

U3 Platform 1.0 SDK
DAPI Reference Guide

04-UM-0605-00

Version 1.0.1
September 2005

Revision 1.0

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Document Control Information ii

DOCUMENT CONTROL INFORMATION

Document No.: 04-UM-0605-00

 Title Name Date
Issued by: U3 Chief Architect Daniel Goodman September 2005
Edited by:

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Table of Contents iii

Table of Contents
1 Introduction ..1

1.1 Overview of U3 smart Devices ...1
1.1.1 Persistent Read-Only Domains (Virtual CD-ROM) ... 1
1.1.2 Removable Domain Areas .. 1
1.1.3 Sample Configurations .. 2
1.1.4 Cookies.. 2

1.2 Device API..2
2 Overview...3

2.1 Development Environment ...3
2.2 Functionality ...3

2.2.1 Privileged Operating Modes .. 3
2.3 DAPI Components..3
2.4 Data Types ...4

3 Session Management Functions ..5
3.1 dapiCreateSession ...6
3.2 dapiDestroySession..9
3.3 Callback Function Template for Device Events..10
3.4 dapiRegisterCallback..12
3.5 dapiUnregisterCallback ..14
3.6 dapiGetVersion...15

4 Device Query Functions..16
4.1 dapiQueryDeviceCapability ..17
4.2 dapiQueryDeviceInformation ..19
4.3 dapiQueryDomainInformation...21
4.4 dapiEjectDevice..24

5 Private Area Functions..25
5.1 dapiGetPrivateAreaInfo ..26
5.2 dapiLoginPrivateArea ...29
5.3 dapiLogoutPrivateArea ...31
5.4 dapiSetPrivateAreaPassword...33

6 Standard Cookie Functions ..36
6.1 dapiWriteTextCookie ..37
6.2 dapiWriteBinaryCookie ...38
6.3 dapiReadTextCookie ..40
6.4 dapiReadBinaryCookie...42
6.5 dapiDeleteCookie ...44

7 DAPI HRESULT Codes ..45
7.1 HRESULT Codes ...45

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Introduction 1

1 Introduction
This Reference Guide presents a detailed description of each function of the U3 Device API,
including syntax, arguments, return codes, possible error conditions and C examples for each
API function. It is intended to be used by developers writing applications for U3 smart devices
and also non U3 smart devices.

• Chapter 1 provides a general introduction to the U3 smart devices and the U3 Device API.

• Chapter 2 presents information about DAPI environment, components and data types.

• Chapter 3 describes the session management functions in detail.

• Chapter 4 describes the device query functions in detail.

• Chapter 5 describes the private area functions in detail.

• Chapter 6 describes the standard cookie functions in detail.

• Chapter 7 contains reference material, including a list of DAPI error codes.

For DAPI usage information and task-oriented examples please refer to the Developers Guide,
which is part of the SDK.

The following sections briefly describe the U3 smart device characteristics and the Device API
capabilities.

1.1 Overview of U3 smart Devices
A U3 smart device is a configurable USB flash drive (UFD) that currently supports up to two
independent memory domains (support for additional domains will be provided in future
releases). Each memory domain can be configured as one of the following:

• Persistent read-only domain that emulates a CD-ROM

• Removable domain (removable disk)

1.1.1 Persistent Read-Only Domains (Virtual CD-ROM)
A persistent read-only domain is a domain that emulates CD-ROM functionality. The domain
provides full CD-ROM functionality, including auto-run. The CD-ROM domain can be used to
store pre-defined data on a U3 device that cannot be changed by a user.

The virtual CD-ROM domain is created, configured and managed using the U3 Tool. The tool
allows ISO images to be burnt to the virtual CD-ROM domain. This domain can also be locked
with a key that must be provided to reconfigure the domain or burn a new image. For
information about handling the CD domain, refer to the Hardware Development Kit
documentation.

1.1.2 Removable Domain Areas
A removable domain can be configured to contain a public and/or private area. A public area
acts like a standard USB flash device. The private area implements password-based access
control and it is not accessible until a successful login has occurred with the correct password.
The login and logout functions are accessible through DAPI.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Introduction 2

Users can view either the public or the private area on a removable domain at one time, as
follows:

• If the domain contains only a public area, it becomes visible immediately when the device is
inserted into the USB port.

• If the domain contains only a private area, it becomes visible only after logging in through
DAPI. Until then, it behaves like a device with no media inserted.

• If the domain contains both public and private areas, the public area is initially visible, for
example, on drive E. When users log into the private area, it replaces the public area and
only the private area is visible on drive E. When users log out of the private area, the public
area again becomes visible on drive E, replacing the private area.

1.1.3 Sample Configurations
U3 smart devices support the following configurations:

• Removable (all public) + CDROM

• Removable (all private) + CDROM

1.1.4 Cookies
Cookies are used to store data in a special hidden data area of the device. They are accessible
only by DAPI. Applications can store private data in this hidden area.

Cookies are addressed by a unique section and entry pair, in the same way that entries in
Windows INI files are addressed.

1.2 Device API
The Device API (DAPI) is a set of methods that allows the user to interact programmatically with
a U3 or non U3 smart devices to:

• get configuration, capability and status information about the U3 and non U3 smart devices
in a machine (see Chapter 4 Device Query Functions).

• login and logout from private areas (see Chapter 5 Private Area Functions).

• read and write to standard cookies (see Chapter 6 Standard Cookie Functions).

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Overview 3

2 Overview
This chapter describes the operating environment and functionality of the DAPI.

2.1 Development Environment
• Supports all Win32 programming languages, including Microsoft Visual C++ 6 and .Net 2003

that support Unicode strings.

• Only Unicode strings are supported.

• Automatically supports admin and non admin users.

• Supports multiple instances, in the same application and across multiple applications.

2.2 Functionality
The Device API (DAPI) is a C-Style API packaged in a DLL. The DLL ships with a .lib and .def
file. The DLL may be loaded multiple times within the same process or across multiple
applications. Each may create its own unique DAPI session. Each DAPI session maintains its’
own set of unique handles. Handles are not transferable between sessions.

Other characteristics of DAPI include:

• Every function returns a HRESULT value.

• DAPI is thread-safe.

• All string types are Unicode.

• DAPI generates events and allows the user to query both U3 and non U3 smart devices.

2.2.1 Privileged Operating Modes
DAPI supports admin and non-admin user privilege modes. When in non-admin mode, some of
DAPI’s functions are not supported. If a function is not supported in user mode, it will return the
DAPI HRESULT code DAPI_E_CMD_NOT_SUPPORTED_IN_NON_ADMIN_MODE. See
Section 7 DAPI HRESULT Codes for more details.

2.3 DAPI Components
The Device API package contains the following set of files:

Table 1: Device API Components

Item Description

u3dapi10.dll The DAPI DLL

u3dapi10.lib The library file required to link to the DLL

u3dapi10.h The DAPI header file. Throughout this document, this file
will be referred to as dapi.h.

u3dapi10.def The .def file listing all DAPI functions and their ordinals.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Overview 4

Note: The u3dapi10.dll file is signed with the “U3 LLC” Authenticode certificate.

2.4 Data Types
The structures and parameters used throughout this document use specific identifiers to define
the intended data type. The implementation of DAPI uses the following data type definitions

Table 2: DAPI Data Types

Data Type Description

DWORD Unsigned 32-bit integer value

int Signed 32-bit integer value

WORD Unsigned 16-bit integer value

Handle Signed 32-bit integer value

BYTE 8-bit unsigned integer value

wchar_t 16-bit Unicode character. The standard character type
used by DAPI

DWORD64 64-bit unsigned integer

HSESSION A 32-bit handle referring to an instance of a DAPI session.
Each instance maintains it own set of callback and device
handles. When a session is destroyed, all associated
callback and device handles are destroyed as well.

HCALLBACK A 32-bit handle referring to a registered callback function.
If the same function is registered twice, there are two
different handles.

HDEVICE A 32-bit handle that references a detected USB device.
Handles refer to both U3 and nonU3 smart devices.

HRESULT The Windows HRESULT errors codes are used for all
function return codes. For U3-specific return codes, the
FACILITY_ITF feature is used, with error codes starting
from 0x200. See Section 7 “DAPI HRESULT Codes” for
more details.

All constants used throughout this document are defined in the dapi.h file.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 5

3 Session Management Functions
The DAPI session management functions are used to create the DAPI session and register the
application to receive DAPI events. A session must be created with the DAPI DLL to enable it to
begin listening for USB device events. Once a session has been created, the callback function
can be registered to receive DAPI events. The device handle provided to the callback for each
event makes it possible to use all other DAPI functions and refer to devices.

The session management functions consist of the following commands:

• dapiCreateSession

• dapiDestroySession

• dapiRegisterCallback

• dapiUnregisterCallback

• dapiGetVersion

The session management commands also define the format of the callback function to be used
with the dapiRegisterCallback function. This is defined in Section 3.3 Callback Function
Template for Device Events.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 6

3.1 dapiCreateSession
Description

Creates a new DAPI session and returns a handle to the session. Sessions handles are
required to register a DAPI event callback.

Sessions manage and maintain callback and device handles. Once a session is created, the
DAPI DLL will begin to monitor USB devices.

Syntax
HRESULT dapiCreateSession(HSESSION * hSession)

Input Parameters
hSession

A pointer to a HSESSION variable.

Output Parameters
hSession

The handle to the newly created session. If the function fails, this should be equal to
ILLEGAL_HSESSION (see dapi.h).

Return Values
Table 3: dapiCreateSession Return Values

HResult Value Description

S_OK 0x00000000 Session successfully created

E_POINTER 0x80004003 The pointer to session handle is
null

DAPI_E_OS_NOT_SUPPORTED 0x80040250 The operating system is not
supported by DAPI.

DAPI_E_WIN_2K_SP4_HOTFIX_MISSING 0x80040251 DAPI requires that the latest
version of Windows 2000
Service Pack 4 must be applied
to this machine.

See Also
dapiDestroySession, dapiRegisterCallback

Notes
• At least one session must be created before DAPI begins to identify and create events for

USB devices.

• The session handle returned can be used to register a callback function.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 7

Example
The following example code demonstrates how to create and destroy a session. In addition it
defines and registers a callback function.

To simplify the example, this sample application waits for a specific text input in order to
maintain the application in its listening state. It is recommended that alternatively the callback be
registered in another thread.

#include "dapi.h"
#include <conio.h>
#include <ctype.h>

// A sample callback function implementation.
// If any DAPI functions must be called, they should be done outside
// of the callback function.

void _stdcall EventCallback(HDEVICE hDev, DWORD eventType, void* pEx)
 {
 // log device insert and eject events
 switch(eventType)
 {
 case DAPI_EVENT_DEVICE_CONNECT:
 printf("Device %2d was connected\n", hDev);
 break;
 case DAPI_EVENT_DEVICE_DISCONNECT:
 printf("Device %2d was disconnected\n", hDev);
 break;
 }
 }

 // Basic function to create a session and register a callback.
HSESSION startDAPI(void)
 {
 // create the session
 HSESSION hSession = ILLEGAL_HSESSION;

 if(S_OK == dapiCreateSession(&hSession))
 {

 // register the callback for all devices
 HDEVICE hCallback = ILLEGAL_HCALLBACK;
 DAPI_CALLBACK pCallback = (DAPI_CALLBACK)&EventCallback;

 if(S_OK != dapiRegisterCallback(

hSession, // handle to the session
 NULL, // all devices
 pCallback, // pointer to EventCallback(...)
 NULL, // no pEx data,
 &hCallback))
 {

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 8

 // callback registration failed, let us destroy
 // the session now.
 dapiDestroySession(hSession);
 hSession = ILLEGAL_HSESSION;
 }
 }
 return hSession;
 }

// this will destroy the session and all associated callback events
// handlers and device handles.

void stopDAPI(HSESSION hSession)
 {
 dapiDestroySession(hSession);
 }

// main entry point to application.
// Create the session and maintain the application waiting for key input
// before destroying the session and quiting.

int _tmain(int argc, _TCHAR* argv[])
 {
 wprintf(_T("DAPI version is %s\n"),dapiGetVersion());
 printf("Type q to quit\n");
 HSESSION hSession = startDAPI();

 // keep receiving events until the user has hit 'q'
 if(ILLEGAL_HSESSION != hSession)
 while('q' != _getch());

 stopDAPI(hSession);
 return 0;
 }

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 9

3.2 dapiDestroySession
Description

Destroys the DAPI session referenced by the session handle.

All callback and device handles associated with this DAPI session are also destroyed and
invalidated. Any subsequent reference to these handles will return an E_HANDLE error.

The function dapiDestroySession should be called for each session before terminating a
DAPI application.

Syntax
HRESULT dapiDestroySession(HSESSION hSession)

Input Parameters
hSession

The handle to a DAPI session.

Output Parameters
none

Return Values
Table 4: dapiDestroySession Return Values

HResult Value Description

S_OK 0x00000000 Session was successfully destroyed

E_HANDLE 0x80070006 The session handle is not valid

Remarks
• All callbacks associated with the session are unregistered and any resources used by them

are freed.

• When a session is destroyed, the event DAPI_EVENT_DEVICE_DISCONNECT is not
generated for connected devices associated with the session/callbacks (See Callback
Function Template for Device Events).

See Also
dapiCreateSession

Example
See example in Section 3.1 dapiCreateSession

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 10

3.3 Callback Function Template for Device Events
Description

This section shows the template for the callback function used in conjunction with the
dapiRegisterCallback function. The callback function is called every time a DAPI event
occurs for matching devices.

This function must be implemented to received DAPI events and obtain device handles.

Syntax
void _stdcall dapiCallback(HDEVICE hDev,
 DWORD eventType,
 void * pEx)

Function Parameters
hDev

The handle to the device generating the event.
eventType

The following events are generated for all devices:

Table 5: Callback Events Generated for all Devices

Event Name Value Description

DAPI_EVENT_DEVICE_CONNECT 0x01 A supported USB device has been
connected.

DAPI_EVENT_DEVICE_DISCONNECT 0x02 A device has been disconnected. The
device handle is no longer valid.

The following events are generated for U3 smart devices:

Table 6: Callback Events Generated for U3 smart Devices

Event Name Value Description

DAPI_EVENT_DEVICE_UPDATE 0x03 Information about a domain on the
device has been updated. A domain
has been assigned a drive letter. See
 4.3 dapiQueryDomainInformation.

DAPI_EVENT_DEVICE_LOGIN 0x04 A private area on the device has been
successfully logged into. See Section
 5.1 dapiGetPrivateAreaInfo.

DAPI_EVENT_DEVICE_LOGOUT 0x05 A private area on the device has been
successfully logged out of. See
Section 5.1 dapiGetPrivateAreaInfo.

DAPI_EVENT_DEVICE_WRITE_PROTECT_ON 0x06 Write protect has been enabled on a
removable domain and the domain is

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 11

Event Name Value Description
now read only.

DAPI_EVENT_DEVICE_WRITE_PROTECT_OFF 0x07 Write protect has been disabled on a
removable domain.

DAPI_EVENT_DEVICE_RECONNECT 0x08 The device has been refreshed by
windows. The current device
configuration is no longer valid. See
 4.3 dapiQueryDomainInformation.

DAPI_EVENT_DEVICE_NEW_CONFIG 0x09 The device has been reconfigured.
The current device configuration is no
longer valid. See Section 4.3
dapiQueryDomainInformation.

pEx

A pointer to the arbitrary data provided at callback registration. When an event is generated
for a registered callback, the pEx data is sent to the callback with the event. If do data was
defined at registration time, NULL will be passed.

Output Parameters
none

See Also
dapiQueryDomainInformation, dapiGetPrivateAreaInfo, dapiRegisterCallback.

Remarks
DAPI functions should not be called from within the event callback function. The callback
function should return as quickly as possible and the device handle should be used either
outside of the function or in a different thread.

Example
See example in Section 3.1 dapiCreateSession

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 12

3.4 dapiRegisterCallback
Description

Registers the callback function and returns a handle to the callback instance. Each callback
is associated with a session. A callback function can be registered more than once; each
successful registration returns its own callback handle.

Every instance of a registered callback maintains its own set of device handles. This is true
even if the function is registered multiple times, regardless of the parameters.

Syntax
HRESULT dapiRegisterCallback(HSESSION * hSession
 wchar_t * pszConnectionString,
 DAPI_CALLBACK pCallBack,
 void * pEx,
 HCALLBACK * hCallback)

The DAPI_CALLBACK function pointer is defined in dapi.h as

typedef void (_stdcall *DAPI_CALLBACK) (HDEVICE hDev,

 DWORD eventType,
 void* pEx);

Input Parameters
hSession

A handle to a valid DAPI session.
pszConnectionString

A pointer to the null-terminated Unicode connection string. When this parameter is set to a
serial number of a device, only events from that device can cause the callback function to be
called; events from other devices are filtered out. When this parameter is set to NULL, events
from any device will cause the callback function to be called.
pCallback

A pointer to the callback function. See also Section 3.3 Callback Function Template for
Device Events for the callback function template definition.
pEx

A pointer to arbitrary data. This pointer is passed to the callback function every time an event
occurs. May be NULL.

Output Parameters
hCallback

Returns the handle that refers to the registered callback function. If function fails, the
hCallback will be equal to ILLEGAL_HCALLBACK.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 13

Return Values
Table 7: dapiRegisterCallback Return Values

HResult Value Description

S_OK 0x00000000 Callback function successfully registered

E_POINTER 0x80004003 The pointer to pCallback or hCallback is null.

E_HANDLE 0x80070006 Invalid session handle.

E_FAIL 0x80004005 Unable to register the callback. hCallback will
be equal to ILLEGAL_HCALLBACK.

Remarks
• DAPI creates events for both U3 and non U3 smart devices.

• U3 smart Applications that are run by the U3 Launchpad are provided a connection string
environment variable that refers to the device from which it was executed. See Section
9.4.4, U3_DAPI_CONNECTION_STRING of the Application Deployment Guide for more
details.

• If a connection string is provided, only events generated by the device matching the
connection string are sent. The callback can be registered multiple times with different or
identical connection strings.

• If no connection string is provided, events for all devices (U3 and non U3 smart) are sent to
the registered callback function.

• The callback function also allows the developer to define a pointer to arbitrary data (pEx);
the pointer is passed to the callback function every time an event is generated as a result of
this registration.

See Also
dapiUnregisterCallback, Callback Function Template for Device Events

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 14

3.5 dapiUnregisterCallback
Description

Unregisters a callback function, releasing both the callback handle and the device handles
associated with the callback handle.

Syntax
HRESULT dapiUnregisterCallback(HCALLBACK hCallback)

Input Parameters
hCallback

The handle that refers to the callback function to be unregistered.

Output Parameters
none

Return Values
Table 8: dapiUnregisterCallback Return Values

HResult Value Description

S_OK 0x00000000 Callback function successfully unregistered

E_HANDLE 0x80070006 The callback handle is not valid.

See Also
dapiRegisterCallback

Remarks
• If the session has already been destroyed, the callback handle is not valid and an

E_HANDLE error is returned.

• Using either the callback handle or device handles after the callback has been
unregistered will generate an E_HANDLE error.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Session Management Functions 15

3.6 dapiGetVersion
Description

Returns a string with the current DAPI version.

Syntax
const wchar_t * const dapiGetVersion();

Return Value
• The return string has the format “x.y.z” ([1-99].[0-99].[0-999]).

• The first two values match the name of the DLL and its version.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 16

4 Device Query Functions
The DAPI device query functions allow the application to query information about the device and
its configuration. These functions return information for all supported USB flash drives, both U3
and non U3 smart devices. See the Developer Guide for additional examples using these
functions. The device query functions consist of the following commands:

• dapiQueryDeviceCapability

• dapiQueryDeviceInformation

• dapiQueryDomainInformation

All functions require handles to devices that are obtained from callback events.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 17

4.1 dapiQueryDeviceCapability
Description

Queries known capabilities of a detected device.

Syntax
HRESULT dapiQueryDeviceCapability (HDEVICE hDev, DWORD nCapability)

Input Parameters
hDev

The handle to the device to be queried.
nCapability

The device capability to be queried. Can be one of the following:

Table 9: Supported Capabilities as defined in dapi.h

Capability Description

DAPI_CAP_USB_HI_SPEED The device is current running in USB 2.0 hi speed mode
and has a high speed channel to the host. Bandwidth
intensive operations may be performed against the device.

DAPI_CAP_U3 The device is first generation U3 compliant

DAPI_CAP_MSD The device is a Mass Storage Device

DAPI_CAP_U3_COOKIE The device supports U3 standard cookies

DAPI_CAP_U3_PCOOKIE The device supports U3 protected cookies

DAPI_CAP_U3_PRIVATE_AREA The device supports U3 private areas

Return Values
Table 10: dapiQueryDeviceCapability Return Values

HResult Value Description

S_OK 0x00000000 Capability is supported

S_FALSE 0x00000001 Capability is not supported

E_HANDLE 0x80070006 The device handle is not valid

E_INVALIDARG 0x80070057 The query type is unknown.

DAPI_E_COMM_FAIL 0x80040210 General communications error with the device.

Remarks
Protect cookie functions (DAPI_CAP_U3_PCOOKIES) are not supported in this version of
the Device API.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 18

Example
Calling the function in C:
// test that the device is U3 compatible
BOOL bU3 = (S_OK == dapiQueryDeviceCapability(hConnectedDev, DAPI_CAP_U3));

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 19

4.2 dapiQueryDeviceInformation
Description

This function provides information about the detected USB mass storage device. For non U3
compatible devices, not all fields will be returned with data.

Syntax
HRESULT dapiQueryDeviceInformation (HDEVICE hDev,
 devInfo * pInfo)

Input Parameters
hDev

The handle to the device to be queried, as returned by the function dapiCallback.
pInfo

A pointer to devInfo structure. The devInfo structure is defined in dapi.h:
struct devInfo {
 wchar_t serialNumber[257];
 BYTE uniqueID[20];
 wchar_t vendorString[10];
 wchar_t productString[18];
 wchar_t firmwareVersion[7];
 DWORD vendorID;
 DWORD64 deviceSize;
}

Return Information
serialNumber

The Unicode serial number of the device. Example “9A0A551017111BCB”
uniqueID

The byte array containing the U3 Unique ID of the device. The unique ID is a 20 byte array
(160 bit). For non U3 compatible devices, an array of 0’s is returned.
vendorString

The Unicode device vendor string, for example “USB Corp”
productString

The Unicode device product name string, for example "Minutae"
firmwareVersion

The Unicode decimal formatted version number of the device firmware. Example “6.121”.
vendorID

The device vendor’s ID, for example 0x08EC
deviceSize

The device size in bytes

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 20

Return Values
Table 11: dapiQueryDeviceInformation Return Values

HResult Value Description

S_OK 0x00000000 Command succeeded

E_POINTER 0x80004003 pInfo pointer is null

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_COMM_FAIL 0x80040210 General communications error

Example
Calling the function in C:
devInfo deviceInfo;
HRESULT res;
BYTE uniqueID[20];

res = dapiQueryDeviceInformation(hConnectedDev, &deviceInfo) ;

if (SUCCEEDED(res))
{
 memcpy(uniqueID, deviceInfo.uniqueID, 20);
}

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 21

4.3 dapiQueryDomainInformation
Description

This function returns the configuration of the domains on a U3 smart device. Non U3 smart
devices are also supported and are treated as single domain devices.

The function can be used to query the number of domains on a device and also to fill in the
domain information when an appropriately sized domain information array is provided.

To determine the number of domains on a device, the domain count parameter should be set
to zero and a NULL domain information array pointer should be passed. The number of
domains and hence the required array size is returned in the domain count parameter.

For each domain, the function will return a domain information structure. The structure lists
the path to the domain (if known), flags describing the domain features and the size of
domain on the device.

See Section 1.1 for information on domain types and device configuration.

When devices with multiple domains are inserted, Windows will sequentially assign each
domain a drive letter or path. If the function is called before a drive letter has been assigned
to all domains, the function will return a S_FALSE result, signifying the additional information
will become available in the future. As drive letters are assigned to each domain, a
DAPI_EVENT_DEVICE_UPDATE event is generated (see Section 3.3 Callback Function
Template for Device Events). Domains that do not yet have drive letters assigned will have
the DAPI_DI_NOT_READY flag set.

Syntax
HRESULT dapiQueryDomainInformation (HDEVICE hDev,
 domainInfo * pInfo
 WORD * nCount)

Input Parameters
hDev

The handle to the device to be queried.
pInfo

A pointer to an array of domainInfo structures, each of which has the form:
struct domainInfo {
 wchar_t szPath[MAXPATH+1];
 DWORD64 size;
 DWORD typeMask;
}

This parameter may be NULL if nCount is set to 0. The domainInfo structure is defined in
dapi.h.
nCount

A pointer to a variable that holds the size of the array or number of domains on the device. If
set to zero and pInfo is NULL, it will query the number of domains on the device and the
required array size.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 22

Output Parameters
pInfo

A pointer to the updated array of domainInfo structures.
nCount

The number of domains on the device. If pInfo is non null, it also indicates the number of
elements in the array that were updated with domain information.

Domain Information
The domain information structure provides the following information for each domain
szPath

The Unicode drive letter or path of the domain. The path does not include the trailing ‘\’
character. Example “E:”
size

The physical size of the domain in bytes. If the domain is a CDROM or a removable domain
containing only one type of area then this is the size of area.

If a removable area contains both a public and private area, the size of public area is
calculated by subtracting the size of the private area, returned by the getPrivateAreaInfo
function, from this value.
typeMask

A bit array describing domain type and features. The following flags are supported:

Table 12: Supported Domain Type Flags

typeMask Value Description

DAPI_DI_READ_ONLY 0x00000001 The domain is read only. Write protection is
enabled.

DAPI_DI_TYPE_CD 0x00000100 The domain type is a CD ROM

DAPI_DI_REMOVABLE_PUBLIC 0x00000200 A removable domain containing a public area
whose size greater then 0 bytes.

DAPI_DI_REMOVABLE_PRIVATE 0x00000400 A removable domain containing a private area
whose size greater then 0 bytes.

DAPI_DI_NOT_READY 0x40000000 Windows has not yet finished initializing the
domain. The information is not yet available.

DAPI_DI_UNKNOWN 0x80000000 An unknown or unsupported U3 domain type.

Note: If the domain is a removable domain that contains both a private and public area, both
the DAPI_DI_REMOVABLE_PRIVATE and DAPI_DI_REMOVABLE_PUBLIC flags are set in
the type mask.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 23

Return Values
Table 13: dapiQueryDomainInformation Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

S_FALSE 0x00000001 Command succeeded, however not all domains are
initialized by Windows.

E_POINTER 0x80004003 pInfo is null when nCount > 0

E_HANDLE 0x80070006 The device handle is not valid

E_INVALIDARG 0x80070057 The nCount value does not match the domain
count

DAPI_E_COMM_FAIL 0x80040210 General communications error. Wait and try again.

Remarks
• For non U3 smart devices, the following information will be returned regardless of the actual

device configuration:

• Domain count: 1

• Domain 0:

o Size: reported physical size of the device

o Type: removable (public)

o Path: first drive letter associated with the device

• A CD-ROM will always have the DAPI_DI_READ_ONLY flag set.

• If the removable area has write protect enabled, the DAPI_DI_READ_ONLY flag will be set.

• Some devices may return a DAPI_E_COMM_ERROR if it is currently being reconfigured or
initialized. This may occur frequently if dapiQueryDomainInformation is called within a
callback event, which is not recommended. Ideally dapiQueryDomainInformation should be
called outside of the callback event.

• If DAPI_E_COMM_ERROR occurs, wait and call the function again.

• See the U3 Platform HDK for information on enabling and disabling write protect on a
domain.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Device Query Functions 24

4.4 dapiEjectDevice
Description

Ejects a USB device.

Syntax
HRESULT dapiEjectDevice (HDEVICE hDev)

Input Parameters
hDev

The handle to the device to be ejected.

Output Parameters
none

Return Values
Table 14: dapiEjectDevice Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

S_FALSE 0x00000001 The device could not be ejected.

E_HANDLE 0x80070006 The device handle is not valid

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 25

5 Private Area Functions
A Private Area (PRA) is an area on a removable domain that requires password authentication
before the area can be mounted. PRAs are referred to by their path or drive letter. When a
removable domain contains both a public and a private area, both will share the same drive
letter, however only one can be mounted at a time. When the private area is in the logged in
state, the private area is mounted and its files are visible. The public area is visible when the
private area is logged out.

The PRA functions can be used to query information on the login status of PRAs, login and
logout of the PRA, and change the password of the PRA.

Note: The login, logout and setPassword functions are for use with U3 devices configured using
the U3 Platform SDK. These functions should never be used by applications on U3 smart
drives.

The private area functions are supported when:

• The device supports the DAPI_CAP_U3_PRIVATE_AREA capability (see
dapiQeuryDeviceCapability).

• The domain includes a PRA as signified by the DAPI_DI_REMOVABLE_PRIVATE flag (see
dapiQueryDomainInformation).

The path to the PRA can be obtained using the dapiQueryDomainInformation function. All PRA
paths must include a trailing ‘\’ character.

PRAs support a maximum number of attempts (MaxNOA) values. This value is set at
manufacture time. If the number of failed login attempts reaches MaxNOA then the private area
can no longer be used until the private area is reset using the dapiSetPrivateAreaPassword.
This will format the private area and remove all existing data.

The PRA functions use Unicode password strings. Care should be taken not to mix string types,
e.g. ANSI, Unicode and MCBS, as it may cause failed logins and locked PRAs.

See the SDK Developer Guide for additional examples using these functions.

See the U3 Platform HDK for information on how to configure and create private area on U3
smart devices.

DAPI supports the following PRA commands:

• dapiGetPrivateAreaInfo

• dapiLoginPrivateArea

• dapiLogoutPrivateArea

• dapiSetPrivateAreaPassword

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 26

5.1 dapiGetPrivateAreaInfo
Description

Returns information about the private area. Private areas are referenced using their drive
letters or path. The drive letter can be obtained via the dapiQueryDomainInformation
function.

When a removable domain includes both public and private area, this function must be used
in conjunction with the dapiQueryDomainInformation function to determine the size of the
public area.

Syntax
HRESULT dapiGetPrivateAreaInfo(HDEVICE hDev,
 const wchar_t * szPath,
 praInfo * pInfo)

Input Parameters
hDev

The handle to the device.
szPath

The path to the domain to be queried, as returned by dapiQueryDomainInformation. The path
must include the trailing ‘\’ character.
pInfo

A pointer to a pre-defined private area information structure (praInfo), which has the form:
struct praInfo{
 DWORD maxNOA;
 DWORD currNOA;
 DWORD64 size;
 DWORD status;
 whchar_t szHint[32+1];
 }

The praInfo structure is defined in dapi.h.

Output Parameters
none

Private Area Information
The updated praInfo structure returned by the function returns the following information about
the private area.

maxNOA

The maximum number of failed login attempts allowed for the domain before lockout. The
maxNOA value is set at manufacture time.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 27

currNOA

Current number of failed login attempts. If this value is the same as the MaxNOA value then
the private area is ‘locked’ and no further login attempts will succeed. This value will be set to
zero every time a successful login occurs. Use dapiSetPrivateAreaPassword to reset a
locked private area.
size

The size of the private area in bytes. This parameter refers to the physical size of the private
area on the device and not its size according to the file system.
status

The current status of the private area whose values can be:

Table 15: Private Area Status Values

typeMask Value Description

DAPI_PRA_NOT_CONFIGURED 0x00 There is private area associated with the path or
the domain does not include a private area.

DAPI_PRA_LOGGED_OUT 0x01 The private area is currently logged out

DAPI_PRA_LOGGED_IN 0x02 The private area is available

Note: If the status of the private area is DAPI_PRA_LOGGED_OUT and the domain also
contains a public area (DAPI_PI_REMOVABLE_PUBLIC), then the public area is currently
visible.
szHint

The Unicode password hint string for the private area.

Return Values
Table 16: dapiGetPrivateAreaInfo Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szPath does not refer to a domain on
the device.

E_POINTER 0x80004003 pInfo is null

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_DOMAIN_TYPE_ERROR 0x80040207 The domain referenced by the path
argument is not a removable domain.

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 The device does not support
DAPI_CAP_U3_PRIVATE_AREA

DAPI_E_COMM_FAIL 0x80040210 General communications error

DAPI_E_HINT_FAIL 0x80040214 Error reading the hint data. Remaining
data is still valid.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 28

See Also
dapiQueryDomainInformation

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 29

5.2 dapiLoginPrivateArea
Description

Logs into the private area making the private area visible to the user. If the domain includes a
public area, the public area will no longer be visible.

Note: The function is for use only with U3 devices configured using the U3 Platform HDK.
These functions should never be used by applications on U3 smart drives. Their use could
cause data loss or application instability

See notes below for detecting when a private area is ‘locked’

Syntax
HRESULT dapiLoginPrivateArea(HDEVICE hDev,
 const wchar_t * szPath,
 const wchar_t * szPassword,
 BOOL bLock)

Input Parameters
hDev

The handle to the device.
szPath

The path to the domain for login, as returned by dapiQueryDomainInformation. The path
must include the trailing ‘\’ character.
szPassword

The Unicode password for logging into the private area.
bLock

If true, it will try and request an exclusive media lock on the public area before switching to
the private area, thus ensuring that there are no open files on the public area. If set to false,
the login proceeds in any case, and will swap the current public area with the logged-in
private area.

This value should always be true to ensure no data loss. If a lock could not be obtained a
DAPI_E_MEDIA_LOCK result is returned.

Output Parameters
none

Return Values
Table 17: dapiLoginPrivateArea Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szPath does not refer to a domain
on the device.

E_HANDLE 0x80070006 The device handle is not valid

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 30

HRESULT Value Description

DAPI_E_DOMAIN_TYPE_ERROR 0x80040207 The domain referenced by the path
argument is not a removable
domain.

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 The device does not support
DAPI_CAP_U3_PRIVATE_AREA

DAPI_E_COMM_FAIL 0x80040210 General communications error or
private area is locked. See notes
below

DAPI_E_MEDIA_LOCK_FAIL 0x80040212 The private area could not be
locked.

DAPI_E_ADV_ERROR 0x80040261 Advanced communications error

Remarks
1. If the private area is already logged in this function will return S_OK.

2. If the private area is ‘locked’, the login command will return a DAPI_E_COMM_FAIL
error. To test if the private area is locked, call dapiQuertDomainInfo and test if the
MaxNOA value equals the CurrNOA value. If so, dapiSetPrivateAreaPassword must
be used to reset the private area.

See Also
dapiQueryDomainInformation, dapiGetPrivateAreaInfo, dapiSetPrivateAreaPassword.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 31

5.3 dapiLogoutPrivateArea
Description

Logs out from the private area. If the domain also contains a public area, the public area will
become visible.

Note: The function is for use only with U3 devices configured using the U3 Platform HDK.
These functions should never be used by applications on U3 smart drives. Their use could
cause data loss or application instability

Syntax
HRESULT dapiLogoutPrivateArea(HDEVICE hDev,
 const wchar_t * szPath,
 BOOL bLock)

Input Parameters
hDev

The handle to the device, as returned by the function dapiCallback.
szPath

The path to the domain for logout, as returned by dapiQueryDomainInformation. The path
must include the trailing ‘\’ character.
bLock

If true, it will try and request an exclusive media lock on the private area before logging out,
thus ensuring that there are no open files on the private area.

If set to true, the logout fails if a file is open on the current private area. If set false, the login
proceeds in any case, and swaps the logged-out private area with the public area if available.

This value should always be true to ensure no data loss. If a lock could not be obtained a
DAPI_E_MEDIA_LOCK result is returned.

Output Parameters
none

Return Values
Table 18: dapiLogoutPrivateArea Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szPath does not refer to a domain on the
device.

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_DOMAIN_TYPE_ERROR 0x80040207 The domain referenced by the path
argument is not a removable domain.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 32

HRESULT Value Description

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 The device does not support
DAPI_CAP_U3_PRIVATE_AREA

DAPI_E_COMM_FAIL 0x80040210 General communications error

DAPI_E_MEDIA_LOCK_FAIL 0x80040212 The private area could not be locked.

DAPI_E_ADV_ERROR 0x80040261 Advanced communications error

See Also
dapiQueryDomainInformation, dapiLoginPrivateArea, dapiQueryPrivateAreaInfo.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 33

5.4 dapiSetPrivateAreaPassword
Description

Sets a new password and password hint for the private area. This function can also be used
to reconfigure the private area should the password be lost or private area is ‘locked’ due to
MaxNOA being exceeded.

Note: The function is for use only with U3 devices configured using the U3 Platform HDK.
These functions should never be used by applications on U3 smart drives. Their use could
cause data loss or application instability

The function provides the following options:

Table 19: dapiSetPrivateAreaPassword Function Options

Function Option Parameter Settings

Set new password and hint szOldPassword
szNewPassword
szNewHint

old password
new password
new hint

Set new hint szOldPassword
szNewPassword
szNewHint

old password
old password
new hint

Reset and format private area.
Note: All data is destroyed.

szOldPassword
szNewPassword
szNewHint

NULL
new password
new hint

The reset private area option can be used if

1. The password is forgotten by the user

2. The private area is locked as MaxNOA has been exceeded.

Note: This option reformats the private area, deleting all the data. This feature is not
available in user mode.

Syntax
HRESULT dapiSetPrivateAreaPassword(HDEVICE hDev,
 wchar_t * szPath,
 wchar_t * szOldPassword,
 wchar_t * szNewPassword,
 wchar_t * szNewHint,
 BOOL bLock)

Input Parameters
hDev

The handle to the device, as returned by the function dapiCallback.
szPath

The path to the domain, as returned by dapiQueryDomainInformation. The path must include
the trailing ‘\’ character.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 34

szOldPassword

The current Unicode password for private area.
Note: If this is parameter is NULL, the private area will be formatted and all data will be
destroyed.

szNewPassword

The new Unicode password for logging in to the private area. If just updating the hint, then
this value should be the same as the szOldPassword value.
szNewHint

The new Unicode hint for the password. The maximum string length is 32 Unicode
characters.
bLock

[This value is only used when resetting a private area]

If set true it will try and obtain a media lock on the private area before reformatting it. If any
application currently has any open file handles on the area, the function will not proceed. If
set false, the private area will be formatted regardless of any open file handles.

Output Parameters
none

Return Values
Table 20: dapiSetPrivateAreaPassword Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szPath does not refer to a domain
on the device.

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_DOMAIN_TYPE_ERROR 0x80040207 The domain referenced by the
path argument is not a removable
domain.

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 The device does not support
DAPI_CAP_U3_PRIVATE_AREA

DAPI_E_COMM_FAIL 0x80040210 General communications error

DAPI_E_MEDIA_LOCK_FAIL 0x80040212 The device could not be locked.

DAPI_E_ADV_ERROR 0x80040261 Advanced communications error

DAPI_E_HINT_FAIL 0x80040214 Error reading the hint data.
Remaining data is still valid.

DAPI_E_FORMAT_FAIL 0x80040213 The new private area could not be
formatted. When the user logs in
they will be prompted by Windows
to format the area,

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Private Area Functions 35

Remarks

• The area lock test is carried out only when a new private area is created. Otherwise,
the bLock parameter is ignored.

• If the command is called with an incorrect szOldPassword, the currNOA value will be
incremented with every call.

See Also
dapiQueryDomainInformation, dapiQueryPrivateAreaInfo

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 36

6 Standard Cookie Functions
Standard cookies allow applications store information on the U3 device that is not accessible via
the file system. Cookie space is limited and developers should follow the usage guidelines
specified in the U3 smart Application Certification Self-Test Criteria document (available as part
of the U3 Logo Compliance Kit). See the Developer Guide for examples using standard cookies.

Cookies behave in a similar way to Windows INI file entries. Each entry has a section name
(szSection) and an entry name (szEntry). Both of these values are required to reference a
cookie.

Standard cookies support text and binary data cookies. A text and a binary data cookie with the
same section and entry values may coexist and be read and written independently. However
calling delete cookie will delete all cookies matching the section and entry values. It is
recommended not to overload cookies.

Each type of cookie supported by U3 devices support their own name spaces. Any other type of
cookie that has the same section and entry name values will refer to the cookie of that type and
not the standard cookies creates with these functions.

Cookie Data Limitations
The following data limitations are defined for cookies:

Table 21: Standard Cookie Data Limitations

Data Limit

Section name length 256 16-bit Unicode characters

Entry name length 256 16-bit Unicode characters

Cookie data size Limited to available space in the cookie
store (Hidden Area)

Cookie Functions
The following cookie function commands are supported:

• dapiWriteTextCookie

• dapiWriteBinaryCookie

• dapiReadTextCookie

• dapiReadBinaryCookie

• dapiDeleteCookie

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 37

6.1 dapiWriteTextCookie
Description

Creates and populates a standard text cookie in the cookie area. If the cookie exists then the
existing data will be overwritten.

Syntax
HRESULT dapiWriteTextCookie(HDEVICE hDev,
 const wchar_t * szSection,
 const wchar_t * szEntry,
 const wchar_t * szValue)

Input Parameters
hDev

The handle to the device.
szSection

The null terminated Unicode section name of the cookie. Max length is 256.
szEntry

The null terminated Unicode entry name of the cookie. Max length is 256.
szValue

The null-terminated Unicode string to write to the cookie.

Output Parameters
none

Return Values
Table 22: dapiWriteTextCookie Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szSection or szEntry values are too long,
null or empty.

E_POINTER 0x80004003 szValue is null

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_HIDDEN_AREA_FULL 0x80040230 No more room to write the cookie.

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 Device does not support standard cookies
(DAPI_CAP_U3_COOKIE)

Remarks
A text cookie and a binary cookie can be written to the same section and entry.

See Also
dapiReadTextCookie, dapiDeleteCookie

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 38

6.2 dapiWriteBinaryCookie
Description

Creates a standard cookie with binary data in the cookie area. If the cookie exists then the
existing data will be overwritten.

Syntax
HRESULT dapiWriteBinaryCookie(HDEVICE hDev,
 const wchar_t * szSection,
 const wchar_t * szEntry,
 const BYTE * pBuffer,
 DWORD nBufLength)

Input Parameters
hDev

The handle to the device.
szSection

The null terminated Unicode section name of the cookie. Max length is 256.
szEntry

The null terminated Unicode entry name of the cookie. Max length is 256.
pBuffer

Pointer to the buffer containing raw binary data.
nBufLength

Size in bytes of data to be copied from the buffer pointed to by pBuffer.

Output Parameters
none

Return Values
Table 23: dapiWriteBinaryCookie Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szSection or szEntry values are too long,
null or empty.

E_POINTER 0x80004003 pBuffer is null

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_HIDDEN_AREA_FULL 0x80040230 No more room to write the cookie.

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 Device does not support standard cookies
(DAPI_CAP_U3_COOKIE)

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 39

Remarks
A text cookie and a binary cookie can be written to the same section and entry.

See Also
dapiReadBinaryCookie, dapiDeleteCookie

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 40

6.3 dapiReadTextCookie
Description

Reads a data from text cookie in the cookie area. This function can be called to first
determine the size of the buffer required to hold the text data.

Syntax
HRESULT dapiReadTextCookie(HDEVICE hDev,
 const wchar_t * szSection,
 const wchar_t * szEntry,
 const wchar_t * szValue,
 DWORD * nBufLength)

Input Parameters
hDev

The handle to the device.
szSection

The null terminated Unicode section name of the cookie. Max length is 256.
szEntry

The null terminated Unicode entry name of the cookie. Max length is 256.
szValue

Pointer to a Unicode string buffer. To determine the size of the required buffer set this value
to NULL.
nBufLength

Pointer to variable holding the size of the szValue buffer. The string length of zero should be
passed, along with a NULL szValue in order to receive the required buffer length.

Output Parameters
szValue

Pointer to the returned Unicode string if valid for the operation.
nBufLength

The length of the Unicode string copied to the buffer. If this was specified as zero and
szValue was set to NULL when the function was called then this will contain the required
buffer size to hold the cookie data including the null terminating character.

Return Values
Table 24: dapiReadTextCookie Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szSection or szEntry values are too long,
null or empty.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 41

HRESULT Value Description

E_POINTR 0x80004003 szValue is null and nBufLength > 0

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 Device does not support standard cookies
(DAPI_CAP_U3_COOKIE)

DAPI_E_DATA_NOT_FOUND 0x80040231 The cookie could not be found

DAPI_E_BUFFER_TOO_SMALL 0x80040240 The data to be copied is larger then the
supplied buffer size.

Remarks
To determine the size of the required buffer, call the function with nBufLength = 0 and
szValue=NULL. The required buffer length will be return in the nBufLength parameter.

See Also
dapiCallback

Example
Calling the function in C++:

DWORD nBufLen = 0;
HRESULT res;
wchar_t * pBuffer = NULL;

// determine the required buffer length by calling with NULL szBuffer and
nBuflen = 0.
res = dapiReadTextCookie(hConnectedDev, szSection,
 szEntry, NULL,
 &nBufLen)

if(SUCCEEDED(res))
{
pBuffer = new wchar_t[nBufLen];
wmemset(pBuffer, _TCHAR(“\0”),nBufLen);
res = dapiReadTextCookie(hConnectedDev, szSection, szEntry, pBuffer,
 &nBufLen);
}

// process HRESULT and use cookie data

delete [] pBuffer;

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 42

6.4 dapiReadBinaryCookie
Description

Reads data from a binary cookie in the cookie area. This function can be called to first
determine the size of the buffer required to hold the binary data.

Syntax
HRESULT dapiReadBinaryCookie(HDEVICE hDev,
 const wchar_t * szSection,
 const wchar_t * szEntry,
 BYTE * pBuffer,
 DWORD * nBufLength)

Output Parameters
hDev

The handle to the device.
szSection

The null terminated Unicode section name of the cookie. Max length is 256.
szEntry

The null terminated Unicode entry name of the cookie. Max length is 256.
pBuffer

Pointer to a byte array of minimum size nBufLength to receive the binary cookie data. To
determine the size of the required buffer set this value to NULL.
nBufLength

Pointer to variable holding the size of pBuffer. A buffer of zero should be passed, along with
a NULL pBuffer pointer in order to receive the required buffer size.

Input Parameters
pBuffer

Pointer to the returned binary data buffer if valid for the operation.
nBufLength

The size of the data to the buffer. If set to zero and pBuffer is NULL, then the required size of
the buffer in bytes will be returned.

Return Values
Table 25: dapiReadBinaryCookie Return Values

HRESULT Value Description

S_OK 0x00000000 Command succeeded

E_INVALIDARG 0x80070057 szSection or szEntry values are too long,
null or empty.

E_POINTER 0x80004003 pBuffer is null

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 43

HRESULT Value Description

E_HANDLE 0x80070006 The device handle is not valid

DAPI_E_DATA_NOT_FOUND 0x80040231 The cookie could not be found

DAPI_E_CMD_NOT_SUPPORTED 0x80040280 Device does not support standard cookies
(DAPI_CAP_U3_COOKIE)

DAPI_E_BUFFER_TOO_SMALL 0x80040240 The data to be copied is larger then the
supplied buffer size.

See Also
dapiDeleteCookie, dapiWriteBinaryCookie

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 Standard Cookie Functions 44

6.5 dapiDeleteCookie
Description

Deletes a single standard cookie entry or all standard cookies in a section. If no entry name
is supplied, all standard cookies in the section will be deleted.

If a text and binary cookie both have the same section and entry values, both cookies will be
deleted.

Syntax
HRESULT dapiDeleteCookie(HDEVICE hDev,
 const wchar_t * szSection,
 const wchar_t * szEntry)

Input Parameters
hDev

The handle to the device.
szSection

The null terminated Unicode section name of the cookie. Max length is 256.
szEntry

The null terminated Unicode entry name of the cookie. Max length is 256. May be NULL to
signify delete section.

Output Parameters
none

Return Values
Table 26: dapiDeleteCookie Return Values

HRESULT Value Description

S_OK 00000000 Command succeeded

E_INVALIDARG 80070057 szSection values are too long, null or
empty. szEntry may be too long or empty.

E_HANDLE 80070006 The device handle is not valid

DAPI_E_DATA_NOT_FOUND 80040231 The cookie could not be found

DAPI_E_CMD_NOT_SUPPORTED 80040280 Device does not support standard cookies
(DAPI_CAP_U3_COOKIE)

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 DAPI HRESULT Codes 45

7 DAPI HRESULT Codes
This chapter contains listing of DAPI return codes.

7.1 HRESULT Codes
Table 27: HRESULT Codes

HRESULT Value Description

S_OK 0x00000000 Command succeeded

S_FALSE 0x00000001 Command succeeded however the
result is negative.

E_POINTER 0x80004003 Null pointer parameter

E_FAIL 0x80004005 The command was unable to be
executed.

E_HANDLE 0x80070006 Invalid handle parameter.

E_INVALIDARG 0x80070057 One of the function arguments is
invalid.

DAPI_E_STATE_ERR 0x80040200 The current command cannot be
executed as the current state of the
device will not support the command.
Try again.

DAPI_E_CONFIGURATION_ERR 0x80040201 The configuration options supplied are
either not valid or not supported.

DAPI_E_PATH_ERR 0x80040202 The path does not match domain on
the device.

DAPI_E_GENERAL_ERR 0x80040203 A recoverable error has occurred.

DAPI_E_INTERNAL_ERR 0x80040204 A recoverable error has occurred.

DAPI_E_STRING_CONVERSION_ERR 0x80040205 An unsupported non Unicode strings
was provided.

DAPI_E_DOMAIN_TYPE_ERR 0x80040206 The domain referenced by the path
argument is not a removable domain.

DAPI_E_DOMAIN_PATH_ERR 0x80040207 The supplied path does not point to a
valid domain for the operation.

DAPI_E_COMM_FAIL 0x80040210 General communications error

DAPI_E_MEDIA_LOCK_FAIL 0x80040212 The device could not be locked.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 DAPI HRESULT Codes 46

HRESULT Value Description

DAPI_E_FORMAT_FAIL 0x80040213 DAPI was unable to format the private
area and reconfiguring the area. The
configuration succeeded, however the
private area must be manually
formatted.

DAPI_E_HINT_FAIL 0x80040214 Error reading the hint data. Remaining
data is still valid.

DAPI_E_FS_REFRESH_FAIL 0x80040216 DAPI was unable to refresh the file
system information

DAPI_E_NOT_CONNECTED 0x80040220 The device is not connected.

DAPI_E_NOT_READY 0x80040221 The device is either not initialized, or
has not yet completed a previous
operation.

DAPI_E_NOT_WRITABLE 0x80040222 The target area or device is read only.

DAPI_E_PA_CONFIGURED 0x80040223 The private area was already
configured.

DAPI_E_CD_LOCKED 0x80040224 The operation could not be performed
on the CD-ROM domain. Credentials
must be supplied to unlock the CD-
ROM first.

DAPI_E_HIDDEN_AREA_FULL 0x80040230 No more room available to write the
cookie type to the hidden area.

DAPI_E_DATA_NOT_FOUND 0x80040231 The cookie could not be found

DAPI_E_OPERATION_NOT_COMPLETED 0x80040232 The operation was not completed. Try
again.

DAPI_E_READ_PWD_ERR 0x80040234 Bad read password

DAPI_E_WRITE_PWD_ERR 0x80040235 Bad write password

DAPI_E_COOKIE_EXISTS 0x80040236 The cookie already exists

DAPI_E_COOKIE_CONFIG_ERR

0x80040237 The combination of null read and write
passwords is not supported

DAPI_E_PASSWORD_TOO_LONG 0x80040238 Password is too long

DAPI_E_BUFFER_TOO_LARGE 0x80040239 The data to be written is larger then the
allocated space.

DAPI_E_BUFFER_TOO_SMALL 0x80040240 The data to be copied is larger then the
destination buffer size.

DAPI_E_CMD_NOT_SUPPORTED 0x80040241 The device is not U3; device does not
support capability; the function is no
longer supported by DAPI.

U3 Platform 1.0 SDK, DAPI Reference Guide

04-UM-0605-00 DAPI HRESULT Codes 47

HRESULT Value Description

DAPI_E_CMD_NOT_SUPPORTED_IN_NO
N_ADMIN_MODE

0x80040242 The command cannot be executed in
user mode. Run this command with
administrator privileges.

DAPI_E_OS_NOT_SUPPORTED 0x80040250 The operating system is not supported
by DAPI.

DAPI_E_WIN_2K_SP4_HOTFIX_MISSING 0x80040251 The latest Windows 2000 Service Pack
4 must be applied to this machine.

DAPI_E_ADV_ERR 0x80040260 Advanced communications error

U3 Platform 1.0 SDK, DAPI Reference Guide

 © 2005, U3, LLC. All rights reserved. U3 and the U3 logo are trademarks of U3, LLC. Other brand names mentioned are for
identification purposes only and may be trademarks of their respective holders.

U3
303 Twin Dolphin Drive, 6th Floor
Redwood City, CA 94065
1-800-837-3654, info@u3.com

For more information, visit www.u3.com

	Introduction
	Overview of U3 smart Devices
	Persistent Read-Only Domains (Virtual CD-ROM)
	Removable Domain Areas
	Sample Configurations
	Cookies

	Device API

	Overview
	Development Environment
	Functionality
	Privileged Operating Modes

	DAPI Components
	Data Types

	Session Management Functions
	dapiCreateSession
	dapiDestroySession
	Callback Function Template for Device Events
	dapiRegisterCallback
	dapiUnregisterCallback
	dapiGetVersion

	Device Query Functions
	dapiQueryDeviceCapability
	dapiQueryDeviceInformation
	dapiQueryDomainInformation
	dapiEjectDevice

	Private Area Functions
	dapiGetPrivateAreaInfo
	dapiLoginPrivateArea
	dapiLogoutPrivateArea
	dapiSetPrivateAreaPassword

	Standard Cookie Functions
	dapiWriteTextCookie
	dapiWriteBinaryCookie
	dapiReadTextCookie
	dapiReadBinaryCookie
	dapiDeleteCookie

	DAPI HRESULT Codes
	HRESULT Codes

