
Nokia, Checkpoint, Linux and Windows
IPv6 How-To

by: Gr@ve_Rose

Table of Contents

• Title Page
• Table of Contents
• Copying and Distributing
• Abstract
• My Setup
• Theory
• Implementation
• Traffic Captures
• Checkpoint Firewall-1
• Point-to-Point Tunnels
• VRRPv3
• Real-Life Example
• Don't Panic!
• Shout-Outs
• About the Author

Copying and Distributing

This document is Copyrighted © to myself, Gr@ve_Rose. Duplication must be
done in whole, not part. Distribution of this document is provided freely as long as it
remains verbatim and unchanged in any shape, way or form with the following
exceptions:

1. Translation into another language. Translate the document as close to verbatim
as possible into the language of your choice and add your name to the cover
page with “Translated by: <your name>”.

2. Other document formats. The original formats of this document are in .swx
(Open Office) and .pdf (Adobe Acrobat). You may freely transform this
document into another electronic format or medium. You may not take any
credit for this on the document itself.

Any references used from this document in any other publication should have a
bibliography referencing this document. The original location for this document is
http://www.assdingos.com/ipv6/IPv6.pdf and should not appear anywhere else without a
link to this site.

Disclaimer

I don't profess to know everything about IPv6. In fact, this document may be
outdated by RFC's, changes to the protocol, etceteras. This document should be used as a
companion to official documents. If any part of this document requires modification due
to technical, grammatical or other errors, please notify me at either
grave.rose@gmail.com or graverose@mail.com and I will investigate the error(s) in
question and make changes if appropriate.

This is not an official Nokia, Checkpoint, Microsoft or Linux authorized document. In
no shape, way or form should this document be construed as an official representation
of any of these parties. Any trademarks and/or copyrights mentioned in this document,

unless otherwise specified, are respective of their official owners.

Abstract

This document is intended to assist people with implementation of IPv6 with
Nokia IP Appliances, Checkpoint Firewall-1, Linux and Windows. The ultimate goal of
this is to get the reader started with IPv6, setting up a network and examining the
relations between all the components.

Also, as in speech, I talk a lot. I go off on random tangents about subjects wholly
unrelated to the topic at hand and generally natter on about nothing in particular. I'm
going to try to avoid that as much as possible, but, rest assured, it will most likely happen
as I type this up.

Last but not least, I have a geek's sense of humour. Yes... Obscure references to
Monty Python, The Simpson's, Red Dwarf, MST3K, Evil Dead/Army of Darkness, et. al.,
will be present in this document. If you find a statement in this document which is non-
technical to which you don't understand, it's more than likely my awful sense of humour.
Sorry. ^_^

My Setup

Blue lines are IPv4
Green lines are IPv6
Yellow lightning bolts are 6-over-4 tunnels
The Red line is one physical connection with IPv4 and IPv6 on it

• Whiterabbit is running Red Hat Enterprise Linux 3 with Checkpoint Provider-1 and
has one ethernet card.

• Cheshire is running Microsoft Windows 2000 Server with Service Pack 4 and has two
ethernet cards.

• Doormouse is running Red Hat Enterprise Linux 3 and has one ethernet card.
• Madhatter is a Nokia IP330 appliance running IPSO 3.8.1b028 and Checkpoint

NGFP4 R55p with an IPv6 license (standalone installation).
• Both Redqueen and Old110 are Nokia IP110 appliances running IPSO 3.8.1b028.
• Tweedledee and Tweedledum are Nokia IP120 appliances running IPSO 3.8b031 and

Checkpoint NGFP4 R55p.
• NSAS is a Nokia IP440 appliance running IPSO 3.7b044 and NSAS 3.1.0.

Theory

Yes, we all hate theory but in the long run, it does pay off, right? In this section,
we'll cover some of the basic theory of IPv6, the differences between v4 and v6 and a
bunch of other stuff. I can't say it will be the most fun we'll have but it should suck a lot
less than learning the OSI model. ^_^

We're running out of IP addresses in the world – That's a fact. IPv4 was intended
to be able to give everyone a live IP address and that we would all live happily online.
This, of course, is not the case. We started running out of live addresses to give everyone
so we introduced Network Address Translation to let people hide a smegload of IP
addresses behind one live IP address. Although most people would consider this a viable
solution, it's really more of a stop-gap then a full blown solution as our “everyone has a
live IP” model is now broken.

Two people, Bob Hinden and Steven Deering created RFC 2460 which is the base
model for IPv6 and a lot has been expanded in the time from when they created the RFC
to IPv6 implementation today.

Let's start with making correlations between IPv4 and IPv6 so the migration won't
be as hard.

Just a few examples to start IPv4 IPv6
IP Address (example) 10.20.30.40 fec0:c0ff:ee::01

Subnet Masks /8 ~ /32 /3 ~ /128
who-has ARP Neighbor Solicitation

Address Ranges (total) 4228250625 3.40E+038

I guess the most noticeable is the large amount of addresses available to IPv6 over
IPv4. Again, those are just a few examples to whet your appetite for knowledge. Let's
delve into the fun stuff now...

Just like it's popular predecessor, IPv4, IPv6 still uses IP addresses, subnet masks
and other similar utilities as well as routing protocols (which we'll take a look at later).
Let's start with IP addresses as they will be most prevalent in our work.

With IPv6, we move from 32-bit addressing to 128-bit addressing. As such, we
need a new way to define our IP addresses as decimal just doesn't cut it. So, we use
hexadecimal instead. Hexadecimal addresses start at 0 and move to through to the letter f.
Here's our chart:

Decimal Hexadecimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 a
11 b
12 c
13 d
14 e
15 f

Neat, huh? Okay, it was pretty lackluster, but now you have a chart to reference
when you want to switch between decimal and hexadecimal.

That's great, but how about the actual structuring of the address? Here's an
expanded example from RFC 2732: FEDC:BA98:7654:3210:FEDC:BA98:7654:3210.
Pretty big, eh? Hard to remember and ugly as sin, this is a fully expanded IPv6 IP
address. So, why do I keep using the word expanded? Check this out:

If you have an IP address of, say, FEC0:C0FF:EE01:0000:0000:0000:0000:0001
you can omit the groups of zeros to read: FEC0:C0FF:EE01::1 <-- Notice the double
colon in place of the groups of zeros from the previous IP address. There is one limitation
to this trick which is that you can only do this once per IP address. At no one point in any
given IPv6 IP address will you see two sets of double colon's. Also, preceding zeros can
be omitted as long as nothing else precedes them within the same block.

Now, just like IPv4, we can't just start picking out IP addresses to use wherever
we want because of conflicts, subnets and other such obstacles. To be able to choose our
IP addresses, we need to examine the prefixes available to us and select the one(s) which
will correspond to our needs. What the heck does that mean? Well, you wouldn't use 10/8
on a routable network, would you? Would you?!

Prefixes are the first part of the IPv6 address and tells us a lot about the IP address
in question. These are similar to the first octet of an IPv4 address. For instance, if your
IPv4 address starts with 224.x.y.z, you know it's a multicast IP address. Or if it starts
with 127.x.y.z, you know it's loopbacked. (Is that even a word? Meh.) Let's check out
some of the prefixes we will come across in our journey. This is not a complete list of
all prefixes! Obviously (I hope) there are a whole smeg-load of prefixes that won't fit on
a page or two and still be human readable. If you want a complete list, hit Google and
have fun. :P

Prefix Description IPv4 version (or similar)
fe80 ~ febf Link-Local Address.

Packet will never leave the
router.

None.

fec0 ~ feff Site-Local Address.

Private Range IP addresses.

10.0.0.0/8

192.168.0.0/16
2001 Global-Unicast

(Live IP Address)

1.2.3.4

ffxy (Where xy is a number) Multicast. 224.0.0.0/8
3ffe 6bone address. None.

::ffff:w.x.y.z IPv4 Compatible Address. Native.

Now that's interesting. We're starting to understand how IP addresses are formed
and we have these cool things called prefixes which tell us what kind of IP address we're
dealing with.

Before going on to the next section, one quick note about subnets... In the IPv6
world, we use the slash notation for our subnet designators. You could use the dotted
notation (there's nothing wrong with that) if you wanted to; However, if you're not a
masochist (or mathochist (?)), I would avoid it.

Implementation

Now that we have a basic understanding of what IPv6 looks like, let's work on
getting your network setup. First, sit down with a cup of coffee and plan your network. It
doesn't have to be fancy, but you should know what you want to accomplish with your
setup.

Now comes the not so exciting part: Install your operating systems, hook up the
cables, install your patches and ensure basic IPv4 connectivity. I am going to place two
limitations on you at this point:

1. Do not install Checkpoint Firewall-1 on your Nokia Appliance just yet. We'll
get to that later.

2. If you are using Windows XP, under no circumstance should you install SP2.
Ever. It breaks things. When I say “things” I mean, everything.

Okay, so now you've got Whiterabbit and Cheshire setup with Tweedledee and
Tweedledum setup in a VRRP pair. (Note : You should not use Provider-1 for IPv6 and
Checkpoint. I have found a licensing bug which does not allow a P-1 CMA to utilize IPv6
licenses) Install your management station on one of these two computers and create your
Checkpoint rulebase as you would like them. Again, for this environment, you have to
statically NAT your management station so that you can successfully push policy to
Madhatter. Test your IPv4 connection: Can you browse the Internet? Is Checkpoint
working properly for logging? Give it the once-over and make sure. Go ahead; I'll wait.
^_^

Oh, you're back already; That was fast. Now, let's do some IPv6'ing which is why
you're here, right? Madhatter, in my case, is running IPSO 3.8.1b028 with Checkpoint
NGFP4 R55p. As a limitation, Checkpoint does not support control connections over
IPv6 which is why we need the IPv4 address on the external and also why we statically
NAT'd our management station.

Configuring IPSO

First thing's first... Open your favourite web-browser and connect to Madhatter,
logging in as Admin. Go into the IPv6 configuration area and Logical Interfaces. Turn on,
and Activate the interfaces you want to use for IPv6. Open their respective Logical
Interface and assign them their proper IPv6 addresses. If you are setting this up for an
“internal only” network, you should use Site-Local addresses (fec0~feff) – If your ISP
supports IPv6 or if you are otherwise setting up a “live” network, you should use your
assigned Global Unicast IP address.

This is what you should see once you have configured your interfaces, IP
addresses and subnet masks on your Nokia appliance. For the time being, just ignore the
tun0c0 interface because it's special and will have it's own section later on in the
document.

Next, we need to ensure that everyone can talk to one another and, for that, we
need Neighbor Discovery. Go back to the main IPv6 configuration page and select this
option. Set the following up:

This ensures that when the interface comes online, it will send out a total of three
retry detections for Unicast addressing as well as Multicast and DAD. Let's take a closer
look at DAD, shall we?

Duplicate Address Detection, or DAD, is IPv6's way of checking for duplicate
Link-Local addresses. As we know, Link-Local addressing is also known as Stateless
Autoconfiguration, kinda' like DHCP but not, and for this to work, we need to ensure that
there are no other Link-Local addresses the same as ours. If there are, we need to be
manually configured. Wasn't that fun? Sure it was.

Once we have this setup, we should look at routing. Go into the Static Routes area
for IPv6 and add any Static Routes and (if possible at this time) a default gateway for
your Nokia appliance.

If you want to use a dynamic routing protocol, we can set that up now as well. I
am using RIP for my IPv6 hosts and routers to learn and update their routing tables. RIP
is an older protocol, a little slower but very easy to configure and understand. Here's a
quick rundown on how it works: Every route has a metric from 1 to 16 where 16 is a dead
route, timed out or otherwise not used. Every hop a RIP packet takes will add 1 to the
effective metric to propagate routes up to 16 where it stops being used.

Turn RIPng on for the interfaces you have configured. From here, all we have to
do is add a metric for the route propagation as the default (for some reason) is 0 which
means that these routes will never be used. Add a 1 for the metrics, Apply and Save your
changes. Done and done. RIPng will be examined in more detail later on through packet
captures.

Great... Now Madhatter is setup but how are we supposed to configure the
Redqueen and Old_110? If you are installing from the Boot Manager, you will need an
IPv4 FTP server for access to the IPSO.tgz file. Once complete, reboot the machine, give
it a hostname however, when asked how you would like to configure it, select VT-100
browser using Lynx. Wait until you have the Login: prompt for IPSO and login as Admin.
Once in, run the command lynx to start the text-only browser. Use the arrow keys to
navigate, space to go to the next page and [ENTER] to toggle switches and radio buttons.
Make your way to the IPv6 configuration area and configure an interface with Neighbor
Discovery. Once this is complete, we can now do the rest through Voyager by connecting
from Whiterabbit (configured below) with Mozilla Firefox.

Configuring Linux

Log into your Linux machine as root. If you don't have IPv6 statically built into
the kernel, you will need to load the module. At the prompt, type insmod ipv6. Once
done, run ifconfig -a to get the logical listings for your ethernet devices (Mine only has
eth0 as a real network device). The command ifconfig eth0 add
2001:5c0:8452:4::1234:4321/96 will add the IP address 2001:5c0:8452:4::1234:4321
with a subnet length of /96 to the eth0 device. Once this has been entered, run ifconfig
eth0 and you should now see your IPv6 information listed here.

If RIPng doesn't propagate to your Linux machine automatically, or if you want to
add any Static Routes (or a default gateway), you can use the following: route -A inet6
add default gw 2001:5c0:8452:4::ad:ad which will add a default gateway pointing to the
directly connected interface of Madhatter.

Configuring Windows

On your Windows machine, double-check to ensure that the only network adapter
with IPv6 checked in is the one you are going to use for IPv6. For instance, I have two
Ethernet adapters in my Windows 2000 machine; One is strictly for IPv4 and the other is
for IPv6. Next, make sure you have the IPv6 developer pack for Windows. Go into your
Network Control Panel and rename them appropriately (I called mine IPv4 and IPv6, go

figure...). Then, go into the one called IPv4, and uncheck the IPv6 box. Open up a
command prompt and type ipv6 if which will give you a listing of your IPv6 interfaces.
Look for the logical number for your Local Area Connection corresponding to your IPv6
NIC (For this example, mine is 5). Run ipv6 adu 5/2001:5c0:8452:5::1234:4321 and hit
Enter. This tells Windows that you want to configure an IPv6 address on interface 5 and
the IP address appended to the end of it.

If RIPng doesn't propagate to your Windows machine automatically, or if you
want to add any Static Routes (or a default gateway), you can use the following: ipv6 rtu
4/2001:5c0:8452:5::1111:1111 which will add a default gateway pointing to the directly
connected Virtual interface of the VRRP pair of Redqueen and Old_110.

Traffic Captures

Now that we have our network setup, let's take a closer look at IPv6 packets and
what they have inside of them.

Starting off nice and easy, we'll examine ICMP Echo Requests and Echo Replies
before moving on.

Here we have ICMP(128) which is an Echo Request sent from Whiterabbit to
Cheshire. The main two areas we want to examine are Layers three and four. Layer three
shows us our Source and Destination IP addresses, the Hop Limit for the packet and the
IP version we are using. Inside Layer four we can see the ICMPv6 code for the request.

As should be expected, here we see the ICMP Echo Reply. The Source and
Destination addresses have reversed (as they should) and the ICMPv6 code changed to
129. This may not be the most exciting but it helps to see how things are working on a
low-level.

This packet, which is also an ICMPv6 packet, is from Cheshire's Link-Local
address (fe80::260:f8ff:fe01:c0) soliciting for a neighbour. This traffic (and subsequently
Neighbor Discovery) is handled at the Link-Local level instead of the Site-Local, Global
Unicast or others because neighbours are just that: Neighbours on the same network. In
the event we were using Link-Local addresses only for an ad-hoc network, we want to
ensure that we can find out who's beside us. If we're using any addresses above Link-
Local, any Neighbor Solicitation/Discovery will just be dealt with at the Link-Local level.

This is ICMP/136 and now we can see some of the flags that are set. This is a
Solicited Router which will force the receiver to update any cached Link-Layer addresses
by setting the Override flag.

Remember how I said that we would cover RIPng when we got to packet
captures? Well, guess what's on the next page? RIPng... In fact, a really big picture of
RIPng.

In the packet above, we can see UDP/521 being sent to a weird looking address of
ff02::9. If we reference the little chart I made about prefixes in the first part of the
document, we know that this is a multicast address. The address we are seeing is is all-
routers (ff02::) and the host-bit identifier of 9 indicates RIPng routers. Each network
listed has a metric assigned to it. When we setup RIPng, we started with a metric of 1
and, for every hop, we add another number.

Checkpoint Firewall-1

I won't go through the motions of step-by-step'ing you through the installation of
Checkpoint Firewall-1. I will, however, point out that you need to ensure you have an
IPv6 license so that you can create and modify IPv6 objects. I'll let you do all of that now.

Once installed and licensed properly, let's start by creating objects for all of our
networks and IP addresses. Use the image below to reference my lab setup...

Since this is in a controlled lab environment, my security is rather lax on this
specific firewall. The first thing I did was create network objects for all of my IPv6
subnets being used. You can see what it looks like below...

This is just like setting an IPv4 network in the sense that you do not set the host-
bit identifier and we have a subnet (Prefix length in this case). Next on the list is creating
host objects. The important thing to remember is that we have two IP addresses (at a
minimum) for each host: Link-Local and (other).

Here you can see my Global Unicast address for eth-s3p1c0 on Madhatter.
Although it's not pictured here, I have also created a Link-Local address object for all of
my interfaces and grouped them together.

These objects can be used in the rulebase just like any other objects you would
normally place in a rulebase. There are some limitations with Checkpoint and IPv6:

• Currently, your topology cannot have IPv6 in it. Therefore, IPv6 and Anti-
Spoofing don't work together.

• NAT-PT is not supported. Honestly, with all the IPv6 addresses out there,
who's going to need it?

• Rules must only have IPv6 or IPv4 only in the rules. For instance, you can't
mix an object this is IPv4 with another that is IPv6 in the same rule. Why? I
don't know.

SmartView Tracker

You can also use SmartView Tracker to see any logs for IPv6. Take a look at the
following screenshot:

In the top frame, you have to select the IPv6 Source and Destination as it is not
enabled by default. After that, it's just like looking at IPv4 logs but with IPv6 traffic. As a
side note, IP/58 going to the multicast of ff02::1 are Router Solicitation and Discovery
packets being used for Multicast Listener Discovery (MLD) so that hosts wishing to
receive multicast are able to do so.

State Table Information

In all honesty, I haven't got this all figured out but here is what I do know. ^_^

I ran a program to generate a SYN/SYN-ACK/ACK connection *from*
[WhiteRabbit] *to* [Tupac-Amaru {tun0c1:GU}]. Once this connection was established,
I ran "fw6 tab -t ipv6_conversion_table -u" on [Madhatter] to examine the traffic. Please
note that LL=Link-Local, GU=Global Unicast, (MH)=Madhatter, (TA)=Tupac-Amaru,
(WR)=WhiteRabbit, (C)=Connected directly, (O1)=Old_110 and (RQ)=RedQueen. You
can safely ignore any and all (O1) and (RQ) entries as they are just propogated from
RIPng on my other networks.

--SNIP--

[root@madhatterv6 log]# fw6 tab -t ipv6_conversion_table -u
localhost:
-------- ipv6_conversion_table --------
dynamic, id 8119, attributes: keep, sync, expires 1, limit 50000, hashsize 32768
, free function 971800f4 0
<000080fe, 00000000, ff8ea002, 672120fe; 00000001; 3136/3600> # LL of eth-s1p1c0 (RQ)
<17230573> -> <c0050120, 01005284, 00000000, ad00ad00> (00000000) # GU of tun0c0 (MH)
<7f000001> -> <00000000, 00000000, 00000000, 00000000> (00000000) # No idea // RIPng (?)
<1e130a55> -> <000080fe, 00000000, 57cfa8c0, 0a6fcf0a> (00000000) # LL of tun0c0 (MH)
<1bada925> -> <000080fe, 00000000, 0a6fcf0a, 57cfa8c0> (00000000) # LL of tun0c0 (TA)
<000002ff, 00000000, 00000000, 09000000; 00000008; 1996/3600> # RIPng (ff02::9)
<14d3b435> -> <000080fe, 00000000, ff8ea002, ce1720fe> (00000000) # LL of eth-s1p1c0 (O1)
<14d3b435> -> <000080fe, 00000000, ff8ea002, ce1720fe> (00000000) # LL of eth-s1p1c0 (O1)
<c0050120, 04005284, 00000000, 21433412; 00000002; 3590/3600> # GU of eth0 (WR) // SRC IP
<12b55ad7> -> <000080fe, 00000000, ff8ea002, 692120fe> (00000000) # LL of eth-s3p1c0 (RQ)
<1609d791> -> <c0050120, 01005284, 00000000, 40044004> (00000000) # GU of tun0c0 (TA) // DST IP
<c0050120, 01005284, 00000000, ad00ad00; 7fffffff> # GU of tun0c0 (MH)
<c0050120, 03005284, 00000000, ad00ad00; 7fffffff> # GU of eth-s3p1c0 (MH)
<c0050120, 01005284, 00000000, 40044004; 00000002; 3590/3600> # GU of tun0c0 (TA) // DST IP
<000080fe, 00000000, ff8ea002, 5cd608fe; 7fffffff> # LL of eth-s4p1c0 (MH)
<00000000, 00000000, 00000000, 00000000; 7fffffff> # No idea // RIPng (?)
<10000001> -> <000080fe, 00000000, ff8ea002, 58d608fe> (00000000) # LL of eth-s3p1c0 (MH)
<10010dc7> -> <c0050120, 03005284, 00000000, ad00ad00> (00000000) # GU of eth-s3p1c0 (MH)
<000080fe, 00000000, 57cfa8c0, 0a6fcf0a; 7fffffff> # LL of tun0c0 (MH)
<1c5983f7> -> <000080fe, 00000000, ff8ea002, 5cd608fe> (00000000) # LL of eth-s4p1c0 (MH)
<000080fe, 00000000, ff8ea002, 692120fe; 00000001; 3136/3600> # LL of eth-s3p1c0 (RQ)
<000080fe, 00000000, 0a6fcf0a, 57cfa8c0; 00000001; 3244/3600> # LL of tun0c0 (TA)
<000080fe, 00000000, ff8ea002, 58d608fe; 7fffffff> # LL of eth-s3p1c0 (MH)
<000002ff, 00000000, 00000000, 09000000; 00000008; 1996/3600> # RIPng (ff02::9)
<c0050120, 04005284, 00000000, ad00ad00; 7fffffff> # GU of eth-s4p1c0 (MH)
<135937c5> -> <c0050120, 04005284, 00000000, ad00ad00> (00000000) # GU of eth-s4p1c0 (MH)
<16055df1> -> <c0050120, 04005284, 00000000, 21433412> (00000000) # GU of eth0 (WR) //SRC IP
<1ab86027> -> <000080fe, 00000000, ff8ea002, 672120fe> (00000000) # LL of eth-s1p1c0 (RQ)
[root@madhatterv6 log]#

--SNIP--

As you can see, there are still some pieces of information that I have not solved
yet. :) For instance, I cannot find out where the Source and Destination Port information
is contained. (I used SPort 4096(dec)/1000(hex) and DPort 8443(dec)/20fb(hex) for this
test).

Notice how Checkpoint mangles the IP addresses and moves pieces around? I
haven't been able to figure that out or get a definitive answer about it. /* shrugs */ Oh
well...

Before moving on, let's look at the service that I've created in my rulebase called
“IPv6-over-IPv4” which, is just like it's namesake... Sending IPv6 traffic across IPv4
networks. For this, we use IP/41 as our service which we need to create manually.

You may be asking yourself when and why you would need to use this. Well, if
you're using a tunnel broker on your residential connection (this will be covered later on)
or if you want to create point-to-point tunnels with IPv6 over IPv4. I think it's time for a
segue...

Point-To-Point Tunnels

So, you've got IPv6 going back and forth from workstation to workstation through
your internal network. Good job. Now, how about something a little trickier. Oh yes,
trickier.

Do you remember at the start of this paper I said I had an IP440 as well? Guess
what it's purpose is? Point-to-Point Tunnel. (Not too hard to guess as this is the title of
the section, eh?) However, to get to the IP440, I have to cross two IPv4-only subnets
which may seem like quite the daunting task. Never fear, IPv6 in IPv4 tunnels are here!

For this, I am using Madhatter to establish the tunnel to the IP440 machine. The
IP440 has a total of four interfaces listed below:

• eth-s1p1c0 – 192.168.207.87
• eth-s2p1c0 – Live IP address (Not listed for security reasons)
• eth-s3p1c0 – 2001:5c0:8452:2::440:440
• eth-s4p1c0 – 172.16.16.50

To get to the IP440 from my subnet, I have to go from 10.207.111.0/24 to
192.168.207.0/24 and none of the intermediate devices support IPv6. So, as mentioned,
we are going to setup a direct IPv6 PtP tunnel to get this to work.

IPv6 supports the transfer of packets across IPv4 in tunnels and clouds; The
former is what we will be examining here. When IPv6 is encapsulated within IPv4, it uses
IP/41 to accomplish this. A (very) basic figure of encapsulation is here:

[IPv6 Header | Payload....] <-- Packet to the tunnel entry point
[IPv4 Header | IPv6 Header | Payload....] <-- Packet leaving the tunnel

So, let's start getting our IP440 ready for the tunnel. If you haven't already setup
the IP440 for it's designated purpose, you should do that now. Also, add the IPv4
interfaces to it and ensure that routing works okay. Once all of this has been verified, pick
an interface to host the IPv6-only network behind it (I used eth-s1p3c0), configure the
interface and the subsequent network behind it. Ensure routing works here as well
(Basically, just go through all the steps we went through during the earlier parts of this
document).

Now, log into Voyager on the IP440, go into the IPv6 Configuration section and
select IPv6 in IPv4 Tunnels.

Interesting Side Note: This is a screenshot of Doormouse's X Server through VNC
over IPv6 only! :)

You can see here that most of the information you will be required to enter is
straight forward: Enter the Local IPv4 address and the Remote IPv4 address. Done. The
next step was to go to Madhatter and configure the same thing but with the IP addresses
reversed (obviously). Last, but certainly not least, is routing. I enabled RIPng on the
tun0c0 interfaces of each Nokia appliance and all the routing was propagated through the
tunnel.

If you are going to configure a tunnel with a Linux machine, observe the following
considerations...

The command “ip tunnel add tun440 mode sit remote 192.168.207.87 local
192.168.0.4 ttl 255” will create a Simple Interface Transition device with the two IPv4
addresses listed. Next, “ip link set tun440 up” will turn our device on. The last step has to
be assigning a special Link-Local address to the device. Here's the breakdown of it... “ip
addr add fe80::<hex_of>:<remote_IP>:<hex_of>:<local_IP>/64 dev <device>” which,
for this example, would be seen as “ip addr add fe80::c0a8:cf57:c0a8:cf57:4/64 dev
tun440”

VRRPv3 for IPv6

Virtual Router Redundancy Protocol (VRRP) is a protocol which is used for high
availability on networks. For instance, if router 'A' goes down, router 'B' (who is standing
by) will take over the job. They use Virtual IP addresses (VIP) for clients to use and use
Priorities for failing over. Here's a quick run-down if you've never used VRRP before...

1. Router 'A' has a Priority of 100 with a Delta of 10.
2. Router 'B' has a Priority of 95 and a Delta of 10.
3. Router 'A' continually sends it's Priority level to a multicast address.
4. If an interface goes down, the Delta is subtracted from the Priority for a new

Priority (100 – 10 = 90).
5. Router 'B' notices that it has the higher priority now and takes over (95 > 90).

It's really quite simple when everything works properly which is why I'm writing
this section now. ^_^

VRRPv3 is used for IPv6 networks and functions in the same way as it's IPv4
counterpart with a few extra features which we'll get to soon. First, reference my network
diagram and take note of the two routers called “Redqueen” and “old110”. Notice how
they each have their own IP addresses but converge to a single address on each side. Our
clients will use this as their default gateway instead of the physical address. Let's start
setting it up, shall we?

For this to work, you will have to ensure you are using (at least) IPSO 3.8.1 or
higher. Log into Redqueen and go to the IPv6 configuration area. We will need to create a
Virtual Router ID (VRID) for each interface. On eth-s1p1c0, let's create VRID “1” and on
eth-s3p1c0, let's call it VRID “2”. Nice and simple. Apply your changes and take a look at
the following screenshot:

FYI: The only interface you can (really) see is eth-s1p1c0 and only the name is cut
off from the screenshot. Everything else of importance is still viewable.

Wow! There's a whole smeg-load of stuff in there, eh? If you've used VRRP
before, most of it should look familiar however there are two new options from IPv4:
Preempt Mode and Accept Mode, both of which we'll cover. In the mean time, let's get
VRRP up and running.

In the Priority area, we are going to list the default priority for the interface. If you
only have two routers in the VRRP cluster, setting the Primary to 100 and the Backup to
95 is usually a safe bet.

The Hello Interval is how often VRRP packets are sent out to the multicast
address. The time used to be in seconds but is now listed in centiseconds so 100 equals 1
full second.

The VMAC mode option is how you would like the Virtual MAC address handled
by the VRRP cluster. The main reason people change this from VRRP to Static is for
compatability with some switches and routers. If you don't have any issues, you should
leave it at VRRP.

Preempt Mode and Accept Mode will be discussed in detail later on in this
section. For now, set them both to “Enabled”.

Now you should be prompted for a “Backup Address”. I don't know why they just
don't call it the “VIP Address” but that's just semantics. ^_^ This address is going to be
your VIP for the cluster. First, you must backup your Link-Local addresses. Enter in a
Virtual IP address for you Link-Local addresses now. We'll get to Site-Local (or Global
Unicast if you're live) in a moment.

Next, you will be prompted to monitor an interface. This is what makes VRRP
work like a charm. This interface (that we're working on) will monitor any other
interfaces you specify and, if they go down, a full fail-over occurs. Otherwise, just one
interface will fail-over and you may end up with asymmetric routing. Ugh. Select the
drop-down menu and select eth-s3p1c0 to monitor.

Press Apply and you will notice that a Priority Delta box has appeared next to the
Monitor Interface selection. In here put in the number 10. This is the number which will
be subtracted from the default Priority for the new, fail-over Priority.

Also, we can add another “Backup Address” on this interface. Since we already
have our Link-Local addresses in there, let's add our Site-Local (or Global Unicast if
you're live) into the box. Apply and Save your changes.

If all has gone well, you should now have VRRPv3 setup on your routers and, in
the event one goes down, the other will take over. Tell your clients to use the Virtual IP
address (Backup Addresses) for their default gateways.

Well, I did promise to talk about those two new features: Preempt Mode and
Accept Mode, so here we go...

Accept Mode, which is disabled by default, determines whether or not the cluster
will allow direct connections to the VIP address. For most people, having this set to
“Enabled” is going to be their best option as they will most likely be using this as a
gateway router for clients to connect to another network. This is like the IPv4 checkbox
in IPSO VRRP which says “Accept connections to the Virtual IP address”.

Preempt Mode, however, is completely new to the protocol. Preempt Mode is
Enabled by default which, again, is a good thing for most people. Let's say that Router 'B'
is in Master State with a Priority of 95 and Router 'A' comes online with a Priority of 100;
With Preempt Mode Enabled, Router 'A' will take over as Master status and Router 'B'
will demote itself to Backup State. Why would you not want this? Let's say you need to
do some work on Router 'A' (upgrading/configuring/whatevering) but don't want to take it
out of production in the event that Router 'B' fails. You lower the Priority on Router 'A' so
now it's in Backup State; Then, you turn Preempt Mode off on both of them and, lastly,
you re-prioritize Router 'A' back to 100 and do your work. Now, Router 'B' (with a lower
Priority) is routing all your traffic and Router 'A' (with a higher Priority) will take over
only if Router 'B' fails.

Another good reason to disable Preempt Mode is if your VRRP kicks in before
your firewall software. Router 'A' goes down (for whatever reason) and Router 'B' takes
over as it should. When Router 'A' boots back up, VRRP fires up during the OS loading
stage which will take over as Master right away however your firewall software hasn't
loaded yet (which happens quite often in the Real World©) leaving your network
unprotected and probably unroutable for a period of time. Once this happens, your

phone starts ringing off the hook with users not being able to go anywhere and that's
never fun.

The multicast address for VRRP (IPv4) is 224.0.0.18 and for IPv6 it's ff02::12 so
make sure your security rules allow for communication to and from these hosts or else
you'll end up with two routers in Master state. ^_^

Real-Life Example
(or “How I got a /64 subnet at Home”)

By now, I'm sure you're thinking to yourself: This is great but how do I
incorporate this in a production environment? Let's get to it and we'll have you IPv6'ing
live on the 'Net in no time flat.

Once more, with some pretty pictures of my network... This time, from home.

I hope you understand why I've blurred out the IPv4 addresses on the inside and
outside. Sure, it won't take much to figure out what they are, but I like the sense of
security with it. :)

As you can see, my main desktop PC (Alice) is running Mandrake Linux 10.1
Official (2.6.8-1-custom). My server (who we'll call Frank) is running Red Hat Enterprise
Linux (2.4.21-4.EL) and Checkpoint NGFP4 R55.

When setting up your IPv6 at home, you will need to find out some information
from your Internet Service Provider (ISP). Most of them do not offer native IPv6 support
so we're going to have to use a Tunnel Broker. A Tunnel Broker is a site who will offer

an IPv6-in-IPv4 Point-to-Point tunnel with you. There are quite a few to choose from but
I use Hexago (www.hexago.com) for a few reasons: They're stable, they have a nice client
to use on Linux and other operating systems and, finally, they're Canadian. Wooo! No
matter who you choose to tunnel with, you will probably end up getting a /64 subnet
assigned to you as well as a /127 Ponit-to-Point tunnel address. If you go with Hexago,
sign-up for a free account to get a network assigned to you; If you login annonymously,
you will only get a host IP address.

Get it all setup and install your client (if your broker provided you one) and finally
run the client. You should now have an sit0 interface on your server/router. This, if you
remember from above, is what we used on Whiterabbit when we setup our tunnel to the
IP440. This is the same idea but with Global-Unicast addresses. First, try and ping6 the
other end of your tunnel. If you can do that, then try to ping6 an actual IPv6 website. You
may have to use the -I flag to specify an interface if your routing hasn't been applied yet.

If you've used the Hexago client, you will have had to specify an interface for
which your /64 network will be based off. I chose eth0 which is my internal interface so
that I could have my client computers obtain an IPv6 address from Frank. This is done
with radv(d) on Linux – When your IPv6 network module loads, it will query for any RA
servers to offer an IP address and, since Frank has an entire /64 network, he gets the UID
from the card and generates Alice an IP address. Cool, huh?

Once you have this all setup on your client PC, try and ping6 the remote tunnel
end to see if it's all working. Check your routing, security rules and tunnel broker client
configuration if anything isn't working. If it is, head over to http://www.ipv6.bieringer.de
and you should see a dancing penguin (Yes, a dancing penguin). Can you see it? If so,
you've successfully accessed an IPv6-only site! That's right, this page cannot be accessed
over IPv4. Wanna' see other animals dance? Head over to
http://[2001:200:0:8002:203:47ff:fea5:3085]/ and look at the dancing turtle. Look at it
go... Wheee!

DON'T PANIC

So, something's gone wrong or maybe not even working in the first place. Where
to start? First and foremost, tcpdump is your best friend. Take it out for beer every now
and then... Take it to the hockey game once in a while... Y'know, schmooze with it.
tcpdump has a sister named Ethereal who is, actually, a bit prettier than her brother but
they both get the job done.

If you're using tcpdump, one of the little tricks you pick up is using grep in
conjunction with it. For instance, if you just run tcpdump -i eth0 and hit [ENTER], you'll
probably end-up with a whole smeg-load of traffic that you don't care about at the
moment. Let's say you're seeing a lot of VRRP advertisements and some v4 arp who-has
that are just filling the screen up. Try: tcpdump -i eth0 | grep -v VRRP | grep -v arp which
will exclude those regex (REgular EXpressions) after -v.

Check for any firewall rules (or, if you didn't listen to me and are using a router,
any ACL's) which may be restricting access to the packets you are trying to send back and
forth.

Cables – Do you know how much troubleshooting can be solved by accurately
checking the cables? Do you know how much of a dork you'll feel like when you're told
you have an OSI-1 problem? :P Just kidding... Well... Not really. Check the cables. Make
a loopback connecter as well to test ports. They're easy as pie to build (although I can't
cook to save my life) and they will tell you when a port has gone bad – (lo + RJ-45 Port)
– LED = Dead Port.

TCP stacks – Can you ping6 ::1 at all? If you get an error about “Cannot Assign
Requested Address” then you need to insmod ipv6.

Take a break. Decompress and play some games for a bit. Unwind and go for a
walk. Do whatever it is that clears your mind. Is your boss hounding you to get this up
and running blah, blah, blah...? Send him here:
http://www.plethora.net/~seebs/faqs/hacker.html – Specifically section 2.4!

Last but not least, K.I.S.S. - Keep It Simple, Stupid. Although I'm not trying to
call anyone stupid, keeping it simple will save you from many headaches later on
especially with the Pointy-Haired Boss. (In fact, I'd like to change the acronym to Keep It
Simple & Stupid. Yeah, let's start a petition to... Err... Never mind.)

Shout-Outs

• Bob Hinden and David Kessens
You guys have taken the time out of your schedules to assist me with IPv6

 and learning more about it. Thanks guys.
• Warren Verbanec and Phil Valaveris

Whenever I need escalation on something, a third-party lab setup or just
 some good ol' back-and-forth, you guys are always there.
• Cat5 and Rijendaly Llama

Sanity checks, *nix hacking, Friday Jokes©, caffeine and all the rest.
• Everyone in TAC

For basically putting up with me. ^_^
• eXoDuS

Firstly, you're sister's hot; Learn to deal with it. And, natch,
 YNBABWARL!

About the Author

My handle is Gr@ve_Rose, not the most 31337 handle to have, but I like it.
I've been using computers since I was about six years old on my Dad's Commodore 64
where I started hacking. I used to play games and change the BASIC code to go to the
last level after the opening scene. ^_^ After moving to Ottawa, we got our first x86
computer; It was a 386/33 with 8 whole megs of RAM and a thirty meg hard disk. It
cost us roughly two thousand dollars. We eventually started getting new computers
and I kept playing with them and learning more about them. After high school, I
started working with Digital Equipment Company (DEC) who are infamous with their
Alpha chips. I worked in the MIS department and that's where my love of Unix
started. I quickly ran out and bought a copy of Red Hat 4.2 from EB and installed it on
an old 486. Thus, the journey started...

I started down the path of the Dark Side® and did break into some people's
computers. We set someone's init runlevel to 6 and rebooted their machine (fun stuff)
as well as installed a program that would grep /dev/urandom and pipe it out into a file
in /var/spool/lpd. I've also taken over my friend's Win2K server (Exial), but with his
permission. After that Win2K stint, I realized the folly of my ways and have since,
guided myself back towards the Light Side® but still feel the temptation and pull
every now and then. ^_^

I currently work with Nokia security appliances and Checkpoint Firewall-1
which, if you ask me, is a lot of fun. It helps keep me on my toes, always learning
more and gives me legitimate reasons to try and crack networks (Only my own and
others with permission). I've been published twice in 2600 – The Hacker Quarterly
and am continuing to submit articles to help benefit the hacker community. Please see
http://www.catb.org/~esr/jargon/html/H/hacker.html and
http://www.catb.org/~esr/jargon/html/H/hacker-ethic.html for what I mean.

I hope that this document has helped start you on your path of IPv6. Learn what
you can, share it with others and continue to learn; The process never stops.

