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1. Introduction
In Lesson 2 the six trigonometric functions were defined using angles determined by
points on the unit circle. This is frequently referred to as the circular definition
of the trigonometric functions. The next section (The triangular definition) of this
lesson presents the right triangular definitions of the trigonometric functions. This
raises a question about the consistency or agreement of the circular and right triangle
definitions. For example, does the sine function produce the same value for a given
angle regardless of the definition used. Predictably, the answer is affirmative as
verified in section 3. The next two sections (section 4 and section 5) demonstrate
how the trigonometric functions can be applied to arbitrary triangles. In Section 6
the circular definition of the trigonometric functions is extended to circles of arbitrary
radii.

Remark 1 Some examples and exercises in this lesson require the use of a calculator
equipped with the inverse trigonometric functions. The inverse sine, cosine
and tangent function keys are usually denoted on keypads by sin−1, cos−1, and tan−1.
These functions are used to determine the measure of an angle α if sin α (or cos α
or tan α) is known. For example, if sin α = .2, then α = sin−1 .2 = 11.537 ◦ . Before
executing these functions the reader should ensure that the calculator is in the correct
mode. Degree mode is used throughout this lesson. It should be noted that the general
theory of inverse functions is rather sophisticated and presently lies beyond the scope
of this tutorial.
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2. The triangular definition
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Figure 3.1: Right
triangle

Consider the right triangle in Figure 3.1 where α denotes
one of the two non-right angles. The side of the triangle oppo-
site the right angle is called the hypotenuse. The remaining
two sides of the triangle can be uniquely identified by relating
them to the angle α as follows. The adjacent side (or the
side adjacent α) refers to the side that, along with the the
hypotenuse, forms the angle α. The third side of the triangle
is called the opposite side (or the side opposite α). The
dependence of these labels on α is crucial since, for example,
the side opposite α is adjacent to the other non-right angle of
the triangle. The abbreviations ‘hyp’ for the length of the hy-
potenuse, and ‘opp’ and ‘adj’ for the lengths of the opposite and adjacent sides
respectively are used to define the values of the six trigonometric functions for the
angle α �= 90 ◦. These definitions are given in Table 3.1.

sin α =
opp
hyp

cos α =
adj
hyp

tan α =
opp
adj

cot α =
adj
opp

sec α =
hyp
adj

csc α =
hyp
opp

Table 3.1: Definition of the trigonometric functions from a right triangle.
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Section 2: The triangular definition 5

Example 2 A right triangle with angle α �= 90 ◦ has an adjacent side 4 units long
and a hypotenuse 5 units long. Determine sin α and tan α. Also, determine sin β
and tan β where β denotes the second non-right angle of the triangle. Finally, use a
calculator to determine α and β.
Solution: By the Pythagorean Theorem1 52 = 42 + (opp)2, so the length of the side
opposite α is 3 =

√
25 − 16 units. Consequently,

sin α =
opp
hyp

=
3
5
and tan α =

opp
adj

=
3
4
.

Using a calculator (in degree mode) we find

α = sin−1 3
5

� 36.87 ◦ .

For the angle β, the roles of adjacent and opposite sides must be reversed. Hence,

sin β =
4
5
and tan β =

4
3
.

Again, using a calculator we find

β = sin−1 4/5 � 53.13 ◦ .

A sketch of the triangle is given below.
1The lengths of the sides of a triangle satisfy (adj)2 + (opp)2 = (hyp)2.
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The reader should observe that

53.13 ◦ +36.87 ◦ = 90.0 ◦

which serves as a partial confirmation,2 but not a guarantee, of the correctness of the
above calculations.

2The values of the three interior angles of a triangle sum to 180 ◦ . Hence, the two non-right angles
of a right triangle must sum to 90 ◦ .
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Example 3 A right triangle with angle α = 30 ◦ has an adjacent side 4 units long.
Determine the lengths of the hypotenuse and side opposite α.

Solution: The definition cos α =
adj
hyp

suggests that cos 30 ◦ =
4

hyp
. So,

hyp =
4

cos 30 ◦ =
4√
3/2

=
8√
3
.

Similarly, sin 30 ◦ =
opp
hyp

so the length of the side opposite α is

opp = hyp sin 30 ◦ =
(

8√
3

) (
1
2

)
=

4√
3
.
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The Pythagorean Theorem provides a quick endorsement of the computed values.
Specifically, note that

42 +
(

4√
3

)2

= 16 +
16
3

= 16
(

1 +
1
3

)
=

64
3

=
(

8√
3

)2

.



3. Consistency of the triangular definition
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Figure 3.2: Similar right
triangles.

As illustrated in Figure 3.2, several right triangles
may contain the same angle α. Triangles with the same
angles but different side lengths are called similar. Sim-
ilar triangles, then, have the same shape and differ only
in size. This raises an immediate concern about using the
definitions in Table 3.1. Specifically, do the values sin α,
cos α, and the remaining trigonometric functions change
with the size of the triangle? The answer is no as verified
by the following argument. Since the two right triangles
in Figure 3.2 are similar, geometric considerations ensure
that the ratios of corresponding sides of the triangles sat-
isfy

O

H
=

o

h
,

A

H
=

a

h
, and

o

a
=

O

A
.

These equalities and the definitions in Table 3.1 suggest that the values of the trigono-
metric functions for the angle α are independent of the the triangle used to obtain
them. For example

sin α =
O

H
=

o

h
.
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Section 3: Consistency of the triangular definition 9

Also, using the larger triangle we have

tan α =
O/H

A/H
=

O

A
,

while the smaller triangle suggests

tan α =
o/h

a/h
=

o

a
.

Since o
a

= O
A
, tan α remains unchanged as the size, but not the shape, of the triangle

fluctuates. Similar reasoning verifies the consistency of the triangle definitions of all
the trigonometric functions.
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Example 4 Consider the right triangle in Figure 3.3. Find the length of the side
adjacent to α if sin α = 3/5.

�
�

Figure 3.3: A right triangle.

Solution: There is no way to compute the length of the adjacent side directly so we first
compute the length of the hypotenuse. From Figure 3.3and the triangular definition
of the sine function we have

sin α =
opp
hyp

=
7

hyp
.

Since sin α =
3
5
we have

7
hyp

=
3
5

=⇒ hyp =
35
3

.
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The Pythagorean Theorem can now be applied to determine the adjacent side as follows

adj =

√(
35
3

)2

− (7)2 =

√
784
9

=
28
3

.

Of course the fundamental properties of similar triangles could have been used to
solve this problem. Because sin α = 3/5, the given triangle in Figure 3.3 is similar to
the triangle with angle α, a hypotenuse of length 5, and side opposite α of length 3. The
similarity of these triangles is illustrated in the figure below. The Pythagorean Theo-
rem indicates that the side opposite α in the smaller triangle has length

√
25 − 9 = 4.

�

�

� �
�

adj�

Because of this similarity we have the equality
adj
7

=
4
3
.

Solving this equation gives

adj =
28
3

.
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Example 5 Determine the angles β and γ and the lengths of the sides a and c in
the triangle Figure (a) below.
Solution: Construct the line segment h that is perpendicular to b connecting the angle
β to the side b as indicated in Figure (b). Doing so forms two right triangles T1 and
T2 with a common side h and base sides b1 and b2. Since sin 30 ◦ = h/4 we have
h = 4 sin 30 ◦ = 2. Also,

sin γ =
(

h

2
√

2

)
=

(
2

2
√

2

)
=

1√
2
,

so γ = 45 ◦. Since β + 30 ◦ +45 ◦ = 180 ◦, we have β = 180 ◦ −75 ◦ = 105 ◦. Finally,

b = b1 + b2 = 2 cot 30 ◦ +2 cot 45 ◦ = 2(
√

3 + 1) = 5.464 1.

�

b

�� �

� ��

�

(a)

b1

�� �

� ��

b2

T1 T2
h

�

(b)



4. Law of Sines
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Figure 3.4: Sample triangle.

Example 5 is suggestive of a general rule called
the Law of Sines. Specifically, given the sam-
ple triangle in Figure 3.4 with sides a, b, and c
opposite the angles α, β, and γ respectively, the
Law of Sines states that

sin α

a
=

sin β

b
=

sin γ

c
. (1)

To prove this consider the triangle in the fig-
ure below in which a line segment of length h is constructed perpendicular to side b
connecting b to the angle β.

ac
h

b
�

�

�

The two right triangles thus formed suggest that

h = c sin α and h = a sin γ.
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Hence,

c sin α = a sin γ =⇒ sin α

a
=

sin γ

c
. (2)

A similar argument using the triangle below verifies that
sin (180 ◦ −β)

b
=

sin γ

c
.

ac
h

b

�

�

�

Since sin β = sin (180 ◦ −β) we have
sin β

b
=

sin γ

c
.

Combining this equality with Equation 2 establishes Equation 1.
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Example 6 Reconsider Example 5. (The figure for that example is reproduced below.)
The Law of Sines (Equation 1) facilitates the calculation of the remaining parts of
the triangle since

sin 30 ◦

2
√

2
=

sin γ

4
so that

sin γ =
4(1/2)
2
√

2
=

1√
2
.

Hence, γ = 45 ◦. Also, β = 180 ◦ −75 ◦ = 105 ◦ so that
sin 30 ◦

2
√

2
=

sin 105 ◦

b
=⇒ b = 4

√
2 sin 105 ◦ = 5.464 1.

A calculator was used to compute sin 105 ◦.

�
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Section 4: Law of Sines 16

Example 7 Actually, the conditions placed on the triangle in Example 6 permit two
solutions when using the Law of Sines. Figure (a) below indicates that the angle
γ = 45 ◦ in that example could be replaced with the angle

γ̃ = (180 ◦ −γ) = 180 ◦ −45 ◦ = 135 ◦ .
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(a) (b)

In this case

β̃ = 180 ◦ −(135 ◦ +30 ◦) = 15 ◦ .

Hence,

b̃ = 4
√

2 sin 15 ◦ = 1.4641.

The second solution is depicted in Figure (b).



As the previous example illustrates, the Law of Sines does not always have a
unique solution. Specifically, it is possible that two triangles possess a given angle
and specified sides adjacent and opposite that angle. This is called the ambiguous
case of the Law of Sines. There are rules for determining when the ambiguous case
produces no solution, a unique solution, or two solutions. However, perhaps the
best way of determining this is to simply solve the problem for as many solutions as
possible. This strategy is illustrated in the exercises.

5. Law of Cosines
A second law that deserves attention is the Law of Cosines which is presented
without justification. For a triangle with sides a, b, and c opposite the angles α, β,
and γ respectively, the Law of Cosines states that

a2 = b2 + c2 − 2bc cos α. (3)

Observe that this rule reduces to the Pythagorean Theorem if α is a right angle since
cos 90 ◦ = 0. This law is valid for any of the three angles of the triangle so it could
have been stated as

b2 = a2 + c2 − 2ac cos β or c2 = a2 + b2 − 2ab cos γ.
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Example 8 Suppose a triangle has adjacent sides of lengths 2 and 3 with an interior
angle of measure α = 70 ◦. (See the figure below.) Then by the Law of Cosines the
length of the side a opposite the angle α is given by

a =
√

22 + 32 − 2(2)(3) cos 70 ◦

=
√

22 + 32 − 4.104242

=
√

8.895758 = 2.982576.

� � �

�

� �
�

�

Observe that the Law of Cosines can be used to find β. Indeed,

cos β =
1
2

−b2 + a2 + c2

ac

=
1
2

−32 + 2. 982 62 + 22

(2.982576) (2)
= .326555
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so that

β = cos−1 .326555 = 70.9401 ◦ .

Likewise, since c2 = a2 + b2 − 2ab cos γ, we see that cos (γ) = .776498. Hence,

γ = cos−1 .776498 = 39.0589 ◦ .

As a check note that the sum of these three angles is 179.999 ◦ ≈ 180 ◦ . Of course,
the Law of Sines could also have been used to determine the measure of β and γ. For
example, since

sin α

a
=

sin β

b
we have

sin 70 ◦

2.982576
=

sin β

3
=⇒ sin β =

3 sin 70 ◦

2.982576
= .9451822.

Hence,

β = sin−1 (.9451822) = 70.9409 ◦ .

Note that this last answer is not exactly the same as that obtained for β using the
Law of Cosines. This demonstrates some of the difficulties with numerical calcula-
tions.



6. The circular definition revisited
The observation that the values of trigonometric functions are independent of

the size of the right triangle suggests that the definition given for these functions on
the unit circle can be modified to include circles of arbitrary radii. Examination of
the figure below indicates that the values of the functions are those given in the table.
The sides of the right triangle in the figure satisfy adj = x, opp = y, and hyp = r.
Note that if the circle is the unit circle so that r = 1, then these values reduce to
those given in Table 2.1 in Lesson 2.
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sin t = y
r

= opp
hyp , cos t = x

r
= adj

hyp ,

tan t = y
x

= opp
adj , cot t = x

y
= adj

opp ,

sec t = r
y

= hyp
adj , csc t = r

x
= hyp

opp .

20



7. Exercises
Exercise 1. A right triangle contains a 35 ◦ angle that has an adjacent side of length
4.5 units. How long is the opposite side? How long is the hypotenuse? (You will
need a calculator for this problem. Remember to set it to degree mode.)

Exercise 2. Suppose sin α = 4/7. Without using a calculator find cos α and tan α.

Exercise 3. Let α denote a non-right angle of a right triangle. Prove that sin α =
cos (90 ◦ −α). Observe that a similar identity holds for the other five trigonometric
functions.

Exercise 4. Determine the length of the chord PQ in the figure below.
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Section 7: Exercises 22

Exercise 5. Let T be a triangle with sides a, b, and c opposite the angles α, β, and
γ respectively as depicted in the figure below.

�

�

�

�

�

�

In each problem below determine the remaining parts of T if such a triangle exists.
Remember that some conditions may permit two solutions. (See Example 7.)

(a) a = 10, b = 7, and α = 80 ◦

(b) a = 5, b = 7, and α = 40 ◦

(c) a = 5, b = 7, and c = 10



Solutions to Exercises
Exercise 1. A right triangle contains a 35 ◦ angle that has an adjacent side of length
4.5 units. How long is the opposite side? How long is the hypotenuse? (You will
need a calculator for this problem. Remember to set it to degree mode.)
Solution: Let opp denote the length of the side opposite the 35 ◦ angle. To find opp,
use the formula tan α = opp

adj . (See Table 3.1.) Then

tan 35 ◦ =
opp
4.5

so that

opp = 4.5 tan 35 ◦
≈ 3.150.

Let hyp denote the length of the hypotenuse. Then by the Pythagorean Theorem

hyp =
√

3.1502 + 4.52 = 5.49295.

As a simple check of these calculations we note that (in radian measure)

sec 35 ◦ = 1.22077 =
5.49295

4.5
=
adj
hyp

Exercise 1
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Exercise 2. Suppose sin α = 4/7. Without using a calculator find cos α and tan α.
Solution: Since sin α = 4/7 we can construct the right triangle pictured below where
the side opposite the angle α has length 4 and the hypotenuse has length 7.

�

�

�

�

The length b of the side adjacent α must satisfy

42 + b2 = 72

from which it follows that b =
√

33. Appealing to Table 3.1 we see that

cos α =
√

33
7

and tan α =
4√
33.

Exercise 2
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Exercise 3. Prove that sin α = cos (90 ◦ −α)

Solution: Consider the triangle below. Note that the side opposite α is adjacent to
β = (90 ◦ −α). Consequently,

sin α =
side opposite α

hyp
=

side adjacent (90 ◦ −α)
hyp

= cos(90 ◦ −α)

� �
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Exercise 3
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Exercise 4. Determine the length of the chord PQ in the figure below.
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Solution: The equation of the circle suggests that it has radius 2. Note the right
triangle formed by the origin, the point P , and the x-axis. The angle of this triangle
with vertex at the origin has radian measure π/3. Consequently,

PQ = 2(side opposite
π

3
) = 2

(
2 sin

π

3

)
= 2

√
3.

The Law of Sines could also be used to solve this problem. First, observe that
the larger triangle formed by the origin and the points P and Q is isosceles so the
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remaining angles have measure π/6. Then
sin (2π/3)

PQ
=

sin (π/6)
2

=⇒ PQ = 4 sin (2π/3) = 2
√

3.

Finally, using the Law of Cosines we have

PQ =
√

8 − 8 cos (2π/3) =

√
8
(

1 +
1
2

)
= 2

√
3.

Exercise 4
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Exercise 5(a) Let T be a triangle with sides a = 10, b = 7 and α = 80 ◦ where the
angle α is opposite the side a. Determine the remaining parts of T if such a triangle
exists.

Solution: By the Equation 1

sin β =
7 sin 80 ◦

10
= .689365,

so

β = sin−1 (.689365) = 43.579 9 ◦ .

It follows that

γ = 180 ◦ −80 ◦ −43.579 9 ◦ = 56.4201 ◦ .

Finally,

c =
10 sin 56.4201 ◦

sin 80 ◦ = 8.45967.

As a partial check of our calculations we examine how well our computed values
satisfy

sin β

b
=

sin γ

c
.



Solutions to Exercises 29

(Why would we use these two ratios?) We have
sin 43.579 9 ◦

7
= 9.848 08 × 10−2 ≈ sin 60.178 ◦

8.809 6
.�

A quick examination of the information given in this problem reveals that these
conditions permit the ambiguous case of the Law of Sines. Evidently, then, there is
a possibility of a second solution using

β̃ = 180 ◦ −β = 180 ◦ −43.579 9 ◦ = 136.42 ◦ .

However, this is impossible since we would then have

α + β̃ > 180 ◦

which contradicts the fact the sum of all the angles of a triangle must be 180 ◦ . Hence,
the given conditions provide the unique solution given above. �
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Exercise 5(b) Let T be a triangle with sides a = 5, b = 7 and α = 40 ◦ where the
angle α is opposite the side a. Determine the remaining parts of T if such a triangle
exists.

Solution: Again, using Equation 1 we have

sin β =
7 sin 40 ◦

5
= .899903 =⇒ β = sin−1 .899903 = 64.145 5 ◦

Hence,

γ = 180 ◦ −40 ◦ −64.145 5 ◦ = 75.8545 ◦ .

Finally,

c =
5 sin 75.8545 ◦

sin 40 ◦ = 7.54276.

The relationships
sin 64.145 5 ◦

7
= .128558 ≈ sin 75.8545 ◦

7.54276
�

provides a reasonable check for the accuracy of these calculations.
The given conditions permit a second solution that arises from choosing

β̃ = 180 ◦ −64.145 5 ◦ = 115.855 ◦ .
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In this case

γ̃ = 180 ◦ −40 ◦ −115.855 ◦ = 24.145 ◦

and

c̃ =
5 sin 24.145 ◦

sin 40 ◦ = 3.182.

As a quick check we examine
sin 115.855 ◦

7
= .1286 =

sin 24.145 ◦

3.182
.�

�
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Exercise 5(c) By the Equation 3

25 = 49 + 100 − 140 cos α

so

α = cos−1
(

25 − 49 − 100
−140

)
= 27.66045 ◦ .

Likewise,

49 = 25 + 100 − 100 cos β =⇒ β = 40.535802 ◦ .

Finally, we have

100 = 25 + 49 − 70 cos γ =⇒ γ = 111.803759 ◦ .

To check our computations we determine if the sum of the three computed angles is
180 ◦ :

27.66045 ◦ +40.535802 ◦ +111.803759 ◦ ≈ 180 ◦ .�
�


