
Slide 1

Hernan Ochoa
(hochoa@coresecurity.com, hernan@gmail.com)

Pass-The-Hash Toolkit for Windows

Implementation & use

10/29/08

HITB 2008

Slide 2

Pass-The-Hash Toolkit For Windows
I’m going to talk about..

  I’m going to talk about..

–  What is the ‘Pass-the-hash’ technique?
»  Brief history and explanation of the technique

–  Current (previous) Implementations and limitations

–  What is the Pass-the-hash Toolkit for Windows?
»  Brief history

»  Description of included tools and advantages

»  Implementation (technical details)

»  A ‘new’ post-exploitation ‘attack/technique/thing to do’

»  How to use the tools

–  Demos

»  If someone is still in the room… Q/A.

Slide 3

What is the ‘Pass-the-hash’ technique?

Slide 4

Pass-The-Hash Toolkit For Windows
What is Pass-the-hash?

  What is Pass-the-hash?

–  Windows stores, generally, two hashes of a user’s passwords in its
‘users database’ (e.g.:SAM)

–  LM hash, NTLM hash

–  “Pass-the-hash” allows an attacker to use LM & NTLM hashes to
authenticate to a remote host (using NTLM auth) without having to
decrypt those hashes to obtain the cleartext password

–  First published (theory & exploit code) in 1997 by Paul Ashton
(http://www.securityfocus.com/bid/233/discuss)

Slide 5

Pass-The-Hash Toolkit For Windows
How/Why does ‘Pass-the-hash’ work?

  How/Why does ‘Pass-the-hash’ work?

–  How hashes are used (F) varies (ntlmv1,ntlmv2,etc)

–  Having LM/NTLM Hashes == having the cleartext password for
remote NTLM auth

Client Server

Client connects to Server and sends features
supported, requested, etc

Server responds w/features supported, required and
sends random challenge (C)

Client calculates and sends R = F(LM/NTLM pwd hashes, C) along
with username, domain, etc.

Server calculates
R locally,
compares with
client R and
returns result

Server responds access granted or denied.

(over)simplified diagram of NTLM challenge-response authentication protocol

Slide 6

Pass-The-Hash Toolkit For Windows
How do you obtain the hashes to ‘Pass-the-hash’?

  How do you obtain the LM&NTLM hashes to ‘Pass-the-hash’?

–  Post-Exploitation

–  Dump SAM database using pwdump3/3e/4/5/6/7, fgdump, etc.

»  Administrator:
500:0102030405060708090A0B0C0D0E0F10:0102030405060708090
A0B0C0D0E0F10:::

Slide 7

Pass-The-Hash Toolkit For Windows
How do you obtain the hashes to ‘Pass-the-hash’?, cont. (2)

  How do you obtain the LM&NTLM hashes to ‘Pass-the-hash’?,
cont. (2)

–  From c:\windows\repair\sam
–  From c:\windows\system32\config\SAM
–  Sniff SMB challenge-response over the network

–  Simplifying: capture the nonce and encrypted nonce
»  Need to brute-force to obtain a hash to ‘pass-the-hash’ (e.g.: use

l0phtcrack, cain&abel)
»  Common misconception is to believe the ‘encrypted nonce’ is a hash

we can work with, but it is not.

–  Cachedump to obtain ‘hashed’ hashes  and then brute-forcing..
–  Etc...

Slide 8

Pass-The-Hash Toolkit For Windows
‘Pass-the-hash’ implementations

  Available ‘Pass-the-hash’ implementations

–  Paul Ashton’s original ‘exploit code’: modified SAMBA client

»  With cleartext-password (not actual smbclient params):

–  smbclient //192.168.1.20/diskC –U Administrator –p mypwd
»  Analog to ‘net use z: \\192.168.1.20\diskC /u:Administrator mypwd’

»  The patch allows the following (not actual smbclient params):

–  smbclient //192.168.1.20/disckC –U Administrator –p
4ECC0E7568976B7EAAD3B435B51404EE:
551E3B3215FFD87F5E037B3E3523D5F6

Slide 9

Pass-The-Hash Toolkit For Windows
‘Pass-the-hash’ implementations, cont. (2)

  Available ‘Pass-the-hash’ implementations, cont. (2)

–  Lots of impl. with the same approach since then:

»  Samba-TNG provides built-in functionality for ‘passing-the-hash’

»  Lots of third-party implementations of the NTLM authentication
mechanism allow performing the ‘pass-the-hash’ technique

–  In python, ruby, java, you name it..

–  Including metasploit, CORE IMPACT, impacket, etc.

Slide 10

Pass-The-Hash Toolkit For Windows
Pass-the-hash implementations “limitations”

  Pass-the-hash previous implementations “limitations”

–  Mostly, limited functionality:

–  Samba & Samba-TNG: enormous amount of functionality but still
not everything is implemented

–  Other third-party libraries/programs implement even LESS
functionality than Samba & Samba-TNG

–  Functionality is scattered among different libraries/programs
–  Some protocols and functionality is ‘partially implemented’

»  Third-party implementations are always running behind:
»  Implementation is done by reverse-engineering and it takes a

considerable amount of effort/time

»  You can’t use native Windows tools

Slide 11

Pass-The-Hash Toolkit For Windows
What is Pass-the-hash Toolkit for Windows?

  What is Pass-the-hash Toolkit for Windows?
–  A set of tools that brings pass-the-hash to the Windows platform

(and more)

–  Published in 2007, is Free and Open Source (written in C, by me )

–  Currently, it works on Windows XP, Windows Server 2003 and
Vista

Slide 12

Pass-The-Hash Toolkit For Windows
What is Pass-the-hash Toolkit for Windows?, cont. (2)

  What is Pass-the-hash Toolkit for Windows?, cont.(2)

–  I first developed a fully-working version of this technique for
Windows NT4 (and later for Win2000) in 2000:

»  I couldn’t publish the code back then (it was sold to a ‘company’)

»  But I wrote a paper: “Modifying Windows NT Logon Credentials”

–  Check out
http://www.coresecurity.com/content/modifying-windows-nt-logon-
credential

–  In 2007, I wrote a completely new implementation of the technique
from scratch and the PSH/PTH Toolkit was born

Slide 13

Pass-The-Hash Toolkit For Windows
Pass-the-hash Toolkit for Windows memorabilia

  Pass-the-hash Toolkit for Windows memorabilia

Slide 14

Pass-The-Hash Toolkit For Windows
PSH/PTH Toolkit for Windows Advantages

  PSH/PTH Toolkit for Windows Advantages

–  Mainly, available functionality is “unlimited”
»  It run on Windows! So…

»  You can use any tool that uses NTLM authentication
–  from Microsoft or any other third-party tool (think admin interfaces,

DCOM, etc)

»  You can use the same tools you’d use if you had the cleartext
password

»  You have access to all available functionality and not partial
implementations

»  You can use it on compromised remote Windows boxes during
pentests and then use windows native tools

Slide 15

Pass-The-Hash Toolkit For Windows
PSH/PTH Toolkit for Windows Advantages, cont. (2)

  PSH/PTH Toolkit for Windows Advantages, cont. (2)

–  PSH/PTH also provides a post-exploitation ‘technique/attack/tool’
»  ‘Steals’ credentials stored in memory

»  Using this, you may be able to own a windows domain more easily,
more on this later..

Slide 16

Pass-The-Hash Toolkit For Windows
Implementing ‘Pass-the-hash’ on Windows

Implementing ‘Pass-the-hash’ on Windows

Slide 17

Pass-The-Hash Toolkit For Windows
Implementing ‘Pass-the-hash’ on Windows

  What do we want to achieve?

–  Analog functionality to ‘smbclient //<server>/<share> -U Administrator –p
4ECC0E7568976B7EAAD3B435B51404EE:

551E3B3215FFD87F5E037B3E3523D5F6’
»  Net use z: \\<server>/<share> -U Administrator

4ECC0E7568976B7EAAD3B435B51404EE:551E3B3215FFD87F5E037B3E3523D5F6
»  But for ALL tools that use Windows native support (API) for NTLM auth

–  We want to be able to do it as many times as we want without
logging in and out

–  We want to do it without having to reboot the ‘attacking machine’

Slide 18

Pass-The-Hash Toolkit For Windows
Implementing ‘Pass-the-hash’ on Windows, cont. (2)

  So, how do we do all that?

–  Let’s take a look at the Windows NT Logon and Authentication
model…

Slide 19

Pass-The-Hash Toolkit For Windows
Windows NT Logon and Authentication Model

  Three basic components take part
–  Logon processes: a component trusted by the OS to monitor I/O

devices for logon attempts

–  The LSA (Local Security Authority) Server Process: user-mode
process (lsass.exe) responsible basically for the local system security
policy and user auth.

–  Authentication packages: component (DLL) responsible for performing
actual user’s credentials auth

»  Each auth pkg registers to the LSA at startup (authpkg id)

»  Create new LSA Logon Sessions
»  Return info for inclusion in Token object

–  The token represents security context for access
–  The auth packages associate credentials with the user’s logon

session

Slide 20

Pass-The-Hash Toolkit For Windows
Winlogon.exe and msv1_0.dll

WINLOGON.EXE
(logon process)

MSV1_0.DLL
(auth pkg)

…
(other auth pkgs)

LSA AUTH API

LSASS.EXE

•  Winlogon.exe: default logon process for
interactive logons

•  MSV1_0.DLL: NTLM auth package

•  LSASS.EXE: keeps track of logon
sessions

NTLM AUTH

Slide 21

Pass-The-Hash Toolkit For Windows
 Winlogon.exe and msv1_0.dll, cont. (2)

  Winlogon

–  Intercepts logon attempts from the
keyboard

–  calls LsaLogonUser() with msv1_0’s id
»  This ends up in MSV1_0.DLL

WINLOGON.EXE
(logon process)

MSV1_0.DLL
(auth pkg)

…
(other auth pkgs)

LSA AUTH API

LSASS.EXE

Slide 22

Pass-The-Hash Toolkit For Windows
 Winlogon.exe and msv1_0.dll, cont. (4)

  Msv1_0

–  Authenticates user using local sam or AD
etc

–  Creates logon session (LUID)

–  Msv1_0 adds credentials to logon
session by calling LsaAddCredential()

–  The username, the domain name, and
the LM&NTLM hashes

–  These are the credentials used by
windows when you try to access
remote resources (e.g.: net use \\server
\c$)

WINLOGON.EXE
(logon process)

MSV1_0.DLL
(auth pkg)

…
(other auth pkgs)

LSA AUTH API

LSASS.EXE

Slide 23

Pass-The-Hash Toolkit For Windows
Winlogon.exe and msv1_0.dll, cont. (8)

  Msv1_0 communicates with LSA using the LSA AUTH API:
»  Auth packages export the function

–  NTSTATUS LsaApInitializePackage(

 __in ULONG AuthenticationPackageId,

 __in PLSA_DISPATCH_TABLE LsaDispatchTable,

 __in_opt PLSA_STRING Database,

 __in_opt PLSA_STRING Confidentiality,

 __out PLSA_STRING *AuthenticationPackageName

);

»  LSA calls this function at startup and passes the LsaDispatchTable
structure

Slide 24

Pass-The-Hash Toolkit For Windows
Winlogon.exe and msv1_0.dll, cont. (9)

  LSA_DISPATCH_TABLE

–  Structure that contains the addresses of LSA functions that can be
called by auth packages.

typedef struct LSA_DISPATCH_TABLE {

PLSA_CREATE_LOGON_SESSION CreateLogonSession;
PLSA_DELETE_LOGON_SESSION DeleteLogonSession;
PLSA_ADD_CREDENTIAL AddCredential;
PLSA_GET_CREDENTIALS GetCredentials;
PLSA_DELETE_CREDENTIAL DeleteCredential;
PLSA_ALLOCATE_LSA_HEAP AllocateLsaHeap;
PLSA_FREE_LSA_HEAP FreeLsaHeap;
PLSA_ALLOCATE_CLIENT_BUFFER AllocateClientBuffer;
PLSA_FREE_CLIENT_BUFFER FreeClientBuffer;
PLSA_COPY_TO_CLIENT_BUFFER CopyToClientBuffer;
PLSA_COPY_FROM_CLIENT_BUFFER CopyFromClientBuffer;

 } LSA_DISPATCH_TABLE,PLSA_DISPATCH_TABLE;

Slide 25

Pass-The-Hash Toolkit For Windows
So, how can we implement ‘pass-the-hash’ on Windows?

  So, how can we implement ‘Pass-the-hash’ on Windows
ALREADY!?

»  We play around with the logon sessions and their associated
credentials…

–  Remember…
»  Credentials associated with logon sessions are the credentials used

when you want to access a remote resource using NTLM auth

»  So if we change these credentials (e.g.: modify the password hashes),
we modify credentials used for over the network auth and we will
accomplish our goal

Slide 26

Pass-The-Hash Toolkit For Windows
Logon Sessions & NTLM hashes in memory

Next Prev … userLen userPtr DomainLen DomainPtr … ptrToCreds

Unk1 AuthPkgId PtrToCreds

Unk1 PrimaryLen PrimaryPtr HashesLen HashesPtr

DomainLen DomainOffset userLen userOffset NTLMhash LMHash … DomainName userName

SESSION_ENTRY

CREDS_ENTRY

CREDS_HASH_ENTRY

NTLM_CREDS_BLOCK (encrypted)

LSASRV.DLL!LogonSessionList (LSASRV.DLL!LogonSessionListCount)

LSASS.EXE LSASS.EXE maintains a double-linked list of logon sessions

Slide 27

Pass-The-Hash Toolkit For Windows
 Logon Sessions & NTLM hashes in memory

  Each logon session may have associated NTLM credentials (or
others)

–  NTLM creds. encrypted w/random key using either desX-cbc or rc4
»  If modulo(size/8)==0 use desX-cbc, otherwise use rc4

»  DES-X (or DESX) is a variant of DES intended to increase the
complexity of a brute-force attack using a technique called key
whitening.

–  DES-X augments DES by XORing an extra 64 bits of key (K1) to
the plaintext before applying DES, and then XORing another 64
bits of key (K2) after the encryption

Slide 28

Pass-The-Hash Toolkit For Windows
 Logon Sessions & NTLM hashes in memory, cont. (2)

–  I’ve never seen credentials encrypted with rc4
–  desX key appears to be lost but IV, whitening keys and scheduled

key are available

»  LSASS itself uses this info to encrypt/decrypt

–  it uses the LSASRV.DLL!LsaEncryptMemory() function

Slide 29

Pass-The-Hash Toolkit For Windows
LSA Logon Sessions

  LSASRV.DLL!LsaInitializeProtectedMemory generates the keys
used to encrypt credentials in memory

// global_vars
uchar *g_pRandomKey; // ?g_pRandomKey@@3PAEA
ulong g_cbRandomKey; // ?g_cbRandomKey@@3KA
ulong CredLockedMemorySize; // ?CredLockedMemorySize@@3KA
void* CredLockedMemory; // ?CredLockedMemory@@3PAXA
_desxtable *g_pDESXKey; // ?g_pDESXKey@@3PAU_desxtable@@

 //typedef struct _desxtable {
 // unsigned char inWhitening[8];
 // unsigned char outWhitening[8];
 // DESTable desTable;
 //} DESXTable;

unsigned __int64 g_Feedback; // ?g_Feedback@@3_KA

LsaInitializeProtectedMemory
{

g_cbRandomKey = 0x100 (256) ;
CredLockedMemorySize = 0x190 (400);

CredLockedMemory = VirtualAlloc(0, 190h, MEM_COMMIT(1000h), PAGE_READWRITE(4))
VirtualLock(CredLockedMemory, CredLockedMemoriSize);

// _desxtable *g_pDESXKey
g_pDESXKey = CredLockedMemory;

g_pRandomKey = g_pDESXKey + 0x90 (144);

SystemFunction036@8(g_pRandomKey, 0x18 (24));
SystemFunction036@8(&g_Feedback, 8);
desxkey(g_pDESXKey, g_pRandomKey);
SystemFunction036@8(g_pRandomKey, g_cbRandomKey);

}

Slide 30

Pass-The-Hash Toolkit For Windows
LSA Logon Sessions

  LSASRV.DLL!LsaEncryptMemory is used to encrypt/decrypt credentials

void LsaEncryptMemory(unsigned _int8 *buffer, unsigned __int32 len, unsigned int mode)
{
char *pbuffer;
??? outRC4key;
unsigned int feedback1;
unsigned int feedback2;

 if(buffer == NULL) return;

 pbuffer = buffer;

 if(len == 0) return;

 if(!(len&7)) {

 rc4_key(&outRC4key, g_cbRandomKey, g_pRandomKey);
 rc4(outRC4Key, len, buffer);
 return;

 }

 feedback1, feedback2 = g_Feedback;
 _CBC@28(&_function_desx@16,
 8,
 buffer,
 buffer,
 g_pDESXKey,
 mode,
 &feedback1);

}

Slide 31

Pass-The-Hash Toolkit For Windows
Pass-The-Hash Toolkit for Windows included tools & imp.

Pass-the-hash Toolkit for Windows
included tools & implementation

Slide 32

Pass-The-Hash Toolkit For Windows
PSH/PTH Toolkit for Windows – included tools

  PSH/PTH Toolkit for Windows – included tools

–  IAM.exe and IAM-ALT.exe: performs ‘pass-the-hash’

–  WHOSTHERE.exe and WHOSTHERE-ALT.exe: obtain credentials
stored in memory (domain, username, NT&NTLM hashes)

–  PASSTHEHASH.IDC: IDA Pro .IDC script; obtain addresses IAM.exe and
WHOSTHERE.exe need to function

–  GENHASH.exe: helper tool. Mainly for testing purposes:

»  Generates NT&NTLM hashes from a cleartext password

Slide 33

Pass-The-Hash Toolkit For Windows
GENHASH.EXE implementation

  GENHASH.EXE
–  Generates LM & NTLM hashes

–  Uses ‘undocumented’ functions
»  Advapi32.dll!SystemFunction006(strupr(char* pwd), out uchar* hash)

–  Generates LM hash

»  Advapi32.dll!SystemFunction007(unicode* pwd, out uchar* hash)
–  Generates NTLM hash

Slide 34

Pass-The-Hash Toolkit For Windows
Implementation: The hard way

The “hard” way

(iam.exe / whosthere.exe)

Slide 35

Pass-The-Hash Toolkit For Windows
IAM.EXE Implementation

  IAM.EXE and IAMDLL.DLL
–  Findfuncs() in LSASRV.DLL

»  LsaAddCredential, LsaEncryptMemory, Feedback, DesXKey, LogonSessionList,
LogonSessionCount

–  Gets current LogonID
»  If –r, creates new logon session and process (advapi32.dll!CreateProcessWithLogonW)

–  Creates ‘NTLM_CREDS_BLOCK’

DomainLen DomainOff userLen userOffset NTLMhash LMHash … Domain

NTLM_CREDS_BLOCK

User

–  Injects iamdll.dll into LSASS.EXE

–  Encrypts credentials manually and
calls LSASRV.DLL!LsaAddCredential(LogonID,&primaryKey,&MSV_CREDS)

Slide 36

Pass-The-Hash Toolkit For Windows
WHOSTHERE.EXE Implementation

  WHOSTHERE.EXE
–  Findfuncs() inside LSASRV.DLL

»  LsaAddCredential, LsaEncryptMemory, Feedback, DesXKey, LogonSessionList,
LogonSessionCount

–  From LSASS.EXE

»  Reads value of g_Feedback,DesXKey, LogonSessionlist, LogonSessionListCount

–  Iterates thru items in double-linked list of sessions

Next Prev … userLen userPtr DomainLen DomainPtr … ptrToCreds

SESSION_ENTRY

Slide 37

Pass-The-Hash Toolkit For Windows
WHOSTHERE.EXE Implementation, cont. (2)

Unk1 AuthPkgId PtrToCreds

Unk1 PrimaryLen PrimaryPtr HashesLen HashesPtr

DomainLen DomainOffset userLen userOffset NTLMhash LMHash … DomainName

CREDS_ENTRY

CREDS_HASH_ENTRY

NTLM_CREDS_BLOCK (encrypted)

 Gets to encrypted credentials per each logon session

Slide 38

Pass-The-Hash Toolkit For Windows
findfuncs() Implementation

 Findfuncs()

  Address group

–  LSASRV.DLL!?LsaEncryptMemory@@YGXPAEKH@Z
–  LSASRV.DLL!_LsapAddCredential@16

–  LSASRV.DLL!?g_Feedback@@3_KA

–  LSASRV.DLL!?g_pDESXKey@@3PAU_desxtable@@A

–  LSASRV.DLL!?LogonSessionCount@@3KA / LSASRV.DLL!?
LogonSessionListCount@@3KA (in W2003)

–  LSASRV.DLL!?LogonSessionList@@3U_LIST_ENTRY@@A /
LSASRV.DLL!?LogonSessionList@@3PAU_LIST_ENTRY@@A
(in W2003)

Slide 39

Pass-The-Hash Toolkit For Windows
findfuncs() Implementation, cont. (2)

  Address Group Example

 #define V2976_XPSP2_ADDCREDENTIAL_FRENCH (PBYTE)0x756C7A24

 #define V2976_XPSP2_ENCRYPTMEMORY_FRENCH (PBYTE)0x756C5449

 #define V2976_XPSP2_FEEDBACK_ADDR_FRENCH (PBYTE)0x75750BD8

 #define V2976_XPSP2_DESKEY_PTR_ADDR_FRENCH
 (PBYTE)0x75750BE0

 #define V2976_XPSP2_LOGON_SESSION_LIST_ADDR_FRENCH
 (PBYTE)0x7574FCB8

 #define V2976_XPSP2_LOGON_SESSION_LIST_COUNT_FRENCH
 (PBYTE)0x7574FE54

Slide 40

Pass-The-Hash Toolkit For Windows
findfuncs() Implementation, cont. (3)

  'Database' of 'addresses groups' for different LSASRV.DLL versions

–  addresses change based on
»  DLL version of auth components

»  Service pack

»  Windows version (XP,2003, etc)

»  Language (French,German,etc)

Slide 41

Pass-The-Hash Toolkit For Windows
Implementation: The easy way

The “easy” way

(iam-alt.exe / whosthere-alt.exe)

Slide 42

Pass-The-Hash Toolkit For Windows
IAM-ALT.EXE Implementation

  IAM-ALT.EXE and PTH.DLL

–  Gets LogonID
»  If –r, create new logon session and process (advapi32.dll!

CreateProcessWithLogonW)

–  Obtain LogonID

–  Injects PTH.DLL into LSASS.EXE
»  Finds msv1_0.dll!NlpAddPrimaryCredential

–  Not exported
–  Searches for signatures (series of fixed opcodes)

»  Calls msv_10.dll!NlpAddPrimaryCredential
–  No need to encrypt credentials

Slide 43

Pass-The-Hash Toolkit For Windows
WHOSTHERE-ALT.EXE Implementation

  WHOSTHERE-ALT.EXE and PTH.DLL

–  Calls secur32.dll!LsaEnumerateLogonSessions()
–  Iterates thru sessions (LUIDs)

»  Gets username, domain, authpkg name

–  Injects pth.dll into LSASS.EXE
»  Finds msv1_0.dll!NlpGetPrimaryCredential()

–  Not exported
–  Searches for signatures (series of fixed opcodes)

»  Calls msv1_0.dll!NlpGetPrimaryCredential()
–  No need to decrypt

Slide 44

Pass-The-Hash Toolkit For Windows
Implementation Summary

Implementation Summary

Slide 45

Pass-The-Hash Toolkit For Windows
Implementation Summary

  IAM.EXE and IAM-ALT.EXE

–  Perform ‘pass-the-hash’
–  Replace current and new logon session credentials

–  Two different implementations of the same ‘technique’

–  IAM-ALT uses a more ‘generic’ and ‘easy’ approach and should
work on more systems

–  IAM uses a more ‘specialized’ approach meant to be more
‘stealthy’ (sthg like that..does not completely accomplishes this right
now..)

Slide 46

Pass-The-Hash Toolkit For Windows
Implementation Summary, cont. (2)

  WHOSTHERE.EXE and WHOSTHERE-ALT.EXE

–  List credentials of current logon sessions
–  Two different implementations of the same ‘technique’

–  WHOSTHERE-ALT uses a more ‘generic’ and ‘easy’ approach and
should work on more systems

–  WHOSTHERE just reads memory
»  Very safe

»  Specially to use on pentests

Slide 47

Pass-The-Hash Toolkit For Windows
DEMO

DEMO

Slide 48

Pass-The-Hash Toolkit For Windows
Using whosthere/whosthere-alt to help you own the domain

Using whosthere/whosthere-alt to

help you “own the domain”

Slide 49

Pass-The-Hash Toolkit For Windows
Using whosthere/whosthere-alt to help you own the domain, cont. (2)

  Compromise a Windows machine
–  Dump SAM to obtain NT&NTLM hashes (e.g.:pwdump)

»  Obtains password hashes of, ONLY, users on LOCAL SAM database

Slide 50

Pass-The-Hash Toolkit For Windows
Using whosthere/whosthere-alt to help you own the domain, cont. (3)

  How do you move from owning a single machine to owning a
domain?

»  Use whosthere/whosthere-alt to dump LM&NTLM credentials stored in
memory

–  New logon sessions

–  Logon sessions created pre-exploitation

»  You might get lucky and get accounts with domain admin privileges

»  I’ve seen this many times.. (I’m not that lucky, so you should see the
same thing )

»  Sometimes… logon sessions and NTLM credentials remain in
memory after users log off…

Slide 51

Pass-The-Hash Toolkit For Windows
DEMO

DEMO

Slide 52

Pass-The-Hash Toolkit For Windows
CONCLUSIONS

CONCLUSIONS

Slide 53

Pass-The-Hash Toolkit For Windows
Conclusions

  PSH Toolkit brings pass-the-hash to Windows (iam/iam-alt)

  The ‘technique’ is no longer limited to certain functionality

–  You can use any microsoft and third-party tool that uses NTLM auth

–  ALL functionality of such tools is available to you

–  You can use this in a pentest (pivoting)

Slide 54

Pass-The-Hash Toolkit For Windows
Conclusions, cont. (2)

  Whosthere/whosthere-alt grabs hashes of (active?) logon
sessions

–  Dump credentials stored in memory
–  Leave whosthere/whosthere-alt running and grab hashes of new

logon sessions when they are created

–  You can obtain credentials of users not local to the
workstation you are on

–  Sometimes credentials are in memory even when users are not
currently logged on

–  helps you own the domain after compromising only one server/
workstation

Slide 55

Pass-The-Hash Toolkit For Windows
Questions

QUESTIONS?

Slide 56

Pass-The-Hash Toolkit For Windows
Thanks!

Thanks!

  Blog: hexale.blogspot.com

  My web site: www.hexale.org
  Forums: www.hexale.org/forums

  PSH/PTH toolkit available at
http://oss.coresecurity.com/projects/pshtoolkit.htm

  More info available at
http://oss.coresecurity.com/pshtoolkit/doc/index.html and at my
web site.

Slide 57

Pass-The-Hash Toolkit For Windows
PASSTHEHASH.IDC Script

  PASSTHEHASH.IDC Script
»  Finds the following Symbols

–  ?LsaEncryptMemory@@YGXPAEKH@Z

–  _LsapAddCredential@16

–  ?g_Feedback@@3_KA

–  ?g_pDESXKey@@3PAU_desxtable@@A

–  ?LogonSessionCount@@3KA / ?LogonSessionListCount@@3KA
(in W2003)

–  ?LogonSessionList@@3U_LIST_ENTRY@@A / ?
LogonSessionList@@3PAU_LIST_ENTRY@@A (in W2003)

–  If WHOSTHERE/IAM don’t work on your system, you can make
them work yourself

»  You don’t need to recompile the tools

