
Page 1 of 9

Inferno Release 2.3 Alpha Version
January 1999

What is Inferno?

See the Introduction to the Inferno System at
http://www.lucent-inferno.com/Pages/Developers/Documentation/R2.3/intro23a.PDF.

For more information see the System Overview at
http://www.lucent-inferno.com/Pages/Developers/Documentation/R2.3/SysOver23a.PDF.

For an overview of Security in Inferno see Inferno Security
at http://www.lucent-inferno.com/Pages/Developers/Documentation/R2.3/security23a.PDF.

Getting Started

Inferno Release 2.3 Alpha Version is available for four
platforms:

• Windows 95 and Windows 98
• Windows NT 4.0
• Solaris/SPARC 2.5.1 or 2.6 and Solaris/x86
• Linux

Note: If previously you have installed an older version of
the Inferno system, before you install Inferno Release 2.3
Alpha Version, uninstall any previous version of Inferno so
that it does not interfere with this new version.

Download the version for your platform and follow the
instructions for your platform.

To install on Windows 95/98 or NT platforms:

Use your browser to download the InstallShield executable
selection, inferno.exe. Use the Save As function to direct the
file to an empty folder.

Run inferno.exe. It will extract itself into several files.
Run the file called setup.exe to install the Inferno system.
The installation procedure is automatic except for a couple
of dialog boxes.

Page 2 of 9

For this Inferno Release 2.3 Alpha Version, setup.exe will
make an entry for Inferno 2.3 Emulator Alpha on your
Start >> Programs menu. Except for such shortcuts, the
distribution will go into the folder
C:Program Files\Inferno\Inferno2.3Emulator by default.

To run Inferno, select the Emulator subentry from the
Start >> Programs >> Inferno 2.3 Emulator Alpha menu. The
command-line or text window for the Inferno control console
displays.

Note: The path to the Inferno emulator on Windows is
C:Program Files\Inferno\Inferno2.3Emulator\Nt\386\bin\emu.exe.
However, for this Alpha Release you must use the entry on
the Start menu to start Inferno Release 2.3 Alpha Version.

When you start the emulator, a window opens with a few lines
of text and presents you with the system prompt,
<machinename>$:

Inferno Release 2.3 Build 75i (<date> <time>) main (pid=<pid>) interp
Initialize Dis: /dis/sh.dis
<machinename>$

This EMU window is the Inferno control console.

At the EMU control console prompt (<machinename>$), type the
following lines. Press Enter or Return after each line:

<machinename>$ bind '#I' /net
<machinename>$ lib/cs
<machinename>$ wm/logon

You will see the Inferno Window Manager Logon Screen. Enter
inferno as the user Name and press Enter. The first time you
log on as user inferno, you will see the Inferno License
Agreement Acceptance window. Read the agreement and click
on the I Accept button to begin using your Window Manager
session.

To run the Charon Browser, open the Inferno menu by
selecting the Inferno button at the lower left corner of the
Inferno window. Select Applications and then select the
Charon Browser item. For further information, please see
the Charon Web Browser section below.

Page 3 of 9

To install on UNIX-like systems:

Download the appropriate files, Inferno_Base.tar.gz and
Inferno_X.tar.gz, where X is one of Solaris_sparc, Solaris_386, or
Linux_386.

Put the files in an empty directory such as /usr/inferno and
extract it. If you use tar, remember to set the p flag to
preserve permissions.

To run Inferno, use the appropriate binary for the system
you are on:

/usr/inferno/Solaris/sparc/bin/emu
/usr/inferno/Solaris/386/bin/emu
/usr/inferno/Linux/sparc/bin/emu

When you run this command line in a window, that window
becomes the control console for the Inferno emulator.

When you start the emulator, a window opens with a few lines
of text and presents you with the system prompt,
<machinename>$:

Inferno Release 2.3 Build 75i (<date> <time>) main (pid=<pid>) interp
Initialize Dis: /dis/sh.dis
<machinename>$

This EMU window is the Inferno control console.

At the EMU control console prompt (<machinename>$), type the
following lines. Press Enter or Return after each line:

<machinename>$ bind '#I' /net
<machinename>$ lib/cs
<machinename>$ wm/logon

You will see the Inferno Window Manager Logon Screen. Enter
inferno as the user Name and press Enter. The first time you
log on as user inferno, you will see the Inferno License
Agreement Acceptance window. Read the agreement and click
on the I Accept button to begin using your Window Manager
session.

To run the Charon Browser, open the Inferno menu by
selecting the Inferno button at the lower left corner of the
Inferno window. Select Applications and then select the
Charon Browser item. For further information, please see
the Charon Web Browser section below.

Page 4 of 9

Using the Inferno Emulator, EMU:

See Using the Inferno System at
http://www.lucent-inferno.com/Pages/Developers/Documentation/R2.3/getstart23a.PDF.

What's New?

Inferno Release 2.3 Alpha Version is significantly different
from the Inferno Release 2.0 product, which was the last
public release of the Inferno operating system.

Changes include efficiency and performance improvements, and
many bug fixes including the elimination of memory leaks.
Much of the change has been to the source code for the
product. While these changes are visible only to those who
have a source code license, the effects of those changes
provide a faster, more reliable, and a more stable system.

Significant functionality changes include:

• a completely new web browser, Charon, with a new look,
much faster performance, and compliance with the HTML
3.2 standard [SEE Charon Web Browser section below]

• a new shell, known as "mash" and which functions both
as a programmable shell and as a build tool with
functionality similar to make. You can access Mash
using the Development Tools menu. [SEE Mash Shell
Application section below]

• an updated Limbo compiler with improved type checking
and warnings

• easier administration of Inferno servers, including
more advanced logging facilities

• easier creation and maintenance of synthetic file
systems because of a new set of libraries

• updated interfaces to the security module and new
modules that ease the authentication process

Page 5 of 9

• new self referencing modules with the ability to pass
this reference to other modules (This functionality is
used extensively in mash, Charon, and the new styx
libraries.) [SEE Self Module Pointer section below]

• new Sys module routine, Sys->aprint, which is similar
to Sys->sprint, but which returns an array of bytes
instead of a string

• new Draw module routine, Draw->Display.cursor() that
sets the current cursor associated with the Display

• new Tk module function, TK->windows() that returns a
list of the TK->Toplevel adts, one for each window on
the screen

• new Wmlib module function, Wmlib->untaskbar() that will
restore a window from the task bar

• new Bufio module routine, Bufio->Iobuf.setfill() that
associates a BufioFill module with an Iobuf (BufioFill
defines a single routine named fill() that Bufio calls
when it needs more data for a read request.)

• new xd hex dump command that dumps standard input or
the contents of a file to standard output as a series
of hexadeximal digits with each line of output
representing 16 bytes (Preceding the bytes, the address
of the first byte in the line is printed and after the
bytes, a 16-character field is printed with "."
representing an unprintable character. Type xd -? for
the usage message.)

• more reliable #s device used with Sys->file2chan

• updated port(s) to Linux/x86 and Solaris/x86

• updated Dis interpreter with improved garbage
collection that is more efficient and reliable

• new process monitoring and logging features for Inferno
servers [SEE New Server Process Monitoring and Logging
Features section below]

Page 6 of 9

• the Media Players menu item for the GIF Viewer is now
labeled the Image Viewer since you can view gif, jpg,
and jpeg files

• new Stopwatch application that you can access from the
Inferno Applications menu

• new Telnet application that you can access from the
Inferno Applications menu

• new Chat Server application. See the information at
http://www.lucent-inferno.com/Pages/Developers/Demos/chatapp.html

• new Demos menu item on the Inferno menu gives you
access to the Coffee, and new Linpack, and Colors demos
(When you select a color in the Colors demo, the
associated RGB values are shown. The Linpack Demo is
an example of linear algebra routines working in
Limbo.)

• new Window Controls utility on the System menu provides
the ability to raise or lower the focus of a window, or
move, delete, or hide (minimize) a window.

• new Wish menu item on the Development Tools menu allows
you to create Tk items

• the Plumb or Plumbing window that was on the task bar
for Inferno R 2.0 has been replaced by a more general
message window that is labeled Console

Charon Web Browser

The Charon Web Browser is a completely new web browser. It
uses the Inferno Limbo Draw and is faster, and it implements
all the standard HTML 3.2 features.

Charon has a new look, see
http://www.lucent-inferno.com/Pages/Developers/Documentation/R2.3/Charon.PDF.

Mash Shell Application

The new mash shell functions as a programmable shell and as
a build tool that is similar to make. When you are in EMU,

Page 7 of 9

you can access Mash from the Inferno Development Tools
submenu.

The Inferno Mash Manual is at
http://www.lucent-inferno.com/Pages/Developers/Documentation/Mash/mashman.html.

You can see the Inferno Tk "builtins" Manual at
http:// www.lucent-inferno.com/Pages/Developers/Documentation/Mash/tkman.html.

A Mash Tutorial is at
http://www.lucent-inferno.com/Pages/Developers/Documentation/Mash/mashtut.html.

A Make Tutorial is at
http://www.lucent-inferno.com/Pages/Developers/Documentation/Mash/maketut.html.

Self Module Pointer

New to R2.3 is the ability for a module to load a pointer to
itself. The syntax for this is the same as that for loading
a builtin module, but using the special builtin module name
"$self". The module include file sys.m contains the
definition:

 SELF: con "$self"; #Language support for loading my instance

so you can write something like:

mymod := load Mymod SELF;

Then you can pass the module pointer mymod to another module
that is expecting a module of type Mymod. Note that this is
quite different from writing:

mymod := load Mymod Mymod->PATH;

since $self gives you a pointer to the actual module instance
that you are executing, whereas loading the module again
gives you a fresh instance with a different set of module
data. Using $self, the module routines that we pass mymod to
can access the interface defined by Mymod, and use it to
access our state.

A particularly useful aspect of $self is that the type
specified in the load statement does not have to be the full
type that the executing module was defined with. For
example, module bufio.m defines two modules called BufioFill
and ChanFill. Both export a function called "fill" (with the

Page 8 of 9

same type), but ChanFill adds an "init" routine. In
ChanFill->init(), we find the code:

 if (myfill == nil)
myfill = load BufioFill SELF;

This gives ChanFill a restricted version of its interface,
which it can pass to the routine Bufio->Iobuf.setfill() that
expects a module pointer of type BufioFill (not ChanFill).

Without $self, we would be forced to put the type of the init
routine into BufioFill, forcing all instances of this module
to be initialized from the same set of arguments. $self
allows us the flexibility to initialize different BufioFill
instances in different ways, letting the specific
application decide what parameters it needs. Similarly, we
could add other routines to a common module interface;
initialization is just one example of a very powerful and
general mechanism.

Display Current Cursor Draw Routine

The Draw module adds the routine Draw->Display.cursor() that
allows the setting of the current cursor associated with the
Display. Sample usage:

d := ctxt.display;
d.cursor(img, hotpt);

where img is a 16x32, ldepth 0 Image that specifies the
foreground and mask, and hotpt is a Point that specifies the
offset of the Image from the current cursor position.

New Server Process Monitoring and Logging Features

lib/srv:

There is an enhanced version of lib/srv that incorporates
several new features.

• A task monitor that will watch the running servers and
restart them if they fail.

• Ability to write to a log file using either a simple
file or the lib/logsrv server.

Page 9 of 9

• New keyword arguments that can be used to control the
default functions of the servers startup and the log
server.

lib/logsrv:

There is log server process that provides new features for
gathering information on the running servers and can be used
by external processes for reporting.

The log server contains three distinct file-reporting
mechanisms:

1. A log file.
2. A time stamped journal file.
3. A measurements file.

The journaling and measurements functions are supported by
user-defined processes that are bound in the namespace to
the /dis/lib directory containing the logJournal.dis and
logMeasure.dis processes respectively.

Other Documentation

The Inferno Reference Manual is at
http://www.lucent-inferno.com/Pages/Developers/Documentation/Ref_man20/index.html.

The Inferno Limbo Reference Manual is at
http://www.lucent-inferno.com/Pages/Developers/Documentation/Limbo.Rel20/index.html.

