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Pass-The-Hash Toolkit For Windows 
I’m going to talk about.. 

  I’m going to talk about.. 

–  What is the ‘Pass-the-hash’ technique? 
»  Brief history and explanation of the technique 

–  Current (previous) Implementations and limitations 

–  What is the Pass-the-hash Toolkit for Windows? 
»  Brief history 

»  Description of included tools and advantages 

»  Implementation (technical details) 

»  A ‘new’ post-exploitation ‘attack/technique/thing to do’ 

»  How to use the tools 

–  Demos 

»  If someone is still in the room… Q/A. 
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What is the ‘Pass-the-hash’ technique? 
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Pass-The-Hash Toolkit For Windows 
What is Pass-the-hash? 

  What is Pass-the-hash? 

–  Windows stores, generally, two hashes of a user’s passwords in its 
‘users database’ (e.g.:SAM) 

–  LM hash, NTLM hash 

–  “Pass-the-hash” allows an attacker to use LM & NTLM hashes to 
authenticate to a remote host (using NTLM auth) without having to 
decrypt those hashes to obtain the cleartext password 

–  First published (theory & exploit code) in 1997 by Paul Ashton 
(http://www.securityfocus.com/bid/233/discuss) 
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Pass-The-Hash Toolkit For Windows 
How/Why does ‘Pass-the-hash’ work? 

  How/Why does ‘Pass-the-hash’ work? 

–  How hashes are used (F) varies (ntlmv1,ntlmv2,etc) 

–  Having LM/NTLM Hashes  ==  having the cleartext password for  
remote NTLM auth 

Client Server 

Client connects to Server and sends features 
supported, requested, etc 

Server responds w/features supported, required and 
sends random challenge (C) 

Client calculates and sends R = F(LM/NTLM pwd hashes, C) along 
with username, domain, etc. 

Server calculates 
R locally, 
compares with 
client R  and 
returns result 

Server responds access granted or denied. 

(over)simplified diagram of NTLM challenge-response authentication protocol 



Slide 6 

Pass-The-Hash Toolkit For Windows 
How do you obtain the hashes to ‘Pass-the-hash’? 

  How do you obtain the LM&NTLM hashes to ‘Pass-the-hash’? 

–  Post-Exploitation 

–  Dump SAM database using pwdump3/3e/4/5/6/7, fgdump, etc. 

»  Administrator:
500:0102030405060708090A0B0C0D0E0F10:0102030405060708090
A0B0C0D0E0F10::: 
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Pass-The-Hash Toolkit For Windows 
How do you obtain the hashes to ‘Pass-the-hash’?, cont. (2) 

  How do you obtain the LM&NTLM hashes to ‘Pass-the-hash’?, 
cont. (2) 

–  From c:\windows\repair\sam 
–  From c:\windows\system32\config\SAM  
–  Sniff SMB challenge-response over the network 

–  Simplifying: capture the nonce and encrypted nonce 
»  Need to brute-force to obtain a hash to ‘pass-the-hash’ (e.g.: use 

l0phtcrack, cain&abel) 
»  Common misconception is to believe the ‘encrypted nonce’ is a hash 

we can work with, but it is not.   

–  Cachedump to obtain ‘hashed’ hashes  and then brute-forcing.. 
–  Etc... 
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Pass-The-Hash Toolkit For Windows 
‘Pass-the-hash’ implementations 

  Available ‘Pass-the-hash’ implementations 

–  Paul Ashton’s original ‘exploit code’: modified SAMBA client 

»  With cleartext-password (not actual smbclient params): 

–  smbclient //192.168.1.20/diskC –U Administrator –p mypwd 
»  Analog to ‘net use z: \\192.168.1.20\diskC /u:Administrator mypwd’  

»  The patch allows the following (not actual smbclient params): 

–  smbclient //192.168.1.20/disckC –U Administrator –p 
4ECC0E7568976B7EAAD3B435B51404EE:
551E3B3215FFD87F5E037B3E3523D5F6 
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Pass-The-Hash Toolkit For Windows 
‘Pass-the-hash’ implementations, cont. (2) 

  Available ‘Pass-the-hash’ implementations, cont. (2) 

–  Lots of impl. with the same approach since then: 

»  Samba-TNG provides built-in functionality for ‘passing-the-hash’ 

»  Lots of third-party implementations of the NTLM authentication 
mechanism allow performing the ‘pass-the-hash’ technique 

–  In python, ruby, java, you name it..  

–  Including metasploit, CORE IMPACT, impacket, etc. 
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Pass-The-Hash Toolkit For Windows 
Pass-the-hash implementations “limitations” 

  Pass-the-hash previous implementations “limitations” 

–  Mostly, limited functionality: 

–  Samba & Samba-TNG: enormous amount of functionality but still 
not everything is implemented 

–  Other third-party libraries/programs implement even LESS 
functionality than Samba & Samba-TNG 

–  Functionality is scattered among different libraries/programs 
–  Some protocols and functionality is ‘partially implemented’ 

»  Third-party implementations are always running behind: 
»  Implementation is done by reverse-engineering and it takes a 

considerable amount of effort/time 

»  You can’t use native Windows tools  
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Pass-The-Hash Toolkit For Windows 
What is Pass-the-hash Toolkit for Windows? 

  What is Pass-the-hash Toolkit for Windows? 
–  A set of tools that brings pass-the-hash to the Windows platform 

(and more) 

–  Published in 2007, is Free and Open Source (written in C, by me ) 

–  Currently, it works on Windows XP, Windows Server 2003 and 
Vista 
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What is Pass-the-hash Toolkit for Windows?, cont. (2) 

  What is Pass-the-hash Toolkit for Windows?, cont.(2) 

–  I first developed a fully-working version of this technique for 
Windows NT4 (and later for Win2000) in 2000: 

»  I couldn’t publish the code back then (it was sold to a ‘company’) 

»  But I wrote a paper: “Modifying Windows NT Logon Credentials” 

–  Check out 
http://www.coresecurity.com/content/modifying-windows-nt-logon-
credential 

–  In 2007, I wrote a completely new implementation of the technique 
from scratch and the PSH/PTH Toolkit was born 
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Pass-The-Hash Toolkit For Windows 
Pass-the-hash Toolkit for Windows memorabilia 

  Pass-the-hash Toolkit for Windows memorabilia 
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Pass-The-Hash Toolkit For Windows 
PSH/PTH Toolkit for Windows Advantages 

  PSH/PTH Toolkit for Windows Advantages 

–  Mainly, available functionality is “unlimited” 
»  It run on Windows! So… 

»  You can use any tool that uses NTLM authentication 
–  from Microsoft or any other third-party tool (think admin interfaces, 

DCOM, etc) 

»  You can use the same tools you’d use if you had the cleartext 
password  

»  You have access to all available functionality and not partial 
implementations 

»  You can use it on compromised remote Windows boxes during 
pentests and then use windows native tools   
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Pass-The-Hash Toolkit For Windows 
PSH/PTH Toolkit for Windows Advantages, cont. (2) 

  PSH/PTH Toolkit for Windows Advantages, cont. (2) 

–  PSH/PTH also provides a post-exploitation ‘technique/attack/tool’ 
»  ‘Steals’ credentials stored in memory 

»  Using this, you may be able to own a windows domain more easily, 
more on this later.. 
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Pass-The-Hash Toolkit For Windows 
Implementing ‘Pass-the-hash’ on Windows 

Implementing ‘Pass-the-hash’ on Windows 
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Pass-The-Hash Toolkit For Windows 
Implementing ‘Pass-the-hash’ on Windows 

  What do we want to achieve? 

–  Analog functionality to ‘smbclient //<server>/<share> -U Administrator –p 
4ECC0E7568976B7EAAD3B435B51404EE:

551E3B3215FFD87F5E037B3E3523D5F6’   
»  Net use z: \\<server>/<share> -U Administrator 

4ECC0E7568976B7EAAD3B435B51404EE:551E3B3215FFD87F5E037B3E3523D5F6 
»  But for ALL tools that use Windows native support (API) for NTLM auth 

–  We want to be able to do it as many times as we want without 
logging in and out 

–  We want to do it without having to reboot the ‘attacking machine’ 
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Pass-The-Hash Toolkit For Windows 
Implementing ‘Pass-the-hash’ on Windows, cont. (2) 

  So, how do we do all that? 

–  Let’s take a look at the Windows NT Logon and Authentication 
model… 



Slide 19 

Pass-The-Hash Toolkit For Windows 
Windows NT Logon and Authentication Model 

  Three basic components take part 
–  Logon processes: a component trusted by the OS to monitor I/O 

devices for logon attempts 

–  The LSA (Local Security Authority) Server Process: user-mode 
process (lsass.exe) responsible basically for the local system security 
policy and user auth. 

–  Authentication packages: component (DLL) responsible for performing 
actual user’s credentials auth 

»  Each auth pkg registers to the LSA at startup (authpkg id) 

»  Create new LSA Logon Sessions 
»  Return info for inclusion in Token object 

–  The token represents security context for access 
–  The auth packages associate credentials with the user’s logon 

session  
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Pass-The-Hash Toolkit For Windows 
Winlogon.exe and msv1_0.dll 

WINLOGON.EXE 
(logon process) 

MSV1_0.DLL 
(auth pkg) 

… 
(other auth pkgs) 

LSA AUTH API 

LSASS.EXE 

•  Winlogon.exe: default logon process for 
interactive logons 

•  MSV1_0.DLL: NTLM auth package  

•  LSASS.EXE: keeps track of logon 
sessions 

NTLM AUTH 
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Pass-The-Hash Toolkit For Windows 
 Winlogon.exe and msv1_0.dll, cont. (2) 

  Winlogon 

–  Intercepts logon attempts from the 
keyboard 

–  calls LsaLogonUser() with msv1_0’s id 
»  This ends up in MSV1_0.DLL 

WINLOGON.EXE 
(logon process) 

MSV1_0.DLL 
(auth pkg) 

… 
(other auth pkgs) 

LSA AUTH API 

LSASS.EXE 
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Pass-The-Hash Toolkit For Windows 
 Winlogon.exe and msv1_0.dll, cont. (4) 

  Msv1_0 

–  Authenticates user using local sam or AD 
etc 

–  Creates logon session (LUID) 

–  Msv1_0 adds credentials to logon 
session by calling LsaAddCredential() 

–  The username, the domain name, and 
the LM&NTLM hashes 

–  These are the credentials used by 
windows when you try to access 
remote resources (e.g.: net use \\server
\c$) 

WINLOGON.EXE 
(logon process) 

MSV1_0.DLL 
(auth pkg) 

… 
(other auth pkgs) 

LSA AUTH API 

LSASS.EXE 
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Pass-The-Hash Toolkit For Windows 
Winlogon.exe and msv1_0.dll, cont. (8) 

  Msv1_0 communicates with LSA using the LSA AUTH API: 
»  Auth packages export the function 

–  NTSTATUS LsaApInitializePackage( 

 __in      ULONG AuthenticationPackageId, 

  __in      PLSA_DISPATCH_TABLE LsaDispatchTable, 

  __in_opt  PLSA_STRING Database, 

  __in_opt  PLSA_STRING Confidentiality, 

  __out     PLSA_STRING *AuthenticationPackageName 

); 

»  LSA calls this function at startup and passes the LsaDispatchTable 
structure 
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Pass-The-Hash Toolkit For Windows 
Winlogon.exe and msv1_0.dll, cont. (9) 

  LSA_DISPATCH_TABLE 

–  Structure that contains the addresses of LSA functions that can be 
called by auth packages. 

typedef struct LSA_DISPATCH_TABLE { 

PLSA_CREATE_LOGON_SESSION CreateLogonSession; 
PLSA_DELETE_LOGON_SESSION DeleteLogonSession; 
PLSA_ADD_CREDENTIAL AddCredential; 
PLSA_GET_CREDENTIALS GetCredentials; 
PLSA_DELETE_CREDENTIAL DeleteCredential; 
PLSA_ALLOCATE_LSA_HEAP AllocateLsaHeap; 
PLSA_FREE_LSA_HEAP FreeLsaHeap; 
PLSA_ALLOCATE_CLIENT_BUFFER AllocateClientBuffer; 
PLSA_FREE_CLIENT_BUFFER FreeClientBuffer; 
PLSA_COPY_TO_CLIENT_BUFFER CopyToClientBuffer; 
PLSA_COPY_FROM_CLIENT_BUFFER CopyFromClientBuffer; 

 } LSA_DISPATCH_TABLE,PLSA_DISPATCH_TABLE;  
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Pass-The-Hash Toolkit For Windows 
So, how can we implement ‘pass-the-hash’ on Windows? 

  So, how can we implement ‘Pass-the-hash’ on Windows 
ALREADY!? 

»  We play around with the logon sessions and their associated 
credentials… 

–  Remember… 
»  Credentials associated with logon sessions are the credentials used 

when you want to access a remote resource using NTLM auth 

»  So if we change these credentials (e.g.: modify the password hashes), 
we modify credentials used for over the network auth and we will 
accomplish our goal 
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Pass-The-Hash Toolkit For Windows 
Logon Sessions & NTLM hashes in memory 

Next Prev … userLen userPtr DomainLen DomainPtr … ptrToCreds 

Unk1 AuthPkgId PtrToCreds 

Unk1 PrimaryLen PrimaryPtr HashesLen HashesPtr 

DomainLen DomainOffset userLen userOffset NTLMhash LMHash … DomainName userName 

SESSION_ENTRY 

CREDS_ENTRY 

CREDS_HASH_ENTRY 

NTLM_CREDS_BLOCK (encrypted) 

LSASRV.DLL!LogonSessionList (LSASRV.DLL!LogonSessionListCount) 

LSASS.EXE LSASS.EXE maintains a double-linked list of logon sessions 
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Pass-The-Hash Toolkit For Windows 
 Logon Sessions & NTLM hashes in memory 

  Each logon session may have associated NTLM credentials (or 
others) 

–  NTLM creds. encrypted w/random key using either desX-cbc or rc4 
»  If modulo(size/8)==0 use desX-cbc, otherwise use rc4 

»  DES-X (or DESX) is a variant of DES intended to increase the 
complexity of a brute-force attack using a technique called key 
whitening.  

–  DES-X augments DES by XORing an extra 64 bits of key (K1) to 
the plaintext before applying DES, and then XORing another 64 
bits of key (K2) after the encryption  
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Pass-The-Hash Toolkit For Windows 
 Logon Sessions & NTLM hashes in memory, cont. (2) 

–  I’ve never seen credentials encrypted with rc4 
–  desX key appears to be lost but IV, whitening keys and scheduled 

key are available 

»  LSASS itself uses this info to encrypt/decrypt  

–  it uses the LSASRV.DLL!LsaEncryptMemory() function 
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Pass-The-Hash Toolkit For Windows 
LSA Logon Sessions 

  LSASRV.DLL!LsaInitializeProtectedMemory generates the keys 
used to encrypt credentials in memory 

// global_vars 
uchar *g_pRandomKey;   // ?g_pRandomKey@@3PAEA 
ulong g_cbRandomKey;   // ?g_cbRandomKey@@3KA 
ulong CredLockedMemorySize;   // ?CredLockedMemorySize@@3KA 
void* CredLockedMemory;   // ?CredLockedMemory@@3PAXA 
_desxtable *g_pDESXKey;   // ?g_pDESXKey@@3PAU_desxtable@@ 

    //typedef struct _desxtable { 
    //  unsigned char inWhitening[8]; 
    //  unsigned char outWhitening[8]; 
    //  DESTable desTable; 
    //} DESXTable; 

unsigned __int64 g_Feedback;  // ?g_Feedback@@3_KA   

LsaInitializeProtectedMemory 
{ 

g_cbRandomKey = 0x100 (256) ;    
CredLockedMemorySize  = 0x190 (400); 

CredLockedMemory = VirtualAlloc(0, 190h, MEM_COMMIT(1000h), PAGE_READWRITE(4)) 
VirtualLock( CredLockedMemory, CredLockedMemoriSize ); 

// _desxtable *g_pDESXKey 
g_pDESXKey = CredLockedMemory; 

g_pRandomKey = g_pDESXKey + 0x90 (144); 

SystemFunction036@8( g_pRandomKey, 0x18 (24) ); 
SystemFunction036@8( &g_Feedback, 8); 
desxkey( g_pDESXKey, g_pRandomKey); 
SystemFunction036@8( g_pRandomKey, g_cbRandomKey ); 

} 
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Pass-The-Hash Toolkit For Windows 
LSA Logon Sessions 

  LSASRV.DLL!LsaEncryptMemory is used to encrypt/decrypt credentials 

void LsaEncryptMemory(unsigned _int8 *buffer, unsigned __int32 len, unsigned int mode) 
{ 
char *pbuffer; 
??? outRC4key; 
unsigned int feedback1; 
unsigned int feedback2; 

 if( buffer == NULL) return; 

 pbuffer = buffer; 

 if( len == 0 ) return; 

 if( !(len&7) ) { 

  rc4_key( &outRC4key,  g_cbRandomKey, g_pRandomKey); 
  rc4( outRC4Key, len, buffer); 
  return; 

 } 

 feedback1, feedback2 = g_Feedback; 
 _CBC@28( &_function_desx@16,  
   8,  
   buffer, 
   buffer, 
   g_pDESXKey, 
   mode, 
   &feedback1); 

} 
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Pass-The-Hash Toolkit For Windows 
Pass-The-Hash Toolkit for Windows included tools & imp. 

Pass-the-hash Toolkit for Windows 
included tools & implementation 
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Pass-The-Hash Toolkit For Windows 
PSH/PTH Toolkit for Windows – included tools 

  PSH/PTH Toolkit for Windows – included tools 

–  IAM.exe and IAM-ALT.exe: performs ‘pass-the-hash’ 

–  WHOSTHERE.exe and WHOSTHERE-ALT.exe: obtain credentials 
stored in memory (domain, username, NT&NTLM hashes)  

–  PASSTHEHASH.IDC:  IDA Pro .IDC script; obtain addresses IAM.exe and 
WHOSTHERE.exe need to function 

–  GENHASH.exe: helper tool. Mainly for testing purposes: 

»  Generates NT&NTLM hashes from a cleartext password 
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Pass-The-Hash Toolkit For Windows 
GENHASH.EXE implementation    

  GENHASH.EXE 
–  Generates LM & NTLM hashes 

–  Uses ‘undocumented’ functions 
»  Advapi32.dll!SystemFunction006(strupr(char* pwd), out uchar* hash) 

–  Generates LM hash 

»  Advapi32.dll!SystemFunction007(unicode* pwd, out uchar* hash) 
–  Generates NTLM hash 
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Implementation: The hard way 

The “hard” way 

(iam.exe / whosthere.exe) 
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Pass-The-Hash Toolkit For Windows 
IAM.EXE Implementation   

  IAM.EXE and IAMDLL.DLL 
–  Findfuncs() in LSASRV.DLL 

»  LsaAddCredential, LsaEncryptMemory, Feedback, DesXKey, LogonSessionList, 
LogonSessionCount 

–  Gets current LogonID 
»  If –r, creates new logon session and process (advapi32.dll!CreateProcessWithLogonW) 

–  Creates ‘NTLM_CREDS_BLOCK’ 

DomainLen DomainOff userLen userOffset NTLMhash LMHash … Domain 

NTLM_CREDS_BLOCK  

User 

–  Injects iamdll.dll into LSASS.EXE 

–  Encrypts credentials manually and  
calls LSASRV.DLL!LsaAddCredential(LogonID,&primaryKey,&MSV_CREDS) 
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WHOSTHERE.EXE Implementation   

  WHOSTHERE.EXE 
–  Findfuncs() inside LSASRV.DLL 

»  LsaAddCredential, LsaEncryptMemory, Feedback, DesXKey, LogonSessionList, 
LogonSessionCount 

–  From LSASS.EXE 

»  Reads value of g_Feedback,DesXKey, LogonSessionlist, LogonSessionListCount 

–  Iterates thru items in double-linked list of sessions 

Next Prev … userLen userPtr DomainLen DomainPtr … ptrToCreds 

SESSION_ENTRY 
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WHOSTHERE.EXE Implementation, cont. (2) 

Unk1 AuthPkgId PtrToCreds 

Unk1 PrimaryLen PrimaryPtr HashesLen HashesPtr 

DomainLen DomainOffset userLen userOffset NTLMhash LMHash … DomainName 

CREDS_ENTRY 

CREDS_HASH_ENTRY 

NTLM_CREDS_BLOCK (encrypted) 

 Gets to encrypted credentials per each logon session 
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findfuncs() Implementation   

    Findfuncs() 

  Address group 

–  LSASRV.DLL!?LsaEncryptMemory@@YGXPAEKH@Z 
–  LSASRV.DLL!_LsapAddCredential@16 

–  LSASRV.DLL!?g_Feedback@@3_KA 

–  LSASRV.DLL!?g_pDESXKey@@3PAU_desxtable@@A 

–  LSASRV.DLL!?LogonSessionCount@@3KA / LSASRV.DLL!?
LogonSessionListCount@@3KA (in W2003) 

–  LSASRV.DLL!?LogonSessionList@@3U_LIST_ENTRY@@A / 
LSASRV.DLL!?LogonSessionList@@3PAU_LIST_ENTRY@@A 
(in W2003) 
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findfuncs() Implementation, cont. (2) 

  Address Group Example 

 #define V2976_XPSP2_ADDCREDENTIAL_FRENCH   (PBYTE)0x756C7A24  

 #define V2976_XPSP2_ENCRYPTMEMORY_FRENCH   (PBYTE)0x756C5449 

 #define V2976_XPSP2_FEEDBACK_ADDR_FRENCH   (PBYTE)0x75750BD8  

 #define V2976_XPSP2_DESKEY_PTR_ADDR_FRENCH  
 (PBYTE)0x75750BE0 

 #define V2976_XPSP2_LOGON_SESSION_LIST_ADDR_FRENCH
 (PBYTE)0x7574FCB8 

 #define V2976_XPSP2_LOGON_SESSION_LIST_COUNT_FRENCH 
 (PBYTE)0x7574FE54 
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findfuncs() Implementation, cont. (3) 

  'Database' of 'addresses groups' for different LSASRV.DLL versions 

–  addresses change based on 
»  DLL version of auth components 

»  Service pack 

»  Windows version (XP,2003, etc) 

»  Language (French,German,etc) 
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Implementation: The easy way 

The “easy” way 

(iam-alt.exe / whosthere-alt.exe ) 
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Pass-The-Hash Toolkit For Windows 
IAM-ALT.EXE Implementation 

  IAM-ALT.EXE and PTH.DLL 

–  Gets LogonID 
»  If –r, create new logon session and process (advapi32.dll!

CreateProcessWithLogonW) 

–  Obtain LogonID 

–  Injects PTH.DLL into LSASS.EXE 
»  Finds msv1_0.dll!NlpAddPrimaryCredential 

–  Not exported 
–  Searches for signatures (series of fixed opcodes) 

»  Calls msv_10.dll!NlpAddPrimaryCredential 
–  No need to encrypt credentials 
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WHOSTHERE-ALT.EXE Implementation 

  WHOSTHERE-ALT.EXE and PTH.DLL 

–  Calls secur32.dll!LsaEnumerateLogonSessions() 
–  Iterates thru sessions (LUIDs) 

»  Gets username, domain, authpkg name 

–  Injects pth.dll into LSASS.EXE 
»  Finds msv1_0.dll!NlpGetPrimaryCredential() 

–  Not exported 
–  Searches for signatures (series of fixed opcodes) 

»  Calls msv1_0.dll!NlpGetPrimaryCredential() 
–  No need to decrypt 
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Implementation Summary 

Implementation Summary 
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Implementation Summary 

  IAM.EXE and IAM-ALT.EXE 

–  Perform ‘pass-the-hash’ 
–  Replace current and new logon session credentials  

–  Two different implementations of the same ‘technique’ 

–  IAM-ALT uses a more ‘generic’ and ‘easy’ approach and should 
work on more systems 

–  IAM uses a more ‘specialized’ approach meant to be more 
‘stealthy’ (sthg like that..does not completely accomplishes this right 
now..) 
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Implementation Summary, cont. (2) 

  WHOSTHERE.EXE and WHOSTHERE-ALT.EXE 

–  List credentials of current logon sessions 
–  Two different implementations of the same ‘technique’ 

–  WHOSTHERE-ALT uses a more ‘generic’ and ‘easy’ approach and 
should work on more systems 

–  WHOSTHERE just reads memory 
»  Very safe 

»  Specially to use on pentests 
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DEMO 

DEMO 
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Pass-The-Hash Toolkit For Windows 
Using whosthere/whosthere-alt to help you own the domain 

Using whosthere/whosthere-alt to  

help you “own the domain” 
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Pass-The-Hash Toolkit For Windows 
Using whosthere/whosthere-alt to help you own the domain, cont. (2) 

  Compromise a Windows machine  
–  Dump SAM to obtain NT&NTLM hashes (e.g.:pwdump) 

»  Obtains password hashes of, ONLY, users on LOCAL SAM database 
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Using whosthere/whosthere-alt to help you own the domain, cont. (3) 

  How do you move from owning a single machine to owning a 
domain? 

»  Use whosthere/whosthere-alt to dump LM&NTLM credentials stored in 
memory 

–  New logon sessions  

–  Logon sessions created pre-exploitation  

»  You might get lucky and get accounts with domain admin privileges 

»  I’ve seen this many times.. (I’m not that lucky, so you should see the 
same thing ) 

»  Sometimes… logon sessions and NTLM credentials remain in 
memory after users log off… 



Slide 51 

Pass-The-Hash Toolkit For Windows 
DEMO 

DEMO 
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Pass-The-Hash Toolkit For Windows 
CONCLUSIONS 

CONCLUSIONS 
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Pass-The-Hash Toolkit For Windows 
Conclusions   

  PSH Toolkit brings pass-the-hash to Windows (iam/iam-alt) 

  The ‘technique’ is no longer limited to certain functionality 

–  You can use any microsoft and third-party tool that uses NTLM auth 

–  ALL functionality of such tools is available to you 

–  You can use this in a pentest (pivoting) 
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Conclusions, cont. (2) 

  Whosthere/whosthere-alt grabs hashes of (active?) logon 
sessions 

–  Dump credentials stored in memory 
–  Leave whosthere/whosthere-alt running and grab hashes of new 

logon sessions when they are created 

–  You can obtain credentials of users not local to the 
workstation you are on 

–  Sometimes credentials are in memory even when users are not 
currently logged on 

–  helps you own the domain after compromising only one server/
workstation 
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Questions 

QUESTIONS? 
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Thanks!   

Thanks! 

  Blog: hexale.blogspot.com 

  My web site: www.hexale.org 
  Forums: www.hexale.org/forums 

  PSH/PTH toolkit available at 
http://oss.coresecurity.com/projects/pshtoolkit.htm 

  More info available at 
http://oss.coresecurity.com/pshtoolkit/doc/index.html and at my 
web site. 
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PASSTHEHASH.IDC Script 

  PASSTHEHASH.IDC Script 
»  Finds the following Symbols 

–  ?LsaEncryptMemory@@YGXPAEKH@Z 

–  _LsapAddCredential@16 

–  ?g_Feedback@@3_KA 

–  ?g_pDESXKey@@3PAU_desxtable@@A 

–  ?LogonSessionCount@@3KA / ?LogonSessionListCount@@3KA 
(in W2003) 

–  ?LogonSessionList@@3U_LIST_ENTRY@@A / ?
LogonSessionList@@3PAU_LIST_ENTRY@@A (in W2003) 

–  If WHOSTHERE/IAM don’t work on your system,  you can make 
them work yourself 

»  You don’t need to recompile the tools 


