

 Start Secure. Stay Secure.™

Blind SQL Injection
Are your web applications vulnerable?

By SPI Labs

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

ii

Blind SQL Injection

Table of Contents

Introduction 3

What is Blind SQL Injection? 4

Detecting Blind SQL Injection 5

Exploiting the Vulnerability 7

Solutions 9
Parameterized Queries 10
Stored Procedures 12
Data Sanitization 15
Database Considerations 16

About SPI Labs 17

Contact Information 18

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

3

Blind SQL Injection

Introduction

SQL Injection occurs when an application does not properly validate user-

supplied input and then includes that input as part of a SQL statement. In a

large measure, SQL Injection depends on an attacker discovering and

verifying portions of the original SQL query using information gained from

error messages. However, web applications can still be vulnerable to Blind

SQL Injection attacks even when error messages are not presented, or when

they only reveal generic information. By altering the input parameters, an

attacker can pose various “true-false” statements to the application to gather

information about the database and then ultimately reconstruct the SQL

statement by gauging its behavior. Are different pages displayed as a result

of changed input? Does an inserted “wait” command cause the application to

pause before responding? The “blind” portion of this comes from the fact that

no significant error was presented, yet the application is still vulnerable. Blind

SQL Injection is no less dangerous than SQL Injection, and can have the

same devastating consequences. The objective of this paper is to educate

security professionals and developers on the techniques that can be used to

take advantage of a web application that is vulnerable to Blind SQL Injection,

and to make clear the correct mechanisms that should be put in place to

protect against Blind SQL Injection and similar input validation problems.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

4

Blind SQL Injection

What is Blind SQL Injection?

In many aspects, SQL Injection and Blind SQL Injection are exactly the

same. Blind SQL and SQL Injection are both facilitated by a common coding

error: the application accepts data from a client and executes SQL queries

without first validating the client’s input. The attacker is then free to extract,

modify, add, or delete content from the database. In some circumstances, he

may even penetrate past the database server and into the underlying

operating system. An in-depth guide to SQL Injection can be found here:

http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf.

A primary difference between the attacks is in its method of determination.

Hackers typically test for SQL injection vulnerabilities by sending the

application input that would cause the server to generate an invalid SQL

query. If the server then returns an error message to the client, the attacker

will attempt to reverse-engineer portions of the original SQL query using

information gained from these error messages. A typical administrative

safeguard is simply to prohibit the display of database server error

messages. The absence of errors only means that the application is protected

against one form of SQL Injection.

Since Blind SQL Injection attacks do not rely on error messages, there are no

specific patterns or strings to look for in the web server’s response. Instead,

an attacker will look to see if two requests with different parameter values

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

5

Blind SQL Injection

will return the same information. In essence, Blind SQL Injection attacks are

an attempt to recreate the query in a such a way that the meaning stays the

same, but its content differs.

Detecting Blind SQL Injection
Web applications commonly use SQL queries with client-supplied input in the

WHERE clause to retrieve data from a database. By adding additional

conditions to the SQL statement and evaluating the web application’s output,

you can determine whether or not the application is vulnerable to Blind SQL

injection.

For instance, many companies allow Internet access to archives of their press

releases. A URL for accessing the company’s fifth press release might look

like this:

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5

The SQL statement the web application would use to retrieve the press

release might look like this (client-supplied input is underlined):

SELECT title, description, releaseDate, body FROM pressReleases
WHERE pressReleaseID = 5

The database server responds by returning the data for the fifth press

release. The web application will then format the press release data into an

HTML page and send the response to the client.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

6

Blind SQL Injection

To determine if the application is vulnerable to Blind SQL injection, try

injecting an extra true condition into the WHERE clause. For example, if you

request this URL . . .

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
1=1

. . . and if the database server executes the following query . . .

SELECT title, description, releaseDate, body FROM pressReleases
WHERE pressReleaseID = 5 AND 1=1

. . . and if this query also returns the same press release, then the

application is susceptible to Blind SQL injection. Part of the user’s input was

interpreted as SQL code.

A secure application would reject this request because it would treat the

user’s input as a value, and the value “5 AND 1=1” would cause a type

mismatch error. The server would not display a press release.

Another method of testing for Blind SQL Injection vulnerabilities is to alter

the “math” of the parameter. For instance, instead of submitting 5 as the

value of PressReleaseID, an attacker could submit 3%2b3, which would

equate to 3 + 2 if the raw string was passed verbatim to the database. The

database would resolve the query because it conforms to a valid syntax. If

the same press release is returned, the application is vulnerable to Blind SQL

Injection.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

7

Blind SQL Injection

It is also important to make sure that inserting “1=1” does not yield results

based on a flaw in the application as opposed to Blind SQL Injection. You can

do this by inserting “1=2”, an untrue condition, into the SQL query. If the

results for each query are the same , then SQL Injection has not been shown

to exist.

Exploiting the Vulnerability
When testing for vulnerability to Blind SQL injection, the injected WHERE

condition is completely predictable: 1=1 is always true. However, when we

attempt to exploit this vulnerability, we don’t know whether the injected

WHERE condition is true or false before sending it. If a record is returned, the

injected condition must have been true. We can use this behavior to “ask”

the database server true/false questions. For instance, the following request

essentially asks the database server, “Is the current user dbo?”

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
USER_NAME() = 'dbo'

USER_NAME() is a SQL Server function that returns the name of the current

user. If the current user is dbo (administrator), the fifth press release will be

returned. If not, the query will fail and no press release will be displayed.

By combining subqueries and functions, more complex questions can be

posed. The following example attempts to retrieve the name of a database

table, one character at a time.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

8

Blind SQL Injection

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U'), 1, 1))) > 109

The subquery (SELECT) is asking for the name of the first user table in the

database (which is typically the first thing to do in SQL injection

exploitation). The substring() function will return the first character of the

query’s result. The lower() function will simply convert that character to

lower case. Finally, the ascii() function will return the ASCII value of this

character.

If the server returns the fifth press release in response to this URL, we know

that the first letter of the query’s result comes after the letter “m” (ASCII

character 109) in the alphabet. By making multiple requests, we can

determine the precise ASCII value.

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U'), 1, 1))) > 116

If no press release is returned, the ASCII value is greater than 109 but not

greater than 116. So, the letter is between “n” (110) and “t” (116).

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U'), 1, 1))) > 113

Another false statement. We now know that the letter is between 110 and

113.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

9

Blind SQL Injection

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U'), 1, 1))) > 111

False again. The range is narrowed down to two letters: ‘n’ and ‘o’ (110 and

111).

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U'), 1, 1))) = 111

The server returns the press release, so the statement is true! The first letter

of the query’s result (and the table’s name) is “o.” To retrieve the second

letter, repeat the process, but change the second argument in the

substring() function so that the next character of the result is extracted:

(change underlined)

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5 AND
ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U'), 2, 1))) > 109

Repeat this process until the entire string is extracted. In this case, the result

is “orders.”

Solutions
Fundamentally, Blind SQL and SQL Injection are an attack upon the web

application, not the web server or the operating system itself. In as such,

any fixes other than those implemented in the application code will be

stopgap measures and short term solutions, at best. Most methods of

preventing Blind SQL and SQL Injection also have their own set of unique

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

10

Blind SQL Injection

limitations. Therefore, it is best to employ a layered approach to preventing

these attacks, and implement several different measures to prevent

unauthorized access to your backend database.

Parameterized Queries
SQL Injection arises from an attacker’s manipulation of query data to modify

query logic. Therefore, the best method of preventing both Blind SQL and

SQL Injection attacks is to separate the logic of a query from its data. This

will prevent commands inserted from user input from being executed. The

downside of this approach, albeit slight, is that it can have an impact on

performance, and that each query on the site must be structured in this

method for it to be completely effective. If one query is inadvertently

bypassed, that could be enough to leave the application vulnerable. The

following code shows a sample SQL statement that is SQL injectable.

sSql = "SELECT LocationName FROM Locations ";
sSql = sSql + " WHERE LocationID = " + Request["LocationID"];
oCmd.CommandText = sSql;

The following example utilizes parameterized queries, and is safe from SQL

Injection attacks.

sSql = "SELECT * FROM Locations ";
sSql = sSql + " WHERE LocationID = @LocationID";
oCmd.CommandText = sSql;
oCmd.Parameters.Add("@LocationID", Request["LocationID"]);

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

11

Blind SQL Injection

The application will send the SQL statement to the server without including

the user’s input. Instead, a parameter-@LocationID- is used as a placeholder

for that input. In this way, user input never becomes part of the command

that SQL executes. Any input that an attacker inserts will be effectively

negated. An error would still be generated, but it would be a simple data-

type conversion error, and not something which an attacker could exploit.

The following code samples show a product ID being obtained from an HTTP

query string, and used in a SQL query. Note how the string containing the

“SELECT” statement passed to SqlCommand is simply a static string, and is

not concatenated from input. Also note how the input parameter is passed

using a SqlParameter object, whose name (“@pid”) matches the name used

within the SQL query.

C# sample:

 string connString =
WebConfigurationManager.ConnectionStrings["myConn"].ConnectionString;
 using (SqlConnection conn = new SqlConnection(connString))
 {
 conn.Open();

 SqlCommand cmd = new SqlCommand("SELECT Count(*) FROM Products
WHERE ProdID=@pid", conn);

 SqlParameter prm = new SqlParameter("@pid", SqlDbType.VarChar,
50);
 prm.Value = Request.QueryString["pid"];
 cmd.Parameters.Add(prm);

 int recCount = (int)cmd.ExecuteScalar();
 }

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

12

Blind SQL Injection

VB.NET sample:

 Dim connString As String =
WebConfigurationManager.ConnectionStrings("myConn").ConnectionString
 Using conn As New SqlConnection(connString)
 conn.Open()

 Dim cmd As SqlCommand = New SqlCommand("SELECT Count(*)
FROM Products WHERE ProdID=@pid", conn)

 Dim prm As SqlParameter = New SqlParameter("@pid",
SqlDbType.VarChar, 50)
 prm.Value = Request.QueryString("pid")
 cmd.Parameters.Add(prm)

 Dim recCount As Integer = cmd.ExecuteScalar()
 End Using

Stored Procedures
Another method of separating query logic from its data is by using stored

procedures to isolate the web application from SQL altogether. To secure an

application against Blind SQL injection, developers must prevent client-

supplied data from modifying the syntax of SQL statements. All SQL

statements required by the application can be sequestered in stored

procedures and kept on the database server. Be aware that simply moving all

SQL statements into stored procedures will not solve Blind SQL and SQL

Injection problems if you use input parameters without first validating the

data. Stored procedures allow programmers to build dynamic SQL

statements using string concatenation which can then be executed using

EXEC commands. However, this will defeat using stored procedures for

security purposes if you use input parameters without sanitizing the data

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

13

Blind SQL Injection

first. If arbitrary statements must be used, PreparedStatements can be

utilized. Using PreparedStatements and stored procedures to compile the

SQL statement before the user input is added makes it impossible for user

input to modify the actual SQL statement. Finally, the application should

execute the stored procedures using a safe interface such as JDBC’s

CallableStatement or ADO’s Command Object.

Let’s use pressRelease.jsp as an example. The relevant code would look

something like this:

String query = “SELECT title, description, releaseDate, body
FROM pressReleases WHERE pressReleaseID = “ +
request.getParameter(“pressReleaseID”);
Statement stmt = dbConnection.createStatement();
ResultSet rs = stmt.executeQuery(query);

The first step toward securing this code is to take the SQL statement out of

the web application and put it in a stored procedure on the database server.

CREATE PROCEDURE getPressRelease
@pressReleaseID integer
AS
SELECT title, description, releaseDate, body FROM pressReleases
WHERE pressReleaseID = @pressReleaseID

Now back to the application. Instead of string building a SQL statement to

call the stored procedure, a CallableStatement is created to safely execute it.

CallableStatement cs = dbConnection.prepareCall(“{call
getPressRelease(?)}”);
cs.setInt(1,

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

14

Blind SQL Injection

Integer.parseInt(request.getParameter(“pressReleaseID”)));
ResultSet rs = cs.executeQuery();

In a .NET application, the change is similar. This ASP.NET code is vulnerable

to Blind SQL injection:

String query = "SELECT title, description, releaseDate, body
FROM pressReleases WHERE pressReleaseID = " +
Request["pressReleaseID"];

SqlCommand command = new SqlCommand(query,connection);

command.CommandType = CommandType.Text;

SqlDataReader dataReader = command.ExecuteReader();

As with JSP code, the SQL statement must be converted to a stored

procedure, which can then be accessed safely by a stored procedure

SqlCommand:

SqlCommand command = new
SqlCommand("getPressRelease",connection);

command.CommandType = CommandType.StoredProcedure;

command.Parameters.Add("@PressReleaseID",SqlDbType.Int);

command.Parameters[0].Value =
Convert.ToInt32(Request["pressReleaseID"]);

SqlDataReader dataReader = command.ExecuteReader();

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

15

Blind SQL Injection

Data Sanitization
The vast majority of Blind SQL Injection vulnerabilities can be prevented by

properly validating user input for both type and format. All client-supplied

data needs to be cleansed of any characters or strings that could possibly be

used maliciously. This should be done for all applications, not just those that

use SQL queries. The best method of doing this is via “white listing”. This is

defined as only accepting specific data for specific fields, such as limiting user

input to account numbers or account types for those relevant fields, or only

accepting integers or letters of the English alphabet for others. Many

developers will try to validate input by “black listing” characters, or

“escaping” them. Basically, this entails rejecting known bad data, such as a

single quotation mark, by placing an “escape” character in front of it so that

the item that follows will be treated as a literal value. Stripping quotes or

putting backslashes in front of them is not enough, and is not as effective as

white listing because it is impossible to know all forms of bad data ahead of

time.

A good method of filtering data is by using a default-deny regular expression.

Make it so that you include only the type of characters that you want. For

instance, the following regular expression will return only letters and

numbers:

s/[^0-9a-zA-Z]//\

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

16

Blind SQL Injection

Make your filter narrow and specific. Whenever possible, use only numbers.

After that, numbers and letters only. If you need to include symbols or

punctuation of any kind, make absolutely sure to convert them to HTML

substitutes, such as "e; or >. For instance, if the user is submitting an

e-mail address, allow only the “at” sign, underscore, period, and hyphen in

addition to numbers and letters, and allow them only after those characters

have been converted to their HTML substitutes.

Database Considerations
Limit the rights of the database user. Any successful Blind SQL Injection

attack would run in the context of the user’s credential. While limiting

privileges will not prevent SQL Injection attacks outright, it will make them

significantly harder to enact. Don’t give that user access to all of the system-

stored procedures if that user needs access to only a handful of user-defined

ones.

Have a strong SA password policy. Often, an attacker will need the

functionality of the administrator account to utilize specific SQL commands. It

is much easier to “brute force” the SA password when it is weak, and will

increase the likelihood of a successful Blind SQL Injection attack. Another

option is not to use the SA account at all, and instead create specific

accounts for specific purposes. Also, if you have no need for them, delete

SQL stored procedures such as master.Xp_cmdshell, xp_startmail,

xp_sendmail, and sp_makewebtask.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

17

Blind SQL Injection

About SPI Labs
SPI Labs is the dedicated application security research and testing team of

S.P.I. Dynamics, Inc. (www.spidynamics.com). Composed of some of the

industry’s top security experts, SPI Labs is specifically focused on researching

security vulnerabilities at the Web application layer. The SPI Labs mission is

to provide objective research to the security community and give

organizations concerned with their security practices a method of detecting,

remediating, and preventing attacks upon the Web application layer.

SPI Labs’ industry leading security expertise is evidenced via continuous

support of a combination of assessment methodologies which are used in

tandem to produce the most accurate web application vulnerability

assessments available on the market. This direct research is utilized to

provide daily updates to SPI Dynamics’ suite of security assessment and

testing software products. These updates include new intelligent engines

capable of dynamically assessing web applications for security vulnerabilities

by crafting highly accurate attacks unique to each application and situation,

and daily additions to the world’s largest database of more than 5,000

application layer vulnerability detection signatures and agents. SPI Labs

engineers comply with the standards proposed by the Internet Engineering

Task Force (IETF) for responsible security vulnerability disclosure.

Information regarding SPI Labs policies and procedures for disclosure are

outlined on the SPI Dynamics Web site at:

http://www.spidynamics.com/spilabs.html.

 Start Secure. Stay Secure.™

© 2007 SPI Dynamics, Inc. All Rights Reserved.
No reproduction or redistribution without written permission.

18

Blind SQL Injection

Contact Information

S.P.I. Dynamics Telephone: (678) 781-4800

115 Perimeter Center Place Fax: (678) 781-4850

Suite 1100 Email: info@spidynamics.com

Atlanta, GA 30346 Web: www.spidynamics.com

