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An important element in many computer security services and applications is the

use of cryptographic algorithms. This chapter provides an overview of the various

types of algorithms, together with a discussion of their applicability. For each type

of algorithm, we introduce the most important standardized algorithms in common

use. For the technical details of the algorithms themselves, see Part Four.

We begin with symmetric encryption, which is used in the widest variety of

contexts, primarily to provide confidentiality. Next, we examine secure hash functions

and discuss their use in message authentication. The next section examines

public-key encryption, also known as asymmetric encryption. We then discuss the

two most important applications of public-key encryption, namely digital signatures

and key management. In the case of digital signatures, asymmetric encryption and

secure hash functions are combined to produce an extremely useful tool.

Finally, in this chapter we provide an example of an application area for cryptographic

algorithms by looking at the encryption of stored data.
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The universal technique for providing confidentiality for transmitted or stored

data is symmetric encryption.

This section introduces the basic concept of symmetric encryption. This is 
followed by an overview of the two most important symmetric encryption 
algorithms: the Data Encryption Standard (DES) and the Advanced Encryption 
Standard (AES), which are block encryption algorithms. Finally, this section 
introduces the concept of symmetric stream encryption algorithms.

Symmetric encryption, also referred to as conventional encryption or single-key

encryption, was the only type of encryption in use prior to the introduction of 
public-key

encryption in the late 1970s. Countless individuals and groups, from Julius 
Caesar to the

German U-boat force to present-day diplomatic, military, and commercial users, 
have

used symmetric encryption for secret communication. It remains the more widely 
used

of the two types of encryption.

There are two requirements for secure use of symmetric encryption:



1. We need a strong encryption algorithm. At a minimum, we would like the

algorithm to be such that an opponent who knows the algorithm and has

access to one or more ciphertexts would be unable to decipher the ciphertext

or figure out the key. This requirement is usually stated in a stronger form:

The opponent should be unable to decrypt ciphertext or discover the key even

if he or she is in possession of a number of ciphertexts together with the plaintext

that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a 

secure

fashion and must keep the key secure. If someone can discover the key and

knows the algorithm, all communication using this key is readable.
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A symmetric encryption scheme has five ingredients (Figure 2.1):

• Plaintext: This is the original message or data that is fed into the algorithm 
as

input.

• Encryption algorithm: The encryption algorithm performs various 
substitutions

and transformations on the plaintext.

• Secret key: The secret key is also input to the encryption algorithm. The 

exact

substitutions and transformations performed by the algorithm depend on the

key.

• Ciphertext: This is the scrambled message produced as output. It depends 
on

the plaintext and the secret key. For a given message, two different keys will

produce two different ciphertexts.

• Decryption algorithm: This is essentially the encryption algorithm run in



reverse. It takes the ciphertext and the secret key and produces the original

plaintext.
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There are two general approaches to attacking a symmetric encryption

scheme. The first attack is known as cryptanalysis. Cryptanalytic attacks rely 
on

the nature of the algorithm plus perhaps some knowledge of the general 
characteristics

of the plaintext or even some sample plaintext-ciphertext pairs. This type of

attack exploits the characteristics of the algorithm to attempt to deduce a specific

plaintext or to deduce the key being used. If the attack succeeds in deducing the

key, the effect is catastrophic: All future and past messages encrypted with that 
key

are compromised.

The second method, known as the brute-force attack, is to try every possible

key on a piece of ciphertext until an intelligible translation into plaintext is 
obtained.

On average, half of all possible keys must be tried to achieve success. 
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Table 2.1 from the text shows how much time is involved for various key sizes. The table 

shows results for each key size, assuming that it takes 1 µs to perform a single decryption, 

a reasonable order of magnitude for today's computers. With the use of massively parallel 

organizations of microprocessors, it may be possible to achieve processing rates many 

orders of magnitude greater. The final column of the table considers the results for a 

system that can process 1 million keys per microsecond. At this performance level, a 56-

bit key is no longer computationally secure.
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The most commonly used symmetric encryption algorithms are block ciphers. A block 

cipher processes the plaintext input in fixed-size blocks and produces a block of 

ciphertext of equal size for each plaintext block. The algorithm processes longer 

plaintext amounts as a series of fixed-size blocks. The most important symmetric 

algorithms, all of which are block ciphers, are the Data Encryption Standard (DES), 

triple DES, and the Advanced Encryption Standard (AES); see Table 2.2.  This 

subsection provides an overview of these algorithms.  Chapter 20 presents the technical 

details.
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The most widely used encryption scheme is based

on the Data Encryption Standard (DES) adopted in 1977 by the National Bureau

of Standards, now the National Institute of Standards and Technology (NIST), as

Federal Information Processing Standard 46 (FIPS PUB 46).1 The algorithm 
itself is

referred to as the Data Encryption Algorithm (DEA). DES takes a plaintext block

of 64 bits and a key of 56 bits, to produce a ciphertext block of 64 bits.

Concerns about the strength of DES fall into two categories: concerns about

the algorithm itself and concerns about the use of a 56-bit key. The first concern

refers to the possibility that cryptanalysis is possible by exploiting the 
characteristics

of the DES algorithm. Over the years, there have been numerous attempts to find

and exploit weaknesses in the algorithm, making DES the most-studied 
encryption

algorithm in existence. Despite numerous approaches, no one has so far 
reported a

fatal weakness in DES.

A more serious concern is key length. With a key length of 56 bits, there are 256



possible keys, which is approximately 7.2 x 1016 keys. Thus, on the face of it, a 
brute-force

attack appears impractical. Assuming that, on average, half the key space has

to be searched, a single machine performing one DES encryption per micro 
second

would take more than a thousand years (see Table 2.1) to break the cipher.

However, the assumption of one encryption per microsecond is overly 
conservative.

DES finally and definitively proved insecure in July 1998, when the

Electronic Frontier Foundation (EFF) announced that it had broken a DES 
encryption

using a special-purpose “DES cracker” machine that was built for less than

$250,000. The attack took less than three days. The EFF has published a detailed

description of the machine, enabling others to build their own cracker [EFF98].

And, of course, hardware prices will continue to drop as speeds increase, making

DES virtually worthless.

It is important to note that there is more to a key-search attack than simply running

through all possible keys. Unless known plaintext is provided, the analyst must

be able to recognize plaintext as plaintext. If the message is just plain text in 
English,

then the result pops out easily, although the task of recognizing English would 
have to

be automated. If the text message has been compressed before encryption, then 
recognition

is more difficult. And if the message is some more general type of data, such

as a numerical file, and this has been compressed, the problem becomes even 
more

difficult to automate. Thus, to supplement the brute-force approach, some degree 
of

knowledge about the expected plaintext is needed, and some means of 
automatically

distinguishing plaintext from garble is also needed. The EFF approach addresses 
this

issue as well and introduces some automated techniques that would be effective 
in

many contexts.
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A final point: If the only form of attack that could be made on an encryption

algorithm is brute force, then the way to counter such attacks is obvious: Use 
longer

keys. To get some idea of the size of key required, let us use the EFF cracker as a

basis for our estimates. The EFF cracker was a prototype and we can assume 
that

with today’s technology, a faster machine is cost effective. If we assume that a 
cracker

can perform 1 million decryptions per µs, which is the rate used in Table 2.1, then 
a

DES code would take about 10 hours to crack. This is a speed-up of 
approximately

a factor of 7 compared to the EFF result
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Figure 2.2 shows how long

it would take to crack a DES-style algorithm as a function of key size.2 For 
example,

for a 128-bit key, which is common among contemporary algorithms, it would 
take

over 1018 years to break the code using the EFF cracker. Even if we managed to 
speed

up the cracker by a factor of 1 trillion (1012), it would still take over 1 million years

to break the code. So a 128-bit key is guaranteed to result in an algorithm that is

unbreakable by brute force.
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The life of DES was extended by the use of triple DES (3DES),

which involves repeating the basic DES algorithm three times, using either two

or three unique keys, for a key size of 112 or 168 bits. Triple DES (3DES) was

first standardized for use in financial applications in ANSI standard X9.17 in 1985.

3DES was incorporated as part of the Data Encryption Standard in 1999, with the

publication of FIPS PUB 46-3.

3DES has two attractions that assure its widespread use over the next few

years. First, with its 168-bit key length, it overcomes the vulnerability to brute-
force

attack of DES. Second, the underlying encryption algorithm in 3DES is the same 
as

in DES. This algorithm has been subjected to more scrutiny than any other 
encryption

algorithm over a longer period of time, and no effective cryptanalytic attack

based on the algorithm rather than brute force has been found. Accordingly, there

is a high level of confidence that 3DES is very resistant to cryptanalysis. If 
security

were the only consideration, then 3DES would be an appropriate choice for a 
standardized



encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish in

software. The original DES was designed for mid-1970s hardware implementation

and does not produce efficient software code. 3DES, which requires three times 
as

many calculations as DES, is correspondingly slower. A secondary drawback is 
that

both DES and 3DES use a 64-bit block size. For reasons of both efficiency and 
security,

a larger block size is desirable.
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Because of its drawbacks, 3DES is not a

reasonable candidate for long-term use. As a replacement, NIST in 1997 issued a

call for proposals for a new Advanced Encryption Standard (AES), which should

have a security strength equal to or better than 3DES and significantly improved

efficiency. In addition to these general requirements, NIST specified that AES 
must

be a symmetric block cipher with a block length of 128 bits and support for key

lengths of 128, 192, and 256 bits. Evaluation criteria included security, 
computational

efficiency, memory requirements, hardware and software suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A

second round narrowed the field to 5 algorithms. NIST completed its evaluation

process and published a final standard (FIPS PUB 197) in November of 2001. 
NIST

selected Rijndael as the proposed AES algorithm. AES is now widely available in

commercial products. AES is described in detail in Chapter 20.



Typically, symmetric encryption is applied to a

unit of data larger than a single 64-bit or 128-bit block. E-mail messages, network

packets, database records, and other plaintext sources must be broken up into a

series of fixed-length block for encryption by a symmetric block cipher. The 
simplest

approach to multiple-block encryption is known as electronic codebook (ECB)

mode, in which plaintext is handled b bits at a time and each block of plaintext is

encrypted using the same key. Typically b 64 or b 128

For lengthy messages, the ECB mode may not be secure. A cryptanalyst may

be able to exploit regularities in the plaintext to ease the task of decryption. For

example, if it is known that the message always starts out with certain predefined

fields, then the cryptanalyst may have a number of known plaintext-ciphertext
pairs

to work with.

To increase the security of symmetric block encryption for large sequences

of data, a number of alternative techniques have been developed, called modes 
of

operation. These modes overcome the weaknesses of ECB; each mode has its 
own

12



particular advantages. This topic is explored in Chapter 20.

12



13

Figure 2.3a shows the

ECB mode. A plaintext of length nb is divided into n b-bit blocks (P1, P2,c,Pn).

Each block is encrypted using the same algorithm and the same encryption key, 
to

produce a sequence of n b-bit blocks of ciphertext (C1, C2,c,Cn).

Figure 2.3b is a representative diagram of stream cipher structure. In this

structure a key is input to a pseudorandom bit generator that produces a stream

of 8-bit numbers that are apparently random. A pseudorandom stream is one that

is unpredictable without knowledge of the input key and which has an apparently

random character (see Section 2.5). The output of the generator, called a 
keystream,

is combined one byte at a time with the plaintext stream using the bitwise 
exclusive-

OR (XOR) operation.



A block cipher processes the input one block of elements at a time, producing an

output block for each input block. A stream cipher processes the input elements

continuously, producing output one element at a time, as it goes along. Although

block ciphers are far more common, there are certain applications in which a stream

cipher is more appropriate. Examples are given subsequently in this book.

A typical stream cipher encrypts plaintext one byte at a time, although a stream

cipher may be designed to operate on one bit at a time or on units larger than a byte

at a time. Figure 2.3b is a representative diagram of stream cipher structure. In this

structure a key is input to a pseudorandom bit generator that produces a stream

of 8-bit numbers that are apparently random. A pseudorandom stream is one that

is unpredictable without knowledge of the input key and which has an apparently

random character (see Section 2.5). The output of the generator, called a keystream,

is combined one byte at a time with the plaintext stream using the bitwise exclusive-

OR (XOR) operation.

With a properly designed pseudorandom number generator, a stream cipher

can be as secure as block cipher of comparable key length. The primary advantage

of a stream cipher is that stream ciphers are almost always faster and use far less

code than do block ciphers. The advantage of a block cipher is that you can reuse

keys. For applications that require encryption/decryption of a stream of data, such as

over a data communications channel or a browser/Web link, a stream cipher might

be the better alternative. For applications that deal with blocks of data, such as file

transfer, e-mail, and database, block ciphers may be more appropriate. However,

either type of cipher can be used in virtually any application.
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Encryption protects against passive attack (eavesdropping). A different 
requirement

is to protect against active attack (falsification of data and transactions). 
Protection

against such attacks is known as message or data authentication.

A message, file, document, or other collection of data is said to be authentic

when it is genuine and came from its alleged source. Message or data 
authentication

is a procedure that allows communicating parties to verify that received or stored

messages are authentic. The two important aspects are to verify that the 
contents of

the message have not been altered and that the source is authentic. We may 
also wish

to verify a message’s timeliness (it has not been artificially delayed and replayed)

and sequence relative to other messages flowing between two parties. All of 
these

concerns come under the category of data integrity as described in Chapter 1.

It would seem possible to perform authentication simply by the use of symmetric



encryption. If we assume that only the sender and receiver share a key (which is

as it should be), then only the genuine sender would be able to encrypt a 
message

successfully for the other participant, provided the receiver can recognize a valid 
message.

Furthermore, if the message includes an error-detection code and a sequence

number, the receiver is assured that no alterations have been made and that 
sequencing

is proper. If the message also includes a timestamp, the receiver is assured that 
the

message has not been delayed beyond that normally expected for network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentication.

To give one simple example, in the ECB mode of encryption, if an attacker

reorders the blocks of ciphertext, then each block will still decrypt successfully.

However, the reordering may alter the meaning of the overall data sequence.

Although sequence numbers may be used at some level (e.g., each IP packet), it 
is

typically not the case that a separate sequence number will be associated with 
each

b-bit block of plaintext. Thus, block reordering is a threat.
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One authentication technique involves

the use of a secret key to generate a small block of data, known as a message

authentication code, that is appended to the message. This technique assumes 
that

two communicating parties, say A and B, share a common secret key KAB. When

A has a message to send to B, it calculates the message authentication code as 
a

complex function of the message and the key: MACM  F(KAB, M). The message

plus code are transmitted to the intended recipient. The recipient performs the 
same

calculation on the received message, using the same secret key, to generate a 
new

message authentication code. The received code is compared to the calculated 
code

(Figure 2.4). If we assume that only the receiver and the sender know the identity 
of

the secret key, and if the received code matches the calculated code, then

1. The receiver is assured that the message has not been altered. If an 

attacker



alters the message but does not alter the code, then the receiver’s calculation

of the code will differ from the received code. Because the attacker is assumed

not to know the secret key, the attacker cannot alter the code to correspond to

the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. 
Because

no one else knows the secret key, no one else could prepare a message with a

proper code.

3. If the message includes a sequence number (such as is used with X.25, 

HDLC,

and TCP), then the receiver can be assured of the proper sequence, because

an attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The NIST 
specification,

FIPS PUB 113, recommends the use of DES. DES is used to generate an

encrypted version of the message, and the last number of bits of ciphertext are 
used

as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the

authentication algorithm need not be reversible, as it must for decryption. It turns

out that because of the mathematical properties of the authentication function, it is

less vulnerable to being broken than encryption.
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An alternative to the message authentication code is the

one-way hash function. As with the message authentication code, a hash function

accepts a variable-size message M as input and produces a fixed-size message 

digest

H(M) as output (Figure 2.5). Typically, the message is padded out to an integer 

multiple

of some fixed length (e.g., 1024 bits) and the padding includes the value of the 
length

of the original message in bits. The length field is a security measure to increase 
the

difficulty for an attacker to produce an alternative message with the same hash 
value.
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Unlike the MAC, a hash function does not also take a secret key as input.

To authenticate a message, the message digest is sent with the message in such

a way that the message digest is authentic. Figure 2.6 illustrates three ways in

which the message can be authenticated using a hash code. The message digest

can be encrypted using symmetric encryption (part a); if it is assumed that only

the sender and receiver share the encryption key, then authenticity is assured. 
The

message digest can also be encrypted using public-key encryption (part b); this is

explained in Section 2.3. The public-key approach has two advantages: It 
provides

a digital signature as well as message authentication; and it does not require the

distribution of keys to communicating parties.

These two approaches have an advantage over approaches that encrypt the

entire message in that less computation is required. But an even more common 
approach is

the use of a technique that avoids encryption altogether. Several reasons

for this interest are pointed out in [TSUD92]:



• Encryption software is quite slow. Even though the amount of data to be

encrypted per message is small, there may be a steady stream of messages into

and out of a system.

• Encryption hardware costs are non-negligible. Low-cost chip implementations

of DES are available, but the cost adds up if all nodes in a network must have

this capability.

• Encryption hardware is optimized toward large data sizes. For small blocks of

data, a high proportion of the time is spent in initialization/invocation overhead.

• An encryption algorithm may be protected by a patent.

Figure 2.6c shows a technique that uses a hash function but no encryption

for message authentication. This technique, known as a keyed hash MAC, 
assumes

that two communicating parties, say A and B, share a common secret key K.

This secret key is incorporated into the process of generating a hash code. In the

approach illustrated in Figure 2.6c, when A has a message to send to B, it 
calculates

the hash function over the concatenation of the secret key and the message:

MDM = H(KMK).6 It then sends [ MMDM] to B. Because B possesses K, it can

recompute H(K7M7K) and verify MDM. Because the secret key itself is not sent, it

should not be possible for an attacker to modify an intercepted message. As long 
as

the secret key remains secret, it should not be possible for an attacker to generate 
a

false message.

Note that the secret key is used as both a prefix and a suffix to the message. If

the secret key is used as either only a prefix or only a suffix, the scheme is less 
secure.

This topic is discussed in Chapter 21. Chapter 21 also describes a scheme known

as HMAC, which is somewhat more complex than the approach of Figure 2.6c and

which has become the standard approach for a keyed hash MAC.
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The purpose of a hash function is to produce a

“fingerprint” of a file, message, or other block of data. To be useful for message

authentication, a hash function H must have the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware 
and

software implementations practical.

4. For any given code h, it is computationally infeasible to find x such that

H(x)  h. A hash function with this property is referred to as one-way or preimage

resistant.

5. For any given block x, it is computationally infeasible to find y x with

H(y)  H(x). A hash function with this property is referred to as second preimage

resistant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x)  H(y).

A hash function with this property is referred to as collision resistant. This is

sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a hash

function to message authentication.



The fourth property is the one-way property: It is easy to generate a code given a

message, but virtually impossible to generate a message given a code. This 
property is

important if the authentication technique involves the use of a secret value (Figure 
2.6c).

The secret value itself is not sent; however, if the hash function is not one way, an 
attacker

can easily discover the secret value: If the attacker can observe or intercept a 
transmission,

the attacker obtains the message M and the hash code MDM  H(SAB || M). The 

attacker

then inverts the hash function to obtain SAB || M  H-1(MDM). Because the 

attacker now

has both M and SAB || M, it is a trivial matter to recover SAB.

The fifth property guarantees that it is impossible to find an alternative

message with the same hash value as a given message. This prevents forgery 
when

an encrypted hash code is used (Figures 2.6a and b). If this property were not 
true,

an attacker would be capable of the following sequence: First, observe or intercept

a message plus its encrypted hash code; second, generate an unencrypted hash 
code

from the message; third, generate an alternate message with the same hash 
code.

A hash function that satisfies the first five properties in the preceding list is

referred to as a weak hash function. If the sixth property is also satisfied, then it

is referred to as a strong hash function. A strong hash function protects against an

attack in which one party generates a message for another party to sign. For 
example,

suppose Bob gets to write an IOU message, send it to Alice, and she signs it.

Bob finds two messages with the same hash, one of which requires Alice to pay a

small amount and one that requires a large payment. Alice signs the first message

and Bob is then able to claim that the second message is authentic.
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As with symmetric encryption, there are two

approaches to attacking a secure hash function: cryptanalysis and brute-force 
attack.

As with symmetric encryption algorithms, cryptanalysis of a hash function 
involves

exploiting logical weaknesses in the algorithm.

The strength of a hash function against brute-force attacks depends solely on

the length of the hash code produced by the algorithm.

For a hash code of length n,

the level of effort required is proportional to the following:

Preimage resistant 2n

Second preimage resistant 2n

Collision resistant 2n/2

If collision resistance is required (and this is desirable for a general-purpose

secure hash code), then the value 2n/2 determines the strength of the hash code 

against

brute-force attacks. Van Oorschot and Wiener [VANO94] pre sented a design for 
a

$10 million collision search machine for MD5, which has a 128-bit hash length, 



that

could find a collision in 24 days. Thus a 128-bit code may be viewed as 
inadequate.

The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit 
hash

length. With a hash length of 160 bits, the same search machine would require 
over

four thousand years to find a collision. With today’s technology, the time would be

much shorter, so that 160 bits now appears suspect.

In recent years, the most widely used

hash function has been the Secure Hash Algorithm (SHA). SHA was developed

by the National Institute of Standards and Technology (NIST) and published as

a federal information processing standard (FIPS 180) in 1993. When weaknesses

were discovered in SHA, a revised version was issued as FIPS 180-1 in 1995 and 
is

generally referred to as SHA-1. SHA-1 produces a hash value of 160 bits. In 2002,

NIST produced a revised version of the standard, FIPS 180–2, that defined three

new versions of SHA, with hash value lengths of 256, 384, and 512 bits, known as

SHA-256, SHA-384, and SHA-512. These new versions have the same underlying

structure and use the same types of modular arithmetic and logical binary 
operations

as SHA-1. In 2005, NIST announced the intention to phase out approval of SHA-1

and move to a reliance on the other SHA versions by 2010. As discussed in 
Chapter

21, researchers have demonstrated that SHA-1 is far weaker than its 160-bit hash

length suggests, necessitating the move to the newer versions of SHA.

We have discussed the use of hash functions for message authentication and for 
the

creation of digital signatures (the latter is discussed in more detail later in this 
chapter).

Here are two other examples of secure hash function applications:

• Passwords: Chapter 3 explains a scheme in which a hash of a password is

stored by an operating system rather than the password itself. Thus, the actual

password is not retrievable by a hacker who gains access to the password file.

In simple terms, when a user enters a password, the hash of that password is

20



compared to the stored hash value for verification. This application requires

preimage resistance and perhaps second preimage resistance.

• Intrusion detection: Store H(F) for each file on a system and secure the 

hash

values (e.g., on a CD-R that is kept secure). One can later determine if a file has

been modified by recomputing H(F). An intruder would need to change F without

changing H(F). This application requires weak second preimage resistance
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Public-key encryption, first publicly proposed by Diffie and Hellman in 1976

[DIFF76], is the first truly revolutionary advance in encryption in literally thousands

of years. Public-key algorithms are based on mathematical functions rather than on

simple operations on bit patterns, such as are used in symmetric encryption algorithms.

More important, public-key cryptography is asymmetric, involving the use

of two separate keys, in contrast to symmetric encryption, which uses only one key.

The use of two keys has profound consequences in the areas of confidentiality, key

distribution, and authentication.

Before proceeding, we should first mention several common misconceptions

concerning public-key encryption. One is that public-key encryption is more secure

from cryptanalysis than symmetric encryption. In fact, the security of any encryption

scheme depends on (1) the length of the key and (2) the computational work involved

in breaking a cipher. There is nothing in principle about either symmetric or public-key

encryption that makes one superior to another from the point of view of resisting cryptanalysis.

A second misconception is that public-key encryption is a general- purpose

technique that has made symmetric encryption obsolete. On the contrary, because of

the computational overhead of current public-key encryption schemes, there seems no

foreseeable likelihood that symmetric encryption will be abandoned. Finally, there is

a feeling that key distribution is trivial when using public-key encryption, compared to

the rather cumbersome handshaking involved with key distribution centers for symmetric

encryption. For public-key key distribution, some form of protocol is needed,

often involving a central agent, and the procedures involved are no simpler or any

more efficient than those required for symmetric encryption.

As the names suggest, the public key of the pair is made public for others to

use, while the private key is known only to its owner. A general-purpose public-key
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cryptographic algorithm relies on one key for encryption and a different but related

key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and 
decryption

of messages.

2. Each user places one of the two keys in a public register or other 

accessible

file. This is the public key. The companion key is kept private. As Figure 2.7a

suggests, each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the 
message

using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. 
No

other recipient can decrypt the message because only Alice knows Alice’s private

key.

With this approach, all participants have access to public keys, and private keys

are generated locally by each participant and therefore need never be distributed.

As long as a user protects his or her private key, incoming communication is 
secure.

At any time, a user can change the private key and publish the companion public

key to replace the old public key.
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A public-key encryption scheme has six ingredients (Figure 2.7a):

• Plaintext: This is the readable message or data that is fed into the 
algorithm as

input.

• Encryption algorithm: The encryption algorithm performs various 
transformations

on the plaintext.

• Public and private key: This is a pair of keys that have been selected so 

that

if one is used for encryption, the other is used for decryption. The exact

transformations performed by the encryption algorithm depend on the public

or private key that is provided as input.

Ciphertext: This is the scrambled message produced as output. It depends 
on

the plaintext and the key. For a given message, two different keys will produce

two different ciphertexts.



• Decryption algorithm: This algorithm accepts the ciphertext and the 

matching

key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to

use, while the private key is known only to its owner. A general-purpose public-key

cryptographic algorithm relies on one key for encryption and a different but related

key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and 

decryption

of messages.

2. Each user places one of the two keys in a public register or other 
accessible

file. This is the public key. The companion key is kept private. As Figure 2.7a

suggests, each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the 
message

using Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. 
No

other recipient can decrypt the message because only Alice knows Alice’s private

key.

With this approach, all participants have access to public keys, and private keys

are generated locally by each participant and therefore need never be distributed.

As long as a user protects his or her private key, incoming communication is 
secure.

At any time, a user can change the private key and publish the companion public

key to replace the old public key.

Note that the scheme of Figure 2.7a is directed toward providing confidentiality:

Only the intended recipient should be able to decrypt the ciphertext because only

22



the intended recipient is in possession of the required private key. Whether in fact

confidentiality is provided depends on a number of factors, including the security 
of

the algorithm, whether the private key is kept secure, and the security of any 
protocol

of which the encryption function is a part.
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Figure 2.7b illustrates another mode of operation of public-key cryptography.

In this scheme, a user encrypts data using his or her own private key.

Anyone who knows the corresponding public key will then be able to decrypt the

message.

The scheme of Figure 2.7b is directed toward providing authentication

and/or data integrity. If a user is able to successfully recover the plaintext 

from

Bob’s ciphertext using Bob’s public key, this indicates that only Bob could have

encrypted the plaintext, thus providing authentication. Further, no one but

Bob would be able to modify the plaintext because only Bob could encrypt the

plaintext with Bob’s private key. Once again, the actual provision of authentication

or data integrity depends on a variety of factors. This issue is addressed

primarily in Chapter 21, but other references are made to it where appropriate in

this text.



Table 2.3 indicates the applications supported by the algorithms

discussed in this section.
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The cryptosystem illustrated in Figure 2.7 depends on a cryptographic algorithm

based on two related keys. Diffie and Hellman postulated this system without 
demonstrating

that such algorithms exist. However, they did lay out the conditions that

such algorithms must fulfill [DIFF76]:

1. It is computationally easy for a party B to generate a pair (public key 
PUb,

private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the

message to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting 
ciphertext

using the private key to recover the original message:

M = D(PRb,C) = D[PRb, E(PUb, M)]



4. It is computationally infeasible for an opponent, knowing the public key, 

PUb,

to determine the private key, PRb.

5. It is computationally infeasible for an opponent, knowing the public key, 

PUb,

and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all

public-key applications:

6. Either of the two related keys can be used for encryption, with the other 

used

for decryption.

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]
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RSA One of the first public-key schemes was developed in 1977 by Ron 
Rivest, Adi

Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA

scheme has since reigned supreme as the most widely accepted and 
implemented

approach to public-key encryption. RSA is a block cipher in which the plaintext 
and

ciphertext are integers between 0 and n – 1 for some n.

In 1977, the three inventors of RSA dared Scientific American readers to decode

a cipher they printed in Martin Gardner’s “Mathematical Games” column. They

offered a $100 reward for the return of a plaintext sentence, an event they 
predicted

might not occur for some 40 quadrillion years. In April of 1994, a group working 
over

the Internet and using over 1600 computers claimed the prize after only eight 
months

of work [LEUT94]. This challenge used a public-key size (length of n) of 129 

decimal

digits, or around 428 bits. This result does not invalidate the use of RSA; it simply



means that larger key sizes must be used. Cur rently, a 1024-bit key size (about 
300

decimal digits) is considered strong enough for virtually all applications.

DIFFIE-HELLMAN KEY AGREEMENT The first published public-key algo 

rithm

appeared in the seminal paper by Diffie and Hellman that defined public-key

cryptography [DIFF76] and is generally referred to as Diffie-Hellman key 
exchange,

or key agreement. A number of commercial products employ this key exchange

technique.

The purpose of the algorithm is to enable two users to securely reach agreement

about a shared secret that can be used as a secret key for subsequent symmetric

encryption of messages. The algorithm itself is limited to the exchange of the 
keys.

DIGITAL SIGNATURE STANDARD The National Institute of Standards and 
Technology

(NIST) has published Federal Information Processing Standard FIPS PUB 186,

known as the Digital Signature Standard (DSS). The DSS makes use of SHA-1

and presents a new digital signature technique, the Digital Signature Algorithm

(DSA). The DSS was originally proposed in 1991 and revised in 1993 in response 
to

public feedback concerning the security of the scheme. There was a further minor

revision in 1996. The DSS uses an algorithm that is designed to provide only the 
digital

signature function. Unlike RSA, it cannot be used for encryption or key exchange.

ELLIPTIC CURVE CRYPTOGRAPHY The vast majority of the products and 
standards

that use public-key cryptography for encryption and digital signatures use RSA.

The bit length for secure RSA use has increased over recent years, and this has 
put

a heavier processing load on applications using RSA. This burden has 
ramifications,

especially for electronic commerce sites that conduct large numbers of secure

transactions. Recently, a competing system has begun to challenge RSA: elliptic

curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
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including the IEEE (Institute of Electrical and Electronics Engineers) P1363

Standard for Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer

equal security for a far smaller bit size, thereby reducing processing overhead. On

the other hand, although the theory of ECC has been around for some time, it is

only recently that products have begun to appear and that there has been 
sustained

cryptanalytic interest in probing for weaknesses. Thus, the confidence level in 
ECC

is not yet as high as that in RSA.
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Public-key encryption can be used for authentication, as suggested by Figure 2.6b.

Suppose that Bob wants to send a message to Alice. Although it is not important that

the message be kept secret, he wants Alice to be certain that the message is indeed

from him. For this purpose, Bob uses a secure hash function, such as SHA-512, to

generate a hash value for the message and then encrypts the hash code with his private

key, creating a digital signature. Bob sends the message with the signature 
attached.

When Alice receives the message plus signature, she (1) calculates a hash value for

the message; (2) decrypts the signature using Bob’s public key; and (3) compares the

calculated hash value to the decrypted hash value. If the two hash values match, Alice

is assured that the message must have been signed by Bob. No one else has Bob’s

private key and therefore no one else could have created a ciphertext that could be

decrypted with Bob’s public key. In addition, it is impossible to alter the message

without access to Bob’s private key, so the message is authenticated both in terms of

source and in terms of data integrity.

It is important to emphasize that the digital signature does not provide confidentiality.

That is, the message being sent is safe from alteration but not safe from

eavesdropping. This is obvious in the case of a signature based on a portion of the

message, because the rest of the message is transmitted in the clear. Even in the

case of complete encryption, there is no protection of confidentiality because any

observer can decrypt the message by using the sender’s public key.
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On the face of it, the point of public-key encryption is that the public key is public.

Thus, if there is some broadly accepted public-key algorithm, such as RSA, any

participant can send his or her public key to any other participant or broadcast 
the

key to the community at large. Although this approach is convenient, it has a 
major

weakness. Anyone can forge such a public announcement. That is, some user 
could

pretend to be Bob and send a public key to another participant or broadcast such 
a

public key. Until such time as Bob discovers the forgery and alerts other 
participants,

the forger is able to read all encrypted messages intended for A and can use the

forged keys for authentication.

The solution to this problem is the public-key certificate. In essence, a certificate

consists of a public key plus a user ID of the key owner, with the whole block

signed by a trusted third party. The certificate also includes some information 
about

the third party plus an indication of the period of validity of the certificate. 



Typically,

the third party is a certificate authority (CA) that is trusted by the user community,

such as a government agency or a financial institution. A user can present his

or her public key to the authority in a secure manner and obtain a signed 
certificate.

The user can then publish the certificate. Anyone needing this user’s public key

can obtain the certificate and verify that it is valid by means of the attached trusted

signature. Figure 2.8 illustrates the process.

One scheme has become universally accepted for formatting public-key

certificates: the X.509 standard. X.509 certificates are used in most network 
security

applications, including IP Security (IPsec), Transport Layer Security (TLS), Secure

Shell (SSH), and Secure/Multipurpose Internet Mail Extension (S/MIME). We

examine most of these applications in Part Five.
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Another application in which public-key encryption is used to protect a symmetric

key is the digital envelope, which can be used to protect a message without 
needing

to first arrange for sender and receiver to have the same secret key. The 
technique

is referred to as a digital envelope, which is the equivalent of a sealed envelope

containing an unsigned letter. The general approach is shown in Figure 2.9. 
Suppose

Bob wishes to send a confidential message to Alice, but they do not share a 
symmetric

secret key. Bob does the following:

1. Prepare a message.

2. Generate a random symmetric key that will be used this one time only.

3. Encrypt that message using symmetric encryption the one-time key.

4. Encrypt the one-time key using public-key encryption with Alice’s public 

key.



5. Attach the encrypted one-time key to the encrypted message and send it 

to

Alice.

Only Alice is capable of decrypting the one-time key and therefore of recovering

the original message. If Bob obtained Alice’s public key by means of Alice’s

public-key certificate, then Bob is assured that it is a valid key.
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A number of network security algorithms based on cryptography make use of

random numbers. For example,

• Generation of keys for the RSA public-key encryption algorithm (described

in Chapter 21) and other public-key algorithms.

• Generation of a stream key for symmetric stream cipher.

• Generation of a symmetric key for use as a temporary session key or in 
creating

a digital envelope.

• In a number of key distribution scenarios, such as Kerberos (described in

Chapter 23), random numbers are used for handshaking to prevent replay

attacks.

• Session key generation, whether done by a key distribution center or by one of

the principals.



These applications give rise to two distinct and not necessarily compatible

requirements for a sequence of random numbers: randomness and 
unpredictability.
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Traditionally, the concern in the generation of a sequence of

allegedly random numbers has been that the sequence of numbers be random in

some well-defined statistical sense. The following two criteria are used to validate

that a sequence of numbers is random:

• Uniform distribution: The distribution of numbers in the sequence should be

uniform; that is, the frequency of occurrence of each of the numbers should be

approximately the same.

• Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of numbers

matches a particular distribution, such as the uniform distribution, there is no such

test to “prove” independence. Rather, a number of tests can be applied to demonstrate

if a sequence does not exhibit independence. The general strategy is to apply a number

of such tests until the confidence that independence exists is sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear

statistically random often occurs in the design of algorithms related to cryptography.

For example, a fundamental requirement of the RSA public-key encryption scheme 

is the ability to generate prime numbers. In general, it is

difficult to determine if a given large number N is prime. A brute-force approach

would be to divide N by every odd integer less than 1N. If N is on the order, say,

of 10150, a not uncommon occurrence in public-key cryptography, such a brute-force

approach is beyond the reach of human analysts and their computers. However, a

number of effective algorithms exist that test the primality of a number by using a

sequence of randomly chosen integers as input to relatively simple computations.

If the sequence is sufficiently long (but far, far less than 110150), the primality of

a number can be determined with near certainty. This type of approach, known

as randomization, crops up frequently in the design of algorithms. In essence, if a

problem is too hard or time-consuming to solve exactly, a simpler, shorter approach

based on randomization is used to provide an answer with any desired level of

confidence.

UNPREDICTABILITY 

In applications such as reciprocal authentication and session key

generation, the requirement is not so much that the sequence of numbers be statistically

random but that the successive members of the sequence are unpredictable. With

“true” random sequences, each number is statistically independent of other numbers

in the sequence and therefore unpredictable. However, as is discussed shortly, true

random numbers are not always used; rather, sequences of numbers that appear to

be random are generated by some algorithm. In this latter case, care must be taken

that an opponent not be able to predict future elements of the sequence on the basis

of earlier elements.
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Cryptographic applications typically make use of algorithmic techniques for 
random

number generation. These algorithms are deterministic and therefore produce

sequences of numbers that are not statistically random. However, if the algorithm 
is

good, the resulting sequences will pass many reasonable tests of randomness. 
Such

numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated

by a deterministic algorithm as if they were random numbers. Despite what might

be called philosophical objections to such a practice, it generally works. As one

expert on probability theory puts it [HAMM91],

For practical purposes we are forced to accept the awkward concept

of “relatively random” meaning that with regard to the proposed

use we can see no reason why they will not perform as if they were

random (as the theory usually requires). This is highly subjective

and is not very palatable to purists, but it is what statisticians regularly



appeal to when they take “a random sample”—they hope that

any results they use will have approximately the same properties as

a complete counting of the whole sample space that occurs in their

theory.

A true random number generator (TRNG) uses a nondeterministic source to

produce randomness. Most operate by measuring unpredictable natural 
processes,

such as pulse detectors of ionizing radiation events, gas discharge tubes, and 
leaky

capac itors. Intel has developed a commercially available chip that samples 
thermal

noise by amplifying the voltage measured across undriven resistors [JUN99].

A group at Bell Labs has developed a technique that uses the variations in the

response time of raw read requests for one disk sector of a hard disk [JAKO98].

LavaRnd is an open source project for creating truly random numbers using 
inexpensive

cameras, open source code, and inexpensive hardware. The system uses a

saturated charge- coupled device (CCD) in a light-tight can as a chaotic source to

produce the seed. Software processes the result into truly random numbers in a

variety of formats.
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One of the principal security requirements of a computer system is the protection

of stored data. Security mechanisms to provide such protection include access 
control,

intrusion detection, and intrusion prevention schemes, all of which are discussed

in this book. The book also describes a number of technical means by which

these various security mechanisms can be made vulnerable. But beyond 
technical

approaches, these approaches can become vulnerable because of human 
factors.

We list a few examples here, based on [ROTH05].

• In December of 2004, Bank of America employees backed up and sent to its

backup data center tapes containing the names, addresses, bank account 
numbers,

and Social Security numbers of 1.2 million government workers enrolled

in a charge-card account. None of the data were encrypted. The tapes never

arrived and indeed have never been found. Sadly, this method of backing up

and shipping data is all too common. As an another example, in April of 2005,

Ameritrade blamed its shipping vendor for losing a backup tape containing

unencrypted information on 200,000 clients.



• In April of 2005, San Jose Medical group announced that someone had 
physically

stolen one of its computers and potentially gained access to 185,000

unencrypted patient records.

• There have been countless examples of laptops lost at airports, stolen from a

parked car, or taken while the user is away from his or her desk. If the data on the

laptop’s hard drive are unencrypted, all of the data are available to the thief.

Although it is now routine for businesses to provide a variety of protections,

including encryption, for information that is transmitted across networks, via the

Internet, or via wireless devices, once data are stored locally (referred to as data 

at

rest), there is often little protection beyond domain authentication and operating

system access controls. Data at rest are often routinely backed up to secondary 
storage

such as CDROM or tape, archived for indefinite periods. Further, even when

data are erased from a hard disk, until the relevant disk sectors are reused, the 
data

are recoverable. Thus it becomes attractive, and indeed should be mandatory, to

encrypt data at rest and combine this with an effective encryption key 
management

scheme.

There are a variety of ways to provide encryption services. A simple approach

available for use on a laptop is to use a commercially available encryption 
package

such as Pretty Good Privacy (PGP). PGP enables a user to generate a key from a

password and then use that key to encrypt selected files on the hard disk. The 
PGP

package does not store the password. To recover a file, the user enters the 
password,

PGP generates the password, and PGP decrypts the file. So long as the user 
protects

his or her password and does not use an easily guessable password, the files are 
fully

protected while at rest. Some more recent approaches are listed in [COLL06]:
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• Back-end appliance: This is a hardware device that sits between servers 

and

storage systems and encrypts all data going from the server to the storage system

and decrypts data going in the opposite direction. These devices encrypt

data at close to wire speed, with very little latency. In contrast, encryption

software on servers and storage systems slows backups. A system man ager

configures the appliance to accept requests from specified clients, for which

unencrypted data are supplied.

• Library-based tape encryption: This is provided by means of a co-

processor board

embedded in the tape drive and tape library hardware. The co-processor encrypts

data using a nonreadable key configured into the board. The tapes can then be 
sent

off-site to a facility that has the same tape drive hardware. The key can be 
exported

via secure e-mail or a small flash drive that is transported securely. If the matching

tape drive hardware co-processor is not available at the other site, the target 
facility

can use the key in a software decryption package to recover the data.

• Background laptop and PC data encryption: A number of vendors offer 
software

products that provide encryption that is transparent to the application and

the user. Some products encrypt all or designated files and folders. Other 
products

create a virtual disk, which can be maintained locally on the user’s hard

drive or maintained on a network storage device, with all data on the virtual

disk encrypted. Various key management solutions are offered to restrict access

to the owner of the data.
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Chapter 2 summary.


