional file to our
currently loaded instance of IDA.

manual extraction
While rare, there might be an occasion when
you cannot use LordPE to extract code from
memory. This might be due to memory locked
by the binary using it. In any case, there is a
way around this problem and it is as simple as
‘cut and paste’.

Using the previous example, we are going to ex-
tract the same code as we did with LordPE but by
only using OllyDbg. The first step is to locate the
memory location in the OllyDbg dump window to

Figure 21. OllyDbg dump window using address offsets

44

REACHING THE CODE

10/2012

the lower left of the screen; the number 3 in figure
18 represents this window.

The next step is to double click on the memory
address referenced by the code loading the obfus-
cated data, you should see a “==>” appear where
the memory address was and notice that all other
memory addresses in the dump are an offset from
the original (Figure 21).

By scrolling down, navigate to the offset address
that matches the size of the obfuscated data, in
this case it would be 0xD000. Then Shift + R-Click
the memory location and you should be selecting
all the data between the origin address and the
current address. Next, right click on the selection
and navigate to the ‘Binary’ sub-menu and click
“Binary Copy” (Figure 22).

Finally, open your favorite Hex editor to a new file
and paste the external text as hex numbers, the
data should appear inside of your text editor exact-
ly as how they appeared in the OllyDbg dump win-
dow. Save the file as whatever you wish and load
the file into IDA Pro to get a closer look.

Conclusion
One of the first steps in reverse engineering le-
gitimate applications or malware is always break-
ing through any anti-reversing protection by using
unpacking applications or just letting the code de-
crypt itself and ripping out the data from memo-
ry. You should now be able to de-obfuscate a bi-
nary protected by a known packer, custom packer
or custom obfuscation methods by using the tech-
niques included in this article. However, always

Figure 22. Performing a Binary Copy on the selected data

keep in mind that new anti-reversing techniques
are being developed all the time and with that, your
own ability to defeat them will need to constant-
ly be honed and practiced. Remember, no matter
how encrypted, obfuscated or packed a binary is,
the code must always be clean when it is executed
and that is a vulnerability you can always exploit.

ADAm kUJAWA
Adam Kujawa is a computer sci-
entist with over eight years’ expe-
rience in reverse engineering and
malware analysis. He has worked at
a number of United States federal
and defense agencies, helping these
organizations reverse engineer mal-
ware and develop defense and mit-
igation techniques. Adam has al-

so previously taught malware analysis and reverse en-
gineering to personnel in both the government and pri-
vate sectors. He is currently the Malware Intelligence
Lead for the Malwarebytes Corporation.

http://www.malwarebytes.org/

46

REACHING THE CODE

10/2012

How to

identify and Bypass
Anti-reversing Techniques?

Learn the anti-reversing techniques used by malware authors to
thwart the detection and analysis of their precious malware. Find
out about the premier shareware debugging tool Ollydbg and how
it can help you bypass these anti-reversing techniques.

This article aims to look at anti-reversing
techniques used in the wild. These are tricks
used by malware authors to stop or impede

reverse engineers from analysing there files. As an
entry level article we will look at:

• Setting up a safe analysis environment
• Ollydbg an X86 debugger
• Basic techniques like;

• Verification of dropped location
• Anti-debugger
• Obfuscation of strings
• Hiding APIs
• Anti-Virtualisation

We will look at the code as written by the malware
authors in C++. We will compare this code to the
debugger code in Ollydbg. Ollydbg is the x86 de-
bugger of choice for reverse engineers. We will
look at the different techniques and possible im-
provements. We will also find out how to bypass
each technique using Ollydbg. Finally, I have writ-
ten a small ‘Reverse_Me.exe’ that contains all of
these techniques so you can practice your newly
gained malware smashing expertise.

Analysis environment
First off we need an analysis environment. The ‘Re-
verse_Me.exe’ I have provided is not malicious. It
is, however, good practice to only analyse files in
a safe environment. Ideally, all your analysis would

occur on a second computer which is not connect-
ed to any network. Typically, this analysis computer
would run an operating system other than Windows.
This machine hosts multiple virtual machines (Win
XP, Win7, Server 2008) and samples are trans-
ferred by ‘snicker-net.’ Typically, the samples would
be password protected in zip files. Having differ-
ent host and guest operating systems reduces the
chances of propagation of malware. A quicker way
to get you started is to use a Virtual Machine and
ensure that all shares are read-only. Disable all net-
work connections before performing any analysis.
It’s not perfect but if you are mindful it should be
adequate to get you started. Start by downloading
your virtualisation environment of choice; VMware,
Virtualbox, Windows Hypervisor, etc. (I have used
a VMWare detection in the anti-virtualisation layer
of the Reverse-Me sample). It is common for anti-
malware engineers to use Windows XP SP2 as an
analysis machine, the idea being that this version
of Windows has weaker security so it has a better
chance of running. That said Windows 7 is perfectly
adequate, I have done testing on both. After install-
ing any required tools, take a snapshot so you can
jump back to this point, this will save you having to
remove the malware from your machine. Your envi-
ronment is now setup so let us look at the tools.

Tools
For tools I am going to try and limit it to just one;
‘Ollydbg.’ Ollydbg is a debugger just like the debug-

www.hakin9.org/en 47

ger in your compiler but it can run without source
code. It does this by converting the machine code
into assembler so that it is human readable. It also
gives us the ability to view and edit the assembler
code as well as the values in the registers and on
the stack and heap. Ollydbg has some very pow-
erful plugins that can help you bypass many of the
techniques I will mention. These Plugins are out-
side the scope of this article but please feel free
to investigate yourself. Ollydbg is shareware but
the author, Oleh Yuschuk, does ask you to regis-
ter with him if you use it frequently or commercially
http://www.ollydbg.de/register.txt. Version 2 of Ol-
lybdg is available but it is still in beta so we are go-
ing to use V1.1 for this article. Please download it
from http://www.ollydbg.de/.

I am also going to use a hex editor written by
Eugene Suslikov, mainly to show parts of the PE
file system. You don’t need it to get through this
article but a demo version of Hiew is available on
his website http://www.hiew.ru/. If you get serious
about reversing, Hiew is a must have tool.

microsoft Visual studio 2010
I used Visual Studio 2010 to compile the “reverse
me” sample, if you do not have it installed on your
analysis machine you will require the following
DLLs to run the binary: http://www.microsoft.com/
en-us/download/details.aspx?id=5555.

Getting started with Ollydbg
Download Ollydbg and unzip it into its own direc-
tory. It does not need to be installed. When you
open Ollydbg for the first time you will more than
likely be met by the warning in Figure 1. Using the
menus at the top of the window navigate to Op-
tions->Appearance->Directories and point it to the
directory that you just dropped Ollydbg into.

When you open a file in Ollydbg you will see four
panes in the window.

• Top-Left Disassembler Pane
• Top-Right Registers and Flags Pane
• Bottom-Left Hex Dump Pane
• Bottom-Right Stack Pane

We are mainly going to use the disassembler pane.
The registers and flags panes we will use to manip-
ulate jumps and see the values in the register. We
will not use the dump and stack pane at this stage.

We are going to use short-cut keys for speed; the
following shortcuts are all you should need;

• F2 Toggle breakpoint
• F7 Step into
• F8 Step over
• F9 Run continually
• Ctrl-G Go-to a Virtual address

We are mainly going to use strings to navigate for
simplicity. If you right click on the disassembler
pane and select ‘Search For’-> ‘All referenced Text
Strings’ (Figure 2). You will see the strings of each
layer; just double click on that required layer to get
to its location in code. On the top left hand corner of
the main window you will see something like “CPu –
main thread, module <module_name>”, this will tell
you the module you are currently running in. When
you open the ‘Reverse_Me’ in Ollydbg it may start
in the ntdll module, just press F9 and it will go to the
entry point of the ‘Reverse_Me’. The first instruction
in the ‘Reverse_Me’ sample is a call.

The Binary
The binary is available here http://download.ha-
kin9.org/en/Reverse_Me.zip you can work along
with the article. If you are more adventurous, read
the article and then see if you can get through all
the layers on your own. As a disclaimer I am not
a Software Developer by trade. I do write python,
C and C# on a daily basis but it is typically to get
something done ‘quick and dirty’ or for in house
tools. I apologise in advance for any errors in my
code, the lack of style and the non-existent error
checking. In my defense, most malware code is
of a similarly poor structure, so this should make it
more realistic .

Figure 1. Setting up the UDD directory Figure 2. Find referenced strings

http://www.ollydbg.de/register.txt
http://www.ollydbg.de/
http://www.hiew.ru/
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://download.hakin9.org/en/Reverse_Me.zip
http://download.hakin9.org/en/Reverse_Me.zip

48

REACHING THE CODE

10/2012

Just a short preamble, malware usually consists
of layers. Typically, the most external is a packer
of some sort (UPX, Aspack, etc.). I have not add-
ed a packer to this Reverse_Me.exe, although most
are not hard to bypass and easy to add. I think they
would overly complicate the binary for such a short
article. I have tried to make all the layers very easy
to identify by putting in lots of strings that you can
search for. I have not encrypted each layer as would
be typical of a “Reverse_Me” puzzle. This is to help
in your navigation through the binary. It does leave
you open to jump to the final layer and skip the rest

. The virtual addresses in the article may not cor-
respond to the ones on your machine so please use
the strings. I have displayed some of the strings
in Figure 3. You will have to press <Enter> before
each layer initiates. This may be a pain but it will
help you to be systematic in your steps.

Layer 1: Verification of dropped location
A lot of malware will drop executables onto your
system. I frequently see ‘dll’ files dropped into the
‘C:\Windows\system32’ directory. Some malware
will confirm its location before it will run. The anti-
malware engineer is probably going to analyse the
file in a directory like C:\Infected\<current_date>.

So, this basic trick can be effective against simple
dynamic analysis. We will see later how to obfus-
cate strings which would make this technique even
harder to detect by hiding the word “Temp.”

Layer 1: The C++ code
In Code Segment 1 there is a short function that
checks that a file is in a directory called Temp.

The corresponding assembler code as produced
by Ollydbg is in Figure 4. As this may be your first
time seeing assembler we will try and walk you
through the code. The first point to identify is the call
to _getcwd, this will get the current working directory.
The next few lines compare the values in the path to
the hex digits 0x54, 0x65, 0x6D, 0x70. If you pull up
an ASSCI table from the web you will find that these
hex bytes correspond to the string ‘Temp.’ The final
two jumps in the image below can redirect you away
form "Well done first layer passed." This will happen
if any of the hex bytes that represent ‘Temp’ do not
match the path supplied by _getcwd.

Locate and set a breakpoint (F2) on the line with
JNz (jump not equal to zero). If you click F9 it will
run to that breakpoint. Now look at the top right of
your screen and you should see a set of flags like
the Figure 5, the registers and flag Pane. Locate
the flag Z and click it. This will toggle the jump.
Click it again. You should be able to see a small
arrow showing you where the jump will terminate.
By toggling the jump you can insure that it will not
jump but fall through to ‘Test AL AL’. Repeat the
flag manipulation on the next jump at JE (jump

Figure 3. Strings as seen in Hiew32

Listing 1. Verification of dropped location

void First_challenge()
{
 char buf[255];
 char buf_temp[] = {‘T’,’e’,’m’,’p’};
 // getcwd gets the current working

directory
 _getcwd(buf,255);
 bool Program_Running_In_Temp_Folder = true;
 // we are starting at 3 to avoid the drive

letter
 for (int temp = 3; temp < 7; temp++)
 {
 if (buf[temp] != buf_temp[temp-3])
 Program_Running_In_Temp_Folder =

false;
 }

 if (Program_Running_In_Temp_Folder)
 printf (“Well done first layer passed”);
 else
 printf (“Sorry not this time, you are

in the wrong directory”);
 exit(0);
}

Figure 4. Layer 1 Directory Detection, Assemble view

www.hakin9.org/en 49

equal too) to insure you are directed to the “Well
done first layer passed“. This technique of manipu-
lating the jump can be used throughout the binary
to jump to your chosen branch.

Layer 2: Anti-debugger
Anti-debugging techniques are used by programs to
detect if it runs under control of a debugger. The aim is
to impede the process of reverse-engineering. There
are a lot of anti-debugger tricks, we will just show you
the most basic. It is based around the following win-
dows function (Listing 2). It is simply an ‘if statement’
as you can see in Code Segment 2 (Listing 3).

The assembler code is available in Figure 6. It
calls the IsDebuggerPresent API and based
on its response jumps to the “Not running in a de-
bugger” printf or continues on to the printf which

is passed “Running in a Debugger” and then the
program exits. After a debug trick you will normally
see a crash or exit. The Idea being that the analyst
will think the file is benign or corrupt. To bypass
this trick we are again going to use the zero flag
as shown in the previous example. If we set the
zero flag to 1 we will jump to the "Not running in a
debugger" branch and continue to the next layer.

Layer 3 Obfuscation of strings and hiding APis
I am going to take these two topics together as they
are intrinsically linked. Windows executable files

Figure 6. IsDebuggerPresent ‘if’ statement as see from Ollydbg

Figure 5. Ollydbg flags for manipulating jumps

Listing 2. IsDebuggerPresent API

BOOL WINAPI IsDebuggerPresent(void);

Listing 3. IsDebuggerPresent ‘if statement’
void Second_challenge()
{
 if(IsDebuggerPresent())
 {
 printf(“Running in a debugger”);
 exit (0);
 }
 else
 {
 printf(“Not running in a debugger”);

 }
}

50

REACHING THE CODE

10/2012

follow a structure called the PE file structure. This
structure tells Windows how to load the executable
into memory and what bit of code to run first, among
other things. Without going into too much detail the
PE structure has many tables and one that holds
imports. This table is called the imports table and
contains all the APIs that are called by the execut-
able. As a Reverse engineer this is a very good
place to start. It will give you a good Idea of what the
program is going to do. If you see loads of network-
ing APIs in a program that claims to be a calculator
it would raise your suspicions. Figure 7 shows part
of the Import table displayed by the excellent tool
Hiew. In the table you can see APIs that we have
used already e.g. IsDebuggerPresent. You will not
see CreateFileA. Please notice two important API’s
LoadLibrary and GetProcAdress as these two API’s
give us the ability to load any API.

Layer 3:GetProcAdress
‘GetProcAddress’ is essentially a wild card. You
can use ‘GetProcAddress’ to get the address
needed to call any other API. There is a catch,
you must pass the name on the API you require to
‘GetProcAddress’. That would mean that although
the API is not visible in the Imports table it will be
glaring obvious in a string dump of the file. So, a
malware author will typically obfuscate the strings

Figure 7. Import Table

Listing 4. Character Buffer to String Obfuscation,
pushed in order

LPCWSTR get_Kernel32_string()
{
 char buffer_Kernel32[9];

 buffer_Kernel32[0] = ‘K’;
 buffer_Kernel32[1] = ‘e’;
 buffer_Kernel32[2] = ‘r’;
 buffer_Kernel32[3] = ‘n’;
 buffer_Kernel32[4] = ‘e’;
 buffer_Kernel32[5] = ‘l’;
 buffer_Kernel32[6] = ‘3’;
 buffer_Kernel32[7] = ‘2’;
 buffer_Kernel32[8] = ‘\0’;

 //The following is code to convert the char
buffer into a LPCWSTR

 size_t newsize = strlen(buffer_Kernel32)
+ 1;

 wchar_t * wcstring = new wchar_t[newsize];
 size_t convertedChars = 0;
 mbstowcs_s(&convertedChars, wcstring,

newsize, buffer_Kernel32,
_TRUNCATE);

 return wcstring;
}

Figure 8. Building Kernel32 as a Character Array

in the binary and then pass them to a deobfusca-
tion routine. The deobfuscation routine will pass
the cleartext API names to ‘GetProcAddress’ to get
the location of the API. So, between the obfusca-
tion of the strings and the use of ‘GetProcAddress’
they can hide the APIs they are calling.

Layer 3: string Obfuscation
If you run a strings dump on the binary you will see
something like Figure 3. If you scroll down through
the strings in Hiew or another tool you will not see
the following strings although they are used in the
next function

• ‘Kernel32’
• ‘CreateFileA ‘
• <A secret code to pass layer 3>

I have used three types of obfuscation to hide the
above strings. The first two are very similar and
are really just to subvert a string search of the bina-
ry. When you see the C++ code they will look very
easy to see through. When you view the assembler

www.hakin9.org/en 51

code it will be slightly more difficult. First is a meth-
od where you push values into an array and then
convert the array to a string, see Listing 4.

Let’s look at the same code in assembler it’s a lot
more difficult to find. Pull out your ASCII table again.
If you look at the cluster of four mov instructions
highlighted below, you will see the two DWORDs
are moved onto the stack. If you translate these hex
bytes into ASCII and change the byte order you will
see ‘Kernel32.’ So, this simple method is very effec-
tive at obfuscating strings (Figure 8).

The second type of obfuscation is very similar. It
uses the same technique but goes a step further.
It does not add the characters to the array in order.
For longer strings this can make the reverse engi-
neer’s job very tough. Let’s have a look at the C++
code in Listing 5.

As you can see, the values are not pushed in
order. If you look at the code you can see ‘real-

FitCeeA’! It is not a huge leap to get ‘CreateFileA’
from this. But this method is surprisingly effective.
How does it look in Assembler, Figure 9:

The block of ‘mov’ instructions builds the string.
As you can see, it is much harder to pull out Cre-
ateFileA from this code. It is a very simple and ef-
fective obfuscation technique. The API name is
built on the ESI register and then passed to Get-
ProcAddress. So, a good option is to put a break-
point on all GetProcAdresses calls. By looking at
the stack you can see what is being passed into
the function. This will give you a more complete
picture of the APIs that are being called.

The final type of obfuscation we are going to look
at is called Exclusive OR (Xor for short). Xor is very
popular with malware authors. It is a very basic type
of ‘encryption’. I don’t even want to use the word en-
cryption as the technique is more like polarization.
One pass, encrypts the string and a second pass
with the same key decrypts the string. It is very light
weight and fast. It is also very easy to break.

The string I wanted to hide was copied it into a
buffer. I ran the code once and it created the ci-
phertext. I placed this ciphertext into the original
buffer so the next time I ran it would create the
plaintext. I have only used a byte wise encryption,
malware may use longer keys. The C++ code to
build the buffer containing the chipertext is below
followed by the decryption loop: Listing 6.

Let’s have a look at the assembler code (Fig-
ure10). We can see the buffer being loaded with the
Hex characters as before. Marked below is where
each byte of the ciphertext is xored with 0xFA. Af-
ter the Xor you can see INC EAX and CMP EAX,
18 followed by a jump.

This is the ‘for loop’ that will iterate 0x18 (the length
of the secret message) before it continues. JB stands
for ‘jump below,’ so, the jump will happen for the full
length of the string decrypting each byte of the ci-
phertext. This is later compared against the value
the contain in the text file. If they match the layer is
passed, or you could manipulate a jump or two.

Listing 5. Character Buffer to String Obfuscation,
unordered

LPCSTR get_CreateFileA_string()
{
 char * buffer_CreateFileA = new char[12];
buffer_CreateFileA[1] = ‘r’; //0x72
buffer_CreateFileA[2] = ‘e’; //0x65
buffer_CreateFileA[3] = ‘a’; //0x61
buffer_CreateFileA[8] = ‘l’; //0x6c
buffer_CreateFileA[6] = ‘F’; //0x46
buffer_CreateFileA[7] = ‘i’; //0x69
buffer_CreateFileA[4] = ‘t’; //0x74
buffer_CreateFileA[0] = ‘C’; //0x43
buffer_CreateFileA[9] = ‘e’; //0x65
 buffer_CreateFileA[5] = ‘e’; //0x65
buffer_CreateFileA[10] = ‘A’; //0x41
 buffer_CreateFileA[11] = ‘\0’;

 return (LPCSTR)buffer_CreateFileA;
}

Figure 9. Building CreateFileA as a Character Array

52

REACHING THE CODE

10/2012

Figure 10. Xor Encryption in Assembler

Listing 6. Secret Code Buffer, (ciphertext) Xored with 0xFA to produce plaintext

 unsigned char buffer_SecretCode[24] = {0xae, 0x92, 0x93, 0x89, 0xda, 0x93,
 0x89, 0xda, 0x8e, 0x92, 0x9f, 0xda, 0xa9, 0x9f, 0x99, 0x88, 0x9f, 0x8e,
 0xda, 0xb9, 0x95, 0x9e, 0x9f};

 for (int i = 0; i < sizeof(buffer_SecretCode); i++)
 buffer_SecretCode[i] ^= 0xFA;

Listing 7. Calling CreateFileA dynamically using getProcAddress and LoadLibrary

 HANDLE hFile;
 HANDLE hAppend;
 DWORD dwBytesRead, dwBytesWritten, dwPos;
 LPCSTR fname = “c:\\temp\\mytestfile.txt”;
 char buff[25];
 //Get deobfuscated Kernel32 and CreateFileA strings
 LPCWSTR DLL = get_Kernel32_string();
 LPCSTR PROC = get_CreateFileA_string();

 FARPROC Proc;
 HINSTANCE hDLL;
 //Get Kernel32 handle
 hDLL = LoadLibrary(DLL);
 //Get CreateFileA export address
 Proc = GetProcAddress(hDLL,PROC);

 //Creating Dummy function header
 typedef HANDLE (__stdcall *GETADAPTORSFUNC)(LPCSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,DWORD, DWORD, HANDLE);
 GETADAPTORSFUNC fpGetProcAddress;

fpGetProcAddress = (GETADAPTORSFUNC)GetProcAddress(hDLL, PROC);
 //Dynamically call CreateFileA
hFile = fpGetProcAddress(fname, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 if(hFile == INVALID_HANDLE_VALUE)
 printf(“Could not open %S\n”, fname);
 else
 printf(“Opened %S successfully.\n”, fname);

www.hakin9.org/en 53

Layer 3: LoadLibrary and GetProcAddress
To bypass this layer you are going to need to cre-
ate a file in "c:\temp\mytestfile.txt” this file will need
to contain the ‘Secret code’ that is Xored in the Fig-
ure 10. The C++ code below will open and read this
file. It will then compare the contents to the secret
code. We are not calling CreateFileA as we normally
would. We are using GetProcAdress to locate it with-
in the Kernel32 DLL. Next, we dynamically call the
CreatFileA export with the correct parameters. We
are doing all this so as to hide CreateFileA from both
the import table and a string dump. Listing 7 shows
the code used, with comments for clarification.

Layer 4: Anti-Virtualisation
The final layer uses anti-virtualisation. We will
look at detecting VMWare. Intel x86 provides two
instructions to allow you to carry I/O operations,
these instructions are the "IN" and "OUT" instruc-
tions. Vmware uses the “IN” instruction to read
from a port that does not really exist. If you access
that port in a VMWare you will not get an excep-
tion. If you access it in a normal machine it will
cause an exception. The detection is based on
this anomaly. To perform the test you load 0x0A in
the ECX register and you put the magic value of
0x564D5868 (‘VMXh)' in the EAX register. Then
you read a DWORD from port 0x5658 (VX). If an
exception is caused you are not in VMware.

A good way to look for this trick is to search for
the magic number 0x564D5868. In my code you can
search for the string; "Just going to test if you are
running in VMWARE:\n". I have not displayed the
assembler code as seen in Ollydbg as it is identical
to the inline assembly in Listing 8. Just after this
code there is a jump instruction you can manipu-
late to bypass this detection. Last little bit of ad-
vice you may see ‘Privileged instruction – use Shift
+F7/F8/F9 to pass exception to program’, If you
press Shift + F9 it will continue past the exception.

Conclusion
We have looked at setting up a safe analysis envi-
ronment and also at some of the basics of Ollydbg.
We then focused our attention at some anti-mal-
ware techniques namely; verification of dropped
location, anti-debugger techniques, obfuscation
of strings, hiding APIs and anti-virtualisation. All of
these methods are used in the wild. These meth-
ods can really impede the process of reverse en-
gineering. By manipulation of jumps and reading
buffers after the deobfuscation of strings we can
bypass most of these techniques. I hope you get
the chance to familiarise yourself with the anti-
debugging techniques and the methods used to
detect and bypass them. If you work your way
through the “Reverse_Me.exe” sample, send me a
tweet so I know someone made it!!

Listing 8. VMWare detection function

bool IsInsideVMWare()
 {
 bool rc = true;
 printf(“Just going to test if you are

running in VMWARE:\n”);

 __try
 {
 __asm
 {
 push edx
 push ecx
 push ebx

 mov eax, ‘VMXh’ // The Magic Number
 mov ebx, 0
 mov ecx, 10
 mov edx, ‘VX’ // The port

 in eax, dx // The IN Instruction

 cmp ebx, ‘VMXh’ // Check if ebx

contains the magic number
 setz [rc] // set return value

 pop ebx
 pop ecx
 pop edx
 }
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 rc = false;
 }

 return rc;
 }

eOiN WArD
Eoin Ward holds a Bachelor of Computer
Engineering, a Masters in Computer Secu-
rity and Forensic and passed the CISSP ex-
am last year. He worked with the Syman-
tec Security Response team primary as an
Anti-Malware Engineer for four years and
is currently working as an Anti- Malware
Analyst with Microsoft Corporation.

54

REVERSE IT YOURSELF

10/2012

How to reverse
engineer?
If you are a programmer, software developer, or just tech savvy, then
you should have heard about reverse engineering and know both its
good and evil side. Just in case, here is a brief introduction for those
who don’t know what it is.

In this article, we are going to talk about RCE,
also known as reverse code engineering. Re-
verse code engineering is the process where

the code and function of a program is modified, or
may you prefer: reengineered without the original
source code. For example, if a software program-
mer has created a program with a bug, does not
release a fix, then an experienced end user can
reverse engineer the application and fix the bug
for everyone using the program. Sounds helpful
doesn’t it?

That’s because we only touched the tip of the ice-
berg; the road of reverse engineering is a long one
and the end leads to somewhere dark and illegal.
Why you wonder? Because, by that logic, computer
users can modify the code of any program, alter li-
censing features of a commercial product and re-
move critical features to their own liking. For exam-
ple, a software such as Photoshop that requires you
to buy a serial key to register and use it, can be re-
verse engineered to either extract a valid key or just
to remove the whole serial system altogether. This
is illegal and these people who reverse engineer
applications illegally, known as crackers or hack-
ers, have encountered legal issues since the first
software was released. Teams also dedicate them-
selves to this activity, but to this present day, most
have been arrested or have ‘voluntarily shutdown’.

So how exactly does one reverse engineer?
What tool do you need to do so? Read on because
we are getting there!

reverse engineering
Reverse engineering has drawn a lot of attention
to itself in the past few years, especially when
hacked programs are released to the general
public, and spread across websites that dedicate
themselves to distributing them. Though it is main-
ly used for sinister purposes, reverse engineering
can also be used for good, such as removing bugs,
fixing crashes and so on. The next paragraph will
give you the brief on how programs (EXE files)
are created.

The process of making a program is quite
straight forward. First you need a programming
language with a compiler. Many that are available
include C, C++, Python, Delphi, etc. The program-
mer uses this programming language to make
a source file containing all the editable code for
his/her program. When the programmer has fin-
ished coding his application and plans to distrib-
ute it, he/she will have to compile the code to an
EXE file.

The source code, the human readable and un-
derstandable file that is created by the program-
mer himself is firstly compiled in to an object file
with readable symbols, meaning that it is still un-
derstandable by a normal human.

The compiler then transforms the object file
in to an executable, the format which all of
your windows programs is compiled in, render-
ing the binary code symbol-less, in other words:
unreadable.

www.hakin9.org/en

The source code of a simple ‘Hello World’
application
For example, if you make a simple application in
C++, you need to write a source file first, some-
thing like ‘MyApp.c’. When you are done, you
want to make an executable file out of your code,
so you compile it. During the compilation, the file
‘MyApp.c’ is translated into object and then bina-
ry code, making it extremely hard to humanly in-
terpret and almost impossible to uncompile or de-
compile back to the original file; ‘MyApp.c.’

Programmers rely on this idea for security of their
application. The harder it is to decompile their ap-
plication and reverse the actions of a compiler, the
more secure their code. However, when there’s a
way in, you can be sure that there is one out.

editing Code AkA Debugging
Although the compiled code is unreadable, there
are, however, programs that can translate it into
a semi-readable state. These programs are called
debuggers. Debuggers are programs that read
those binary codes that the program has been
compiled to and convert them into easier to under-
stand terms. Those terms make up an extremely
low level programming language known as Assem-
bly. If you thought learning C++ was a headache
then wait till you try out assembly. Though complex
as it may be, assembly code is what all applica-
tions are written in when compiled. It is extremely
low level meaning. It takes approximately 10 lines
of assembly to compensate for one line of C++.
For that reason, assembly code is not a preferred
language among software developers.

Now knowing the connection between your pro-
gram, assembly and the debugger, we can move
on to the next topic: the debugging.

 Debugging is the process of removing bugs
or errors from a program
A debugger, is a program that does what its name
implies, it removes bugs. To do that, it allows us-
ers to edit the assembly of a program, changing
its structure and function. For example, if I had an
annoying bug where a program always counts 0s
as 1s, I can create a fix myself with a debugger by
simply loading my program and then editing the
section of assembly where the program confuses
0s with 1s. Then I can release the fix online for all
the users of that program.

Assembly Code
Before you can debug anything, you need a fair bit
of knowledge on assembly, not enough to code pro-
grams, but enough to understand how programs

56

REVERSE IT YOURSELF

10/2012

are coded in assembly. You can access this great
tutorial here: http://www.cs.virginia.edu/~evans/
cs216/guides/x86.html.

Tools of the Trade
OK, so you know a bit of assembly and you have a
program to reverse engineer, let’s get a debugger.
Nowadays, there are a lot of debuggers available
so choosing the right one can be confusing.

Below is the list of debuggers that work for any
Windows application. Those include:

• OllyDbg
• SoftIce
• Microsoft Visual Studio Debugger
• AQTime
• GDB
• AQT

In addition, there is over a hundred different de-
buggers, all made for different platforms and lan-
guages. But since we are debugging under win-
dows, this is not relevant. You can though, simply
Wikipedia the word ‘Debugger’ to find a long list
of debuggers.

reverse engineering example
In this demonstration we will use a free and widely
used debugger: OllyDbg. You can get it from their
official website: http://www.ollydbg.de/.

After downloading the debugger, unzip and open
it. Load your application that you want to debug by
clicking ‘Open’ on the main toolbar.

In this demonstration, we will debug a superfi-
cial program that simulates the licensing features
in a real program. Let’s call it HackMe.EXE. Ba-
sically HackME.EXE asks for a serial key and
name and returns the message ‘Valid Key’ if the
key and name match, and ‘Invalid Key’ if they do
not. Your purpose is to either find a valid serial key
or a way to bypass this process and skip to the
point where you can enter any key, and get a ‘Valid
Key’ message.

This is a classic example of RCE and to at-
tack such a problem is fairly easy if you have
the right tools. OllyDbg is an excellent choice as
it works for all windows compiled executables,
has a lot of use functions such as setting break-
points, finding string references, etc. Because of
that we will use OllyDbg as our debugger in our
demonstration.

step 1
Open the program ‘HackME.EXE’ in OllyDbg by
clicking ‘Open’ and choosing the file.

step 2
Right click on the window where you see a lot of
assembly code, and then select ‘Find All Refer-
enced Strings.”

step 3
You should be taken to a window where all the
strings in the HackMe.EXE is listed. We want to
see all its strings because we know for a fact that
the messages ‘Valid Key’ and ‘Invalid Key’ is em-
bedded somewhere in the application. If we can
find its location, the corresponding code that gen-
erates these messages will also be there.

step 4
Search. Search through all the strings listed until
you find the text ‘Invalid Key’. You should find it, if
not, then you will have to read the section defen-
sive mechanisms.

step 5
Double click on the text ‘Invalid Key.’ It should take
you to the disassembly where the actual text is lo-
cated.

step 6
Now here’s the tricky part. Look at the assembly
above where the text is located. If you have done
your homework and researched a bit on assembly
you will know what to look for. If you don’t, then I
will briefly fill you in. In order to determine if the
key is valid or not the program needs to actual-
ly compare the key and name. This is where we,
as REers, do our thing. In windows assembly, the
commands JZ, JNZ stand for operators that com-
pare values and if they are true then they will jump
to a section of the code.

Because the program we are debugging is com-
paring your name and serial key, we needed to find
the section of the assembly that shows the ‘Invalid
Key’ message, as done so in steps 1 to 5. Now
that we have located this section, we are going to
search for the JNZ or JZ operator replace it with
themselves. For example if the program uses JZ
to evaluate whether the key is valid or not, we re-
place it with JNZ and vice versa.

With that being said, look up from the point where
you found the text ‘Invalid Key’ search for the com-
mands JZ and JNZ; you only need to find one of
them as there is only one anyway.

When you find the command, double click on it
on the debugger to edit and do the following:

• If the command is JZ then change it to JNZ
• If the command is JNZ change it to JZ

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.ollydbg.de/

www.hakin9.org/en 57

Now run the program again by clicking ‘Run’ on
the toolbar.

step 7
Enter any serial number and name and you should
get the message ‘Valid Key.’

Congrats! You have just reverse engineered an
application. Seems easy huh? Are application re-
ally that easy to modify?

Defensive mechanisms
Reverse engineering a small and unprotected ap-
plication is extremely easy, but applications today
are complex and protected as software piracy is
extremely popular.

Since the uprise of reverse engineering, soft-
ware companies have used packers to encrypt or
scramble their code, giving crackers a hard time
when they attempt to debug it.

For example, a program that is encrypted and
scrambled would be impossible to debug unless
the hacker can retrieve the original executable.
This process seems secure right? Wrong. For ev-
ery executable packer out there, there is always
an unpacker. A hacker can simply search up the
packer and then download the unpacker from il-
legal software piracy websites. The scrambled ex-
ecutable can then be unscrambled and debugged.
If you are a software developer, your best bet is
to find an uncommon executable packer to secure
your files.

The windows executable format is more
vulnerable to debugging and modification
than mac or Linux binaries
Just packers and encrypts are not enough and all
software companies know that. That’s why they
employ more advanced and complex defensive
techniques against cracking with some of them
making you think ‘Who will go to such lengths just
to protect a file?’

Advanced Defensive mechanisms
Long Serial Key: Many companies use a serial
which is several KB long of arithmetical transforms,
to drive anyone trying to crack it insane. This makes
a keygenerator almost impossible – Also, brute
force attacks are blocked very efficiently.

encryption is used in most commercial
applications
Encrypted Data: A program using text which is en-
crypted until runtime has a pretty good chance of
throwing amateur hackers off. Developers often
use their own encryption algorithms to encrypt

their strings internally. When the program is run,
then string is then decrypted, confusing the hacker.

Example: Imagine a hacker tries to use the func-
tion ‘Find All Referenced Text Strings’ as men-
tioned in our tutorial above. If the strings for the ap-
plication are encrypted internally then the hacker
will only find a few lines of messed up, non-sense
characters.

Traps. A method I’m not sure about, but I have
heard some apps are using it to trap crackers and
hackers:

Do a CRC check on your EXE. If it is modified
then don’t show the typical error message, but wait
a day and then notify the user using some cryptic
error code. When they contact you with the error
code, you know that it is due to the crack.

Frequent updates: Developers often release fre-
quent updates that make the current version of
the app stop working until the user installs the up-
date for it. This lets the developers modify their
“anti-cracking” routines frequently and renders the
cracks released for the previous versions com-
pletely useless.

“Destructive” code: A bit farfetched, but some-
times developers put destructive routines in their
programs in case their internal checking routines
detect that the app was cracked. They delete sys-
tem files on the user’s system or mess up the
Windows Registry, let the program create bug-
gy results (obviously buggy or just noticeable af-
ter careful checks) or simply pop up warnings that
“a certain patch” leads to “damage to the system
files” or “contains a virus.” While this might be a
good way to “shock” sensible novice crackers, I
truly don’t believe this is a good (or even effective)
method to protect your work as it may violate the
laws of certain countries and create a bad reputa-
tion for the application.

Decompilation
Besides disassembling a program, reverse engi-
neering can be accomplished by decompilation,
a process aimed to retrieve the source code of a
compiled file. A decompiler is the name given to
a computer program that performs, as far as pos-
sible, the reverse operation to that of a compiler.
That is, it translates a file containing information
at a relatively low level of abstraction (usually de-
signed to be computer readable rather than hu-
man readable) into a form having a higher lev-
el of abstraction (usually designed to be human
readable). The decompiler does not reconstruct
the original source code, and its output is far less
intelligible to a human than original source code.
Most programs designed in high level program-

58

REVERSE IT YOURSELF

10/2012

ming languages or are based on an interpreter
can be decompiled. Such languages include Del-
phi, Visual Basic, Java and so on.

VB Decompiler, one of the most popular
decompilers out there today
To further clarify the meaning of decompilation,
consider a program you wrote in Visual Basic or
as many prefer, VB. You compile it and transform
your source files in to a windows executable.
However as VB compiles to a high level, inter-
preted code, as opposed to C++’s native code,
it can be easily dissembled. A hacker can simply
use a program such as VB Decompiler or VB Re-
former and obtain almost every single source file
you wrote.

Though it seems that any windows program is
vulnerable to modification and tampering, as long
as you compile that program with a native lan-
guage such as C++ or C, your app should be rela-
tively safe from decompilation.

reverse engineering Online
Today, there are teams dedicated to REing soft-
ware, forums dedicated to teaching users the pro-
cess and websites dedicated to spreading the re-
verse engineered app. A simple search on Google
on something like ‘How to crack’ or ‘How to hack’
will lead you to over a million tutorials on the
subject. There are teams, such as CORE which
stands for “Challenge Of Reverse Engineering”,
there are unnamed websites that allow hackers to
upload their work, but why. Why does one reverse
engineer?

The answer is simple. It is because software isn’t
free. In the world of commercial software, you have
to buy a license to use it. You have to subscribe by
paying a certain amount every month to use it. You
have to register your software to use it.

It would be fine if software were like cars. They
can’t be copied or pasted. They can’t be upload-
ed on to software piracy dedicated websites. That
can’t be loaded into debuggers. There is only one
car for every person.

However, that’s software’s weak point. Software
can be modified, debugged, copied and distribut-
ed. Software isn’t real, it’s virtual, and hackers rec-
ognized this as early as when the first version of
Windows was released.

Reverse engineering software eliminates the re-
quirement of users purchasing a valid license, and
in return saves them time and money. Though il-
legal as it may be, it is human nature to find the
cheapest and easiest way to obtain something
they want.

reverse engineering in History
A famous example of reverse-engineering involves
San Jose-based Phoenix Technologies Ltd., which
in the mid-1980s wanted to produce a BIOS for
PCs that would be compatible with the IBM PC’s
proprietary BIOS. (A BIOS is a program stored in
firmware that’s run when a PC starts up).

To protect against charges of having simply (and
illegally) copied IBM’s BIOS, Phoenix reverse-en-
gineered it in a way that was smart but indirect.
First, a team of engineers studied the IBM BIOS
– about 8KB of code – and described everything it
did as completely as possible without using or ref-
erencing any actual code. Then Phoenix brought
in a second team of programmers who had no pri-
or knowledge of the IBM BIOS and had never seen
its code. Working only from the first team’s func-
tional specifications, the second team wrote a new
BIOS that operated as specified.

The resulting Phoenix BIOS was different from
the IBM code, but for all intents and purposes, it
operated identically. Using the clean-room ap-
proach, even if some sections of code did happen
to be identical, there was no copyright infringe-
ment. Phoenix began selling its BIOS to compa-
nies that then used it to create the first IBM-com-
patible PCs.

Conclusion
In conclusion, reading this article should have
granted you with some more insight in the topic of
reverse engineering. You should have learnt how
reverse engineering works, how reverse engineer-
ing is accomplished and, most importantly, how re-
verse engineering is used. If you want more infor-
mation on RE or RCE, you can visit the webpages
listed below:

• www.en.wikipedia.org/wiki/Reverse_engineering
• www.searchcio-midmarket.techtarget.com/defi-

nition/reverse-engineering
• www.youtube.com/watch?v=vGBFEDslWhQ
• www.securitytube.net/video/1363

LOreNzO Xie
Lorenzo Xie is the owner of XetoWare.com and Ace
VideoConverter.com. He also works with several oth-
er software companies and specialises in windows soft-
ware development. You can contact him directly at
Lorenzo@xetoware.com.

http://www.en.wikipedia.org/wiki/Reverse_engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.youtube.com/watch?v=vGBFEDslWhQ
http://www.securitytube.net/video/1363
http://XetoWare.com
http://Ace
VideoConverter.com
http://Ace
VideoConverter.com
mailto:Lorenzo@xetoware.com

http://www.sptechon.com

60

REVERSE IT YOURSELF

10/2012

How to reverse
the Code?
Although revealing the secret is always an appealing topic for any
audience, Reverse Engineering is a critical skill for programmers.
Very few information security professionals, incident response
analysts and vulnerability researchers have the ability to reverse
binaries efficiently. You will undoubtedly be at the top of your
professional field (Infosec Institute).

It is like finding a needle in a dark night. Not ev-
eryone can be good at decompiling or reversing
the code. I can show a roadmap to successfully

reverse the code with tools but reverse engineer-
ing requires more skills and techniques.

Software reverse engineering means differ-
ent things to different people. Reversing the soft-
ware actually depends on the software itself. It
can be defined as unpacking the packed, disas-
sembling the assembled or decompiling the com-
plied piece of code termed as software. Some
people have also named it as Auditing the Bi-
nary or Malware Analysis. This depends on the
motive.

Before we jump into more details, let’s high-
light some pre-requisites of software reverse
engineering.

Pre-requisite in software reverse
engineering
Most importantly, you should be a programmer
who understands the basic concepts of how the
software world works. It is like driving your car

in reverse gear and reaching home without acci-
dents! So yes, it’s not an easy job and it requires
practice.

Understanding following requirements is funda-
mental in reversing any piece of code.

001 – You should be good in at least one pro-
gramming language so it could be C++.

002 – Understanding assembly language is the
key to success in reversing the code and
reaching the target. Understanding of stack
and memory works, types of registers and
pointers are the important factors.

003 – Which DLL is mapped to which statement
is very important.

004 – Try identifying the algorithms used and
drawing the map of them.

005 – Performing crash analysis to identify bugs,
understanding the functionally of the soft-
ware code by applying the hit and miss rule.

006 – Identifying files used.
007 – Identify variables used in the code, this is

very important.

Figure 1. Fundamental Requirements

www.hakin9.org/en 61

Figure 2. IDA in Flow

Figure 3. OllyDbg

62

REVERSE IT YOURSELF

10/2012

008 – Most importantly is Vulnerability Analysis,
this is applicable when you are trying to mod-
ify the normal behaviour of the code.

Approach: Different Reversing Approaches.

There are many different approaches for revers-
ing, and choosing the right one depends on the
target program, the platform on which it runs and
on which it was developed, and what kind of infor-
mation you’re looking to extract. Generally speak-
ing, there are two fundamental reversing method-
ologies: offline analysis and live analysis.

Offline Code Analysis (Dead-Listing)
Offline analysis of code means that you take a bi-
nary executable and use a disassembler or a de-
compiler to convert it into a human-readable form.

Reversing is then performed by manually read-
ing and analysing parts of that output.

Offline code analysis is a powerful approach be-
cause it provides a good outline of the program
and makes it easy to search for specific functions
that are of interest.

The downside of offline code analysis is usually
that a better understanding of the code is required
(compared to live analysis) because you can’t see
the data that the program deals with and how it
flows. You must guess what type of data the code
deals with and how it flows based on the code.
Offline analysis is typically a more advanced ap-
proach to reversing.

There are some cases (particularly cracking-
related) where offline code analysis is not pos-
sible. This typically happens when programs are
“packed”, so that the code is encrypted or com-
pressed and is only unpacked in runtime. In such
cases only live code analysis is possible.

Live Code Analysis
Live Analysis involves the same conversion of
code into a human-readable form, but here you
don’t just statically read the converted code but in-
stead run it in a debugger and observe its behav-
iour on a live system.

This provides far more information because you
can observe the program’s internal data and how it
affects the flow of the code. You can see what in-
dividual variables contain and what happens when
the program reads or modifies that data.

Generally, it is said that live analysis is the bet-
ter approach for beginners because it provides a
lot more data to work with. The section on “Need
for Tools” discusses tools that can be used for live
code analysis.

Need for Tools: which tool to select is based on
the piece of software code you’re trying to reverse.
There are many tools available on internet but key
tools are IDA Pro & OllyDbg. IDA Pro is a wonder-
ful tool with a number of functionalities; it can be
used as debugger as well as disassembler.

On the other side ollyDbg is an assembler lev-
el analysing debugger for Microsoft® Windows ®.
Emphasis on binary code analysis makes it partic-
ularly useful in cases where source is unavailable.

Highlights of iDA Pro Functionalities
In my opinion IDA Pro is most powerfull tool and
is mostly used in reverse engineering, its function-
alities are vast in number, however, I should high-
light the key one:

Adding Dynamic Analysis to iDA
In addition to being a disassembler, IDA is also a
powerful and versatile debugger. It supports mul-
tiple debugging targets and can handle remote ap-
plications, via a "remote debugging server".

Power Cross-platform Debugging:

• Instant debugging, no need to wait for the anal-
ysis to be complete to start a debug session.

• Easy connection to both local and remote pro-
cesses.

• Support for 64 bits systems and new connec-
tion possibilities.

Highlights of OllyDbg Functionalities

• It debugs multithread applications.
• Attaches to running programs
• Configurable disassembler supports both

MASM and IDEAL formats
• MMX, 3DNow! And SSE data types and in-

structions, including Athlon extensions.
• It recognizes complex code constructs, like call

to jump to procedure.
• Decodes calls to more than 1900 standard API

and 400 C functions.

High Level reverse engineering
methodology
As per Information Risk Management PLC, high
level Reverse Engineering can be divided into
three quick steps. This methodology is the culmi-
nation of exiting tools and techniques within the IT
Security research community, presenting the ways
to identify process operation at a higher-level of
abstraction than traditional binary reversing.

In this methodological approach attention is on
application DLLs and functions implemented. Fol-

www.hakin9.org/en 63

lowing this approach the researcher is free to ex-
plore and take any further steps as desired.

When analysing this way the researcher can fo-
cus attention on functions that appear more “inter-
esting” from information security point of view.

A Practical example
A practical example while working on this method-
ology as explained below.

• Functionality Explored: Microsoft Fingerprint
Reader (manufactured by Digital Persona)

• Tools Required: Universal Hooker (uhooker by
Core Security Technologies), Interactive Disas-
sembler (IDA) and the OllyDbg debugger.

It is assumed that the reader is familiar with these
tools; further information on how to use these
tools can be obtained on the vendor website. I
have already explained a bit about IDA and OllyD-
bg, Uhooker is a tool to intercept execution of pro-
grams. It enables the user to intercept calls to API

Functions inside the DLL and also arbitrary ad-
dresses within the executable file in the Memory.
Uhooker builds on the idea that the function han-
dling the hook is the one with knowledge about
parameter types of the function it is handling.
Uhooker is implemented as an OllyDbg plug-in,
which takes care of function hooking using soft-
ware breakpoints.

Phase 1: identify relevant Components
This first phase demands the investigation of the
core component of the target; in this case it is Mi-
crosoft Fingerprint Reader. A number of methods
can be applied for identifying core components of
Microsoft Fingerprint Reader at this level. The no-
ticeable start point for us would be to include the
device drivers that are used, in Windows case the
operating system itself provides much information
on the device drivers and their system location, it’s
only the matter of knowing it as shown in Figure 5.

Here we can identify different DLLs and device
drivers that are used to control the device, this will

Figure 4. High Level Reversing Methodology
Figure 5. Identification of core driver module of fingerprint
reader from System Manager

Table 1. Identifying possible system functions from filenames alone

System Component / Filename Likely Functionality
DPHost.exe Digital Persona Host – Main host application

Crypt32.dll and DPSecret.dll Encryption / Decryption Functionality (Fingerprint images are purportedly en-
crypted between device and host)

Dpdevctl.dll Digital Persona Device Control – Control commands for the fingerprint device

Dpdevdat.dll Digital Persona Device Data – Functions for handling data received from the
device

DPCFtrEx.dll Digital Persona Feature Extraction – functions for extracting biometric features
from fingerprint images

DpCmpMgt.dll Digital Persona Comparison/Component Management

DPCRecEn.dll Digital Persona Recognition Engine – functionality relating to the biometric
matching algorithm

64

REVERSE IT YOURSELF

10/2012

serve as a good starting point to our High Level
understanding of device and the system operation.

Typically, the next step includes examination of
system interaction with the underlying operating
system. Again, a number of tools exists for this
purpose – well known tools such as Sysinternal
tools, regmon, filemon and process explorer, pro-
vide great deal of possibility for exploring process
interaction with registry, file system and the oth-
er processes respectively. Here, knowledge about
DLL Mapping is the essential, which I highlighted
in the beginning refer 003 – DLL Mapping.

Note
Findings from this step should be documented by
the researcher as they will form the basis of later
phases. In the above example the following table
presents some of the findings (Table 1).

The minor information leakages in the filenames
can be very useful for identifying the functionality
of the system, and in this case DPHost.exe looks
like the core process. We will further proceed by
attaching the debugger to the interesting process.
OllyDbg’s Executable Modules Window will list all
executable modules currently loaded by the de-
bugged process. Figure 6 is an example for this.

Phase 2: identifying relevant Component
Functions
This is the analysis of components identified in the
previous phase to dig out function level informa-

tion from the components. We will again need help
of various tools for this. Here, we are interested in
identifying named and exported functions and the
virtual memory addresses for specified DLL files.
DLL Export View can be used as presented in Fig-
ure 7.

IDA Pro can also be used to dig out this level
of information. As you can see, the names of the
functions, their addresses in memory and the files
they are coded in. We can further reverse the func-
tion to get the actual code, but I am limiting this
Phase to this level. You should try your luck after it
is getting this far.

Note
Keep documenting what you have so far obtained.

Phase 3: High Level Functional Analysis
This is nothing but the high level analysis of the
function code that you should be able to obtain in

Figure 6. The OIlyDbg Executable Modules window identifies modules loaded by our debugged process

Figure 7. DLL Export Viewer to Identify Functions

www.hakin9.org/en 65

the form of assembly language. For this OllyDbg
is the best tool. By using such tools it’s all GUI. A
simple click can quickly put machine language in
front of you. However, you must be experienced
with assembly language to make it useful.

A quick snapshot of Functional Analysis I have
taken for from OllyDbg tool is presented in Figure
8.

Next steps
You can further extend your study to parameter
analysis of functions, variable analysis and then
input validation and boundary checks. However,
you should be good enough in performing 005 –
Crash Analysis. This analysis forms the basis for
vulnerability analysis resulting in identification of
loop holes in the software code.

Conclusion
Reverse engineering is a critical skill, and this ar-
ticle just highlights the steps, approach and a high-
level methodology of how to kick off reverse engi-
neering of the software code. Remember that all
code was created by a brain, and only a brain can

decode it; tools are the hands on the typewriter.
references
Infosec Institute, Information Risk Management PLC ap-
proach towards high level reverse engineering. OllyDbg,
IDA Pro, Core Securities Uhooker Docs.

rAHeeL AHmAD
Raheel Ahmad, CISSP, is an Information
Security Consultant with around 10 years
of experience in security and forensic in-
vestigations while working for Big4 Au-
dit Firms and Consulting companies.
He holds several security certifications as
CISSP, CEH, CEI, MCP, MCT, CRISC, and Co-
bIT Foundation. Raheel is a certified in-
structor for ethical hacking boot camps.

Figure 8. Example of uhooker examining function calls with the Microsoft Fingerprint Reader

66

HAKIN9 EXTRA

10/2012

Modern websites, which use Web 2.0 and AJAX, often generate
HTML and JavaScript code on the fly. This means that standard
static code analyzers cannot fully scan the source code and locate
client-side JavaScript issues, since the source code itself does not yet
include the entire HTML and JavaScript code.

We used a sample group of 675 websites,
including all 500 of the Fortune 500 com-
panies, plus 175 handpicked websites in-

cluding IT security companies, web application se-
curity companies, social networking sites and other
popular websites. “Each application was tested
for two main client-side JavaScript issues: DoM-
based Cross-site scripting, and open redirects, a
vulnerability which allows a malicious attacker to
force the victim’s browser to automatically redirect
to a site he/she owns, and which can be used for
Phishing purposes. our research found that of the
675 websites analyzed, 98 (14.5 percent) were in-
fested with DoM-based Cross site scripting and
open redirects (Figure 1).1

1 ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14252usen/
RAW14252USEN.PDF

Here, the question how I can protect JavaScript
code arises. Web Application has to live with Ja-
vaScript and it will never be 100% secure. Howev-
er, there is a known method to protect your JavaS-
cript: source code obfuscation. There are some
tools available on market which provide a degree
of obfuscation which gives you a bit comfort that
your intellectual property (source code) is protect-
ed and that it will not be stolen or reused by any-
one else in the market.

Jscrambler Overview
JScrambler is a JavaScript obfuscator that per-
forms all sorts of complex stuff for your code; it
transforms your code into a human-incomprehen-

Figure 1. Percentage of sites vulnerable to client-side
JavaScring issues

Figure 2. Shows the application mode of JScrambler

Figure 3. Shows functionality you can use to achive
transformation from protection point of view

ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14252usen/RAW14252USEN.PDF
ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14252usen/RAW14252USEN.PDF

www.hakin9.org/en 67

sible form, installs all sorts of protection mecha-
nisms and optimizes the code. Huh – how about
the functionality of your code? Yeah – it trans-
forms and protects while maintaining your
code functionality.

How Jscrambler Protects your Code?
I would say if you are looking for a solution to op-
timize and, at the same time, protect your HTML5,
Mobile, Web Game or a standard JavaScript ap-
plication; then JScrambler is the product you are
looking for.

Figure 2 shows the application modes available
in JScrambler.

JScrambler is a customizable tool which provides
a number of techniques / parameters which you
can use in your projects to secure your code. What
stands out in JScrambler is its flexibility and its fo-

cus on code protection. That being said, it manag-
es also to be one of the best tools for compressing
your code. It provides a wide set of customizable
options to achieve different degrees of protection,
as you can see in Figure 3.

With JScrambler’s source code obfuscation fea-
tures you can achieve a certain degree of intellec-
tual property protection by hooking literals, split-
ting strings into smaller pieces and mixing them
throughout the code, reordering function calls, or
by injecting dead code to misguide static code re-
views. It also provides features to enforce your li-
cence agreement by allowing you to lock the code
to a domain list, and/or to make the code expire
on certain date after which your customer will not
be able to execute it. Figure 4 – Domain Lock
Example.

On top of protection, it has as unique feature a
proper validation of the code prior to the applica-
tion of the source code transformations, by detect-
ing parsing errors just like a normal compiler does.
It fully supports the latest JavaScript standard Ec-
maScript-262 v5.1. Figure 5 shows an overview
of your projects and if parsing errors were detect-
ed. This can be helpful to the user as it provides
some guarantees that the script is functional be-
fore transformation.

HTmL5 obfuscation – The only one of its
kind
The HTML5 obfuscation feature of JScrambler is
right now the only one available on the market.

You can use JScrambler to hide known calls to the
browser DOM objects, or HTML5-specific elements
like Canvas. Figures 6 and 7 show an obfuscat-
ed HTML5 Canvas example. You can find the code
available at http://webfensive.com/canvas/. Figure 4. Domain Lock Example

Figure 5. Shows a quick view of parsing errors

http://webfensive.com/canvas/

68

HAKIN9 EXTRA

10/2012

There’s also the possibility of adding an exclu-
sion attribute to script tags to make JScrambler ig-
nore code which you don’t want it to touch.

Example: <script src=”foo.js”
jscrambler=”ignore”></script>

By applying the aforementioned techniques, you
can randomly change the control flow and struc-
ture of your JavaScript source code and, at the
same time, maintain its functionality.

Conclusion
It is impressively easy and painless to use JScram-
bler to protect your JavaScript code. JavaScript

Figure 6. Before Obfuscation

Figure 7. After Obfuscation

has been gaining a lot of attention as it is used
in different types of applications such as Mobile,
HTML5 Canvas and Web Gaming. JScrambler al-
ready presents packages tailored to protect those
types of applications and it does a good job.

rAHeeL AHmAD
Raheel Ahmad, CISSP, is an Information Secu-
rity Consultant with around 10 years of experi-
ence in Information security and forensics.

https://jscrambler.com/

Certified ISO27005 Risk Manager
Learn the Best Practices in Information
Security Risk Management with ISO
27005 and become Certified ISO 27005
Risk Manager with this 3-day training!

CompTIA Cloud Essentials
Professional
This 2-day Cloud Computing in-company
training will qualify you for the vendor-
neutral international CompTIA Cloud
Essentials Professional (CEP) certificate.

Cloud Security (CCSK)
2-day training preparing you for the
Certificate of Cloud Security Knowledge
(CCSK), the industry’s first vendor-inde-
pendent cloud security certification from
the Cloud Security Alliance (CSA).

e-Security
Learn in 9 lessons how to create and
implement a best-practice e-security
policy!

IT Security Courses and Trainings

IMF Academy is specialised in providing business information by means of distance
learning courses and trainings. Below you find an overview of our IT security

courses and trainings.

IMF Academy
info@imfacademy.com
Tel: +31 (0)40 246 02 20
Fax: +31 (0)40 246 00 17

For more information or to request the brochure
please visit our website:
http://www.imfacademy.com/partner/hakin9

Information Security Management
Improve every aspect of your information
security!

SABSA Foundation
The 5-day SABSA Foundation training
provides a thorough coverage of the
knowlegde required for the SABSA
Foundation level certificate.

SABSA Advanced
The SABSA Advanced trainings will
qualify you for the SABSA Practitioner
certificate in Risk Assurance & Govern-
ance, Service Excellence and/or Architec-
tural Design. You will be awarded with
the title SABSA Chartered Practitioner
(SCP).

TOGAF 9 and ArchiMate Foundation
After completing this absolutely unique
distance learning course and passing
the necessary exams, you will receive
the TOGAF 9 Foundation (Level 1) and
ArchiMate Foundation certificate.

http://www.webnetsoft.gr

PLEASE SEE WWW.UAT.EDU/FASTFACTS FOR THE LATEST INFORMATION ABOUT DEGREE PROGRAM PERFORMANCE, PLACEMENT AND COSTS.

[GEEKED AT BIRTH.]

www.uat.edu > 877.UAT.GEEK

LEARN:
Advancing Computer Science
Artificial Life Programming
Digital Media
Digital Video
Enterprise Software Development
Game Art and Animation
Game Design
Game Programming
Human-Computer Interaction
Network Engineering

[IT'S IN YOUR PULSE.]

You can talk the talk.
Can you walk the walk?

Network Security
Open Source Technologies
Robotics and Embedded Systems
Serious Game and Simulation
Strategic Technology Development
Technology Forensics
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

http://www.uathackad.com/Nov12

	Cover
	Dear Readers
	contents
	How to Analyze Applications With Olly Debugger?
	IDA Pro How to Disassemble and Debug Executable Programs on Linux, Windows and Mac OS X?
	How to use Socat and Wireshark for Practical SSL Protocol Reverse Engineering?
	How to Defeat Code Obfuscation While Reverse Engineering?
	How to Identify and Bypass Anti-reversing Techniques?
	How to Reverse Engineer?
	How to Reverse the Code?
	JScrambler

