```
    Chapter 9
Rigging and Vehicle Recovery
    ROPES
```

Tables 9-1 and 9-2 give characteristics, safety factors, and breaking strength for different diameters of wire, manila, and sisal ropes.

Table 9-1. Wire rope characteristics and safety factors

BREAKING STRE MGTH OF 6×19 STANDACD WIRE ROPE?						
$\begin{gathered} \text { DIAMETER } \\ \text { IN } \\ \hline \end{gathered}$	apphoximate WEIGHT LB/FT	InOM	BREAKING STRENGTH. TOMS Of 2.000 LB			
			traction STEEL	$\begin{aligned} & \text { PLOUGH } \\ & \text { STEEL } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { TMPROVED } \\ \text { PLOUGH STEEL } \end{array}$	EXTRA IIMPROVED PLOUGH STEEL
1/1	0.10	1.4	2.6	2.39	2.74	
1/1	0.23	2.1	4.0	5.31	6.10	7.55
$1 / 2$	0.40	3.6	6.8	9.35	10.7	13.3
5/8	0.63	5.5	10.4	14.5	16.7	20.6
1/4	0.90	7.9	14.8	20.7	23.8	29.4
1/6	1.23	10.6	20.2	28.0	32.2	39.8
1	1.60	13.7	26.0	36.4	41.8	51.7
$11 /$	2.03	17.2	32.7	45.7	52.6	65.0
$11 /$	2.50	21.0	40.6	56.2	64.6	79.9
$11 / 2$	3.60	29.7	56.6	80.0	92.0	114.0
$11 / 4$				108.0	124.0	153.0
2				139.0	160.0	198.0

SAFETY FACTORS ${ }^{\|c\|}$	
TYPE OF SERVICE	MIMIMUM SAFETY FACTOR
Irack cables	3.2
Guy lines	3.5
Miscellaneous hoisting equipment	5.0
Havlage ropes	6.0
Derricks	6.0
Small electric and air hoists	7.0
Slings	8.0

NOTES: 1. If age and condition of rope are doubtful and human life or equipment may be endangered, apply a safety factor of at least eight.
2. The 6×19 means rope composed of 6 strands of 19 wires each.
3. Breaking strength of 6×7 or 6×37 wire ropes is 94 percent of the breaking strengh of a 6×19 rope of an equal diameter and identical material.
Example:
Find breaking strength of $1 \frac{1}{4}$ inch, 6×7. Improved Plough Steel wire rope
Breaking strength of $6 \times 19.11 / 4$ inch. Improved Plugh Steel wire rope $=64.6$ tons
Breaking strength $(6 \times 7)=.94 \times 64.6=60.7$ tons

Table 9-2. Properties of sisal and manila ropes

NOMINAL DIAMETER. IN	CIRCUMFERENCE. IN	$\begin{gathered} \text { LB } \\ \text { PER } \\ \text { FT } \end{gathered}$	HO. 1 MANILA		SISAL	
			BREAKIMG SIRENGTH. TONS	SAFE WORKIMG CAPACITY. TONS (F.S. $=4$)	BREAKING STRENGTH TONS	SAFE LOAD. IONS (F.S. = 4)
1/4	$3 / 4$	0.20	0.30	0.07	0.24	0.06
$3 / 8$	$11 / 8$. 040	0.67	0.16	0.54	0.13
1/2	$1^{1 / 2}$. 075	1.32	0.33	1.06	0.26
$5 / 8$	2	. 133	2.20	0.60	1.76	0.44
$3 / 4$	$21 / 4$. 167	2.70	0.67	2.16	0.54
1/8	$23 / 4$. 186	3.85	0.96	3.08	0.77
1	3	. 270	4.50	1.12	3.60	0.90
$11 / 8$	$31 / 2$. 360	6.00	1.50	4.80	1.20
$11 / 4$	$33 / 4$. 418	6.75	1.69	5.40	1.35
$11 / 2$	$41 / 2$. 600	9.25	2.31	7.40	1.85
$13 / 4$	$51 / 2$. 895	13.25	3.31	10.60	2.65
2	6	1.08	15.50	3.87	12.40	3.10
$21 / 2$	$71 / 2$	1.35	23.25	5.81	18.60	4.65
3	9	2.42	32.00	8.00	25.60	6.40

NOTES: 1. Breaking strength and safe loads given are for new rope used under favorable conditions. As rope ages or deteriorates, progressively reduce safe loads to one-half of values given.
2. Safe working capacity maybe computed, with safety factor of 4 . When condition of material is doubtful, divide computation by 2.

$\boldsymbol{I}=\mathrm{D}^{2}$

where, $\mathrm{T}=$ safe working capacity In tons
D = diameter in inches
3. Cordage rope is issued by circumference sizes.

CHAINS AND HOOKS
Table 9-3. Safe working load of chains ($\mathrm{SF}=6$)

SIZE	APPROXIMATEWEIGHI PERLINEAR FOOIIN POUNDS	SAFE WORKING LOAD IN POUNDS			
		COMMON IRON	$\begin{gathered} \text { HIGH GRADE } \\ \text { IRON } \end{gathered}$	$\begin{aligned} & \text { SOFT } \\ & \text { STEEL } \end{aligned}$	SPECIAL STEEL
$1 / 4$	0.8	512	563	619	1.240
3/8	1.7	1.350	1.490	1.650	3.200
1/2	2.5	2.250	2.480	2,630	5.250
5/8	4.3	3.470	3.810	4.230	7.600
$3 / 4$	5.8	5.070	5.580	6.000	10.500
1/8	8.0	7.000	7.700	8.250	14.330
1	10.7	9.300	10.230	10.600	18.200
$11 / 8$	12.5	9.871	10.858	11.944	21.500
$11 / 4$	16.0	12.186	13.304	14.634	26.300
$13 / 8$	18.3	14.717	16.188	17.807	32.051

NOTE: Size is the diameter in inches of one side of a link.

Table 9-4. Safe load on hooks

DIAMETER OF METALA. IN	INSIDE dIAMETER OF EYE B. IN	WIDTH OF OPENING C. IN	LENGTH OF HOOK D. IN	SAFE WORKING CAPACITY OF HOOKS. LB
11/16	7/8	11/16	$4^{15 / 16}$	1.200
$3 / 4$	1	$1^{1 / 8}$	$5^{13 / 32}$	1.400
7/8	$11 / 8$	$11 / 4$	$61 / 4$	2.400
1	$11 / 4$	$13 / 8$	$61 / 8$	3.400
$11 / 8$	$13 / 8$	$11 / 2$	$75 / 8$	4.200
$11 / 4$	$11 / 2$	$1^{11 / 16}$	$8^{19 / 32}$	5.000
$13 / 8$	$15 / 8$	$17 / 8$	$91 / 2$	6.000
$11 / 2$	$13 / 4$	21/16	$10^{11 / 32}$	8.000
$15 / 8$	2	$21 / 4$	$11^{27} / 32$	9,400
$17 / 8$	$23 / 8$	$21 / 2$	$13^{9 / 32}$	11,000
$21 / 4$	$23 / 4$	3	$14^{13 / 16}$	13.600
$25 / 8$	$3^{1 / 8}$	$33 / 8$	$16^{1 / 2}$	17.000
3	$31 / 2$	4	$19^{3 / 4}$	24.000

NOTE: Formula for safe work load for hooks: T (Tons) $=D^{2}$ (in ${ }^{2}$)

Approximate weight of timber is 40 pounds per cubic foot. See Table $9-5$ for safe capacity

Table 9-5 Safe capacity of spruce timber as gin poles

	SAFE CAPACITY FOR GIVEN LENGTH OF TIMBER, LB					
SIZE OF TIMBER. IN	$\begin{gathered} 6 \mathrm{M} \\ (20 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 7.5 \text { M } \\ (25 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 9 \mathrm{~m} \\ (30 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 12 \mathrm{~m} \\ (40 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 15 \mathrm{~m} \\ (50 \mathrm{ft}) \end{gathered}$	$\begin{gathered} 18 \mathrm{M} \\ (60 \mathrm{ft}) \end{gathered}$
6 dia	5.000	3.000	2.000			
8 dia		11.000	8.000	5.000	3.000	
10 dia	31.000	24.000	16.000	9.000	6.000	
12 dia			31.000	19.000	12.000	9.000
6×6	6.000	4.000	3.000			
8×8		14.000	10.000	6.000	4.000	
10×10	40.000	30.000	20.000	12.000	8.000	
12×12			40.000	24.000	16.000	12.000

NOTE: Safe capacity of each leg of shears or tripod is seven-eights of the value given for a gin pole.

Knots

The most commonly used knots are shown in Figure 9-1.

NAME	ILLUSTRATION	USE
SQUARE		Join two ropes of same size. (Will not slip. but will draw tight under strain.) To end block lashing.
DOUBLE SHEET BEND		Join wet ropes. of untqual size. or rope to an eye. (Will not slip or draw tight under strain.)
BOWLINE		Form a loop. (Will not slip under strain and is easily untied.) Must be completed with a half-hitch.
IIMBER HITCH		Lifting or dragging heavy timbers. (is more easily controlled if supplemented by half-hitches.)
CLOVE HIICH		Fasten rope to pipe. timber. or post. (It is used to start and finish all lashings and may be fied at any point in rope.)
SHEEP SHANK		Shorten rope or take load off wear spot of rope.
FISHERMAN'S BEND		To fasten cable or rope to anchor.

Figure 9-1. Common knots

Lashings
Figures 9-2 through 9-4 show different types of lashings and splicings.

Figure 9-2. Square lashing

Figure 9-3. Rope splices

Figure 9-4. Shear, block, and gin pole lashing

Fastenings
See Table 9-6 for characteristics and usage.

Table 9-6. Wire rope clip

WIRE ROPE DIAMETER MM (IN)	NOMINAL SIZE OF CLIPS (IN)		SPACING OF CLIPS MM (IN)	TORQUE TO BE APPLIED TO NUTS OF CLIPS M-KG $\times 0.1382$ (FT-LB)
7.95 (5/16)	3/8	3	50 (2)	3.5 (25)
9.52 (3/8)	3/8	3	57 (2 1/4)	3.5 (25)
11.11 ($7 / 16$)	$1 / 2$	4	70 (23/4)	5.5 (40)
12.70 (1/2)	1/2	4	76 (3)	5.5 (40)
15.85 ($5 / 8)$	5/8	4	95 (3/4)	9.0 (65)
19.05 (3/4)	3/4	4	114 (41/2)	14 (100)
22.22 (7/8)	1	5	133 (51/4)	23 (165)
25.40 (1)	1	5	152 (6)	23 (165)
31.75 (11/4)	$11 / 4$	5	190 ($7^{1 / 2}$)	35 (250)
34.92 (13/8)	$11 / 2$	6	210 (81/4)	52 (375)
38.10 (11/2)	$11 / 2$	6	230 (9)	52 (375)
44.45 (13/4)	$13 / 4$	6	267 (10 $1 / 2$)	78 (560)

CORRECI WAY OF PLACING

NOTE. The spacing of clips should be sIx times the diameter of the wire rope. To assemble end-to-end connectlon, the number of clips indicated above should be increased by two. The proper torque indicated above should be used on all clips: U-bolts are reversed at the center of connection so that the U-bolts are on the dead (reduced load) end of each wire rope.

Slings

For different types of slings, see Figure 9-5.

Figure 9-5. Single, combination, and endless slings

To determine the sling capacity, use the formula:

Example problem. You have a $3 / 4$-inch-diameter manila rope. Is it safe to use the rope to lift a 2,000-pound load wiht a 4 -leg sling which has a vertical distance of 6 feet and length of leg of 12 feet?
$T=\frac{W}{N} \times \frac{L}{V}$
$T=\frac{2.000}{4} \times \frac{12}{6}=1,000$ pounds

The tension on each leg will be 1,000 pounds. The safe working capacity of $3 / 4$ - inchdiameter manila rope from Table 9-2 is 0.67 tons or 1.340 pounds. Since the safe working capacity is greater than the tension, the rope is safe to use.

Hoisting
Figures 9-6 through 9-8 show expedient lifting devices and their design.

Figure 9-6. Lashing for shears

Figure 9-7. Boom derrick

NOTE: 1. A gin pole 30 to 40 feet may be raised by hand.
2. Maximum length of pole is 60 times minimum diameter.
3. Guys are three to four times the pole length.
4. Refer to Figure 9-4 (page 9-5) for lashing details.

Tackle Systems

Figure 9-9 shows examples of different tackle systems in a simple tackle system, the mechanical advantage is equal to the number of lines leaving the load. To determine the advantage of a multiple system. see Figure 9-9.

Figure 9-8 Gin pole ready for operation

Figure 9-9. Block and tackle systems and mechanical advantages

Anchorages

Use natural anchorage whenever possible (trees, boulders, and so forth). Figure $9-10$ shows the design and characteristics of several picket holdfasts. For deadman design and characteristics, see Chapter 7 (page 7-14).

Figure 9-10. Picket holdfast characteristics

Guy Lines

Use a minimum of four guy lines for gin poles and boom derrick and two guy lines for shears. To determine what tension will be on a guy line, use the formula.

$$
T=\frac{\left(W_{L}+1 / / W_{S}\right)^{D}}{Y}
$$

Where: $\quad T=$ tension in guy line

[^0]

Figure 9-11. Guy line

HIGHLINE

The highline is a trolley line passing through a snatch block at each support (Figure 9-12).

Figure 9-12. Highline

Sag
The sag in the track cable when loaded should be not less than 5 percent of the span.

Safe Load Highline Formula

$S L=\frac{B S}{5 \times S F}-\frac{D L}{2}$

Where $S L=$ safe load in pounds
$B S$ = breaking strength of line in ।
DL = dead load in pounds
SF = safety factor

Problem: Span is 400 feet
Track line is $3 / 4$ - inch-diameter manila rope
Haul line is $1 / 2$ - inch-diameter manila rope
Track cable sag is 5 percent

Solution:
BS for $3 / 4$ - inch diameter manila rope (Table 9-2.
5,400 pounds (2.70 tons)
SF for $3 / 4$ - inch rope (Table 9-2) $=4.0$
DL for $3 / 4$ - inch rope (Table 9-2) $=66.8$ pounds $/ 400$ feet
DL for $1 / 2$ - inch rope (Table 9-2) $=60$ pounds/800 feet

Therefore $\quad \mathrm{SL}=\frac{5.400}{5 \times 40}-\frac{66.8}{2}$

SL=270-33.4
SL = 236.6 pounds

For the payload, use the formula
$\mathrm{PL}=\mathrm{SL}-(1 / 2 \mathrm{~W}$ of haul rope +W of traveler +W of carrier $)$
For this problem, this would mean
$\mathrm{PL}=236.6-(30$ plus the weight of the traveler and carrier)

EXPEDIENT VEHICLE RECOVERY

Figure 9-13. Simple lifting techniques

Figure 9-14. Log used to provide truck traction

Figure 9-15. Use of dual wheels for a winch

[^0]: $W_{L}=$ weight of load
 $W_{S}=$ weight of spar
 $\mathrm{D}=$ drift distance
 $Y=$ perpendicular distance

