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ABSTRACT' 

This report presents a method for producing computer shaded pictures of curved 

surfaces.   Three-dimensional curved patches are used, as contrasted with conventional 

methods  using  polygons.     The  method subdivides  a  patch into successively  smaller 

subpatches until a subpatch is as small as a raster-element, at which time it can be 

t'ispla/jd.    in general this method could be very time consuming because of the great 

number of , ubdiv sions that must take place; however, there is at least one very useful 

class of patches ~ the bicubic patch - that can be subdivided very quickly.    Pictures 

produced with the method accurately portray the shading and silhouette of curved 

surfaces.    In addition, photographs can be "mapped" onto patches thus providing a 

means for putting texture on computer-generated pictures. 

1 This report reproduces a dissertation of the sarm title submitted to the Department 
of Computer Science, University of Utah, in parti;»! ,'ulfillment of the requirements for 
the degree of Doctor of Philosophy. 
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CHAPTER ONE 

INTRODUCTION 

A method for creating shaded pictures of curved surfaces is presented in tnis 

report. A motivation for the method is that we wish to produce high quality 

computer-generated imagos of surfaces and curved solid objects on a raster-scan 

output device. We would not only liKe the images to accurately represent the surfaces 

we choose but in addition w ' would like control over shading and texture. There has 

already been significant research directed toward these ends, especially on the 

hidden-surface [1,2] and shading [3,4] aspects of the problem. AH such methods must 

must address the questions of how to model objects and then how to tender them. 

Polygons, and sometimes quadric patches, are used to model objects in current 

shaded-picture methods . There are some difficult.es with using these simple pieces to 

model or approximate free-form curved surfaces. Approximation with polygons gives 

a faceted effect and a silhouette made up of straign'.-üne segments. Quadric patches 

[5,6], while smooth in appearance, are not suitable for modelling arbitrary forms, since 

they don't provide enough degrees of freedom to satisfy slope continuity between 

patches. 

There are two significant methods used for reducing or eliminating the undesirable 

visual effects that occur when polygons are used to approximate curved surfaces. The 

first method for getting rid of the faceted effect is that of Henri Gouraud [3].    With 

I. 
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this method a scalar light intensity valuo is associated with each vertex of a polygon. 

Gouraud does linear interpolation of the intensity value between vertices and then 

subsequently across scan-lines. If adjoining polygons have the same intensities at the 

common vertices then this method yields continuous shading across the surface; 

however, the first derivative of the shading is discontinuous. Gourd's method has 

been implemented by different groups making shaded-pictures. It is a simple and 

successful method but has a few shortcomings: the discontinuity of the denvative is 

noticable (the "Mach band effect"), it is difficult to do highlight, the shading is affected 

by the orientation of the polygon in the picture, and the silhouette is still made up of 

straight-line segments. 

The second method developed to improve the appear mce of the polygon 

approximation is that of Phong [4]. bince current methods of generating intensities for 

polygon surfaces include calculating a surface normal at the vertices, Phong decided to 

interpolate the entire surface normal vector between vertices and edges instead of the 

scalar intensity values that Gouraud used. This yields a normal at every display pomt 

which can be used to calculate the intensity. Although this normal may not be the 

mathematically correct one. it is close enough to use for intensity and highlight 

calculations. As Phong has noted, although there is still a discontinuity in the first 

derivative of the shading, the discontinuity is smaller than for Gouraud's method and 

hence less noticeable. Phong's method has been used to make some visually attractive 

photographs, but the problem of straight-line segments at the silhouette still remains. 

Curved surface segments or "patches" can be used instead of polygons to model 

free-form   curved   surfaces.     If   such   patches   can   be   joined   together   with   slope 

■     —     - -        -  - 
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continuity across the bounddhes then a picture of a surface can be made to appear 

"smooth" both in shading and at the silhouette. For patches to be useful in moaeliing a 

curved surface, techniques must be found for describing and manipulating the patches 

and for connecting them together with slope continuity across boundaries. One such 

patch is the bicubic patch, which is widely used (see Appendix A). Most cf the ideas in 

this report will be applied to the bicubic patch, but this is not intended to imply a 

limitation on generality. 

Generating pictures of curved patches requires techniques for 

1) establishing a correspondence between points on the surface and the elements of 

the display raster, 

2) reroving hidden or, more generally, the "not seen" parts of patches, and 

3) calc j'ating light intensities to be displayed on the raster. 

Chapter two will deal with the first item: it will present a technique for establishing the 

correspondence between points on the surface wd the raster elements. Chapters 

three and four will describe a specific method for quickly making the correspondence 

when bicubic patches are used. Chapter five will deal with item two: it will discuss the 

"hidden-surface" problem for patches. Item three ~ calculating light intensities — will 

be discussed in chapters six and seven. 

—   —^ 
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CHAPTER TWO 

A GENERAL ALGORITHM FOR DISPLAYING CURVED PATCHES 

An algorithm for establishing a correspondence between points on a patch and 

raster elements is described in this chapter. It applies to patche". and surface sections 

in general, ^ence the algorithm presented will not be specific at the outset. Later on, 

when a specific Kind of patch is used, more detail will be given. Before presenting 

that algorithm, however, some terms must be defined. 

DEFINmONS 

A "raster-scan device" or "raster-display" is \bi device that we will consider for 

final output of an image. The rectangular array of "dots" that is produced on a 

raster-display is called the "raster." Each dot will usually be called a 

"raster-element." The raster element covers a very small area of the raster; however, 

It should not be thought of as a point. A row of raster-elements is a "scan-line." 

Scan-lines are usually prodi ced in sequential order, termed "scan-line-order." Each 

raster-element has a brightness that is determined by the intensity value for that 

raster-element. The process of taking the intensity values and putting the dots on the 

raster with the corresponding intensities is called "displaying." 

i mmmmu**^  i   ■    -  ,  -     -  
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A "frame-buffer" is a memory large enough to store all of the intensity values 

prior to displaying. An intensity value in the frame-buffer can be addressed in a way 

that corresponds to the position where the value will be displayed on the raster. 

Locations in the frame-buffe- will also be called "raster-elements" since there is a 

strong one-to-one correspondence between those locations and the geometric 

locations of the raster-elements and because the distinction between the two is not 

important here. For our purposes, the frame-buffer is made with random-access 

memory so that values can be written into it in any order, as opposed to scan-line 

order only. The size of the frame-buffer is determined by the resolution of the 

raster-display and the number of "bits" used to store intensity values. For example, if 

the raster has 512 scan-lines and 512 raster-elements per line and each element has 8 

bits for the intensity value, then the frame-buffer requires a storage capacity of 

512x512x8 bits. For the most part we will ignore the raster-display and address 

ourselves to the issue of putting the right intens.ty values in the raster-elements of 

the frame-buffer. 

The terms relating the original description of an object to its image will now be 

defined. "Object-space" is the three-dimensional space in which objects will ordinarily 

be described. In order to generate realistic pictures of objects we make a perspective 

transformation [1,7,8] of the object from object-space to "image-space." Image-space 

is also three-dimensional but the objects have undergone a perspective distortion so 

that an orthogonal projection of the object onto the x-y plane would result in the 

expected perspective image. We want the image-space to be three-dimensional in 

order   to   preserve   depth   information   which   will   later   be   used   to   solve   the 

Liwi M. mmma*     J 
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hiddsn-surfac» problem. The orthogonal projection of the image-space object onto 

the x-y plane is called the "projected image." That part of the -y plane which will be 

associated witn the raste: is called thf "screen." 

We must define the relationship Between the image-space and the raster in order 

to transfer information from the projected image to the raster. Recall that the screen 

is the portion of the x-y plane of the image-space that correrponds to the raster. The 

area of the screen is divided into small squares called "raster-element squares." There 

is, Of course, a one-to-one correspondence between raster-element squares and raster 

elements. The center of each raster-element square will be called a "sample-point." 

A diagram depicting the relationships of the above terms is shown in figure 2-1. 

THE SUBDIVISION ALGORITHM 

The algorithm for establishing the correspondence between a patch and the 

raster-elements will now be presented. The algorithm, hereafter called the 

"•ubdivision algorithm," works for either patches or segments of patches, called 

"subpatches." Figure 2-2 illustrates a portion of the screen where the dots represent 

the sample-points. (The outlines of the raster-element squares are not shown.) The 

curved lines n resent the edges of a projected patch. Even though only the 

projection is shown, we assume that enough information about the patch is maintained 

so that the light intensity for any location on the patch can be calculated. 

A statement cf the algorithm is: 

If the patch (subpatch) is small enough so that its projection covers only 

MM  . 
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one sample-point, then compute the intensity of the patch and write it 

into the corresponding element of the frame-buffer; otherwise, subdivide 

the  patch   into smaller subpatches; and repeat  the  process  for  each 

subpatch. 

Figure   2-3  shows   a   patch  subdivided  into  four  subpatches  where   most   of   the 

subpatches still cover more than one tample-pomt.   In figure 2-4 the subpatches that 

are too large are again subdivided.    Subdivision continues until no subpatch covers 

more than one sample-point. 

Readers familiar with other computer-generated shaded-picture efforts will 

recognize a similarity between the method presented here and WarnocK's hidden 

surface algorithm [9]. WarnocK solved the hidden surface problem for polygons by 

recursively subdividing the screen space into successively smaller sections until all 

questions about the crdering of polygons left in a section were easy to answer. 

WarnocK's algorithm differs from the one presented here in that the former subdivides 

the screen, while the latter subdivides the surface being rendered. 

The patch subdivision algorithm as stated is very simple but some questions 

remain: How is ;h3 subdivision process terminated? What if a patch covers no 

sample-points? What if part of the patcl/ intersects the edge of the screen or is 

behind the eye? How many times must o patch be subdivided? Finally, what kinds of 

problems does the discrete sampling introduce? Each of these issues will be discussed 

in turn. 

i _ 



 " !   ■    ■■ll«l   -    ! I"«""    ' I       ""'I   ■^»■^^"^«l^W^-^W^W^^»^» ■'  '"  '■,        I   I 

Sample-point 

t'dge of projected 
mage of patch 

Figure 2-3 

Patch divided into 
four sub-patches 

Patch subdivided 
so that no sub-patch 
covers more than 
one sample-point 

Figure 2-4 

——'  -   - - 



*—••" p-w!'!»!»'!1"»'!1 """I" ••'w!fwviimwi^irf**imii..ii mvmf        inn nuiui^ipwiBuppw^wwjiii»!*.«^"—"■i- ""j.,ini»iijij mum.vwi^fr^mmr^^fiumF- ■*****!*• in. u i      m 

10 

TERMINATION 

The decision as to whether or not a subpatch should be subdivided is based on 

termination conditions. Two termination conditions will be discussed — size and 

clipping. For the purpose of this discussion we note that the terms "patch" and 

"subpf tch" can be used interchangeably, hence we will usually use the word "patch." 

As specified in th€' tgorithm, subdivision terminates when a patch covers only one 

sample-point.    Since the «dues of a patch are curved, the test as to whether or not a 

Approximating 
polygon 

Patch 

Figure 2-5 

patch covers only one sample-point may be time consuming. However, for the purpose 

of this test, a patch can be approximated by a polygon formed by connecting the four 

corners of the patch with straight line segments. The size of that polygon can then be 

checked to determine whether or not it covers at most one sample-point. This 

approximation should usually be adequaie for patches that are approaching the size of 

'—j>-*-MM^-i——^ ■     „^^-^^^ .. —  , ... ■ ■■t:" 
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the raster-elements. It may not be adequate if the patch is very curved (see figure 

2-5). If this case can be detected because of special characteristics of the patch 

geometry, then the patch can be subdivided again. If it cannot be detected then a 

local error may occur. 

CLIPPING 

A second ttrmination condition might be a check to see if the patch is on the 

screen. If part of the projection of a patch in image-space onto the x-y plane lies off 

t'e screen or the patch is behind the eye ihen that part of the projection should not 

be displayed. The process of eliminating the portion of the projection that should not 

be on the screer is called clipping[7,8]. A clipping te-mination condition requires that 

there be somt method for determining if a patch is totally on or totally off the screen. 

if the patch is totally on the «creen then subdivision may proceed for that patch with 

no further need of clipping checks for the subpatches generated from that patch. If 

the patch is totally ofr the screen then that patch may be discarded. If it cannot be 

determined that the patch is totally on or totally off the screen then that patch should 

be subdivided and the clipping check should be made for each new patch resulting from 

the subdivision. 

NUMBER OF SUBDIVISIONS 

The number of times a patch nust be subdivided to get down to the size of a 

raster-element is proportional to the area of the patch on the screen. Consider the 

best case: a square two-by-two raster-elements needs only one subdivision, or A0; a 

rJMHH   -      -   -*  ' -    --■'--    -   ■   -        ■MMM^MM»   . ****** 
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square 2' by 2' needs fl'+A0 subdivisions; a square 2" by 2" needs J£4 subdivisions. 

This is a geometric series equivalent to (4"-l)/3 which is approximately 4n/3. The 

area of the square is 2'" or 4". Therefore, the ratio of number of subdivisions to area 

is about 1/3. This analysis is most accurate for nearly square patches. For curved 

patches arj skewed orientations the ratio may be somswhat larger. 

THE SAMPLING PROBLEM 

There are some problems encountered when using sample points. The most 

obvious is the "staircase-effect" or "jaggies" seen on the silhouettes of objects. In 

addition, a patch might be so small that it doesn't cover any sample-point, causing it to 

disappear. The latter problem can be solved by assigning a patch to the nearest 

ssuiple-point if it doesn't cover any sample-point. The problems of sampling are 

inherent with the use of a raster display. Chapter seven will discuss the problems 

further as well as a means to alleviate them. 

APPLICATION 

The subdivision algorit im presented above was first applied to bicubic patches. 

Bicubic patches are convenient on several counts: they are widely used, they can be 

compactly specified in several different ways (see Appendix A), they can be easily 

joined with first derivative continuity at the boundaries and they can be subdivided 

very easily. The next two chapters will present a method for fast subdivision of such 

patches. It should be emphasized at this point however that the subdivision algorithm 

is by no means limited to bicubic patches but can be applied to other Kinds of surfaces. 

■UMi _   —— 
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CHAPTER THREE 

SUBDIVIDING A CUBIC CURVE 

A method for quicKly subdividing a cubic curve is presented in this chapter; the 

extension to patches is developed in the next chapter. The method uses a new kind of 

difference equation for obtaining the midpoint of a curve segment. The resulting 

ability to quickly subdivide a curve makes the application of the subdivision algorithm 

practical. 

SUBDIVIDING THE CUBIC CURVE 

Subdivision is easy because, as we shall see, the midpoint of a cubic curve is the 

average of its two endpoints minus a correction term. One result of this is tha' the 

cubic can be subdivided with only three adds. A similar method can be used to find 

the derivative at the midpoint. 

Consider the cubic: 

f(t) - at3 ♦ bt7 * ct  ♦ d. 

The problem is to find f(t) when f(t+h) and f(t-h) are alreac/ known.   Note first that: 

  ^mm 
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♦(tth) - a(t±h)3 + b(t±h)' * c(t±h) * d 

- a(t3 ± 3ht' ♦ 3h7t ± h?) + b(t? ± 2th ♦ h') + c(t  ± h) +d. 

If the points f(t+h) and f(t-h) are added then: 

f(t+h) + f(t-h) - 2a{t3 + 3h7t) ♦ 2b(t' + W) ♦ 2ct  ♦ 2d 

- 2f(t) + 2h'v3at  ♦ b); 

therefore f(t)-[f(t+h) + f(t-h)]/2  - h?(3at  ♦ b). 

The midpoint then is the average of the two endpoints minus the correction term, 

h7(3at+b). The correction term is a linear function of t and h. If h»l/2n, then since h 

is a power of two it can be calculated on a computer with a simple binary shift. 

The correction term at t can similarly be found from the correction terms at t+h 

and t-h.   If g(t) - h7(3at + b) then g(t±h) - h7(3a(t±h) ♦ b).   Again by adding: 

B(t+h) ♦ g(t-h) - 2h7(3at) ♦ 2bh7 - 2g{t) 

and so 

(3-1)        g(t) - [g(t+h) ♦ g(t-h)]/2. 

Let hn -  112" where n can be considered a level of subdivision.   Then hn.,  - hn/2 and 

h'n.i - hV4 a™ sincf g(t) - h7(3at * b) then 

(3-2)        g„.,(t) - g„(t)/4. 

and (3-1) can be rewritten as 

ttmmm ■■Mk.  _^MM MMMMM 
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(3-3) gn(t)  -  [gn(t*hn)  * g„(t-hn)]/* 

Therefore: 

(3-4)        f(t) - [fU+h) ♦ f(t-h)]/2 - [gn(t+h) ♦ g„(t-h)]/2. 

Equation (3-4) is the subdividing difference equation for a cubic and equations (3-2) 

and v3-3) are used to get the right correction term as hn is made smaller by powers of 

two. 

Equations 3-2, 3-3, and 3-4 can be expressed diagrammatically as as shown in 

figure 3-5. At each end point there are two values ~ the values of the function and 

the correction term. Those values can be put into two registers. The contents of the 

registers for the midpoint can be found by the indicated combination of the registers at 

the endpoints. In order to subdivide one of the new halves it is necessary to update 

the correction term at the end points since hn will be half as big and the correction 

terms are functions of h,,. In terms of the diagram in figure 3-1, the subdivision 

process cascades downward. The correction terms are functions of the level of 

subdivision. The initial values in the registers can be found by solving f(t) and g0(t). 

Since n-0 then h'-l and f(0)-d, go(0)-b, f(l)-a+bK+d, and g0(l)-3ö+b. 

It may be useful sometimes to compute the derivative. The derivative can be 

found as a simple function of the endpoints and a correction term that is dependent 

only upon the depth of subdivision.   Instead of adding fU+hr and f(t-h), subtract them: 
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f(0)   gn.,^) f(l/2)   gn-(l/2) 

Figure 3-1 

f(l)  gn-d) 

16 

level n+1 

f(t+h) - f(t-h) - 2a(3ht2 ♦ h3) ♦ 2b(2th) ♦ 2ch 

- 2h3at, + 2ah3 ♦ 3h2bt + 2hc 

Note that the derivative is: f'(t) - 3at2 + 2bt  + c 

therefore f(t+h) - f(t-h) - 2hf'(t) + 2ah3 so 

(3-5)    f'(t) - [f(t+h) - f(t-h)]/2h - ah' 

Note that ah7 is a function only of the level of subdivision. 

■MMMHMBMM ■aM kitaai 
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A MATRIX REPRESENTATION 

The subdivision method can be put in matrix form and hence related to the matrix 

methods for ^snerating bicubic patches presented in Appendix A. The matrix form of 

a simple cubic is: 

f(t)-[t3  t'  t   1] 

The correction terms and function values for the simple cubic can also be put in matrix 

form.   Let that matrix be called the correction matrix C and it contents be: 

C- 

f(t-h) 
gn(t-h) 
f(t+h) 

|Wtt*hl 

Recall that the correction factor is gn(t)-h2(3at+b). At the zeroth level of subdivision 

h»-l/27"-l. So f(0)-d, g0(0)-b, f(l)-a+b*c+dp and g0(l)-3a>b. If we put these 

values that fit in C then 

C- 
d 
b 

a+b+c+d 
3a+b 

Next let 

We can get the values in C by using the matrix: 

■ 

„, 
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0 0 0 1 
0 1 0 0 
1 1 1 1 
3 1 0 0 

The relation is 

(3-5) SA 

The object of subdivision is to find the C matrix '.or each half of a segment. Let 

those two matrices be CL and CR for C left and C right. There are matrices L and R 

such that CL - LC and CR - RC. The operation on the values of C have already been 

defined.   They require that; 

L- 

1       0      0     0 
0    1/4     0     0 
1/2-1/8 1/2-1/8 
0     1/8   0    1/8J 

R - 

1/2-1/8 1/2-1/8 
0     1/8   0    1/8 
0      0      10 
0      0      0    1/4 

As an example, the second quarter C of a segment can be found by C - RLC. Note 

that all entries in the L and R matrices are powers of two. The bicubic subdivision 

method is merely a fast way of doing a matrix multiply taking advantage of the values 

in L and R. 

■MMMlHi 
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SUBDIVISION APPLIED TO POLYNOMIALS 

The subdivision notion can be extended to polynomials in general.   A polynomial of 

degree n can be written as: 

f(t) - zu^ 

therefore 

f(t±h) -   IJ.oa.UthV 

The binomial expansion for (tih)' is 

(t±h) -  U.WW 

Again, as in the cubic case, add f(t+h) and f(t-h).   Consider just one term (tth)* 

(t+h)' ♦ (t-h)' - 2Ik.'0(;)t
,-»hk    (keven) 

Since a, are only coefficients, 

♦(t+h) + ht-h) - 2i;0a12kJo(.')t"*h'   (^ even) 

but I^ait' - f(t) 

—^^Mte^MMM, ../      .,    .    ■-.        ..:—^.-^.^^-.^J ^ ^^  .. ■ I  I   ■^■■i—■    !■   I 



20 

so we can take th* first •■•msnt out of the series: 

f(t+h) * f(t-h) - 2f(t) ♦ ZJ^tlAUW    (k even) 

and \     iiy 

f(t) - [f(Uh) * f{t-h)]/2 -  I^I^OW    (K even) 

The correction term is a polynomial of degree n-2. One can apply the same 

method to the correction term to reduce it to a function of the endpoints and their 

reparation, h. 

TAYLOR SERIES 

A further extension of the subdivision concept applies to Taylor series. This last 

discussion should point the way to finding appropriate solutions for functions other 

'.nan simple polynomials.   Recall that the Taylor series is: 

f(x) - f(a) + (x-a)f'(a) ♦ (x-a)'f"(a)/2! + . . .    * (x-a)"f'"Vn! ♦ Rn 

and if Rn-»0 as n-»oo then 

f(x) -   If,",(a)(x-a)'Vn! 

■^MMMM^i^^^ --A>-     -        i   li     IM ■■ir»! .   -- .-   -^ . .-. ... 
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Let a - (x±h) 

then 

f(x) -  I(±h)"f""(x±h)/n! 

Again h, can be Of the form 1/2'. If for some k the truncated series is a good 

approximation to f(x) in the interval of hu then the function can be found in any 

subinterval of hk. This differs from the polynomial case in that information for a 

segment can be thought of as being at one end rather that at both ends. 

^       . M I   —IB !■ - , ^ 
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CHAPTER FOUR 

EXTENSION OF CUBIC SUBDIVISION TO SURFACES 

The method of subdivioing cubic curves can be extended to bicubic surfaces. With 

a cubic curve there is a value and a correction term at each end; with a bicubic patch 

there is a value '..nd three correction terms at each corner. Subdivision of the patch 

into four pieces means finding the midpoint of each of the sides and the midpoint of the 

patch. 

There may be several components to the vector that describes a t^-ee dimensional 

patch. The surface has three purely geometric components X(u(v), Y(u,v), and Z(uIv). 

There may be additional components for other information such as shading and color. 

Each component is treated the same so we need only consider one component of the 

patch here. 

Since we are considering only one component of the surface let that component be: 

f(u,v) - [u5   u7   U   I] b7 

a, 
b, 
C,     c7 

d,     d? 

a. a« M 
b^ b« V2 

C3 c« V 
d3 d4J 1 

If we multiply the u matrix by the coefficient matrix this equation becomes 

^M*   - Mil—IIII    ' - '   - ■• ■ IT ■■—"-'-   -     ■ OMMMMMikiMti 



W^mnnmK^nmw^mm^m ' aiii«w!JF»wipw^w»i«w™^wrw!iiWWSWi«™"w™w»!|PWir,<«,"»fi^w^ii»w" ^m 

23 

F(u,v> - [F,   F,   F,   FJ 

where 

F, - BiU5 ♦ b;U7 ♦ c,u ♦ d, 

F, " a^u3 + b7u
? + c,u + -7 

Fj - ajU3 + b,u' ♦ c,u ♦ d, 

F, - a^u' + b.u7 ♦ e«U ♦ d4 

Since each Fn is a cubic we observe that there is a correction term for each Fn.    Call 

this correction term Gn. 

The final value of the component is 

f(u,v)  - v'-F,  + v'-Fj + v-Fj + F.. 

Consider v'-F,: 

v^F,  - (a.v^u1 + (b,v3)u2 ♦ (e.v'HJ + (d.v3). 

So v1 can be considered as a coefficient in the u equation. In that case v'-G, is a 

correction term for v'-F,. Similarly, V7-G2 is the correction term for V'-F,, etc. If we 

sum the Fn and Gn 

f  . v^F,  ♦ v'-F, + M.FJ ♦ F» 

g  - v3-G,  ♦ v7-G? + v-Gj + G,. 

Now g is the correction term for f along constant v. This reduction to two numbers 

when v is constant is exactly as expected since the curve along constant v is simple 

cubic. Therefore, for any v, the function and its correction terms along u can be 

found. 

■ ■  —   



mmmmnmi   MI   . M . WI^^^^WW-W P l 111H«P l i,^»PWBP»l|WiPipiWP» ■'■     ■ —— T^'TipiPWPWdF 

24 

Next suppose v changes while u is constant. In this case Fn and Gn are constants 

and can be thought of as just coefficients in the above equations. Let the correction 

term for f be Cf and the correction term for g be c%. Since g is a correction term for f, 

then eg is a correction term for Cf. 

These four numbers can be arranged in a square as shown in figure 4-1. This 

reresentation will be called a "register-square." 

f e 

Cf eg 

Figure 4-1 

In  the  register-square, f  is the value of the function at u,v, and g, Cf, and eg are 

correction terms.   If we move in the v direction then Cf corrects f and eg corrects g.   If 

we move in the u direction, g corrects f and eg corrects Cf.    Inserting u, v, and the 

coefficients yields: 

v^u'a, + u'b, ■» uc, + d,) 
+v2(u1a7 + u'b, ♦ uc, + d?) 
+ v^aj ♦ u'bj + uc, + d,) 
+  (u'a, + u'b. + uc4 + d.) 

k?[3v(u:,al + u'b, + uc, + d,) 
♦(u'a, + u?b? ♦ uc, ♦ d2)] 

K,tv,<3alu + b,) 
♦v'Oa^u ♦ b?) 
♦vOajU + b,) 
+ ((3a,u + b,)] 

hV^vOa.u + b,) 

+ (3a,u + b,)] 

■ -   - 
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where h' and k' apply to the u and w directions respectively and have the same 

meaning as h in chapter three. As in the cubic polynomial case they can be calculated 

on a computer with a shift. 

A register-square makes it easy to think about an algorithm for subdividing a 

patch. A register-square can be associated with each corner of a patch (see figure 

4-2). 

Register- 
square 

Figure 4-2 

The subdivision algorithm can be applied to the register squares either vertically 

or horizontally depending on whether u or v is constant. Figure 4-3 shows a notation 

for horizontal subdivision. The top two values of the left and right register-squares 

are used to create the top two values of the middle square using the same subdivision 

algorithm presented in chapter three. The same applies to the bottom two values of 

each square. Vertical subdivision works in a similar manner. The notation of figure 

4-3 can be used for the entire patch as shown in figure 4-4. The center square can 

be derived from two of the newly created edge squares. There are now four squares 

for each quarter of the patch so subdivision can again take place for each quarter. 

— . 
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Figure 4-3 

Corner square 

I 1  

Figure 4-4 

^ __ i   i \immmmM 
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It is important to note that the concept of level of subdivision still applies. This 

means that the correction terms must be adjusted each subdivision. One could think of 

each square as extending in two directions. When two squares are combined to create 

a new one then its correction terms in that direction are divided by four as required 

by the subdivision algorithm. The extension in the othe' direction is the same for the 

new square as for the two end ones and is unaffected by subdivision. This depth 

correction will be called "reduction." 

A full patch subdivision can be clarified with figure 4-5. The letters in the four 

small boxes represent the initial values in the register-squares. The next nine boxes 

depict the subsequent values in each register-square after subdivision. 

If the initial values of u and v are (0,0), (1,0), (1,1), and (0,1) then the initial square 

values are as shown in figure 4-6. 

PERSPECTIVE 

Perspective presents a problem for patch subdivision since the above method 

works only for components that are simple bicubics and the perspective transformation 

results in rational bicubics. In order to usplay a perspective view of a surface the 

mathematical definition of a patch must go through a perspective transfoi nation which 

results in a surface equation of F(u,v) - [X(u,v) Y(u,v) Z(u,v) W(u,v)]. W(u,v) is called 

the homogeneous coordinate [7,8] and is generated by the perspective transformation. 

Three ways of displaying a perspective surface are: 

MMMiMaMM - I 



vipiwiiiui|il!.w«"n>u w^r^*rwim*f9'w**^~*^ mr^^l ^mu.    « ■ 1^1 ^■TF«^^« ■■ll .■< 

,-.^-f.^». - 

4 
s 

«• 
•>«. 

~ 
1 

0) O 

« 0) c 
-Q o 

no 
(li u> u> 
h. 01 > 

i- \- TO D 
D 3 n 
O a T 

LL m 10 

oo 

T + 

T •*- 
T 
CM 

3 

« 

T 
T 
CM 

♦ 

_ _ c 

E 
a 

o— 

 j 

— ■o 

u ■ 01 

u> v •—f •*» *^. 
£ 

^r 
« OS 

«X ^^ 
00 
S~K a- 
Q. ^^ 
+ 00 «< ■«». 

CM a 
""^s,. # 
c ^^ 
+ 

N«*- 

00 

o + 
M 00 
T ^j 
CM o + 
X^ JC 
E + 
55 

c a 

E o 

28 

00 00 

00 00 00 

•5 Q- a ♦  + + 
"O  — 
T T ♦ 
CM ~ 00 
55 -^ -^  c X +  + ■ ♦ 
-Q c: •0 
s; ♦ 

51     00 
CM SO 

50? +  a 

SS» 

^ V   ' ^ 
ww^cii 00 jj 
■»«^  ^^*  ^.^   "»m^ 

«  E  +  c 0 + 
+    +   J3   + +   -D 
ni -— •»-' •"■* M >— 
ü TTT 5T 

<x 
00 00 ^^ 
c a 
♦ ♦ 

JO "O 

<T 

s» «5 
c *^ 

a s 
T ■0 
CM 
J* CM 
E 55 
♦ 0 • ♦ 

^■^ u 
^^ 

c 
o 

> 
-D 
3 

> 5 
a 
to 
I 
Li 

jD 
ui 
DB 
O c 
» 
c 

«» 

00 
q- 

X 
♦ 00 

TJ ^-fc 
T X 

CM + 
^ T> 

♦ 
.O 
*—* 
00 

00 
♦ 00 
*f «■■K 

CM V Jj 00 
0) ^-^ 
♦ 
«a 
*■' 

JD 

JJ 

mm ■'   - 



"•-"-"— '—"~ «mm '■''    ""» ' nH««OTmiiiwi.w   IP« mi III|IIH«IPIIIIII ,«, • 

29 

u-0  v-0 
d. b, 

u-0  v-1 
d.+dj+dj+d. b^bj+bj+b. 

Sd.+d, Sb.^b, 

u-1   v-1 

(sum of all 
coefficients) 

3(8,+^+^+dl) 
+(a2+b2+c,*d,) 

3(al+a?+aj+a,) 
♦(b^bj+bj+b,) 

+3aj+b, 

u-1   v-0 
a4+b4+c4+d. 3a4+b, 

a,+b,+c,+d. 3a7+br 

Figure fl-6 

1. Get the equation of the perspective surface by dividing by the homogeneous 

coordinate. This results in a rational cubic wich does not fit into the 

subdividing scheme. 

2. Subdivide X, Y, Z, and W and do the perspective division at every point. This 

requires extra space for subdividing W and time to do the subdivision and 

perspective division. 

3. Take only the defining points of the patch (See appendix A) through the 

perspective transformation and recreate the cubic in perspective space. The 

defining points are correctly recreated, although the surface they now define is 

-- 
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not the "correct" surface (as defined in (1)) but, in the subjective opinion of 

the author, is a very close approximation. The pictures in this report were 

made using this method. 

: 
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CHAPTER FIVE 

THE HIDDEN SURFACE PROBLEM 

In order to display surface patches it is necessary to determine which surfaces are 

visible. Two methods that can be used to solve the hidden surface problem for bicubic 

patches are the "modified Newell algorithm" and the "z-buffer algorithm." 

THE MODIFIED NEWELL ALGORITHM 

Newell, Newell, and Sancha [10] have devised an algorithm for displaying polygons 

that sorts the polygons in z order and paints the polygons in that order into a frame 

buffer; the polygon farthest away from the eye is written first. Subsequent polygons 

may be written over those already in the buffer thus eliminating obscured polygons. If 

two polygons intersect or are situated so that it is not easy to sort them in z order, 

they are split into smaller pieces until they can be correctly sorted. 

There are two parts to the z sort in the Newell algorithm. The first is a simple, 

quick z sort of all the polygons based on their farthest vertex. It does not guarentee 

that the polygons are in the correct order to be written into the buffer. The second is 

a time-consuming sort that guarentees that the polygons are in the right order. 

Martin Newell of the University of Utah has noted in private discussion that that 

algorithm can b« extended to patches and that the Bezier control points (see appendix 

— '--      -  ■  — 
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A) can be used for ordering. Since a patch is constrained to lie within the convex hull 

of its defining points, the defining points can be used to sort the patches. If the order 

between two patches can not be determined then the patches can be subdivided until 

the correct sort can be done. With the fast subdivision of bicubic patches one can 

keep subdividing the patches until the z order is resolved and then render the curved 

pieces as shown earlier. The relationship between Bezirf' control points and the 

correction factors is shown in Appendix 3. 

THE Z-BUFFER 
| 

The z-buffer is an extension of the frame-buffer idea in that the z value from the 

image-space of the visible object is stored at every raster-element as well as the 

intensity. The z value Of any new point to be written into the buffer is compared with 

the z value of thj point already there. If the new point is behind, it is discarded. If it 

Is in front it replaces the old value. 

There are several advantages to using the z-buffer. Hidden surface problems and 

intersection of arbitrary surfaces are handled trivially. Pictures can be of any 

complexity. Except as noted below, surfaces may be written into the buffer in any 

order, thus saving the time-consuming sorting of highly complex surfaces. 

There are of course some disadvantages to the z-buffer. A 512 by 512 buffer 

with 8 bits of intensity and 20 bits of z uses a quarter of a million 28 bit words. At 

the current cost of memory this means an expensive implementation. A more serious 

problem is that of "anti-aliasing," or getting rid of the "staircase effect" r.ee Chapter 

MM -    ■- _^.. 
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7). Any algorithm for getting rid of the staircase effect requires that on the silhouette 

of objects the intensity at the corresponding raster-elements will be some combination 

of intensities from at least two objects ~ namely, the object being displayed and the 

object being partially obscured, which may of course be simply background. If all of 

the objects have been rendered in random order then it is possible that the intensities 

from the wrong objects will be combined, giving a local error. This means that it may 

sometimes be necessary to sort the objects to eliminate the staircase effect. 

The author implemented the z-buffer algorithm by paging the z-buffer onto disk. 

Thirty-two pages could be resident in "Ore where each page contained a 16 by 16 

square section of the raster. The time needed for swapping was small compared to 

the time spent by the software implementation of the subdivision algorithm. All of the 

pictures in this report were made using the z-buffer. 

A combination z-buffer-Newell algorithm coui«4 be developed where a simple z sort 

puts the patches in approximately the right order and the z-buffer guarentees that 

they are in the right order. The only error that would occur would be a local 

"staircase error" on an edge if the associated patch were written in the wrong order. 

We have traded off the time-consuming sort for the increased memory and the 

possibility of a small error. 

   ^^—-^ 
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CHAPTER SIX 

INTENSITY 

?/ 

When a patch has been subdivided into subpatchss small enough to cover only one 

eamole point it is necessary to associate an intensi'y with the corresponding point. 

There are several ways of getting the imensity at each point 

1. Use the normal to the surface to calculate intensity. 

2. Use some intensity function of u and v. 

3. Map the intensities from some picture. 

4. Modify existing intensities for shadows or transparency. 

There are good examples where each of the above might be applicable, so they will 

each be discussed. 

USING SURFACE NORMALS 

The normai to a surface is frequently needed to calculate the intensity. Phong has 

already shewn [4] several ways of calculating intensity if the surface normal and the 

light sources are known. A typical way of doing it would be to use H the intensity 

the dot product of a light vector and the surface normal. One needs to use the normal 

from the object-space surface before the perspective transformation is performed 

instead of the image-space surface because perspective distorts the surface and hence 

falsifies the intensity.   Unfortunately, finding the normal is complicated by the fact that 

.MnMMtaMBH 
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the equation of the normal to a bicubic patch is a fifth degree polynomial. 

Three ways of finding the normal are: 

1. Use a fifth degree subdivision equation to solve the normal surface equation. 

This seems impractical because of the increased space, time, and complexity 

required. 

2. Approximate the normal equation with a cubic equation and then subdivide the 

components of that equation just as the surface equation is subdivided. 

Appendix C explains how to approximate the normal equation. This method 

was used to make the pictures for this report. Six components of the patch 

were subdivided to make the pictures — the three components of the surface 

and the three components of the normal. 

3. Take the cross product of the tangents at every point to get the surface 

normal. We have already shown in chapter three that the tangent at the 

midpcint of a line can readily be found. Therefore the three components of 

the object-space patch can be subdivided (in addition to the perspective patch) 

and the normal can be found by taking the cross product of the u direction 

tangent and the v direction tangent at each sample point. This method 

requires a little extra information in order to get the tangents and, of course, it 

requires the extra *ork involved in taking a cross product at every point. 

USING AN INTENSITY FUNCTION 

The intensity at a raster element is represented by a number and any useful way 

of deriving that number is legitimtte.   Instead of being a function of the orientation of 

•     i        -    
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the surface, the intensity might be a function of pressure, strain, height, density, 

artistic whim, etc. If these can be expressed in a bicubic equation then thev fit into 

the subdividing scheme. Color components could also be calculated as bicubic 

equations. 

One  must  use  care to ensure that the calculated  intensity values  stay  within 

required bounds for the display.   Three ways of doing this are: 

1. Check each calculated value and clip it if too large or too small. 

2. If using normals, renormalize at every point. 

3. Solve for the Bezitfr control points of the patch (see Appendix A) and normalize 

those points so that none of them are out of range, then recalculate the patch. 

Since the patch is contrained io lie within the convex hull of the points they 

will be in the required bounds. First derivative continuity across patch 

boundaries may be lost with this method. 

MAPPING 

Photographs, drawings, or any picture can be mapped onto bivariate patches. This 

is one of the most interesting consequences of the patch splitting algorithm. It gives a 

method for putting texture, drawings, or photographs onto surfaces. It also allows one 

to have reflections in pictures, as in flat or curved mirrors. 

One can make a correspondence between any point on a patch and an intensity on 

a picture. If a photograph is scanned in at a resolution of x times y then every 

element can be referenced by u-x and v-y where 0^u,vSl.    In general, one could think 

- -■ - ■   inii 
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Of the intensity as a function Ku,v) where 1 references a picture. In Keeping with the 

bicubic method, the picture does not need to be rectangular but can have edges that 

are cubic curves. 

In practice the above method for getting intensities from pictures can fall afoul of 

sampling errors. This will occur when the number of points to be displayed on a patch 

is less than the number of elements in the stored picture, resulting in less information 

being put on the patch than is in the picture. 

One way to alleviate this is to map areas onto areas rather than points onto points. 

Every time the patch is subdivided, the picture is also subdivided. When the algorithm 

determines that a subpatch is to be displayed, the corresponding area on the picture is 

known. The average intensity of that area can be found and used as the intensity of 

the piece. While this reduces considerably the sampling problem it does not 

completely solve it. 

The sampling problem can be better understood by considering figure 6-1. 

Suppose that the algorithm subdivides the patch up as shown and that the squares in 

the figure represent raster-element squares. Since in general the pieces of the patch 

do not mesh well with the raster grid there will be times when more than one piece of 

the patch logically belongs to one display element, ie., pieces a, b, and c would be 

painted in element one. However, a, b, and c are not usually created in time sequential 

order so combining them would be difficult. If only one of the pieces is chosen for 

display then some information would be lost. A solution to the problem is presented in 

chapter Seven. 
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Figure 6-1 

INTENSITY MODIFICATION 

Raster- 
element 
square 

Patch 

Once an intensity is in the buffer there may be several reasons to modify it; for 

example, transparency and shadows. If a new surface is transparent [10] then the 

intensity to be put into the buffer is some combination of the new intensity and the 

one already in the buffer. A typical formula might be New + (Old - New) * T 

where T is the transmittance which ranges from 0 for opaque to 1 for tranparent. Ad 

hoc variations on this formula can be made to get acceptable looking transparency. 

Transparent objects must be written into the buffer in the correct order, ie., close 

objects are written last. 

Shadows can be made with the z buffer using "shadow-patches."   A shadow-patch 

can be made by finding the silhouette of an object from the point of view of the light. 
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(See figure 6-2) The silhouette can be used to create shadow-patches that extend from 

Light contour 

Light 

Shadow patches 

Figure 6-2 

the sihouette away from the light.   Front and back shadow-patches can then be paired 

up. Any object that lies between the two shadow-patches it in the shadow of the 

object. After the picture has been created the shadow-patch pairs can be split as 

bicubic patches with x, y, z-front, and z-bück components. If the visible element in the 

z buffer lies in the shadow range then its intensity can be attenuated. The difficulties 

with this method are that one must find the silhouette, that the front and back 

shadow-patches must be matched up, and that diminishing the intensity does not 

correctly eliminate a highlight that should not appear in a shadow. It should be clear 

that although shadows can be made, it is not an easy problem. 
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CHAPTER SEVEN 

SAMPLING, RASTERING, AND ALIASING 

There are some inherent limitations with usmg a raster-display. Th? raster display 

cannot produce images with clean sharp edges or small (compared to the 

raster-element size) detail. Unfortunately, these limitations frequency lead to 

disturbing visual effects. We shall try to explain here the nature of these limitations 

and show steps that can be taken to alleviate the undesirable effects, especially with 

regard to the subdivision algorithm. 

ALIASING 

There are two different kinds of unwanted visual effects that -esult when usmg a 

raster-display — "aliasing" and "rastering." The first -- aliasing -- is used to denote 

effects that result from sampling.   Five manifestations of aliasing are 

1. A "staircase effect" appears at the silhouettes of objects. 

2. Small objects fall between the sample points and disappear. 

3. In a motion picture, the slow smooth movement of an object appears as discrete 

jumps. 

4. An imag« of a picket fence or similar regular pattern causes a moire pattern to 

appear. 

5. If a picture is mapped onto a surface then all of the above occur over the entire 

MMMBMU -       ..  — —^-- - ■  
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surface. 

As noted previously, a rasttr display cannot produce images of sharp edges or s.-nall 

detail.    Aliasing occurs because we are sampling an image1 wnich has information that 

the raster-display cannot possibly reproduce. 

The phenomenon of aliasing can be better understood by considering a stagecoach 

movie . Note first that a movie camera car sample the real world 24 times a second. 

Suppose the camera views a stage coach as it starts and accelerates; the wheels 

moving faster and faste'. Most readers will have witnessed that when the coach 

begins tc move, the wheel appears to rotate in the right direction but as the wheel 

rotates faster it appears to go backwards, then stop, and finally to rotate forwards 

again even though the coach is always moving forwi'ds. It is easy to understand that 

the wheel has a frequency of rotation. The movie film can accurately reproduce a 

rotational frequency of not more than twelve spoKes per second. As the wheel 

rotates faster than that, the higher frequency is "aliased" as a low frequency which can 

be reproduced. The analog with sampled images is that an image may have intensity 

undulations that vary faster than the sampling rate and I-»nee alias themselves as 

undulations that can be reproduced. 

The field of signal-processing helps us understand aliasing even better. If a 

two-dimensional fourier transform of an image is taken prior to sampling, the result is a 

"picture" of  the  frequencies  present  in the image.    Sharp edges  and  small  objects 

1.     This  image  we  are sampimg exists only as  a high resolution description  in the 
computer, as contrasted with an actual photograph. 
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result in high frequencies. The raster display can reproduce only low frequencies; the 

upper limit on the frequency is determined by the resolution of the raster display. 

During the process of sampling, frequencies that are higher than those that can be 

reproduced are "folded" back onto those that can be and become indistinguishable from 

them) hence the term "aliasing." 

"Anti-aliasing" will be used here to denote the process of reducing or eliminating 

the aliasing effects. An effective method for anti-aliasing is to eliminate from the 

image, prior to sampling, those components that cannot be reproduced or, in terms of 

signal processing, to filter out the high frequencies with a "low-pass filter." This 

filtering of an image could be thought of as a "smearing" operation. Sharp edges are 

smeared so that they are no longer sharp and therefore won't cause severe aliasing 

problems. The filtered image can then be sampled. The filtering and sampling process 

can be expressed in a diagram (see figure 7-1). 

Original 
image XD- 

filter 

Filtored 
cr 
smeared 
image 

-} 
samples 

raster- 
dicplay 
imace 

Figure 7-1 

One method of filtering is to "convolve" the original image with a "two-dimensional 

fourier window" or "box window." With this method we in effect take a "box" that can 

cover one raster-element square and is one unit high and put the box on the original 

image. The box is mu'tiplied by the intensities in the image -- which results in zero's 

everywhere  but  at  the  box -- and the resulting values are then integrated.    This 
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yields one value .or that position of the box. The value in effect is the average of the 

intensities under the box. The box can be moved and a value calculated for some 

other point. As the box is moved over the entire image a new filtered image is 

created. The process of moving the box window over the image, multiplying, and 

integrating to form a new image is called "convolution" and can also be used with 

windows other ttvn a b^x. The filtered image that results from using a box window no 

longer has sharp clean lines; much, but not all of the high frequency information is 

gone. Even though some of the high frequency information remains, a box filter is still 

good enough for most computer graphics purposes. 

AREA SAMPLING 

Since the filtered image will be sampled only at discrete points corresponding to 

the raster-elements it is necessary to calculate the filtered image only at those points. 

In other words, we can think of a raster-element as corresponding to some small 

square area of the original inage and we only need to find the average intensity of the 

visible surfaces in that square. We shall call this particular form of filtering and 

sampling "area-sampling." 

Area-sampling is the technique usually used in computer graphics to do 

anti-aliasing. Typically, when an edge of a polygon passes through a rester-element 

square, the intensity for the corresponding raster-element is some average of the 

polygon intensity and the intensity of polygon behind, weighted by their respective 

visible areas in the square. Most methods for anti-aliasing have been applied at the 

edges of polygons since the aliasing effects in the center of a polygon have usually 
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been negligible. 

Since there are several ways of filtering it is natural to ask "what is the best 

achievable anti-aliasing?" One should not be misled into thinking that area-sampling is 

the best anti-aliasing possible even though it is a considerable improvement over 

point-sampling of an unfiltered image. A better method, for example (although how 

much better is not known) would be to use a pyramid with a base that could cover four 

raster-element squares as a window for convolution instead of a box window. 

Unfortunately, "perfect" anti-aliasing is also undesirable becaur.e the filter necessary to 

make this possible also modifies the image in an undesirable way. The reasons for this 

end the answer to the above question are beyond the scope of this report. Methods 

for anti-aliasing are part of on-going research at the University of Utah. 

RASTERING 

Rastering occurs during the process of display regardless of the intensity values at 

each raster-element.' Rastering occurs when we can se? the individual dots or 

scan-lines on the raster display. An example of rastering occurs in television where 

we frequently can see the scan-lines. If we can see the dots or scan-lines, then we 

are seeing something that is an artifact of the raster display and is undesirable 

information, thus the name "rastering." 

2.    There are actually two kinds of rastering — "static" and "dynamic."   The distinction 
between the two is beyond the scope of this report. 
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The meaning of the word "rastering" used here is not universal and ir computer 

graphics it is frequently used to denote what we call here "aliasing." However in 

order to be consistent with the use of the word by the signal-processing research 

group at the University of Utah we shall take it to mean the effect that occurs in the 

process of actually displaying the raster. 

"Anti-rastering" is the process of reducing or eliminating rasterng. The practical 

method for anti-rastering is to defocus the CRT beam enough so that adjacent dots on 

the raster-display just merge. A picture of a "flat-field" on a raster-display should 

appear to be of uniform intensity with no dot or line structure. 

ANTI-ALIASING FOR THE SUBDIVISION ALGORITHM 

"he subdivision algorithm can be modified to allow for area-sampling. Such a 

mod ication requires techniques for determining what is visible in each raster-element 

square and some method for storing and combining intensity values at eacn square to 

get the average. The modified algori hm has some drawbacks which will be discussed 

at the end of the chapter. Before presenting the modification, some groundwork needs 

to be laid and an "area-averaging algorithm" must be described. 

One of the termination conditions described in chapter two required that a patch 

be approximated by a polygon to see if it was small enough. This same polygon can 

be used to do the area-sampling. After the finest subdivision, 'he polygon will be 

very small. We will require that no polygon cover more than four raster-element 

squares (see figure 7-2). In each square then, there will be some "piece" of the 

polygon. 

■MMiMIMMMA^MB .^BMM^MH^M^^. 



46 

The average intensity of all pieces visible in a square is needed to do 

area-sampling. Unfortunately, the pieces that logically belong to a square are not 

derived in immediate sequential order; that is, after one piece is found for a square, 

other areas of the screen may be worked on before finding another piece for that 

square. Some mechanism must be found for storing the piece intensities so that the 

average intrnsity can be found. 

The problem is simplified if we make use of the following observations. In the 

large majority of raster-element squares all visible pieces come from the same patch. 

In a smaller, but still significant, number of squares, the pieces come from two patches 

— namely at silhouettes and patch boundaries. A very small number have three or 

more patches visible in a single square. The method to be presented will do 

area-sampling for the first two cases correctly but is not guarenteed to be correct if 

more than two patches are visible in a single square. 

The above implies that each piece must be identified with some patch. A patch 

code will be introduced for this purpose. The problem of identification is complicated 

by the fact that a patch may obscure itself; and in general it will, in regions near the 

silhouette. We can, however, differentiate between front and back-facing pieces by 

using an area-calculation method that gives negative or positive area depending on 

which way the piece faces. A bit can be set for a piece which indicates its facing 

direction. 

The area-averaging algorithm requires that pieces be processed in z order. That 

requirement holds even within patches, ie., the four subpatches of a patch are sorted 
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so that subdivision continues first with the more distant subpatch. If the z-buffer <s 

used and the order is wrong, then the error will show up or'y at the silhouette where 

a staircase effect might become visible. 

A large frame-buffer will bn needed for the area-averaging algorithm. At every 

raster-element, storage will be needed for two intensities, I, and I,,, area, a facing 

direction bit, and a patch coc'e. If the algcr thm is used in conjunction with the 

z-buffer then storage for z is also reeded. We shall describe values already in the 

bjffer as "old" and the new values to be written as "new." The area of a single 

raster-element square will be taken to be unity so that is the largest value that can be 

stored in the area part of the raster-element. Initially I, will have the background 

intensity, the area bits will contain one's and the patch code will be zero. 

The area-averaging algorithm is: A new piece is found with its area, code, direction 

bit, and intensity value which is weighted by the area. Then its corresponding 

raster-element is retrieved.   The following are the possibilities. 

1. If the new code is the same .^s the old and the direction bits are the same then 

the pieces come from the same patch. Add the areas and the new weighted 

intensity to the old value in I,. 

2. If the two codes are the same and the direction bits are different then the 

silhouette has been encountered and the accumulated area from that patch is 

about to be obscured by the new and subsequent pieces. Set the area to be 

the new area, the intensity I, to be the new weighted intensity, and the direction 

bit to the new direction value. 

3. If the codes are different then a new piece or pifces will partially or completely 

.  —  
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obscure the old pieces.   Put the value of I, divided by area (to unweight it) into 

In set I, to the new weighted inlansity, sot the area value, and set the patch 

code and direction bit.   For displaying, the intensity will be 1,-1 t(l.-area). 

This algorithm has solved two problems: all of the pieces have been put together to 

allow mapping and at the silhouettes and boundaries fne intensity is a combination from 

the two visible objects. 

The   subdivision   algorithm  of   chapter  two  can   now   be   mcdified   to   allow   for 

area-sampling    instead    of    point-.ampling.      Consider    figure    7-',.      Each    square 

raster-element 
square 

vertices 

Figure 7-2 

represents a raster-element square. Recall that a raster-element square is the area 

on the screen corresponding to one raster-element. The crossings of the horizontal 

and vertical lines which bound the squares will be called "vertices." The modification 

to the algorithm is that the patches will be subdivided until they cover at most one 

vertex (as opposed to a sample-point). An additional constraint on the termination 

condition is that the approximating polygon (the dotted lines in figure 7-2) lie within 

the area of the four squares adjoining the vertex. 

^mm ■ i i _ 
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The polygon that approximates the patch (the dotted lines in figure 7-2) will be 

used for the area calculations. The polygon must be divided into pieces that belong to 

each of the four squares.    Each piece then is used with the area-averaging aigorithm. 

The algorithm presented is unsatisfactory in some ways: it requires a lot of 

memory, there is a lot of computation required, it ,s applied at every point instead of 

just where needed, it does not work with transparency, and there are several cases 

where it fails. On the other hand, mapping requires the ability to area-sample over 

the entire surface. It is not clear at this time just how much or how little is required 

to do acceptable anti-aliasing. Hopefully, li «5 above discussion will .ead to some 

cheaper or better methods for doing area-samf ling. 
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CHAPTER EIGHT 

CONCLUSION 

The subdivision algorithm has been implemented in software on a PDP-10 at the 

University of Utah. Several pictures generated by the program are included in this 

report in Appendix D. 

Table 7-1 lists some timing information about the generation of a few of the 

pictures. The initialization of the frame-buffer took about 7 seconds and displaying 

the frame buffe. took about 28 seconds. The times listed below do not include 

initialization and display time. 

OBJECT PICTURE « TIME (minutes:seconds) 

single patch 2 1:17 

glass 1 1:55 

bottle 1 4:15 

klein bottle 14 

TABLE 7-1 

15:00 

It is natural to consider a hardware implementation because of the simplicity of the 

algorithm and the tremendous number of times those simple steps must be performed. 

The four components of such an implementation are: 

-    ■ ^^m~~mmmm, 
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1. The subdivider. 

2. The stack. 

3. The tester. 

4. The shader. 

The subdivider can split the patch into four pieces. Since subdividing a cubic 

takes three adds, the number of adds to subdivide a bicubic component is 30. The 

values must travel through the edges to the center so the values must pass through 

four adders. The fastest possible implementation would have a subdivider for each 

component. 

There are several ways of trading off speed w;th cost. One subdivider could be 

used to subdivide each componen. sequentially. The system would just run slower. In 

addition, since each subdivider can be broken up into modules that combine 

register-squares, one could use just one module and give it two register-squares at a 

time to get a new square.   Then the system would run even slower. 

A stack would be needed to push the new squares onto. It needs to be large 

enough to handle the maximum level of subdivision, probably no greater than 15. 

The tester must decide whether to display the patch or subdivide. It would check 

the x and y values at the corners. In addition, it may sort the four new patches if 

necessary either for the Newell algorithm or to do transparency. It is possible at some 

level of recursion to determine that no more sorting needs to be done. 

.   ■-^—^^«. 
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The shader picks out the surface normal components, normalizes them, takes some 

dot products, and calculates the intensity for each raster-element. If the 

area-sampling mt -od is used then the area of the patch in each raster-element square 

must also be calculated and the results merged with the information in the 

frame-buffer. 

PROBLEMS 

The most immediate problem is that of aliasing. One would hope that there is a 

cheaper or faster solution than the one presented here. For example, one might 

detect the silhouette by using the tangents and then area sample only at the silhouette 

of objects to calculate the right combination of intensities. An advantage of the 

subdivision algorithm is that a lot of information about the patch is available. The 

problem is to find a way to use that information to solve the aliasing problem. 

Another problem is that bicubic patches may not adequately fill the needs of some 

people working with curved surfaces. It seems likely that the notion of subdividing 

can be applied to other curved surface schemes. 

jmm "  - ... 
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APPENDIX A 

THE BICUBIC EQUATION 

There are several different methods for generating bicubic patches. Each method 

is useful on different occasions. Bicubic equations are widely us-H in computer aided 

geometric design. Some good references are [11,12,13,14] with the article by George 

Peters in [11] being specially devoted to the bicubic patch. 

Consider the simple cubic: 

x(t) - •<» ♦ W» ♦ d ♦ d 

This can be expressed in matrix notation: 

x(t) - [t«  l1  t   1] 

A curve in space can be represented by the parametric vector equation 

F(t) - [x(t) y(t) z(t)]. Since each component is a parametric function of t and is 

treated the same as the other components, it is only necessary for us to consider one 

component x(t). 

A patch is a function of »wo variables, u and v.    F(u,v) - [x(u,v) y(u,v) z(u,v)]. 

Again only one component needs to be considered.   The matrix notation for x(u,v) is: 

x(u,v) - [u3   u'  u   I] 
a,. ■it 3,3 a,. v» 
•> »22 a,. »a. v» 
■tl a« a., a« V 
a.: a« a« a.« .1 
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where   the   a^  are   the  coefficients  of   the  equation  just  as  a,  b, c,  and  d   were 

coefficients in the univariate case. 

The problem then is to find the coefficients. There are many ways of doing this. 

We shall consider here only those way-i that are local, that is, the changing of data only 

affects the coefficients of nearby patches. In order to find f-e coefficients of the 

simple cubic it is necessary to have four items of information. We can then transform 

that information into the coefficient«; by some four-by-four matrix M.    f 

r   - 

'P'l 
b -M P, 
c P, 

wi P. 

therefore 

xW-tt»  tM   1]M 

The P|'s can be some physically relevant items of information such as points or slopes. 

The matrix M is a constant matrix that corresponds to the particular Kind of info matior 

chosen as the P.'s. it is important to note that this concept can be trivially extended 

to the bivanate case: 

x(u,v) - [u*   u2   u   1] M 

where the Pu are relevant data such as points or slopes.   For example the Pu might be 

a four-by-four grid of points. 

Pn P., P., P.. V 

P„ Pn PH P« MT V 

P,. PM P« P,. V 

P.. P« P., P« 1 

 .  
~ ■-    -   -    -■    ■    i    ni^M 
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The balance of this appendix shall be devoted to showing what the M matrices are 

for different kinds of P's. When the P's are points they may be referred to as "control 

points." The examples shall be given using the univariate case so recall that the 

extension to bivariate patches is shown above. 

1.   SIMPLE CUBIC THROUGH 4 POINTS 

Consider the four points P„ P2, P„ and P»   The cubic will pass through each point 

and x(0)-P„ xd/SH3,, x(2/c)-P„ and x(l)-P..   Then: 

xW-Ct» t» t   HM, 
p.' 

P. 

and fnr this particular choice of the values of the independent variable, 

M, -(1/2) 

It is difficult with this scheme to connect two cubics at some point with c   continuity. 

-9 27 -27 9' 
18 -45 36 -9 
11 18 -9 2 
2 0 0 0 

*MB M-,i J 
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2.   THE BEZIER OR BERNSTEIN CUBIC 

Consider the four points P,, P„ P,, and P,. The curve will pass through P, and Pa. 

The line from P, to P? is tangent to the curve at P, and the line from P, to Pa is tangent 

at P,,. The length of the tangent vector at P, is three times the length of the line from 

P, to P,. S^.iilarly the length of the tangent vector at Pa it three t.me the length of 

the line i'Om Pj to P,. The curve is constrained to lie with the convex hull of the 

defining points. 

P, 
xm-tt* t» t I]M. 

where 

M2- 
-13-3 1 
3-630 
-3300 
10    0    0 

Two cubics can be joined with C, continuity if the control points at the joint are 

the same (quite obviously) and the two control points of both connecting ends are all 

colinear, ie., in the following diagram P3, P,-Q„ and Q, are colinear. 

IM mm Maah—a^-—-. ___^^Mfl 
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3.    THE HERMITE INTERPOL ANT 

Q, 

P, P, 

Consider two points and two tangents, then: 

x(t) - [t»  t»  t   1] M, P. 
Q, 

wb«jre 

M, - 

[2 -2 1 f 
-3 3 -2 -1 
0 0 1 0 
1 0 0 0J 

-    -  ■ .. -^-^ 

' ■ 
..^..^.^ -.     :W.I^^. 
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Two cubics can be connected easily with C continuity if the tangents at the connecting 

points are the same. 

The extension to a bivariate patch Is not as straightforward as In the other cases. 

The bivariate patch is frequently called a bicubic Coons patch and sometimes the 

"hermlte tensor-product bicubic surface." The elements of the P matrix are: 

Q(0,0)      0(0,1)   ! 0.(0,0)    0.(0,1)" 

p - 
0(1,0)    Q(i,i) ,0,(1,0)   Q,(i,i) 
-- — - — - — i— -__  

0«(0,0)    QJi0,l) |0-,(0,0)   0«,(0,1) 

Q-(1,0)    0-(U) i'O-d.O)   QM.l) 

which corresponds to the patch 

0,(1,0) 
QU(1(0) QJU) 

0(1,0) 0(1,1) 

0u(0(0) 

0,(1,1) 

0(0.0) 0(0,1) 

0.(0,1) 

0,(0,1) 

The Q are the corner points, the Qu are the tangent vectors in the u direction, the Qv 

are the tangents In the v direction, and the Q» are the cross derivatives which are 

frequently called the twist vectors. The twist vectors are sometimes set to zero which 

may cause "pseudo-flats" at the corners. 

—  .„,, 
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4.    THE B-SPLINE 

The cubic B-spline gives very nice looking curves and provides continuity of the 

second derivative. In general it does not interpolate its control points, but rather 

approximates them. The generated cubic is also constrained to lie within the convex 

hull of its defining points.   Consider the four points P,, P„ P3, and P«: 

A cubic curve can be generated that in general does not pass through any of its four 

control points.   Now consider a fifth point P5. 

Another section of curve can be generated using points P?l Pj, P0, and P,. The two 

curved pieces will be connected with c2 continuity at the joint. The equation to 

generate a section is 

l«___^^MftMM ■- 
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X(t) - [t
s  tl  t   I] M. 

P.' 
Pi 
P3 
P. 

where 
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M.-(1/6) 

-13-3 1 
3-630 
-3030 
1110 

5.   THE CATMULL-ROM CUBIC SPUME 

This spline interpolates its control points and has continuity of the first derivative. 

Consider the four points P,, P„ P« and Pt. 

A cubic can b? generated that passes from point P2 to P,.    Now consider a fifth point 

MMMI^ ^MilM mum ^ MmmmttkM'm\\\\r*      ■■- ■--■- -— 
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Another piece of curve can be generated using points P2, P3, P4, and P».    The two 

sections will be connected with c' continuity.   The equation to generate a section is: 

xm-tt» t» t I]M, i 

where 

M5 -(1/2) 

-1 3 -3 1 
2 -5 A -1 

-1 0 1 0 
0 2 0 0 

   11  » . ^ 
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APPENDIX B 

RELATIONSKIP OF CORRECTION FACTORS TO BEZIER CONTROL PC" 

We can find the Bezier control points for a patch since the corner values and 

correction terms can be expressed in matrix form as shown in chapter three. Recall 

that the patch generated by the '6 control points is constrained to lie within the 

convex hull of those points. This is useful for clipping and determining when two 

patches might intersect. 

Recall equation (3-5) C - SA where A is the matrix of coefficients. Of course we 

can go the other way by noting A - S-'C.   If we have four points d„ d?, d3, and d, and 

d, 
dz 
d3 
d. 

then the coefficients for the Bezie'r cubic for those points are A-BD where B is the 

four-by-four matrix given in Appendix A in the section on Bezier cubics. If we put the 

relationship into equation 3-5 then C-SA-SdD.   Therefore: 

(B-2) D - B-'S-'C 

giving the control points D as a function of the correction matrix C. 

This analysis can be extended to surfaces. Let C be the four-by-four coirection 

matrix for a patch. We expect it to contain the same values listed in figure 4-6. Let 

M be the four-by-four matrix of coefficients for the bicubic patch.    Then 

- i HUM 
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(B-3) C - SMST. 

Let P be the four-by-four matrix of the 16 Bezier control points for the patch.    Then 

M - BPBT ana it follows that C - SBPBTST.   Therefore: 

(3-4) P - B-'S-'aSMB^-1 

where 

B-1 - 
0 0    0 I 
0 0 1/3 1 
0 1/3 2/3 1 
1 1     1 1 

B-'S-' - 

10     0     0 
2/3-2/9 1/3-1/9 
1/3-1/9 2/3-2/9 
0      0      10 

■-—■MuiMaa .^^^■■••■MM  - —  , ^ ii iMiaii 
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APPENDIX C 

APPROXIMATING .'HE BICUBIC NORMAL EQUATION 

The normal vector to a bicubic patch can be found by taking the cross product of 

the tangent vector in the the u direction and the tangent vector in the v direction and 

can be shown to be quintic. It is desirable to approximate :he quintic normal equation 

with a bicubic equation because a bicubic equation is easier to work with. 

The x component of the surface vector is: 

x -[u»   u7   u   1]M. 

where M, is the matrix of coefficients for x.   The derivative in the u direction is: 

xu - [Su3   2u   1   0] M« 

and the derivative in the v direction is: 

x, -[u»  u»  u .1]M. 
3v» 
2v 
1 
0   . 

For simplicity we shall define: 

U  - [u3 u'  u   1] 

U' - [3u? 2u   1  0] 

U" - [6u 2 0 0] 

tMM^MMMl ii ii ■i«—<—if^Miiii*Mm i 
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V - 

v - 

V"- 

v" 
\f7 

v 
1 

Sv»1 

2v 
1 
0 _ 

'6v 
2 
0 
0 

Therefore Xu - U'M,V and X. - UM,\/'. The y and z components are treated similarly 

Of course. The tangent in the u direction is [xu yu zu] and Jhe tangent in the v 

direction is [xv yv zv]. 

We need to find the normal vector [xn yn Zn].   The normal vector can be frjnd by 

taking the cross product: 

xn(u,v) - yuZ, - yyzu 

yn(u,v) - zuxy - z,xu 

z^u.v) - xuy, - xyyu 

but si ice -<„ - U'M.V,   x. - M.V,   yu - U'MyV,   etc., we can write: 

(A-l)        xn(u,v) - UHVUM.V - UMyV'U'M,V 

(A-2)        yn(u.v) - U'M.VUM«V' - UM,V'UUV 

(A-3) z^u.v)  - U'M,VUMyV' - UM.V'U'MyV 
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It should be apparent on close examination of the equations A1-A3 that each 

component is, as asserted, a fifth ctgres polynomial in u and v. Let us consider only 

the x component of the normal. In order to approximate the normal vector equation 

with a bicubic normal vector equation we require that the bicubic normal have the 

same: 

1. values at the corners, xn(u,v) 

2. derivatives in the u direction at the corners, dxn(u,v)/du 

3. derivatives in the v direction at the corners, dxn(u,v)/dv 

4. cross derivatives at the corners, d7xn(u,v)/dudv. 

If we group this data in a matrix we have: 

Px  - 

Xn(0,0) 

x„(l,0) 

dxn(0,0) 
du 

dxn(l,0) 
du 

Xn(0,l) dxn(0,0) 
dv 

xn(l.l) dxn(l,0) 
dv 

dxn{0,l) d?xn(0,0) 
dv dudv 

dxft(i,l) d'xn(l,0) 
du dudv 

dxn(0,l) 
dv 

dxn(l,l) 
dv 

d7xn(0,l) 
dudv 

d?xn(l,l) 
dudv 

The form of this matrix is the same form as the data matrix for a bicubic Coons patch. 

Therefore we can use Coons magic matrix: 

C - 

2-211 
-3    3   -2   -1 
0    0     10 
10    0     0, 

So the x component of the bicubic normal is: 

■ 
.^^a-Mnam 
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(A-5)        x    - CP.CT 

The quintic function and its derivatives can be written more explicitly as: 

(A-6)        Xndj.v) - UHVUM,V - UM^V'UUV 

(A-7)        dxn(u,v)/du - U"MyVUIvl,V' + UHVUHV 

-U'MyV'LmV - UM)V'U"M,V 

(A-8)        dx(u,y)/dv - U'M^V'UM.V ♦ U'lVl.VUM.V" 

- L%V"U'M,V - UM^V'U'M.V 

(A-9)        d7x(u,v)/dudv - U'HV'UM.V + U"lvl,VUM,V' 
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+ UHV'U'M.V * U'M^U'M.V" 

- ÜHVUHV - U'M^'U'M^V 

- UMyV"U"MIV - UMyVOTM.V 

The values of these equations at u-O.l and v-0,1 can then be substituted into the 

appropriate places in equation A-4. 

Rather than rewrite equations A-4 through A-9 for the y and z components just 

note that for y we can use the substitutions 

1. y replaces x 

2. z replaces y 

3. x replaces z 

■MM . . .. . 
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and for z 

1. Z replaces x 

2. x replaces y 

3. y replaces z 
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APPENDIX D 

PICTURES 

The pictures ir this appendix were made on the high-precision CRT at the 

University of Utah. All pictures were made ut 512 resolution. The h-am was slightly 

overfocused. 

The discontinuities in the shading on the everting spheres are caused by first 

derivative discontinuities in the surface description and not by the algorithm. The 

roughness at the intersections are a result of insufficient z resolution. The front 

clipping plane was rrv.ich too close to the eye. 

The area-sampled Klein bottle clearly illustrates deficiencies in the area-sampling 

algorithm presented in chapter seven. However, the algorithm works very well for 

mapping. 

The photographs used for mapping were scanned into the computer with a 

scanning device at the University of Utah. Only lack of time prevented a more 

elaborate demonstration of the power of mapping. 

The shading discontinuities in the brick cylinder occur because the original brick 

wall was not evenly lit. 
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