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In most computer security contexts, user authentication is the fundamental building

block and the primary line of defense. User authentication is the basis for most

types of access control and for user accountability. 
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RFC 2828 defines user authentication as follows:

The process of verifying an identity claimed by or for a system entity. 
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An authentication process consists of two steps:

Identification step: Presenting an identifier to the security system. 
(Identifiers

should be assigned carefully, because authenticated identities are the basis for

other security services, such as access control service.)

Verification step: Presenting or generating authentication information that

corroborates the binding between the entity and the identifier.

For example, user Alice Toklas could have the user identifier ABTOKLAS. This

information needs to be stored on any server or computer system that Alice 
wishes

to use and could be known to system administrators and other users. A typical 
item

of authentication information associated with this user ID is a password, which is

kept secret (known only to Alice and to the system)2. If no one is able to obtain or

guess Alice’s password, then the combination of Alice’s user ID and password 
enables

administrators to set up Alice’s access permissions and audit her activity. 



Because

Alice’s ID is not secret, system users can send her e-mail, but because her 
password is

secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed identity

to the system; user authentication is the means of establishing the validity of the 
claim.

Note that user authentication is distinct from message authentication. As defined 
in

Chapter 2, message authentication is a procedure that allows communicating 
parties

to verify that the contents of a received message have not been altered and that 
the

source is authentic. This chapter is concerned solely with user authentication.
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There are four general means of authenticating a user's identity, which can be used alone 

or in combination:

• Something the individual knows: Examples includes a password, a personal 

identification number (PIN), or answers to a prearranged set of questions.

• Something the individual possesses: Examples include electronic keycards, smart 

cards, and physical keys. This type of authenticator is referred to as a token.

• Something the individual is (static biometrics): Examples include recognition by 

fingerprint, retina, and face.

• Something the individual does (dynamic biometrics): Examples include recognition 

by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user 

authentication. However, each method has problems. An adversary may be able to guess 

or steal a password. Similarly, an adversary may be able to forge or steal a token. A user 

may forget a password or lose a token. Further, there is a significant administrative 

overhead for managing password and token information on systems and securing such 

information on systems. With respect to biometric authenticators, there are a variety of 



problems, including dealing with false positives and false negatives, user acceptance, cost, 

and convenience. 
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A widely used line of defense against intruders is the password system. Virtually 
all

multiuser systems, network-based servers, Web-based e-commerce sites, and 
other

similar services require that a user provide not only a name or identifier (ID) but

also a password. The system compares the password to a previously stored 
password

for that user ID, maintained in a system password file. The password serves

to authenticate the ID of the individual logging on to the system. In turn, the ID

provides security in the following ways:

• The ID determines whether the user is authorized to gain access to a system.

In some systems, only those who already have an ID filed on the system are

allowed to gain access.

• The ID determines the privileges accorded to the user. A few users may have

supervisory or “superuser” status that enables them to read files and perform

functions that are especially protected by the operating system. Some systems

have guest or anonymous accounts, and users of these accounts have more



limited privileges than others.

The ID is used in what is referred to as discretionary access control. For example,

by listing the IDs of the other users, a user may grant permission to them

to read files owned by that user.
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In this subsection, we outline the main forms of attack against password-based

authentication and briefly outline a countermeasure strategy. The remainder of

Section 3.2 goes into more detail on the key countermeasures.

We can identify the following attack strategies:

• Offline dictionary attack: Typically, strong access controls are used to 
protect

the system’s password file. However, experience shows that determined

hackers can frequently bypass such controls and gain access to the file. The

attacker obtains the system password file and compares the password hashes

against hashes of commonly used passwords. If a match is found, the attacker

can gain access by that ID/password combination. 

• Specific account attack: The attacker targets a specific account and 
submits

password guesses until the correct password is discovered. 



• Popular password attack: A variation of the preceding attack is to use a 

popular

password and try it against a wide range of user IDs. A user’s tendency

is to choose a password that is easily remembered; this unfortunately makes

the password easy to guess. 

• Password guessing against single user: The attacker attempts to gain 

knowledge

about the account holder and system password policies and uses that

knowledge to guess the password. 

• Workstation hijacking; The attacker waits until a logged-in workstation is

unattended. 

• Exploiting user mistakes: If the system assigns a password, then the user 
is

more likely to write it down because it is difficult to remember. This situation

creates the potential for an adversary to read the written password. A user

may intentionally share a password, to enable a colleague to share files, for

example. Also, attackers are frequently successful in obtaining passwords by

using social engineering tactics that trick the user or an account manager into

revealing a password. Many computer systems are shipped with preconfigured

passwords for system administrators. Unless these preconfigured passwords

are changed, they are easily guessed. 

• Exploiting multiple password use. Attacks can also become much more

effective or damaging if different network devices share the same or a similar

password for a given user. 

• Electronic monitoring: If a password is communicated across a network to

log on to a remote system, it is vulnerable to eavesdropping. Simple encryption

will not fix this problem, because the encrypted password is, in effect, the

password and can be observed and reused by an adversary
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Typically, a system that uses password-based authentication maintains a 
password

file indexed by user ID. One technique that is typically used is to store not the 
user’s

password but a one-way hash function of the password, as described 
subsequently.

• Offline dictionary attack:  Countermeasures include

controls to prevent unauthorized access to the password file, intrusion detection

measures to identify a compromise, and rapid reissuance of passwords

should the password file be compromised.

• Specific account attack: The standard countermeasure

is an account lockout mechanism, which locks out access to the

account after a number of failed login attempts. Typical practice is no more

than five access attempts.

• Popular password attack: Countermeasures include policies to inhibit the

selection by users of common passwords and scanning the IP addresses of



authentication requests and client cookies for submission patterns.

• Password guessing against single user: Countermeasures include training in 
and

enforcement of password policies that make passwords difficult to guess.

Such policies address the secrecy, minimum length of the password, character

set, prohibition against using well-known user identifiers, and length of time

before the password must be changed.

• Workstation hijacking; The standard countermeasure is automatically logging 
the workstation

out after a period of inactivity. Intrusion detection schemes can be

used to detect changes in user behavior.

• Exploiting user mistakes: Countermeasures include user training,

intrusion detection, and simpler passwords combined with another authentication

mechanism.

• Exploiting multiple password use. Countermeasures include a policy that 
forbids the

same or similar password on particular network devices.

• Electronic monitoring: If a password is communicated across a network to

log on to a remote system, it is vulnerable to eavesdropping. Simple encryption

will not fix this problem, because the encrypted password is, in effect, the

password and can be observed and reused by an adversary
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A widely used password security technique is the use of hashed passwords and 
a salt

value. This scheme is found on virtually all UNIX variants as well as on a number

of other operating systems. The following procedure is employed (Figure 3.1a). 
To

load a new password into the system, the user selects or is assigned a 
password. This

password is combined with a fixed-length salt value [MORR79]. In older 

implementations,

this value is related to the time at which the password is assigned to the user.

Newer implementations use a pseudorandom or random number. The password

and salt serve as inputs to a hashing algorithm to produce a fixed-length hash 
code.

The hash algorithm is designed to be slow to execute to thwart attacks. The 
hashed

password is then stored, together with a plaintext copy of the salt, in the 
password

file for the corresponding user ID. The hashed-password method has been 
shown to

be secure against a variety of cryptanalytic attacks [WAGN00].



When a user attempts to log on to a UNIX system, the user provides an ID

and a password (Figure 3.1b). The operating system uses the ID to index into the

password file and retrieve the plaintext salt and the encrypted password. The salt

and user-supplied password are used as input to the encryption routine. If the 
result

matches the stored value, the password is accepted.

The salt serves three purposes:

• It prevents duplicate passwords from being visible in the password file. Even if

two users choose the same password, those passwords will be assigned different

salt values. Hence, the hashed passwords of the two users will differ.

• It greatly increases the difficulty of offline dictionary attacks. For a salt of

length b bits, the number of possible passwords is increased by a factor of 2b,

increasing the difficulty of guessing a password in a dictionary attack.

• It becomes nearly impossible to find out whether a person with passwords on

two or more systems has used the same password on all of them.

To see the second point, consider the way that an offline dictionary attack

would work. The attacker obtains a copy of the password file. Suppose first that

the salt is not used. The attacker’s goal is to guess a single password. To that 
end,

the attacker submits a large number of likely passwords to the hashing function.

If any of the guesses matches one of the hashes in the file, then the attacker

has found a password that is in the file. But faced with the UNIX scheme, the

attacker must take each guess and submit it to the hash function once for each

salt value in the dictionary file, multiplying the number of guesses that must be

checked.

There are two threats to the UNIX password scheme. First, a user can gain

access on a machine using a guest account or by some other means and then run 
a

password guessing program, called a password cracker, on that machine. The 
attacker

should be able to check many thousands of possible passwords with little 
resource
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consumption. In addition, if an opponent is able to obtain a copy of the password

file, then a cracker program can be run on another machine at leisure. This 
enables

the opponent to run through millions of possible passwords in a reasonable 
period.
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Since the original development of UNIX, most implementations

have relied on the following password scheme. Each user selects a password

of up to eight printable characters in length. This is converted into a 56-bit value

(using 7-bit ASCII) that serves as the key input to an encryption routine. The hash

routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The 
modified

DES algorithm is executed with a data input consisting of a 64-bit block of zeros. 
The

output of the algorithm then serves as input for a second encryption. This 
process is

repeated for a total of 25 encryptions. The resulting 64-bit output is then 
translated

into an 11-character sequence. The modification of the DES algorithm converts it

into a one-way hash function. The crypt(3) routine is designed to discourage 
guessing

attacks. Software implementations of DES are slow compared to hardware 
versions,

and the use of 25 iterations multiplies the time required by 25.

This particular implementation is now considered woefully inadequate. For



example, [PERR03] reports the results of a dictionary attack using a 
supercomputer.

The attack was able to process over 50 million password guesses in about 80 
minutes.

Further, the results showed that for about $10,000 anyone should be able to do 
the

same in a few months using one uniprocessor machine. Despite its known 
weaknesses,

this UNIX scheme is still often required for compatibility with existing account 
management

software or in multivendor environments.
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There are other, much stronger, hash/salt schemes available for UNIX. The

recommended hash function for many UNIX systems, including Linux, Solaris,

and FreeBSD (a widely used open source UNIX), is based on the MD5 secure

hash algorithm (which is similar to, but not as secure as SHA-1). The MD5 crypt

routine uses a salt of up to 48 bits and effectively has no limitations on password

length. It produces a 128-bit hash value. It is also far slower than crypt(3). To

achieve the slowdown, MD5 crypt uses an inner loop with 1000 iterations.

Probably the most secure version of the UNIX hash/salt scheme was developed

for OpenBSD, another widely used open source UNIX. This scheme, reported in

[PROV99], uses a hash function based on the Blowfish symmetric block cipher. 
The

hash function, called Bcrypt, is quite slow to execute. Bcrypt allows passwords of

up to 55 characters in length and requires a random salt value of 128 bits, to 
produce

a 192-bit hash value. Bcrypt also includes a cost variable; an increase in the cost

variable causes a corresponding increase in the time required to perform a 
Bcyrpt

hash. The cost assigned to a new password is configurable, so that 
administrators can



assign a higher cost to privileged users.
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The traditional approach to password guessing,

or password cracking as it is called, is to develop a large dictionary of possible

passwords and to try each of these against the password file. This means that

each password must be hashed using each salt value in the password file and 
then

compared to stored hash values. If no match is found, then the cracking program

tries variations on all the words in its dictionary of likely passwords. Such 
variations

include backward spelling of words, additional numbers or special characters, or

sequence of characters,

An alternative is to trade off space for time by precomputing potential hash

values. In this approach the attacker generates a large dictionary of possible 
passwords.

For each password, the attacker generates the hash values associated with

each possible salt value. The result is a mammoth table of hash values known as 
a

rainbow table. For example, [OECH03] showed that using 1.4 GB of data, he 
could

crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. 



This

approach can be countered by using a sufficiently large salt value and a 
sufficiently

large hash length. Both the FreeBSD and OpenBSD approaches should be secure

from this attack for the foreseeable future.
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Even the stupendous guessing rates referenced in the preceding section do not

yet make it feasible for an attacker to use a dumb brute-force technique of trying

all possible combinations of characters to discover a password. Instead, 
password

crackers rely on the fact that some people choose easily guessable passwords.

Some users, when permitted to choose their own password, pick one that is 
absurdly

short. The results of one study at Purdue University are shown in Table 3.1. The 
study

observed password change choices on 54 machines, representing approximately 
7000

user accounts. Almost 3% of the passwords were three characters or fewer in 
length.

An attacker could begin the attack by exhaustively testing all possible passwords 
of

length 3 or fewer. A simple remedy is for the system to reject any password 
choice of

fewer than, say, six characters or even to require that all passwords be exactly 
eight

characters in length. Most users would not complain about such a restriction.



Password length is only part of the problem. Many people, when permitted

to choose their own password, pick a password that is guessable, such as their 
own

name, their street name, a common dictionary word, and so forth. This makes the 
job

of password cracking straightforward. The cracker simply has to test the password

file against lists of likely passwords. Because many people use guessable 
passwords,

such a strategy should succeed on virtually all systems.
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One demonstration of the effectiveness of guessing is reported in [KLEI90].

From a variety of sources, the author collected UNIX password files, containing

nearly 14,000 encrypted passwords. The result, which the author rightly 
characterizes

as frightening, is shown in Table 3.2. In all, nearly one-fourth of the passwords

were guessed. The following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal 

information.

In all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of 

over

60,000 words, including the online dictionary on the system itself, and various

other lists as shown.

3. Try various permutations on the words from step 2. This included 
making the

first letter uppercase or a control character, making the entire word uppercase,

reversing the word, changing the letter “o” to the digit “zero,” and so on.



These permutations added another 1 million words to the list.

4. Try various capitalization permutations on the words from step 2 that 

were not

considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved in the neighborhood of 3 million words. Using the fastest

Thinking Machines implementation listed earlier, the time to encrypt all these 
words

for all possible salt values is under an hour. Keep in mind that such a thorough 
search

could produce a success rate of about 25%, whereas even a single hit may be 
enough

to gain a wide range of privileges on a system.
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One way to thwart a password attack is to deny the opponent access to the 
password

file. If the hashed password portion of the file is accessible only by a privileged 
user,

then the opponent cannot read it without already knowing the password of a 
privileged

user. Often, the hashed passwords are kept in a separate file from the user

IDs, referred to as a shadow password file. Special attention is paid to 

making the

shadow password file protected from unauthorized access. Although password 
file

protection is certainly worthwhile, there remain vulnerabilities:

• Many systems, including most UNIX systems, are susceptible to unanticipated

break-ins. A hacker may be able to exploit a software vulnerability in the

operating system to bypass the access control system long enough to extract

the password file. Alternatively, the hacker may find a weakness in the file

system or database management system that allows access to the file.

• An accident of protection might render the password file readable, thus 



compromising

all the accounts.

• Some of the users have accounts on other machines in other protection

domains, and they use the same password. Thus, if the passwords could

be read by anyone on one machine, a machine in another location might be

compromised.

• A lack of or weakness in physical security may provide opportunities for a

hacker. Sometimes there is a backup to the password file on an emergency

repair disk or archival disk. Access to this backup enables the attacker to read

the password file. Alternatively, a user may boot from a disk running another

operating system such as Linux and access the file from this OS.

• Instead of capturing the system password file, another approach to collecting

user IDs and passwords is through sniffing network traffic.

Thus, a password protection policy must complement access control measures 
with

techniques to force users to select passwords that are difficult to guess.
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The lesson from the two experiments just described (Tables 3.1 and 3.2) is that,

when not constrained, many users choose a password that is too short or too 
easy

to guess. At the other extreme, if users are assigned passwords consisting of 
eight

randomly selected printable characters, password cracking is effectively 
impossible.

But it would be almost as impossible for most users to remember their

passwords. Fortunately, even if we limit the password universe to strings of 
characters

that are reasonably memorable, the size of the universe is still too large to

permit practical cracking. Our goal, then, is to eliminate guessable passwords 
while

allowing the user to select a password that is memorable. Four basic techniques

are in use:

• User education

• Computer-generated passwords

• Reactive password checking

• Proactive password checking



Users can be told the importance of using hard-to-guess passwords and can be

provided with guidelines for selecting strong passwords. This user education 

strategy

is unlikely to succeed at most installations, particularly where there is a large

user population or a lot of turnover. Many users will simply ignore the guidelines.

Others may not be good judges of what is a strong password. For example, many

users (mistakenly) believe that reversing a word or capitalizing the last letter 
makes

a password unguessable.

Nonetheless, it makes sense to provide users with guidelines on the selection

of passwords. Perhaps the best approach is the following advice: A good 
technique

for choosing a password is to use the first letter of each word of a phrase. 
However,

don’t pick a well-known phrase like “An apple a day keeps the doctor away”

(Aaadktda). Instead, pick something like “My dog’s first name is Rex” (MdfniR)

or “My sister Peg is 24 years old” (MsPi24yo). Studies have shown that users can

generally remember such passwords but that they are not susceptible to password

guessing attacks based on commonly used passwords.

Computer-generated passwords also have problems. If the passwords are 
quite

random in nature, users will not be able to remember them. Even if the password 
is

pronounceable, the user may have difficulty remembering it and so be tempted to

write it down. In general, computer-generated password schemes have a history 
of

poor acceptance by users. FIPS PUB 181 defines one of the best-designed 
automated

password generators. The standard includes not only a description of the 
approach

but also a complete listing of the C source code of the algorithm. The algorithm

generates words by forming pronounceable syllables and concatenating them to

form a word. A random number generator produces a random stream of 
characters

used to construct the syllables and words.
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A reactive password checking strategy is one in which the system 

periodically

runs its own password cracker to find guessable passwords. The system cancels

any passwords that are guessed and notifies the user. This tactic has a number

of drawbacks. First, it is resource intensive if the job is done right. Because a

determined opponent who is able to steal a password file can devote full CPU

time to the task for hours or even days, an effective reactive password checker is

at a distinct disadvantage. Furthermore, any existing passwords remain vulnerable

until the reactive password checker finds them. A good example is the openware

Jack the Ripper password cracker (openwall.com/john/pro/), which works on a

variety of operating systems.

A promising approach to improved password security is a proactive password

checker. In this scheme, a user is allowed to select his or her own 
password. However,

at the time of selection, the system checks to see if the password is allowable

and, if not, rejects it. Such checkers are based on the philosophy that, with 
sufficient

guidance from the system, users can select memorable passwords from a fairly

large password space that are not likely to be guessed in a dictionary attack.

The trick with a proactive password checker is to strike a balance between

user acceptability and strength. If the system rejects too many passwords, users 
will

complain that it is too hard to select a password. If the system uses some simple

algorithm to define what is acceptable, this provides guidance to password 
crackers

to refine their guessing technique. In the remainder of this subsection, we look at

possible approaches to proactive password checking.
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The first approach is a simple system for rule enforcement.

For example, the following rules could be enforced:

• All passwords must be at least eight characters long.

• In the first eight characters, the passwords must include at least one each of

uppercase, lowercase, numeric digits, and punctuation marks.

These rules could be coupled with advice to the user. Although this approach is

superior to simply educating users, it may not be sufficient to thwart password

crackers. This scheme alerts crackers as to which passwords not to try but may 

still

make it possible to do password cracking.

The process of rule enforcement can be automated by using a proactive 
password

checker, such as the openware pam_passwdqc (openwall.com/passwdqc/),

which enforces a variety of rules on passwords and is configurable by the system

administrator.



Another possible procedure is simply to compile a large

dictionary of possible “bad” passwords. When a user selects a password, the 
system

checks to make sure that it is not on the disapproved list. There are two problems

with this approach:

• Space: The dictionary must be very large to be effective. For example, the 

dictionary

used in the Purdue study [SPAF92a] occupies more than 30 megabytes

of storage.

• Time: The time required to search a large dictionary may itself be large. In

addition, to check for likely permutations of dictionary words, either those

words must be included in the dictionary, making it truly huge, or each search

must also involve considerable processing.

A technique for developing an effective and efficient proactive

password checker that is based on rejecting words on a list that has been 
implemented on a number of systems, including Linux. 

It is based on the use of a Bloom filter [BLOO70]. To begin, we explain

the operation of the Bloom filter. A Bloom filter of order k consists of a set of k

independent hash functions H1(x), H2(x),c, Hk(x), where each function maps a

password into a hash value in the range 0 to N – 1.
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Figure 3.2 plots P as a function of R for various values of k. Suppose we have

a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting 
a

password not in the dictionary. If we choose six hash functions, the required ratio

is R  9.6. Therefore, we need a hash table of 9.6  106 bits or about 1.2 MBytes

of storage. In contrast, storage of the entire dictionary would require on the order

of 8 MBytes. Thus, we achieve a compression of almost a factor of 7. 
Furthermore,

password checking involves the straightforward calculation of six hash functions

and is independent of the size of the dictionary, whereas with the use of the full

dictionary, there is substantial searching.
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Objects that a user possesses for the purpose of user authentication are called

tokens. In this section, we examine two types of tokens that are widely used; 
these

are cards that have the appearance and size of bank cards (see Table 3.3).



20

Memory cards can store but not process data. The most common such card is 
the

bank card with a magnetic stripe on the back. A magnetic stripe can store only a

simple security code, which can be read (and unfortunately reprogrammed) by

an inexpensive card reader. There are also memory cards that include an internal

electronic memory.

Memory cards can be used alone for physical access, such as a hotel room. For

computer user authentication, such cards are typically used with some form of 
password

or personal identification number (PIN). A typical application is an automatic

teller machine (ATM).

The memory card, when combined with a PIN or password, provides significantly

greater security than a password alone. An adversary must gain physical

possession of the card (or be able to duplicate it) plus must gain knowledge of 
the

PIN. Among the potential drawbacks are the following [NIST95]:



• Requires special reader: This increases the cost of using the token and 

creates

the requirement to maintain the security of the reader’s hardware and software.

• Token loss: A lost token temporarily prevents its owner from gaining 

system

access. Thus there is an administrative cost in replacing the lost token. In addition,

if the token is found, stolen, or forged, then an adversary now need only

determine the PIN to gain unauthorized access.

• User dissatisfaction: Although users may have no difficulty in accepting 

the

use of a memory card for ATM access, its use for computer access may be

deemed inconvenient.
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A wide variety of devices qualify as smart tokens. These can be categorized 
along

three dimensions that are not mutually exclusive:

• Physical characteristics: Smart tokens include an embedded 
microprocessor.

A smart token that looks like a bank card is called a smart card. Other smart

tokens can look like calculators, keys, or other small portable objects.

• Interface: Manual interfaces include a keypad and display for 
human/token

interaction. Smart tokens with an electronic interface communicate with a

compatible reader/writer.

• Authentication protocol: The purpose of a smart token is to provide a 
means

for user authentication. We can classify the authentication protocols used with

smart tokens into three categories:

— Static: With a static protocol, the user authenticates himself or herself



to the token and then the token authenticates the user to the computer.

The latter half of this protocol is similar to the operation of a memory

token.

— Dynamic password generator: In this case, the token generates a unique

password periodically (e.g., every minute). This password is then entered

into the computer system for authentication, either manually by the user or

electronically via the token. The token and the computer system must be

initialized and kept synchronized so that the computer knows the password

that is current for this token.

— Challenge-response: In this case, the computer system generates a 

challenge,

such as a random string of numbers. The smart token generates a response

based on the challenge. For example, public-key cryptography could be used

and the token could encrypt the challenge string with the token’s private key.
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For user authentication to computer, the most important category of smart

token is the smart card, which has the appearance of a credit card, has an 
electronic

interface, and may use any of the type of protocols just described. The remainder 
of

this section discusses smart cards.

A smart card contains within it an entire microprocessor, including processor,

memory, and I/O ports (Figure 3.3). Some versions incorporate a special co-
processing

circuit for cryptographic operation to speed the task of encoding and decoding 
messages

or generating digital signatures to validate the information transferred. In some

cards, the I/O ports are directly accessible by a compatible reader by means of 
exposed

electrical contacts. Other cards rely instead on an embedded antenna for 
wireless

communication with the reader.

A typical smart card includes three types of memory. Read-only memory



(ROM) stores data that does not change during the card’s life, such as the card

number and the cardholder’s name. Electrically erasable programmable ROM

(EEPROM) holds application data and programs, such as the protocols that the 
card

can execute. It also holds data that may vary with time. For example, in a 
telephone

card, the EEPROM holds the talk time remaining. Random access memory (RAM)

holds temporary data generated when applications are executed.
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Figure 3.4 illustrates the typical interaction between a smart card and a

reader or computer system. Each time the card is inserted into a reader, a reset 
is

initiated by the reader to initialize parameters such as clock value. After the reset

function is performed, the card responds with answer to reset (ATR) message.

This message defines the parameters and protocols that the card can use and 
the

functions it can perform. The terminal may be able to change the protocol used

and other parameters via a protocol type selection (PTS) command. The cards

PTS response confirms the protocols and parameters to be used. The terminal

and card can now execute the protocol to perform the desired application.
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A biometric authentication system attempts to authenticate an individual based on
his or her unique physical characteristics. These include static characteristics, such
as fingerprints, hand geometry, facial characteristics, and retinal and iris patterns;
and dynamic characteristics, such as voiceprint and signature. In essence, biometrics
is based on pattern recognition. Compared to passwords and tokens, biometric
authentication is both technically complex and expensive. While it is used in a
number of specific applications, biometrics has yet to mature as a standard tool for
user authentication to computer systems.

A number of different types of physical characteristics are either in use or under
study for user authentication. The most common are the following:

• Facial characteristics: Facial characteristics are the most common means

of human-to-human identification; thus it is natural to consider them for
identification by computer. The most common approach is to define characteristics
based on relative location and shape of key facial features, such as
eyes, eyebrows, nose, lips, and chin shape. An alternative approach is to use an
infrared camera to produce a face thermogram that correlates with the underlying
vascular system in the human face.

• Fingerprints: Fingerprints have been used as a means of identification for

centuries, and the process has been systematized and automated particularly
for law enforcement purposes. A fingerprint is the pattern of ridges and
furrows on the surface of the fingertip. Fingerprints are believed to be unique
across the entire human population. In practice, automated fingerprint recognition
and matching system extract a number of features from the fingerprint
for storage as a numerical surrogate for the full fingerprint pattern.

• Hand geometry: Hand geometry systems identify features of the hand,

including shape, and lengths and widths of fingers.

• Retinal pattern: The pattern formed by veins beneath the retinal surface is

unique and therefore suitable for identification. A retinal biometric system
obtains a digital image of the retinal pattern by projecting a low-intensity
beam of visual or infrared light into the eye.

• Iris: Another unique physical characteristic is the detailed structure of the iris.

• Signature: Each individual has a unique style of handwriting and this is

reflected especially in the signature, which is typically a frequently written
sequence. However, multiple signature samples from a single individual will
not be identical. This complicates the task of developing a computer representation
of the signature that can be matched to future samples.

• Voice: Whereas the signature style of an individual reflects not only the unique
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physical attributes of the writer but also the writing habit that has developed,

voice patterns are more closely tied to the physical and anatomical characteristics

of the speaker. Nevertheless, there is still a variation from sample to sample over

time from the same speaker, complicating the biometric recognition task.
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Figure 3.5 gives a rough indication of the relative cost and accuracy of these

biometric measures. The concept of accuracy does not apply to user 
authentication

schemes using smart cards or passwords. For example, if a user enters a 
password,

it either matches exactly the password expected for that user or not. In the case 
of

biometric parameters, the system instead must determine how closely a 
presented

biometric characteristic matches a stored characteristic. Before elaborating on 
the

concept of biometric accuracy, we need to have a general idea of how biometric

systems work.
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Figure 3.6 illustrates the operation of a biometric system. Each individual who is 
to be

included in the database of authorized users must first be enrolled in the 
system. This

is analogous to assigning a password to a user. For a biometric system, the user 
presents

a name and, typically, some type of password or PIN to the system. At the same

time the system senses some biometric characteristic of this user (e.g., 
fingerprint of

right index finger). The system digitizes the input and then extracts a set of 
features

that can be stored as a number or set of numbers representing this unique 
biometric

characteristic; this set of numbers is referred to as the user’s template. The user 
is now

enrolled in the system, which maintains for the user a name (ID), perhaps a PIN 
or

password, and the biometric value.

Depending on application, user authentication on a biometric system involves

either verification or identification. Verification is analogous to a user 



logging on

to a system by using a memory card or smart card coupled with a password or 
PIN.

For biometric verification, the user enters a PIN and also uses a biometric sensor.

The system extracts the corresponding feature and compares that to the template

stored for this user. If there is a match, then the system authenticates this user.

For an identification system, the individual uses the biometric sensor but

presents no additional information. The system then compares the presented

template with the set of stored templates. If there is a match, then this user is

identified. Otherwise, the user is rejected.
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In any biometric scheme, some physical characteristic of the individual is mapped

into a digital representation. For each individual, a single digital representation, or 
template, is stored in the computer. When the user is to be authenticated, the 
system compares the stored template to the presented template. Given the 
complexities of

physical characteristics, we cannot expect that there will be an exact match 
between

the two templates. Rather, the system uses an algorithm to generate a matching

score (typically a single number) that quantifies the similarity between the input

and the stored template.

Figure 3.7 illustrates the dilemma posed to the system. If a single user is tested

by the system numerous times, the matching score s will vary, with a probability

density function typically forming a bell curve, as shown. For example, in the 
case of

a fingerprint, results may vary due to sensor noise; changes in the print due to 
swelling,

dryness, and so on; finger placement; and so on. On average, any other 
individual

should have a much lower matching score but again will exhibit a bell-shaped 
probability



density function. The difficulty is that the range of matching scores produced

by two individuals, one genuine and one an imposter, compared to a given 
reference

template, are likely to overlap. In Figure 3.7 a threshold value is selected thus that 
if

the presented value s Ú t a match is assumed, and for s 6 t, a mismatch is 

assumed.

The shaded part to the right of t indicates a range of values for which a false 

match is

possible, and the shaded part to the left indicates a range of values for which a 
false

nonmatch is possible. The area of each shaded part represents the probability of a

false match or nonmatch, respectively. By moving the threshold, left or right, the

probabilities can be altered, but note that a decrease in false match rate 
necessarily

results in an increase in false nonmatch rate, and vice versa.
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For a given biometric scheme, we can plot the false match versus false 
nonmatch

rate, called the operating characteristic curve. Figure 3.8 shows representative 
curves

for two different systems. A reasonable tradeoff is to pick a threshold t that 

corresponds

to a point on the curve where the rates are equal. A high-security application

may require a very low false match rate, resulting in a point farther to the left on 
the

curve. For a forensic application, in which the system is looking for possible 
candidates,

to be checked further, the requirement may be for a low false nonmatch rate.



Figure 3.9 shows characteristic curves developed from actual product testing. 
The

iris system had no false matches in over 2 million cross-comparisons. Note that 
over

a broad range of false match rates, the face biometric is the worst performer.
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The simplest form of user authentication is local authentication, in which a user

attempts to access a system that is locally present, such as a stand-alone office 
PC or

an ATM machine. The more complex case is that of remote user authentication,

which takes place over the Internet, a network, or a communications link. Remote

user authentication raises additional security threats, such as an eavesdropper 
being

able to capture a password, or an adversary replaying an authentication 
sequence

that has been observed.

To counter threats to remote user authentication, systems generally rely on some

form of challenge-response protocol. In this section, we present the basic 
elements of

such protocols for each of the types of authenticators discussed in this chapter.



Figure 3.10a provides a simple example of a challenge-response protocol for
authentication via password. Actual protocols are more complex, such as Kerberos,
discussed in Chapter 23. In this example, a user first transmits his or her identity to
the remote host. The host generates a random number r, often called a nonce, and

returns this nonce to the user. In addition, the host specifies two functions, h() and
f(), to be used in the response. This transmission from host to user is the challenge.
The user’s response is the quantity f(r, h(P)), where r  r and P is the user’s

password. The function h is a hash function, so that the response consists of the
hash function of the user’s password combined with the random number using the
function f.

The host stores the hash function of each register user’s password, depicted
as h(P(U)) for user U. When the response arrives, the host compares the incoming

f(r, h(P)) to the calculated f(r, h(P(U))). If the quantities match, the user is

authenticated.

This scheme defends against several forms of attack. The host stores not the
password but a hash code of the password. As discussed in Section 3.2, this secures
the password from intruders into the host system. In addition, not even the hash of
the password is transmitted directly, but rather a function in which the password hash
is one of the arguments. Thus, for a suitable function f, the password hash cannot be
captured during transmission. Finally, the use of a random number as one of the arguments
of f defends against a replay attack, in which an adversary captures the user’s
transmission and attempts to log on to a system by retransmitting the user’s messages.
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Figure 3.10b provides a simple example of a token protocol for authentication.
As before, a user first transmits his or her identity to the remote host. The host
returns a random number and the identifiers of functions f() and h() to be used in the
response. At the user end, the token provides a passcode W. The token either stores

a static passcode or generates a one-time random passcode. For a one-time random
passcode, the token must be synchronized in some fashion with the host. In either
case, the user activates the passcode by entering a password P. This password is

shared only between the user and the token and does not involve the remote host.
The token responds to the host with the quantity f(r, h(W)). For a static passcode,

the host stores the hashed value h(W(U)); for a dynamic passcode, the host generates

a one-time passcode (synchronized to that generated by the token) and takes its
hash. Authentication then proceeds in the same fashion as for the password protocol.
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Figure 3.10c is an example of a user authentication protocol using a static biometric.
As before, the user transmits an ID to the host, which responds with a random
number r and, in this case, the identifier for an encryption E(). On the user side is

a client system that controls a biometric device. The system generates a biometric
template BT from the user’s biometric B and returns the ciphertext E(r, D,

BT), where D identifies this particular biometric device. The host decrypts the

incoming message to recover the three transmitted parameters and compares these
to locally stored values. For a match, the host must find r  r. Also, the matching

score between BT and the stored template must exceed a predefined threshold.

Finally, the host provides a simple authentication of the biometric capture device by
comparing the incoming device ID to a list of registered devices at the host database.
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Figure 3.10d is an example of a user authentication protocol using a dynamic
biometric. The principal difference from the case of a stable biometric is that the
host provides a random sequence as well as a random number as a challenge. The
sequence challenge is a sequence of numbers, characters, or words. The human
user at the client end must then vocalize (speaker verification), type (keyboard
dynamics verification), or write (handwriting verification) the sequence to generate
a biometric signal BS(x). The client side encrypts the biometric signal and

the random number. At the host side, the incoming message is decrypted. The
incoming random number r must be an exact match to the random number that

was originally used as a challenge (r). In addition, the host generates a comparison

based on the incoming biometric signal BS(x), the stored template BT(U) for

this user and the original signal x. If the comparison value exceeds a predefined

threshold, the user is authenticated.
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As with any security service, user authentication, particularly remote user 
authentication,

is subject to a variety of attacks. Table 3.4, from [OGOR03], summarizes

the principal attacks on user authentication, broken down by type of 
authenticator.

Much of the table is self-explanatory. In this section, we expand on some of the

table’s entries.
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Client attacks are those in which an adversary attempts to achieve user

authentication without access to the remote host or to the intervening 
communications

path. The adversary attempts to masquerade as a legitimate user. For a 
password-

based system, the adversary may attempt to guess the likely user password.

Multiple guesses may be made. At the extreme, the adversary sequences 
through

all possible passwords in an exhaustive attempt to succeed. One way to thwart 
such

an attack is to select a password that is both lengthy and unpredictable. In effect,

such a password has large entropy; that is, many bits are required to represent 
the

password. Another countermeasure is to limit the number of attempts that can be

made in a given time period from a given source.

A token can generate a high-entropy passcode from a low-entropy PIN or

password, thwarting exhaustive searches. The adversary may be able to guess 
or

acquire the PIN or password but must additionally acquire the physical token to

succeed.



Host attacks are directed at the user file at the host where passwords, token

passcodes, or biometric templates are stored. Section 3.2 discusses the security

considerations with respect to passwords. For tokens, there is the additional

defense of using one-time passcodes, so that passcodes are not stored in a host

passcode file. Biometric features of a user are difficult to secure because they are

physical features of the user. For a static feature, biometric device authentication

adds a measure of protection. For a dynamic feature, a challenge-response

protocol enhances security.

Eavesdropping in the context of passwords refers to an adversary’s attempt

to learn the password by observing the user, finding a written copy of the 
password,

or some similar attack that involves the physical proximity of user and adversary.

Another form of eavesdropping is keystroke logging (keylogging), in which

malicious hardware or software is installed so that the attacker can capture the

user’s keystrokes for later analysis. A system that relies on multiple factors (e.g.,

password plus token or password plus biometric) is resistant to this type of attack.

For a token, an analogous threat is theft of the token or physical copying of 
the

token. Again, a multifactor protocol resists this type of attack better than a pure

token protocol. The analogous threat for a biometric protocol is copying or 
imitating

the biometric parameter so as to generate the desired template. Dynamic 
biometrics

are less susceptible to such attacks. For static biometrics, device authentication is 
a

useful countermeasure.

Replay attacks involve an adversary repeating a previously captured

user response. The most common countermeasure to such attacks is the 
challenge-response

protocol.

In a Trojan horse attack, an application or physical device masquerades as

an authentic application or device for the purpose of capturing a user password,

passcode, or biometric. The adversary can then use the captured information to

masquerade as a legitimate user. A simple example of this is a rogue bank 
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machine

used to capture user ID/password combinations.

A denial-of-service attack attempts to disable a user authentication service 

by

flooding the service with numerous authentication attempts. A more selective 
attack

denies service to a specific user by attempting logon until the threshold is reached

that causes lockout to this user because of too many logon attempts. A multifactor

authentication protocol that includes a token thwarts this attack, because the

adversary must first acquire the token.
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As an example of a biometric user authentication system, we look at an iris 
biometric

system that was developed for use in the banking industry [NEGI00] for 
authentication

of debit card users. Figure 3.11 shows a generic version of this system, which

is now in use commercially in a number of locations worldwide. There is 
considerable

interest commercially in the use of an iris biometric system for this application

because of its exceptional accuracy (see Figure 3.9) and because the biometric 
itself

can be acquired without the individual having to come into physical contact with 
the

biometric acquisition device [COVE03].

The system described in this section is designed to operate with automated

teller machines (ATMs) in public places as well as with personal use devices that

can be installed at home. For ATMs, a wide-angle camera finds the head of the

person to be identified. A zoom lens then targets in on the user’s iris and takes a

digital photo. A template of concentric lines is laid on the iris image and a number

of specific points are recorded and the information converted into a digital code.



For personal-use systems, a low-cost camera device involves more cooperative

action on the part of the user to focus and capture the biometric.

A customer must initially enroll through a public-use ATM device owned

by the bank. The biometric is converted into a numeric iris code. This code and

the customer identification number (CIN) are encrypted and transmitted over

the bank’s intranet to a verification server. The verification server then performs

the user authentication function. A user may employ a personal-use device to 
access

the system via the Internet. The image information plus the CIN are transmitted

securely over the Internet to the bank’s Web server. From there, the data are 
transmitted

over the bank’s intranet to the verification server. In this case, the verification

server does the conversion of iris image to iris code.

Initial field trials of the system showed very high acceptance rate of customers

preferring this method to other user authentication techniques, such as PIN codes.

The specific results reported in [NEGI00] are as follows:

• 91% prefer iris identification to PIN or signature.

• 94% would recommend iris identification to friends and family.

• 94% were comfortable or very comfortable with the system.

These results are very encouraging, because of the inherent advantage of

iris biometric systems over passwords, PINs, and tokens. Unlike other biometric

parameters, iris biometric systems, properly implemented, have virtually zero false

match rate. And whereas passwords can be guessed, and passwords, PINs, and

tokens can be stolen, this is not the case with a user’s iris pattern. Combined with

a challenge-response protocol to assure real-time acquisition of the iris pattern, 
iris

biometric authentication is highly attractive.

The field trials referenced earlier were conducted in 1998 with the Nationwide

Building Society in Swindon, England. The bank subsequently put the system into

full-time operation. Following this, a number of other banks throughout the world

adopted this iris biometric system.
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An instructive epilogue to this case study is the fate of the Nationwide Building

Society system. The system was in use at its Swindon headquarters branch for 5 
years,

until 2003, and the bank planned to deploy the system nationwide in all its 
branches.

It was anticipated that the cost of the system would drop to competitive levels, but 
this

did not happen. Nationwide found that the iris recognition system made up 25% of 
the

cost of individual ATM units. Thus, in 2003, Nationwide cancelled the system, 
although

it continues to pursue biometric alternatives. The lesson here is that the 
technology

industry needs to be careful it does not damage the future of genuinely useful 
technologies

like biometrics by pushing for its use where there isn’t a rock-solid business case.
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Redspin, Inc., an independent auditor, recently released a report describing a

security vulnerability in ATM (automated teller machine) usage that affects a

number of small to mid-size ATM card issuers. This vulnerability provides a useful

case study illustrating that cryptographic functions and services alone do not

guarantee security; they must be properly implemented as part of a system.

We begin by defining terms used in this section:

• Cardholder: An individual to whom a debit card is issued. Typically, this

individual is also responsible for payment of all charges made to that card.

• Issuer: An institution that issues debit cards to cardholders. This 

institution

is responsible for the cardholder’s account and authorizes all transactions.

Banks and credit unions are typical issuers.

• Processor: An organization that provides services such as core data 
processing

(PIN recognition and account updating), electronic funds transfer (EFT), and so



on to issuers. EFT allows an issuer to access regional and national networks that

connect point of sale (POS) devices and ATMs worldwide. Examples of 
processing

companies include Fidelity National Financial and Jack Henry & Associates.

Customers expect 24/7 service at ATM stations. For many small to mid-sized

issuers, it is more cost-effective for contract processors to provide the required 
data

processing and EFT/ATM services. Each service typically requires a dedicated 
data

connection between the issuer and the processor, using a leased line or a virtual

leased line.

Prior to about 2003, the typical configuration involving issuer, processor,

and ATM machines could be characterized by Figure 3.12a. The ATM units linked

directly to the processor rather than to the issuer that owned the ATM, via leased

or virtual leased line. The use of a dedicated link made it difficult to maliciously

intercept transferred data. To add to the security, the PIN portion of messages

transmitted from ATM to processor was encrypted using DES (Data Encryption

Standard). Processors have connections to EFT (electronic funds transfer) 
exchange

networks to allow cardholders access to accounts from any ATM. With the 
configuration

of Figure 3.12a, a transaction proceeds as follows. A user swipes her card and

enters her PIN. The ATM encrypts the PIN and transmits it to the processor as 
part

of an authorization request. The processor updates the customer’s information 
and

sends a reply.

In the early 2000s, banks worldwide began the process of migrating from

an older generation of ATMs using IBM’s OS/2 operating system to new systems

running Windows. The mass migration to Windows has been spurred by a number

of factors, including IBM’s decision to stop supporting OS/2 by 2006, market

pressure from creditors such as MasterCard International and Visa International to

introduce stronger Triple DES, and pressure from U.S. regulators to introduce new

features for disabled users. Many banks, such as those audited by Redspin, 
included
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a number of other enhancements at the same time as the introduction of Windows

and triple DES, especially the use of TCP/IP as a network transport.

Because issuers typically run their own Internet-connected local area networks

(LANs) and intranets using TCP/IP, it was attractive to connect ATMs to these

issuer networks and maintain only a single dedicated line to the processor, leading

to the configuration illustrated in Figure 3.12b. This configuration saves the issuer

expensive monthly circuit fees and enables easier management of ATMs by the

issuer. In this configuration, the information sent from the ATM to the processor

traverses the issuer’s network before being sent to the processor. It is during this

time on the issuer’s network that the customer information is vulnerable.

The security problem was that with the upgrade to a new ATM OS and a

new communications configuration, the only security enhancement was the use of

triple DES rather than DES to encrypt the PIN. The rest of the information in the

ATM request message is sent in the clear. This includes the card number, 
expiration

date, account balances, and withdrawal amounts. A hacker tapping into the bank’s

network, either from an internal location or from across the Internet potentially

would have complete access to every single ATM transaction.

The situation just described leads to two principal vulnerabilities:

• Confidentiality: The card number, expiration date, and account balance 
can

be used for online purchases or to create a duplicate card for signature-based

transactions.

• Integrity: There is no protection to prevent an attacker from injecting or

altering data in transit. If an adversary is able to capture messages en route,

the adversary can masquerade as either the processor or the ATM. Acting

as the processor, the adversary may be able to direct the ATM to dispense

money without the processor ever knowing that a transaction has occurred.

If an adversary captures a user’s account information and encrypted PIN,

the account is compromised until the ATM encryption key is changed,

enabling the adversary to modify account balances or effect transfers.

Redspin recommended a number of measures that banks can take to counter
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these threats. Short-term fixes include segmenting ATM traffic from the rest of the

network either by implementing strict firewall rule sets or physically dividing the

networks altogether. An additional short-term fix is to implement network-level

encryption between routers that the ATM traffic traverses.

Long-term fixes involve changes in the application-level software. Protecting

confidentiality requires encrypting all customer-related information that traverses

the network. Ensuring data integrity requires better machine-to-machine 
authentication

between the ATM and processor and the use of challenge-response protocols

to counter replay attacks.
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Chapter 3 summary.


