

U3 Platform 1.0 SDK
Developer Guide

04-UM-0605-10

Version 1.0
September 2005

Revision 1.0

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Document Control Information ii

DOCUMENT CONTROL INFORMATION

Document No.: 04-UM-0605-10

 Title Name Date
Issued by: U3 Chief Architect Daniel Goodman September 2005
Edited by:

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Table of Contents iii

Table of Contents
1 Introduction ..1

1.1 U3 SDK Components ...1
1.2 Overview of U3 Applications...2
1.3 Deploying and Launching U3 Applications ...3

1.3.1 Deploying and Launching U3 Applications ... 3
1.4 Overview of U3 Devices ...3

1.4.1 Persistent Read-Only Domains (Virtual CD-ROM) ... 4
1.4.2 Removable Domain Areas .. 4
1.4.3 Sample Configurations.. 4
1.4.4 Cookies ... 4

2 Overview of the Device API...5
2.1 DAPI Programming Model..5

2.1.1 Event Model .. 5
2.1.2 Device Support.. 5

2.2 Error Codes ..5
2.3 DAPI Functions...6
2.4 Privileged Operating Modes ...6

3 Building DAPI Applications ..7
3.1 SDK Development Environment...7
3.2 Shipping the DAPI DLL...7

4 Introduction to the DAPI Programming Event Model8
4.1 Device Events...8
4.2 Multiple Domain Initialization Process ..8
4.3 Callback Function Event Information..9

4.3.1 Registering for Events... 9
4.3.2 Obtaining the Connection String for a Device... 9

4.4 Multiple Registration ...10
5 A Simple DAPI Program ..11

5.1 Getting the Device Information ...11
5.2 Get the list of domains on a device ..13

6 Working with Cookies ...14
6.1 Reading and Writing an Text Cookie..14
6.2 Implementation ...15

7 Working with Private Areas ..17
7.1 Reading and Writing to a Private Area ...17

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction 1

1 Introduction
This guide describes how to use the U3 Platform SDK to develop and deploy U3 applications.
This SDK provides directions on how to develop applications for the three different types of U3
applications.

The document also provides instructions for the Device API (DAPI), especially with regards to
the event model and includes examples that illustrate session management, working with
cookies and protected areas.

• Section 1 introduces the U3 Platform SDK, including the U3 Platform SDK components,
application types, how to deploy and launch applications, and provides an overview of U3
devices.

• Section 2 gives an overview of the DAPI, including the DAPI programming model and the
DAPI functions.

• Section 3 discusses the DAPI application development environment.

• Section 4 details the DAPI programming event model.

• Section 5 includes a DAPI programming sample.

• Section 6 describes how to write cookies to a U3 device.

• Section 7 explains how to use DAPI to access private or protected areas of a device.

1.1 U3 SDK Components
The U3 SDK provides the tools to assist you in developing and deploying U3 applications and
includes the following components:

• Application Deployment Guide – This document describes how to create and package U3
Launchpad applications that are installed and run from U3 smart devices.

• DAPI Package – The Device API (DAPI) is used to create U3 Aware applications and can
also be used to extend Launchpad applications to work directly with the U3 device. The
DAPI package including the following components:

• u3dapi10.dll – DAPI DLL containing the DAPI functions

• u3dapi10.lib – Library file required to link to the DLL

• u3dapi10.h – DAPI header file

• u3dapi10.def – Definition file listing all DAPI functions and their ordinals

• API Reference Guide – This reference document includes a detailed description of the U3
DAPI functions.

• Developer Guide – This document describes how to use the U3 SDK to develop and deploy
applications.

• Release Notes – These notes include the latest information available at release.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction 2

The following kits are separate from the SDK and are not covered in this document.

• U3 Hardware Developer Kit (HDK) – contains the U3 device services specification and
tools for hardware manufacturers to develop U3 compliant devices. For availability and
information regarding the HDK, please contact U3 at the email or address provided at the
end of this document.

• U3 smart Logo Compliance Kit – in order to ensure that software applications can be
deployed on U3 smart drives, U3 LLC has developed the U3 smart Application
Compliance Program. This includes a set of test criteria, which must be followed before a
software application can be certified and before the right to display the U3 smart logo can be
granted. The kit is available from http://www.u3.com/developers/.

1.2 Overview of U3 Applications
There are three types of U3 applications that can be developed and deployed.

Figure 1: U3 Application Types and SDK Architecture

• U3 Launchpad (U3LP) Application – A Windows application that is resident on the U3
smart device and whose lifecycle is managed by U3 Launchpad. Because the application is
installed onto the device, all configurations, user preferences and files travel with the device.
For further information and a description of the U3 Launchpad, refer to the Application
Deployment Guide.

• U3 Launchpad+ (U3LP+) Application – A U3 Launchpad application that ships with the
DAPI DLL allowing it to communicate directly with the U3 device and leverage the advanced
device features. This is necessary for example, to work with cookies, or to establish the

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction 3

device unique ID. For further information, refer to the Application Deployment Guide, SDK
Developer Guide and the DAPI Reference Guide.

• U3 Aware (U3A) Application – A host-based application that uses the DAPI DLL to detect
and communicate with U3 Devices as they are inserted into the host. A U3A application is a
standard Windows application, with a standard installation and startup procedure, which has
been extended to support U3 devices. For further information, refer to the SDK Developer
Guide and the DAPI Reference Guide. Examples of U3 Aware applications are:

• A Windows service, such as a Login service, that uses U3 smart device as tokens.

• A Windows application, such as a Backup tool, which has U3 device support, enabling
data to be securely backed up to a password protected private area on the device.

1.3 Deploying and Launching U3 Applications
Table 1 describes the components of the SDK required to develop, deploy and launch the
various types of U3 applications.

Table 1: SDK Component Usage

Application Type Relevant Documentation Required
Components

Installation
Location

U3 Launchpad Application Deployment Guide U3 Launchpad

U3 Launchpad+ Application Deployment Guide
SDK Developer Guide
DAPI Reference Guide

DAPI Package* U3 Launchpad

U3 Aware SDK Developer Guide
DAPI Reference Guide

DAPI Package* Host

* U3LP+ and U3A Applications require the DAPI package for development since it contains the
libraries for interacting with the device. These applications must ship with the DAPI DLL.

Note: The U3 smart Application Certification Self-Test Criteria document, included in the U3
Logo Compliance Kit, should be consulted before designing and deploying a U3 application.

1.3.1 Deploying and Launching U3 Applications
The U3 applications are deployed and launched as follows:

• U3LP and U3LP+ Applications – These applications are resident on the device and must
be deployed using the procedures described in the Application Deployment Guide. The
applications are launched and managed by the Launchpad

• U3A Applications – These applications are installed on the host and are deployed and
launched like any other Windows host based application.

1.4 Overview of U3 Devices
A U3 smart device is a configurable USB flash drive (UFD) that currently supports up to two
independent memory domains (support for additional domains will be provided in future
releases). Each memory domain can be configured as one of the following:

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction 4

• Persistent read-only domain that emulates a CD-ROM

• Removable domain (removable disk)

1.4.1 Persistent Read-Only Domains (Virtual CD-ROM)
A persistent read-only domain is a domain that emulates CD-ROM functionality. The domain
provides full CD-ROM functionality, including auto-run. The CD-ROM domain can be used to
store pre-defined data on a U3 device that cannot be changed by a user.

The virtual CD-ROM domain is created, configured and managed using the U3 Tool. The tool
allows ISO images to be burnt to the virtual CD-ROM domain. This domain can also be locked
with a key that must be provided to reconfigure the domain or burn a new image. For
information about handling the CD domain, refer to the Hardware Development Kit
documentation.

1.4.2 Removable Domain Areas
A removable domain can be configured to contain a public and/or private area. A public area
acts like a standard USB flash device. The private area implements password-based access
control and it is not accessible until a successful login has occurred with the correct password.
The login and logout functions are accessible through DAPI.

Users can view either the public or the private area on a removable domain at one time, as
follows:

• If the domain contains only a public area, it becomes visible immediately when the device is
inserted into the USB port.

• If the domain contains only a private area, it becomes visible only after logging in through
DAPI. Until then, it behaves like a device with no media inserted.

• If the domain contains both public and private areas, the public area is initially visible, for
example, on drive E. When users log into the private area, it replaces the public area and
only the private area is visible on drive E. When users log out of the private area, the public
area again becomes visible on drive E, replacing the private area.

1.4.3 Sample Configurations
U3 smart devices support the following configurations:

• Removable (all public) + CDROM

• Removable (all private) + CDROM

1.4.4 Cookies
Cookies are used to store data in a special hidden data area of the device. They are accessible
only by DAPI. Applications can store private data in this hidden area. Cookies are addressed by
a unique section and entry pair, in the same way that entries in Windows INI files are
addressed.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Overview of the Device API 5

2 Overview of the Device API
This section presents an overview of the Device API (DAPI). DAPI is only required by those
applications that interact with the device, that is U3 LaunchPad+ and U3 Aware applications.

Note: Most U3 applications are standard U3 Launchpad applications and do not require the use
of DAPI.

The Device API allows applications to communicate with U3 compatible devices and also query
information about U3 compatible devices, leveraging advanced device features.

The DAPI DLL is a C-based DLL that can be used by all programming languages that support
Unicode. The dll can be implicitly or explicitly loaded.

2.1 DAPI Programming Model
This section provides a high-level description of the DAPI programming model.

2.1.1 Event Model
DAPI is event-driven based upon device insertion, update and removal events. A detailed
description of the DAPI event model is presented in Section 4. The main points of the event
model are as follows.

• DAPI notifies the application when device events occur through a callback function that the
developer must implement.

• Device events are: device inserted (connect), device removed (disconnect) and U3 smart
device specific update and configuration change events.

• The different U3 smart device update events occur when an operation has been performed
on the device or when Windows has updated information about the device configuration. For
example, the update event occurs when Windows has assigned a drive letter to a domain on
the device. Typically when a multi-domain device is inserted, each domain is assigned a
drive letter one domain at a time.

• The device handle is included with all DAPI events and is passed in the callback to the
application. DAPI functions use this handle to interact with the device.

2.1.2 Device Support
DAPI recognizes both U3 and non-U3 compliant devices. Not all functions are available for non-
U3 compliant devices.

Applications can specify filters so that only events for specific devices are received. For more
information, see Section 3.3, dapiRegisterCallback of the DAPI Reference Guide.

2.2 Error Codes
DAPI uses the Windows HRESULT system to return error and success codes. DAPI uses the
FACILITY_ITF feature to define additional DAPI-specific errors that are defined in u3dapi.h and
that are described in Section 7.1 of the DAPI Reference Guide.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Overview of the Device API 6

2.3 DAPI Functions
The DAPI functions allow applications to interact with a device. They are divided into the
following usage groups:

• Session Management Functions – Allow you to set up and terminate a DAPI session,
register callback functions and obtain a device handle.

• Device Functions – Used to query basic information about the device such as device
capability, device identification parameters and device domain configuration for all USB
devices.

• Private Area Functions – Gets private area configuration information, logs in and out of the
private area and sets a private area password.

• Cookie Functions – Reads and writes binary and text cookies.

For more information about the DAPI functions, see the U3 DAPI Reference Guide.

2.4 Privileged Operating Modes
DAPI supports administrator and non-administrator (user) privilege modes. When in non-
administrator mode, also referred to as user mode, some DAPI features are not available. The
HRESULT code DAPI_E_CMD_NOT_SUPPORTED_IN_NON_ADMIN_MODE is returned
denoting that these features are not currently available when these functions are called in user
mode. DAPI will automatically switch the device to user mode when required.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Building DAPI Applications 7

3 Building DAPI Applications

3.1 SDK Development Environment
The DAPI DLL uses C-based function calls. Any Win32 based language and development
environment that supports Unicode strings can be used to develop DAPI applications including,
but not limited to:

• Microsoft® Visual Studio® Version 6, .Net 2003 and newer versions

• Borland® C and Delphi

3.2 Shipping the DAPI DLL
All applications that use DAPI (U3LP+, U3A) must include the DAPI DLL together with the
application. You also must ensure that the specific DAPI DLL is used by the specifying full path
to the DLL. That will ensure that your applications will work with the specific version of DAPI.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction to the DAPI Programming Event Model 8

4 Introduction to the DAPI Programming Event Model
This section describes the DAPI event model for a U3 device.

4.1 Device Events
The following events are generated by DAPI for all supported USB devices:

Table 2: Callback Events Generated for all Devices

Event Name Value Description

DAPI_EVENT_DEVICE_CONNECT 0x01 A supported USB device has been
connected.

DAPI_EVENT_DEVICE_DISCONNECT 0x02 A device has been disconnected. The
device handle is no longer valid.

The following events are generated for U3 smart devices:

Table 3: Callback Events Generated for U3 smart Devices

Event Name Value Description

DAPI_EVENT_DEVICE_UPDATE 0x03 Information about a domain on the
device has been updated. A domain
has been assigned a drive letter.

DAPI_EVENT_DEVICE_LOGIN 0x04 A private area on the device has been
successfully logged into.

DAPI_EVENT_DEVICE_LOGOUT 0x05 A private area on the device has been
successfully logged out of.

DAPI_EVENT_DEVICE_WRITE_PROTECT_ON 0x06 Write protect has been enabled on a
removable domain and the domain is
now read only.

DAPI_EVENT_DEVICE_WRITE_PROTECT_OFF 0x07 Write protect has been disabled on a
removable domain.

DAPI_EVENT_DEVICE_RECONNECT 0x08 The device has been refreshed by
Windows. The current device
configuration is no longer valid.

DAPI_EVENT_DEVICE_NEW_CONFIG 0x09 The device has been reconfigured.
The current device configuration is no
longer valid.

4.2 Multiple Domain Initialization Process
Windows processes domains on a device sequentially, that is each domain is assigned a drive
letter and its device information is updated in the host. When a device with multiple domains is
inserted into the machine, events are received in the following sequence: initially, a connect

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction to the DAPI Programming Event Model 9

event will be received when the first domain is initialized and assigned a drive letter.
Subsequently, an update event will be received as each additional domain is initialized and
assigned a drive letter.

Until the device is completely initialized the dapiQueryDomainInformation (see DAPI Reference
Guide, Section 4.3) function will return a S_FALSE value. The DAPI_DI_NOT_READY flag will
be set for each domain that has not yet been assigned a drive letter.

Note that if a session or callback is unregistered, a disconnect event is not sent for associated
devices.

4.3 Callback Function Event Information
The SDK uses a callback function to provide information to the application about the occurrence
of events described in the previous section; the occurrence of an event causes the callback
function to be called. The event that occurred for a device and the device handle are passed as
parameters of the callback function.

When an event occurs the following data is sent to the callback function:

• Device handle: This handle references the device. It can be used with all other DAPI
functions to perform actions and query information about the device. If the handle is used
after the device is removed, an E_HANDLE error will be returned.

• eventType: Inserted, removed or U3 specific update event. See Section Device Events, for
more information.

• pEx: When the callback is registered, a pointer to arbitrary data can also be provided by the
developer. This pointer is sent to the callback every time an event occurs that is associated
with the registered callback instance. The pointer is provided as a void * and must be cast to
the appropriate data type.

The callback function has the following form:
void _stdcall dapiCallback(HDEVICE hDev,
 DWORD eventType,
 void * pEx)

4.3.1 Registering for Events
You register for a device event by registering a callback function (using dapiRegisterCallback,
see Section 3.3 of the DAPI Reference Guide). You can register a callback function for all
devices or for a specific device by specifying the pszConnectionString parameter as NULL or a
specific device serial number, respectively.

4.3.2 Obtaining the Connection String for a Device
For U3LP+ applications, the Launchpad provides the connection string for the device from
which the application is running. The connection string resides in the U3 Environment Variable
U3_DAPI_CONNECT_STRING (see Section 9.4.4 in U3 Runtime Variables of the Application
Deployment Guide.) Alternatively, you can use the dapiQueryDeviceInformation function to
obtain the serial number string of a device, which can be used as the connection string
parameter for a new callback registration.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Introduction to the DAPI Programming Event Model 10

4.4 Multiple Registration
You can register a callback function more than once with the same or different connection
string. Each time a callback is successfully registered a handle is provided to reference that
instance of the callback in the future. The handle is used to unregister the callback function.

The pEx parameter can be used when performing multiple registrations to aid in tracking each
instance or associating a callback with a class instance or other data.

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 A Simple DAPI Program 11

5 A Simple DAPI Program
This section presents a simple example that includes the basic steps in creating a DAPI
application.

5.1 Getting the Device Information
This simple MFC Dialog application uses DAPI to display information about device that is
inserted. It detects the first device inserted and prints out information about that device. This
application shows how to register a callback function, get the device handle and use it to get
basic information about the device. For more information about the DAPI functions used in the
application, see Chapter 3 of the DAPI Reference Guide.

The steps of the application are:
1. Create a MFC Simple Dialog application, called DAPIMFC. Set the project type to be Unicode.

2. Include u3dapiXX.h in the code and include u3dapiXX.lib in the project.

3. Create a class to hold the DAPI functions. We will call it DapiBase. Change the application’s
dialog class to subclass DapiBase as well as CDialog

class CDAPIMFCDlg : public CDialog, CDapiBase

4. Implement the callback function that you will register to receive DAPI events. As DAPI functions
should not be called from within the callback, this function will send a Windows message back to
the application. We will use the pEx value to pass the handle of the application’s main window.

void _stdcall CDapiBase::Callback(HDEVICE hDev, DWORD eventType, void* pEx)
{
 if(NULL != pEx)
 PostMessage((HWND)pEx, WM_USER + eventType, hDev, 0);

}

5. In the DapiBase define a function that creates a DAPI session. A DAPI application must begin by
creating a DAPI session (using dapiCreateSession) that enables access to the DAPI functions
and initiates listening for device events. Once the session is created, register the callback
function, passing in the hWnd parameter as pEx.

HRESULT CDapiBase::RegisterForEvents(HWND hWnd, wchar_t* pszConnctionString)
{
 HRESULT res = S_FALSE;
 // make sure that the session or callback does not exist
 if(ILLEGAL_HSESSION != m_hSession || ILLEGAL_HCALLBACK != m_hCallBack)
 return res;
 //create a session
 if((res = dapiCreateSession(&m_hSession)) == S_OK)
 { //register a callback on our session

if(S_OK != (res = dapiRegisterCallback(m_hSession, pszConnctionString,
 (DAPI_CALLBACK)(Callback),(void *) hWnd,
 &m_hCallBack)))

 { UnregisterForEvents(); }
 }
 return res;

}

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 A Simple DAPI Program 12

6. When a device is inserted a message will be sent to the main window via the callback function.
Create a message handler that will call dapiQueryDeviceInformation using the device handle
passed by the callback function. This will call the DAPI function outside of the callback function.

BEGIN_MESSAGE_MAP(CDAPIMFCDlg, CDialog)
 . . .
 ON_MESSAGE(WM_UFD_CONNECTED, OnDeviceConnected)
 ON_MESSAGE(WM_UFD_DISCONNECTED, OnDeviceDisconnected)
 ON_MESSAGE(WM_UFD_UPDATED, OnDeviceUpdated)
 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

. . .

LRESULT CDAPIMFCDlg::OnDeviceConnected(WPARAM hDevice, LPARAM unused)
{

GetDlgItem(IDC_STATIC_STATUS)->SetWindowText(_T("Device Connected"));

devInfo info;

 //get the device information
if(dapiQueryDeviceInformation((HDEVICE)hDevice, &info) == S_OK)
 {
 CString strUnique; // turn UniqueID binary array into a string

 for (size_t i = 0; i < sizeof(info.uniqueID); ++i)
 {
 CString tmpStr;
 tmpStr.Format(_T("%02x "), (int)info.uniqueID[i]) ;
 strUnique += tmpStr;
 }
 GetDlgItem(IDC_EDIT_UNIQUE)->SetWindowText((LPCTSTR)strUnique);
 GetDlgItem(IDC_EDIT_SERIAL)->SetWindowText((LPCTSTR)info.serialNumber);
 GetDlgItem(IDC_EDIT_FW_VER)->SetWindowText((LPCTSTR)info.FWVersion);
 GetDlgItem(IDC_EDIT_VENDOR_STR)->SetWindowText((LPCTSTR)info.vendorString);
 GetDlgItem(IDC_EDIT_PRODUCT_STR)->SetWindowText((LPCTSTR)info.productString);

 }

return 0;

 }

7. In the OnInitDialog() function, register the callback function. Use the U3 Launchpad Environment
variable U3_DAPI_CONNECT_STRING to determine the connection string for the device.

typedef CStringT< TCHAR, StrTraitMFC< TCHAR > > CMyString;
CMyString connectionString;
connectionString.GetEnvironmentVariable(_T("U3_DAPI_CONNECT_STRING"));

// Register the callback, using the safe windows handle and the
// connection string. The CS will be NULL if not defined.
// This calls the parent class CDapiBase::RegisterForEvents(...)

RegisterForEvents(GetSafeHwnd(),connectionString.GetBuffer(256));

8. Destroy the DAPI session. A DAPI application should always be terminated by destroying the
session (dapiDestroySession). All callback and device handles associated with the DAPI session

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 A Simple DAPI Program 13

are also destroyed and invalidated.

void CDapiBase::UnregisterForEvents()
 {
 if(ILLEGAL_HCALLBACK != m_hCallBack)
 dapiUnregisterCallback(m_hCallBack);

 m_hCallBack = ILLEGAL_HCALLBACK;

 if(ILLEGAL_HSESSION != m_hSession)
 dapiDestroySession(m_hSession);

 m_hSession = ILLEGAL_HSESSION;

 }

5.2 Get the list of domains on a device
The following is a code example showing how to query the domain information for a U3 device.
This function will not act until all domains have been assigned drive letters. See the
CDAPIMFCDlg::UpdateDrives() function for the full example. See Section 4.3 in the DAPI
Reference Guide, dapiQueryDomainInformation.

1. U3 smart devices support a variable number of domains. To determine the number of
domains on the device call the dapiQueryDomainInformation function with a NULL
domainInfo pointer and an nCount variable with a value of 0.
WORD nCount = 0;
// Read the number of drives to allocate the array
if(dapiQueryDomainInformation(hDevice, NULL, &nCount) == S_OK)

2. If the function returns S_OK, the use the update nCount value to create an array of
domainInfo structures. Below is an example, using a STL vector template.

 //Allocate domains vector
 typedef std::vector<domainInfo> domain_arr;
 domain_arr vec(wDomains);

3. Call the function again with a domainInfo array. If the function returns S_OK then it has
succeeded and all domains have been assigned drive letters. If the function returns
S_FALSE, then not all the domains have been assigned drive letters. Wait until all drives
have been assigned a drive letter, i.e. wait for S_OK value

if(dapiQueryDomainInformation(hDevice, &(vec[0]), &wDomains) == S_OK)

 {

4. Loop through each domain displaying the required information about each domain, or
example a list of drive letters

 CString strDrives;
 for(size_t n=0; n <vec.size();++n)
 {
 strDrives += vec[n].szPath;
 strDrives += _T(" ");

 }

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Working with Cookies 14

6 Working with Cookies
This section describes how to write cookies to a U3 device. Cookies are used to store data in a
special hidden data area of the device. They are accessible only by DAPI. Applications can
store private data in this hidden area.

Cookies are addressed by a unique section and entry pair, in the same way that entries in
Windows INI files are addressed.

See the Standard Cookie Functions in Chapter 6 of the DAPI Reference Guide for limits on
cookie-related values.

The U3 smart Application Certification Self Test Criteria document, part of the U3 Logo
Compliance Kit, describes the acceptable use of cookies on U3 smart devices.

The following sections show how to use DAPI to write text cookies to a device.

6.1 Reading and Writing an Text Cookie
The following example writes a text cookie to a device.

The steps of the application are:
1. Test that the device supports cookies by querying the device capabilities using the

dapiQueryDeviceCapability(hDev, DAPI_CAP_U3_COOKIE) call.

2. Determine the size of the cookie data and if the cookie exists. Call dapiReadTextCookie with a
NULL szValue entry and an nLength value = 0. The function will either return S_OK or
DAPI_E_BUFFER_TOO_SMALL.

 DWORD nCookieLen = 0;
 HRESULT res = dapiReadTextCookie(hDevice,pszSection,pszEntry, NULL,
 &nCookieLen);
 switch(res)
 {
 case DAPI_E_BUFFER_TOO_SMALL:
 case S_OK:

 {

3. Use the returned length value to allocate a string and call dapiReadTextCookie with updated
nLength value an szValue buffer.

 // OK read cookie data
 // nCookieLen includes final \0 char
 wchar_t * pszTextBuffer = new wchar_t[nCookieLen];
 wmemset(pszTextBuffer,_TCHAR("\0"),nCookieLen);
 if(S_OK == dapiReadTextCookie(hDevice,pszSection,pszEntry,
 pszTextBuffer, &nCookieLen))
 {
 . . .
 }
 delete [] pszTextBuffer;
 break;

 }

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Working with Cookies 15

4. Alternatively the cookie may not exist, so an alternate value should be generated
 case DAPI_E_DATA_NOT_FOUND:
 // cookie does not exist
 // create alternate or default data
 . . .
 break;
 default:
 // general error reading cookie
 // check and analyze return error code
 . . .
 break;

 }

5. Write updated cookie using dapiWriteTextCookie.
dapiWriteTextCookie(hDevice,pszSection,pszEntry,
 (LPCTSTR)GenerateCookieData());

Note: A cookie can be written immediately after getting device handle. There is no need to wait
for drive letters to be assigned to domains.

6.2 Implementation
 // This function checks for a cookie on the device called
 // [AppName]
 // LastSeen=
 //
 // NOTE According to self test criteria this cookie must be
 // removed from the device when the application is uninstalled!!!
 // Implement in deviceUninstall a method to delete this cookie.

void CheckandSetCookie(HDEVICE hDevice)
 {

 // check that the device supports cookies
 if(S_OK != dapiQueryDeviceCapability(hDevice,DAPI_CAP_U3_COOKIE))
 {
 SetWindowText(_T("Device does not support cookies"));
 return;
 }

 wchar_t * pszSection = _T("AppName");
 wchar_t * pszEntry = _T("LastSeen");

 // test to see if cookie exists
 DWORD nCookieLen = 0;
 HRESULT res = dapiReadTextCookie(hDevice,pszSection,pszEntry,
 NULL,
 &nCookieLen);
 switch(res)
 {
 case DAPI_E_BUFFER_TOO_SMALL:
 case S_OK:
 {
 // OK read cookie data
 // nCookieLen includes final NULL char
 wchar_t * pszTextBuffer = new wchar_t[nCookieLen];

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Working with Cookies 16

 // clear the buffer
 wmemset(pszTextBuffer,_TCHAR("\0"),nCookieLen);

 if(S_OK == dapiReadTextCookie(hDevice,pszSection,pszEntry,
 pszTextBuffer,
 &nCookieLen))

 {
 SetWindowText(pszTextBuffer);
 }
 delete [] pszTextBuffer;
 break;
 }

 case DAPI_E_DATA_NOT_FOUND:
 // cookie does not exist
 SetWindowText(_T("This is the first time we have seen the device"));
 break;

 default:
 // general error reading cookie
 SetWindowText(_T("Error reading cookie data"));
 break;
 }

 // now set the cookie with the latest time string
 CTime time(CTime::GetCurrentTime());
 dapiWriteTextCookie(hDevice,pszSection,pszEntry,
 (LPCTSTR)time.FormatGmt(_T("%#c")));

 }

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Working with Private Areas 17

7 Working with Private Areas
This section shows how to use DAPI to access private or protected areas of a device.

The protected or private area is a secure area within a removable domain that supports
password-based access control. It is accessible only by login through DAPI

The private area functions are available to be used with devices configured using the U3
Hardware Development Kit (HDK)

Note: U3 Launchpad+ and U3 Aware applications working in conjunction with LaunchPad-
managed devices must not call private area functions. This may result in data loss or application
instability.

7.1 Reading and Writing to a Private Area
The following example demonstrates how to log into a private area of a specific device. The
user can read or write to it and then logs out again. The example also shows how to handle a
login error and to detect when the protected area has been permanently locked because the
maximum number of accesses, MaxNOA, was exceeded. In this application we use a serial
number of a specific device as the pszConnectionString to receive connection events only from
that device. For more information, see Chapter 5 of the DAPI Reference Guide.

The example will also show how to query the domain information and test when the device is
not yet fully initialized.

Note that the initial steps of the application, up to and including implementing and registering the
callback function and the last step of destroying the session are omitted in this example.

The steps of the application are:
1. Test that the device supports private areas

dapiQueryDeviceCapability (hDev, API_CAPI_U3_PRIVATE_AREA).
2. Call dapiQueryDomainInformation to determine the path to removable domains and check

that the DAPI_DI_REMOVABLE_PRIVATE flag is set. This indicates that the domain has a
private area configured.
While the typeMask for the domain includes the DAPI_DI_NOT_READY flag, wait until the
next device update event. When the flag is no longer set, log into the private area.

3. Use dapiGetPrivateAreaInfo to get the password hint and test that the domain is not locked
out (the domain is locked when CurrNOA = MaxNOA). Store the currNOA (number of
attempts) value for the domain. This will be used later to handle any errors.

4. Get the path to the domain and the password. Display the password hint, if needed.
5. Call dapiLoginPrivateArea to login to private area.

 If the login failed with a DAPI_E_COMM_FAIL, test the updated CurrNOA value.

• If CurrNOA has increased, the password was incorrect.

• If CurrNOA is now equal to Max NOA, the domain is permanently locked and a reset
password (area format) must be performed (using dapiSetPrivateAreaPassword, see
Section 5.4 of the DAPI Reference Guide).

U3 Platform 1.0 SDK, Developer Guide

04-UM-0605-10 Working with Private Areas 18

• If CurrNOA has not increased, the communications with the device have failed.

• After performing the appropriate corrective action, call dapiLoginPrivateArea again.

6. On user command, call dapiLogoutPrivateArea to logout from the private area.

U3 Platform 1.0 SDK, Developer Guide

 © 2005, U3, LLC. All rights reserved. U3 and the U3 logo are trademarks of U3, LLC. Other brand names mentioned are for
identification purposes only and may be trademarks of their respective holders.

U3
303 Twin Dolphin Drive, 6th Floor
Redwood City, CA 94065
1-800-837-3654, info@u3.com

For more information, visit www.u3.com

	Introduction
	U3 SDK Components
	Overview of U3 Applications
	Deploying and Launching U3 Applications
	Deploying and Launching U3 Applications

	Overview of U3 Devices
	Persistent Read-Only Domains (Virtual CD-ROM)
	Removable Domain Areas
	Sample Configurations
	Cookies

	Overview of the Device API
	DAPI Programming Model
	Event Model
	Device Support

	Error Codes
	DAPI Functions
	Privileged Operating Modes

	Building DAPI Applications
	SDK Development Environment
	Shipping the DAPI DLL

	Introduction to the DAPI Programming Event Model
	Device Events
	Multiple Domain Initialization Process
	Callback Function Event Information
	Registering for Events
	Obtaining the Connection String for a Device

	Multiple Registration

	A Simple DAPI Program
	Getting the Device Information
	Get the list of domains on a device

	Working with Cookies
	Reading and Writing an Text Cookie
	Implementation

	Working with Private Areas
	Reading and Writing to a Private Area

